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Operational modal analysis of a rotating cantilever

beam using high-speed Digital Image Correlation
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A novel procedure to perform an operational modal analysis on a ro-

tating cantilever beam is described. This procedure uses Digital Image Cor-

relation (DIC) to measure the deformation of a beam from images captured

with a pair of high-speed digital cameras. Modal parameters including nat-

ural frequencies and mode shapes are determined from the deformation data

through application of the Ibrahim Time Domain method. The procedure was

validated on a 2 m diameter, Mach-scale helicopter rotor, excited by a jet of

compressed air. Images of the rotor blade were captured at a sampling rate of

1000 Hz at rotational speeds up to 900 RPM. The out-of-plane deformation of

the rotor was measured with a spatial resolution of 7.2 mm and an accuracy of

60 µm, or 0.006% of the rotor radius. The first three flap bending modes were

identified at each rotational speed and compared to an analytical model of

the system. It was found that the analytical model over-predicted the natural

frequencies due to differing boundary conditions between the model and the
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experiment, and so the analytical frequencies were scaled to the results of a

rap test using traditional frequency domain analysis. The scaled analytical

and experimental natural frequencies agreed to within 0.2% in the best case

and 10.0% in the worst case. The experimental mode shapes were also found

to closely match the analytical model. The results of this test demonstrate

the ability of this procedure to determine the modal parameters of rotating

cantilever beams.
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Chapter 1

Introduction

Operational modal analysis is the process by which the modal charac-

teristics of a structure under operating conditions are determined. It differs

from traditional modal analysis in that the input excitation to the system

is generally unknown and may be random, harmonic, or both. This allows

for the modal analysis of many structures for which the forcing is difficult to

measure or unknowable. However, relatively few operational modal analyses

have been performed on rotating structures such as helicopter blades. This is

due in part to the difficulty of obtaining suitable vibration data from rotating

structures. Sensors such as strain gages and accelerometers must pass signals

from the rotating frame to the fixed frame using electrically noisy slip rings,

and limited numbers of physical sensors may be attached to rotating struc-

tures without affecting the dynamics of the system. Additionally, the complex

dynamics of rotating structures make it difficult to extract modal parameters

such as natural frequencies, damping ratios, and mode shapes from this data.

This paper describes a novel procedure to determine the modal param-

eters of a rotating cantilever beam using high-speed Digital Image Correlation

(DIC) and the Ibrahim Time Domain (ITD) method. This procedure cir-
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cumvents many of the challenges of performing operational modal analyses

on rotating structures using traditional techniques. The procedure was ex-

perimentally validated on a 2 m diameter composite helicopter blade rotating

at speeds up to 900 RPM. The results of the rotating experiment were then

compared to an analytical model of the system.
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Chapter 2

Literature Review

2.1 Modal Analysis of Rotating Structures

Modal analysis of rotating structures is a growing field in structural

analysis. There are many challenges associated with both the modeling and

testing of rotating structures as opposed to stationary structures. When mod-

eling rotating systems, one must account for rotational inertia, gyroscopic

coupling between terms, and most importantly, centrifugal stiffening. Kane

et al.[1] show that the dynamics of a rotating helicopter rotor blade can be

written as,

Mÿ(x, t) +G (Ω) ẏ(x, t) +K (Ω) y(x, t) = f(x, t) (2.1)

where y(x, t) is the displacement of the system at location x and time t. This

differs from a non-rotating dynamical system in that the mass M and stiff-

ness K matrices contain terms governing the rotational inertia and centrifugal

stiffening of the system. Additionally, there is a skew-symmetric gyroscopic

matrix G that contains terms coupling the velocities in the directions tangent

to the rotation (in-plane bending), away from the center of rotation (axial dis-

placement), and normal to the plane of rotation (out-of-plane bending). The

stiffness matrix K and gyroscopic matrix G depend on the rotational speed,
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and therefore the eigensolution of the system is a strong function of rotational

speed.

Because G is not symmetric, the solution governing the motion of the

system must be determined using complex modal analysis as opposed to real

modal analysis. That is, the characteristic roots of the solution will not be

purely imaginary, and the mode shapes that describe the relative motion of

different locations in the systems will be complex. In order to visualize the

mode shapes, certain approximations must be made to transform them into

real values. This is discussed further in Section 3.1. Note that damping

coefficients can be included in the G matrix.

There is a vast amount of literature covering the modeling of rotat-

ing cantilever beams, including analytical models of Euler-Bernoulli beams

[2], finite element analyses of Timoshenko beams [3], analyses of beams with

concentrated tip masses [4], analyses of cracked rotating blades [5], and inves-

tigations of the effect of gyroscopic coupling [6].

