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The research in the field of travel demand modeling is driven by the need to 

understand individuals‟ behavior in the context of travel-related decisions as accurately 

as possible. In this regard, the activity-based approach to modeling travel demand has 

received substantial attention in the past decade, both in the research arena as well as in 

practice. At the same time, recent efforts have been focused on more fully realizing the 

potential of activity-based models by explicitly recognizing the multi-dimensional nature 

of activity-travel decisions. However, as more behavioral elements/dimensions are added, 

the dimensionality of the model systems tends to explode, making the estimation of such 

models all but infeasible using traditional inference methods. As a result, analysts and 

practitioners often trade-off between recognizing attributes that will make a model 

behaviorally more representative (from a theoretical viewpoint) and being able to 

estimate/implement a model (from a practical viewpoint). 

An alternative approach to deal with the estimation complications arising from 

multi-dimensional choice situations is the technique of composite marginal likelihood 
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(CML). This is an estimation technique that is gaining substantial attention in the 

statistics field, though there has been relatively little coverage of this method in 

transportation and other fields. The CML approach is a conceptually and pedagogically 

simpler simulation-free procedure (relative to traditional approaches that employ 

simulation techniques), and has the advantage of reproducibility of the results. Under the 

usual regularity assumptions, the CML estimator is consistent, unbiased, and 

asymptotically normally distributed.  

The discussion above indicates that the CML approach has the potential to 

contribute in the area of travel demand modeling in a significant way. For example, the 

approach can be used to develop conceptually and behaviorally more appealing models to 

examine individuals‟ travel decisions in a joint framework. The overarching goal of the 

current research work is to demonstrate the applicability of the CML approach in the area 

of activity-travel demand modeling and to highlight the enhanced features of the choice 

models estimated using the CML approach. The goal of the dissertation is achieved in 

three steps as follows: (1) by evaluating the performance of the CML approach in 

multivariate situations, (2) by developing multidimensional choice models using the 

CML approach, and (3) by demonstrating applications of the multidimensional choice 

models developed in the current dissertation.   
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Chapter 1  

Introduction 

 

1.1 Background: The Role of Travel Demand Models 

Travel demand models (TDMs) are used to predict individuals‟ travel behaviors over a 

period of time, typically a weekday but sometimes also weekend days. Specifically, 

TDMs are designed to predict different dimensions of an individual‟s/agent‟s activity and 

travel behavior, including number of activity episodes, accompaniment arrangements, 

travel modes, destinations, activity durations, and other time-use behavior. Such models 

can be used to provide information on existing travel patterns as well as to forecast the 

future activity-travel patterns of individuals. For example, the outputs from a TDM can 

be used to analyze directional traffic flow on a roadway, obtain information on modal 

share, calculate travel time and delay, evaluate monetary and non-monetary benefits of 

building a new infrastructure, and quantify vehicular emission, to list just a few 

applications. In addition, a TDM may also be used as a tool to design and develop 

strategies that will proactively influence individuals‟ travel behaviors. For instance, 

assume that a toll is introduced on a segment of a congested road as part of a traffic 

management strategy. A commuter, who usually uses this road, may decide not to pay the 

toll and instead use an alternative (even if longer) route to get to work. Thus, introduction 

of a toll road has an immediate or short-term effect on this individual‟s travel pattern. In 

the long-term, the individual may decide to move to a new residential location to avoid 

longer commute times. A TDM can quantify these changes and aid decision-makers in 

developing strategies designed to affect individual‟s short-term and long-term travel 

behavior. In addition to route choice, other short-term travel-related choices of an 

individual that may be influenced include mode choice, drop-off/pick-up responsibility, 

number of non-mandatory activity episode participations, activity duration, time-of-day, 

and trip-chaining propensity. Longer term behavioral shifts may include individual‟s 

work location choice and household-level choices such as residential location, car 

ownership, and vehicular fleet composition. 
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It is clear from the above discussion that a TDM can be a powerful tool to manage, 

influence, and control individual‟s travel behavior at a disaggregate level and the overall 

demand for travel at an aggregate level. Of course, the effectiveness of a TDM depends 

on the level of accuracy of its prediction. In general, the more accurately a model can 

capture behavior and the responsiveness of an agent to observed (and unobserved) 

factors/stimuli, the better is its prediction capability and the overall performance level. In 

this regard, there are three general types of models that are commonly used to predict 

demand for travel. These are the trip-based model, the tour-based model, and the activity-

based model. Each of these models is discussed in the subsequent sections.  

    

1.1.1 The Trip-Based Class of Travel Demand Models 

The trip-based class of models uses trips made by each agent in the study area as the unit 

of analysis. A trip-based model typically comprises four sequential steps: trip generation, 

trip distribution, mode choice, and traffic assignment. The trip generation step involves 

the estimation of the number of home-based and non home-based person trips produced 

from, and attracted to, each traffic analysis zone (TAZ) in the study area. The home-

based trips are often divided into two categories: home-based work trips and home-based 

other (or non-work) trips. The second step, trip distribution, determines the number of 

trips from each zone to each other zone in the study area (that is, this step produces 

origin-destination (O-D) matrices of trip by purpose). The third step, mode choice, 

determines the mode of travel for each person trip. The travel mode choice usually 

includes at least the personal vehicle mode and the transit mode. This step converts 

person trips to vehicular trips. The fourth and the final step, traffic assignment, assigns 

the vehicle trips to the road network to obtain link-level vehicle volumes and travel times. 

In addition to the outputs from the mode choice step, external trip matrices containing 

information on truck flows may also be assigned to the road network in this step.  

The trip-based class of models is the most widely used framework for modeling 

travel demand. Though this class of models has the virtue of simplicity, one of the major 

drawbacks is that it considers trips to be independent of one another. That is, the trip-
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based class of models assumes that there is no spatial and temporal linkage between the 

successive trips of the same agent. For illustration, consider Figure 1.1, which depicts the 

travel pattern of a fictitious worker on a weekday. In the figure, the individual undertakes 

four trips: (1) a trip from home to the coffee shop, (considered a home-based non-work 

trip), (2) a trip from the coffee shop to the individual‟s workplace (considered a non 

home-based work trip), (3) a trip from the workplace to the restaurant in the afternoon 

(considered a non home-based non-work trip), and (4) a trip from the restaurant to home 

(considered a home-based non-work trip). The problem with the trip-based approach is 

that it does not consider the linkages between the four trips just listed. That is, it is likely 

that an individual will use the same travel mode for all the four trips, and that the 

locations of the coffee shop and the restaurant will be determined, at least in part, by the 

location of the home and workplaces. But the trip-based class of models characterizes the 

travel behavior of the individual as comprising two home-based non-work trips, one non 

home-based work trip, and one non home-based non-work trip. There is no relationship 

retained between these trips, because of the individual trip unit of analysis. Consequently, 

the trip-based model does not preserve the integrity of mode choices, location choices, 

and time-of-day of participation choices among the different activity episodes.   

 

 

Figure 1.1 Travel Pattern of an Individual 
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1.1.2 The Tour-Based Class of Travel Demand Models   

The tour-based class of models uses tours as the basic unit of analysis. A tour may be 

defined as a closed chain of trips beginning and ending at home (defined as a home tour), 

or beginning and ending at work (defined as a work tour, and applicable only for 

employed individual). Within a tour, the individual makes one or more stops and the trips 

in the tour are the result of the stops being at locations dispersed in space (and at a 

different location than the origin point of the tour). In Figure 1.1, the individual 

participates in a home-based tour with three stops – the coffee shop, the workplace, and 

the restaurant, all of which are dispersed in space. Thus, the tour includes four trips: (1) 

home to coffee shop, (2) coffee shop to workplace, (3) workplace to restaurant, and (4) 

restaurant to home. The tour-based model structure ensures that the integrity of the 

sequence of the trips in a tour, the destination choice, the mode choice, and the time-of-

day of the trips in the tour are all preserved. For example, the tour-based model will, in 

general, predict that the coffee shop is located between the individual‟s home and 

workplace, rather than at a location that is on the other side of the work place from the 

person‟s home. Also, if the individual drives a car to the coffee place, the tour-based 

model will assign a very high probability that the person will also use the car for other 

trips in the tour.  

 

1.1.3 The Activity-Based Class of Travel Demand Models   

The activity-based class of models also uses tours as the basic unit of analysis. However, 

the tour-based approach and the activity-based approach view travel quite differently. 

Specifically, the activity-based approach regards travel as a demand derived from the 

need to pursue activities (Jones, 1979, Jones et al. 1990, Bhat and Koppelman, 1999, and 

Pendyala and Goulias, 2002). That is, an activity-based travel demand model assumes 

that individuals usually travel to participate in activities, and considers the activity 

episode as the unit of analysis by analyzing such activity episode dimensions as the 

number of activity episodes by purpose, activity episode companion choice, activity 

episode location, activity episode duration, and activity episode participation time (as 
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opposed to focusing on the characteristics of the trips comprising a tour). For example, in 

Figure 1.1, the individual travels to his/her workplace to participate in a work activity 

episode. Similarly, in the afternoon, the individual travels to the restaurant to participate 

in an eat-out activity episode. In such a framework, the focus, for instance, is on the 

duration in continuous time (in contrast to in 30-minute or 1-hour “chunks”) of the coffee 

stop rather than, as does the tour-based approach, on the end-time of the trip terminating 

at the coffee stop location and the start time of the trip immediately after the coffee stop. 

By using activity episodes as the building blocks and using continuous time, the activity-

based class of models ties directly to a time-use decision framework in which time is 

treated as an all-encompassing continuous entity within which individuals make 

activity/travel participation decisions. This approach is also able to represent spatio-

temporal interactions within and between individuals in a straightforward manner 

because of the consideration of continuous time. Further, the consideration of time as a 

continuous entity enables the analyst to maintain integrity in time and space of joint 

activities across household members, and enables the consideration of time-varying and 

dynamic pricing policies in an effective and rigorous manner.  

 

1.2 Problem Statement 

Over the past three decades, the field of travel demand modeling has experienced a shift 

from the traditional four-step trip-based approach to travel demand modeling toward a 

more behaviorally-oriented activity-based approach to travel demand modeling, 

prompted by the limitations of the trip-based approach and an increasing recognition of 

the need to understand individuals‟ behavioral responses to travel management measures. 

As just discussed, while an individual‟s activity participation behaviors and time use 

patterns are represented more accurately in an activity-based approach, the approach also 

leads to the econometric challenge of modeling multi-dimensional choice situations 

because traditional classical and Bayesian simulation techniques become extremely 

cumbersome and often impractical in these situations. Also, the accuracy of simulation 

techniques is known to degrade rapidly at medium-to-high dimensions, and the 
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simulation noise increases substantially as well. This leads to convergence problems 

during estimation. This difficulty with model estimation often leads to the use of 

simplistic models with aggregated alternatives, or uni-dimensional models for each 

dimension, or a pre-specified hierarchical system of the dimensions (more on this later). 

But these “quick-fixes” also undo the richness of the activity-based approach. For 

demonstration, consider a case where an analyst wants to examine the weekday activity 

episode participation patterns of adult individuals, the choice of companions for each 

episode, and the travel mode used, all within a unified framework. Such a model will 

provide useful insights into inter-individual interactions and how such interactions may 

affect mode choice decision. For this exercise, assume that an individual can participate 

only in the following out-of-home activities: work, maintenance activity, and 

discretionary activity. The travel modes available to the individual may include drive 

alone (DA), shared ride (SR), public transportation (PT), and non-motorized modes 

(NM). Also, an individual can participate in the activities either alone, with only family 

member(s), or with “other” member(s) (“other” members include a combination of family 

and non-family members). An econometric model for this situation with correlation 

between all the alternatives (due to unobserved factors) will involve evaluation of a 28-

dimensional integral.
1
 To avoid simulation-related difficulties associated with the 

evaluation of a high-dimensional integral, there are, traditionally, three ways to model 

this situation:  

(1) Develop an aggregate model with fewer alternatives. For example, reclassify the 

activity types into two categories: mandatory activity (includes work) and non-mandatory 

                                                 
1
 The feasible combinations of activity, companion type, and mode choice are as follows:   

Activity Type  Activity Companion Choice Travel Mode  

Work   Alone    DA, SR, PT, or NM  

Maintenance activity Alone    DA, SR, PT, or NM  

Maintenance activity With only family member(s) DA, SR, PT, or NM  

Maintenance activity With “other” member(s)  DA, SR, PT, or NM 

Discretionary activity Alone    DA, SR, PT, or NM 

Discretionary activity With only family member(s) DA, SR, PT, or NM 

Discretionary activity With “other” member(s)  DA, SR, PT, or NM 

Total number of alternatives = (4×7) = 28. 
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activity (includes maintenance and discretionary activities). Similarly, consider only two 

mode choices (motorized and non-motorized) and two companion types (alone and not 

alone). This will reduce the dimensionally of the integral from 28 to 6. Then, the model 

system may be estimated using maximum simulated likelihood approach or the Bayesian 

approach without encountering any significant difficulty.  

(2) Develop a disaggregate model with no dependence or partial dependence between the 

alternatives due to unobserved factors, or  

(3) Develop a sequential modeling framework. For example, one may develop a model 

for the activity participation frequency first, followed by a joint model of companion type 

and mode choice.  

Of these three options, whichever modeling approach is chosen by the analyst, the 

resulting model will be less sensitive in terms of capturing the effects of observed and 

unobserved variables (such as intra-household interactions, peer-influence, built-

environment related factors) on individuals‟ activity-travel behaviors. This, in turn, can 

translate to less accurate assessment of the effects of travel demand management 

strategies on individuals‟ travel choices.                

 

1.3 Objectives of the Dissertation 

The research undertaken in the current dissertation is motivated by the discussion above. 

Specifically, we propose the use of an alternative approach, the composite marginal 

likelihood (CML) approach, which allows estimation of multidimensional models and 

deals with the estimation complications discussed in the previous section. The CML is an 

estimation technique that is gaining substantial attention in the statistics field, though 

there has been relatively little coverage of this method in transportation and other fields. 

The CML method is based on forming a surrogate likelihood function that compounds 

much easier-to-compute, lower-dimensional, marginal likelihoods. Very simply stated, 

the CML approach is based on developing the marginal log-likelihood of the joint 

distribution of a lower dimensional number of alternatives at one time (such as two 

alternatives at one time), while ignoring all other alternatives. Then, by developing and 
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maximizing a surrogate log-likelihood function that is the sum of the log-likelihood of 

each possible combination of the lower dimensional marginal distribution, one obtains a 

consistent, unbiased, and asymptotically normally distributed estimator of all the relevant 

parameters characterizing the original high dimensional distribution. Thus, the CML 

approach represents a conceptually and pedagogically simpler simulation-free procedure 

relative to simulation techniques, and has the advantage of reproducibility of the results 

(see Bhat et al., 2010a). Also, as indicated by Varin and Vidoni (2009), it is possible that 

the “maximum CML estimator can be consistent when the ordinary full likelihood 

estimator is not”. This is because the CML procedures are typically more robust and can 

represent the underlying low-dimensional process of interest more accurately than the 

low dimensional process implied by an assumed (and imperfect) high-dimensional 

multivariate model. Finally, the CML approach can be easily implemented using simple 

optimization software for likelihood estimation.  

The discussion above indicates that the CML approach has the potential to 

contribute in the area of travel demand modeling in a significant way. For example, the 

approach can be used to develop conceptually and behaviorally more appealing models to 

examine individuals‟ short-term travel decisions in a joint framework. Within the context 

of the activity-travel behavior modeling approach, application of the CML approach can 

be further extended to encompass the area of land use modeling, a research area that is of 

considerable interest to the travel demand analysts due to its direct impact on individuals 

long-term travel behavior. The overarching goal of the current research work is to 

demonstrate the applicability of the CML approach in the area of activity-travel demand 

modeling and to highlight the enhanced features of the choice models estimated using the 

CML approach. The goal of the research is realized by considering the following 

objectives.    

The first objective is to assess the performance of the CML approach relative to 

the “benchmark” maximum-simulated likelihood (MSL) approach. This is because the 

CML estimator (theoretically speaking) loses some efficiency relative to traditional 

maximum likelihood estimation, though a limited investigation has shown efficiency loss 
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to be negligible (Zhao and Joe, 2005, Lele, 2006, Joe and Lee, 2009). In the current 

research work, this issue is investigated further. Specifically, the performance of the 

CML approach is compared with the maximum-simulated likelihood (MSL) approach in 

multivariate situations. The ability of the two approaches to recover model parameters in 

simulated data sets is examined. In addition, the efficiencies of estimated parameters and 

the computational costs of both approaches are also compared.   

The second objective is to evaluate the ability of the CML approach to recover 

model parameters in a multi-dimensional context in both a cross-sectional setting as well 

as a panel setting. Also, the potential impact of different correlation structures on the 

performance of the CML approach is studied.  

 The remaining objectives demonstrate the use of the CML technique to estimate 

rich model structures for activity-travel demand modeling. Specifically, the third 

objective is to develop a behaviorally rich model structure to analyze inter-individual 

interactions in activity episode generation. Specifically, a multivariate (30-variate) 

modeling framework is developed to examine the interactions in non-work activity 

episode decisions across household and non-household members at the level of activity 

generation. Such a model structure accommodates complementarity and substitution 

effects in individuals‟ activity participation behaviors. 

 The fourth objective is to formulate a joint model of walking and bicycling 

activity duration (also referred to as non-motorized transport modes) using a hazard based 

specification that recognizes the presence of unobserved heterogeneity in the activity 

participation behaviors of individuals. In particular, the model accounts for unobserved 

factors specific to individuals, family/household-level interactions, social group or peer 

influences, and spatial clustering effects that contribute to the heterogeneity in non-

motorized transport mode use behavior. 

   The fifth objective is to propose and estimate a spatial panel ordered-response 

model with temporal autoregressive error terms to analyze changes in urban land 

development intensity level over time. Such a model structure maintains a close linkage 

between the land owner‟s decision and the land development intensity level. Also, the 
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model structure recognizes that spatial dependence is a substantive issue in the current 

empirical context, and is caused by didactic interactions between the land owners.  In 

addition, the model structure incorporates spatial heterogeneity, spatial 

heteroscedasticity, and temporal dependence. The model can be used to examine and 

understand the behavior of land owners, who ultimately make land use decisions.    

 The sixth and the final objective is to demonstrate the application of the models 

estimated in objectives 3, 4, and 5. In addition to illustrating the application of the 

models, the exercises within this sixth objective also highlight the improved performance 

of the models developed in this dissertation relative to their naïve counterparts. 

       

1.4 Model System Used in the Current Dissertation  

All the models developed in the current dissertation are based on an ordered-response 

model structure. Ordered-response model structures are used when analyzing ordinal 

discrete outcome data that may be considered as manifestations of an underlying scale 

that is endowed with a natural ordering. Examples include ratings data (of consumer 

products, bonds, credit evaluation, movies, etc.), or likert-scale type attitudinal/opinion 

data (of air pollution levels, traffic congestion levels, school academic curriculum 

satisfaction levels, teacher evaluations, etc.), or grouped data (such as bracketed income 

data in surveys or discretized rainfall data), or count data (such as the number of trips 

made by a household, the number of episodes of physical activity pursued by an 

individual, and the number of cars owned by a household). In all of these situations, the 

observed outcome data may be considered as censored (or coarse) measurements of an 

underlying latent continuous random variable. The censoring mechanism is usually 

characterized as a partitioning or thresholding of the latent continuous variable into 

mutually exclusive (non-overlapping) intervals. The reader is referred to McKelvey and 

Zavoina (1971) and Winship and Mare (1984) for some early expositions of the ordered-

response model formulation, and Liu and Agresti (2005) for a survey of recent 

developments. The reader is also referred to a recent book by Greene and Hensher (2010) 

for a comprehensive history and treatment of the ordered-response model structure. These 
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recent reviews indicate the abundance of applications of the ordered-response model in 

the sociological, biological, marketing, and transportation sciences, and the list of 

applications only continues to grow rapidly.  

While the applications of the ordered-response model are quite widespread, much 

of these are confined to the analysis of a single outcome, with a sprinkling of applications 

associated with two and three correlated ordered-response outcomes. Some very recent 

studies of two correlated ordered-response outcomes include Scotti (2006), Mitchell and 

Weale (2007), Scott and Axhausen (2006), and LaMondia and Bhat (2011).
2
 The study 

by Scott and Kanaroglou (2002) represents an example of three correlated ordered-

response outcomes. But the examination of more than two to three correlated outcomes is 

rare, mainly because the extension to an arbitrary number of correlated ordered-response 

outcomes entails, in the usual likelihood function approach, integration of dimensionality 

equal to the number of outcomes. On the other hand, there are many instances when 

interest may be centered around analyzing several ordered-response outcomes 

simultaneously, such as in the case of the number of episodes of each of several 

activities, or satisfaction levels associated with a related set of products/services, or 

multiple ratings measures regarding the state of health of an individual/organization (we 

will refer to such outcomes as cross-sectional multivariate ordered-response outcomes). 

There are also instances when the analyst may want to analyze time-series or panel data 

of ordered-response outcomes over time, and allow flexible forms of error correlations 

over these outcomes. For example, the focus of analysis may be to examine rainfall levels 

(measured in grouped categories) over time in each of several spatial regions, or 

individual stop-making behavior over multiple days in a week, or individual headache 

severity levels at different points in time (we will refer to such outcomes as panel 

multivariate ordered-response outcomes).  

                                                 
2
 The first three of these studies use the bivariate ordered-response probit (BORP) model in which the 

stochastic elements in the two ordered-response equations take a bivariate normal distribution, while the 

last study develops a more general and flexible copula-based bivariate ordered-response model that 

subsumes the BORP as but one special case. 
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In the analysis of cross-sectional and panel ordered-response systems with more 

than three outcomes, the norm until very recently has been to apply numerical simulation 

techniques based on a maximum simulated likelihood (MSL) approach or a Bayesian 

inference approach. However, such simulation-based approaches become impractical in 

terms of computational time, or even infeasible, as the number of ordered-response 

outcomes increases. Even if feasible, the numerical simulation methods do get imprecise 

as the number of outcomes increase, leading to convergence problems during estimation. 

 The discussion above highlights the applications of the ordered-response model in 

a wide variety of fields, including the field of travel demand, and the estimation problem 

associated with modeling correlated multiple outcomes. Thus, the ordered-response 

model provides an ideal framework to undertake the current research.     

 

1.5 Structure of the Dissertation 

The six research objectives identified in Section 1.3 may be grouped into three 

categories, based on the nature of their contributions: (1) Group A includes objectives 1 

and 2, and contributes toward an evaluate of the performance of the CML approach, (2) 

Group B, which includes objectives 3, 4, and 5, contributes toward the formulation and 

estimation of behaviorally more representative, but also analytically tractable, travel 

choice and land use models, and (3) Group C includes objective 6, and contributes toward 

reducing the widening gap between travel demand modeling research and practice by 

highlighting the practical applications of the models developed in the dissertation. 

Attainment of each group of objectives is presented sequentially (from Chapter 2 to 

Chapter 7) in Part I, Part II, and Part III of this dissertation. The last and the final chapter 

(Chapter 8) concludes the dissertation by summarizing the findings in the previous 

chapters (Chapter 3 to Chapter 7), discussing some limitations of the current work, and 

suggesting directions for future research. A schematic representation of the dissertation 

structure is presented in Figure 1.2. A schematic description of each part of the 

dissertation and the final chapter is provided below.  
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Figure 1.2 Dissertation Structure 

 
Contributes to 

 Group A objectives  
Contributes to  

Group B objectives  
Contributes to  

Group C objective 
Key: 

 Chapter 1 

Provides an overview of the composite marginal 

likelihood (CML) approach 
Chapter 2 

Contributes to objectives 1 and 2 Chapter 3 

Contributes to objective 3 Chapter 4 

Contributes to objective 4 Chapter 5 

Contributes to objective 6 Chapter 7 

Concludes the dissertation by summarizing the 

contributions, limitations, and possible extensions of the 

current research work 
Chapter 8 

Contributes to objectives 2 and 5. Chapter 6   Contributes to objectives 2 and 5 

 

Provides an introduction to the dissertation, states the 

problem to be addressed, lists the objectives of the 

dissertation, and defines the scope of the current research 
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 Part I: This part provides an overview of the CML approach, compares the 

performance of the CML approach with the MSL approach, and assesses the ability of 

the CML approach to recover model parameters in cross-sectional and panel data 

context. This part consists of two chapters as follows: 

Chapter 2, while not contributing to any specific research objective, provides a 

backdrop for the subsequent chapters (and the dissertation objectives) by presenting 

an overview of the CML approach. Specifically, in this chapter, the composite 

likelihood function approach is discussed in general, and the composite marginal 

likelihood (CML) approach is discussed in particular, including the properties of the 

CML estimator, standard error estimation technique, and hypothesis testing. 

Chapter 3 contributes to objectives 1 and 2. The first objective is achieved by 

comparing the performance of the CML approach with the MSL approach when the 

MSL approach is feasible.  For this, a 5-dimensional ordered-response model is 

estimated using a number of simulated cross-sectional data sets corresponding to 

different levels of correlation. For the MSL approach, the Geweke-Hajivassiliou-

Keane (GHK) Probability Simulator is used, while for the CML approach, the 

pairwise marginal likelihood approach is used. The performance of the two 

approaches is compared using three measures: the absolute percentage bias, the finite 

sample standard error, and the asymptotic standard error. An assessment of the 

performances of the two (CML and MSL) approaches due to different correlation 

structures is also undertaken. In addition, this third chapter also contributes partly 

toward the second objective by evaluating the ability of the CML approach to recover 

model parameters in a cross-sectional data setting.  

 Part II: This part presents a series of econometric models that are behaviorally 

appealing, but are generally considered impractical to be estimated by traditional 

estimation approaches. Part II comprises three chapters as follows: 

Chapter 4 contributes to the third objective by developing a multivariate ordered-

response model system with flexible error structure to model non-work activity 

episode decisions and activity companion choices in a joint framework. Such a model 
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structure recognizes that activity participation decisions of an individual are 

influenced by other household and non-household members. Another salient feature 

of this model is that it has a flexible structure that accommodates complementarity 

and substitution effects in activity participation and accompaniment arrangement 

decisions. 

Chapter 5 presents a framework that models the walking and bicycling activity 

durations of individuals simultaneously using a multilevel cross-cluster hazard-based 

model system that accounts for a range of interactions and spatial effects. 

Specifically, in addition to the usual individual-specific factors, family (i.e., 

household-specific) interactions, social group (peer) influences, and spatial clustering 

effects are also considered as potential factors that contribute to heterogeneity in non-

motorized transport mode use behavior. The proposed model system is capable of 

accommodating grouped duration responses often encountered in activity-travel 

surveys. This chapter contributes to objective 4.  

Chapter 6 proposes and estimates an econometric model with spatial and temporal 

dependence to analyze changes in urban land development intensity level over time. 

The model framework developed here has several salient features. First, the model 

recognizes that it is important to maintain the link between the decision making agent 

(i.e., the land owner) and the observed land development intensity level (undeveloped 

land, land less-intensely developed for residential use, etc.). Second, spatial 

dependence is introduced not only through explanatory variables and error terms, but 

also through time-invariant effects of random coefficients. Third, the model structure 

accommodates spatial heterogeneity and spatial heteroscedasticity. Finally, temporal 

dependence effects are introduced at two levels: time-invariant temporal effects and 

time-varying temporal effects. In addition to the empirical analysis, a simulation 

exercise is undertaken to assess the ability of the CML approach to recover parameter 

in panel data context. The performance of the CML approach was assessed using four 

different panel data settings: panel data with low spatial and temporal dependence, 

panel data with low spatial but high temporal dependence, panel data with high 
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spatial but low temporal dependence, and panel data with high spatial and temporal 

dependence. The simulation exercise also highlights the consequence of ignoring 

spatial dependence and spatial heterogeneity when both are actually present. This 

chapter contributes partly to objective 2 and completely to object 6. 

 Part III: This part includes Chapter 7, which contributes to objective 6 of the 

dissertation. In this chapter, the econometric models developed in Part II are applied 

to various empirical contexts to demonstrate their applications. The results presented 

here quantify the effects of employing a behaviorally-rich model and underline the 

advantages of incorporating such behavioral features within the modeling framework.      

Finally, Chapter 8 concludes the current research work by summarizing the 

contributions of the research, highlighting the key empirical findings, discussing some 

limitations of the current dissertation, and sharing thoughts on future research in the area. 
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Part I 

 

Chapter 2  

The Composite Marginal Likelihood Approach: An Overview 

 

2.1 Introduction 

The composite marginal likelihood (CML) estimation approach is a relatively simple 

approach that can be used when the full likelihood function is near impossible or plain 

infeasible to evaluate due to the underlying complex dependencies. For instance, in a 

recent application, Varin and Czado (2010) examined the headache pain intensity of 

patients over several consecutive days. In this study, a full information likelihood 

estimator would have entailed as many as 815 dimensions of integration to obtain 

individual-specific likelihood contributions, an infeasible proposition using the computer-

intensive simulation techniques. In this case and other similar cases, the CML approach 

provides an alternative estimation technique. The CML approach belongs to the more 

general class of composite likelihood (CL) function approaches. In the next section, we 

discuss the composite likelihood function approaches. 

 

2.2 The Composite Likelihood Function (CLF) Approach 

The composite likelihood approach is based on forming a surrogate likelihood function 

that compounds much easier-to-compute lower-dimensional likelihoods.
3
 For illustration, 

let Y be a Q-dimensional random variable with density function f( θ;y ) )1,(  QY Q
, 

where θ  is a )1( D  parameter vector ( DΘθ , 1D ). Also, let { MEEE ,...,, 21 } be 

a set of events with the corresponding likelihood functions 

));(),...,;(),;(( 21 yLyLyL M θθθ . Then, the composite likelihood function may be written 

as follows:    

                                                 
3
 The composite likelihood was first proposed by Besag (1974) under the name pseudolikelihood. Lindsay 

in 1988 first used the term composite likelihood to describe the class of likelihood functions discussed in 

this chapter. 
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mw
M

m

mCLF yLL ));(()(
1

θθ 


         (2.1) 

where mw  is a non-negative weight. In the above definition of the composite likelihood 

function, the set of events could be either conditional or marginal. If the likelihood 

function associated with an event is the product of conditional densities, then the 

resulting likelihood function is called the Composite Conditional Likelihood (see Stein et 

al., 2004 and Wang and Williamson, 2005 for applications of the composite conditional 

likelihood estimation technique). On the other hand, if the likelihood function ));(( yLm θ  

in Equation (2.1) is a marginal likelihood, then )(θCLFL  may be called the composite 

marginal likelihood. In this research work, we focus on the composite marginal 

likelihood (CML) approach. In the next section the CML approach is discussed in more 

detail. Then, in Sections 2.4 through 2.6, the properties of the CML estimator, standard 

error estimation technique, and hypothesis testing procedures are presented. The final 

section concludes the chapter by providing a brief summary.   

 

2.3 The Composite Marginal Likelihood (CML) Approach                

The simplest CML may be formed by assuming independence across the variables. In this 

case, the likelihood function is the product of univariate probabilities for each variable. 

However, this approach does not provide estimates of correlation that are of interest in a 

multivariate context. Another approach is the pairwise likelihood function formed by the 

product of likelihood contributions of all or a selected subset of couplets (i.e., pairs of 

variables or pairs of observations). The pairwise likelihood estimator is typically robust 

to misspecification (see Varin and Vidoni, 2009, and Varin, 2008). The approach is very 

simple computationally with literally no convergence-related issues. It can also be very 

easily coded in software packages that allow the computation of a bivariate normal 

cumulative distribution function and have an optimization procedure for maximizing a 

function with respect to embedded parameters. Almost all earlier research efforts 

employing the CML technique have used the pairwise approach, including Bellio and 

Varin (2005), de Leon (2005), Varin et al. (2005), Engle et al. (2007), Apanasovich et al. 
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(2008), Varin and Vidoni (2009), and Bhat et al. (2010a). In the current research, all 

estimation efforts are also undertaken using the pairwise marginal likelihood approach. 

Specifically, we employ a pairwise marginal likelihood estimation approach that 

corresponds to a composite marginal approach based on bivariate normal distribution.  

In addition to the independence and the pairwise likelihood, the analyst can also 

consider larger subsets of observations, such as triplets or quadruplets or even higher 

dimensional subsets (see Engler et al., 2006, and Caragea and Smith, 2007). In general, 

the issue of whether to use pairwise likelihoods or higher-dimensional likelihoods 

remains an open, and under-researched, area of research. However, it is generally agreed 

that the pairwise approach is a good balance between statistical and computation 

efficiency. The reader is referred to Varin (2008) and Varin et al. (2011) for a 

comprehensive overview of applications of the CML technique in a wide variety of 

fields. 

 

2.4 Properties of the CML Estimator 

The properties of the CML estimator may be derived using the theory of estimating 

equations (see Lindsay, 1988, Cox and Reid, 2004, and Molenberghs and Verbeke, 2005 

for details). For convenience, a number of key properties of the CML estimator are 

summarized here. Under the usual regularity assumptions: 

1) The CML estimator is consistent. In the context of the pairwise CML approach 

used in the current research, the surrogate likelihood function represented by the 

CML function is the product of the marginal likelihood functions formed by each 

pair of variables/observations. In general, maximization of the original likelihood 

function will result in parameters that tend to maximize each pairwise likelihood 

function. Since the CML is the product of pairwise likelihood contributions, it 

will therefore provide consistent estimates.
 4
  

                                                 
4
 Another equivalent way to see this is to assume we are discarding all but two randomly selected variables 

in the original likelihood function. Of course, we will not be able to estimate all the model parameters from 

two random variables, but if we could, the resulting parameters would be consistent because information 
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2)  The CML estimator is unbiased. This follows from the unbiasedness of the CML 

score function, which is a linear combination of proper score functions associated 

with the marginal event probabilities forming the composite likelihood. 

3) The CML estimator is asymptotically normally distributed. Let, CMLθ̂  be a CML 

estimate of the parameter vector θ . Then, CMLθ̂  is asymptotically normal 

distributed as follows: 

)](,[)ˆ( θV0θθ CMLD

d

CML MVNn      

where n is the sample size, MVND is a multivariate normal distribution of size D, 

and )(θVCML  is the inverse of Godambe‟s (1960) sandwich information matrix 

))(( θG .  

 

2.5 Standard Error Estimation 

The variance-covariance matrix above ))(( θVCML  may be given as follows (see Zhao and 

Joe, 2005):  

111 )]()][([)]([)]([)(   θHθJθHθGθVCML , where 
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where (.)log CMLL  is the logarithm of the composite marginal likelihood. In Equation 

(2.2), the )(θH  matrix can be estimated in a straightforward manner using the Hessian of 

the negative of )(log θCMLL , evaluated at CMLθ̂ . This is because, in the context of pairwise 

likelihood estimator, the information identity remains valid for each pairwise term 

                                                                                                                                                 
(captured by other variables) is being discarded in a purely random fashion. The CML estimation procedure 

works similarly, but combines all variables observed two at a time, while ignoring the full joint distribution 

of the variables.  
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forming the composite marginal likelihood. However, depending on the dependence 

structure of the model, estimation of the )(θJ  matrix may be more difficult. In the current 

research, we discuss and demonstrate estimation techniques of the )(θJ  matrix in three 

situations: (1) simple case with no underlying dependence across the observations 

(demonstrated in Chapter 4), (2) clustering effects creating multi-level dependence across 

the observations (demonstrated in Chapter 5), and (3) spatial “spillover” effects 

(demonstrated in Chapter 6).    

 

2.6 Hypothesis Testing 

Hypothesis testing and model selection procedures similar to those available with the full 

maximum likelihood approach are also available with the CML approach (see Varin and 

Vidoni, 2009, Pace et al., 2011, and Varin and Czado, 2010; Bhat, 2011 provides a 

concise summary). The common statistical tests are summarized here: 

1) For a single parameter, the statistical test may be pursued using the usual t-

statistic. 

2) When the statistical test involves multiple parameters between two nested models, 

the composite likelihood ratio test (CLRT) statistic, which is similar to the 

likelihood ratio test in full maximum likelihood estimation, may be employed. For 

this, consider the null hypothesis 0ττ :0H  against the alternative hypothesis 

0ττ :1H , where τ  is a subvector of θ  of dimension d. Let θ̂  be the CML 

estimator of the unrestricted model (without the restriction imposed by the null 

hypothesis), and let 0θ̂  be the CML estimator under the null hypothesis.  Then, 

the CLRT statistic may be calculated as follows:  

CLRT )],ˆ(log)ˆ([log2 0θθ CMLCML LL       (2.3) 

However, the above CLRT statistic does not have the standard chi-squared 

asymptotic distribution under the null hypothesis as in the case of the maximum 
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likelihood inference procedure. One alternative is to use bootstrapping to obtain 

the exact distribution of the CLRT statistic. The procedure is as follows (Varin 

and Czado, 2008):  

a. Let the estimation sample be denoted as obsy , and the observed CLRT value as 

).(CLRT obsy  

b. Generate B sample data sets
 

Byyyy ,...,,, 321  using the CML convergent values 

under the null hypothesis. 

c. Compute the CLRT statistic for each generated data set, and label it as 

).(CLRT by  

d. Calculate the p-value of the test using the following expression: 

 
,

1

)(CLRT)(CLRT1
1









B

yyI

p

B

b

obsb

 where 1}{ AI if A is true.  

 

Another alternative is to adjust the CLRT statistic to obtain an adjusted composite 

likelihood ratio test (ADCLRT) statistic (see Varin and Vidoni, 2009, Pace et al., 

2011 and Bhat, 2011). For this, define    1
θHτ  and    1

θGτ  as the )( dd   

submatrices of    1
θH  and    1

θG , respectively, which correspond to the 

vector τ. The following ADCLRT statistic may be considered to be 

asymptotically chi-squared distributed with d degrees of freedom: 

CLRT
)]([)]([])([

)]([)]()][([)]([])([
ADCLRT

1

11








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θSθHθS

θSθHθGθHθS

τττ
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where )(θS τ  is the )1( d  submatrix of )(θS  












θ

θ)(log CMLL
 corresponding to 

the vector τ , and all the matrices above are computed at 0θ̂ . 
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3) When the null hypothesis entails model selection between two competing non-

nested models, the composite likelihood information criterion (CLIC) introduced 

by Varin and Vidoni (2005) may be used. The CLIC takes the following form: 

 1)]ˆ(ˆ)[ˆ(ˆ)ˆ(logCLIC  θHθJθ trLCML  

The model that provides a higher value of CLIC is preferred over the other 

models. 

 

2.7 Summary 

This chapter provided a description of the composite marginal likelihood (CML) 

approach. In addition, properties of the CML estimator, standard error estimation 

technique, and hypothesis testing procedures were also presented.  
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Chapter 3 

A Comparison of the Composite Marginal Likelihood Estimation 

Approach with the Maximum Simulated Likelihood Approach in the 

Context of the Multivariate Ordered-Response Model System 

 

3.1 Motivation 

The CML approach is based on the assumption that the lower-dimensional marginal 

likelihoods forming the surrogate likelihood function are independent of each other. 