An analysis of the relationship between rotational speed and the modal

parameters of a 2 m diameter composite helicopter blade was performed us-

ing the University of Maryland Advanced Rotorcraft Code (UMARC). A fan

plot showing the first three flap bending natural frequencies with increasing

rotational speed is shown in Figure 2.1.
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Figure 2.1: Fan plot of first three flap bending natural frequencies. The black
dashed lines correspond to one, three, and six per revolution frequencies. All
frequencies are non-dimensionalized by 1800 RPM

As the rotational speed increases, the blade undergoes centrifugal stiff-

ening. This causes the flap bending natural frequencies to increase. Note that

the first natural frequency approaches and then increases linearly with the

rotational speed. An important result of this is that the rotational speed can

never match the first flap bending natural frequency, which would cause res-

onance. In order to show how rotation affects the flap bending mode shapes,

the first three mode shapes at 0 RPM and 10,000 RPM are presented in Figure

2.2.
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Figure 2.2: Flap bending mode shapes at 0 RPM and 10,000 RPM. The first
plot shows the first mode shapes, the second shows the second mode shapes,
and the third shows the third mode shapes.

The first flap bending mode shape flattens out with increasing rota-

tional speed. The second and third shapes decrease in amplitude inboard

from the tip, and the span-wise locations of the maxima and minima shift

slightly. These shapes were determined at 10,000 RPM to better show the

expected trends of the mode shapes, however this speed of rotation is much
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greater than the rotational speeds investigated in this study. Therefore the

expected changes in mode shape will be much smaller.

According to Bucher and Ewins[7], analytical models of rotating sys-

tems may not accurately determine the actual modal parameters due to inher-

ent uncertainties in operating boundary conditions. For example, the bearings

and foundation to which a rotating system is mounted may introduce com-

pliance at the root that is difficult to model or which changes with rotational

speed. Experimental identification of modal parameters is therefore the pre-

ferred method of characterizing the response of the structure. Bucher and

Ewins[7] present an overview of several techniques commonly used in experi-

mental modal analysis of rotating structures. The primary difficulty is apply-

ing a known excitation to the system. Some examples of excitation methods

include unbalancing the system with a mass attached at a specific radius, im-

pacting the rotating shaft with an instrumented hammer, shaking the shaft

with electrodynamic shakers attached though a bearing, magnetically excit-

ing the system though active magnetic bearings, and exciting the foundation

of the system. Each method has its own advantages and disadvantages, and

whenever possible multiple forms of excitation are used to fully characterize

the response.

Typically, the response is analyzed in the frequency domain and re-

quires the simultaneous measurement of the system excitation. Not only can

this be difficult to obtain, but because of the complex dynamics of rotating

structures, it is also difficult to couple the excitation with the response to pro-
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duce frequency response functions. For example, the response may be defined

in a rotating reference frame, while the excitation is defined in a stationary

reference frame. Additionally, internal moving parts may induce vibration not

directly caused by the applied excitation. Finally, obtaining accurate mode

shapes can be very difficult because, in addition to the problems outlined

above, obtaining data from enough discrete locations to properly characterize

a mode shape is impractical when using conventional sensors.

While there are many numerical studies of rotating cantilever beams,

there are a limited number of experimental modal analyses of rotating beams

in operating conditions. Wilkie et al.[8] determined the frequencies of the

first, second, and third flap-wise bending; first chord-wise bending; and first

torsional modes of a 110” diameter helicopter rotor at speeds ranging from

0 to 660 RPM. These were determined from the frequency response of strain

gauges attached to the rotor blade at three span-wise locations, and the signal

was transmitted from the strain gauges through a 30 channel electrical slip

ring. The natural frequencies were compared to theoretical values, and good

correlation was found for natural frequency vs. rotor speed, especially for the

first two flap bending modes. However, it was found that the analytical model

over-predicted the flap bending natural frequencies. No attempt was made to

determine the mode shapes due to the limited spatial resolution of the data,

i.e. only three span-wise locations.

Lundstrom et al.[9] performed an operational modal analysis on the ro-

tor blade of a Robinson R44 helicopter in hover. Similar to the present study,
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the vibration of the helicopter blade was measured using stereophotogramme-

try. High-speed 3D dynamic point tracking was used to measure the motion

of 22 vinyl targets mounted along the span of the rotor blade. The vibration

data was analyzed in the frequency domain, and several Operating Deflection

Shapes were then obtained from the vibration data. As will be discussed in the

following section, while Operating Deflection Shapes are useful measurements

of a system’s pattern of motion at a particular operating condition, they do

not necessarily correspond to the actual modal parameters of the system.

2.2 Operating Deflection Shapes

It is important to differentiate between Operating Deflection Shapes

(ODS) and mode shapes, as this is one of the main motivations for the present

study. Most operational modal analyses seek to characterize the ODS’s of a

structure. Schwarz and Richardson[10] define an ODS most generally as “the

values of a set of time domain responses at a specific time, or the values of a

set of frequency domain responses at a specific frequency.” In other words, it

is the pattern of motion of a structure under a particular operating condition,

and it may be represented as a sum of modes. When the excitation frequency is

close to a natural frequency and the ODS is dominated by one mode, the ODS

will approximate a mode shape. These, however, are restrictive assumptions,

and ultimately only produce estimates of the actual modal parameters, which

include natural frequencies, damping ratios, and mode shapes. As will be

shown in Section 3, the ITD method of modal analysis does not approximate
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the modal parameters from ODS’s, but instead directly determines them from

the response of the system measured at several locations. In this study, the

vibration of a cantilever beam is measured using 3D Digital Image correlation,

and the modal parameters are determined though ITD analysis.

2.3 Digital Image Correlation

Digital image correlation is an optical deformation measurement tech-

nique that can be used to measure the whole-field deformation of a body

(Kahn-Jetter and Chu[11]). A high-contrast speckle pattern is applied to the

test article, and a pair of high-resolution cameras separated by a fixed dis-

tance captures images of the undeformed and deformed surface. A mapping

function determined through a calibration procedure translates image coordi-

nates into three-dimensional physical coordinates using the parallax between

the two camera images. Cross-correlation of the undeformed and deformed

images, in conjunction with the mapping function yields a deformation map

of the surface.

Sirohi and Lawson[12] performed an experimental study on the appli-

cation of DIC to measure the flapping, lead-lag, and torsional deformation of

rotating helicopter blades with diameters ranging from 7.6 cm to 61 cm ro-

tating at 1500 RPM. Images were captured at specific azimuthal positions by

synchronizing image capture with a once-per-revolution trigger provided by a

Hall Effect sensor, and the deformation was determined by averaging the re-

sults from 100 revolutions. It was found that out-of-plane deformations up to
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10 mm could be measured with an accuracy of 97 µm, or 0.04% of the rotor ra-

dius, and that DIC was a viable tool for determining the full-field deformation

of rotating blades.

Sicard and Sirohi[13] extended this procedure to measure the deforma-

tion of an extremely flexible 46 cm diameter rotor in hover in order to validate

and improve aeroelastic models of the rotor blade. Images were captured of

the blade rotating at 1200 RPM, and the full-field deformation was calculated

with an accuracy of 15 µm, or 0.02% of the rotor radius. It was determined

that an accurate model of this system must include flap and lead-lag bending

as well as twist degrees of freedom. Additionally, it was found that the elastic

twist of the blade is of the same order of magnitude as the blade root pitch.

Such conclusions would be difficult to make without the benefit of DIC, as it is

impossible to measure this rotor blade deformation using conventional means.

Tran et al.[14] measured the deformation of a flexible flapping wing

using DIC to validate a reduced-order model developed from a POD-Galerkin

projection method. The DIC results not only showed good correlation with the

reduced-order model, but also with direct numerical simulation and previously

published data.

These experiments demonstrate the suitability of DIC to measure the

deformation of static, dynamic, and rotating systems. When used in conjunc-

tion with high-speed imagery, DIC can be used to measure the vibration of

a system. This vibration data can then be analyzed to determine the modal

parameters of the system.
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2.4 Conclusions from Literature Review

Operational modal analysis is an important part of the developmental

cycle for many structures designed to withstand dynamic loading. However,

there are relatively few experimental studies of the modal parameters of ro-

tating structures and how these parameters develop with increasing rotational

speeds. This is due to two reasons. First, collecting vibration data of rotat-

ing structures is challenging. Traditional sensors such as strain gauges and

accelerometers must pass signals through electrically noisy slip rings, and lim-

ited numbers of physical sensors can be attached to rotating structures without

affecting the dynamics of the system. Second, it is very difficult to analyze

these signals using traditional frequency analysis. Developing frequency re-

sponse functions requires measuring the dynamic excitation of the system,

which can be even more difficult to obtain than the vibration response. Op-

erating Deflection Shapes can be developed, but these have limited use in

verifying models of the system.

The first issue can be addressed by using DIC or other stereophotogram-

metic techniques. DIC allows for accurate, full-field measurements of the de-

formation of a rotating system without changing its operating conditions. The

second issue can be resolved by analyzing the response using the ITD method,

which does not require the excitation to be measured and determines modal

parameters without the use of ODS’s. In this thesis, a method to perform an

ITD analysis using DIC measurements of a rotating cantilever beam is devel-

oped. The method is validated through an operational modal analysis of a

12



rotating helicopter blade.
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Chapter 3

Ibrahim Time Domain Method

The Ibrahim Time Domain (ITD) method of modal analysis was de-

veloped as an alternative to frequency domain modal analyses (Ibrahim [15]).

One of the primary benefits of this method is that it does not require measure-

ments of the excitation of the system under investigation. This makes it an

ideal candidate for Operational modal analysis, where the excitation is gener-

ally unknown. In this chapter, the basic formulation of the ITD procedure is

described along with additional techniques to accurately determine the modal

parameters of a system with unknown excitation.

3.1 Basic Formulation of the ITD Method

The free vibration of a linear system with general damping such as in

Eq. (2.1) can be described by,

y(x, t) =
∑

ψr(x)eλrt (3.1)

where y(x, t) is the displacement of the system at location x and time t, ψr is

the the system’s rth mode shape, and λr is the system’s rth characteristic root

that contains the corresponding natural frequency and damping ratio.
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For undamped, non-rotating structures, the G matrix in Eq. (2.1) will

be zero, and so the characteristic roots will be purely imaginary conjugates and

the mode shapes will be real-valued. Actual structures posses some viscous

damping however. The characteristic roots will therefore posses both real and

imaginary components and the mode shapes will appear as complex conjugate

pairs. In addition to viscous damping, gyroscopic coupling or measurement

noise will populate the G matrix.