Though this allows us to specify and estimate models with complex dependence 

structure, a weakness of this assumption is that the second Bartlett identity ))()(( θJθH   

is no longer valid.
5
 From this theoretical perspective, the maximum CML estimator 

should lose some efficiency relative to a full likelihood estimator. However, this 

efficiency loss appears to be empirically minimal (see Zhao and Joe, 2005, Lele, 2006, 

Joe and Lee, 2009).
6
 On the other hand, for models with complex dependence structure 

such as multivariate ordered-response model system of dimensionality more than 3, the 

full likelihood estimator has to be approximated using simulation techniques. Application 

of simulation techniques such as the maximum simulated likelihood (MSL) approach also 

leads to a loss in estimator efficiency (see McFadden and Train, 2000). Thus, it is of 

interest to compare the CML and MSL estimators in terms of asymptotic efficiency. 

Earlier applications of the CML approach (and specifically the pairwise likelihood 

approach) to multivariate ordered-response systems include de Leon (2005) and Ferdous 

et al. (2010) in the context of cross-sectional multivariate ordered-response probit 

systems, and Varin and Vidoni (2006) and Varin and Czado (2010) in the context of 

panel multivariate ordered-response probit systems. Bhat et al. (2010b) also use a CML 

approach to estimate their multivariate ordered-response probit system in the context of a 

                                                 
5
 For definition of matrix H, matrix J, and vector θ , see Section 2.5. 

6
 A handful of studies (see Hjort and Varin, 2008, Mardia et al., 2009, Cox and Reid, 2004) have also 

theoretically examined the limiting normality properties of the CML approach, and compared the 

asymptotic variance matrices from this approach with the maximum likelihood approach. However, such a 

precise theoretical analysis is possible only for very simple models, and becomes much harder for models 

such as a multivariate ordered-response system.  
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spatially dependent ordered-response outcome variable. In this study, we do not use the 

high multivariate dimensionality of most of these earlier studies. Rather, we consider 

relatively lower multivariate dimensionality simulation situations, so that we are able to 

estimate the models using MSL techniques too. Specifically, we compare the 

performance of the composite marginal likelihood (CML) approach with the maximum-

simulated likelihood (MSL) approach in 5-variate ordered-response situations. We use 

simulated data sets with known underlying model parameters to evaluate the two 

estimation approaches. The ability of the two approaches to recover model parameters is 

examined, as is the sampling variance and the simulation variance of parameters in the 

MSL approach relative to the sampling variance in the CML approach. The 

computational costs of the two approaches are also presented.  

The rest of this chapter is structured as follows. In the next section, we present the 

structure of the cross-sectional multivariate ordered-response system. Section 3.3 

discusses the simulation estimation methods (with an emphasis on the MSL approach). 

Section 3.4 presents the experimental design for the simulation experiments, while 

Section 3.5 discusses the results. Section 3.6 concludes the chapter by highlighting the 

important findings. 

 

3.2 The Cross-Sectional Multivariate Ordered-Response Probit (CMOP) 

Formulation 

Let q be an index for individuals (q = 1, 2, …, Q, where Q denotes the total number of 

individuals in the data set), and let i be an index for the ordered-response variable (i = 1, 

2, …, I, where I denotes the total number of ordered-response variables for each 

individual). Let the observed discrete (ordinal) level for individual q and variable i be mqi 

(mqi may take one of Ki values; i.e., mqi {1, 2, …, Ki} for variable i). In the usual 

ordered-response framework notation, we write the latent propensity (
*

qiy ) for each 

ordered-response variable as a function of relevant covariates and relate this latent 

propensity to the observed discrete level mqi through threshold bounds (see McKelvey 

and Zavoina, 1975): 
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  qiqiqiqi myy  ,* qi

'

ixβ  if  qiqi m

iqi

m

i y  
 *1

,     (3.1) 

where qix  is a (L×1) vector of exogenous variables (not including a constant), 
iβ  is a 

corresponding (L×1) vector of coefficients to be estimated, qi  is a standard normal error 

term,  and qim

i  is the upper bound threshold for discrete level mqi of variable i (


 iii K

ii

K

i

K

iiii    ,  ;... 01210  for each variable i). The 
qi  terms are 

assumed independent and identical across individuals (for each and all i). For 

identification reasons, the variance of each qi  term is normalized to 1. However, we 

allow correlation in the qi  terms across variables i for each individual q. Specifically, we 

define )'.,,,,( 321 qIqqq  qε  Then, qε  is multivariate normal distributed with a 

mean vector of zeros and a correlation matrix as follows: 
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qε  or     (3.2)  

],[~ Σ0εq N  

 The off-diagonal terms of Σ capture the error covariance across the underlying 

latent continuous variables; that is, they capture the effects of common unobserved 

factors influencing the underlying latent propensities. These are the so-called polychoric 

correlations between pairs of observed ordered-response variables. Of course, if all the 

correlation parameters (i.e., off-diagonal elements of Σ), which we will stack into a 

vertical vector Ω, are identically zero, the model system in Equation (3.1) collapses to 

independent ordered-response probit models for each variable. Note that the diagonal 

elements of Σ are normalized to one for identification purposes.   
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The parameter vector (to be estimated) of the cross-sectional multivariate probit model is 

,)  ; ..., , ,  ; ..., , ,(  Ωθθθβββδ I21I21
 where ) ,... , ,(

121 
iK

iii iθ  for Ii ..., ,2 ,1 . The 

likelihood function for individual q may be written as follows: 
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where 
I  is the standard multivariate normal density function of dimension I. The 

likelihood function above involves an I-dimensional integral for each individual q. 

 

3.3 Overview of Simulation Approaches 

As indicated in Section 1.4 and Section 3.1, models that require integration of more than 

three dimensions in a multivariate ordered-response model are typically estimated using 

simulation approaches. Two broad simulation approaches may be identified in the 

literature for multivariate ordered-response modeling. One is based on a frequentist 

approach, while the other is based on a Bayesian approach. We provide an overview of 

these two approaches in the next two sections (Section 3.3.1 and Section 3.3.2).  

 

3.3.1 The Frequentist Approach 

In the context of a frequentist approach, Bhat and Srinivasan (2005) suggested a 

maximum simulated likelihood (MSL) method for evaluating the multi-dimensional 

integral in a cross-sectional multivariate ordered-response model system, using quasi-

Monte Carlo simulation methods proposed by Bhat (2001, 2003). In their approach, Bhat 

and Srinivasan (BS) partition the overall error term into one component that is 

independent across dimensions and another mixing component that generates the 

correlation across dimensions. The estimation proceeds by conditioning on the error 

components that cause correlation effects, writing the resulting conditional joint 

probability of the observed ordinal levels across the many dimensions for each 
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individual, and then integrating out the mixing correlated error components. An 

important issue is to ensure that the covariance matrix of the mixing error terms remains 

in a correlation form (for identification reasons) and is positive definite, which BS 

maintain by writing the likelihood function in terms of the elements of the Cholesky 

decomposed-matrix of the correlation matrix of the mixing normally distributed elements 

and parameterizing the diagonal elements of the Cholesky matrix to guarantee unit values 

along the diagonal. Another alternative and related MSL method would be to consider the 

correlation across error terms directly without partitioning the error terms into two 

components. This corresponds to the formulation in Equations (1) and (2) of the current 

study. Balia and Jones (2008) adopt such a formulation in their eight-dimensional 

multivariate probit model of lifestyles, morbidity, and mortality. They estimate their 

model using a Geweke-Hajivassiliou-Keane (GHK) simulator (the GHK simulator is 

discussed in more detail later in this study). However, it is not clear how they 

accommodated the identification sufficiency condition that the covariance matrix be a 

correlation matrix and be positive definite. But one can use the GHK simulator combined 

with BS‟s approach to ensure unit elements along the diagonal of the covariance matrix.  

Another MSL method that can be used to approximate the multivariate rectangular (i.e., 

truncated) normal probabilities in the likelihood functions is based on the Genz-Bretz 

(GB) algorithm (Genz and Bretz, 1999).  In concept, all these MSL methods can be 

extended to any number of correlated ordered-response outcomes, but numerical stability, 

convergence, and precision problems start surfacing as the number of dimensions 

increase.  

 

3.3.2 The Bayesian Approach 

Chen and Dey (2000), Herriges et al. (2008), Jeliazkov et al. (2008), and Hasegawa 

(2010) have considered an alternate estimation approach for the multivariate ordered-

response system based on the posterior mode in an objective Bayesian approach. As in 

the frequentist case, a particular challenge in the Bayesian approach is to ensure that the 

covariance matrix of the parameters is in a correlation form, which is a sufficient 
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condition for identification. Chen and Dey proposed a reparametization technique that 

involves a rescaling of the latent variables for each ordered-response variable by the 

reciprocal of the largest unknown threshold. Such an approach leads to an unrestricted 

covariance matrix of the re-scaled latent variables, allowing for the use of standard 

Markov Chain Monte Carlo (MCMC) techniques for estimation. In particular, the 

Bayesian approach is based on assuming prior distributions on the non-threshold 

parameters, reparameterizing the threshold parameters, imposing a standard conjugate 

prior on the reparameterized version of the error covariance matrix and a flat prior on the 

transformed threshold, obtaining an augmented posterior density using Bayes‟ Theorem 

for the reparameterized model, and fitting the model using a Markov Chain Monte Carlo 

(MCMC) method. Unfortunately, the method remains cumbersome, requires extensive 

simulation, and is time-consuming. Further, convergence assessment becomes difficult as 

the number of dimensions increase. For example, Muller and Czado (2005) used a 

Bayesian approach for their panel multivariate ordered-response model, and found that 

the standard MCMC method exhibits bad convergence properties. They proposed a more 

sophisticated group move multigrid MCMC technique, but this only adds to the already 

cumbersome nature of the simulation approach. In this regard, both the MSL and the 

Bayesian approach are “brute force” simulation techniques that are not very 

straightforward to implement and can create convergence assessment problems.  

 

3.4 Estimation Methods Used in the Current Research 

In the current study, we use the frequentist approach to compare the composite marginal 

likelihood (CML) approach with the simulation approaches. Frequentist approaches are 

widely used in the literature, and are included in several software programs that are 

readily available. Within the frequentist approach, we consider the Geweke-

Hajivassiliou-Keane (GHK) simulator. We select the GHK simulator because it is among 

the most effective simulators for evaluating multivariate normal probabilities. Within the 

CML approach, we consider the pairwise marginal likelihood approach, because a 

significant volume of earlier applications of the CML approach as well as all the 
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applications of the CML approach in the current dissertation are undertaken using the 

pairwise marginal likelihood approach.  

 

3.4.1 Geweke-Hajivassiliou-Keane (GHK) Probability Simulator 

The GHK is perhaps the most widely used probability simulator for integration of the 

multivariate normal density function, and is particularly well known in the context of the 

estimation of the multivariate unordered probit model. It is named after Geweke (1991), 

Hajivassiliou (Hajivassiliou and McFadden, 1998), and Keane (1990, 1994). Train (2003) 

provides an excellent and concise description of the GHK simulator in the context of the 

multivariate unordered probit model. In the current study, we adapt the GHK simulator to 

the case of the multivariate ordered-response probit model. 

 The GHK simulator is based on directly approximating the probability of a 

multivariate rectangular region of the multivariate normal density distribution. To apply 

the simulator, we first write the likelihood function in Equation (3.3) as follows:    

 ... ),|(Pr )|(Pr  )Pr()(
221133112211 qqqqqqqqqqqqq mymymymymymyL δ   
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qq Lvε                    

where L is the lower triangular Cholesky decomposition of the correlation matrix Σ, and 

vq terms are independent and identically distributed standard normal deviates (i.e., vq ~ 

N[0,II]). Each (unconditional/conditional) probability term in Equation (3.4) can be 

written as follows: 
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The error terms qiv  are drawn d times (d = 1, 2, …, D) from the univariate standard 

normal distribution with the lower and upper bounds as above. To be precise, we use a 

randomized Halton draw procedure to generate the d realizations of qiv , where we first 

generate standard Halton draw sequences of size 1D  for each individual for each 

dimension i (i = 1, 2,…, I), and then randomly shift the 1D  integration nodes using a 

random draw from the uniform distribution (see Bhat, 2001 and 2003 for a detailed 

discussion of the use of Halton sequences for discrete choice models). These random 

shifts are employed because we generate 10 different randomized Halton sequences of 

size 1D  to compute simulation error. Gauss code implementing the Halton draw 
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procedure is available for download from the home page of Chandra Bhat at 

http://www.caee.utexas.edu/prof/bhat/halton.html. For each randomized Halton sequence, 

the uniform deviates are translated to truncated draws from the normal distribution for qiv  

that respect the lower and upper truncation points (see, for example, Train, 2003; page 

210).  An unbiased estimator of the likelihood function for individual q is obtained as: 





D

d

d

qqGHK L
D

L
1

, )(
1

)( δδ         (3.7) 

where )(δd

qL  is an estimate of Equation (3.4) for simulation draw d. A consistent and 

asymptotically normal distributed GHK estimator GHKδ̂  is obtained by maximizing the 

logarithm of the simulated likelihood function )()( , δδ qGHK

q

GHK LL  . The covariance 

matrix of parameters is estimated using the inverse of the sandwich information matrix 

(i.e., using the robust asymptotic covariance matrix estimator associated with quasi-

maximum likelihood; see McFadden and Train, 2000).      

The likelihood function (and hence, the log-likelihood function) mentioned above 

is parameterized with respect to the parameters of the Cholesky decomposition matrix L 

rather than the parameters of the original covariance parameter Σ. This ensures the 

positive definiteness of Σ, but also raises two new issues: (1) the parameters of the 

Cholesky matrix L should be such that Σ should be a correlation matrix, and (2) the 

estimated parameter values (and asymptotic covariance matrix) do not correspond to Σ, 

but to L. The first issue is overcome by parameterizing the diagonal terms of L as shown 

below (see Bhat and Srinivasan, 2005):   
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The second issue is easily resolved by estimating Σ from the convergent values of 

the Cholesky decomposition parameters )( LLΣ  , and then running the parameter 

estimation procedure one more time with the likelihood function parameterized with the 

terms of Σ.  

 

3.4.2 Pairwise Likelihood Approach 

The pairwise marginal likelihood function for individual q may be written for the model 

as follows: 
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where )(.,.,2 ig  is the standard bivariate normal cumulative distribution function with 

correlation ig . The pairwise marginal likelihood function is )()( , δδ qCML

q

CML LL  . 

 As indicated in Chapter 2, the pairwise estimator CMLδ̂  obtained by maximizing 

the logarithm of the pairwise marginal likelihood function with respect to the vector δ  is 

consistent and asymptotically normal distributed with asymptotic mean δ  and covariance 

matrix given by the inverse of Godambe‟s (1960) sandwich information matrix )(δG  

(see Zhao and Joe, 2005): 
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)(δH  and )(δJ  can be estimated in a straightforward manner at the CML estimate 

)ˆ( CMLδ : 
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In general, and as confirmed later in the simulation study, we expect that the ability to 

recover and pin down the parameters will be a little more difficult for the correlation 

parameters in Σ (when the correlations are low) than for the slope and threshold 

parameters, because the correlation parameters enter more non-linearly in the likelihood 

function.  

 

3.4.3 Positive-Definiteness of the Implied Multivariate Correlation Matrix  

A point that we have not discussed thus far in the CML approach is how to ensure the 

positive-definiteness of the symmetric correlation matrix Σ . There are three ways that 

one can ensure the positive-definiteness of the Σ  matrix. The first technique is to use 

Bhat and Srinivasan‟s technique of reparameterizing Σ  through the Cholesky matrix, and 

then using these Cholesky-decomposed parameters as the ones to be estimated. Within 

the optimization procedure, one would then reconstruct the Σ  matrix, and then “pick off” 

the appropriate elements of this matrix for the ig  estimates at each iteration. This is 

probably the most straightforward and clean technique. The second technique is to 

undertake the estimation with a constrained optimization routine by requiring that the 

implied multivariate correlation matrix for any set of pairwise correlation estimates be 

positive definite. However, such a constrained routine can be extremely cumbersome. 

The third technique is to use an unconstrained optimization routine, but check for 

positive-definiteness of the implied multivariate correlation matrix. The easiest method 
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within this third technique is to allow the estimation to proceed without checking for 

positive-definiteness at intermediate iterations, but check that the implied multivariate 

correlation matrix at the final converged pairwise marginal likelihood estimates is 

positive-definite. This will typically work for the case of a multivariate ordered-response 

model if one specifies exclusion restrictions (i.e., zero correlations between some error 

terms) or correlation patterns that involve a lower dimension of effective parameters.  

Also, the number of correlation parameters in the full multivariate matrix explodes 

quickly as the dimensionality of the matrix increases, and estimating all these parameters 

becomes almost impossible (with any estimation technique) with the usual sample sizes 

available in practice. So, imposing exclusion restrictions is good econometric practice. 

However, if the above simple method of allowing the pairwise marginal estimation 

approach to proceed without checking for positive definiteness at intermediate iterations 

does not work, then one can check the implied multivariate correlation matrix for positive 

definiteness at each and every iteration. If the matrix is not positive-definite during a 

direction search at a given iteration, one can construct a “nearest” valid correlation matrix 

(see Ferdous et al., 2010 for a discussion).  

In the current study, we used an unconstrained optimization routine and ensured 

that the implied multivariate correlation matrix at convergence was positive-definite. 

 

3.5 Experimental Design  

To compare and evaluate the performance of the GHK and the CML estimation 

techniques, we undertake a simulation exercise for a multivariate ordered-response 

system with five ordinal variables. Further, to examine the potential impact of different 

correlation structures, we undertake the simulation exercise for a correlation structure 

with low correlations and another with high correlations. For each correlation structure, 

the experiment is carried out for 20 independent data sets with 1000 data points. Pre-

specified values for the δ  vector are used to generate samples in each data set.  

In the set-up, we use three exogenous variables in the latent equation for the first, 

third, and fifth ordered-response variables, and four exogenous variables for the second 
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and fourth ordered-response variables. The values for each of the exogenous variables are 

drawn from a standard univariate normal distribution. A fixed coefficient vector 
iβ  

)5 ,4 ,3 ,2 ,1( i  is assumed on the variables, and the linear combination qiixβ  (q = 1, 2, 

…, Q, Q = 1000; i = 1, 2, 3, 4, 5) is computed for each individual q and category i. Next, 

we generate Q five-variate realizations of the error term vector ),,,,( 54321 qqqqq 
 
with 

predefined positive-definite low error correlation structure ( lowΣ ) and high error 

correlation structure ( highΣ ) as follows: 
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
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





125.20.12.15.

25.127.30.22.

20.27.125.20.

12.30.25.130.

15.22.20.30.1

lowΣ , and  

























185.80.72.75.

85.187.90.82.

80.87.185.80.

72.90.85.190.

75.82.80.90.1

highΣ  (3.12) 

The error term realization for each observation and each ordinal variable is then 

added to the systematic component )( qiixβ  as in Equation (3.1) and then translated to 

“observed” values of qiy  (0, 1, 2, ...) based on pre-specified threshold values. We assume 

four outcome levels for the first and the fifth ordered-response variables, three for the 

second and the fourth ordered-response variables, and five for the third ordered-response 

variable.
 

Correspondingly, we pre-specify a vector of three threshold values [

),,,( 321

iii iθ  where i = 1 and 5] for the first and the fifth ordered-response equations, 

two for the second and the fourth equations [ ),,( 21

ii iθ  where i = 2 and 4], and four 

for the third ordered-response equation [ ),,,,( 4321

iiii iθ  where i = 3] .  

As mentioned earlier, the above data generation process is undertaken 20 times 

with different realizations of the random error term to generate 20 different data sets. The 

CML estimation procedure is applied to each data set to estimate data-specific values of 

the δ vector.  The GHK simulator is applied to each dataset using 100 draws per 
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individual of the randomized Halton sequence.
7
 In addition, to assess and to quantify 

simulation variance, the GHK simulator is applied to each dataset 10 times with different 

(independent) randomized Halton draw sequences. This allows us to estimate simulation 

error by computing the standard deviation of estimated parameters among the 10 different 

GHK estimates on the same data set.  

A few notes are in order here. We chose to use a setting with five ordinal 

variables so as to keep the computation time manageable for the maximum simulated 

likelihood estimations (going to, for example, 10 ordinal variables will increase 

computation time substantially, especially since more number of draws per individual 

may have to be used; note also that we have a total of 400 MSL estimation runs just for 

the five ordinal variable case in our experimental design). At the same time, a system of 

five ordinal variables leads to a large enough dimensionality of integration in the 

likelihood function where simulation estimation has to be used. Of course, one can 

examine the effect of varying the number of ordinal variables on the performance of the 

MSL and CML estimation approaches. In this study, we have chosen to focus on five 

dimensions, and examine the effects of varying correlation patterns and different model 

formulations corresponding to cross-sectional setting. A comparison with higher numbers 

of ordinal variables is left as a future exercise. However, in general, it is well known that 

MSL estimation gets more imprecise as the dimensionality of integration increases. On 

the other hand, our experience with CML estimation is that the performance does not 

degrade very much as the number of ordinal variables increases (see Ferdous et al., 

2010). Similarly, one can examine the effect of varying numbers of draws for MSL 

estimation. Our choice of 100 draws per individual was based on experimentation with 

different numbers of draws for the first data set. We found little improvement in ability to 

recover parameters or simulation variance beyond 100 draws per individual for this data 

                                                 
7
 Bhat (2001) used Halton sequence to estimate mixed logit models, and found that the simulation error in 

estimated parameters is lower with 100 Halton draws than with 1000 random draws (per individual). In our 

study, we carried out the GHK analysis of the multivariate ordered-response model with 100 randomized 

Halton draws as well as 500 random draws per individual, and found the 100 randomized Halton draws 

case to be much more accurate/efficient as well as much less time-consuming. So, we present only the 

results of the 100 randomized Halton draws case here. 
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set, and thus settled for 100 draws per individual for all data sets (as will be noted in the 

results section, the MSL estimation with 100 draws per individual indeed leads to 

negligible simulation variance). Finally, we chose to use three to four exogenous 

variables in our experimental design (rather than use a single exogenous variable) so that 

the resulting simulation data sets would be closer to realistic ones where multiple 

exogenous variables are employed.  

 

3.6 Performance Comparison Between the MSL and CML Approaches 

In this section, we first identify a number of performance measures and discuss how these 

are computed for the MSL approach and the CML approach. The subsequent sections 

present the simulation and computational results. 

 

3.6.1 Performance Measures 

As discussed earlier, we consider two correlation matrix patterns, one with low 

correlations and another with high correlations. The steps discussed below for computing 

performance measures are for a specific correlation matrix pattern.   

 

MSL Approach 

(1) Estimate the MSL parameters for each data set s (s = 1, 2, …, 20; i.e., S = 20) and 

for each of 10 independent draws, and obtain the time to get the convergent values 

and the standard errors. Note combinations for which convergence is not achieved. 

Everything below refers to cases when convergence is achieved. Obtain the mean 

time for convergence (TMSL) and standard deviation of convergence time across 

the converged runs and across all data sets (the time to convergence includes the 

time to compute the covariance matrix of parameters and the corresponding 

parameter standard errors). 

(2) For each data set s and draw combination, estimate the standard errors (s.e.) of 

parameters (using the sandwich estimator).  
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(3) For each data set s, compute the mean estimate for each model parameter across the 

draws. Label this as MED, and then take the mean of the MED values across the 

data sets to obtain a mean estimate. Compute the absolute percentage bias (APB) 

as: 100
 valuetrue

 valuetrue-estimatemean 
APB   

(4) Compute the standard deviation of the MED values across the data sets and label 

this as the finite sample standard error (essentially, this is the empirical standard 

error). 

(5) For each data set s, compute the median s.e. for each model parameter across the 

draws. Call this MSED, and then take the mean of the MSED values across the S 

data sets and label this as the asymptotic standard error (essentially this is the 

standard error of the distribution of the estimator as the sample size gets large). 

Note that we compute the median s.e. for each model parameter across the draws 

and label it as MSED rather than computing the mean s.e. for each model parameter 

across the draws. This is because, for some draws, the estimated standard errors 

turned out to be rather large relative to other independent standard error estimates 

for the same dataset. On closer inspection, this could be traced to the unreliability of 

the numeric Hessian used in the sandwich estimator computation. This is another 

bothersome issue with MSL – it is important to compute the covariance matrix 

using the sandwich estimator rather than using the inverse of the cross-product of 

the first derivatives (due to the simulation noise introduced when using a finite 

number of draws per individual in the MSL procedure; see McFadden and Train, 

2000). Specifically, using the inverse of the cross-product of the first derivatives 

can substantially underestimate the covariance matrix. But coding the analytic 

Hessian (as part of computing the sandwich estimator) is extremely difficult, while 

using the numeric Hessian is very unreliable. Craig (2008) also alludes to this 

problem when he states that “(...) the randomness that is inherent in such methods 

[referring here to the GB algorithm, but applicable in general to MSL methods] is 

sometimes more than a minor nuisance.” In particular, even when the log-likelihood 
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function is computed with good precision so that the simulation error in estimated 

parameters is very small, this is not always adequate to reliably compute the 

numerical Hessian. To do so, one will generally need to compute the log-likelihood 

with a substantial level of precision, which, however, would imply very high 

computational times even in low dimensionality situations. Finally, note that the 

mean asymptotic standard error is a theoretical approximation to the finite sample 

standard error, since, in practice, one would estimate a model on only one data set 

from the field.  

(6) Next, for each data set s, compute the simulation standard deviation for each 

parameter as the standard deviation in the estimated values across the independent 

draws (about the MED value). Call this standard deviation as SIMMED. For each 

parameter, take the mean of SIMMED across the different data sets. Label this as 

the simulation s.e. for each parameter.  

(7) For each parameter, compute a simulation adjusted standard error as follows: 

22 )error standard simulation()error standard  asymptotic(    

 

CML Approach 

(1) Estimate the CML parameters for each data set s and obtain the time to get the 

convergent values (including the time to obtain the Godambe matrix-computed 

covariance matrix and corresponding standard errors). Determine the mean time for 

convergence (TCML) across the S data sets.
8
 

(2) For each data set s, estimate the standard errors (s.e.) (using the Godambe 

estimator).  

(3) Compute the mean estimate for each model parameter across the R data sets. 

Compute absolute percentage bias as in the MSL case. 

                                                 
8
 The CML estimator always converged in our simulations, unlike the MSL estimator. 



 

41 

(4) Compute the standard deviation of the CML parameter estimates across the data 

sets and label this as the finite sample standard error (essentially, this is the 

empirical standard error). 

 

3.6.2 Simulation Results 

Table 3.1a presents the results for the CMOP model with low correlations, and Table 

3.1b presents the corresponding results for the CMOP model with high correlations. The 

results indicate that both the MSL and CML approaches recover the parameters 

extremely well, as can be observed by comparing the mean estimate of the parameters 

with the true values (see the column titled “parameter estimates”). In the low correlation 

case, the absolute percentage bias (APB) ranges from 0.03% to 15.95% (overall mean 

value of 2.21% - see last row of table under the column titled “absolute percentage bias”) 

across parameters for the MSL approach, and from 0.00% to 12.34% (overall mean value 

of 1.92%) across parameters for the CML approach. In the high correlation case, the APB 

ranges from 0.02% to 5.72% (overall mean value of 1.22% - see last row of table under 

the column titled “absolute percentage bias”) across parameters for the MSL approach, 

and from 0.00% to 6.34% (overall mean value of 1.28%) across parameters for the CML 

approach. These are incredibly good measures for the ability to recover parameter 

estimates, and indicate that both the MSL and CML perform about evenly in the context 

of bias. Further, the ability to recover parameters does not seem to be affected at all by 

whether there is low correlation or high correlation (in fact, the overall APB reduces from 

the low correlation case to the high correlation case). Interestingly, the absolute 

percentage bias values are generally much higher for the correlation )(  parameters than 

for the slope )( and threshold )(  parameters in the low correlation case, but the 

situation is exactly reversed in the high correlation case where the absolute percentage 

bias values are generally higher for the slope )( and 
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Table 3.1a Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With Low Error Correlation Structure 

Parameter 
True 

Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates 
Standard Error 

Estimates 
 

CML

MSL

MASE

MASE

 

 

CML

MSL

MASE

SASE

 

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

 

Asymptotic 

Standard 

Error 

)( MSLMASE

 

 

Simulation 

Standard 

Error 

Simulation 

Adjusted 

Standard 

Error 

)( MSLSASE

 

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

 

Asymptotic 

Standard 

Error 

)( CMLMASE

 

 
Coefficients 

β11 0.5000 0.5167 3.34% 0.0481 0.0399 0.0014 0.0399 0.5021 0.43% 0.0448 0.0395 1.0109 1.0116 

β21 1.0000 1.0077 0.77% 0.0474 0.0492 0.0005 0.0492 1.0108 1.08% 0.0484 0.0482 1.0221 1.0222 

β31 0.2500 0.2501 0.06% 0.0445 0.0416 0.0010 0.0416 0.2568 2.73% 0.0252 0.0380 1.0957 1.0961 

β12 0.7500 0.7461 0.52% 0.0641 0.0501 0.0037 0.0503 0.7698 2.65% 0.0484 0.0487 1.0283 1.0311 

β22 1.0000 0.9984 0.16% 0.0477 0.0550 0.0015 0.0550 0.9990 0.10% 0.0503 0.0544 1.0100 1.0104 

β32 0.5000 0.4884 2.31% 0.0413 0.0433 0.0017 0.0434 0.5060 1.19% 0.0326 0.0455 0.9518 0.9526 

β42 0.2500 0.2605 4.19% 0.0372 0.0432 0.0006 0.0432 0.2582 3.30% 0.0363 0.0426 1.0149 1.0150 

β13 0.2500 0.2445 2.21% 0.0401 0.0346 0.0008 0.0346 0.2510 0.40% 0.0305 0.0342 1.0101 1.0104 

β23 0.5000 0.4967 0.66% 0.0420 0.0357 0.0021 0.0358 0.5063 1.25% 0.0337 0.0364 0.9815 0.9833 

β33 0.7500 0.7526 0.34% 0.0348 0.0386 0.0005 0.0386 0.7454 0.62% 0.0441 0.0389 0.9929 0.9930 

β14 0.7500 0.7593 1.24% 0.0530 0.0583 0.0008 0.0583 0.7562 0.83% 0.0600 0.0573 1.0183 1.0184 

β24 0.2500 0.2536 1.46% 0.0420 0.0486 0.0024 0.0487 0.2472 1.11% 0.0491 0.0483 1.0067 1.0079 

β34 1.0000 0.9976 0.24% 0.0832 0.0652 0.0017 0.0652 1.0131 1.31% 0.0643 0.0633 1.0298 1.0301 

β44 0.3000 0.2898 3.39% 0.0481 0.0508 0.0022 0.0508 0.3144 4.82% 0.0551 0.0498 1.0199 1.0208 

β15 0.4000 0.3946 1.34% 0.0333 0.0382 0.0014 0.0382 0.4097 2.42% 0.0300 0.0380 1.0055 1.0061 

β25 1.0000 0.9911 0.89% 0.0434 0.0475 0.0016 0.0475 0.9902 0.98% 0.0441 0.0458 1.0352 1.0358 

β35 0.6000 0.5987 0.22% 0.0322 0.0402 0.0007 0.0402 0.5898 1.69% 0.0407 0.0404 0.9959 0.9961 

Correlation Coefficients 

ρ12 0.3000 0.2857 4.76% 0.0496 0.0476 0.0020 0.0476 0.2977 0.77% 0.0591 0.0467 1.0174 1.0184 

ρ13 0.2000 0.2013 0.66% 0.0477 0.0409 0.0019 0.0410 0.2091 4.56% 0.0318 0.0401 1.0220 1.0231 

ρ14 0.2200 0.1919 12.76% 0.0535 0.0597 0.0035 0.0598 0.2313 5.13% 0.0636 0.0560 1.0664 1.0682 

ρ15 0.1500 0.1739 15.95% 0.0388 0.0439 0.0040 0.0441 0.1439 4.05% 0.0419 0.0431 1.0198 1.0239 

ρ23 0.2500 0.2414 3.46% 0.0546 0.0443 0.0040 0.0445 0.2523 0.92% 0.0408 0.0439 1.0092 1.0133 

ρ24 0.3000 0.2960 1.34% 0.0619 0.0631 0.0047 0.0633 0.3013 0.45% 0.0736 0.0610 1.0342 1.0372 

ρ25 0.1200 0.1117 6.94% 0.0676 0.0489 0.0044 0.0491 0.1348 12.34% 0.0581 0.0481 1.0154 1.0194 

ρ34 0.2700 0.2737 1.37% 0.0488 0.0515 0.0029 0.0516 0.2584 4.28% 0.0580 0.0510 1.0094 1.0110 

ρ35 0.2000 0.2052 2.62% 0.0434 0.0378 0.0022 0.0378 0.1936 3.22% 0.0438 0.0391 0.9662 0.9678 

ρ45 0.2500 0.2419 3.25% 0.0465 0.0533 0.0075 0.0538 0.2570 2.78% 0.0455 0.0536 0.9937 1.0034 
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Table 3.1a (Continued) Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With Low Error  

Correlation Structure 

Parameter True Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates 
Standard Error 

Estimates 

 

CML

MSL

MASE

MASE  

 

CML

MSL

MASE

SASE  
Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite Sample 

Standard 

Error 

Asymptotic 

Standard 

Error 

)( MSLMASE  

 

Simulation 

Standard 

Error 

Simulation 

Adjusted 

Standard 

Error 

)( MSLSASE  

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

 

Asymptotic 

Standard 

Error 

)( CMLMASE  

 

Threshold Parameters 

θ1
1 -1.0000 -1.0172 1.72% 0.0587 0.0555 0.0007 0.0555 -1.0289 2.89% 0.0741 0.0561 0.9892 0.9893 

θ1
2 1.0000 0.9985 0.15% 0.0661 0.0554 0.0011 0.0554 1.0010 0.10% 0.0536 0.0551 1.0063 1.0065 

θ1
3 3.0000 2.9992 0.03% 0.0948 0.1285 0.0034 0.1285 2.9685 1.05% 0.1439 0.1250 1.0279 1.0282 

θ2
1 0.0000 -0.0172 - 0.0358 0.0481 0.0007 0.0481 -0.0015 - 0.0475 0.0493 0.9750 0.9751 

θ2
2 2.0000 1.9935 0.32% 0.0806 0.0831 0.0030 0.0831 2.0150 0.75% 0.0904 0.0850 0.9778 0.9784 

θ3
1 -2.0000 -2.0193 0.97% 0.0848 0.0781 0.0019 0.0781 -2.0238 1.19% 0.0892 0.0787 0.9920 0.9923 

θ3
2 -0.5000 -0.5173 3.47% 0.0464 0.0462 0.0005 0.0462 -0.4968 0.64% 0.0519 0.0465 0.9928 0.9928 

θ3
3 1.0000 0.9956 0.44% 0.0460 0.0516 0.0011 0.0516 1.0014 0.14% 0.0584 0.0523 0.9877 0.9879 

θ3
4 2.5000 2.4871 0.52% 0.0883 0.0981 0.0040 0.0982 2.5111 0.44% 0.0735 0.1002 0.9788 0.9796 

θ4
1 1.0000 0.9908 0.92% 0.0611 0.0615 0.0031 0.0616 1.0105 1.05% 0.0623 0.0625 0.9838 0.9851 

θ4
2 3.0000 3.0135 0.45% 0.1625 0.1395 0.0039 0.1396 2.9999 0.00% 0.1134 0.1347 1.0356 1.0360 

θ5
1 -1.5000 -1.5084 0.56% 0.0596 0.0651 0.0032 0.0652 -1.4805 1.30% 0.0821 0.0656 0.9925 0.9937 

θ5
2 0.5000 0.4925 1.50% 0.0504 0.0491 0.0017 0.0492 0.5072 1.44% 0.0380 0.0497 0.9897 0.9903 

θ5
3 2.0000 2.0201 1.01% 0.0899 0.0797 0.0017 0.0798 2.0049 0.24% 0.0722 0.0786 1.0151 1.0154 

Overall mean value 

across parameters 
- 2.21% 0.0566 0.0564 0.0022 0.0564 - 1.92% 0.0562 0.0559 1.0080 1.0092 
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Table 3.1b Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With High Error Correlation Structure 

Parameter 
True 

Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates 
Standard Error 

Estimates  

CML

MSL

MASE

MASE

 

 

CML

MSL

MASE

SASE

 

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

 

Asymptotic 

Standard 

Error 

)( MSLMASE

 

 

Simulation 

Standard 

Error 

Simulation 

Adjusted 

Standard 

Error 

)( MSLSASE

 

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

 Asymptotic 

Standard 

Error 

)( CMLMASE  

 

Coefficients 

β11 0.5000 0.5063 1.27% 0.0300 0.0294 0.0020 0.0294 0.5027 0.54% 0.0292 0.0317 0.9274 0.9294 

β21 1.0000 1.0089 0.89% 0.0410 0.0391 0.0026 0.0392 1.0087 0.87% 0.0479 0.0410 0.9538 0.9560 

β31 0.2500 0.2571 2.85% 0.0215 0.0288 0.0017 0.0289 0.2489 0.42% 0.0251 0.0290 0.9943 0.9961 

β12 0.7500 0.7596 1.27% 0.0495 0.0373 0.0028 0.0374 0.7699 2.65% 0.0396 0.0395 0.9451 0.9477 

β22 1.0000 1.0184 1.84% 0.0439 0.0436 0.0036 0.0437 1.0295 2.95% 0.0497 0.0463 0.9419 0.9451 

β32 0.5000 0.5009 0.17% 0.0343 0.0314 0.0023 0.0315 0.5220 4.39% 0.0282 0.0352 0.8931 0.8955 

β42 0.2500 0.2524 0.96% 0.0284 0.0294 0.0021 0.0294 0.2658 6.34% 0.0263 0.0315 0.9318 0.9343 

β13 0.2500 0.2473 1.08% 0.0244 0.0233 0.0015 0.0234 0.2605 4.18% 0.0269 0.0251 0.9274 0.9293 

β23 0.5000 0.5084 1.67% 0.0273 0.0256 0.0020 0.0256 0.5100 2.01% 0.0300 0.0277 0.9221 0.9248 

β33 0.7500 0.7498 0.02% 0.0302 0.0291 0.0019 0.0291 0.7572 0.96% 0.0365 0.0318 0.9150 0.9170 

β14 0.7500 0.7508 0.11% 0.0416 0.0419 0.0039 0.0420 0.7707 2.75% 0.0452 0.0450 0.9302 0.9341 

β24 0.2500 0.2407 3.70% 0.0311 0.0326 0.0033 0.0327 0.2480 0.80% 0.0234 0.0363 0.8977 0.9022 

β34 1.0000 1.0160 1.60% 0.0483 0.0489 0.0041 0.0491 1.0000 0.00% 0.0360 0.0513 0.9532 0.9566 

β44 0.3000 0.3172 5.72% 0.0481 0.0336 0.0028 0.0337 0.3049 1.62% 0.0423 0.0368 0.9133 0.9165 