If one assumes N modes are contributing to the response and are rep-

resented by complex conjugate pairs, the vibration can be represented as the

following vector product:

y(x, t) =
{
ψ1(x) ψ2(x) · · · ψ2N(x)

}

eλ1t

eλ2t

...
eλ2N t

 (3.2)

where ψ1 and ψ2 is the conjugate pair that defines the first mode shape, and

λ1 and λ2 is the conjugate pair that defines the first characteristic root.

The system response at N different locations and 2N time instants is

thus defined as

y =

y(x1, t1) · · · y(x1, t2N)

· · · . . . · · ·
y(xN , t1) · · · y(xN , t2N)


=

 ψ1(x1) · · · ψ2N(x1)

· · · . . . · · ·
ψ2N(xN) · · · ψ2N(xN)


 e

λ1t1 · · · eλ1t2N

· · · . . . · · ·
eλ2N t1 · · · eλ2N t2N

 = ψΛ (3.3)
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It is important to note that there is no restriction on the choice of

t1, t2, ..., t2N . Now consider the same system delayed by a time interval ∆t:

ȳ = y(x, t+ ∆t) =
∑

ψr(x)eλr(t+∆t) =
∑

ψr(x)eλr∆teλrt (3.4)

In matrix form, this is

ȳ =

y(x1, t1 + ∆t) · · · y(x1, t2N + ∆t)

· · · . . . · · ·
y(xN , t1 + ∆t) · · · y(xN , t2N + ∆t)


= ψ

e
λ1∆t 0 0

0
. . . 0

0 0 eλ2N∆t

Λ = ψαΛ (3.5)

Combining both the original system response and the delayed response

yields a single 2N × 2N response matrix:[
y
ȳ

]
=

[
ψ
ψα

]
Λ (3.6)

or

Φ = ΨΛ (3.7)

Applying another time shift to the system will result in a new 2N×2N

system matrix: [
ŷ
ˆ̄y

]
=

[
ψα
ψα2

]
Λ (3.8)

or

Φ̂ = ΨαΛ (3.9)
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The two systems can now be manipulated to eliminate the matrix con-

taining the time-dependent term, [Λ]:

Φ̂Φ−1Ψ = αΨ (3.10)

The corresponding eigenvalue problem is

Φ̂Φ−1
{
Ψr

}
= αr

{
Ψr

}
(3.11)

where Φ̂ and Φ are the response matrices, {Ψ} is the system’s rth mode shape,

and αr contains the corresponding natural frequency and damping ratio.

Referring back to Eq. (3.5), one can see that

αr = eλr∆t (3.12)

where λr is the rth characteristic root of the system described in Eq. 3.1, and

∆t is the time shift between the response matrices.

For underdamped systems, the rth characteristic root λr is defined as,

λr = −ζr (ωn)r ± (ωn)r
√
ζ2
r − 1 (3.13)

where (ωn)r is the rth natural frequency and ζr is the rth damping ratio. The

damping ratio is less than 1 for an underdamped system, so the characteristic

root will be complex.

Because λr is complex valued, αr from Eq. (3.12) must also be complex.

Let:

αr = ar + jbr (3.14)
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and

λr = cr + jdr (3.15)

where ar and br are the real and imaginary components of αr, and cr and dr are

the real and imaginary components of λr. The real and imaginary components

of the characteristic root λr can therefore be determined as,

cr =
1

2∆t
ln(a2

r + b2
r) (3.16)

and

dr =
1

∆t
tan−1

(
br
ar

)
(3.17)

Referencing Eq. (3.13), one can see,

cr = −ζr(ωn)r (3.18)

and

dr = (ωn)r
√
ζ2
r − 1 (3.19)

The rth natural frequency (ωn)r is therefore defined as

(ωn)r =
√
c2
r + d2

r (3.20)

and the rth damping ratio ζr is

ζr =
cr√
c2
r + d2

r

(3.21)
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3.2 Noise Reduction through Identification of Compu-
tational Modes

Suppose the number of modes contributing to the response of the sys-

tem is equal to N . In the basic formulation of the ITD procedure, the system

response matrix y in Eq. (3.3) will be formulated using the response at N lo-

cations and 2N time instants. If these responses contain measurement noise,

the eigenvalues and eigenvectors determined from Eq. (3.11) must represent

both the structural response and the underlying noise, distorting the resultant

modal characteristics. In other words, the mode shapes ψr and characteristic

roots λr in Eq. (3.1) will include both the actual response and a contribution

due to the measurement noise in y (x, t).

If, however, the system response matrices are formulated using the

response at M locations and 2M time instants where M > N , or the number

of measurement locations is greater than the number of contributing modes

above the noise floor, then ITD analysis will calculate more modes than are

contributing to the response. These extra modes are known as computational

modes, and they characterize the noise of the system.

Another way to view this is by replacing Eq. (3.1) with,

y(x, t) =
N∑
r=1

ψr(x)eλrt + n(x, t) (3.22)

where n(x, t) is the noise added to the response. This noise can be modeled

as computational modes of the same form as the structural modes:

y(x, t) =
N∑
r=1

ψre
λrt +

M∑
r=N+1

ψre
λrt (3.23)
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Thus M − N modes produced by ITD analysis will be computational

modes. These computational modes act as outlets for noise, increasing the

accuracy of the N structural modes.

The solution will now contain both structural and computational modes,

and a method to separate them is required. Ones such method is to solve the

eigenvalue problem for a different set of time instants and compare the complex

eigenvectors from both solutions using the Mode Shape Correlation Constant

(MSCC)[16], defined as,

MSCC =

∣∣∣{γ1}T {γ2}∗∣∣∣2{
γ1
}T {

γ1
}∗ {

γ2
}T {

γ2
}∗ (3.24)

where {γ1} is the first modal vector, {γ2} is the second modal vector, and

* denotes the complex conjugate. If two mode shapes have an MSCC close

to 1.00 + i ∗ 0.00 then the modes are correlated. Frequency and damping

matching combined with the MSCC can be used to separate actual modes from

computational modes, which will not be correlated between the two solutions.

3.3 Non-Symmetric Response Matrices and the Double
Least Squares Method

The accuracy of the modal parameters generated by the ITD method

can be further improved by formulating an overdetermined system matrix and

reducing it using a least-squares approximation. The system is overdetermined

if the response matrices Φ̂ and Φ in Eq. (3.11) are constructed to be of size

2N ×R with R > 2N corresponding to the number of time instants measured.
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The least squares solution of the system is calculated as,

A
{
Ψr

}
= αr

{
Ψr

}
(3.25)

where

A = [Φ̂ΦT ][ΦΦT ]−1 (3.26)

This has been shown, however, to produce large errors in the calcu-

lated damping ratios. Ibrahim[17] shows that using a double least squares

approximation yields much more accurate damping ratios while preserving

the accuracy of the natural frequencies and mode shapes. The system matrix

A in Eq. (3.25) is calculated by the double least squares approach as

A =
1

2

(
[Φ̂ΦT ][ΦΦT ]−1 + [Φ̂Φ̂T ][ΦΦ̂T ]−1

)
(3.27)

Ibrahim[17] recommends keeping R > 4N to ensure an accurate least

squares approximation.
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Chapter 4

Modal Analysis using the Ibrahim Time

Domain Method

In this chapter, the procedure to extract modal information from defor-

mation data using the ITD method is demonstrated through two experiments.

In the first experiment, the deformation of a cantilever beam is simulated us-

ing Euler-Bernoulli beam theory. In the second experiment, the deformation

of an actual cantilever beam is measured using DIC.

The goals of these experiments are to demonstrate the ability of ITD

to extract modal parameters from deformation data, as well as to describe the

procedure to obtain deformation data using DIC. Finally, the accuracy of both

the deformation measured using DIC and the modal parameters determined

through ITD analysis will be discussed.

4.1 Simulated Beam Experiment

In order to verify the ability of the ITD method to accurately extract

modal parameters, an ITD analysis was performed on a simulated cantilever

beam. The vibration response of a 0.45×0.05×0.0005 m aluminum cantilever

beam subjected to an initial displacement varying cubicly along its span was
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simulated using Euler-Bernoulli beam theory. The displacement at 80 loca-

tions along the span was calculated at 320 time intervals of 0.002 s. These

displacements were then used to populate the response matrices Φ̂ and Φ

in Eq. (3.11). The modal parameters were determined from the solution to

the eigenvalue problem in Eq. (3.11). The response simulated at three time

instants separated by 0.002 s is shown in Figure 4.1.
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Figure 4.1: Example deflections of simulated beam. Each time instant is
separated by 0.002 s.

The mode shapes determined through ITD analysis are shown in Figure

4.2, and the percentage difference between the ITD mode shapes and the

mode shapes from the Euler-Bernoulli beam theory is shown in Figure 4.3. A

comparison of the Euler-Bernoulli and ITD calculated natural frequencies is

shown in Table 4.1.
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Figure 4.2: Flap bending mode shapes determined through ITD analysis.

The ITD method was able to accurately reproduce all five natural fre-

quencies and mode shapes contributing to the response of the system. The

maximum error in the measured natural frequencies is 0.002%. The first mode

shape was the most accurate, with a maximum deviation of 0.003% from the

exact solution. The fifth mode shape was the least accurate, with a maximum

deviation of 0.1%.
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Figure 4.3: Percent deviation of calculated ITD mode shapes from theoretical
E-B shapes. The left plot is the deviation of the first flap bending mode shape;
the right plot is the deviation of the fifth flap bending mode shape.

Mode
ITD Frequency

(Hz)
Exact Frequency

(Hz)
Percent

Difference
First Flap 2.0117 2.0117 0%

Second Flap 12.6080 12.6078 0.002%
Third Flap 35.2976 35.2969 0.002%
Fourth Flap 69.1811 69.1815 0.001%
Fifth Flap 114.3598 114.3613 0.001%

Table 4.1: Natural frequencies from ITD analysis and exact solution.