β15 0.4000 0.3899 2.54% 0.0279 0.0286 0.0026 0.0288 0.4036 0.90% 0.0274 0.0301 0.9516 0.9554 

β25 1.0000 0.9875 1.25% 0.0365 0.0391 0.0036 0.0393 1.0008 0.08% 0.0452 0.0398 0.9821 0.9862 

β35 0.6000 0.5923 1.28% 0.0309 0.0316 0.0030 0.0317 0.6027 0.45% 0.0332 0.0329 0.9607 0.9649 

Correlation Coefficients 

ρ12 0.9000 0.8969 0.34% 0.0224 0.0177 0.0034 0.0180 0.9019 0.21% 0.0233 0.0183 0.9669 0.9845 

ρ13 0.8000 0.8041 0.51% 0.0174 0.0201 0.0035 0.0204 0.8009 0.11% 0.0195 0.0203 0.9874 1.0023 

ρ14 0.8200 0.8249 0.60% 0.0284 0.0265 0.0061 0.0272 0.8151 0.60% 0.0296 0.0297 0.8933 0.9165 

ρ15 0.7500 0.7536 0.49% 0.0248 0.0243 0.0046 0.0247 0.7501 0.01% 0.0242 0.0251 0.9678 0.9849 

ρ23 0.8500 0.8426 0.87% 0.0181 0.0190 0.0081 0.0207 0.8468 0.38% 0.0190 0.0198 0.9606 1.0438 

ρ24 0.9000 0.8842 1.75% 0.0187 0.0231 0.0097 0.0251 0.9023 0.26% 0.0289 0.0244 0.9484 1.0284 

ρ25 0.7200 0.7184 0.22% 0.0241 0.0280 0.0072 0.0289 0.7207 0.09% 0.0295 0.0301 0.9298 0.9600 

ρ34 0.8700 0.8724 0.27% 0.0176 0.0197 0.0036 0.0200 0.8644 0.65% 0.0208 0.0220 0.8972 0.9124 

ρ35 0.8000 0.7997 0.04% 0.0265 0.0191 0.0039 0.0195 0.7988 0.15% 0.0193 0.0198 0.9645 0.9848 

ρ45 0.8500 0.8421 0.93% 0.0242 0.0231 0.0128 0.0264 0.8576 0.89% 0.0192 0.0252 0.9156 1.0480 
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Table 3.1b (Continued) Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With High Error  

Correlation Structure 

Parameter 
True 

Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates 

 

CML

MSL

MASE

MASE

 

 

CML

MSL

MASE

SASE

 

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

 

Asymptotic 

Standard 

Error 

)( MSLMASE

 

 

Simulation 

Standard 

Error 

Simulation 

Adjusted 

Standard 

Error 

)( MSLSASE

 

Mean 

Estimate 

Absolute 

Percentage 

Bias 

Finite 

Sample 

Standard 

Error 

Asymptotic 

Standard 

Error 

)( CMLMASE  

 

Threshold Parameters 

θ1
1 -1.0000 -1.0110 1.10% 0.0600 0.0520 0.0023 0.0520 -1.0322 3.22% 0.0731 0.0545 0.9538 0.9548 

θ1
2 1.0000 0.9907 0.93% 0.0551 0.0515 0.0022 0.0515 1.0118 1.18% 0.0514 0.0528 0.9757 0.9766 

θ1
3 3.0000 3.0213 0.71% 0.0819 0.1177 0.0065 0.1179 2.9862 0.46% 0.1185 0.1188 0.9906 0.9921 

θ2
1 0.0000 -0.0234 - 0.0376 0.0435 0.0028 0.0436 0.0010 - 0.0418 0.0455 0.9572 0.9592 

θ2
2 2.0000 2.0089 0.44% 0.0859 0.0781 0.0066 0.0784 2.0371 1.86% 0.0949 0.0823 0.9491 0.9525 

θ3
1 -2.0000 -2.0266 1.33% 0.0838 0.0754 0.0060 0.0757 -2.0506 2.53% 0.0790 0.0776 0.9721 0.9752 

θ3
2 -0.5000 -0.5086 1.73% 0.0305 0.0440 0.0030 0.0441 -0.5090 1.80% 0.0378 0.0453 0.9702 0.9725 

θ3
3 1.0000 0.9917 0.83% 0.0516 0.0498 0.0035 0.0499 0.9987 0.13% 0.0569 0.0509 0.9774 0.9798 

θ3
4 2.5000 2.4890 0.44% 0.0750 0.0928 0.0066 0.0930 2.5148 0.59% 0.1144 0.0956 0.9699 0.9724 

θ4
1 1.0000 0.9976 0.24% 0.0574 0.0540 0.0050 0.0542 1.0255 2.55% 0.0656 0.0567 0.9526 0.9566 

θ4
2 3.0000 3.0101 0.34% 0.1107 0.1193 0.0125 0.1200 3.0048 0.16% 0.0960 0.1256 0.9498 0.9550 

θ5
1 -1.5000 -1.4875 0.84% 0.0694 0.0629 0.0056 0.0632 -1.5117 0.78% 0.0676 0.0649 0.9699 0.9737 

θ5
2 0.5000 0.4822 3.55% 0.0581 0.0465 0.0041 0.0467 0.4968 0.64% 0.0515 0.0472 0.9868 0.9906 

θ5
3 2.0000 1.9593 2.03% 0.0850 0.0741 0.0064 0.0744 2.0025 0.12% 0.0898 0.0761 0.9735 0.9771 

Overall mean value 

across parameters 
- 1.22% 0.0429 0.0428 0.0044 0.0432 - 1.28% 0.0455 0.0449 0.9493 0.9621 
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threshold )(  parameters compared to the correlation )(  parameters (for both the MSL 

and CML approaches). This is perhaps because the correlation parameters enter more 

non-linearly in the likelihood function than the slope and threshold parameters, and need 

to be particularly strong before they start having any substantial effects on the log-

likelihood function value. Essentially, the log-likelihood function tends to be relatively 

flat at low correlations, leading to more difficulty in accurately recovering the low 

correlation parameters. But, at high correlations, the log-likelihood function shifts 

considerably in value with small shifts in the correlation values, allowing them to be 

recovered accurately.
9
  

The standard error measures provide several important insights. First, the finite 

sample standard error and asymptotic standard error values are quite close to one another, 

with very little difference in the overall mean values of these two columns (see last row). 

This holds for both the MSL and CML estimation approaches, and for both the low and 

high correlation cases, and confirms that the inverses of the sandwich information 

estimator (in the case of the MSL approach) and the Godambe information matrix 

estimator (in the case of the CML approach) recover the finite sample covariance 

matrices remarkably well. Second, the empirical and asymptotic standard errors for the 

threshold parameters are higher than for the slope and correlation parameters (for both 

the MSL and CML cases, and for both the low and high correlation cases). This is 

perhaps because the threshold parameters play a critical role in the partitioning of the 

underlying latent variable into ordinal outcomes (more so than the slope and correlation 

parameters), and so are somewhat more difficult to pin down. Third, a comparison of the 

standard errors across the low and high correlation cases reveals that the empirical and 

asymptotic standard errors are much lower for the correlation parameters in the latter case 

than in the former case. This reinforces the finding earlier that the correlation parameters 

                                                 
9
 One could argue that the higher absolute percentage bias values for the correlation parameters in the low 

correlation case compared to the high correlation case is simply an artifact of taking percentage differences 

from smaller base correlation values in the former case. However, the sum of the absolute values of the 

deviations between the mean estimate and the true value is 0.0722 for the low correlation case and 0.0488 

for the high correlation case. Thus, the correlation values are indeed being recovered more accurately in the 

high correlation case compared to the low correlation case.  
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are much easier to recover at high values because of the considerable influence they have 

on the log-likelihood function at high values; consequently, not only are they recovered 

accurately, but they are also recovered more precisely at high correlation values. Fourth, 

across all parameters, there is a reduction in the empirical and asymptotic standard errors 

for both the MSL and CML cases between the low and high correlation cases (though the 

reduction is much more for the correlation parameters than for the non-correlation 

parameters). Fifth, the simulation error in the MSL approach is negligible to small. On 

average, based on the mean values in the last row of the table, the simulation error is 

about 3.9% of the sampling error for the low correlation case and 10.3% of the sampling 

error for the high correlation case. The higher simulation error for the high correlation 

case is not surprising, since we use the same number of Halton draws per individual in 

both the low and high correlation cases, and the multivariate integration is more involved 

with a high correlation matrix structure. Thus, as the levels of correlations increase, the 

evaluation of the multivariate normal integrals can be expected to become less precise at 

a given number of Halton draws per individual. However, overall, the results suggest that 

our MSL simulation procedure is well tuned, and that we are using adequate numbers of 

Halton draws per individual for the accurate evaluation of the log-likelihood function and 

the accurate estimation of the model parameters (this is also reflected in the negligible 

difference in the simulation-adjusted standard error and the mean asymptotic standard 

error of parameters in the MSL approach).  

The final two columns of each of Tables 3.1a and 3.1b provide a relative 

efficiency factor between the MSL and CML approaches. The first of these columns 

provides the ratio of the asymptotic standard error of parameters from the MSL approach 

and the asymptotic standard error of the corresponding parameters from the CML 

approach. The second of these columns provides the ratio of the simulation-adjusted 

standard error of parameters from the MSL approach and the asymptotic standard error of 

parameters from the CML approach. As expected, the second column provides slightly 

higher values of efficiency, indicating that CML efficiency increases when one also 

considers the presence of simulation standard error in the MSL estimates. However, this 
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efficiency increase is negligible in the current context because of very small MSL 

simulation error. The more important and interesting point though is that the relative 

efficiency of the CML approach is as good as the MSL approach in the low correlation 

case. This is different from the relative efficiency results obtained in Renard et al. (2004), 

Zhao and Joe (2005), and Kuk and Nott (2000) in other model contexts, where the CML 

has been shown to lose efficiency relative to a maximum likelihood approach. However, 

note that all these other earlier studies focus on a comparison of a CML approach vis-à-

vis a maximum likelihood (ML) approach, while, in our setting, we must resort to MSL 

to approximate the likelihood function. To our knowledge, this is the first comparison of 

the CML approach to an MSL approach, applicable to situations when the full 

information maximum likelihood estimator cannot be evaluated analytically. In this 

regard, it is not clear that the earlier theoretical result that the difference between the 

asymptotic covariance matrix of the CML estimator (obtained as the inverse of the 

Godambe matrix) and of the ML estimator (obtained as the inverse of the cross-product 

matrix of derivatives) should be positive semi-definite would extend to our case because 

the asymptotic covariance of MSL is computed as the inverse of the sandwich 

information matrix.
10

 Basically, the presence of simulation noise, even if very small in 

the estimates of the parameters as in our case, can lead to a significant drop in the amount 

of information available in the sandwich matrix, resulting in increased standard errors of 

parameters when using MSL. Our results regarding the efficiency of individual 

parameters suggests that any reduction in efficiency of the CML (because of using only 

pairwise likelihoods rather than the full likelihood) is balanced by the reduction in 

efficiency because of using MSL rather than ML, so that there is effectively no loss in 

                                                 
10

 McFadden and Train (2000) indicate, in their use of independent number of random draws across 

observations, that the difference between the asymptotic covariance matrix of the MSL estimator obtained 

as the inverse of the sandwich information matrix and the asymptotic covariance matrix of the MSL 

estimator obtained as the inverse of the cross-product of first derivatives should be positive definite for 

finite number of draws per observation. Consequently, for the case of independent random draws across 

observations, the relationship between the MSL sandwich covariance matrix estimator and the CML 

Godambe covariance matrix is unclear. The situation gets even more unclear in our case because of the use 

of Halton or Lattice point draws that are not based on independent random draws across observations. 
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asymptotic efficiency in using the CML approach (relative to the MSL approach) in the 

CMOP model for low correlation. However, for the high correlation case, the MSL does 

provide slightly better efficiency than the CML. However, even in this case, the relative 

efficiency of parameters in the CML approach ranges between 90%-99% (mean of 95%) 

of the efficiency of the MSL approach, without considering simulation standard error. 

When considering simulation error, the relative efficiency of the CML approach is even 

better at about 96% of the MSL efficiency (on average across all parameters). Overall, 

there is little to no drop in efficiency because of the use of the CML approach in the 

cross-sectional multivariate ordered-response probit model system context.  

 

3.6.3 Non-Convergence and Computational Time 

The simulation estimation of multivariate ordered-response model can involve numerical 

instability because of possible unstable operations such as large matrix inversions and 

imprecision in the computation of the Hessian. This can lead to convergence problems. 

On the other hand, the CML approach is a straightforward approach that should be easy 

to implement and should not have any convergence-related problems. In the current 

empirical study, we classified any estimation run that had not converged in 5 hours as 

being non-convergent.   

 We computed the non-convergence rate for the MSL approach in terms of the 

starting seeds that led to failure in a complete estimation of 10 simulation runs (using 

different randomized Halton sequences) for each data set. If a particular starting seed led 

to failure in convergence for any of the 10 simulation runs, that seed was classified as a 

failed seed. Otherwise, the seed was classified as a successful seed. This procedure was 

applied for each of the 20 data sets generated for each of the low and high correlation 

matrix structures until we had a successful seed.
11

 The non-convergence rate was then 

                                                 
11

 Note that we use the terminology “successful seed” to simply denote if the starting seed led to success in 

a complete estimation of the 10 simulation runs. In MSL estimation, it is not uncommon to obtain non-

convergence (because of a number of reasons) for some sets of random sequences. There is, however, 

nothing specific to be learned here in terms of what starting seeds are likely to be successful and what 

starting seeds are likely to be unsuccessful. The intent is to use the terminology “successful seed” simply as 

a measure of non-convergence rates.  
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computed as the number of failed seeds divided by the total number of seeds considered. 

Note that this would be a good reflection of non-convergence rates if the analyst ran the 

simulation multiple times on a single data set to recognize simulation noise in statistical 

inferences. The results indicated a non-convergence rate of 28.5% for the low correlation 

case and 35.5% for the high correlation case. For both the low and high correlation cases, 

we always obtained convergence with the CML approach.  

Next, we examined the time to convergence per converged estimation run for the 

MSL and CML procedures (the time to convergence included the time to compute the 

standard error of parameters). For the MSL approach, we had a very well-tuned and 

efficient procedure with an analytic gradient (written in Gauss matrix programming 

language). The CML procedure, which is very easy to code relative to the MSL, was also 

undertaken in the Gauss language. For both approaches we used naïve independent probit 

starting values. The estimations were carried out on a desktop machine.  

Here, we only provide a relative computational time factor (RCTF), computed as 

the mean time needed for an MSL run divided by the mean time needed for a CML run. 

In addition, we present the standard deviation of the run times as a percentage of mean 

run time (SDR) for the MSL and CML estimations. The RCTF for the case of the low 

correlation matrix is 18, and for the case of the high correlation matrix is 40. The 

substantially higher RCTF for the high correlation case is because of an increase in the 

mean MSL time between the low and high correlation cases; the mean CML time hardly 

changed. The MSL SDR for the low correlation case is 30% and for the high correlation 

case is 47%, while the CML SDR is about 6% for both the low and high correlation 

cases. The computation time results do very clearly indicate the advantage of the CML 

over the MSL approach – the CML approach estimates parameters in much less time than 

the MSL, and the stability in the CML computation time is substantially higher than the 

stability in the MSL computation times. As the number of ordered-response outcomes 

increase, one can only expect a further increase in the computational time advantage of 

the CML over the MSL estimation approach. 
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3.7 Conclusions 

This study compared the performance of the composite marginal likelihood (CML) 

approach with the maximum-simulated likelihood (MSL) approach in multivariate 

ordered-response situations. We used simulated data sets with known underlying model 

parameters to evaluate the two estimation approaches in the context of a cross-sectional 

ordered-response setting. The ability of the two approaches to recover model parameters 

was examined, as was the sampling variance and the simulation variance of parameters in 

the MSL approach relative to the sampling variance in the CML approach. The 

computational costs of the two approaches were also presented.  

Overall, the simulation results demonstrate the ability of the Composite Marginal 

Likelihood (CML) approach to recover the parameters in a multivariate ordered-response 

choice model context, independent of the correlation structure. In addition, the CML 

approach recovers parameters as well as the MSL estimation approach in the simulation 

contexts used in the current study, while also doing so at a substantially reduced 

computational cost and improved computational stability. Further, any reduction in the 

efficiency of the CML approach relative to the MSL approach is in the range of non-

existent to small. All these factors, combined with the conceptual and implementation 

simplicity of the CML approach, makes it a promising and simple approach not only for 

the multivariate ordered-response model considered here but also for other analytically-

intractable econometric models. Also, as the dimensionality of the model explodes, the 

CML approach remains practical and feasible, while the MSL approach becomes 

impractical and/or infeasible.   
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Part II 

 

Chapter 4 

A Multivariate Ordered-Response Model System for Adults‟ Weekday 

Activity Episode Generation by Activity Purpose and Social Context 

 

4.1 Introduction 

4.1.1 Motivation 

The emphasis of the activity-based approach to travel modeling is on understanding the 

activity participation characteristics of individuals within the context of their 

demographic attributes, activity-travel environment, and social interactions. In the 

activity-based approach, activity episodes rather than trip episodes take the center stage, 

with the focus being on activity episode generation and scheduling over a specified time 

period (Jones et al., 1990, Bhat and Koppelman, 1999, Pendyala and Goulias, 2002, 

Arentze and Timmermans, 2004, and Pinjari and Bhat, 2011 provide extensive reviews of 

the activity-based approach). Several operational analytic frameworks for this activity 

analysis approach have also been formulated, and many metropolitan areas in the U.S. 

have implemented these frameworks (see Pinjari et al., 2008 for a recent review). These 

frameworks have focused on a “typical” weekday frame of analysis, and follow a general 

structure where out-of-home work-related decisions (employed or not, duration of work, 

location of work, and timing of work) are modeled first followed by the generation and 

scheduling of out-of-home non-work episodes (in the rest of this study, we will use the 

term “non-work episodes” to refer to out-of-home non-work episodes).  

The generation and scheduling of non-work episodes entails the determination of 

the number of non-work episodes by purpose, along with various attributes of each 

episode and the sequencing of these non-work episodes relative to work and in-home 

episodes. In the context of episode attributes, one dimension that has been receiving 

substantial attention recently is the “with whom” dimension (or the social context). This 
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is motivated by the recognition that individuals usually do not make their activity 

engagement decisions in isolation. For instance, within a household, an individual‟s 

activity participation decisions are likely to be dependent on other members of the 

household because of the possible sharing of household maintenance responsibilities, 

joint activity participation in discretionary activities, and pick-up/drop-off of household 

members with restricted mobility (Gleibe and Koppelman, 2002, Kapur and Bhat, 2007). 

In a similar vein, outside the confines of the household, an individual‟s activity 

participation might be influenced by non-household members because of car-pooling 

arrangements, social engagements, and joint recreational pursuits. In fact, Srinivasan and 

Bhat (2008), in their descriptive study of activity patterns, found that about 30% of 

individuals undertake one or more out-of-home (OH) activity episodes with household 

members on weekdays, and about 50% pursue OH activity episodes with non-household 

companions on weekdays. These interactions in activity decisions across household and 

non-household members are important to consider to accurately predict activity-travel 

patterns. For instance, the spatial and temporal joint participation in dinner at a restaurant 

of a husband and a wife are necessarily linked. Thus, considering the husband‟s and 

wife‟s activity-travel patterns independently without maintaining the linkage in time and 

space in their patterns will necessarily result in less accurate activity travel pattern 

predictions for each one of them. Further, there is a certain level of rigidity in such joint 

activity participations (since such participations necessitate the synchronization of the 

schedules of multiple individuals in time and space), because of which the responsiveness 

to transportation control measures such as pricing schemes may be less than what would 

be predicted if each individual were considered in isolation (see Vovsha and Bradley, 

2006 and Timmermans and Zhang, 2009 for extensive discussions of the importance of 

considering inter-individual interactions for accurately evaluating land-use and 

transportation policy actions).  

To be sure, several recent studies have focused on explicitly accommodating 

inter-individual interactions in activity-travel modeling. The reader is referred to a special 

issue of Transportation edited by Bhat and Pendyala (2005), as well as a special issue of 
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Transportation Research Part B edited by Timmermans and Zhang (2009), for recent 

papers on this topic. While these and other earlier studies have contributed in very 

important ways, they focus on intra-household interactions, and mostly on the 

interactions between the household heads (see, for example, Wen and Koppelman, 1999, 

Scott and Kanaroglou, 2002, Meka et al., 2002, Srinivasan and Bhat, 2005, and Kato and 

Matsumoto, 2009). On the other hand, as discussed earlier in this study, there is a 

significant amount of activity episode participations in the wider social network beyond 

the household (see also Goulias and Kim, 2005, Axhausen, 2005, Arentze and 

Timmermans, 2008, and Carrasco and Miller, 2009). Many earlier intra-household 

interaction studies in the literature also confine their attention to the single activity 

category of maintenance-oriented activities (see Srinivasan and Athuru, 2005, and Wang 

and Li, 2009). But, as indicated by PBQD (2000), over 75% of non-work episodes on a 

typical weekday are for discretionary purposes and, as pointed out by Srinivasan and 

Bhat (2008), a high percentage of these discretionary episodes involve one or more 

companions. This suggests the important need to consider inter-individual interactions in 

discretionary activity too (and not just in maintenance-oriented activity). Further, a 

significant fraction of existing studies on inter-individual interactions focus on daily time 

allocations or joint time-use in activities over a certain time period (an extensive review 

of these time allocation/time-use studies is provided in Vovsha et al., 2003, and Kato and 

Matsumoto, 2009). This is also true of the recent studies by Bhat and colleagues (Kapur 

and Bhat, 2007, Sener and Bhat, 2007) that use the multiple discrete-continuous extreme 

value (MDCEV) model to examine household and non-household companionship 

arrangement for each of several types of activities. While providing important insights, 

these studies of daily time-use do not directly translate to information regarding out-of-

home episodes. On the other hand, it is the scheduling and sequencing of out-of-home 

episodes that get manifested in the form of travel patterns (Doherty and Axhausen, 1999, 

Scott and Kanaroglou, 2002, Vovsha et al., 2003). Finally, even among those studies that 

consider inter-individual interactions at an episode level, almost all of them have adopted 

a framework that first generates activity episodes by activity purpose, and subsequently 
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“assigns” each of these purpose-specific episodes to a certain accompaniment type (for 

example, alone versus joint), typically using a discrete choice model (see, for example, 

Wen and Koppelman, 1999, Gliebe and Koppelman, 2002, and Bradley and Vovsha, 

2005). Unfortunately, such a sequential framework cannot accommodate general patterns 

of observed and unobserved variable effects that are specific to each activity purpose-

accompaniment type combination (see also Scott and Kanaroglou, 2002). 

 

4.1.2 The Current Study 

The objective of the current study, motivated by the discussion above, is to propose and 

estimate a joint modeling system for adult individuals‟ (aged 15 years or over) non-work 

activity episodes (or simply “episodes” from hereon) by purpose that also explicitly 

incorporates companionship arrangement information. The six activity purpose categories 

considered in the study are: (1) family care (including child care), (2) maintenance 

shopping (grocery shopping, purchasing gas/food, and banking), (3) non-maintenance 

shopping (window shopping, cloth shopping, electronics shopping, etc.), (4) meals, (5) 

physically active recreation (sports, exercise, walking, bicycling, etc.), and (6) physically 

inactive recreation (social, relaxing, movies, and attending religious/cultural/sports 

events).
12

 The companionship arrangement for episodes is considered in five categories: 

(1) alone, (2) only family (including children, spouse, and unmarried partner), (3) only 

relatives (parents, siblings, grandchild, etc.), (4) only friends (including friends, 

colleagues, neighbors, co-workers, peers, and other acquaintances), and (5) mixed 

company (a combination of family, extended family, and friends).
13

 The total number of 

                                                 
12

 There is obviously some subjectivity in the classification adopted here, though the overall consideration 

was to accommodate differences between the disaggregate activity purposes along such contextual 

dimensions as location of participation, physical intensity level, duration of participation, amount of 

structure in activity planning, and company type of participation (see Srinivasan and Bhat, 2005). 

13
 While we consider the companionship arrangement for episodes, the reader will note that we still 

consider the generation of episodes at the individual-level. Future efforts should consider the generation of 

episodes at a higher level, such as a household-level or a neighborhood level, so that there is consistency in 

activity episode generation across individuals. Thus, for example, if a husband has a joint out-of-home 

(OH) activity episode with his wife, it must also be true that the wife has a joint OH activity episode with 

her husband.  
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activity purpose-companionship type categories is 30, and the model system developed 

here jointly considers the number of episodes in each of these 30 categories. The data 

used in the empirical analysis is drawn from the American Time Use Survey (ATUS), 

which collects detailed individual-level activity information for one day from a randomly 

selected adult (15 years or older) in each of a subset of households responding to the 

Current Population Survey (CPS).   

The study uses a multivariate ordered-response model system for analyzing the 

number of episodes of each activity purpose-companionship type. In this system, we 

allow dependence between the number of episodes of different purpose-companionship 

types due to both observed exogenous variables as well as unobserved factors. The 

inclusion of dependence generated by unobserved factors allows complementarity and 

substitution effects in activity participation decisions (even after controlling for observed 

effects). For instance, individuals who are “go-getters” and “dynamic” in their lifestyle 

may have a higher participation propensity in sports-type activities (“physically active 

recreation”) and also in cultural/social activities (“physically inactive recreation”). This 

would constitute a complementary relationship between these two activity purpose 

categories. Similarly, individuals who are “sociable” may be more likely to participate in 

activity episodes with friends, but not alone. This represents a substitution relationship in 

the company types of „friends” and “alone”. Besides, the presence of common 

unobserved factors among combination categories that share the same activity purpose or 

that share the same companionship type can also generate complementary effects. Thus, 

an individual who is “sociable” by personality may have a higher propensity to 

participate in dining out-with friends as well as a higher propensity to participate in 

physically-inactive recreation with friends. Overall, the extent of complementary and 

substitution relationships may be specific to the combinations of activity purpose 

category and company type, which is the general case modeled in the current study.  

The econometric challenge in estimating a joint multivariate ordered-response 

system with a large number of categories is dealt with by applying the technique of 

composite marginal likelihood approach. The rest of the chapter is organized as follows. 
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Section 4.2 presents the model structure. Section 4.3 summarizes the data source and 

sample preparation procedure. Section 4.4 discusses the estimated results and the final 

section concludes the chapter by summarizing the salient features and findings of the 

study. 

 

4.2 The Model Structure 

4.2.1 Background 

Employing an ordered-response system in the current context allows us the use of a 

general covariance matrix for the underlying latent variables, which translates to a 

flexible correlation pattern among the observed count outcomes (number of episodes 

across purpose types and companionship types in the current case). On the other hand, the 

traditional approach in the econometric literature to address correlated counts is to start 

with a Poisson or negative binomial distribution for each univariate count and add a 

random component to the conditional mean specification. If these random components 

are allowed to be correlated across equations, the net result is a mixed count model that 

allows correlation across outcomes. Such a model can be estimated using classical or 

Bayesian simulation techniques (Egan and Herriges, 2006, Chib and Winkelmann, 2001). 

An important problem with this approach, however, is that the use of the Poisson or 

negative binomial distribution as the underlying kernel for mixing restricts “the amount 

of probability mass that can be accommodated at any one point” (see Herriges et al., 

2008). Thus, in cases with a high fraction of „0‟ values, as in the current empirical 

context of the number of episodes in each activity purpose-companionship type 

combination, the count mixing models are not able to provide good predictions. The 

alternative of adding zero-inflated approaches to accommodate the high number of „0‟ 

values, while easy to undertake in a univariate count model, becomes difficult in the 

multivariate count case.  

Of course, the use of an ordered-response system for count outcomes is certainly 

not new in the transportation literature. In fact, it has a long history of use for modeling 

such travel count dimensions as household car ownership levels (Kitamura, 1987, 1988, 
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Golob and van Wissen, 1989, Golob, 1990, Bhat and Guo, 2007) and trip 

generation/stop-making (see Meurs, 1989, Agyemang-Duah et al., 1995, Agyemang-

Duah and Hall, 1997, Bhat, 1999, Bricka and Bhat, 2006, and Carrasco and Miller, 2009 

to list just a few). While the traditional ordered-response model was initially developed 

for the case of ordinal responses, and while count outcomes are cardinal, this distinction 

is really irrelevant for the use of the ordered-response system for count outcomes. This is 

particularly the case when the count outcome takes few discrete values, as in the current 

empirical case, but is also not much of an issue when the count outcome takes a large 

number of possible values. A perceived problem in the latter case may be that the 

ordered-response model entails the estimation of K-1 threshold values that horizontally 

partition the underlying continuous variable to map into the observed count values, where 

K is the largest possible count value. But, as has been demonstrated by Meyer (1990), 

there is little loss of efficiency due to the estimation of a large number of thresholds in 

the ordered-response model structure. As long as there are even a few observations in 

each of the K categories under consideration, it is straightforward to estimate the ordered-

response structure. 

The ordered-response applications in the transportation literature discussed above 

all focus on a univariate count outcome. Three earlier multivariate count studies using a 

multivariate ordered-response structure that are directly relevant to the current study are 

Scott and Kanaroglou (2002), Bhat and Srinivasan (2005), and Herriges et al. (2008). 

These are discussed in turn below. 

Scott and Kanaroglou use a trivariate normal distribution for the underlying latent 

continuous variables for three count outcomes, which correspond to the daily number of 

non-work episodes in couple households made by the male head, the female head, and 

jointly by both the heads. This leads to a trivariate integral for the probability expression 

for each household, which can be computed in a straightforward way using trivariate 

cumulative normal distribution functions. The restriction to three outcomes obviates the 

need for simulation, but also constrains the authors to consider all non-work episodes 
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together without differentiating between activity types. Besides, the interaction in activity 

participation is confined to the household heads.  

Bhat and Srinivasan appear to be the first to have proposed a modeling system 

and estimation approach that can conceptually accommodate any number of count 

outcomes. The authors use a logistic error term in each univariate ordered-response 

specification, and then also add a normally distributed mixing error term in the latent 

continuous equation. By allowing the mixing terms to be distributed multivariate normal, 

they effectively generate a flexible correlation structure across the outcome categories. 

They use a maximum simulated likelihood approach for evaluating the multi-dimensional 

integral in the resulting probability expression, using quasi-Monte Carlo simulation 

methods proposed by Bhat (2001; 2003). In addition, they develop a method to 

parameterize the likelihood function in terms of the elements of the Cholesky 

decomposed-matrix of the correlation matrix of the mixing normally distributed elements 

to ensure the positive definiteness of the matrix, and further parameterize the diagonal 

elements of the Cholesky matrix to guarantee unit values along the diagonal. Bhat and 

Srinivasan apply their model system to analyze the number of episodes of participation of 

individuals in seven different activity purposes, but they do not focus on accompaniment 

type. While their simulation approach can be extended in principle to any number of 

count outcomes, numerical stability, convergence, and precision problems start surfacing 

as the number of dimensions increase.  

Herriges et al. (2008) recently have proposed an alternate estimation approach for 

the multivariate ordered-response system based on the posterior mode in an objective 

Bayesian approach as in Jeliazkov et al. (2008).
14

 The approach of Herriges et al. (2008) 

is based on assuming prior distributions on the non-threshold parameters, 

reparameterizing the threshold parameters, imposing a standard conjugate prior on the 

reparameterized version of the error covariance matrix and a flat prior on the transformed 

                                                 
14

 It is interesting that Herriges et al. appear to be “discovering” the use of an ordered-response structure for 

count outcomes, while such a structure has in fact been used extensively in the past for count outcomes in 

the transportation literature. Further, Herriges et al. do not seem to have been aware of the work of Bhat 

and Srinivasan (2005), which develops a frequentist inference approach for correlated counts.   
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threshold, obtaining an augmented posterior density using Baye‟s Theorem for the 

reparameterized model, and fitting the model using a Markov Chain Monte Carlo 

(MCMC) method. Unfortunately, the method remains very cumbersome, requires 

extensive simulation, and is time-consuming. Further, convergence assessment becomes 

very difficult as the number of dimensions increase. In this regard, both the MSL and the 

Bayesian approach are “brute force” simulation techniques that are not straightforward to 

implement and can create convergence assessment problems. Herriges et al. apply their 

Bayesian estimation approach to examine the annual number of trips made by Iowa 

households to each of 29 lakes in the state.  

In the current study, we consider and use a third inference approach – the 

Composite Marginal Likelihood (CML) approach. In the next sections, we discuss the 

mathematical formulation of the model and the composite marginal likelihood function 

(i.e., the pairwaise marginal likelihood function).   

 

4.2.2 Mathematical Formulation  

Let q be an index for individuals (q = 1, 2, …, Q), and let i be the index for episode 

category (i = 1, 2, …, I, where I denotes the total number of episode categories for each 

individual; in the current study, I = 30). Let the number of episode count values for 

category i be Ki + 1 (i.e., the discrete levels, indexed by k, belong in {0, 1, 2, …, Ki} for 

category i). In the usual ordered-response framework notation, we write the latent 

propensity (
*

qiy ) for each episode category as a function of relevant covariates and relate 

this latent propensity to the observed count outcome ( qiy ) through threshold bounds (see 

McKelvey and Zavoina, 1975).
15

 

  kyy qiqiqi  ,* qi

'

ixβ  if  
1*  k

iqi

k

i y  ,      (4.1) 

                                                 
15

 Note that the model structure presented in this section is identical to the model structure presented in the 

previous chapter. However, the notations and symbols used to specify the model have different 

interpretations, since the context of the two studies are different. Thus, it is convenient to replicate the 

model system in the current empirical context.    
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where qix  is a (L×1) vector of exogenous variables (not including a constant), 
iβ  is a 

corresponding (L×1) vector of coefficients to be estimated, qi  is a standard normal error 

term,  and k

i  is the lower bound threshold for count level k of episode category i 


 101210   ,  ;...( ii K

ii

K

iiii   for each category i ) . The 
qi  terms are 

assumed independent and identical across individuals (for each and all i). For 

identification reasons, the variance of each 
qi  term is normalized to 1. However, we 

allow correlation in the 
qi  terms across episode categories i for each individual q. 

Specifically, define )'.,,,,( 321 qIqqq  qε  Then, qε  is multivariate normal 

distributed with a mean vector of zeros and a correlation matrix as follows: 
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],[~ Σ0εq N  

 The off-diagonal terms of Σ capture the error covariance across the underlying 

latent continuous variables of the different episode categories; that is, they capture the 

effect of common unobserved factors influencing the propensity of choice of count level 

for each episode category. Thus, if 12  is positive, it implies that individuals with a 

higher than average propensity in their peer group to participate in the first episode 

category are also likely to have a higher than average propensity to participate in the 

second episode category. Of course, if all the correlation parameters (i.e., off-diagonal 

elements of Σ), which we will stack into a vertical vector Ω, are identically zero, the 

model system in Equation (4.1) collapses to independent ordered-response probit models 

for each episode category.  
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4.2.3 The Pairwise Marginal Likelihood Inference Approach 

The parameter vector of the multivariate probit model is 

,)  ; ..., , ,  ; ..., , ,(  Ωθθθβββδ I21I21
 where ) ,... , ,( 21  iK

iii iθ  for Ii ..., ,2 ,1 . Let 

the actual observed count level for individual q and episode category i be mqi. Then, the 

likelihood function for individual q may be written as follows: 
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 The likelihood function above requires the computation of an I-dimensional 

rectangular integral. While there are maximum simulated likelihood (MSL) approaches 

that can evaluate such multidimensional normal integrals using the Geweke-

Hajivassiliou-Keane simulator (Hajivassiliou et al., 1996), as noted previously, they can 

become problematic even for moderate I in terms of computational effort. Thus, in this 

study, we employ a pairwise marginal likelihood estimation approach. The pairwise 

marginal likelihood function for individual q may be written as follows: 
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and )()( , δδ qCML

q

CML LL   

 The pairwise likelihood function above is easily maximized, and the effort 

involved is no more difficult than in a usual bivariate ordered probit model. The pairwise 

estimator CMLδ̂  is obtained by maximizing the logarithm of the function in Equation (4.4) 

with respect to the vector δ . The )(δH  matrix and the )(δJ matrix of the covariance, 

which is given by the inverse of Godambe‟s sandwich information matrix
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))]()[()]([)]([)(( 111   δHδJδHδGδVCML , can be estimated in a straightforward 

manner at the CML estimate )ˆ( CMLδ  as follows: 
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4.3 Data  

4.3.1 Data Source 

The data used for the empirical analysis in the study is drawn from the 2007 American 

Time Use Survey (ATUS). The ATUS is a national level survey conducted and processed 

by the U.S. Census Bureau for the Bureau of Labor Statistics (ATUS, 2008). The 

household sample for the ATUS is drawn from the set of households that completed the 

Current Population Survey (CPS). Next, from each sampled CPS household, the ATUS 

randomly selects one individual of age 15 or over, and collects information on all 

episodes the individual participates in over the course of a single day.  The episode-level 

information collected in the ATUS includes activity episode purpose, start and end time, 

location of participation (for example, grocery store, library, etc.), and „with whom‟ 

participated in. In addition, data on individual and household socio-demographics, 

individual labor force participation and employment-related characteristics, and regional 

location and characteristics of the survey day are also collected.  

 

4.3.2 Sample Formation and Description 

The 2007 ATUS micro data were processed in several steps to obtain the sample for the 

current analysis. First, only individuals who were surveyed on a weekday that was not a 

holiday were selected, because the focus of the current study is to study individuals‟ 
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activity participation patterns on a typical weekday. Second, all work, work-related, 

education, education-related, travel, sleep, and in-home activity episodes (such as phone 

call, grooming, etc.) were removed from the list of activity episodes undertaken by the 

respondents on the survey day. Third, all out-of-home activity episodes, originally 

documented in over four hundred fine activity purpose types, were aggregated into six 

broad activity purpose type categories: (1) personal/family care (including personal care, 

caring for children in the household, pick-up/drop-off of children/adults, and caring for 

extended family members; for the sake of brevity, we will refer to personal/family care 

activities simply as “family care” activities from hereon), (2) maintenance shopping (such 

as grocery shopping, purchasing gas/food, and banking), (3) non-maintenance shopping, 

(4) meals, (5) physically active recreation (including sports, exercise, recreational and 

volunteer activities), and (6) physically inactive recreation (including social, relaxing, 

movies, and attending religious/sporting/recreational events). Subsequently, the 

companion types for each episode were classified into five mutually exclusive and 

collectively exhaustive categories: (1) alone, (2) only family (includes children, spouse or 

unmarried partner), (3) only relatives (parents, sibling, grandchild, etc.), (4) only friends 

(friends, co-workers, neighbors, etc.), and (5) mixed company (a combination of family, 

relatives, and friends). The activity type and companion type classification resulted in 

thirty episode categories. Fourth, the number of episodes undertaken during the survey 

day by an individual in each of the episode categories is obtained by aggregating all 

episodes of that category for the person. Fifth, data on household and individual socio-

demographics, residential location, and zonal characteristics were appended to the 

person-level file. Finally, several screening and consistency checks were performed and 

records with missing or inconsistent data were eliminated.  

The final sample for analysis includes out-of-home non-mandatory episode 

participation information for 4143 individuals (workers and non-workers, aged 15 years 

or older) on a typical weekday. Table 4.1 presents the percentage distribution of 

individuals‟ participation in episodes by activity type and companionship type. For 

example, the first entry in Table 4.1 indicates that 91.3% of individuals do not undertake 
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family care activities alone. Across all the categories, we find that meals with friends is 

the most frequently undertaken episode category on weekdays, with over 27% of 

individuals in the sample participating in one or more episodes of this category. Other 

categories with relatively frequent participation (across individuals) include maintenance 

shopping alone, family care with family, meals alone, and physically inactive recreation 

with friends. The last of these is also the activity purpose that individuals are most likely 

(relative to other activity purposes) to undertake with relatives (8.9%) or with mixed 

company (7.2%).  

 

4.4 Empirical Analysis 

4.4.1 Variable Specification 

Several types of variables were considered in the model specification. These included (1) 

individual socio-demographics (gender, age, race, education level, employment status, 

student status, and indication of any disability), (2) household socio-demographics 

(household structure, presence of children, family income, and employment status of 

spouse/partner)
16

, and (3) day of the week and seasonal effect variables.  

In addition to the three groups of variable discussed above, we also considered several 

interaction effects among the variables. The final specification was based on a systematic 

process of removing statistically insignificant variables and combining variables when 

their effects were not significantly different. The specification process was also guided by 

prior research and intuitiveness/parsimony considerations. We should also note here that, 

for the continuous variables in the data (such as age and income limits), we tested 

alternative functional forms that included a linear form, a spline (or piece-wise linear) 

form, and dummy variables for different ranges.       

 

                                                 
16

 The ATUS survey does not collect information on household vehicle ownership. As a result, this variable 

is not available for use in the empirical analysis. 
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Table 4.1 Percentage of Individuals in Each Number of Episodes Category by „With Whom‟ and Activity Types (Weekday) 

'With Whom' Dimension 

Number 

of 

Episodes 

Activity Type Dimension 

Family care 
Maintenance 

shopping 

Non-

maintenance 

shopping 

Meals 

Physically 

active 

recreation 

Physically 

inactive 

recreation 

Alone 

0 91.3 73.7 86.7 79.1 90.2 87.4 

1 7.3 18.6 10.9 18.6 7.9 9.7 

2 1.4 5.6 2.4 2.3 1.9 2.8 

≥ 3 - 2.2 - - - - 

Only family 

(children/spouse/partner) 

0 78.8 90.5 92.5 91.6 96.4 95.7 

1 11.2 7.6 5.6 7.4 3.0 3.6 

2 6.5 1.9 1.9 1.0 0.6 0.7 

3 2.1 - - - - - 

≥ 4 1.4 - - - - - 

Only relatives (includes 

parents, brother, sister, and 

other related persons) 

0 91.5 95.8 96.5 93.5 97.5 91.1 

1 5.6 3.4 2.9 5.6 2.1 6.6 

≥ 2 3.0 0.8 0.6 0.9 0.4 2.3 

Only friends (includes friends, 

co-workers, neighbors, etc.) 

0 96.7 96.5 98.5 72.9 94.9 81.6 

1 2.4 2.9 1.5 22.3 4.2 12.9 

2 0.9 0.5 - 4.8 0.9 4.1 

≥ 3 - - - - - 1.4 

Mixed company (i.e., with 

family and/or relatives and/or 

friends) 

0 94.2 98.3 99.3 95.6 97.9 92.8 

1 4.0 1.7 0.7 4.4 2.1 5.8 

≥ 2 1.8 - - - - 1.4 
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4.4.2 Model Estimation Results 

Table 4.2 presents the model estimation results. The columns in the table correspond to 

the explanatory variables, while the rows correspond to the episode categories. An empty 

cell indicates that the corresponding column exogenous variable does not have a 

statistically significant effect on the corresponding row episode category participation 

propensity. The t-statistic for each coefficient is provided beneath the coefficient in 

parentheses. The base category is listed in the heading of the column corresponding to 

that variable. The coefficients in the table indicate the effects of variables on the latent 

propensity of participation in each episode category (that is, they represent elements of 

the 
iβ  vector in Equation (4.1)). Since all the variables in the model are dummy 

variables, the relative magnitudes of the coefficients also provide an estimate of the 

importance of the variables in influencing participation propensities and participation 

probabilities. The marginal impact of variables on the participation probabilities for each 

combination of number of episodes for the different episode categories varies across 

individuals because of the non-linear structure of the ordered probit formulation.  

Aggregate level marginal effects may be computed for each dummy variable by changing 

the value of the variable to one for the subsample of observations for which the variable 

takes a value of zero and to zero for the subsample of observations for which the variable 

takes the value of one.  We can then sum the shifts in expected aggregate shares in the 

two subsamples after reversing the sign of the shifts in the second subsample and 

compute an effective marginal change in expected aggregate shares in the entire sample 

due to a change in the dummy variable from 0 to 1.  We are not showing these marginal 

effects here because there are as many as 80 trillion aggregate marginal effects (one for 

each combination of episode levels across all the 30 episode categories) for each variable.  

But in Chapter 7, we demonstrate the application of the model due to changes in two 

variables. In the following sections, we discuss the effect of variables on the latent 

participation propensities by variable category. 
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Table 4.2 Model Estimation Results (t-statistics in parentheses) 

  Individual socio-demographics variables 

  Male  
(base: female) 

Age  

(base: age ≥ 60) Caucasian 

(base: non-

Caucasian) 

Education level  

(base: high school graduate)  

Employment status  

(base: not employed) Student  

(base: not 

student) 

Have a 

disability 
(base: no 

disability) 
  

Age <40  40≤ Age <60  
Education < 

bachelors  
Education ≥ 

bachelors 
Full time 
employed  

Part time 
employed 

F
a

m
il

y
 c

a
r
e 

Alone 
-0.179 -0.122         -0.318 -0.174     

(-3.05) (-2.12)         (-5.05) (-2.03)    

Only family 
-0.509 0.339 0.438               

(-10.31) (3.76) (4.76)              

Only relatives 
-0.195 -0.347 -0.220       -0.327     0.406 

(-3.24) (-4.68) (-2.88)       (-5.00)     (3.02) 

Only friends 
                    

                    

Mixed company 
-0.398 0.314         -0.113 -0.182     

(-5.81) (5.00)         (-1.62) (-1.81)     
M

a
in

te
n

a
n

ce
 s

h
o

p
p

in
g

 Alone 
  -0.363     0.277 0.298         

  (-8.55)     (5.47) (6.23)         

Only family 
-0.218 0.305 0.376       -0.278       

(-3.82) (3.62) (4.37)       (-4.69)       

Only relatives 
-0.226           -0.323     0.398 

(-3.00)           (-4.34)     (2.67) 

Only friends 
            -0.126       

            (-1.72)       

Mixed company 
-0.210 0.303         -0.190       

(-2.07) (3.13)         (-1.95)       

N
o

n
-m

a
in

te
n

a
n

c
e 

sh
o

p
p

in
g

 

Alone 
-0.101 -0.430 -0.188   0.241 0.162 -0.198 -0.134     

(-1.97) (-6.45) (-2.76)   (3.92) (2.65) (-3.19) (-1.62)    

Only family 
-0.233     0.322             

(-3.84)     (3.45)             

Only relatives 
-0.310                 0.419 

(-3.89)                 (2.33) 

Only friends 
                    

                    

Mixed company 
-0.289 0.394                 

(-2.01) (2.91)                 

M
e
a
ls

 

Alone 
0.290           1.075 0.600     

(6.34)           (16.02) (6.57)     

Only family 
  0.161 0.131               

  (1.85) (1.52)               

Only relatives 
                    

                   

Only friends 
0.088     0.107     0.867 0.447 0.489   

(2.10)     (1.89)     (16.53) (6.10) (7.36)   

Mixed company 
  0.287   0.310             

  (4.19)   (2.95)             

P
h

y
si

c
a
ll

y
 a

c
ti

v
e
 r

e
cr

ea
ti

o
n

 

Alone 
0.190 -0.261 -0.242   0.136 0.451         

(3.54) (-3.57) (-3.38)   (1.91) (7.21)         

Only family 
  0.168   0.254           0.589 

  (2.16)   (2.12)          (3.21) 

Only relatives 
          0.189         

          (2.20)         

Only friends 
  -0.281 -0.403     0.156     0.461   

  (-3.00) (-4.56)     (2.25)     (4.59)   

Mixed company 
  0.205             0.331   

  (2.10)             (2.62)   

P
h

y
si

c
a
ll

y
 i

n
a
c
ti

v
e 

r
e
cr

ea
ti

o
n

 

Alone 
0.080     -0.188     0.386       

(1.58)     (-2.98)     (7.18)       

Only family 
  0.212         -0.465       

  (2.87)         (-6.34)      

Only relatives 
            -0.250       

            (-4.54)       

Only friends 
0.123           0.225   0.377   

(2.73)           (4.78)   (5.50)   

Mixed company 
-0.205 0.284         -0.192       

(-3.35) (4.85)         (-3.25)       
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                                       Table 4.2 (Continued) Model Estimation Results (t-statistics in parentheses) 

   Household socio-demographics variables 
Day-of-the-week and 

seasonal effect variables 

   
Household (HH) structure 

(base: "other" HH) 

Presence of children 

(base: age ≤  4) 

HH income 

( base: < 30k) 
Spouse/partner 

employed 

(base: 

unemployed) 

Friday 
(base: other 

days of the 

week) 

Summer 
(base: fall, 

spring, and 

winter)     
Nuclear 

family HH 
Couple 

HH 
Single 

individual HH 
4< Age ≤ 10 10< Age ≤ 15 

30k ≤ Income 
< 75k 

Income ≥ 75k 

F
a

m
il

y
 c

a
r
e 

Alone 
              0.161     

            (2.82)     

Only family 
0.381 -0.418   0.579 0.308    0.537     

(6.39) (-4.60)   (10.98) (5.87)    (9.78)     

Only relatives 
              0.183   

              (2.80)  

Only friends 
            -0.477     

            (-5.20)     

Mixed company 
                  

                  
M

a
in

te
n

a
n

ce
 s

h
o

p
p

in
g

 Alone 
        0.098  

              (1.92)  

Only family 
0.487 0.364   0.161        0.210   

(6.81) (4.92)   (2.27)        (3.26)  

Only relatives 
-0.423             0.184   

(-4.59)             (2.23)  

Only friends 
                  

                  

Mixed company 
                  

                    

N
o

n
-m

a
in

te
n

a
n

c
e 

sh
o

p
p

in
g

 

Alone 
                  

                  

Only family 
0.614 0.393           0.202   

(9.04) (4.96)           (2.93)  

Only relatives 
-0.321             0.237   

(-3.38)             (2.81)  

Only friends 
         -0.216         

         (-2.02)         

Mixed company 
                  

                  

M
e
a
ls

 

Alone 
  0.278      -0.143  

    (5.31)         (-2.42)  

Only family 
0.576 0.532      0.345 0.294   0.124   

(8.14) (7.15)      (4.36) (3.49)   (1.83)  

Only relatives 
-0.451 -0.215               

(-5.82) (-2.77)               

Only friends 
-0.166   0.202  0.189      0.141   

(-3.37)   (3.78)  (3.60)      (2.80)  

Mixed company 
              0.275   

                (3.47)   

P
h

y
si

c
a
ll

y
 a

c
ti

v
e
 r

e
cr

ea
ti

o
n

 

Alone 
    0.169             

    (2.67)             

Only family 
0.357 0.187      0.206 0.348     0.222 

(3.99) (1.80)      (1.99) (3.20)     (2.77) 

Only relatives 
                  

                  

Only friends 
-0.191               0.157 

(-2.29)               (2.09) 

Mixed company 
         0.384 0.546       

         (2.70) (3.85)       

P
h

y
si

c
a
ll

y
 i

n
a
c
ti

v
e 

r
e
cr

ea
ti

o
n

 

Alone 
  0.146    -0.273    

    (2.56)     (-4.70)       

Only family 
0.405 0.210      0.327 0.411   0.161   

(4.73) (2.12)      (3.19) (3.86)   (2.01)   

Only relatives 
-0.462             0.150   

(-6.63)             (2.26)   

Only friends 
-0.225   0.247  0.342      0.088   

(-4.09)   (4.37)  (6.16)      (1.63)   

Mixed company 
              0.275   

                (4.05)   
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4.4.2.1 Effect of Individual Socio-Demographic Variables 

The results indicate the presence of distinct gender effects in activity type participation 

and accompaniment. Specifically, men are less likely than women to participate, across 

all companion types, in family care activities (except with “only friends”), maintenance 

activities (except “alone” and with “only friends”) and non-maintenance shopping 

activities (except with “only friends”). These results reinforce the gender stereotype of 

women being more responsible for, and/or more vested and interested in, family care and 

shopping activities, a recurring finding in the literature (for example, see Yamamoto and 

Kitamura, 1999, and Frusti et al., 2003). However, men have a higher propensity than 

women to (a) participate alone in discretionary activities (i.e., meals out, physically active 

recreation, and physically inactive recreation), and (b) participate with “only friends” in 

meals out and physically inactive recreation. This is again consistent with the results 

found by Srinivasan and Bhat (2006) and Carrasco and Miller (2009), and suggests that 

men are more likely to undertake active and inactive leisure activities either alone or with 

friends on a weekday. Finally, men pursue physically inactive recreation with “mixed 

company” less than do women, potentially a reflection of the combination of family-

centric responsibilities and social network level interactions of women relative to men 

(see Kapur and Bhat, 2007 for a similar result). 

The effect of individual age on activity purpose and accompaniment type is 

accommodated in a non-linear fashion by introducing age in three categories: age less 

than 40 years, age 40 years or above but less than 60 years, and age 60 years or above 

(the base age category). The results suggest that, in general, individuals younger than 60 

years are more disposed toward pursuing activities with “only family”, and are less likely 

to participate in physically active recreation with “only friends”. Further, individuals 

below the age of 40 years are the least likely (relative to other age groups) to participate 

in activity episodes alone and most likely to participate in episodes with mixed company. 

Overall, these patterns suggest a combination of the family orientation and larger social 

networks of younger individuals, perhaps due to household life cycle characteristics. For 

instance, compared to older individuals, younger individuals are likely to have more 
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family responsibilities, have more social interactions with friends and co-workers, and 

also have a larger pool of individuals to interact as part of their extended family (parents, 

siblings, grandparents, etc.). Finally, individuals who are older than 60 years are most 

likely to participate in family care activities with “only relatives”, as evidenced by the 

negative coefficients corresponding to the age 40  and 60age40   columns for the 

“Family care-Only relatives” row of Table 4.2. This result may be attributable to such 

activities as care received by senior parents from their children, or child care provided by 

grandparents to grandchildren.  

 The race-related coefficients reveal that Caucasians are more likely than non-

Caucasians to (1) participate in non-maintenance shopping and physically active 

recreation with “only family”, and (2) undertake meal episodes with only friends or with 

friends and family (we did not find statistically significant race differences in the group 

of non-Caucasians, and hence represent race differences by a simple binary 

representation between Caucasians and non-Caucasians). The above results are consistent 

with earlier studies that suggest that Caucasians have higher levels of participation in 

meals/recreational pursuits (see Bhat and Gossen, 2004 and Mallett and McGuckin, 

2000), though our current study also introduces the “with whom” element that earlier 

studies do not. In this regard, our results also indicate that Caucasians tend to participate 

less than non-Caucasians in physically inactive recreation “alone”. 

Education level also has an impact on the type of episodes pursued and 

accompaniment type. Specifically, individuals with an education level beyond high 

school have a higher propensity (than individuals with only a high school degree which is 

the base category) to participate alone in shopping activities (maintenance and non-

maintenance) and physically active recreation. These results may be indicative of the 

tighter time constraints among individuals with high education, because of which it is 

easier to schedule shopping and physically active recreational activities (such as going to 

the gym) alone. Further, the results suggest that individuals with a bachelor‟s degree or 

higher are more likely to pursue physically active recreation with relatives, and with 

friends.  Overall, the results suggest an increased awareness among highly educated 
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adults of the benefits of investing in health and fitness-enhancing pursuits, highlighting 

the importance of a good education for a healthy society.  

Employment status, in the current study, is characterized as employed full-time, 

employed part-time and unemployed. The several negative coefficients in the “family 

care” and “maintenance shopping” panels of the table corresponding to the full-time 

employed variable reflect the lower propensity of full-time employees to pursue these 

activities (relative to other individuals). The same is true for non-maintenance shopping, 

though this is confined to the “alone” accompaniment type. Overall, full-time employed 

individuals have tight time constraints, which may explain their reduced participation in 

family care and shopping pursuits (see Goulias and Kim, 2001, for a similar result). 

However, full-time employed individuals have a high propensity to have meals out and 

physically inactive recreation episodes alone or with friends. The result regarding meals 

out alone or with friends is perhaps a manifestation of lunch activity participation alone 

or with co-workers. Finally, full-time employees are less likely to participate in 

physically inactive recreation with “only family”, “only relatives”, and “mixed 

company”, potentially another reflection of tight time constraints (see also Yamamoto et 

al.,   2004). The results for part-time workers provide similar results as for full time 

workers, except for participation in maintenance shopping and physically inactive 

recreation.  

The next variable in the table corresponds to student status. In this analysis, we 

defined an individual who is enrolled in high school, college, or university as a student. 

As expected, students have a high propensity to participate in discretionary activities 

(meals, physically active recreation, and physically inactive recreation) with friends, 

potentially a reflection of the combination of social opportunities to interact with friends 

as well as the social pressures to “fit in” within their peer group. 

As one would expect, physical disability significantly affects activity episode 

participation. Individuals with a physical disability are likely to need assistance from 

their relatives or immediate family for activity participation, as indicated by the positive 

coefficients in the “only relatives” or “only family” rows of Table 4.2. 
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4.4.2.2 Effects of Household Socio-Demographic Variables 

Household structure effects were considered by including several types of households, 

including nuclear family households (two adults of opposite/same sex with one or more 

children), couple families (two adults of opposite/same sex), single individual 

households, and “other” households (roommate households, returning young adult 

households, other related individual households, and all other types of households). The 

results show that adults in nuclear and couple family households are much more likely 

than adults in other households to pursue non-family care activities with their immediate 

family (as reflected in the positive coefficients for nuclear and couple families in the 

“only family” row for all non-family care activity purposes). Further, nuclear households 

are less likely than other households to participate in non-family care activities with 

friends or relatives. These results indicate the high levels of intra-household interactions 

within nuclear family households and, to a somewhat lesser degree, in couple family 

households. On the other hand, the results for “single individual” households shows that 

there is a relatively higher propensity of inter-household interactions with friends in the 

meal and physically inactive recreation activities of individuals who live alone (these 

individuals also participate more in meals and recreation alone). Overall, the results 

reinforce the need to explicitly consider intra-household and inter-household interactions 

in activity-travel pattern modeling, as discussed in the first section of this Chapter. 

Clearly, the nature of the interactions varies by household structure, which also needs to 

be considered in the modeling. Besides, earlier studies, such as Bhat and Srinivasan 

(2005), indicate that nuclear and couple family households have a higher participation 

propensity in shopping and physically active and inactive recreation activities as a whole, 

but our current study reveals that this is the case only for episodes with the immediate 

family. In fact, as just indicated above, nuclear family households have a lower 

propensity than other households to participate in shopping and discretionary 

(meals/recreation) activities with friends and relatives. This underscores the need to 

consider accompaniment type at the level of generation of episodes (as done in this 

study), and not further downstream in the modeling process where episodes are first 
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generated purely by activity purpose and then assigned to one of many accompaniment 

types.  

 The effect of age of children is introduced in the model in three categories: 

presence of children 4 years old or younger (the base category), presence of children aged 

between 5 to 10 years, and presence of children aged between 11 to 15 years. As 

expected, adults in households with older children (aged 5 years or more) are more likely 

than adults in households with young children (less than 5 years of age) to have family 

care episodes with “only family”, a clear reflection of the chauffeuring of children 

to/from school and other non-school activities as children grow older (sometimes labeled 

in the popular press as the “soccer mom” and “tennis dad” responsibilities). Adults in 

households with children in the 5-10 age group partake more in maintenance shopping 

episodes with “only family”, which may be attributed to one or both parents pursuing 

maintenance shopping with the child “in tow”. This effect is not statistically significant 

for the oldest child group since these children have acquired a certain level of 

independence and do not need child care at all times. Besides, there is evidence from the 

social psychology literature that pre-teenagers and teenagers would rather not be seen 

with parents, since this is considered “uncool” (Thornton et al., 1995, Williams, 2003).
17

 

Of course, the independence levels of children in the pre-teens and teens also enables the 

participation of parents in meals and physically inactive recreation activities with friends, 

as reflected by the positive coefficients in the “meals-only friends” and “physically 

inactive recreation-only friends” rows of Table 4.2. 

The effect of income is captured using dummy variables for different income 

categories, which enables the accommodation of nonlinear impacts on the propensity to 

participate in episodes (the dummy variable representation was found to be superior to a 

continuous linear income effect in our specifications). The results in Table 4.2 show that 

household income influences participation in meals, physically active recreation, and 

                                                 
17

 This finding is also supported by message boards and parent blogs posted on a number of websites such 

as life.familyeducation.com, www.ParentsConnect.com, www.theparentreport.com, family.go.com, all 

dedicated to address and deal with pre-teen and teenage issues. 
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physically inactive recreation. As expected, individuals in high-income households have 

a higher propensity to participate in these activity episodes because of their higher 

expenditure potential for discretionary pursuits. However, this is only true for episodes 

participated with “only family”. In fact, individuals in highest income group are less 

likely than individuals in other income groups to pursue physically inactive recreation 

alone (perhaps attributable to time constraints due to the level and intensity of work 

activity). Also, middle income individuals have a lower propensity to participate in non-

maintenance shopping with “only friends”, a result that is not immediately intuitive and 

needs exploration in future studies. But, overall, such differential episode generation rates 

by accompaniment type can only be accommodated if accompaniment type is considered 

at the generation level, rather than later on in the modeling hierarchy.   

Finally, in the category of household demographics, individuals in a household 

with a working spouse contribute more (less) than individuals without a working spouse 

to family care episodes alone or with immediate family (with friends). 

 

4.4.2.3 Day of Week and Season Variables 

The variables considered in this category include day of week variables and season 

variables (categorized as summer, fall, spring and winter). Clearly, there is a higher 

propensity of participation on Fridays in almost all non-physically active combinations of 

activity purpose and accompaniment. Further, it is unlikely that individuals pursue meals 

out activities alone on Fridays. For other activity purposes except maintenance shopping, 

there is no difference between Fridays and other days for solo-participation in episodes. 

Overall, individuals pursue more non-physical activity episodes on Fridays relative to 

other days of the week, and generally participate with family and friends. 

The seasonal effects reflect a higher propensity to participate in physically active 

recreation with family and friends over the summer compared to other seasons. This may 

be attributable to better weather conditions for outdoor activities, more daylight time, and 

more schedule opportunities to pursue activities with family and friends. 
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4.4.2.4 Threshold Parameters 

The threshold parameters are not shown in the table, but are available on request from the 

authors. These parameters represent the cut-off points that map the latent propensity of 

individuals to participate in each activity purpose-accompaniment type category to the 

reported number of episodes for each category. As such, they do not have any substantive 

behavioral interpretations. 

 

4.4.2.5 Correlation Estimates 

As indicated earlier in Chapter 3, it is not practical to estimate the parameters of the full 

correlation matrix (in the current case, the number of parameters in the full correlation 

matrix is 435). In our analysis, we specified several initial exclusion restrictions based on 

(1) intuitive considerations (for example, there is no reason why unobserved factors 

influencing participation in maintenance shopping with family should be correlated with 

unobserved factors influencing participation in physically active recreation with friends), 

and (2) the estimation of bivariate models for pairs of episode categories to determine if 

the corresponding correlations were statistically significant. These initial exclusion 

restrictions were used to estimate several alternative model specifications using the 

pairwise procedure proposed, and the final correlation matrix specification was obtained 

based on statistical fit and parsimony considerations.  

The estimated covariances and their t-statistics (in parentheses) are shown in 

Table 4.3. Only the upper diagonal terms in the variance-covariance matrix are shown 

since the matrix is symmetric. As mentioned before, the variance of the error terms are 

set to one to normalize the scale (see Section 4.2.2). The covariance (correlation) matrix 

indicates several statistically significant correlations among the stop-making propensities 

of different activity type-accompaniment categories, highlighting the importance of 

accounting for common unobserved factors in modeling episode participation frequency. 

For the sake of conciseness, we focus only on the salient aspects of the covariance matrix 

structure in the discussion here. Specifically, the following observations may be made  
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Table 4.3 Correlation in Unobserved Propensities Across the Choice Dimension (t-statistics in parentheses) 

  
Family care Maintenance shopping Non-maintenance shopping Meals Physically active recreation Physically inactive recreation 

  

Alone 
Only 

family 

Only 

relatives 

Only 

friends 

Mixed 

company 
Alone 

Only 

family 

Only 

relatives 

Only 

friends 

Mixed 

company 
Alone 

Only 

family 

Only 

relatives 

Only 

friends 

Mixed 

company 
Alone 

Only 

family 

Only 

relatives 

Only 

friends 

Mixed 

company 
Alone 

Only 

family 

Only 

relatives 

Only 

friends 

Mixed 

company 
Alone 

Only 

family 

Only 

relatives 

Only 

friends 

Mixed 

company 

F
a
m

il
y
 c

a
r
e
 

Alone 
1 0.087 0.087 0.275                                                     

  (2.88) (2.88) (5.67)                                  

Only family 
  1                                      

                                         

Only relatives 
    1       0.363      0.460       0.460      0.228      0.363    

            (1.03)      (15.95)       (15.95)      (5.04)      (1.03)    

Only friends 
      1      0.476      0.476       0.290      0.248      0.377   

             (7.49)      (7.49)       (5.58)      (7.53)      (6.79)   

Mixed company 
        1     0.377             0.377      0.352      0.395 

              (9.91)                (9.91)      (3.22)      (16.28) 

M
a

in
te

n
a

n
c
e
 s

h
o
p

p
in

g
 

Alone 
      1 -0.042       0.278                                       

        (-1.33)       (11.99)                        

Only family 
        1        0.473      0.473      0.282      0.282   0.257 

                 (22.84)      (22.84)      (5.26)      (5.26)   (4.60) 

Only relatives 
          1       0.492      0.442      0.228     0.286 0.357    

                  (8.58)      (9.46)      (5.04)     (3.10) (27.57)    

Only friends 
            1      0.429      0.347      0.248      0.347   

                   (2.44)      (23.95)      (7.53)      (23.95)   

Mixed company 
              1           0.437    0.337 0.313 0.341  0.331 0.305  0.394 

                          (2.62)    (2.75) (7.83) (14.28)  (3.84) (6.29)  (9.61) 

N
o

n
-m

a
in

te
n

a
n

c
e
 

sh
o

p
p

in
g

 

Alone 
           1                                       

                                       

Only family 
             1        0.430      0.303      0.285   0.232 

                      (17.31)      (4.11)      (6.56)   (6.16) 

Only relatives 
               1       0.509      0.228     0.298 0.357  0.265 

                       (11.47)      (5.04)     (3.00) (27.57)  (7.41) 

Only friends 
                 1      0.320      0.248      0.320 0.289 

                        (13.32)      (7.53)      (13.32) (2.34) 

Mixed company 
                   1 0.308 0.339 0.340  0.426   0.365 0.364 0.344 0.366  0.363 0.326 0.319 0.366 

                     (4.94) (4.89) (5.25)  (7.35)   (2.80) (4.21) (10.48) (16.50)  (2.91) (5.60) (6.59) (16.50) 

M
e
a

ls
 

Alone 
                1 -0.192 -0.032 -0.526 -0.192           0.191         

                  (-13.92) (-0.47) (-57.74) (-13.92)       (2.66)      

Only family 
                  1   -0.131    0.389   0.302  0.531   0.238 

                      (-2.27)    (8.48)   (3.74)  (22.70)   (4.45) 

Only relatives 
                    1 -0.131     0.228      0.605    

                      (-3.14)     (5.04)      (31.21)    

Only friends 
                      1      0.300   -0.179  -0.155 0.407   

                             (5.89)   (-6.82)  (-3.07) (29.45)   

Mixed company 
                        1     0.341     0.567 

                              (14.28)     (8.88) 

P
h

y
si

ca
ll

y
 a

c
ti

v
e 

  
  

  
  
  
  
  

  

r
e
c
r
e
a

ti
o

n
 

Alone 
                     1                   

                                     

Only family 
                       1     0.354  0.341   0.275 

                             (2.58)  (9.11)   (5.32) 

Only relatives 
                         1      0.302 0.322    

                                (3.44) (13.77)    

Only friends 
                           1      0.255   

                                  (8.12)   

Mixed company 
                             1  0.331   0.340 

                                (2.96)   (8.04) 

P
h

y
si

ca
ll

y
 i

n
a
c
ti

v
e 

  
  
  
  

  
  
  
  
  
  

  
  
  
  
  

  
  
  
  
 

r
e
c
r
e
a
ti

o
n

 

Alone 
                          1         

                                    

Only family 
                            1     0.308 

                                  (8.77) 

Only relatives 
                              1 -0.076   

                                (-2.18)   

Only friends 
                                1   

                                    

Mixed company 
                                  1 
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from Table 4.3. First, the shaded matrices along the diagonal of the correlation matrix do 

not have many off-diagonal elements. This suggests the absence of common unobserved 

factors that affect participation across accompaniment types for any given activity 

purpose category. Thus, for example, a higher than average propensity to participate 

alone in non-maintenance activity (due to unobserved factors) does not increase or 

decrease the propensity to participate in non-maintenance activity with others. The main 

exception to this general observation is for meal activities, where there are significant 

substitution effects across accompaniment types. That is, an individual‟s propensity to 

pursue dining out with a particular companion type is negatively correlated with the 

individual‟s propensity to pursue dining out with other companion types. Second, the 

large number of parameters significant and consistently positive along the diagonals in 

each off-diagonal matrix of Table 4.3 highlights the preference for sticking to the same 

accompaniment (social) group for undertaking different types of activities. For example, 

individuals predisposed to participating in maintenance shopping activity with “only 

family” tend to participate in other activity purposes too with “only family”. This 

preference (or stickiness) to pursue all types of activities with the same accompaniment 

group is particularly strong for the non-alone accompaniment categories. Third, some of 

the highest correlation values may be observed along the diagonal of the matrix 

corresponding to meals (row entry) and physically inactive recreation (column entry), 

suggesting that meals out and physically inactive recreation episodes are frequently 

combined (for instance, dinner out and a movie, or dinner out and a cultural event). This 

is reinforced by the fact that individuals who tend to have meals with “only friends” are 

not very likely to pursue physically inactive recreation alone or with “only relatives”. In 

any case, there is a general complementary relationship between the propensities to 

participate in meals out and physically inactive recreation. Fourth, there are also quite 

high correlation values along the diagonals of the matrices corresponding to maintenance 

shopping and non-maintenance shopping, maintenance shopping and meals, and non-

maintenance shopping and meals, highlighting the strong complementary tendencies 

among shopping/meal activities with the same accompaniment type. Fifth, the most 



 

79 

number of off-diagonal correlation elements may be found in the matrix for non-

maintenance shopping and physically inactive recreation, indicating substantial 

complementary effects in participation propensities for these two activity purpose 

categories across all types of accompaniment arrangements. Sixth, rather than the 

common perception that there is a substitution effect between physically active and 

physically inactive recreation propensities, there is in fact a complementary effect. That 

is, individuals who participate more in physically inactive recreation are also more likely 

(after controlling for observed factors) to participate in physically active recreation. 

Finally, there is a general complementary relationship between participation with “mixed 

company” and participation with other company types for the non-maintenance shopping 

activity and other discretionary activity purposes (meals, physically inactive recreation, 

and physically active recreation).  

 

4.4.2.6 Overall Measures of Fit 

The log-composite likelihood value for the independent ordered-response probit model 

(that is, independent ordered-response probit models for each episode category) with only 

the threshold parameters is –1,136,772.91. The corresponding value at convergence for 

the fully specified independent ordered-response probit model (IORP) is –1,083,191.5 

and that for the fully specified multivariate ordered-response probit model (MORP) is –

1,081,484.6. The composite likelihood ratio test (CLRT) statistic for comparing the 

MORP model with the IORP model is 3413.83. However, the CLRT statistic does not 

have the standard chi-squared asymptotic distribution under the null hypothesis as in the 

case of the maximum likelihood inference procedure. In the current study, we use 

bootstrapping to obtain the precise distribution of the CLRT statistic (see Section 2.5 for 

details on the procedure for bootstrapping).    

The estimated p-value based on 50 bootstrap samples is 0.0196 for the test 

between the MORP and IORP models. This low p-value rejects the null hypotheses of 

absence of correlations across the propensities of participation for the different episode 

categories, and highlights the value of the MORP model estimated in the current study. 
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Of course, this should also be obvious from the many statistically significant parameters 

in the correlation matrix in Table 4.3.  

Another more intuitive, but aggregate, approach to obtain a sense of measure of 

fit would be to compare the predicted versus the actual number of out-of-home episodes 

for each activity purpose-accompaniment combination level. In this study, and to 

illustrate the data fit of the models while also conserving on space, we present the results 

only for the episode level combinations of two categories: meals with friends and 

physically inactive recreation with friends. These are two of the most common episode 

categories participated in during weekdays, as observed earlier in Section 4.3.2. Also, we 

select these two episode categories because they are helpful in demonstrating the 

application of the model in response to changes in socio-demographic variables (see next 

section). Table 4.4 presents the results, where the numbers in underlined font correspond 

to the actual number of individuals participating in each level of the two episode 

categories. The numbers in plain font are the predicted values from the MORP model, 

while the italicized numbers are the predicted values from the IORP model. A visual 

comparison of these numbers indicates the superiority in data fit of the MORP model. To 

quantify this, we develop a weighted mean absolute percentage error statistic that is 

computed as the absolute percentage error for each cell weighted by the fraction of 

individuals in each cell (based on the actual numbers in each cell). This statistic is 4.5% 

for the MORP model and 17.8% for the IORP model. One can also compute a more 

traditional root mean-squared error (RMSE) statistic between the predicted and actual 

values across all the cells for each of the MORP and IORP models. This statistic is 17.8 

for the MORP and 76.4 for the IORP.  

Overall, from the perspectives of both disaggregate and aggregate measures of fit, 

the MORP model clearly outperforms the IORP model.  
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Table 4.4 Number of Individuals Choosing “Meals with Friends” and “Physically Inactive Recreation with Friends” 

Episodes 

Number of “meals with friends” episodes  
Number of “physically inactive recreation with friends” episodes 

0 1 2 3 

0 

2667.00
a
 269.00 67.00 19.00 

2650.14
b
 285.22 70.17 16.87 

2501.61
c
 375.46 117.54 38.47 

1 

597.00 207.00 92.00 28.00 

638.12 188.62 69.20 24.84 

729.13 127.76 42.60 14.92 

2 

117.00 58.00 12.00 10.00 

100.39 55.14 28.72 15.57 

152.35 29.27 10.16 3.72 

                                                 
a
 The actual number of individuals participating in each combination level of episode category. 

b
 The predicted number of individuals from the MORP model participating in each combination level of episode category.  

c
 The predicted number of individuals from the IORP model participating in each combination level of episode category. 
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4.5 Summary and Conclusions 

This chapter proposes a multivariate ordered-response system framework to model the 

interactions in activity episode decisions across household and non-household members 

at the fundamental level of activity generation. Such a system recognizes the dependence 

in the number of episodes generated for different purposes as well as with different 

accompaniment types, and explicitly allows complementary and substitution effects in 

activity episode participation decisions. The econometric challenge in estimating such a 

joint multivariate ordered-response system with a large number of episode categories is 

addressed by resorting to the technique of composite marginal likelihood.  

 The empirical analysis in the study uses data drawn from the 2007 American 

Time Use Survey (ATUS). Unlike conventional activity-travel surveys, the ATUS survey 

explicitly collects information on all accompanying family and non-family members for 

all activity episode participations. Thus, it is an ideal dataset for exploring the social 

context of adults‟ activity episode participations.
21

 The empirical results provide 

important insights into the determinants of adults‟ weekday activity episode generation 

behavior. For instance, the results indicate the presence of distinct gender effects in 

activity type participation and accompaniment, with women being more responsible for, 

and/or more vested and interested in, family care and shopping activities, and men being 

more likely to undertake active and inactive leisure activities either alone or with friends. 

Further, there are also clear age-related effects. Individuals below the age of 40 years are 

the least likely (relative to other age groups) to participate in activity episodes alone and 

most likely to participate in episodes with mixed company, suggesting a combination of 

the family orientation and larger social networks of younger individuals. Race, education 

level, employment and student status, household structure and presence of children, 

household income, the day of week, and season of the year also have important effects on 

adults‟ weekday activity episodes by purpose and the social context of participation. In 

                                                 
21

 A limitation of ATUS is that it does not collect locational information on household residences or 

activity episode participation locations. Hence, our analysis is unable to include built environment and 

locational effects on episode generation behavior. If available, this information can be incorporated as 

additional attributes in our multivariate ordered-response system. 
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addition to estimating the coefficients of explanatory variables, the CML approach allows 

us to estimate the parameters underlying the correlation due to unobserved factors in the 

propensity to participate in the 30 different purpose-accompaniment episode categories. 

Accommodating these unobserved correlation effects leads to a statistically superior data 

fit in the empirical context of this study and also provides useful insights into 

complementary and substitution effects among activity type and companionship type 

dimensions. Overall, the empirical estimation results underscore the ability of the CML 

approach to specify and estimate behaviorally rich structures to analyze inter-individual 

interactions in activity episode generation.  

In summary, the results underscore the substantial linkages in the activity episode 

generation of adults based on activity purpose and accompaniment type. The extent of 

this linkage varies by individual demographics, household demographics, day of the 

week, and season of the year. These inter- and intra-family linkages, and their variations 

across individuals, need to be accommodated within the framework of activity-based 

travel modeling for accurate travel forecasting and reliable transportation policy analysis. 
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Chapter 5 

Modeling the Influence of Family, Social Context, and Spatial Proximity 

on Non-Motorized Transport Mode Use 

 

5.1 Introduction 

5.1.1 Motivation 

In recent years, the study of individual and household choices of non-motorized travel 

modes for activity participation has received increasing attention at the interface of 

transportation and related fields, such as environmental sustainability, accident analysis 

and prevention, urban design and planning, sociology, child and adolescence 

development, and public health.  In the context of transportation, an analysis of the 2009 

National Household Travel Survey (NHTS) data indicates that nearly 20 percent of all 

trips undertaken in the USA are one mile or shorter, and just over 40 percent of all trips 

are three miles or less. These statistics suggests that walking and bicycling could 

conceivably be viable modes for a larger extent of trip making than is currently the 

case.
22

 There is also evidence that projects such as “Walking School Bus” and 

“KidsWalk-to-School” help children develop social skills and promote social vibrancy 

within communities (Kingham and Ussher, 2007). From an environmental perspective, an 

increase in the use of non-motorized transportation will lead to an overall reduction in 

mobile source emissions, pollution exposure, and potential health risk such as respiratory 

dysfunction and cardiopulmonary disease (Tonne et al., 2007, de Nazelle and Rodríguez, 

2009). From a safety standpoint, studies have shown that a positive shift in walking and 

cycling has a negative influence on fatality and injury rates for pedestrians and cyclists 

(Jacobsen, 2003, Robinson, 2005).  