25



4.2 Cantilever Beam Experiment

One of the challenges of performing an ITD analysis on a structure

is collecting data at a sufficient number of locations simultaneously to pop-

ulate the response matrices Φ̂ and Φ in Eq. (3.11). This normally requires

numerous individual strain gauges or accelerometers to be mounted to the

structure. Ibrahim[15] developed a method to artificially increase the number

of measurement locations by using time-shifted responses known as pseudo-

measurements, however the spatial resolution of the resultant mode shapes is

still limited by the number of sensors.

DIC produces deformation vectors over the whole field of interest. This

not only eliminates the need for pseudo-measurements, but also allows for mul-

tiple formulations of the ITD analysis from the same set of data using differ-

ent measurement locations. For example, if deformation vectors are produced

across the chord and span of a beam, the response matrices can be formulated

using a strip of vectors along a constant chord-wise location to produce flap

bending mode shapes. The user can then formulate a new set of response ma-

trices using a strip of vectors along a different constant chord-wise location to

produce an independent set of flap bending mode shapes. The scatter of the

resultant modal parameters can then be determined without requiring multi-

ple tests. For these reasons, DIC is an excellent tool to obtain the vibration

response for an ITD analysis.

The use of DIC measurements for ITD analysis is demonstrated through

the modal analysis of a 0.45 × 0.04 × 0.0007 m aluminum cantilever beam
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subjected to an impulse at its midspan provided by a small hammer. Images

of the vibration of the beam were captured using a pair of Phantom Miro M310

high-speed digital cameras with a 35mm focal length lens. DIC was performed

on the images using LaVision DaVis 8.2.2 image processing software. In this

section, the procedure to obtain deformation data using DIC is described, and

the results of the experiment are presented.

The spatial resolution and accuracy of DIC measurements are depen-

dent on the test setup. This includes the geometry of the test setup, the

preparation of the test article, the camera settings and lighting, the calibra-

tion procedure, and the parameters of the DIC calculation.

4.2.0.1 Geometry of Test Setup

Three dimensional surface heights, deformations, and strains of a struc-

ture are determined through DIC by capturing images of the structure with

two high-resolution cameras separated by a fixed distance. The focal length

of the camera lenses and the distance from the camera to the test article de-

termine the field of view of the cameras. A longer focal length and a smaller

distance between the camera and the test article will resolve smaller vibra-

tions but decrease the field of view. It is possible to analyze several smaller

sections of the test article independently and stitch together the results in

post-processing, but this increases complexity and introduces other sources of

uncertainty, such as how well the images are aligned.

DIC determines the 3D position of points in the field of focus using the
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parallax between the two camera images. Thus a larger camera separation will

better resolve 3D displacements, however the whole region of interest must

be visible in both cameras. Additionally, if the test article undergoes large

displacements, a larger camera separation will decrease the size of the region

in which the test article will be simultaneously in focus for both cameras.

For this experiment, the two cameras were positioned 1 m from the

cantilever beam with 0.5 m separation between the cameras. A schematic of

the test setup is shown in Figure 4.4.

Cameras 

Cantilever Beam 

1m 

0.5 m 

Figure 4.4: Schematic of DIC test setup. Gray lines show field of view of each
camera. Both cameras must be focused on the same region of the test article
in order to find correlation between the images.

4.2.0.2 Test Article Preparation

A high-contrast speckle pattern must be applied to the test article for

DIC to determine the deformation of individual points. A uniform matte
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black background with white speckles or a matte white background with black

speckles are suitable choices. The speckles should be sized so that they are

approximately 3 pixels in diameter with a 3 to 9 pixel separation between

speckles. Thus the ideal speckle size will be determined by the focal length

and distance from the cameras to the test article. A picture of the test setup

with a close-up of the speckle pattern is shown in Figure 4.5.

Figure 4.5: Cantilever beam with random speckle pattern. High-speed cameras
can be seen in the foreground. Close-up of speckle pattern shown in image
inset.

4.2.0.3 Camera Settings and Lighting

The camera lens aperture determines the depth of the field of focus. A

smaller aperture increases the image depth of focus but requires more illumi-

nation. For this test, the f-stop, or ratio of focal length to aperture diameter,

was selected to be 5.6.
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The exposure time of the camera sets how long the shutter will remain

open for each image capture. A shorter exposure time decreases image blur of

fast-moving objects, however more lighting is required. The exposure time for

this test was set to 31 µs.

The image capture rate must be selected according to the expected

frequencies of vibration. Similar to modal analysis in the frequency domain,

the sampling frequency must be greater than twice the highest frequency of

interest. However, sampling at too high a frequency decreases the ability to

resolve vibration at lower frequencies. This is because the response matrices

are formulated on the shift between three successive measurements, so if not

enough modal displacement has occurred within that time frame, the ITD

procedure cannot extract accurate modal parameters. Based on the analysis

of numerous experiments, it was determined that the sampling rate must be

less than 100 times the lowest frequency of interest. The sampling rate can

be artificially halved by only analyzing every other image. Similarly, every

third, fourth, etc. image can be analyzed to reduce the sampling rate further.

For this test, images were captured at a rate of 1000 Hz, although the ITD

analysis was performed on every other image, making the effective sampling

rate 500 Hz.

The entire region of interest must be in focus for the DIC to produce

accurate deformations. If the plane of the test article is not parallel to the

plane of focus of the camera, a Scheimpflug adaptor can be used to adjust the

angle of the lens relative to the sensor (image plane), which rotates the plane
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of focus.