Another area where participation in walking and bicycling activities has received 

significant attention is in the context of public health concern. Data from the U.S. 

                                                 
22

 In the rest of this chapter, we shall use the terms walking and bicycling and non-motorized (transport) 

modes interchangeably.   
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National Health Interview Survey (NHIS) suggests that in 2009, only 34.7% adults (aged 

18 or over) participated in regular leisure-time physical activity. Low participation in 

regular physical activity has a number of implications on individual‟s health and well 

being because of the strong relationship between lack of physical activity and obesity.
23

 

For instance, obesity has been linked as a serious risk factor for health problems such as 

coronary heart diseases, type 2 diabetes, liver and gallbladder disease, osteoarthritis, and 

depression (Swallen et al., 2005, WHO, 2006). In addition, it is now well documented 

that overweight/obese children are more likely to suffer from low self-esteem and/or be 

victim of bullying (Lumeng et al., 2010). The problem of overweight and obesity also has 

significant economic consequences on the US health care system. In 2001, the average 

health-care cost of an obese individual was estimated to be $1,069 more than a normal-

weight individual (Thorpe et al., 2004). Wang et al. (2008) predict that, if the current 

trend continues, overweight/obesity related health care cost is likely to double every 

decade and by 2030 this cost may be as much as $956.9 billions. In addition to the 

healthcare related cost, obesity has been associated with other socioeconomic costs. For 

example, Jacobson and King (2009) found that, in the USA, overweight non-commercial 

vehicle passengers contribute to an additional billion gallons of gasoline consumption 

every year. While there are several factors that affect obesity in children and adults, it is 

now well established that lack of/a low level of physical activity is a common 

contributing factor (Haskell et al., 2007, Bassett et al. 2008). In fact, studies have shown 

that regular participation in physical activities (such as walking and bicycling) has 

beneficial effects on all-cause mortality for individuals of all age groups (Andersen et al., 

2000). In children and adolescents, additional benefits of regular participation in physical 

                                                 
23

 Data from 2007-2008 National Health and Nutrition Examination Survey (NHANES) indicates that 

18.7% children (age 6 to 19 years) and 33.8% adults (age 20 years or above) in the USA are considered 

obese. Among children, the obesity rates are 19.6% and 18.1% for age groups 6-11 years and 12-19 years 

respectively. Among adults, the obesity rates are 32.2% and 35.5% for men and women respectively (see 

Ogden et al., 2010 and Flegal et al., 2010 for more detailed breakdown on overweight and obesity rates 

among children and adults respectively).   
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activities include healthy musculoskeletal development, maintaining blood pressure, bone 

strength, and improvement in academic performance (Strong et al. 2005).    

The above discussion clearly indicates that many studies in a number of 

disciplines have tried to quantify and understand the factors that influence walking, 

bicycling, and physical activity participation among children and adults. For instance, 

several studies have examined overall physical activity participation among adults and 

children in the context of the built environment, but these studies do not explicitly 

separate walking and bicycling from other physically active episodes of participation 

(e.g., Badland and Schofield, 2005, Frank et al., 2005). Several other studies have 

lumped walking and bicycling together into a single category of non-motorized mode 

use, without sufficiently recognizing that there may be trade-offs across the use of these 

two modes of transport and important differences in the factors that influence their use 

(e.g., Cao et al., 2009). Yet other studies have examined walking or bicycling in isolation 

of the other, thus preventing the ability to model or understand the use of these non-

motorized physically active modes in a holistic perspective. There are numerous studies 

exclusively dedicated to the study of the choice of walking (e.g., McGinn et al., 2007, 

Forsyth et al., 2009, and Agrawal and Schimek, 2007), and others that exclusively focus 

on bicycling (e.g., Rietveld and Daniel, 2004, Hunt and Abraham, 2007, and Xing et al., 

2010).  

The importance of considering walking and bicycling mode use in a unified 

framework has not gone unrecognized in the literature. However, many of these studies 

have restricted their focus to examining walking and bicycling habits of either 

children/adolescents, particularly in the context of their travel to and from school (e.g., 

Cooper et al., 2006), or adults in the context of their commute or short-distance trip 

making (e.g., Plaut, 2005, Kim and Ulfarsson, 2008). Ogilvie et al. (2004), Pikora et al. 

(2003), and Saelens et al. (2003) provide more extensive reviews of studies in this topic 

area. In general, past research considers specific demographic segments, and describes or 

models non-motorized mode use of individuals in isolation of their social, familial, and 

spatial context.  Sener et al. (2009) jointly considered physical activity participation of all 
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members in a family, but their analysis was limited by the consideration of all physical 

activities together as a single choice.   

 

5.1.2 The Current Study 

The objective of this study is to propose and estimate a joint model system of walking 

and bicycling activity duration that recognizes the presence of both observed and 

unobserved variables, and explicitly incorporates dependence between walking and 

cycling activity durations due to: (a) individual-specific factors, (b) family-level 

influence, (c) social group to which the individual belongs, and (d) spatial effects of 

residential neighborhood. The total time spent walking and bicycling by individuals aged 

5 years or above over a period of one week is considered here as a measure of the amount 

of non-motorized mode use.
24

 The data used in this study is drawn from the San 

Francisco Bay Area subsample of the 2009 National Household Travel Survey (NHTS 

2009). In addition to individual- and household-level socio-demographic information, the 

NHTS 2009 California add-on data set includes detailed attitudinal information on 

walking and bicycling. This makes the California-specific NHTS 2009 data set 

particularly appealing for this study.   

The current study uses a hazard-based duration model structure. Specifically, a 

proportional hazard formulation is employed to capture walking and bicycling activity 

participation behavior of individuals.
25

 The model system specified here recognizes the 

presence of individual-specific unobserved factors that can affect the amount of non-

motorized mode use as a whole, as well as the amount of time specifically allocated to 

bicycling vis-à-vis walking. The model incorporates the effects of unobserved common 

household-specific attributes that can influence walking and cycling activity durations of 

                                                 
24

 Participation in walking is defined as an activity undertaken for a specific purpose such as walking 

to/from public transportation stop, for exercise, walking the dog, etc. (i.e., walking as part of daily 

household chores is not included in the activity duration).    

25
 Duration models are being increasingly used in transportation field in recent years. The reader is referred 

to Hensher and Mannering (1994) for a review of applications of duration models in transportation research 

in the past. Also, see Bhat and Pinjari (2008) for a list of recent applications of duration models in this area.    
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all individuals in a household. Similarly, social group-specific and spatial-cluster specific 

unobserved factors that impact walking and cycling activity durations are also included in 

the model system. A specification that captures these multiple effects and interactions 

leads to a multi-level cross-cluster structure that recognizes and preserves between- 

cluster heterogeneity. That is, the proposed model explicitly recognizes that, in addition 

to observed exogenous variables, walking and bicycling activity durations of an 

individual depend on common unobserved individual-, household-, social-, and spatial-

specific factors. Further, the dependences between walking and cycling activity durations 

within and across individuals are correlated through these unobserved factors. For 

example, consider individuals from a “health conscious” household. Individuals from this 

household are likely to have a higher propensity to engage in walking and bicycling 

activities for longer time periods. Also, between these two activities, if the household has 

an intrinsic preference for walking over bicycling, then the participation durations of 

walking activity of all individuals in the household are likely to be affected. Thus, 

ignoring unobserved common household-specific factors and considering only observed 

exogenous variables is likely to result in inconsistent parameter estimates. This, in turn, 

can lead to less accurate assessment of the responsiveness of policy measures designed to 

promote walking and/or bicycling at individual as well as household levels. In general, 

ignoring heterogeneity due to multi-level clustering effects will result in inconsistent 

parameter estimates (Jones and Duncan, 1996, Bhat, 2000).    

The multivariate cross-cluster model system proposed in the current study 

requires the evaluation of a more than thousand-dimensional integral (the number of 

individuals in the data set multiplied by the number of activity types). As using the usual 

estimation techniques could become computationally prohibitive, a composite marginal 

likelihood (CML) approach is employed.  

The rest of the chapter is organized as follows. The detailed modeling 

methodology is presented in Section 5.2. Section 5.3 provides an overview of the data 

used in the study. Section 5.4 presents model estimation results. The salient features and 
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findings of the study are summarized and concluding thoughts are offered in the final 

section of the chapter.   

 

5.2 The Model Structure  

5.2.1 Mathematical Formulation 

Let )(qijlm  represent the hazard at continuous time τ of ending time investment in 

activity type m (m = 1, …, M) for the 
thq  (q = 1, 2, …, Q) individual belonging to 

household i (i = 1, 2, …, I), social cluster j (j = 1, 2, …, J), and spatial cluster l (l = 1, 2, 

…, L). That is, )(qijlm  represents the conditional probability that individual q will stop 

investing additional time in activity type m during an infinitesimally small time period 

after time τ, given that the individual has not yet stopped investing time in activity type m 

until time τ:  

 








)|Pr(
lim)(

0




qijlmqijlm

qijlm

TT
,     (5.1) 

where qijlmT  is the index representing the continuous time of participation in activity m for 

individual q belonging to household i, social cluster j, and spatial cluster l. Next, the 

hazard rate )(qijlm  may be written using a proportional hazard formulation as a function 

of a vector of covariates xqm specific to individual q and activity type m:        

)exp()()( 0 qmqijlmmqijlm   qmmxβ ,      (5.2) 

where βm is a vector of covariate coefficients specific to activity m, qijlm  is a scalar term 

associated with individual q, household i, social cluster j, spatial cluster l, and activity 

type m, and qm  is an unobserved idiosyncratic factor affecting the hazard for individual 

q and activity m ( qm  may represent factors such as the q
th

 individual‟s intrinsic liking or 

aversion for activity type m). qm  is assumed to be independent of xqm and qijlm , and 
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normally distributed with a mean of zero (an innocuous normalization for identification 

purposes) and variance 2

m .
26

  

 Equation (5.2) represents the micro-level model for individual q in household i, 

belonging to social cluster j and spatial cluster l, participating in activity m. We next 

allow the scalar term qijlm  to vary across individuals, households, social clusters, and 

spatial clusters in a higher-level macro-model: 

lmljmjimiqqijlm zzwwuuv  qijlhς ,                                                 (5.3)            

where qijlh  is a vector of observed variables specific to individual q or household i or 

social cluster j or spatial cluster l or to the combination of these higher level macro-units, 

ς  is a corresponding parameter vector to be estimated, vq is an individual-specific 

random term that captures unobserved variation across individuals in the hazard function 

for all activity types (vq may include intrinsic individual-specific factors such as 

motivation for physical activity that affects the duration of participation of the individual 

in all types of walking and bicycling activities), ui is a household-specific random term 

that captures unobserved variation across households in the hazard function for all 

activity types (ui may include intrinsic household-specific lifestyle factors impacting all 

individuals in the household in their attitudes and perspectives toward all types of 

walking and bicycling activities), uim is another household-specific random term that 

captures unobserved variation across households in the hazard function specific to 

activity type m (uim includes intrinsic household-specific factors that makes individuals in 

a household more inclined to participate in specific types of physical activity such as 

bicycling), wj and wjm are similar social-cluster specific random terms, and zl and zlm are 

similar spatial-cluster specific random terms. Consider that the above random terms are 

                                                 
26

 It is quite typical to assume that )exp( qmqmc  is gamma distributed rather than assuming qm  to be 

normally distributed. This is because when there are no cluster effects, the gamma distribution assumption 

leads to a mixing structure that results in a closed form likelihood expression. However, in the current study 

where there are cross-cluster effects, it is more convenient to adopt a normal distribution in the estimation, 

as we indicate later. 
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realizations from independent and identically normally distributed terms across 

individuals (for vq), across households (for ui and uim), across social clusters (for wj and 

wjm), and across spatial clusters (for zl and zlm). Thus, the distributions of the error terms 

are:  

 2,0~ Nvq ,  2,0~ Nui ,  2
,0~ mim Nu  ,  2,0~ Nw j ,  2

,0~ mjm Nw  , 

 2,0~ Nzl , and  2
,0~ mlm Nz         

Next, define ),(  ςβγ mm
 and ),(  qijlqmqijlm hxd . Then, the micro- and macro-models 

of Equations (5.2) and (5.3) can be combined into a single equation as follows:    

)exp()()( 0 qmlmljmjimiqmqijlm zzwwuuv   qijlmmdγ ,  (5.4) 

The proportional hazard formulation of Equation (5.4) can be written equivalently in 

terms of the logarithm of the integrated hazard at continuous time qijlmT  as follows (see 

Bhat and Pinjari, 2008): 

 )(ln)(ln 0

0

0

*

qmqmlmljmjimiqm

T

qijlmqijlm zzwwuuvdTs

qijlm




 


qijlmmdγ , (5.5) 

 qm  in the above equation occurs because of the intrinsic probabilistic nature of the 

hazard function. Further, when the relationship between the hazard function and 

covariates takes the proportional hazard form of Equation (5.4), it is straightforward to 

show that qm  is standard extreme value distributed: 

)]exp(exp[)()(Pr aaGaqm  . In Equation (5.5), since each individual q is 

uniquely identified with a particular household i, social cluster j, and spatial cluster l, it is 

convenient from a presentation standpoint to suppress the indices i, j, and l in qijlmT and 

qijlmd . Thus, hereafter we will use the notation qmT  for qijlmT , and qmd  for qijlmd .  

Now, consider the case where time qmT  is unobservable on the continuous scale, 

but is observed in grouped (or discrete) intervals qmt . In the empirical context of the 

current study, this grouping is a result of individuals rounding off activity durations when 

reporting time-use patterns in activity-travel surveys. That individuals do so has now 
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been well established in earlier studies (see Bhat, 1996, Hautsch, 1999). For instance, 

individuals tend to round off to the closest five minutes for activity participations of 

durations less than an hour, and then round off to the closest 10-15 minutes beyond an 

hour. The net result of such rounding is that there is clumping or “ties” in the data at 

durations of time that are integer multiples of five minutes. The presence of such ties 

renders usual parametric continuous baseline hazard models inappropriate, since these 

models use density function terms in the likelihood function that are appropriate only for 

continuous duration data. In particular, if the typical continuous hazard model 

frameworks are directly applied to model grouped data durations, the resulting estimates 

would generally be inconsistent (Prentice and Gloeckler, 1978). Thus, it is important to 

explicitly recognize the interval-level data arising from the grouping of underlying 

continuous times during the estimation process. To do so, consider k as an index for 

grouped time intervals (i.e., qmt = 0, 1, 2,…, k,…, mK ). In the analysis, we will assume 

that the first grouped time interval ( qmt = 0) corresponds to non-participation in the 

activity type, and we assign a low duration upper bound of continuous time (say 1,mb ) for 

this first grouped interval.
27

 Note that 1,mb  also constitutes the lower bound for the second 

                                                 
27

 Another option would be to explicitly model participation in activity type m, along with the discrete 

interval of participation in activity type m conditional on a positive participation decision. One can pursue 

such an exercise either by using separate models of discrete-continuous choice systems for each activity 

type m (see, for example, Bhat and Eluru (2009) and Genius and Strazzera (2008) for recent general 

frameworks for these modeling systems) or by employing a multiple discrete-continuous extreme value 

(MDCEV) model (see, for example, Bhat 2008). The first approach ignores the inter-relationship in time-

use across activity types. To be sure, jointness may be added across activity types within this framework, 

but the structure gets extremely cumbersome in doing so. The second MDCEV approach is a convenient 

way to handle discrete-continuous choices across multiple activities, but is relatively limited in the richness 

of substitution structures allowed across activity types. It also gets somewhat unwieldy when trying to 

incorporate complementary effects across activity types in participations and participation durations. 

Further, in both these approaches, it is practically infeasible to incorporate random unobserved clustering 

effects along the multi-level and cross-level dimensions associated with the individual, the household, the 

social grouping, and the spatial grouping. On the other hand, the focus of this study is on accommodating 

such multi-level and cross-level clustering effects. At the same time, as we discuss later in the data section, 

individuals who invest some time in walking and bicycling activity over the course of the week do so for a 

reasonably high minimum duration. Thus, it is not unreasonable to assign a low duration threshold as the 

upper bound of the first time interval category, which is designated as the non-participation category. Also, 
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time interval, while the value of zero constitutes the lower bound for the first (non-

participation time interval). More generally, let 1, kmb  be the upper bound on the 

continuous time scale corresponding to the grouped time interval k. Then, we may write 

equation (5.5) in an equivalent grouped response form as follows: 

  ktzzwwuuvTs qmqmqmlmljmjimiqqmqijlm  , )(ln 0

* qmmdγ
  

if 
kKmqmkKm mm

s   1,

*

,  ,        (5.6)                              

where )(ln ,01, kmkKm b
m

  is the upper bound for interval k for activity type m 

) ,  ;...( 1,0,1,2,1,0,   mm KmmKmmmm  .
28

 

In the above specification, if 
2  (variance of qv ), 

2  (variance of iu ),  2

m  (variance of 

imu ; Mm ,...,1 ), 
2  (variance of jw ), 2

m  (variance of Mmwjm ,...,1;  ), 
2  (variance 

of lz ), and 2

m  (variance of Mmzlm ,...,1;  ) are all simultaneously equal to zero,  then it 

implies that there is no variation in the activity durations for different activity types based 

on unobserved factors that are specific to the individual, the household, the social cluster 

to which the individual belongs, and the spatial cluster to which the individual belongs. In 

                                                                                                                                                 
the non-linear nature of the grouped duration model structure we use in the current study is flexible enough 

to accommodate large fractions of individuals falling in the non-participation category. Overall, the 

grouped duration modeling structure adopted in the current study is ideal for the empirical analysis at hand 

and lends itself well to estimation using the composite marginal likelihood approach.  

28
 Note that once the threshold bounds are estimated, the analyst can work backwards from there to obtain 

the baseline hazard shape by using the relationship )(ln ,01, kmkKm b
m

 . Specifically, assume a 

constant hazard for all continuous time durations mk  that fall in interval k for activity type m 

)( 1,,  kmmkkm bb  , and mk be the length of the time interval k for activity type m. Then, 

.,...,1;,...,2,1,
)ˆexp()ˆexp(

)(ˆ 1,,

0 MmKk m

mk

kKmkKm

mk
mm 











  Also, because the 

continuous time bounds for each grouped time interval are known a priori, and the estimated thresholds in 

the ordered-response structure of Equation (6) are (negative of) the logarithm of the integrated baseline 

hazard values, there is no need for any normalization of the scale associated with the underlying “latent” 

variable 
*

qijlms , as in a typical ordered-response model (see Meyer, 1990, and Bhat and Pinjari, 2008). That 

is, it is possible to estimate the variance of qm  (i.e.,
2

m ).  
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this case, the cross-random grouped response (CRGR) model of Equation (5.6) collapses 

to the standard grouped response (SGR) model. The implication is that all unobserved 

heterogeneity is due to overall idiosyncratic factors associated with the propensity to 

participate in each activity type, and there are no common unobserved individual, 

household, social group, and spatial cluster factors impacting durations of participation in 

the activity types. Note also that the specification of Equation (5.6) generates a rich 

covariance pattern structure among the hazard functions for participation in different 

activity types. The (log) integrated hazards (LIHs) for any pair of activity types m and 'm  

( )'mm   for the same individual have a covariance of ,2222   qU  where 

1qU  if the individual is in a household with more than one individual and zero 

otherwise. For two different individuals q  and q , the covariance in the LIHs between 

any pairing of activity types m and 'm  across the two individuals is equal to 

,2

''

22

'

22

''

2

mmmqqqqmmmqqqqmmmqqqq GGRRHH     where qqH  = 1 if individuals 

q  and q  are in the same household, 'mmqqH  = 1 if individuals q  and q  are in the same 

household and m and 'm  are the same activity type, qqR  = 1 if individuals q  and q  are in 

the same social cluster, 'mmqqR  = 1 if individuals q  and q  are in the same social cluster 

and m and 'm  are the same activity type, qqG  = 1 if individuals q  and q  are in the same 

spatial cluster, and 'mmqqG  = 1 if individuals q  and q  are in the same spatial cluster and 

m and 'm  are the same activity type. The indicator variables above take the value of zero 

otherwise.  

 

 5.2.2 Estimation Approach  

Let yqm be the 
thq  individual‟s observed activity participation time (obtained in the 

grouped intervals) in activity type m. The conditional likelihood function for individual 

q‟s participation duration in activity type m (conditional on 

)and,,,,,, qmlmljmjimiq zzwwuuv   can be written as: 
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][][,,,,,,, 1 qmyKqmyKqmlmljmjimiqqm BGBGzzwwuuvL
qmmqmm
    

Where qmlmljmjimiqqm zzwwuuvB  qmmdγ  

The likelihood function unconditional on qm  is: 

  

qm

qmmqmm qmqmyKqmyKlmljmjimiqqm dFBGBGzzwwuuvL


 )(])[][(,,,,,, 1
,  

where )( qmF   is the univariate cumulative normal distribution function corresponding to 

qm . The likelihood function of the entire sample cannot be broken down as the product 

of the likelihood functions for each individual‟s choices of grouped time interval for each 

activity m, because the underlying latent values 
*

qijlms  are correlated across individuals q 

and activities m (due to the presence of the lmljmjimiq zzwwuuv  and ,,,,,,  error terms). 

Further, since the various clusters are not hierarchical (i.e., one cluster is not nested 

within the other), the analyst needs to consider the entire set of )( MQ  observations (q 

= 1, 2, …, Q; m = 1, …, M) as a single cluster in developing the likelihood function. To 

do so, stack the 
*

qijlms  values together vertically in the vector 
*s , and let the implied 

variance-covariance of 
*s  due to the lmljmjimiq zzwwuuv  and,,,,,,  (but not considering 

qm  and qm ) error terms be Ω . Thus Ω  is a )]()[( QMQM   variance-covariance 

matrix whose elements are parameterized based on 2222222 and,,,,,, mmm  . Define a 

multivariate normally distributed variable vector ),(~ Ω0MQMVNg  . Then the 

likelihood function may be written as: 


 


g

q

q

M

m

MQlmljmjimiqqm gdFzzwwuuvLL
1 1

)(),,,,,,( Ω  

The likelihood function above entails the evaluation of an integral of the order of 

)( MQ . The usual simulation techniques become impractical, if not infeasible, to 

evaluate such a multidimensional integral for even small to moderate Q, as discussed 

earlier. Thus, we employ the composite marginal likelihood (CML) technique in the 

current study. For this, define the parameter vector to be estimated as: 
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,),,,,,...,;,...,;,...,;,...,;..., ,  ;..., ,( 111111
  MMMMMM ψψγγκ  where 

) ,... , ,( ,2,1,


mKmmm mψ . The pairwise marginal likelihood function includes two 

main components – one component that represents the likelihood of all pairs of activity 

type combinations within individuals, and the second component that represents the 

likelihood of pairs of individual-activity type combinations across individuals: 

)(κCMLL  
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In the CML function above, (.)F is the univariate cumulative standard type I extreme 

value distribution. In Equation (5.7), the integration can be carried out using quadrature 

techniques or simulation techniques. However, an alternative is to use the normal scale 

mixture (NSM) representation of the extreme value distribution.  That is, we remove the 

non-normality of the error term   by replacing it with a weighted mixture of normally 

distributed variables (see Choy and Chan, 2008 and Bhat, 2011 for explanations and 

recent applications of NSM. Also, the reader is referred to a special issue of 

Computational Statistics & Data Analysis edited by Böhning and Seidel (2003) for recent 

(5.7) 



 

97 

developments on this topic). The NSM technique can be applied using standard statistical 

software packages, and is very efficient. In the context of the current model, Equation 

(5.5) can be re-written for the r
th

 component of the normal scale mixture of the extreme 

value distribution qm  as follows: 

, )(ln 0

*

qmrqmlmljmjimiqqm

rr

qijlm zzwwuuvTs   qmmdγ (5.8) 

where ),(~ 2

qmrqmrqmr baN  

Assume that the weight for this r
th

 component is 
rp 




R

r

rp
1

)1( . Then, following through 

on the usual CML approach, the CML likelihood function contribution for each activity 

type pairing from the same individual q for the r
th

 normal scale mixture component for 

qm  and the e
th

 normal scale mixture component for 'qm  may be written as: 
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The likelihood function contribution from each activity type pairing of the same 

individual then may be obtained by taking the weighted average of Equation (5.9) over 

all {r,e} mixture components as follows:  


 


R
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re

CMLqmmreCMLqmm mmLppL
1 1

,',' '.),()( κκ  

Similarly, the likelihood contribution from each activity type pairing across individuals 

may be obtained as follows: 

(5.9) 
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Finally, the overall CML function may be written as: 
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In the current study, we use 5 mixture components to approximate the extreme value 

error term, based on the weights and normal distribution approximation for each mixture 

provided by  Frühwirth-Schnatter and Wagner (2005).
29

  

The pairwise estimator CMLκ̂  is obtained by maximizing the logarithm of the 

likelihood function given in Equation (5.10). As indicated earlier, the covariance matrix, 

given by the inverse of Godambe‟s sandwich information matrix ))(( κG , is as follows:  

    ,)()()()]([)(
111   κHκJκHκGκVCML                      

The )(κH  matrix can be estimated as: 

                                                 
29

 We carried out a preliminary analysis which indicated that 5 mixture components to approximate the 

extreme value error term are adequate for the current analysis. However, the methodology provided in this 

study is generic and can be applied with any number of mixture components. The values for rp , qmra , and 

qmrb  parameters are provided in the paper by Frühwirth-Schnatter and Wagner (FSW, 2005). Note, FSW 

present the results for minimum extreme value type I distribution while the current study uses maximum 

extreme value type I distribution. We apply the parameters provided in FSW after switching the sign of 

qmra  for each mixture component.   
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 However, the estimation of the )(κJ  matrix is more difficult, since the term 
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  vanishes when evaluated at the CML estimate CMLκ̂ . 

Further, one cannot estimate )(κJ  as the sampling variance of individual contributions to 

the composite score function because of the underlying household-level, social, and 

spatial dependence in the observations. Hence we resort to pure Monte Carlo 

computation to estimate the )(κJ  matrix. In this approach, we generate B data sets (T
1
, 

T
2
,..., T

B
) where each dataset T

b
 (b=1,2,…, B) is a )( MQ  matrix of the dependent 

variables generated using the exogenous variables and the CML estimates )ˆ( CMLκ . Once 

these datasets are generated, the estimate of )(κJ is given by: 
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The above computation is not very demanding because the model in Equation (5.6) can 

be generated in a straight-forward manner. We tested various values of B to ensure the 

stability and a reasonable level of accuracy in the estimation of )(κJ  matrix.   

 

5.3 Data  

5.3.1 Data Source 

The data set used in the current study is drawn from the 2009 National Household Travel 

Survey (NHTS, 2009). The NHTS is a national survey that collects information on all 

trips undertaken by all individuals (age 5 years or older) in a large sample of households 

from across the United States for a 24-hour period. The 2009 NHTS collected such 

information for all individuals in a sample of more than 150,000 households. Information 

collected includes, for example, trip start and end time, purpose, mode of travel, 

composition of travel party, and trip length. In addition, individual- and household-level 
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socio-demographics, data on internet use, regional location, and characteristics of the 

survey day are also collected.  

In the current study, data collected for households drawn from Marin, Solano, and 

Sonoma counties in the San Francisco Bay Area is used. We used California-specific 

NHTS data because the NHTS add-on survey instrument for California collected detailed 

information on walking and bicycling activity duration for all individuals (5 years of age 

or above) over a period of one week. Such information was not available from the general 

(non-California) NHTS sample. Also, as indicated earlier, the NHTS California data set 

contains attitudinal information on individuals participating in walking and bicycling 

activities (more on this in Section 5.3.3). Within the California data set, the sample from 

the three specific counties listed above was selected for analysis because the we have 

access to extensive secondary data on built environment attributes for these locations.  

 

5.3.2 Sample Formation  

Several steps were necessary to extract information from the NHTS data set and obtain 

the final sample for the analysis.
30

 First, only individuals who were at least 5 years old 

were selected, because the walking and bicycling activity durations were collected only 

for individuals in this age group. Second, all individuals who did not participate in at 

least one activity (i.e., either walking or bicycling) over a period of one week were 

removed from the data file. Third, the walking and bicycling activity durations, which 

were reported in hours and minutes, were converted to minutes. Then, the continuous 

activity durations were divided into grouped intervals and indexed appropriately (see 

Section 5.2.1 for details). Fourth, an indicator variable was generated to identify 

individuals from the same family/household. Fifth, we considered a number of 

demographic factors such as individual‟s age, household structure, and household income 

to define social grouping.
31

 However, a preliminary analysis indicated that, because of 

                                                 
30

 Note that the NHTS “person” file was used as the source file for the current analysis. 

31
 In the current study, we employ an egocentric approach to define social cluster. In this approach, 

individuals are divided in to social groups based on their demographics and/or attitudes toward joint 
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the similarity in activity participation patterns among individuals within a certain age 

range, using age to define social groups would give the best model specification. All 

individuals were grouped in to one of nine mutually exclusive and collectively exhaustive 

social groups defined as follows: 5≤ age ≤10, 11≤ age ≤13, 14≤ age ≤15, 16≤ age ≤25, 

26≤ age ≤35, 36≤ age ≤45, 46≤ age ≤55, 56≤ age ≤65, and age> 65. Note that the first 

three social groups correspond to the age groups for elementary, middle, and high school 

going children. Sixth, the traffic analysis zone (TAZ) was used for spatial clustering.
 32

 

The residential location of each household was geo-located to a TAZ; thus, all 

households that reside in a TAZ belong to the same spatial cluster. Seven, data on 

household socio-demographics, built environment characteristics, and information on the 

survey day were appended to the data file. Finally, several screening and consistency 

checks were performed and records with missing or inconsistent data were eliminated.  

 

5.3.3 Attitudinal Variables 

Individuals who participated in walking and/or bicycling activity over a period of one 

week were asked a series of questions designed to reveal their attitudes/beliefs towards 

these activities. Information was collected for walking activity and bicycling activity 

separately. Collected data includes information on individuals‟ lifestyle, health condition, 

available walking (or bicycling) facilities/environment in the neighborhood, traffic and 

crime related safety concerns, air pollution, and attitude towards motorized traffic (see 

NHTS 2009 for a complete list of the questions).  

                                                                                                                                                 
activities (the reader is referred to Dugundji and Walker, 2005 and Carrasco et al., 2008 for more 

information on egocentric approach). Thus, this approach has the advantage of being able to use readily 

available individual-level demographic information to define clustering scheme. Of course, the 

methodology proposed in the current study is generic and can accommodate any types of social clustering 

scheme.  

32
 In our analysis, we used the 1990 MTC Travel Analysis Zones system for the San Francisco Bay Area 

(http://www.mtc.ca.gov/maps_and_data/GIS/data.htm). Please note that for confidentiality-related reasons, 

information on residential location was available only at the Census tract level. As a result, some 

assumptions/aggregations were necessary to definite the spatial clustering scheme.   
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 A factor analysis was performed to reduce the number of variables and to obtain a 

more compact set of influential factors. The factor analysis was undertaken using 

principal components estimation and varimax rotation (Gorsuch, 1983, Kline, 1994). 

After the factor analysis was performed and the principal components were identified, we 

discarded the factor loadings and assigned a unit weight to each identified component, 

which is subsequently distributed equally between the relevant factors. This approach 

allowed us to retain all the attitudinal information with sufficient number of records while 

keeping the number of identified components at a manageable level (hereafter, we shall 

refer to the identified principal components as attitudinal variables). Tables 5.1a and 5.1b 

present the definition of the attitudinal variables (identified through the factor analysis) 

for walking and bicycling activity, respectively.  

 

5.3.4 Sample Description  

The final sample for analysis comprises of 882 individuals (age 5 years or above) from 

561 households. Of these individuals, 96.1% participate in some walking activity and 

18.9% participate in some bicycling activity over a period of one week. Individuals who 

participate in these activities spend, on average, 204 minutes and 130 minutes per week 

in walking and bicycling activity, respectively.    

Table 5.2 provides information on walking and bicycling activity durations for 

individuals who participate in these activities. The lengths of the discrete periods used in 

estimation (presented in the third column) increase for larger activity durations until 

termination for all individuals (except for the first period for walking activity which is 10 

minutes long). The number of discrete periods used for walking is higher than for 

bicycling because of the more extensive number of individuals walking in the sample, 

thus providing adequate number of individuals in finer time periods. For the final discrete 

period, all spells longer than 840 minutes for walking and 240 minutes for bicycling are 

collapsed to a single period.  

The discrete-period sample hazards (the sixth column) are estimated using 

Kaplan-Meier non-parametric estimator (Kiefer, 1988). The hazards are transformed to   
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Table 5.1a Definition of Attitudinal Variables – Reasons for Not Walking More Frequently 

Factor 

Attitudinal Variable 

Absence of 

"attractions" 

and busy life 

style related 

factors 

Inconvenience 

Unavailability 

of walk-friendly 

environment/ 

facilities 

(Lack of) 

Walking 

conditions due 

to the 

motorized 

vehicles related 

factors 

(Lack of) Safety 

You‟re too busy? 0.34 
    

You have things to carry?  0.33 
    

No shops or other interesting 

places to go? 
0.33 

    

No one to walk with? 
 

0.50 
   

You have small children along?  
 

0.50 
   

No nearby paths or trails? 
  

0.25 
  

No nearby parks? 
  

0.25 
  

No sidewalks or the sidewalks are 

in poor condition?   
0.25 

  

Not enough people walking 

around?   
0.25 

 
0.25 

There are too many cars?  
   

0.50 
 

Of fast traffic?  
   

0.50 
 

Not enough light at night?  
    

0.25 

You fear street crime? 
    

0.25 

Street crossings are unsafe? 
    

0.25 

 

Table 5.1b Definition of Attitudinal Variables – Reasons for Not Bicycling More Frequently 

Factor 

Attitudinal Variable  

Busy life style and 

absence of bicycle 

paths/trails 

Inconvenience and 

lack of paved 

bicycle facilities 

Unavailability of 

proper cycling 

facilities/ 

conditions 

(Lack of) Safety 

You‟re too busy? 0.33 
   

You have small children along? 0.33 
   

No nearby paths or trails?  0.34 
   

Not enough bike or wide curb lanes?  
 

0.50 
  

You have too many things to carry?  
 

0.50 
  

Not enough light at night?  
  

0.25 
 

No sidewalks or the sidewalks are in 

poor condition?    
0.25 

 

There are too many cars?  
  

0.25 0.25 

Of fast traffic?  
  

0.25 0.25 

Street crossings are unsafe?  
   

0.25 

You have no one to bike with? 
   

0.25 
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continuous-time sample hazards and are plotted in Figure 5.1.
33

 These plots show that the 

sample hazards are higher for bicycling activity duration compared to walking activity 

duration in the first 45 minutes. This implies that individuals who participate in walking 

activity tend to commit a certain minimum amount of time to pursue this activity. Also, 

walking activity duration hazards exhibit more widespread “peaks” than bicycling 

activity duration hazards. This indicates a more even distribution of walking activity 

durations across participating individuals in comparison to bicycling activity durations. 

Hazard function for walking duration exhibits three highest “peaks” at integer multiples 

of 1-hour (i.e., at time periods containing 1-hour, 2-hour, and 3-hour walking activity 

durations per week). Other “peaks” in the plot of hazard function for walking can be 

observed at multiples of 30 minutes intervals. A similar trend, but to a lesser degree can 

be observed in the plot of the hazard function for bicycling duration. This pattern of 

hazard functions highlights the discrete interval nature of reporting of the underlying 

continuous time variable and the need to adopt an appropriate framework that can 

explicitly recognize this feature. The model system proposed in the current study 

incorporates this ability.   

 

5.4 Empirical Analysis 

5.4.1 Variable Specification 

Several types of variables were considered in the model specification. These included 

individual socio-demographics, household socio-demographics, and attitudinal variables.
 

In addition to these three groups of variables, different function forms and interaction  

  

                                                 
33

 The discrete-period sample hazards cannot be compared directly across period due to variation in the 

length of time period. So, we convert them to continuous-time sample hazard under the assumption that 

hazard is constant within each period k. Thus, continuous-time sample hazard )(ˆ
0 km can be estimated as 

follows: 
)(

))(ˆ1ln(
)(ˆ

*

0
0

kt

k
k m

m






 ,  

where )(*̂

0 km is the discrete-period sample hazard in period k and )(kt is the length of the period k.          
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Table 5.2 Walking and Bicycling Activity Durations and the Discrete Period Sample Hazards  

Discrete 

time 

period   

k
34

 

Time interval 

t (mins) 

Interval 

length 

(mins) 

No. of 

individuals 

terminating 

activity 

participation 

in this time 

period )( kF  

No. of 

individuals “at 

risk” of  

terminating 

activity 

participation 

in this time 

period )( kR  

Discrete-

period hazard 













k

k
k

R

F
H  

Standard 

error of 

kH 35
 

Walking activity duration 

1 0 < t ≤ 10 10 7 848 0.008 0.003 

2 10 < t ≤ 15 5 8 841 0.010 0.003 

3 15 < t ≤ 20 5 22 833 0.026 0.006 

4 20 < t ≤ 30 10 37 811 0.046 0.007 

5 30 < t ≤ 40 10 16 774 0.021 0.005 

6 40 < t ≤ 50 10 25 758 0.033 0.006 

7 50 < t ≤ 60 10 106 733 0.145 0.013 

8 60 < t ≤ 80 20 11 627 0.018 0.005 

9 80 < t ≤ 100 20 85 616 0.138 0.014 

10 100 < t ≤ 120 20 116 531 0.218 0.018 

11 120 < t ≤ 150 30 36 415 0.087 0.014 

12 150 < t ≤ 180 30 90 379 0.237 0.022 

13 180 < t ≤ 210 30 27 289 0.093 0.017 

14 210 < t ≤ 240 30 47 262 0.179 0.024 

15 240 < t ≤ 300 60 55 215 0.256 0.030 

16 300 < t ≤ 360 60 47 160 0.294 0.036 

17 360 < t ≤ 420 60 31 113 0.274 0.042 

18 420 < t ≤ 480 60 14 82 0.171 0.042 

19 480 < t ≤ 600 120 34 68 0.500 0.061 

20 600 < t ≤ 720 120 9 34 0.265 0.076 

21 720 < t ≤ 840 120 10 25 0.400 0.098 

22 840 < t    > 120 15 15 1.000 - 

Bicycling  activity duration 

1 0 < t ≤ 15 15 8 167 0.048 0.017 

2 15 < t ≤ 30 15 22 159 0.138 0.027 

3 30 < t ≤ 45 15 17 137 0.124 0.028 

4 45 < t ≤ 60 15 25 120 0.208 0.037 

5 60 < t ≤ 90 30 20 95 0.211 0.042 

6 90 < t ≤ 120 30 20 75 0.267 0.051 

7 120 < t ≤ 180 60 26 55 0.473 0.067 

8 180 < t ≤ 240 60 10 29 0.345 0.088 

9 240 < t     > 60 19 19 1.000 - 

                                                 
34

 Note that in the estimated model k starts from 0 which represents non-participation in the activity. 
35

 Standard error of kH is estimated using Greenwood‟s formula. 
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Figure 5.1 Continuous-Time Sample Hazard Functions 

 

Bicycling Duration (mins) 
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effects among the variables were also considered.
36

 The final specification was based on 

intuitive considerations, insights from previous literature, and statistical fit/significance 

considerations. The final specification includes some variables that are not statistically 

significant at the usual 5% level of significance. We do not discard them because the 

effects of these variables are intuitive and have the potential to guide future research.
 