Proper illumination is critical for image correlation. It is recommended

that the average pixel intensity be above 80 counts[18]. Additionally, reflec-

tions from the light source that remain stationary as the test article moves

(i.e. glare) can distort the produced deformation vectors. Finally, if possible,

illumination should be provided by a flicker-free source such as sunlight or a

flicker-free studio light . A pair of incandescent lamps were used to illuminate

the cantilever beam in this test.

4.2.0.4 Calibration

The DIC calibration defines both a mapping function that transforms

camera image coordinates into real world coordinates and a dewarping func-

tion to correct for image distortions. Calibration is performed by placing a

calibration plate with markers of known size and spacing approximately at

the location of the test article. By capturing images of the calibration plate

and identifying markers in the images from both cameras, the DIC software

can calculate a mapping function that is valid over the entire region of focus.

The DIC software does not require the calibration plate to cover the entire

field of view, and it only requires a single view of a 2D surface to generate an

acceptable mapping function[18]. However, increasing the image area covered

by the calibration plate and capturing multiple images of the plate at different

heights and tilt angles can increase the accuracy of the mapping function. The

software also calculates the positions of the cameras relative to the calibration
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plate and the average standard deviation in pixels to the marker locations. A

good calibration will have a standard deviation of less than 0.3 pixels [18]. For

this experiment, calibration was performed with a 310 mm by 310 mm cali-

bration plate with targets imprinted on the surface and in grooves to provide

a three dimensional array of reference points.

4.2.0.5 Image Acquisition and Deformation Calculation

A series of images must be captured of the test article undergoing vi-

bration. The deformation will be calculated relative to some reference image,

so an image pair of the stationary test article must be captured as well. For

this test, 3000 images were captured starting with with the beam at rest. The

beam was impacted with a small hammer near the midspan of the beam at

image 98, or 0.098 s after recording began. The last image before the hammer

impact was chosen to be the reference image, and the previous images were

discarded.

Once the 3D mapping and dewarping functions have been defined and

the images of the vibrating test article have been captured, DIC can be per-

formed to calculate the deformation of the test article in each image. The

reference image from one camera is divided into a grid of interrogation win-

dows. Each interrogation window possesses a unique intensity pattern defined

by the speckles contained within the window. The DIC algorithm then identi-

fies the same intensity pattern in the image from the other camera. The image

coordinates of the patterns are passed through the mapping and dewarping
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functions to identify the spatial location of each group of speckles. The same

intensity patterns are identified in each subsequent image pair, and the shift

in pixels between the patterns in the reference image pair and the following

image pairs is used to determine the 3D displacement of each group of speckles.

Each interrogation window produces a single deformation vector.

The deformations in each image pair can be calculated from the pixel

shift relative to the reference image or relative to the preceding image. When

the expected deformations are small, it is preferable to calculate the deforma-

tion relative to the reference image. However, if the test article has moved

a large distance relative to the reference image, the pixel shift may be too

great to find correlation. In that case, the deformation can be calculated rela-

tive to the preceding image, and the deformations between each image can be

summed to determine the deformation relative to the reference image. While

this allows correlation to be maintained even over large deformations, the er-

ror from each calculation is propagated through the subsequent deformation

calculations. As the deformations were small for this test, correlation was

performed relative to the reference image.

The spatial resolution of the deformation vectors is determined by the

size of the interrogation windows and the overlap between windows. Typical

window sizes range from 16×16 to 64×64 pixels with 50% to 75% overlap be-

tween windows. Larger sized windows generally yield more accurate estimates

of deformation, however fewer deformation vectors will be produced. Addi-

tionally, window sizes that are too large may not accurately determine the

33



deformation of regions with large strain gradients. The interrogation window

size for this test was selected to be 31 pixels with a 75% overlap between win-

dows. This produced 1842 deformation vectors over the surface of the beam

with a spatial resolution of 2.67 mm between vectors. Recall that for the ex-

periment in Section 4.1, an ITD analysis was performed using the deformation

at 80 locations. It is apparent that DIC produces more than sufficient numbers

of deformation vectors to formulate an ITD analysis.

The DIC algorithm requires at least one location to begin the corre-

lation mapping and serve as an initial guess for the surrounding deformation

vectors. These seeding points should be located in an area visible to both

cameras and where relatively small deformation is expected.

An image mask may be defined to exclude pixels outside the area of

interest, decreasing the computation time. An example of a masked and seeded

image is shown in Figure 4.6.

Figure 4.6: Example mask and seeding points.

Post-processing tools can be used to increase the accuracy of the calcu-

lated deformations. Applying an outlier filter will remove vectors that deviate
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from their neighbors by a specified amount. A smoothing filter will apply a

2nd order polynomial smoothing function to vectors calculated from a speci-

fied surrounding area size. The smoothing filter can also fill in missing vectors

removed by the outlier filter. Both post-processing tools were used for this

test.

The deformation measurements can be exported in text (ASCII) for-

mat. The three component deformations are exported with the 2D coordinates

of the vectors. An example deformation field from a rap test is shown in Figure

4.7.