    

 

5.4.2 Model Estimation Results 

Table 5.3 presents the model estimation results. The rows in the table correspond to the 

explanatory variables, while the columns correspond to the activity categories. Each 

activity category column has two sub-columns: the first sub-column provides the 

estimated coefficient corresponding to the row explanatory variable and the second sub-

column provides the t-statistic for that coefficient. The base category is listed either next 

to that variable or in the heading of the row corresponding to that variable. The 

coefficients in the table indicate the effects of variables on the duration hazard for 

walking and cycling activity. A “-” cell entry indicates that the corresponding row 

exogenous variable does not have a statistically significant effect on the corresponding 

column activity hazard rate. A positive (negative) coefficient implies that the 

corresponding explanatory variable increases (decreases) the hazard rate and decreases 

(increases) the activity duration. In the following sections, we discuss the effects of 

variables on the activity duration hazards by variable category.  

 

 

 

 

 

                                                 
36

 None of the many built environment variables considered entered into the final model specification. This 

is because the attitudinal variables potentially capture the effects of the built environment.  



 

108 

Table 5.3 Model Estimation Results 

  Walking activity Bicycling activity 

  Estimates t-stat Estimates t-stat 

Effects of individual and household socio-

demographic variables     

Age (base: age > 65 years) 
    

5 years ≤ Age ≤ 10 years 2.146 1.31 - - 

11 years ≤ Age ≤ 15 years 2.732 2.16 1.868 1.50 

Other individual and household characteristics 
    

Male (base: female) - - -1.361 -2.07 

Full-time employed (base: not employed) - - -1.224 -1.51 

Non-motorized modes are used for work (base: motorized 

modes are used for work) 
- - -1.931 -1.57 

Presence of children aged 5 to 10 years in the HH (base: 

no children in the HH) 
1.728 1.54 2.402 2.22 

Effects of attitudinal variables 
    

Walking 
    

Inconvenience 10.079 3.47 - - 

(Lack of) Walking conditions due to motorized vehicles 

related factors 
6.922 3.18 - - 

(Lack of) Safety 14.938 4.56 - - 

Bicycling 
    

Busy life style and absence of bicycle paths/trails - - 8.514 3.47 

Inconvenience and lack of paved bicycle facilities - - 7.459 3.88 

(Lack of) Safety - - 5.995 1.83 

Heterogeneity parameters (standard deviation) 
    

Individual-specific heterogeneity 
    

Overall )(  2.934 1.92 2.934 1.92 

Activity-specific )( m  6.397 6.87 0.068 2.69 

Social group-specific heterogeneity 
    

Overall )(  0.469 3.26 0.469 3.26 

Activity-specific )( m  - - 0.138 2.82 

Spatial cluster-specific  heterogeneity 
    

Overall )(  1.496 3.60 1.496 3.60 

Activity-specific )( m  3.408 6.22 0.058 2.48 
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5.4.2.1 Individual and Household Socio-Demographic Variables 

The results indicate that children who are 15 years of age or younger tend to spend less 

time walking compared to senior adults (i.e., adults over the age of 65 years). Children in 

the 11 to 15 years age group are also less inclined to spend their time bicycling. This is 

consistent with the results of earlier studies which found that children tend to have a 

lower propensity to participate in physical activities (Sallis et al., 2000, Sener et al., 

2009). This may also be attributed to parent(s) using car as the main mode of 

transportation to chauffeur children to/from school and organized leisure activities 

(Hjorthol and Fyhri, 2009). Compared to females, males tend to allocate more time to 

pursue bicycling activity. This result may be a reflection of distinct gender effect in terms 

of risk aversion, and reinforces the earlier findings that women are more likely to be 

concerned about bicycling in traffic and in the presence of aggressive motorist than men 

(Garrard et al., 2006). Employment status also has an important effect on the bicycling 

activity duration. The results suggest that full-time employed adults are likely to allocate 

more time for bicycling compared to unemployed and part-time employed adults. In this 

context the results also suggest that when non-motorized modes are used for traveling 

to/from work, individuals tend to allocate more time for bicycling compared to when 

motorized modes are used for work. These two findings taken together imply that, among 

employed individuals, full-time workers using non-motorized modes for work are likely 

to allocate most time for bicycling (possibly bicycling for recreation or to “decompress” 

after work as well). After them, the next group of employed individuals who are likely to 

allocate most time bicycling is the part-time workers who use non-motorized modes to 

access work. The final group of employed bicycle users is the full-time workers who use 

motorized modes for all activities or non-motorized modes for all non-work activities.  

The next variable captures the effect of the presence of 5-to-10-year-old children 

in the household. The positive sign of the co-efficient reflects lower tendency among 

individuals in households with young children to allocate time for walking and bicycling 

activities, presumably because children in that age group require higher child care/more 
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attention, leaving other individuals with less time to pursue walking and bicycling 

activities.   

 

5.4.2.2 Attitudinal Variables 

Lack of convenience and the perceived absence of walking conditions due to the 

motorized vehicles related factors deter individuals from walking as evidenced by the 

positive coefficients associated with these two attitudinal variables.  Similarly, the 

perceived lack of safety deters people from spending time on walking activities.  

Likewise, several bicycling related factors deter time allocation to bicycling. Busy 

lifestyles and the unavailability of bicycle paths/trails, inconvenience in terms of carrying 

things and lack of paved bicycle facilities, and perceived (lack of) safety are all 

associated with positive coefficients. These results suggest that there are myriad factors 

that affect the time allocation to walking and bicycling activities. On the one hand, lack 

of convenience and busy lifestyles deter individuals from allocating time to walking and 

bicycling.  These factors may not be easily for policymakers to manipulate, but it may be 

possible to ease lifestyle constraints by providing flexible work schedules and 

telecommuting options. However, more directly related to transportation planning and 

design are the findings that poor walking condition and unavailability/(perceived) poor 

quality of bicycling infrastructure are clearly having an adverse impact on the ability of 

individuals to spend more time walking and bicycling. It is conceivable that many short 

trips are taken by the automobile simply because the walking/bicycling infrastructure is 

perceived as unavailable, insufficient, poor, inadequate, or unsafe. Planners, designers, 

and policymakers may be able to enhance walking and bicycling use by addressing these 

issues.   

 

5.4.2.3 Heterogeneity Parameters 

The final rows of Table 5.3 present the estimated standard deviation of the heterogeneity 

parameters. The magnitude of the heterogeneity parameters and their statistical 

significance highlight the importance of considering common unobserved factors due to 
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individual, social group, and spatial neighborhood effects. The following observations 

can be made from Table 5.3. First, the heterogeneity effects are, in general, statistically 

significant at all levels of clustering, except for the household-level clustering effect. This 

indicates the importance of explicitly incorporating the effects of unobserved factors 

when analyzing walking and bicycling activity durations. Second, the overall 

heterogeneity parameters that effect both walking and bicycling activity durations are 

statistically significant at the individual, social, and spatial level. Among them, the effect 

of individual-specific factor is the strongest, followed by the effects of spatial clustering 

and the social grouping. This finding reflects that instead of considering only a single 

aggregate level, the effect of clustering should be considered at multiple levels (which is 

the case modeled in the current study). Finally, the differential effects of activity-specific 

heterogeneity due to individual and spatial factors are more pronounced in walking 

activity duration compared to bicycling duration. In case of social grouping, it is found 

that the unobserved factors have significant impact only on bicycling activity duration. 

This may be attributed to the interactions with and the influence of individuals‟ peers 

(social network) group.  

 

5.4.2.4 Baseline Hazard 

The baseline hazard plots are shown in Figure 5.2.  As were in the case of sample hazard 

rates, baseline hazards were also calculated under the assumption that the hazard remains 

constant within each discrete time interval.  The baseline hazard functions are found to be 

non-monotonic and characterized by multiple peaks, similar to the sample hazard 

functions. This finding clearly indicates that non-parametric hazard functions are 

preferred over parametric specifications for analyzing walking and bicycling activity 

durations. Another interesting finding is that there are clear differences between the 

baseline hazards and the sample hazards. For instance, for walking activity duration, the 

baseline hazard increases with increase in activity duration, while the sample hazard 

decreases with increase in activity duration (except for the first 45 minutes). For   
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Figure 5.2 Baseline Hazard Functions 

 

Bicycling Duration (mins) 
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bicycling activity duration, the baseline hazard and the sample hazard were found to be 

more similar in profile; however, the baseline hazard shows more distinct peaks than the 

sample hazard. These differences between the baseline and sample hazards suggest that it 

is important to recognize variations in activity durations due to both observed and 

unobserved factors using approaches such as the one adopted in this study.   

 

5.4.2.5 Threshold Parameters 

The threshold parameters are not shown in the Table 5.3, but are available on request 

from the author. These parameters represent the cut-off points that map the latent 

propensity (log integrated hazard) of individuals to participate in each activity type to the 

reported activity duration. As such, they do not have any substantive behavioral 

interpretations. 

 

5.4.2.6 Overall Measures of Fit 

The log-composite likelihood value for the fully specified independent grouped response 

probit model (IGRP) (that is, independent grouped response probit models for each 

activity type) at convergence is –6,647,007.8 and that for the fully specified multi-level 

cross-cluster grouped response probit model (MCGRP) is –4,811,301.2. The composite 

likelihood ratio test (CLRT) statistic for comparing the MCGRP model with the IGRP 

model is 3,671,413.2. However, the CLRT statistic does not have the standard chi-

squared asymptotic distribution under the null hypothesis, as in the case of the regular 

maximum likelihood inference procedure. While one can use bootstrapping to obtain the 

precise distribution of the CLRT statistic or adjust the value of the CLRT statistic using 

the procedure discussed in Section 2.6 (in Chapter 2), other measures can be used to 

determine whether the MCGRP model form is statistically superior to the IGRP model 

form. For instance, the t-statistics on  , m ,   , m ,  , and m  parameter estimates are 

statistically significant, indicating that the MCGRP model is likely to be superior to the 

IGRP model which omits these statistically significant parameters. Further, one may 

compute an adjusted rho-bar squared value 2

c  in the composite marginal likelihood 



 

114 

approach for the MCGRP model and the IGRP models as 

)],(log/))ˆ([(log12
Tκ CMLCMLc LNL   where )ˆ(log κCMLL  is the composite marginal 

log-likelihood at convergence, N is the number of model parameters excluding the 

thresholds, and )(log TCMLL  is the log-likelihood with only thresholds in the model. The 

value of 2

c  for the IGRP model and the MCGRP model are 0.17 and 0.40 respectively, 

once again indicating that the IGRP model may be rejected in favor of the MCGRP 

model. 

 

5.5 Summary and Conclusions 

The widespread interest in sustainable development has transportation and land use 

professionals and policymakers exploring ways to increase the level of non-motorized 

mode use. Non-motorized mode use, such as walking and bicycling, not only offer 

considerable relief from congestion, energy savings, and greenhouse gas (GHG) emission 

reductions, but also offer health benefits to children and adults alike. Despite the high 

level of interest in non-motorized modes of transportation, there has been limited 

progress in the ability to adequately model their use.  The aggregate representation of 

space and time in travel models, the inadequate detail of transportation networks (to 

include bicycle and pedestrian networks), and the paucity of non-motorized travel survey 

data have all contributed to this limited progress. More importantly, the profession needs 

a deeper understanding of the myriad factors and influences that affect non-motorized 

mode use to make progress on this front.  

This study offers a framework and methodology for modeling the time spent 

walking and bicycling by individuals, while explicitly recognizing heterogeneity arising 

from individual-specific factors, family or intra-household interactions, social group or 

peer influences, and spatial clustering effects. In the United States, walking and bicycling 

activity is often a lifestyle preference that is linked closely to personal and household 

attitudes, beliefs, values, and perceptions. These attitudes and preferences (inclination or 

disinclination to the use of non-motorized modes) are likely to be shaped by not only 
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one‟s own individual-specific beliefs, but also influences of other household members, 

social peers, and neighborhood elements.  

In this study, the time allocated to walking and bicycling activity over a period of 

one week is modeled jointly using a hazard model specification, thus providing the ability 

to examine how effects of various factors differentially impact walking vis-à-vis 

bicycling. The methodology adopted in this study is capable of accommodating grouped 

responses that typically are observed in activity-travel survey data sets wherein durations 

(start and end times) are rounded to the nearest fifth minute. The multilevel cross-cluster 

model structure is presented in detail in the chapter together with a model estimation 

approach that overcomes the challenge associated with evaluating a thousand-dimension 

integral of a multivariate density function.  The composite marginal likelihood (CML) 

approach provides a tractable, easy to implement way to estimate parameters by 

transforming the large multidimensional integral to a low-dimensional integral.   

The model is estimated on a survey sample data set derived from the California 

add-on of the United States National Household Travel Survey (NHTS) conducted in 

2009.  The subsample specific to three counties in the San Francisco Bay Area is 

extracted and analyzed in this study. The continuous time hazard functions suggest that 

individuals tend to be more uniform in the allocation of time to walking than to bicycling. 

Higher hazards for bicycling at small duration (up to 45 minutes) suggest that individuals 

tend to commit a certain minimum amount of time to walking, thus reducing the hazard 

in those initial periods. The model estimation results show standard individual and 

household demographic and socio-economic variables impact walking and bicycling 

activity duration. More importantly, however, there are numerous attitudinal factors and 

perceptions that affect walking and bicycling activity duration. In addition to busy 

lifestyles and such constraints, it is found that perceptions of poor walking condition, 

inadequate bicycling infrastructure, and concerns about safety adversely impact the 

amount of walking and bicycling undertaken by individuals. These findings are all 

consistent with expectations and point to the need for professionals and policymakers to 

consider neighborhood designs, land use configurations, and infrastructure investments 
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that alleviate the concerns and enhance perceptions of walking and bicycling 

convenience.  

Another important finding in this study is the significance of heterogeneity effects 

at multiple levels in the determination of non-motorized mode use. Travel demand model 

systems, with virtually no exception, ignore many of the (unobserved) interaction effects, 

social context, and spatial clustering effects that bring about heterogeneity in behavior. In 

this study, it is found that unobserved individual specific factors, social/peer group 

influence, and spatial clustering effects are all significant determinants for walking and 

bicycling activity duration. The finding that social/peer group influences are important 

suggests that public education campaigns targeted at specific age group may bring about 

changes in the non-motorized mode use of children and adults due to “peer” effects. 

Similarly, effects of spatial clustering should not be ignored in modeling non-motorized 

mode use as households tend to locate in spatial clusters (zones or neighborhoods) 

consistent with their lifestyle and travel preferences.  

In summary, the results highlight the importance of considering walking and 

bicycling activity duration in a joint framework that accommodates not only observed 

variables but also explicitly includes the effects of heterogeneity at multiple levels such 

as individual, social, and spatial level. Integrated land use-transport model systems able 

to capture such effects through enhanced model specifications are likely to offer more 

accurate policy predictions that better inform decision-makers.   
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 Chapter 6 

A Spatial Panel Ordered-Response Model With An Application to the 

Analysis of Urban Land Use Development Intensity Patterns  

 

6.1 Introduction 

6.1.1 Background and Motivation 

There is increasing interest and attention on recognizing and explicitly accommodating 

spatial dependence among decision-makers in models of continuous and discrete choices. 

While specification and modeling considerations related to spatial dependence appear to 

have originated initially in urban and regional modeling, such considerations have now 

permeated into economics and mainstream social sciences, including agricultural and 

natural resource economics, public economics, geography, sociology, political science, 

and epidemiology. Some recent examples in these fields include assessing harvest level 

of agricultural products (Ward et al., 2010), determining the siting location for an 

industry (Alamá-Sabater et al., 2011), and analyzing voter turnout in an election 

(Facchini and François, 2010). In addition to considering spatial dependence in purely 

cross-sectional data settings, the field also has expanded to accommodate spatial 

dependence in the context of panel data. Recent examples of spatial panel econometrics 

include examining changes in housing prices over time (Holly et al., 2010), analyzing 

investment treaties between countries (Neumayer and Plümper, 2010), and studying the 

effects of a municipality's local tax rate structure on the tax rate structures of neighboring 

municipalities (Gérard et al., 2010). The reader is also referred to a special issue of 

Regional Science and Urban Economics, edited by Arbia and Kelejian (2010), for a 

collection of recent papers on spatial dependence, and to Elhorst (2009) and Lee and Yu 

(2010) for good reviews of recent research on spatial panel data models. Anselin (2010) 

and Anselin et al. (2008) are additional resources for overviews of the developments in 

the spatial econometrics field. 

At the same time that spatial considerations are receiving widespread attention, a 

specific kind of discrete choice structure – the ordered-response multinomial structure – 
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has also seen a literal explosion in application in many different disciplines, including 

sociology, biology, political science, marketing, and transportation sciences. Some recent 

examples of the use of ordered-response structures include examining crash severity 

(Quddus et al., 2010), analyzing job satisfaction (Luechinger, et al., 2010), assessing 

stream water quality (Higgs and Hoeting, 2010), studying trip generation (Roorda et al., 

2010), and examining monetary policies of a bank (Xiong, 2011). The reader is referred 

to Greene and Hensher (2010) for a comprehensive history and review of the ordered-

response model structure (also, see Section 1.4 for more detail on the ordered-response 

model structure).  

It should be clear from above that both spatial dependencies as well as ordered-

response structures are becoming common place in the tool box of researchers in a wide 

variety of disciplines. However, there has been little research at the interface of spatial 

dependence and ordered-response structures. In particular, much of the literature on 

spatial dependency has been confined to the case of continuous dependent variables (and 

not discrete dependent variables), while much of the ordered-response literature has 

focused on the case of a (non-spatial) univariate ordered-response system. Of course, in 

the past decade, spatial dependence structures developed in the context of continuous 

dependent variables are increasingly being considered for binary discrete choice 

dependent variables (see Fleming, 2004, Bradlow et al., 2005, Franzese and Hays, 2008, 

Franzese et al., 2010, Robertson et al., 2009, and LeSage and Pace, 2009; and Bhat and 

Sener, 2009 provide good reviews). The two dominant techniques, both based on 

simulation methods, for the estimation of such spatial binary discrete models are the 

frequentist recursive importance sampling (RIS) estimator (which is a generalization of 

the more familiar Geweke-Hajivassiliou-Keane or GHK simulator; see Beron et al., 2003 

and Beron and Vijverberg, 2004) and the Bayesian Markov Chain Monte Carlo 

(MCMC)-based estimator (see Kakamu and Wago 2007, LeSage and Pace, 2009). Such 

methods may be extended to ordered-response structures in a straightforward manner. 

However, both the RIS and MCMC-based methods are confronted with multi-

dimensional normal integration (of the order of the number of observations in the 
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estimation sample when using the general flexible spatial dependence forms adopted for 

continuous models), and are therefore computationally expensive-to-infeasible to 

implement (for both binary and ordered-response structures) with the typical 

computational resources at hand for anything other than small sample sizes (see Bhat, 

2011, Smironov, 2010, and Franese et al., 2010). Similar computational considerations 

have impeded the application of (non-spatial) multivariate ordered-response structures. 

Specifically, the estimation of models with an arbitrary number of correlated ordered-

response outcomes entails, in the usual likelihood function approach, integration of 

dimensionality equal to the number of outcomes. Again, the norm in such a case has been 

to apply numerical simulation techniques based on a maximum simulated likelihood 

(MSL) approach (see Bhat and Srinivasan, 2005 and Balia and Jones, 2008) or a 

Bayesian inference  approach (see Herriges et al. , 2008, Jeliazkov et al., 2008, and 

Hasegawa, 2010), as discussed in Section 1.4. However, these methods become 

impractical as the number of ordered-response outcomes increases. 

In contrast to the extant simulation-based inference procedures discussed above, 

the CML provides an appealing alternative inference approach. Recent studies that use 

this approach for non-spatial multivariate binary/ordered-response modeling include Yi et 

al., 2011, Varin and Czado 2010, Ferdous et al., 2010, and Bhat et al., 2010b. However, 

there has only been one study so far (by Bhat et al., 2010b) that has employed the CML 

method in the context of spatial multivariate binary or ordered-response systems (note 

that spatial dependence immediately leads to a multivariate ordered-response model 

system because of the dependence generated across the ordered-responses of multiple 

decision-agents). However, the spatial dependency formulation in Bhat et al. (2010b) is 

based on a spatial error formulation that assumes that the dependency is a “nuisance” 

issue; it does not consider the structural “spillover” effects caused by exogenous variables 

that we believe would be an important consideration in land use analysis (as we discuss 

further later on). Bhat et al. (2010b)‟s study also employs a cross-sectional model, with 

no temporal panel element. Further, spatial heterogeneity is not considered and the error 

correlation is not generated through a flexible autoregressive structure. 
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6.1.2 The Current Study  

The current study develops a formulation for a spatial panel ordered-response model and 

proposes a composite marginal likelihood (CML) inference approach to obtain model 

parameter estimates. Spatial dependence is introduced through contemporaneous 

“spillover” effects in both the exogenous variables as well as the error terms. Such a 

specification recognizes that spatial dependence is a substantive issue, and is caused by 

didactic interactions among decision-making agents (as opposed to considering spatial 

dependence only in the error terms, which is tantamount to viewing spatial dependence as 

“nuisance” dependence). In the empirical context of the current study, which is on 

examining the land development intensity levels of spatial units, the implication is that 

the spatial dependence in the development intensities of proximately located spatial units 

is a result of interactions between land owners of the corresponding spatial units. Such 

interactions should naturally arise because land owners of proximately located spatial 

units (say, parcels), acting as profit-maximizing economic agents, are likely to be 

influenced by each other‟s perceptions of net stream of returns from land use 

development. The peer influences may also be due to strategic or collaborative 

partnerships between land owners. The net result is that changes in observed variables 

(such as accessibility to the city-center) and/or unobserved variables (such as 

neighborhood politics and zoning guidelines) that affect the land use development returns 

(LUDR) perception of one land owner will also likely lead to a shift in the LUDR 

perception of land owners of neighboring parcels. We use a spatial lag structure to 

accommodate these peer interactions, as also suggested by Carrion-Flores et al. (2009). 

Besides, as indicated by Anselin (2003), it behooves the analyst to include spatial 

“spillover” effects in both the explanatory variables as well as the errors when there are 

no strong a priori theoretical reasons to restrict global externalities to only the errors or 

only the explanatory variables. 

In addition to spatial dependence, we incorporate (unobserved) spatial 

heterogeneity by allowing the sensitivity to exogenous variables to vary across land 

owners. For instance, different land owners may have different intrinsic LUDR 
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perceptions and may also respond differently to the exogenous variables, based on such 

unobserved factors as individual experiences, risk-taking behavior, and even vegetation 

conservation values. This would then translate to a land owner-specific random 

coefficients formulation for the LUDR perceptions, leading to a stationary across-time 

correlation in land development intensity for the same spatial unit. Such land owner-

specific random coefficients and resulting temporal correlations of the land owner‟s 

choices across time have been ignored thus far in the literature. In fact, all earlier discrete 

model spatial dependence studies we are aware of consider a generic time-stationary 

random effect (that is, a random coefficient only on the intercept) for each spatial unit in 

their spatial error formulations, but such a formulation is restrictive relative to the more 

general random-coefficients spatial lag formulation used here. Further, due to 

computational difficulties with the traditional MSL and Bayesian methods, several earlier 

studies group spatial units into much fewer regions and consider random effects only at 

this regional level (and also accommodate spatial dependency effects through a spatial 

error structure only at this aggregate region level; see, for example, Phaneuf and 

Palmquist, 2003, Smith and LeSage, 2004, and LeSage and Pace, 2009, Chapter 10). On 

the other hand, our inference approach allows us to retain spatial dependence effects at 

the basic disaggregate level of the landowners of the individual parcels, while also 

allowing spatial heterogeneity (through the random coefficients specification) at this 

disaggregate level. Such an underlying framework goes beyond data fitting models for 

the land use development intensity of parcel-level units to more closely linking land use 

patterns to the decision agents (i.e., the land owners) behind the land use patterns.
37

 

Finally, we also accommodate time-varying dependency effects across the LUDR 

perceptions of the same decision agent at different points in time. These time-varying 

effects may be attributed to the effects of recent experiences and events that may 

                                                 
37

 Of course, one challenge to this notion would be that, over long time periods, parcels may change hands, 

leading to different land owners at different times. However, we would argue that it is still far more 

appealing to maintain the linkage between land parcels and land owners (even if not perfect) rather than 

completely severing this linkage in the modeling process.  
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influence the risk-taking or risk-averseness or other LUDR-related perceptions of 

individual land owners. As such, these effects fade over time, with the LUDR perceptions 

at a particular time being much more affected by perceptions in the recent past than those 

from sometime back.  

The study assesses the ability of the CML inference procedure to recover the 

underlying parameters of the proposed spatial panel ordered-response structure using 

simulated experiments. Subsequently, we demonstrate the applicability of the proposed 

formulation and inference procedure by modeling urban land use development intensity 

patterns in Austin, Texas, using data from the years 2000, 2003, 2006, and 2008. The 

land use information used in the current empirical analysis is available at a parcel-level 

spatial resolution. While various different levels and thresholds may be employed to 

define the intensity level of land development, we adopt a four category ordinal system: 

(1) undeveloped land (open space, vacant parcel, etc.), (2) less-intensely developed land 

(residential parcels with single-family detached or two-family attached home), (3) 

medium-intensely developed land (includes all other types of residential parcels), and (4) 

most-intensely developed land (includes office, commercial, industrial parcels, etc.). The 

data set comprises 783 parcels from each of the four years.  

The rest of the chapter is structured as follows. Section 6.2 discusses the model 

structure and the estimation approach, Section 6.3 presents a simulation study to evaluate 

the ability of our proposed approach to recover model parameters and also demonstrates 

the effects of ignoring spatial dependency and spatial heterogeneity when they are 

actually present. Section 6.4 describes the data sources and sample formation procedure 

for the Austin data. Section 6.5 presents the empirical results. The final section 

summarizes the important findings from the study and concludes the chapter.    

 

6.2 The Model 

6.2.1 Basic Formulation 

Let q be an index for spatial units (q = 1, 2, …, Q, where Q denotes the total number of 

spatial units/parcels in the data set), and let t be an index for time period (t = 1, 2, …, T, 
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where T is the number of panel observations for each spatial unit; in the current study, T 

= 4).
38

 Let l be an index for the observed land use development category, which may take 

one of L discrete ordinal values (i.e., l{1, 2, …, L}). Assume that the land use 

development returns (LUDR) perception of the land owner of the q
th

 parcel at time t is 

*

qty  (in the rest of this section, we will use the term “parcel” to refer to the spatial unit of 

analysis, though any other spatial unit may be used depending on the nature of the 

analysis). The LUDR perception is not observed by the analyst. But, in the usual ordered-

response framework, we write this latent perception (
*

qty ) as a function of relevant 

covariates, and relate this latent propensity to the observed land use l through threshold 

bounds as follows (see McKelvey and Zavoina, 1975): 

  lyywy qtqt

Q

q

tqqqqt  


 ,
1

**  qt

'

qxβ  if  qq βbβ
~

,*

1  lqtl y  ,  (6.1)  

The basic idea of the ordered-response formulation is that land owners with a low LUDR 

perception will keep their land undeveloped, while land owners with a high LUDR 

perception will invest their land in intense land use development. In the above equation, 

the first term reflects the spatial lag structure, where qqw   is the spatial proximity-based 

weight corresponding to units q and q  (with 0qqw  and 1




q

qqw ) for each (and all) 

q, and  10    is the spatial autoregressive parameter. qtx  is a (K×1) vector of 

exogenous variables corresponding to parcel q and time period t ( qtx  includes a 

constant), qβ  is a corresponding (K×1) vector of random coefficients that is K-

dimensional multivariate normal (MVNK). For later use, we will partition qβ  into a (K×1) 

mean vector b  and a (K×1) random component qβ
~

 with mean zero and variance 

                                                 
38

 In the empirical context of the current study, the number of panel observations is the same across spatial 

units, i.e., the data set is a balanced panel. However, the methodology in this study is generic and equally 

applicable to unbalanced panels. 
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LLΩ   (i.e., ],[MVN~
~

K Ω0βq ) . It is not necessary that all elements of qβ  be 

random; that is, the analyst may specify fixed coefficients on some exogenous variables 

in the model, though it will be convenient in presentation to assume that all elements of 

qβ  are random. Also, note that the element of b corresponding to the constant is fixed to 

zero for identification. The upper bound threshold for ordinal level l is represented by l  

(   LLL  and  ;... 01210 ). The term qt  in the above equation 

is a standard normal error term uncorrelated across parcels for a particular time period t. 

However, we allow a first-order autoregressive correlation pattern within each spatial 

unit-specific series of observations so that 
tt

tqqtCov


   ),(  ( )10   . 

The formulation above generates spatial dependence through the spatial lag term, the 

nature of which is related to the specification of the weight  terms qqw  . This can take the 

form of a discrete function such as a contiguity specification ( qqw  =1 if the parcels q and 

q  are adjacent and 0 otherwise) or a specification based on a distance threshold 


'

'' ,/(
q

qqqqqq ccw where 'qqc  is a dummy variable taking the value 1 if the parcel q  is 

within the distance threshold and 0 otherwise). It can also take a continuous form such as 

those based on the inverse of distance qqd   and its power functions 

),0(1)1(

1






























  n/d/dw
q

n

qq

n

qqqq  the inverse of exponential distance, and the shared 

border length qqd 

~
 between parcels 













 

'

'''' ,
~~/

~~

q

qqqqqqqqqq dcdcw  (where '
~

qqc  is a dummy 

variable taking the value 1 if the parcels q and q  are adjoining, and 0 otherwise). All of 

these functional forms for the weight matrix may be tested empirically.  In addition to 

spatial dependence, the random coefficient vector qβ  accommodates spatial 

heterogeneity as well as implicitly generates spatial heteroscedasticity. Note that we are 

able to disentangle spatial dependence and spatial heterogeneity because of the 
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availability of panel data. Further, the vector qβ  generates time-invariant temporal 

dependence effects in the LUDR perceptions of the same land owner. 

 Several restrictive models are obtained from the model developed here. If ,0  

this indicates lack of time-varying temporal correlation. If ,0  the result is a non-

spatial model. If the elements of Ω  are zero, the indication is the lack of time-invariant 

temporal effects as well as unobserved spatial heterogeneity. If the elements of Ω  

corresponding to the non-diagonal elements of Ω  are zero, but not the diagonal elements, 

it represents the case of the presence of time-invariant and unobserved heterogeneity 

effects, but without correlation between these effects. If the elements of Ω  except for 

that corresponding to the constant are collectively zero, the model collapses to a random-

effects structure. If ,0 ,0 and all elements of Ω  are identically zero, the result is 

a standard ordered-response model. 

 

6.2.2 Matrix Formulation 

The model proposed above may be written in a more compact form to facilitate the 

discussion of the estimation technique. To do so, we define the following vectors and 

matrices: 

) ..., , , ,( **

3

*

2

*

1
 Qtttt yyyy*

ty  1( Q  matrix), 

])(y,...,)(y,)(y,)[(yy
*

T

*

3

*

2

*

1

*   1( QT  matrix), 

) ..., , , ,( 321
 Qtttt tε  1( Q  matrix), 

)ε ..., ,ε ,ε ,ε(ε T321
  1( QT  matrix), 

),...,,,( 321
 qtKqtqtqt xxxxqtx 1( K  matrix), 

),...,,,(  Qt3t2t1tt xxxxx KQ(  matrix), 

),...,,,(  T321 xxxxx  KQT (  matrix), 
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

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



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



000

000

000

000

~  KQQ(  block diagonal matrix), 

  )~,...,~,~,~(~  T321 xxxxx  KQQT (  matrix), 

  )
~

,...,
~

,
~

,
~

(
~

 Q321 βββββ  1( KQ  matrix).   

Also, collect all the weights qqw   into a spatial weight matrix W. The vector β
~

 above has 

a mean vector of zero and a variance matrix ΩIQ   (of size QT×QT), where QI  is an 

identity matrix of size Q. Note also that the error vector tε  is distributed multivariate 

normal with a mean vector of zero and a temporal autoregressive covariance matrix Λ  

(of size T×T) given below: 






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


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




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1

1

1
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









TTT

T

T

T









Λ       (6.2) 

Then, the error vector ε  is distributed multivariate normal with a mean vector of zero and 

a covariance matrix QIΛ  (of size QT×QT). 

Using the vector and the matrix notations defined above, Equation (6.1) may be 

re-written compactly as: 

εβxxbyWIy
*

T

* 
~~)( , 

where 
TI  is an identity matrix of size T. After further matrix manipulation to write 

*
y  in 

reduced form, we obtain: 

,
~~ SεβxSSxby

*        11 
 WIIWIIS QTTQT δδ   (6.3) 
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The expected value and the variance of 
*

y  are then as follows: 

BSxby* )(E , and           

ΣSIΛSSxΩIxSy QQ

*  )(~)(~)(Var      (6.4) 

 An important point from the reduced form in Equation (6.3) is that our 

contemporaneous spatial lag formulation specifies a spatial externality effect due to the 

time-invariant random coefficients too (see the βxS
~~  component on the right side of 

Equation (6.3)). That is, spatial dependence is implicitly generated in the observation-unit 

specific (time-invariant) coefficients. For instance, the preference and responsiveness to 

signals relevant to decision-making (such as how land owners respond to market place 

proximity or to proximity to lakes and other recreation centers) may themselves be 

correlated based on proximity of landowners‟ parcels. This is in addition to the usual 

“spillover” effects (or spatial externality effects) originating from the exogenous 

variables ( x ) and the error terms ( ε ).
39

   

 

6.2.3 Estimation Approach 

The parameter vector to be estimated is ),,,,,,,,( 1321
   ωbθ L , where ω  is 

a column vector obtained by vertically stacking the lower triangle elements of the matrix 

L (recall that ).'LLΩ   Let the actual observed land development intensity level of 

spatial unit q at time period t be mqt (mqt {1, 2, …, L}). Then, the likelihood function for 

the model is: 

                                                 
39

 Note that the spatially structured effects probit model used in earlier studies that accommodates random 

effects at an aggregate regional level (see Smith and LeSage, 2004, and LeSage and Pace, 2009) is a 

restrictive spatial dependency specification compared to the one adopted here. In particular, if the only 

random coefficient was on the constant term, and this randomness was at an aggregate region level rather 

than a disaggregate parcel level, and if there are no additional spatial externality effects due to exogenous 

variables and the error term ε , then the spatial dependency in the reduced form  of Equation (6.4) is similar 

to that in the spatially structured effects probit model.  
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  ,),()Pr(

*

** yΣb|ymyθ dL QT

D
y

        (6.5) 

where }  2 1, ... 2 1 , :{ ,,

*

),1,(

*
* T...,,,tQ,,,qyD tmqqttmqy qtqt

  y  and (.)QT  is the 

multivariate normal density function of dimension QT. m is a QT×1-vector of observed 

ordinal outcomes as follows: 

),...,,,,...,,...,,,,,...,,,( 32123222121312111
 QTTTTQQ mmmmmmmmmmmmm . The integration 

domain *y
D  is simply the multivariate region of the elements of the 

*
y  vector 

determined by the observed vector of ordinal outcomes.  

The dimensionality of the rectangular integral in the likelihood function is QT. As 

discussed earlier, the use of numerical simulation techniques based on a maximum 

simulated likelihood (MSL) approach or a Bayesian inference approach, even if feasible, 

can lead to convergence problems during estimation (Bhat et al., 2010a; Müller and 

Czado, 2005). The alternative is to use the composite marginal likelihood (CML) 

approach, as discussed in Section 6.1.1.  In the current study we use the pairwise 

composite marginal likelihood method based on the product of the likelihood 

contributions from pairs of observation units across time periods. To write this function, 

define two threshold vectors of size QT×1 as follows: 

,),...,,,...,...,,,,...,,( ,1,,1,2,1,12,1,2,1,22,1,11,1,1,1,21,1,1 212221212111
  TmQTmTmmQmmmQmm QTTTQQ

τ

.),...,,,...,...,,,,...,,( ,,,,2,,12,,2,,22,,11,,1,,21,,1 212221212111
 TmQTmTmmQmmmQmm QTTTQQ

  

Let g be an index that can takes the values from 1 to QT. Then,    
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In the above expression,  g  represents the thg  element of the column vector ,   and 

similarly for other vectors.  ggΣ  represents the thgg  element of the matrix Σ . The CML 

estimator is obtained by maximizing the logarithm of the function in Equation (6.6).  

The pairwise marginal likelihood function of Equation (6.6) comprises 

2/)1( QTQT  pairs of bivariate probability computations, which can itself become quite 

time consuming. Fortunately, in a spatial-temporal case where spatial dependency drops 

quickly with inter-observation distance, the pairs formed from the closest spatial 

observation units provide much more information than pairs from spatial units that are far 

away. In fact, as demonstrated by Varin and Vidoni (2009), Bhat et al. (2010a), and 

Varin and Czado (2010) in different empirical contexts, retaining all pairs not only 

increases computational costs, but may also reduce estimator efficiency. We examine this 

issue by creating different distance bands and, for each specified distance band, we 

consider only those pairings in the CML function that are within the spatial distance 

band. Then, we develop the asymptotic variance matrix )ˆ(θVCML  for each distance band 

and select the threshold distance value that minimizes the total variance across all 

parameters as given by )]ˆ([ θVCMLtr   (i.e., the trace of the matrix )]ˆ([ θVCML ).   

The asymptotic covariance matrix )ˆ(θVCML  may be computed from the Godambe 

sandwich information matrix ( )(θG ) as follows: 

111 )]()[()]([)]([)ˆ(   θHθJθHθGθVCML ,      (6.7) 

where 
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E . 

The matrix )(θH  of Equation (6.7) can be estimated in a straightforward manner 

using the Hessian of the negative of )(log θCMLL , evaluated at the CML estimate θ̂  (as 

discussed in chapters 4 and 5). However, the estimation of the )(θJ  matrix is not 

straightforward because of the underlying spatial and temporal dependence. But, because 

the spatial dependence pattern implied by the spatial lag structure fades with distance, 
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one can use the windows sampling method of Heagerty and Lumley (2000) to estimate 

)(θJ . Here we use the windows sampling method proposed by Bhat (2011). Bhat‟s 

approach is as follows: 

 Overlay the spatial region under consideration with a square grid providing a total of 

D
~

 internal and external nodes. Then, select the observational unit closest to each of 

the D
~

 grid nodes to obtain D  observational units from the original Q observational 

units (d = 1, 2, 3, …, D; DD 
~

).  

 Let C
~

 be a Q× D  matrix with its thd  column filled with a Q×1 vector of zeros and 

ones, with a zero value in the 
thq  row ( q=1,2,…Q) if the observational unit q  is 

not within the specified threshold distance of unit d, and a one otherwise. Also, let 

,
~
C1C  T  where T1  is a T×1-matrix of ones. Then, the columns of C  provide 

pseudo-independent sets of observational units.
40

  

 Let the score matrix corresponding to the pairings in column d of matrix C be 

)(, θs dCML . Also, let dN  be the sum of the thd  column of C, and let 

  


 


1

1 1'

' ,
~ QT

g

QT

gg

ggW R where R1R
~

 TT . R
~

 is a Q×Q matrix with its 
thq  column 

filled with a Q×1 vector of zeros and ones, with a zero value in the 
thq  row ( q

=1,2,…Q) if the observational unit q  is not within the specified threshold distance of 

unit q, and a one otherwise (by construction, ).'if1
~

' qqR qq       

 Then, the )(θJ  matrix may be empirically estimated as: 

                                                 
40

 As indicated by Bhat (2011), there needs to be a balance here between the number of sets of pairings D 

and the proximity of points. The smaller the value of D, the less proximal are the sets of observation units 

and more likely that the sets of observational pairings will be independent. However, at the same time, the 

value of D needs to be reasonable to obtain a good empirical estimate of J, since this empirical estimate is 

based on averaging the cross-product of the score functions (computed at the convergent parameter values) 

across the D sets of observations. 
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A final issue regarding estimation. The positive definiteness of Σ  is ensured as 

long as 10,10    and the matrix Ω  is positive-definite. To ensure the 

constraints on the autoregressive terms , and  we parameterize these terms as 

)]
~

exp(1/[1    and )],~exp(1/[1    respectively. Once estimated, the  ~ and  
~

estimates can be translated back to estimates of  and . The matrix Ω  can be 

guaranteed to be positive definite by writing the logarithm of the pairwise-likelihood in 

terms of the Cholesky-decomposed elements of Ω  and maximizing with respect to these 

elements of the Cholesky factor. That is, we write Ω  as LL   (where L is the lower 

triangular Cholesky factor of Ω ), and estimate the elements of the matrix L. 

 

6.3 Simulation Study 

In this section, we undertake a simulation experiment with two objectives in mind. The 

first objective is to examine the ability of the proposed CML inference approach to 

recover the parameters of the spatial panel ordered-response model in this study. The 

second is to examine the effects of ignoring spatial dependence and spatial heterogeneity 

(when both are actually present).  

 

6.3.1 Experimental Design 

To set up the experiment, we generate 400 observations (i.e., QT = 400) using 

prespecified values for the θ  vector.  We assume that the generated observations 

correspond to 100 parcels (i.e., Q = 100) and 4 time periods (i.e., T = 4). We further 

assume that there are three ordered categories of the observed land use development 

intensity level and the corresponding threshold values are set to –1 ( 1 ) and 1 ( )2 . We 

also consider three independent variables (x) in the analysis, all of which are drawn from 

standard univariate normal distributions. We consider the coefficient on the first variable 
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to be fixed, but allow randomness in the next two elements of the coefficient vector. 

Specifically, the covariance matrix of qβ  is specified to be as follows: 
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The mean vector for qβ  is set to b = (0.5, 0.8, 1). Next, we generate the weight matrix 

(W) by borrowing the spatial locations of 100 parcels in Austin, Texas, based on the 

2008 land use survey data that is used in the empirical analysis of this study (see Section 

6.4). While several different functional forms may be used to generate the weights from 

the spatial configuration of the 100 parcels, we use a continuous inverse of distance 

specification in this simulation analysis. We also consider all the 2/)1( QTQT  pairs of 

bivariate probability computations in the composite marginal likelihood function for the 

simulation. To examine the potential impact of different levels of spatial and temporal 

dependence on the performance of the CML approach, we consider two values of the 

spatial autoregressive coefficient   corresponding to low dependence ( = 0.25) and 

high dependence ( = 0.75), as well as two values of the temporal autoregressive 

coefficient   corresponding to low dependence (  = 0.25) and high dependence (  = 

0.75).  Thus, in total, there are four possible combinations of the spatial and temporal 

autoregressive coefficients considered in the simulations. 

The set-up above is used to develop the B matrix and the Σ
 
matrix (see Equation 

(6.4)) for each of the four combinations just discussed. A )1( QT  vector of the latent 

variable *
y

 
(in Equation (6.3)) is drawn from the multivariate normal distribution with 

mean B and covariance structure Σ . The generated latent variables are then translated 

into the “observed” vector y using the specified threshold values. For each of the four 

combinations, the data generation process is undertaken 20 times with different 

realizations of the latent variable *
y  from the values of B and Σ . 
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The CML estimation procedure is applied to each data set to estimate data-specific 

values of the vector ),,,,,,( 33,2221
 bθ . The Godambe information-based 

covariance matrix and the corresponding standard errors are also computed. Finally, for 

each of the four combinations of the spatial and temporal dependency coefficients, the 

mean estimate for each model parameter across the twenty data sets is obtained and a 

parameter-specific mean absolute percentage bias or APB value (relative to the “true” 

value of the parameter) is computed. Similarly, the mean standard error for each model 

parameter is computed across the twenty data sets and is labeled as the asymptotic 

standard error (ASE) for the parameter.  

The main purpose of the methodology proposed here is to accommodate spatial 

dynamics and spatial heterogeneity in the context of panel data. Therefore, to examine 

the potential problems that could arise from ignoring spatial dynamics and spatial 

heterogeneity, we estimate two additional models on the twenty data sets generated for 

each combination of spatial and temporal dependence levels. The first model ignores the 

spatial autocorrelation coefficient   (that is, assumes  = 0), while the second model 

assumes away any spatial heterogeneity (that is, assumes that all elements of the 

covariance matrix Ω  are identically zero).
41

 For ease in presentation, we will refer to the 

first model as the ordered-response model with spatial heterogeneity (or the ORH model), 

and the second model as the ordered-response model with spatial dependence (or the 

ORS model). We compare these two restrictive formulations with the general ordered-

response model with spatial dependence and heterogeneity (or the ORSH model), based 

on the mean APB measure across all parameters and the adjusted composite log-

likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2011 for more 

details on the ADCLRT statistic, which is the equivalent of the log-likelihood ratio test 

statistic when a composite marginal likelihood inference approach is used; this statistic 

has an approximate chi-squared asymptotic distribution (also see Section 2.6)). The 

                                                 
41

 Of course, as indicated earlier, setting all elements of Ω  to zero also implies the absence of time-

stationary temporal dependence across observations for the same parcel, as well as leads to a reduction in 

spatial dependence (see Section 6.2.2).  
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ADCLRT statistic needs to be computed for each data set separately, and compared with 

the chi-squared table value with the appropriate degrees of freedom. Here we identify the 

number of times (out of the 20 model runs corresponding to the 20 data sets) that the 

ADCLRT value rejects the ORH and ORS models in favor of the ORSH model. 

 

6.3.2 Simulation Results 

Tables 6.1a and 6.1b provide the results for the ability of the CML approach to recover 

the parameters of the spatial panel ordered-response model, while Table 6.2 provides the 

results showing the implications of ignoring spatial dynamics and spatial heterogeneity 

when present. We discuss these results in the subsequent two sections, each section 

focusing on a specific objective of the simulation exercise.  

 

6.3.2.1 Ability of CML to recover model parameters 

In the low spatial autoregressive coefficient ( ) case in Table 6.1a, the absolute 

percentage bias (APB) ranges from 0.03% to 6.22% for the low temporal autoregressive 

coefficient (  ) case (overall mean value of 2.28% - see last row of table under the sub-

column titled “absolute percentage bias”), and from 0.09% to 7.67% for the high 

temporal autoregressive coefficient case (overall mean value of 3.06%). In the high 

spatial autoregressive coefficient case (see Table 6.1b), the APB ranges from 2.50% to 

7.62% for the low   case (mean of 5.05%), and from 0.55% to 13.74% for the high   

case (mean of 6.88%). Overall, these are very good measures for the ability to recover 

parameter estimates, and indicate that the CML is able to recover parameters well. Of 

course, the results indicate that the recovery of parameters is particularly good for the 

mean of the coefficients on the exogenous variables (the APB values for the b vector 

elements are, in general, less than 5%; see the first numeric row panel of Tables 6.1a and 

6.1b). On the other hand, the standard deviations of the coefficients on the exogenous 

variables (i.e., the 22  and 33  parameters that correspond to the square root of the 

elements of the Ω  matrix) are better recovered for the case of low spatial dependence 

than for the case of high spatial dependence (see the higher APBs corresponding to these 
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Table 6.1a Ability of the CML Approach to Recover the Parameters of the Spatial 

Panel Ordered-Response Model - The Low Spatial Autoregressive Coefficient Case  

Parameter 

Low temporal autoregressive coefficient (ρ=0.25)  High temporal autoregressive coefficient (ρ=0.75) 

True Value 

Parameter Estimates 
Asymptotic 

Standard 

Error (ASE) 

True Value 

Parameter Estimates 
Asymptotic 

Standard 

Error (ASE) 
Mean 

Estimate 

Absolute 

Percentage 

Bias (APB) 

Mean 

Estimate 

Absolute 

Percentage 

Bias (APB) 

1b  0.5000 0.4986 0.28 0.0056 0.5000 0.5075 1.49 0.0055 

2b  0.8000 0.7942 0.73 0.0100 0.8000 0.8124 1.55 0.0103 

3b  1.0000 1.0161 1.61 0.0113 1.0000 1.0767 7.67 0.0119 

1
 

-1.0000 -1.0622 6.22 0.0104 -1.0000 -1.0217 2.17 0.0100 

2
 

1.0000 1.0116 1.16 0.0110 1.0000 1.0320 3.20 0.0117 

22  1.0000 1.0397 3.97 0.0183 1.0000 0.9734 2.66 0.0180 

33  1.0000 0.9406 5.94 0.0182 1.0000 0.9479 5.21 0.0180 


 

0.2500 0.2514 0.58 0.0200 0.2500 0.2586 3.45 0.0212 

  0.2500 0.2501 0.03 0.0222 0.7500 0.7507 0.09 0.0053 

Overall mean value across 

parameters 
2.28 0.0141 - - 3.06 0.0124 

 

Table 6.1b Ability of the CML Approach to Recover the Parameters of the Spatial 

Panel Ordered-Response Model - The High Spatial Autoregressive Coefficient Case  

Parameter 

Low temporal autoregressive coefficient (ρ=0.25)  High temporal autoregressive coefficient (ρ=0.75) 

True Value 

Parameter Estimates 
Asymptotic 

Standard 

Error (ASE) 

True Value 

Parameter Estimates 
Asymptotic 

Standard 

Error (ASE) 
Mean 

Estimate 

Absolute 

Percentage 

Bias (APB) 

Mean 

Estimate 

Absolute 

Percentage 

Bias (APB) 

1b  0.5000 0.4780 4.40 0.0058 0.5000 0.4978 0.43 0.0065 

2b  0.8000 0.8354 4.43 0.0103 0.8000 0.8270 3.37 0.0117 

3b  1.0000 1.0528 5.28 0.0121 1.0000 1.0975 9.75 0.0143 

1
 

-1.0000 -1.0757 7.57 0.0123 -1.0000 -1.1374 13.74 0.0142 

2
 

1.0000 1.0250 2.50 0.0119 1.0000 0.9945 0.55 0.0125 

22  1.0000 0.9499 5.01 0.0179 1.0000 0.8710 12.90 0.0326 

33  1.0000 0.9444 5.56 0.0168 1.0000 0.9115 8.85 0.0202 


 

0.7500 0.6929 7.62 0.0034 0.7500 0.6739 10.14 0.0034 

  0.2500 0.2422 3.12 0.0087 0.7500 0.7339 2.15 0.0103 

Overall mean value across 

parameters 
5.05 0.0110 - - 6.88 0.0140 
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parameters in the third numeric row panel of Table 6.1b compared to Table 6.1a).  This is 

not surprising, since these covariance parameters enter the likelihood function in a more 

complex non-linear fashion in general than the mean parameters of the coefficients. This 

is particularly so in the presence of high spatial dependence, since the S matrix gets 

applied in a non-linear fashion to the Ω  matrix during estimation (see Equation (6.4)). 

But when the spatial dependence is low, the non-linear effect is not as high as in the case 

of the high spatial dependence case, leading to the better recovery ability of the standard 

deviation parameters. The results also indicate that the ability to recover the threshold 

parameters (i.e., 1  and )2  is, in general, better and more stable in the case of low 

temporal dependence than in the case of high temporal dependence (see the lower APBs 

corresponding to these threshold parameters in Tables 6.1a and 6.1b). This is an issue that 

needs further exploration in future studies.  

Finally, there are also patterns in the ability to recover the spatial and temporal 

autoregressive parameters. For the low spatial autoregressive parameter ( = 0.25), the 

APB values are 0.58% and 3.45% for the low and high temporal autoregressive 

coefficient cases, respectively. For the high spatial autoregressive parameter ( = 0.75), 

the corresponding APB values are 7.62% and 10.14%, respectively. The implication is 

that the spatial dependency parameter may be relatively easy to recover when the 

magnitudes of the spatial and temporal dependency autoregressive coefficients are both 

small. However, for the temporal dependency parameter  , the results indicate very 

good recovery and stability for all different combinations of the   and   parameters. 

This is because the parameter   is directly associated with the magnitude of correlation 

across observations on the same spatial unit, and changes in this parameter will have 

immediate and substantial impacts on the log-likelihood function (regardless of the 

magnitude of the spatial dependency effect or the magnitude of   itself).  

The asymptotic standard error (ASE) values of the parameters indicate that the 

CML estimator appears to be quite efficient. In particular, the ASE values of all the 

parameters, except   and  ,  range from 1-4% of the mean estimates. For   and  , the 

ASE values range from 0.5-8.2% and 0.7-8.9% of the mean estimates, respectively.



 

137 

6.3.2.2 Effects of ignoring spatial effects 

This section focuses on the implications of ignoring each of spatial dynamics and spatial 

heterogeneity when both are present. To examine the effect of ignoring spatial dynamics 

when present, the results of the ORH model may be compared with those from the ORSH 

model. On the other hand, to assess the impact of ignoring spatial heterogeneity when 

present, the results of the ORS model may be compared with those from the ORSH 

model. Table 6.2 provides the results. As may be observed, two sets of mean APB values 

are computed for the ORSH model, one for comparison with the ORH model and another 

for comparison with the ORS model. For comparison with the ORH model, the mean 

APB values for the ORSH model are computed without considering the APB values for 

the   parameter, because the   parameter is implicitly fixed at zero in the ORH model. 

For comparison with the ORS model, the mean APB values for the ORSH model are 

computed without considering the APB values for the 22  and 33  parameters (that 

correspond to the square root of the elements of the Ω  matrix characterizing spatial 

heterogeneity). Note again that the 22  and 33  parameters are implicitly fixed to zero in 

the ORS model.  

The results indicate that the mean APB values are higher for the ORH and ORS 

models than for the ORSH model. Not surprisingly, the ORH model performs better in 

the two low spatial dependence cases than in the two high spatial dependence cases, since 

ignoring spatial dependence when such dependence is low should be of less consequence 

than ignoring such dependence when high. However, even in the two low spatial 

dependence cases, the ORH model may be rejected compared to the “correct” ORSH 

specification based on the adjusted composite likelihood ratio test (ADCLRT) statistic 

(note that the ORSH specification rejects the simpler ORH and ORS specifications for 

each of the twenty data sets generated). The results also indicate that the ORS model 

(which ignores spatial heterogeneity) performs very poorly across the board. In this 

regard, we should also point out that the ORSH and ORH models always converged, 

while the ORS model experienced occasional convergence-related problems in the high 

spatial dependence case. In particular, because of convergence problems, the results in  
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Table 6.2 Effects of Ignoring Spatial Effects When Present  

Evaluation 

Metric 

δ = 0.25, ρ = 0.25
 

δ = 0.25, ρ = 0.75
 

δ = 0.75, ρ = 0.25
 

δ = 0.75, ρ = 0.75
 

ORSH 

Model 

ORH 

Model 
ORS Model 

ORSH 

Model 

ORH 

Model 

ORS 

Model 

ORSH 

Model 

ORH 

Model 
ORS Model 

ORSH 

Model 

ORH 

Model 
ORS Model 

Mean APB
 

            

 

For 

comparison of 

ORSH model 

with ORH 

model 

2.49 3.07 - 3.01 3.07 - 4.73 16.14 - 6.47 17.53 - 

 

For 

comparison of 

ORSH model 

with ORS 

model 

1.51 - 35.14 2.80 - 29.09 4.99 - 27.61 5.73 - 29.14 

Mean 

composite log-

likelihood value 

at convergence 

-135,448 -135,522 -139,956 -133,954 -134,050 -138,155 -133,275 -134,792 -136,781 -132,667 -134,143 -136,948 

Number of 

times the 

adjusted 

composite 

likelihood ratio 

test (ADCLRT) 

statistic favors 

the ORSH 

model 

- 

All twenty 

times when 

compared 

with 

84.32
1    

value 

(mean 

ADCLRT 

statistic is 

97.80) 

All  twenty 

times when 

compared 

with 

99.52
2    

value (mean 

ADCLRT 

statistic is 

6,693.97) 

- 

 All twenty 

times when 

compared 

with 

84.32
1    

value (mean 

ADCLRT 

statistic is 

139.38) 

 All  twenty 

times when 

compared 

with 

99.52
2    

value (mean 

ADCLRT 

statistic is 

5,834.31) 

- 

 All twenty 

times when 

compared 

with 

84.32
1    

value (mean 

ADCLRT 

statistic is 

2,173.70) 

 All  fifteen 

times when 

compared 

with 

99.52
2    

value (mean 

ADCLRT 

statistic is 

6,395.06) 

- 

 All twenty 

times when 

compared 

with 

84.32
1    

value 

(mean 

ADCLRT 

statistic is 

2,073.70) 

 All  eighteen 

times when 

compared 

with 

99.52
2    

value (mean 

ADCLRT 

statistic is 

4,862.69) 
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Table 6.2 for the ORS model are based on estimations on fifteen data sets for the (δ = 

0.75 , ρ =  0.25) case and on eighteen data sets for the (δ = 0.75 , ρ = 0.75) case. Also, the 

ORS model is clearly outperformed by the ORSH model. 

 Overall, the simulation results show that the CML estimator recovers the 

parameters of the spatial panel ordered-response model very well. The CML estimator 

also seems to be quite efficient based on the low asymptotic standard error estimates of 

the parameters compared to the mean estimates of the parameters. In addition, the results 

clearly highlight the bias in estimates if spatial dependence and/or spatial heterogeneity is 

ignored when both are actually present. An interesting suggestion from our simulation 

study is that ignoring spatial heterogeneity is of much more serious consequence than 

ignoring spatial lag dynamics. Further theoretical and empirical exploration of this 

finding is left for future work. 

 

6.4 Data  

6.4.1 Data Sources 

The primary data used in the empirical exercise of this study is drawn from the land use 

data sets collected by the City of Austin Watershed Protection and Development Review 

Department for the years 2000, 2003, 2006, and 2008 (City of Austin, 2011).
42

 For each 

analysis year, the land use information considered in the empirical analysis represents the 

ground land use condition at that time.
43

 The City of Austin uses a 3-digit land use code 

that classifies the collected information into different land use types such as single-

family, multi-family, mobile homes, apartment/condo, group quarters, office, industrial, 

and open space/vacant land (see City of Austin, 2011 for a complete list of land use 

classifications). This land use information is maintained at a parcel-level spatial 

resolution and made available to the public in Geographic Information System (GIS) 

format (shape file format).  

                                                 
42

 2008 is the latest year for which land use information for the City of Austin is available.  

43
 Specifically, the data sets describe ground conditions in October 2000, June 2003, June 2006, and 

October 2008, which are about equally spaced in time (the time period between successive data collection 

efforts spans between 2 years 4 months and 3 years).  
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In addition to the land use information, several other secondary GIS data sets are used 

to obtain supplementary information. These include:  

1) A GIS transportation network layer for the study area, obtained from the City of 

Austin. The transportation network is represented as street centerlines and 

includes information such as street name, roadway functional class, and speed 

limit.  

2) A GIS school location layer for the Austin area, obtained from the Texas 

Education Agency (School data, 2010). This layer includes information such as 

school name, location, grade (elementary, middle school, or high school), and 

teaching institution type (regular/alternative).  

3) A GIS layer with information on parks in the Austin area, including park name, 

park type (neighborhood, greenbelt, or nature preserve), and park location. This 

GIS layer was obtained from the City of Austin.   

4) A GIS layer with information on water bodies in the Austin area, as obtained from 

the City of Austin. This layer includes the locations of Lake Travis, Lake Austin, 

Lady Bird Lake, Walter E. Long Lake, and Colorado River.  

5) A GIS layer on city boundaries for Austin and other neighboring cities, obtained 

from the Capital Area Council of Governments (CACOG, 2010).   

6) A GIS layer on aircraft landing facilities, such as airports and airfields in the 

Austin area. This GIS layer was obtained from the Capital Area Council of 

Governments (CACOG, 2010).   

7) A GIS contour layer with information on average elevation at different points in 

the study area. This GIS layer was obtained from the Capital Area Council of 

Governments (CACOG, 2010).    

 



 

141 

6.4.2 Sample Formation and Description 

The land use data (and the data from the secondary sources) were processed in several 

steps to obtain the sample for the current analysis. First, the land use GIS layers (created 

by the City of Austin) for the years 2000, 2003, 2006, and 2008 were spatially merged. 

Second, a 1.75 square miles (4.53 square kilometers) area near the western boundary of 

the City of Austin was selected for this study. This area was selected because the land use 

pattern here has undergone substantial changes between 2000 and 2008. Third, 

information on the land use of each parcel in each year was translated into four mutually 

exclusive ordinal land development intensity categories for this study: (1) undeveloped 

land (includes open space, rural area, agricultural land, and vacant parcels), (2) land 

developed with low level of intensity (includes residential parcels with single-family 

detached and two-family attached homes, (3) land developed with medium level of 

intensity, including all other types of residential parcels such as apartment, condo, 

three/fourplex, group quarters, and retirement homes), and (4) land developed with high 

level of intensity, including parcels developed for office, commercial, and industrial use). 

Note, however, that the development intensity classification used in the current study is 

simply one of many that may be used by the analyst. Specifically, the intensity 

classification may be customized to the planning purpose at hand. Fourth, variables 

derived from the secondary data sources were appended to the parcel-level data. The final 

sample for analysis includes land use information for 783 parcels.  

Table 6.3 presents the number (and the percentage) of parcels by land use 

development intensity (LUDI) and year of observation. The table clearly indicates the 

rapid pace of development between 2003 and 2006, which is consistent with the general 

ground reality in the Austin area (see http://www.ci.austin.tx.us/landuse/tabular.htm and 

http://www.ci.austin.tx.us/growth/). While 36-37% of the land parcels were undeveloped 

in 2000 and 2003, this percentage drops to 10-13% by 2006 and beyond. During the 

analysis time period, the shares of medium-intensely and most-intensely developed 

parcels remained somewhat constant, indicating that the land owners found converting 
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undeveloped parcels to less-intensely developed parcels to be the most profit maximizing 

investment.     

 

Table 6.3 Number (Percentage) of Parcels by Land Use Development Intensity 

(LUDI) Level and Year of Observation 

Land Use  Development Intensity (LUDI) 

Level 

Year of Observation 

2000 2003 2006 2008 

Undeveloped land (includes open space, rural 

area, agricultural land, and vacant parcels) 

285 

(36.4) 

290 

(37.0) 

98 

(12.5) 

80 

(10.2) 

Less-intensely developed land (includes 

residential parcels with single-family detached 

and two-family attached homes) 

469 

(59.9) 

450 

(57.5) 

642 

(82.0) 

660 

(84.3) 

Medium-intensely developed land (includes all 

other residential parcels such as apartment, 

condo, three/fourplex, group quarters, and 

retirement homes) 

14 

(1.8) 

26 

(3.3) 

22 

(2.8) 

22 

(2.8) 

Most-intensely developed land (includes 

parcels developed for office, commercial, or 

industrial use)  

15 

(1.9) 

17 

(2.2) 

21 

(2.7) 

21 

(2.7) 

Total number of parcels 783 783 783 783 

 

6.5 Empirical Analysis 

6.5.1 Model Selection and Variable Specification 

Several weight matrix specifications were considered in our empirical analysis to 

characterize the nature of the dynamics of the spatial lag dependence. These included (1) 

a contiguity specification that generates spatial dependence based on whether or not two 

parcels are contiguous, (2) another contiguity specification but based on shared boundary 
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length, (3) the inverse of a continuous distance specification where the distance is 

measured as the Euclidean distance (crow fly distance) from the centroids of each parcel, 

(4) the inverse of the square of the continuous distance specification, and (5) the inverse 

of the exponential of the continuous distance specification. For the last three continuous 

distance-based specifications, we also explored alternative distance bands to select the 

pairs of observations for inclusion in the composite marginal likelihood (CML) 

estimation. As indicated earlier, this distance band determination may be based on 

minimizing the trace of the variance matrix of parameters given by )]ˆ([ θVCMLtr . Our 

results did not show substantial variations in the trace value for different distance bands 

(regardless of the specific continuous functional form used to represent the distance 

separation and the variable specification used), though the best estimator efficiency was 

obtained at about 0.25 miles for all the three continuous distance specifications 

formulations and all variable specifications we attempted. Further, the results indicated 

that for all variable specifications, the best spatial weight matrix specification was 

consistently the inverse of the continuous distance specification with the 0.25 mile 

distance band. This determination was based on the composite likelihood information 

criterion (CLIC) statistic, which may be used to compare the data fit of non-nested 

formulations, as discussed in Section 2.6. This CLIC statistic takes the form shown below 

(see Varin and Vidoni, 2005): 

 1)ˆ(ˆ)ˆ(ˆ)ˆ(logCLIC  θHθJθ trLCML  

 where θ̂  is the estimated model parameter vector, and )ˆ(ˆ θJ  and )ˆ(ˆ θH  are the 

“vegetable” and “bread” matrices used in the estimation of the asymptotic variance 

matrix )ˆ(θVCML  (see Section 6.2.3). In the current context, the weight specification that 

provides the highest value of the CLIC statistic is preferred over the other competing 

weight specifications. Of all the weight matrix specifications that were considered here, 

the best three specifications and the corresponding CLIC statistics are presented in Table 

6.4. These statistics correspond to the best variable specification that emerged from our 
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empirical analysis (see the next paragraph for more on this) and for the optimal distance 

band of 0.25 miles for the continuous distance weight specifications. The results in the 

table clearly show the superiority of the inverse of the continuous distance specification 

over other weight matrix specifications. Thus, all subsequent results in this study 

correspond to the inverse distance weight specification with a 0.25 mile distance band.  

 

Table 6.4 Model Selection Based on the Weight Matrix Specification 

 

Weight Matrix Specification 

Contiguity  

Inverse of 

continuous 

distance (0.25 

mile distance 

band) 

Inverse of 

continuous 

distance square 

(0.25 mile 

distance band) 

Log-composite likelihood 

at convergence 
-724619.52 -718753.28 -720435.17 

Trace value 1780.35 1343.63 2338.49 

CLIC statistic -726399.87 -720096.92 -722773.66 

 

Concurrent with the weight matrix specification, we also explored several 

different variable specifications and functional forms of the variables. The final 

specification included the following three sets of variables: (1) proximity (in the form of 

distance) to natural amenities (such as parks and lakes), schools, and the central business 

district (CBD) area of Austin,
44

 (2) ease of access to the transportation system (distance 

to Interstate IH-35 and distance to a public airfield), and (3) year-specific dummy 

variables (for the years 2006 and 2008) and geographic location/contour variables 

(whether or not the parcel is located within the Austin City limit and the average 

elevation of a parcel above the sea level). For the first two sets of variables, several linear 

                                                 
44

 Parks as used here refers to such natural outdoor recreations areas as parks, greenbelts, and nature 

preserves. Similarly, a lake as used here refers to either Lake Travis, Lake Austin, Lady Bird Lake, Walter 

E. Long Lake, or Colorado River.  



 

145 

and non-linear functional forms were considered (such as the logarithm of distance, the 

square of distance, and spline variables that allow piece-wise linear effects of distance on 

the utilities). In addition, we also considered dummy variables for different ranges of 

distance for these variables (for instance, parcel is within 2 miles of a park and parcel is 

within 5 miles of a park). Further, various interactions of the many variables were also 

considered whenever adequate observations were available to test such interaction 

effects. The final specification was based on intuitive, data fit, and statistical significance 

considerations. Interestingly, all the distance variables were best reflected as dummy 

variables in this final specification, though the threshold value for translation of the 

distance variables to the dummy variables varied across the variables. The final 

specification includes some variables that are not statistically significant at the usual 5% 

level of significance. These are retained because the effects of these variables are 

intuitive and may provide guidance in future research efforts. The results of the final 

specification are discussed in the next section. 

 

6.5.2 Model Estimation Results 

Table 6.5 presents the model estimation results. The column titled “Parameter - Mean 

Estimate” provides the mean estimate of each parameter and the corresponding t-statistic 

of the mean estimate. Each of these estimates provides the mean effect of the 

corresponding row variable on the land use development returns (LUDR) perception of 

land owners. Since all the variables in the final specification appear as dummy variables, 

the relative magnitudes of the mean effects provide an estimate of the importance of the 

variable in affecting the LUDR perception of land owners. Note also that we attempted a 

(normally distributed) random coefficients specification for the variables through a 

general specification of the Ω  matrix. However, only the variance parameters 

corresponding to the constant, “distance to a lake”, and “distance to an airfield” variables 

turned out to be statistically significant. Further, we could not reject the null hypothesis 

that the off-diagonal (covariance) elements of the Ω  matrix corresponding to these 

random coefficients were all zero. The column titled “Parameter - Standard Deviation  
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Table 6.5 Model Estimation Results (Weight Matrix: inverse of distance, Distance Band: 0.25 miles)  

  
Parameter - Mean 

Estimate 

Parameter - Standard 

Deviation Estimate 

  Estimate t-stat Estimate t-stat 

Constant 0.000 - 0.006 4.25 

Closeness to natural amenities, school, and the CBD     

Distance to a park ≤ 2 miles (base: park > 2 miles) 0.112 1.21 - - 

Distance to a lake ≤ 5 miles (base: lake > 5 miles) 0.623 5.38 1.301 8.38 

Distance to a school ≤ 2 miles (base: school > 2 miles) 0.044 1.19 - - 

Distance to the downtown area ≤ 9 miles (base: downtown > 9 miles)  -0.203 -1.56 - - 

Ease of access to the transportation system      

Distance to IH-35  ≤ 9 miles (base: IH-35 > 9 miles)  0.322 5.15 - - 

Distance to a public airfield ≤ 1 miles (base: airfield > 1 miles)  -0.224 -2.44 0.355 1.91 

Year-specific dummy variables and other variables      

Year 2006 (base: Years 2000/2003) 0.136 4.08 - - 

Year 2008 0.147 4.36 - - 

Parcel is located in Austin city (base: parcel is located outside Austin city) -0.807 -4.88 - - 

Average elevation of parcel  ≤ 1000 feet above mean sea level (base: average elevation > 1000 feet)  -0.242 -3.39 - - 

Auto-regressive parameters
45

     

Spatial auto-regressive co-efficient ( )  0.905 50.49 - - 

Temporal auto-regressive co-efficient (  ) 0.344 1.59 - - 

Thresholds      

1  -5.438 -6.66 - - 

2  -1.850 -6.77 - - 

3  -1.267 -6.14 - - 

                                                 
45

 Standard errors of the auto-regressive parameters are estimated using the delta method. 
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Estimate” provides the standard deviation estimates of the random coefficients and their 

corresponding t-statistics. 

The first variable in Table 6.5 corresponds to the constant, whose mean estimate is fixed 

at zero for identification. However, the statistically significant estimate of the standard 

deviation on the constant indicates that there is unobserved heterogeneity in the LUDR 

perception across land owners, attributable to such unobserved factors as individual 

experiences, risk-taking behavior, and vegetation conservation values. In the following 

sections, we discuss the effects of the non-constant variables on the latent LUDR 

perception by variable category. 

  

6.5.2.1 Proximity to Natural Amenities, School, and the CBD  

The effects of this set of variables suggests that parcels located within close proximity of 

a park (distance ≤ 2 miles) and/or a lake (distance to a lake ≤ 5 miles distance) are 

perceived by land owners as providing high returns to development relative to parcels 

located farther away from such natural amenities. These effects are to be expected, since 

areas with good access to natural recreation are prime profitable locations for residential 

land use (see Espey and Owusu-Edusei, 2001, and Geoghegan 2002). Interestingly, 

however, the results show substantial variation in the LUDR perceptions of land owners 

of parcels within 5 miles of a lake, with 32% of landowners having a negative LUDR 

perception and 68% having a positive LUDR perception. This may suggest variations in 

nature conservation values across land owners, so that some land owners of parcels close 

to lakes may place a high premium on keeping their land undeveloped and “pristine”.   

Proximity to a school also affects land development intensity level. As expected, 

owners of parcels close to a school (school ≤ 2 miles) are likely to perceive their parcels 

as having high development value (see Li and Liu, 2007). The final variable in this 

category indicates a lower LUDR perception for parcels located in close proximity (≤ 9 

miles) of the Austin CBD relative to those located farther away (> 9 miles). This is 

interesting, and suggests the tension between the urban amenities (access to retail places 

and public services such as hospitals) on the one hand that may increase the demand for 
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development in already densely developed areas, and the urban “disamenities” (such as 

traffic congestion effects and air quality problems) on the other hand that may decrease 

demand for development in already dense neighborhoods (see Anas et al., 1998, Irwin 

and Bockstael, 2002, and Carrión-Flores and Irwin, 2004). According to our results, the 

“disamenities” effect exceeds the “amenities” effect offered by parcels located in close 

proximity to the Austin CBD area, leading to an overall negative LUDR perception for 

these parcels.  

 

6.5.2.2 Ease of Access to the Transportation System  

Several earlier studies (for instance, see Carrión-Flores and Irwin, 2004 and Chakir and 

Parent, 2009) have found that proximity and access to major roadways generally has a 

positive impact on development intensity (even if certain kinds of developments such as 

industrial facilities are precluded by zoning regulations to be located very close to major 

roadways). The result on the “distance to IH-35” variable in Table 6.5 is consistent with 

these earlier studies, and indicates that parcels in the analysis area within 9 miles of IH-

35 are less likely to be in an undeveloped state than parcels farther away from IH-35.  

The second variable in the “access to transportation system” category shows that 

land owners of parcels that are proximal to a public airfield (distance to an airfield ≤ 1 

mile) are, on average, likely to have a negative perception of the profitability of 

development of their land; that is, these land owners are more likely to keep their land 

undeveloped than invest money in development. This is perhaps because of noise 

pollution and air space invasiveness effects of aircrafts landing or taking off from 

airfields. However, it is important to note that there is heterogeneity in the LUDR 

perception of land owners of parcels close to airfields, with 25% of land owners 

perceiving a positive LUDR (see the standard deviation estimate of the “distance to 

airfield ≤ 1 mile” variable in Table 6.5). Such LUDR heterogeneity is not surprising, 

since some parcels close to airfields may not be that impacted by aircraft noise and space 

invasiveness because of the alignment of runways vis-à-vis the parcel location. For these 
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parcels, the close proximity to air transport may be more of a “pull” effect than a “push” 

effect. 

 

6.5.2.3 Year-Specific Dummy Variables and Other Variables 

The dummy variables for 2006 and 2008 essentially reflect the higher propensity of 

parcels to be developed in some form or the other relative to 2000 and 2003. This trend of 

a higher development intensity pattern after 2005 (relative to before 2005) is consistent 

with the actual trend observed in land development intensity in the Austin area (see, for 

example, http://austin.housealmanac.com). The final two variables suggest that land 

owners of parcels located within Austin city limits and located at a lower elevation (less 

than or equal to 1000 ft above sea level) have a lower LUDR perception than land owners 

of parcels located outside Austin city limits and at a higher elevation (more than 1000 ft 

above sea level), respectively.  

 

6.5.2.4 Autoregressive Parameters and Thresholds 

The results indicate the presence of spatial dependence in land use development 

decisions. Specifically, the estimated spatial autoregressive coefficient (δ) is 0.905 and 

highly statistically significant, strongly supporting the hypothesis of the presence of 

spatial spillover effects in the LUDR perceptions of land owners of proximally located 

spatial units. That is, there is strong evidence of didactic interactions between land 

owners of proximally located parcels.  

The temporal autoregressive coefficient (ρ) is also moderately statistically 

significant with a magnitude of 0.344. This is evidence of the presence of land owner-

specific unobserved effects that fade over time. Of course, this temporal fading effect is 

in addition to the time-invariant unobserved effects that influence the LUDR perception 

of a land owner at all time points (as captured by the random coefficients on the constant, 

the “distance to a lake” variable, and the “distance to a public airfield” variable).  

Finally, the thresholds values serve to translate the latent propensity into the 

observed ordered categories of the land use type. 
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6.5.2.5 Overall Measures of Fit 

The results of the spatial panel ordered-response model estimated in the current study 

show clear evidence of spatial heterogeneity, spatial lag dynamics due to didactic 

interactions between land owners, as well as time-variant temporal correlation in the 

LUDR perceptions of the same individual. Thus, the model estimated here is superior to a 

model that ignores these spatial and temporal effects. One can also assess the data fit 

degradation from ignoring spatial and temporal effects by estimating a simple ordered-

response (OR) model that assumes away the presence of these spatial-temporal effects. 

An adjusted composite likelihood ratio test (ADCLRT) statistic can then be computed 

from the composite marginal likelihood values at convergence of the model estimated 

here and the simple OR model. This statistic has a chi-square asymptotic distribution with 

5 degree of freedom. The statistic has a value of 11,874, which is higher than the 

corresponding critical chi-squared value with five degree of freedom and soundly rejects 

the OR model at any reasonable level of significance. This again demonstrates very 

strong evidence of spatial dynamics and temporal dependence at play in land-use 

development intensity decisions.  

 

6.6 Summary and Conclusions 

This study proposes and estimates a spatial panel ordered-response probit model with 

temporal autoregressive error terms to analyze changes in urban land development 

intensity level over time. Such a model structure maintains a close linkage between the 

land owner‟s decision (unobserved to the analyst) and the land development intensity 

level (observed by the analyst), and accommodates proximity-based spatial didactic 

interactions among the land owners that causes “spillover” effects. In addition, temporal 

dependency (due to unobserved factors) is generated across the LUDR perceptions of the 

same land owner over time – the effects of some of these factors may fade away over 

time, while the effects of other factors may remain time-invariant. The model structure 

also incorporates (unobserved) spatial heterogeneity by allowing the sensitivity to 

exogenous variables to vary across land owners.  
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The study addresses the well recognized econometric challenge of estimating 

spatial discrete choice models with medium-to-large sized sample by using a composite 

marginal likelihood (CML) inference approach in estimation. The CML approach can be 

applied to data sets of any size and does not require any simulation machinery. To 

evaluate the ability of the CML approach to recover model parameters in a spatial-

temporal context, we undertake a simulation exercise. The results indicate that the CML 

approach recovers the parameters reasonably well. In addition, the simulation study 

demonstrates that ignoring spatial dependency and spatial heterogeneity when both are 

actually present will introduce substantial bias. Further, there is a suggestion in the result 

that ignoring spatial heterogeneity is of much more serious consequence than ignoring 

spatial lag dynamics.        

 The model system proposed in the current study is applied to examine urban land 

development intensity levels using parcel-level data from Austin, Texas. The results 

suggest that closeness to natural and other amenities (such as park, lake, school, and 

urban center), distance to major roadways, average elevation of the parcel, and whether 

or not the parcel is located in Austin city have significant effect on the LUDR perceptions 

of the land owners. The results also indicate the presence of spatial “spillover” effects 

(caused by didactic interactions among the land owners), spatial heterogeneity, and time-

varying temporal effect in the LUDR perceptions of the same land owner. The findings 

from this analysis underscore the importance of considering such effects in the study of 

land development intensity level to obtain consistent parameter estimates.  
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Part III 

 

Chapter 7 

Applications of the Models   

 

7.1 Introduction 

The behavior-oriented models estimated in chapters 4 through 6 have many statistically 

significant parameters that indicate the superiority of each of these models over their 

corresponding restricted version (or naïve model). However, the purpose here is not just 

to estimate a series of models that offer better data fit but also to propose models that 

have practical applications and can be used to undertake policy analyses. The models 

estimated in the current dissertation can be used to perform such analyses. For example, 

the multivariate ordered-response model developed in Chapter 4 can be used to determine 

the change in the number of out-of-home episodes for each activity purpose-

accompaniment type combination due to changes in individual- and/or household-level 

socio-demographic characteristics over time. This type of analysis provides important 

insight on how a change in one explanatory variable can affect activity behavior of 

individuals. Also, the model systems proposed here can be used to examine differential 

impacts of changing trends in policy variables on different demographic segments of 

population.  

 In addition to demonstrating practical applications of the models proposed in 

this dissertation, another objective of the current chapter is to answer questions such as 

“is there any tangible benefit of adopting the behavior-oriented model over the naïve 

model?” and “how much better off one would be if the behavior-oriented model is used 

instead of the naïve model?”. We answer these questions by assessing the predictive 

capability of the two models in a comparative framework. The rest of the chapter is 

structured as follows. Section 7.2 discusses an application of the multivariate ordered-

response model developed in Chapter 4. Section 7.3 demonstrates an application of the 
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joint model of walking and bicycling activity duration estimated in Chapter 5. Section 7.4 

illustrates an application of the spatial panel ordered-response model proposed in Chapter 

6. The last section provides a brief summary and concludes the chapter.   

         

7.2 Application of the Multivariate Ordered-Response Model With Flexible Error 

Structure  

This model is used to examine the change in the adults‟ out-of-home episode 

participation behavior by activity purpose-accompaniment type combination due to 

changes in the independent variables over time. This is particularly important because of 

changing employment-related and demographic trends. For instance, the number of 

employed individuals is projected to continue to rise (albeit at a slower rate than in the 

past), despite the short-term slump due to the economy (see the latest national 

employment projections to 2016 by the Bureau of Labor Statistics, 2007). Also, 

according to the US Census Bureau estimates from the Current Population Survey (CPS) 

(see US Census Bureau, 2009a), the structure of the household is changing with a 

decrease in nuclear family households and an increase in single individual households. 

Such socio-demographic changes will have an effect on weekday episode participation, 

and the model developed in Chapter 4 can be used to assess these impacts and provide 

reliable information that can be used for activity-based travel demand forecasting and air 

quality analysis. 

 In this section, we demonstrate the application of the model by studying the effect 

of two socio-demographic changes. The first is an increase in the number of full-time 

employed adults and the second is a decrease in nuclear family households along with a 

concomitant increase in single individual households. The increase in the number of full-

time employed adults is reflected by randomly selecting current non-employed adults in 

the sample and designating them as full-time employees so that the number of full-time 

employees increases by 20% over the current full-time employment level. As indicated 

earlier, such a change mirrors the projected increase in employment levels in the U.S. 

population. The change in nuclear family households is similarly “implemented” by 
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randomly selecting 20% of individuals who belong to nuclear families and placing them 

in single individual households. The impact of the two changes discussed above is 

evaluated by modifying exogenous variables to reflect the change, computing revised 

expected aggregate values for number of episodes in each combination category, and then 

obtaining a percentage change from the baseline estimates.  

The effects of the changes in variables can be evaluated on each combination 

level of number of episodes across all the 30 episode categories. But there are about 80 

trillion such combination levels. So, in this section, we present the results only for the 

episode level combinations for two categories: meals with friends and physically inactive 

recreation with friends. These are two of the most common episode categories 

participated in during weekdays, as observed earlier in Section 4.3.2. Besides, the 

estimation results indicate that employment status and household structure, the two 

variables being examined here, have a direct influence on the “meals with friends” and 

“physically inactive recreation with friends” categories.  

Table 7.1 presents the results from both the multivariate ordered-response probit 

model (MORP) (plain font) and independent ordered-response probit model (IORP) 

(italicized font) models. For each model, the predicted change in the number of 

individuals participating in each combination level of “meals with friends” and 

“physically inactive recreation with friends” is computed as a percentage of the baseline 

(actual) numbers of individuals in each combination level. For ease in presentation, and 

also because the share of individuals participating in three or more episodes of physically 

active recreation with friends is very small, we have consolidated the 2 and 3 episode 

levels into a single 2+ episode level in Table 7.1. The results show a decrease in the (0,0) 

combination level due to an increase in full-time employed adults and decrease (increase) 

in nuclear family (single individual) households. This is, of course, because of the 

positive effect of full-time employed status on both the episode categories under 

consideration, and the negative (positive) effect of nuclear family household (single 

individual households) on both the episode categories (see Table 4.2). However, the 

percentage reduction in the number of individuals in the (0,0) cell is lower in the MORP   
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Table 7.1 Impact of Changes on the Percentage of Individuals Choosing Each Combination Level of “Meals with 

Friends” and “Physically Inactive Recreation with Friends” Episodes 

Change 
Number of “meals 

with friends” episodes 

Number of “physically inactive recreation with 

friends” episodes  

0 1 2+ 

Increase in full-time employed adults by 20% 

(and corresponding decrease in the number of 

non-employed adults)  

0 
-3.99

46
 -3.79 -4.14 

-4.38
47

 -1.70 1.24 

1 
10.52 8.24 6.54 

10.92 7.33 6.62 

2 
13.67 15.56 34.07 

20.12 9.48 13.46 

Decrease in nuclear family households by 

20% (and corresponding increase in the 

number of single individual households)  

0 
-1.57 2.07 4.08 

-1.80 2.66 9.03 

1 
0.82 4.12 5.84 

0.94 4.18 5.46 

2 
2.80 6.86 22.66 

5.47 5.83 10.87 

 

                                                 
46

 Percentage change in the number of individuals from the MORP model participating in each combination level of episode category.  
47

 Percentage change in the number of individuals from the IORP model participating in each combination level of episode category. 
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case because of the positive correlation in the propensities of participation in the two 

episode categories. At the other extreme, both models show, as expected, an increase in 

the (2,2+) combination level. However, the MORP model indicates a substantially higher 

increase because of the complementary effect (positive correlation) in the unobserved 

propensities. The changes in the other cells, in general, also show a shift toward 

combinations of higher levels of episode participation in the two episode categories due 

to changes in the socio-demographic variables.  

Overall, the exercise above demonstrates the application of the MORP model to 

predict the shifts in number of episodes of different activity purposes and accompaniment 

types due to changing socio-demographic characteristics of the population. In addition, 

the results also point to the biased results that can be obtained by ignoring the jointness in 

the propensity to participate in different episode categories. 

 

7.3 Application of the Joint Model of Walking and Bicycling Activity Duration 

The model estimated in Chapter 5 can be employed to predict individuals‟ walking and 

bicycling activity participation durations. However, in this section we demonstrate 

usefulness of the model beyond quantifying the use of non-motorized  transport mode by 

analyzing physical activity participation level of individuals (i.e., total time spent by 

individuals in walking and bicycling activities together). Specifically, the model is 

applied to predict changes in physical activity participation duration over a period of one 

week due to changes in two socio-demographic characteristics: age and presence of 

children in the household. We choose these two variables because of the projected 

demographic trends. For instance, the US Census Bureau predicts that the senior 

population in the USA is likely to increase by 40% over the current level in the next five 

years as 14.93 million baby boomers become senior citizen in that time period.  The 

Bureau also projects that the senior population in the USA will more than double by 

2050. At the same time period, the share of population age 15 or less is expected to be 

less than the senior population. According to the US Census Bureau estimates from the 
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Current Population Survey (CPS), the household size is changing with an increase in the 

number of households with no/fewer children (US Census Bureau, 2009b).  

In this section, the socio-demographic change corresponding to an increase in the 

senior citizens was “implemented” by randomly selecting a sample of individuals in the 

age groups 5 to 10 years and 11 to 15 years (the impacts of these two age groups are 

statistically significant on the dependent variables) and removing them from these age 

groups so that the number of senior individuals (age over 65) increased by 40% over the 

current level. Similarly, the change in the number of households with children was 

achieved by randomly selecting 20% households with children aged 5 to 10 years (the 

effect of this variable is statistically significant in the current model) and recoding these 

records as households with no children. To predict physical activity participation duration 

due to these socio-demographic changes, we adjusted the relevant independent variables 

(as just discussed), estimated the discrete durations of walking and bicycling activity, 

transformed the discrete activity durations to continuous time durations, and combined 

the continuous time durations of walking and bicycling into a single physical activity 

participation duration.            

       Table 7.2 presents the results from the multi-level cross-cluster grouped response 

probit model (MCGRP) and the independent grouped response probit model (IGRP) 

models. For each model, the predicted physical activity participation duration was 

grouped into three categories: low physical activity (duration < 150 minutes/week), 

medium physical activity (150 ≤ duration ≤ 300 minutes/week), and high physical 

activity (duration > 150 minutes/week).
48

 To examine the effects of the socio-

demographic changes, for each model, the predicted change in the number of individuals 

participating in each level of physical activity is computed as a percentage of the actual 

numbers of individuals participating in each level of physical activity. The results suggest  

                                                 
48

 In 2008, US Department of Health and Human Services published “2008 Physical Activity Guidelines 

for Americans”, which is designed to provide policymakers, health professionals, and general public with 

information on the type and the amount of physical activity required to maintain good health and reduce the 

risk of chronic diseases. The categories of physical activity participation levels used here are compatible 

with the classifications provided in the  guidelines. 
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Table 7.2 Impact of Changes on the Percentage of Individuals Choosing to Participate in Different Levels of Physical Activity  

Change Level of physical activity MCGRP model IGRP model 

Increase in senior population (age > 65 years) 

by 40% (and corresponding decrease in non-

senior population) 

Low activity  

(activity duration < 150 minutes/week) 
-2.14 -1.19 

Medium activity  

(150 ≤ activity duration ≤ 300 minutes/week) 
0.36 -0.36 

High activity  

(activity duration > 300 minutes/week) 
4.26 3.19 

Decrease in the number of households with 

children by 20% (and corresponding increase in  

the number of households without children) 

Low activity  

(activity duration < 150 minutes/week) 
0.00 -0.71 

Medium activity  

(150 ≤ activity duration ≤ 300 minutes/week) 
-1.46 -1.09 

High activity  

(activity duration > 300 minutes/week) 
2.13 3.19 
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that both models predict a decrease in the low physical activity participation level and an 

increase in the high physical activity participation level due to an increase in the share of 

senior population. This shift is due to the positive effects of the non-senior age group 

variables on the hazard rates (and negative effects on the activity durations). A decrease 

in the number of households with children scenario also shows a similar pattern because 

of the positive co-efficient associated with the presence of children (aged 5 to 10 years) 

in the household variable. However, the percentage shifts in the number of individuals 

participating in different levels of physical activity predicted by the MCGRP and the 

IGRP models are different. The difference between the two model predictions will 

become even wider if the models results‟ are applied to a large segment of population to 

predict the number of individuals likely to change their physical activity participation 

level due to implementation of some policy action. In general, failing to consider walking 

and bicycling activity durations jointly and ignoring the unobserved heterogeneity due to 

individual-, social-, and spatial-specific factors can result in inaccurate and biased 

forecasting.    

 

7.4 Application of the Spatial Panel Ordered-Response Model 

In this section, the model estimated in Chapter 6 is applied to predict the effects of a 

change in the independent variables on the percentage change in the aggregate share of 

each ordinal land use intensity category for the year 2008, while accommodating the 

spatial and temporal dependency effects. This application is motivated by the realization 

that the parameter estimates presented in Table 6.5 do not directly provide the marginal 

effects of variables on the probability of the ordinal land use development intensity 

categories (as observed by Franzese and Hays, 2008, this is an issue seldom considered in 

the spatial choice literature, with many papers simply presenting the parameter results 

and stopping there). To obtain a sense of the marginal effects, we compute a “pseudo-

elasticity effect” for each variable. In addition, bootstrapping is used to obtain the 

standard error estimates of the “pseudo-elasticity” effects.  
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 All the exogenous variables in the model estimated in Chapter 6 were introduced 

as dummy variables. To compute the pseudo-elasticity effects for each of these variables, 

the value of each variable is changed to one for the subsample of parcels for which the 

variable takes a value of zero, and to zero for the subsample of parcels for which the 

variable takes a value of one. The shifts in expected aggregate shares for each ordinal 

land development intensity (LDI) category in the two subsamples is then added after 

reversing the sign of the shift in the second subsample. Next, the effective percentage 

change in the expected share of each ordinal LDI category is computed due to a change in 

the dummy variable from 0 to 1.   

 The elasticity effects and their standard errors (in parenthesis) for the ordered-

response model with spatial dependence and heterogeneity (the ORSH model) and the 

simple ordered-response (OR) model are presented in Table 7.3, along with the p-value 

for the difference in elasticity estimates from the two models. The first entry under the 

“ORSH model” sub-column in the table indicates that, on average, parcels located within 

a 2-mile radius of a park are 20.96% less likely to be undeveloped relative to parcels 

located more than 2 miles away from a park. The other entries under the “ORSH model” 

sub-columns (and the “OR model” sub-columns) may be similarly interpreted.  

Several observations may be made from the results in Table 7.3. First, the 

numbers in the table indicate the relative importance of each exogenous variable in 

influencing the ordinal land use development intensity category. For instance, the ORSH 

model (and the OR model) results indicate that proximity to a lake is the most important 

determinant of intense land development, with parcels located closer to a lake (≤ 5 miles) 

being about 150% (2.5 times) more likely to be intensely developed compared to parcels 

located far away (> 5 miles) from a lake (see the “ORSH model” and “OR model” sub-

columns of the last column of Table 7.3 under the row “Distance to a lake ≤ 5 miles”). 

On the other hand, parcels located near an airfield and within Austin city (at least in the 

context of the area used in the current demonstration exercise) are the least likely to be 

intensely developed. Similarly, parcels located far away from IH-35 (> 9 miles from IH-

35) and parcels within Austin city limits are the most likely to be in an undeveloped state  
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Table 7.3 Elasticity Effects of Variables on the Land Use Development Intensity Level (Standard error)
49

 

Variable 

Undeveloped land 
Less-intensely  

developed land 

Medium-intensely  

developed land 

Most-intensely  

developed land 

ORSH 

model 

OR 

model 

p-value 

for 

difference 

ORSH 

model 

OR 

model 

p-value 

for 

difference 

ORSH 

model 

OR 

model 

p-value 

for 

difference 

ORSH 

model 

OR 

model 

p-value 

for 

difference 

Distance to a park ≤ 2 miles  

(base: park > 2 miles) 

-20.96 

(4.96) 

-4.89 

(12.55) 
- 

-4.78 

(4.44) 

-0.17 

(0.61) 
 - 

30.64 

(16.85) 

3.61 

(8.92) 
0.157 

56.65 

(19.40) 

3.97 

(14.55) 
0.030 

Distance to a lake ≤ 5 miles  

(base: lake > 5 miles) 

-79.10 

(6.12) 

-67.37 

(6.12) 
0.176 

-79.25 

(3.86) 

-7.87 

(3.15) 
0.000 

-25.47 

(68.61) 

80.66 

(10.49) 
0.127 

167.64 

(15.73) 

148.36 

(21.05) 
 - 

Distance to a school ≤ 2 miles  

(base: school > 2 miles) 

-56.05 

(26.43) 

-10.44 

(10.54) 
0.110 

3.29 

(3.90) 

0.00 

(0.46) 
 - 

10.38 

(2.41) 

6.25 

(7.01) 
 - 

8.05 

(3.17) 

6.9 

(11.33) 
 - 

Downtown ≤ 9 miles  

(base: Downtown > 9 miles)  

68.54 

(18.17) 

41.32 

(10.72) 
0.198 

3.10 

(11.67) 

0.29 

(1.39) 
 - 

-58.03 

(13.38) 

-29.85 

(8.14) 
0.073 

-67.17 

(7.57) 

-42.39 

(9.70) 
0.045 

IH-35 ≤ 9 miles  

(base: IH-35 > 9 miles)  

-173.26 

(97.81) 

-4.62 

(9.40) 
0.087 

7.96 

(7.72) 

-0.07 

(0.4) 
 - 

31.52 

(5.47) 

3.31 

(7.08) 
0.002 

40.62 

(3.62) 

3.86 

(10.72) 
0.001 

Airfield  ≤ 1 miles  

(base: Airfield > 1 miles)  

57.73 

(7.42) 

30.95 

(6.50) 
0.007 

8.06 

(10.65) 

1.11 

(1.05) 
 - 

-77.99 

(38.30) 

-29.17 

(7.14) 
 - 

-108.92 

(40.98) 

-38.32 

(9.83) 
0.094 

Parcel is located in Austin city  

(base: parcel is located outside Austin city) 

216.30 

(41.12) 

129.93 

(9.54) 
0.041 

-4.25 

(26.77) 

0.69 

(4.50) 
 - 

-105.35 

(12.63) 

-96.79 

(6.57) 
 - 

-108.09 

(6.76) 

-121.62 

(6.46) 
0.148 

Elevation ≤ 1000 feet above mean sea level  

(base: elevation > 1000 feet) 

120.97 

(49.74) 

32.52 

(6.62) 
0.079 

-2.06 

(13.14) 

0.53 

(1.09) 
 - 

-54.95 

(9.15) 

-24.19 

(4.35) 
0.003 

-58.86 

(4.41) 

-36.00 

(5.92) 
0.002 

                                                 
49

 The standard errors of the elasticity effects are computed using 100 bootstrap draws. A “-” entry in the table indicates that the difference is not 

statistically significant even at the 0.20 level of significance.   
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(see the first two numeric sub-columns in Table 7.3). Second, the elasticity effects of 

both the ORSH and the OR models are in the same direction. However, a visual 

comparison of the results indicates that the elasticity effects predicted by the ORSH 

model are higher than the OR model prediction (the only exception is the effect of 

“Parcel is located in Austin” variable on the most-intensely developed land use category). 

The higher magnitudes from the ORSH model reflect the spatial multiplier effect caused 

by spatial dependence. Specifically, a change in a variable relevant to one land owner 

(that has an impact on the LUDR perception of the land owner) also affects the LUDR 

perceptions of land owners of proximally located parcels, which then have a “circular” 

and reinforcing influence back on the LUDR perception of the land owner (this spatial 

multiplier effect is captured by the S  matrix in Equation (6.3)). In contrast, the OR model 

ignores the presence of the “spillover” phenomenon and assumes away any spatial 

interaction effects among land owners. Finally, the entries in the p-value columns for 

each ordinal land use intensity category indicate that many of the differences in elasticity 

effects between the ORSH and OR models are statistically significant at the 0.1 level or 

lower, clearly underscoring the importance of accommodating spatial dynamics and 

spatial heterogeneity in the current empirical context.     

Overall, these results reinforce the findings from the simulation exercise in 

Section 6.3 (Chapter 6) and indicate the potentially substantial biases in elasticity effects 

if spatial dependence and/or heterogeneity are ignored.   

 

7.5 Summary  

 In the previous chapters (Chapter 4 through Chapter 6) we have demonstrated that the 

CML approach can be used to develop behaviorally rich models that are also statistically 

superior. In this chapter we applied the models in a number of demonstration exercises to 

evaluate the effect of changes in a number of explanatory variables. For each exercise, 

the model predictions were also compared with the naïve model predictions. The results 

suggest that ignoring the multidimensional nature of the models developed here can result 

in inaccurate and bias prediction/policy evaluation.       
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Chapter 8 

Synopsis and Directions for Future Research  

 

8.1 Introduction 

The research in the field of travel demand modeling is driven by the need to understand 

individuals‟ behavior in the context of travel-related decisions as accurately as possible. 

In this context, the activity-based approach to modeling travel demand has received 

substantial attention in the past decade, both in the research arena as well as in practice. 

At the same time, recent efforts have been focused on more fully realizing the potential of 

activity-based models by explicitly recognizing the multi-dimensional nature of activity-

travel decisions. For instance, while some earlier activity-based models assumed that 

individuals‟ non-mandatory activity participation decisions (such as eating out, going to 

theater) are made in isolation, more recent activity-based models recognize that, in 

general, individuals‟ non-mandatory activity participation decisions are inter-related 

(within the individual) and also based on group decisions made at the household-level 

(across individuals in the household). However, as more behavioral elements/dimensions 

are added, the dimensionality of the model systems tends to explode, making the 

estimation of such models all but infeasible using traditional inference methods. As a 

result, analysts and practitioners often trade-off between recognizing attributes that will 

make a model behaviorally more representative (from a theoretical viewpoint) and being 

able to estimate/implement a model (from a practical viewpoint). 

 An alternative approach to deal with the estimation complications arising from 

multi-dimensional choice situations is the technique of composite marginal likelihood 

(CML). This is an estimation technique that is gaining substantial attention in the 

statistics field, though there has been relatively little coverage of this method in 

transportation and other fields. The CML method, which belongs to the more general 

class of composite likelihood function approaches, is based on forming a surrogate 

likelihood function that compounds much easier-to-compute, lower-dimensional, 

marginal likelihoods. The CML approach has the advantage of reproducibility of results 
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and can be easily implemented using simple optimization software for likelihood 

estimation. Under the usual regularity assumptions, the CML estimator is consistent, 

unbiased, and asymptotically normally distributed.  

 The discussion above provides a brief overview of the background that motivated 

the research undertaken in the current dissertation. Specifically, the overarching goal of 

the current research work was to demonstrate applicability of the CML approach in the 

area of activity-travel demand modeling and to highlight the benefits of behaviorally rich 

choice structures that can be estimated using the CML approach. The goal of the 

dissertation is achieved in three steps. Each of these steps makes a distinct research 

contribution, as discussed in the next section (Section 8.2). Then, Section 8.3 concludes 

the dissertation by identifying limitations of the current research and highlighting areas 

for future research. 

           

8.2 Research Contributions 

8.2.1 Evaluating Performance of the CML Approach 

As indicated earlier, the CML approach is a relatively new estimation technique. 

Accordingly, before adopting the approach to model individuals‟ activity-travel behavior, 

we sought to first assess the effectiveness of the CML approach. Specifically, we 

evaluated the performance of the CML approach in terms of its ability to recover the 

parameters of an ordered-response model system. The evaluation exercises were 

undertaken using two types of simulated data: aspatial cross-sectional data and spatial 

panel data. For cross-sectional data, both low and high error correlation structures were 

considered. For panel data, low and high spatial and temporal autoregressive parameters 

and their combinations were considered. Overall, the simulation results demonstrate the 

ability of the CML approach to recover the parameters very well in an ordered-response 

choice model context.   

In this dissertation, we also empirically examined the efficiency of the CML 

estimator. Specifically, the CML estimator (theoretically speaking) loses some efficiency 

relative to traditional maximum likelihood estimation, though some earlier empirical 
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investigations suggest that such efficiency loss is negligible. In the current research, this 

issue was investigated further by comparing the performance of the CML approach with 

the maximum-simulated likelihood (MSL) approach in multivariate ordered-response 

situations. The ability of the two approaches to recover model parameters in simulated 

cross-sectional data sets was examined, as was the efficiency of estimated parameters and 

computational cost. The results indicate that the CML recovers parameters as well as the 

MSL estimation approach in the simulation contexts used in the current analysis, while 

also doing so at a substantially reduced computational cost. Further, any reduction in the 

efficiency of the CML approach relative to the MSL approach is in the range of non-

existent to small.  

In summary, when taken together with its conceptual and implementation 

simplicity, the CML approach appears to be a promising approach for the estimation of 

not only the multivariate ordered-response model considered here, but also for other 

otherwise analytically-intractable econometric models.  

 

8.2.2 Developing Multidimensional Choice Models Using the CML Approach 

In the dissertation, a series of econometric models was developed that are behaviorally 

rich but have a complex dependence structure, and are generally considered impractical 

and/or infeasible to be estimated by traditional estimation approaches. This dissertation 

demonstrates that such models can indeed be estimated using the CML technique. The 

salient features of each of these models and important empirical findings from the studies 

are discussed in turn in the next three sections (Section 8.2.2.1 to Section 8.2.2.3).  

 

8.2.2.1 A Multivariate Ordered-Response Model With Flexible Error Structure 

A multivariate ordered-response model was developed to examine the interactions in 

non-work activity episode decisions across household and non-household members at the 

level of activity generation. The six activity purpose categories considered in the study 

were: (1) family care, (2) maintenance shopping, (3) non-maintenance shopping, (4) 

meals, (5) physically active recreation, and (6) physically inactive recreation. The 
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companionship arrangement for episodes was considered in five categories: (1) alone, (2) 

only family, (3) only relatives, (4) only friends, and (5) mixed company. The total 

number of activity purpose-companionship type categories is 30, and the model system 

developed here jointly considers the number of episodes in each of these 30 categories.  

A salient feature of this model system is that the dependence between the number 

of episodes of different purpose-companionship types due to both observed exogenous 

variables as well as unobserved factors can be accommodated without any difficulty. The 

empirical analysis in the study used data drawn from the 2007 American Time Use 

Survey (ATUS) and provided important insights into the determinants of adults‟ weekday 

activity episode generation behavior. For instance, the results indicate the presence of 

distinct gender effects in activity type participation and accompaniment, with women 

being more responsible for family care and shopping activities, and men being more 

likely to undertake active and inactive leisure activities either alone or with friends. 

Further, there are also clear age-related effects. Individuals below the age of 40 years are 

the least likely to participate in activity episodes alone and most likely to participate in 

episodes with mixed company, suggesting a combination of the family orientation and 

larger social networks of younger individuals. Race, education level, employment and 

student status, household structure and presence of children, household income, the day 

of week, and season of the year also have important effects on adults‟ weekday activity 

episodes by purpose and the social context of participation.   

Overall, the results from this model underscored the substantial linkages in the 

activity episode generation of adults based on activity purpose and accompaniment type. 

The extent of this linkage varies by individual demographics, household demographics, 

day of the week, and season of the year. The results also highlighted the need to 

accommodate complementarity and substitution effects in inter-individual interactions 

and in activity episode participation decision. 
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8.2.2.2 A Joint Model of Walking and Bicycling Activity Duration 

In this study, the time allocated by individuals in walking and bicycling activity over a 

period of one week was analyzed jointly using a proportional hazard model specification. 

An important aspect of this joint model system is that the model is capable of 

incorporating grouped duration responses (which is commonly observed in activity-travel 

surveys and is a result of individuals rounding off activity durations when reporting their 

time-use patterns). Another key feature of the model structure developed here is that it 

recognizes the presence of unobserved heterogeneity in walking and bicycling activity 

participation. Specifically, the model structure accommodates variations in the activity 

durations for different activity types based on unobserved factors that are specific to the 

individual, the household, the social cluster/peer group to which the individual is part of, 

and the spatial cluster to which the individual belongs. For accurate prediction of activity 

duration and evaluation of policy actions, it is important to consider the effects of 

unobserved factors that contribute to heterogeneity in walking and bicycling activity 

durations (or non-motorized transport mode use behavior) at multiple levels. The model 

specification also generates a rich covariance pattern structure among the hazard 

functions for participation in different activities for the same individual as well as 

between different individuals. Such a model specification would require the evaluation of 

a 1764-dimensional integral in the traditional maximum likelihood inference approach, 

which is next to infeasible. Also, the specification, because of the hazard duration 

structure, leads to the mixing of normal and extreme-value error terms. We dealt with the 

first complication (1764 dimensions) by resorting to the estimation technique of 

composite marginal likelihood. We took care of the second complication (mixing of error 

terms) by removing the non-normality of the type I extreme value error term and 

replacing it with a weighted mixture of normally distributed variables (i.e., we used the 

normal scale mixture (NSM) representation of the extreme value distribution).           

The model system was applied to a survey sample drawn from the California add-

on of the United States National Household Travel Survey (NHTS) conducted in 2009. In 

addition to individual- and household-level socio-demographic information, the 



 

168 

California-specific NHTS 2009 data set contained detailed attitudinal information on 

walking and cycling activities, including factors that were likely to influence individual‟s 

walking and bicycling duration. This made the NHTS 2009 data set particularly 

appropriate for the current study. The model results show that individual- and household-

demographic and socio-economic variables impact individuals‟ walking and bicycling 

activity durations. Also, there are numerous attitudinal factors and perceptions that affect 

these durations. For example, busy lifestyles, perceptions of poor walking environment 

and inadequate bicycling infrastructure, and concerns about safety adversely impact the 

amount of walking and bicycling undertaken by individuals. These findings are consistent 

with expectations and point to the need for professionals and policymakers to consider 

neighborhood designs, land use configurations, and infrastructure investments that 

alleviate the concerns and enhance perceptions of bicycling and walking convenience. In 

addition, the model results suggest that there are significant unobserved individual-level, 

social group, and spatial proximity effects that contribute to heterogeneity in walking and 

bicycling activity duration. These effects were significant even after controlling for 

observed variables. The unobserved effects were found to have a differential impact on 

walking and bicycling activity durations, thus suggesting the need to treat walking and 

bicycling separately and to model them in a joint framework.   

 

8.2.2.3 A Spatial Panel Ordered-Response Probit Model With Temporal Autoregressive 

Error Terms 

This study proposed and estimated a spatial panel ordered-response probit model with 

temporal autoregressive error terms to analyze changes in urban land development 

intensity levels over time. Such a model structure offers several salient features. First, the 

model maintains a close linkage between the land owner‟s decision (represented by the 

land use development return (LUDR) perceptions of the land owners, this is a latent 

variable that cannot be observed by the analyst) and the land development intensity level 

(observed by the analyst). It is important to maintain such a linkage since the decision to 

change (or to maintain) the current land development intensity level is actually made by 
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the land owners. Second, the model specification accommodates spatial interactions 

between land owners that leads to spatial spillover effects. Such a specification 

recognizes that spatial dependence is caused by didactic interactions between decision-

making agents (as opposed to considering spatial dependence only in the error terms, 

which is tantamount to viewing spatial dependence as “nuisance” dependence). Third, the 

model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity by 

allowing the sensitivity to exogenous variables to vary across land owners. Finally, the 

model accommodates time-invariant and time-varying temporal dependence. Time-

invariant temporal dependence represents the effects of landowner-specific unobserved 

factors that do not change over time (such as individual experiences, risk-taking behavior, 

and vegetation conservation values). Time-varying temporal dependence captures the 

effects of landowner-specific unobserved factors that fade away over time (such as the 

effects of recent experiences and events).  

     Before undertaking an empirical analysis, we evaluated the model in a 

simulation design to examine the effects of ignoring spatial dependence and spatial 

heterogeneity when both are actually present (this is in addition to the simulation exercise 

that was undertaken to evaluate the ability of the CML approach to recover model 

parameters in the spatial panel data context, as discussed in Section 8.2.1). The results 

demonstrate that ignoring spatial dependency and spatial heterogeneity when both are 

actually present will lead to bias in parameter estimation. An interesting observation from 

our simulation study is that ignoring spatial heterogeneity is of much more serious 

consequence than ignoring spatial lag dynamics.  

The proposed model system was applied to examine urban land development intensity 

level using parcel-level data from Austin, Texas area for the years 2000, 2003, 2006, and 

2008. In the current analysis, a four category ordinal system was used to define the 

intensity level of land development: (1) undeveloped land (open space, vacant parcel, 

etc.), (2) less-intensely developed land (residential parcels with single-family detached or 

two-family attached home), (3) medium-intensely developed land (includes all other 

types of residential parcels), and (4) most-intensely developed land (includes office, 
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commercial, industrial parcels, etc.). The final data set comprised of 783 parcels from 

each time period. The model results suggest that closeness to natural and other amenities 

(such as park, lake, school, and urban center), distance to major roadways, average 

elevation of the parcel, and whether or not the parcel is located in Austin city have 

significant effect on the LUDR perceptions of the land owners. The results also highlight 

the importance to consider spatial “spillover” effects, spatial heterogeneity, and temporal 

effects in the study of land development intensity level to obtain consistent parameter 

estimates and policy evaluation.     

 

8.2.3 Demonstrating Applications of the Multidimensional Choice Models 

The multidimensional econometric models discussed in the previous sections were 

applied to examine their benefits vis-à-vis extant and more naïve methods. These 

exercises: 

 Highlighted practical/real life application(s) of the models developed in the current 

dissertation, 

 Underscored the biased results that could be obtained if the multidimensional nature 

of the models developed here are ignored, 

 Provided a comparison between the performance of the estimated multidimensional 

choice models and the naïve models, and    

 Quantified the effects of accommodating behavioral elements in the model 

specification. 

   

8.3 Limitations of the Current Research and Directions for Future Work 

 The current dissertation makes several research contributions, as discussed in the 

previous section. However, there are, of course, limitations of the current research work 

that need to be explored in the future. In addition, there are research areas which may not 

necessarily fall under the category of limitations of the current research effort, but may be 

viewed as expanding the scope of the current work. A few of these research 

ideas/thoughts are discussed below. 



 

171 

1) The exercises undertaken here to evaluate the ability of the CML approach to recover 

model parameters are far from exhaustive. Future research efforts in this direction 

may include examining the ability of the CML approach to recover parameters in the 

context of additional types of data such as cross-sectional data with 

heteroscedasticity,  (continuous and grouped) duration data, time series data with 

different levels of dependence. Also, we leave additional comparisons of the CML 

approach with the MSL approach for high dimensional model contexts and alternative 

covariance patterns as directions for further research. 

2) The multidimensional choice models developed here were employed to undertake 

empirical analyses using data that were area-specific. Hence, transferring the current 

model results to other geographic areas should be done with extreme caution. 

Alternatively, the model results may be re-calibrated to custom fit new study area(s). 

Such exercises are likely to provide important insights on decision agents‟ behaviors. 

3) The multivariate ordered-response probit model (the MORP model) developed in 

Chapter 4 may be embedded in an activity-based modeling framework to generate 

individuals‟ non-mandatory activity episodes by purpose and companion choice 

jointly (See Figure 8.1). The model system can be extended along several dimensions. 

For instance, the model can be used to generate all activity episodes (i.e., both 

mandatory and non-mandatory activity episodes) of all individuals in a household 

(i.e., activity episodes of both children and adults) without making any substantial 

changes to the current model specification. Also, currently the model accommodates 

three activity-related decisions that individuals are likely to make jointly: “what” (i.e., 

the type of activity to participate in), “how many times” (i.e., the frequency of 

participation), and “with whom” (i.e., who to participate the activity with). In reality 

though, individuals are likely to make a number of other activity-travel-related 

decisions also jointly, such as “when”, “where”, and “what mode”. The current model 

framework may be extended/revised to incorporate these additional dimensions. 
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Activity Generation and Allocation Model System 

Synthetic Population Generator 
(Simulates socio-demographics information for all individuals and households in the study area. The 

generated data set may include information on gender, race, age, household size, and household type 

(nuclear household, couple household, single-person household, group quarter, etc.) 

Additional Individual- and Household-Level Attributes Generator  
(Generates additional socio-economics information such as student status, study grade at school, 

employment status and other work-related information (such as employment industry, flexibility of work 

schedule, work duration), driver license status, income, home owner/renter, and housing type)    

 

Long-Term Choice Model System  
(Generates information related to long-term choice decisions at individual-level (such as workplace 

location, school location, and college location) as well as at household-level (such as car ownership, 

vehicular fleet composition)  

Activity Scheduling Model System 
(Includes models/modules that generate activity schedules and travel related information for each 

individual, such as number of tours undertaken, tour purpose, tour mode, number of stops in a tour, type 

of activity at each stop, activity duration (including at-home stay duration between tours and work 

activity duration (if applicable)), departure time from the origin/primary destination/intermediate stop(s) 

in a tour, travel time to a stop, trip mode, and stop location (including primary destination for all tours, 

except home-based work tour) 

Decision to participate in 

zero out-of-home activity 

in the study area and within 

the model time period 

Decision to participate in at 

least one out-of-home 

activity in the study area and 

with the model time period 

Activity Participation Decision Model  

Individual-Level Mandatory Activity 

Generation Model  
(Not applicable to non-workers) 

 

At Home Stay/Out-of-Town Trip   

Household-Level Joint Activity 

Participation and Companion Choice 

Generation Model  

Individual-Level Non-Mandatory 

Activity Participation and Companion 

Choice Generation Model  

Pick-Up/Drop-Off Responsibility 

Allocation Model  
 

 

The MORP model may be implemented without 

making any changes to the current model specification    
Key: 

 
The MORP model may be implemented after making 

some minor changes to the current model specification   

Figure 8.1: Schematic Representation of an Activity-Based Modeling Framework     
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4) In the 2009 NHTS data, residential location information was available only at the 

Census tract level. As a result, the spatial unit of analysis used to define spatial 

clustering was the traffic analysis zone (TAZ). This is a rather aggregate spatial 

representation of clustering, and a finer resolution for spatial clustering needs to be 

considered. Also, due to data limitations, we were unable to estimate the joint model 

of walking and bicycling activity durations by purpose.  

5) The spatial panel ordered-response probit model with temporal autoregressive error 

terms (proposed in Chapter 6) maintains a close link between the landowner and land 

development intensity level. However, we were not able to incorporate land owners‟ 

information in our model since the data did not provide such information. Also, we 

studied didactic interactions between land owners in the context of a “continuous 

space” study area (i.e., the study area was not sever by any natural or man-made 

barrier). It will be interesting to analyze interactions between land owners when the 

study area is segmented.                                     
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