Figure 4.7: Example deformation field from rap test. Each box corresponds
to an individual deformation vector. Red regions indicate larger deformations,
and blue regions indicate smaller deformations.

4.2.1 Formulation of the ITD Response Matrices

A suite of MATLAB codes was developed to perform an ITD analysis

based on the vibration data determined through DIC. Because DIC produces

deformation vectors at far more locations than is required to formulate an
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ITD analysis, the user can select which locations will be used to assemble

the response matrices. Additionally, the user may select what time instants

will be used to assemble the response matrices. This includes the time shift

between matrices ∆t in Eq. (3.4), the interval of time between measurements

y(x, t1), y(x, t2), ... in Eq. (3.3), and the ratio of time instants to measurement

locations as described in Section 3.3. For this experiment, 440 locations along

the span of the beam at 3 chord-wise positions were chosen to assemble the

response matrices. The chosen locations overlaid on the available locations is

shown in Figure 4.8.
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Figure 4.8: Selected deformation vectors for ITD analysis overlaid on the full
range of deformation vectors calculated by DIC over the surface of the beam.

The response at these locations was measured at 883 time instants.

The first 880 time instants were required to formulate the response matrix in

Eq. (3.3). Two more time instants were required to formulate the matrices in

Eq. (3.6) and Eq. (3.8). One last time instant was required to derive a new

set of solutions to be compared to the first using the MSCC as defined in Eq.

(3.24). The deformation along the center constant chord strip in Figure 4.8 at
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three successive time instants is shown in Figure 4.9.
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Figure 4.9: Sample response at selected analysis locations. Each time instant
is separated by 0.001 s.

Finally, thresholds for separating computational modes from structural

modes must be set. Two ITD analyses are performed on time-shifted matrices

in order generate two sets of modal parameters. Modes from each analysis

that possess similar natural frequencies to within a specified threshold are then

compared using the MSCC. If the MSCC has a value higher than a specified

threshold, then the two modes are considered to be the same structural mode.

Modes that do not pass the frequency matching and MSCC tests are assumed

to be computational modes. For this test, the frequencies of two modes were

required to be within 5% of one another and possess an MSCC greater than

0.999 in order to be classified as a structural mode.
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4.2.2 Results of Cantilever Beam Experiment

ITD analysis shows that the response was dominated by three modes.

A Fast Fourier Transform (FFT) was performed on the response measured

by DIC at one location at the tip of the beam, and an analytical solution

was determined for an aluminum cantilever beam of the same dimensions us-

ing Euler-Bernoulli beam theory. A comparison of the natural frequencies

determined by the three methods is shown in Table 4.2. The mode shapes de-

termined by the ITD analysis and the Euler-Bernoulli method are compared

in Figure 4.10, and the results of the FFT are shown in Figure 4.11.

Mode
ITD Frequency

(Hz)
FFT Frequency

(Hz)
Analytical Frequency

(Hz)
First Flap 3.08 3.00 2.82

Second Flap 16.18 16.00 17.65
Third Flap 43.97 43.99 49.41

Table 4.2: Cantilever beam natural frequency comparison from ITD, FFT,
and analytical analyses.
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The natural frequencies from the three solutions show good agreement.

In particular, the natural frequencies from the ITD and FFT solutions are very

close, differing at most by 2.5%. The analytical solution differs slightly from

the other two solutions because the test article is not an ideal beam and the

root was not perfectly clamped. The mode shapes produced by ITD analysis

follow the shapes predicted by beam theory, although there is some deviation.

Again, this can be attributed to the difference between the assumptions of the

Euler-Bernoulli theory and the actual conditions of the test. The damping

ratios determined from this test are listed in Appendix A.
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Figure 4.10: Comparison of ITD and Euler-Bernoulli mode shapes. The ITD
mode shapes agree with the analytical predictions, although there is some
difference as the actual beam was not perfectly cantilevered.
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Figure 4.11: FFT of the deformation measured by DIC at the tip of the
cantilever beam. The peaks circled in red correspond to the first three flap
bending modes.
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4.3 Accuracy of DIC Measurements and Modal Param-
eters

The nominal accuracy of deformation vectors calculated by DIC is solely

a function of window size, with larger windows being more accurate. According

to data provided by the DIC software vendor (LaVision[18]), a window size

of 13 × 13 pixels will have an accuracy of 0.013 pixels, and a window size

of 31 × 31 pixels will have an accuracy of 0.005 pixels[18]. However, this

assumes the deformation was calculated using high-quality pictures, an ideally

speckled test article, and a perfect calibration. Studies have shown that errors

introduced in the calibration procedure [19] and through the interpolation of

pixel intensity due to low-contrast speckles [20] are non-negligible. Sicard and

Sirohi[13] concluded that including these additional sources of error causes the

accuracy to be on the order of 0.01 pixels for in-plane displacements and 0.1

pixels for out-of-plane displacements. This will be the assumed accuracy for

this study.

It is important to note that the accuracy of the measured deformation

does not directly impact the accuracy of the calculated modal parameters,

which are determined from relative motion of different locations on the test

article. Thus, any bias in the measured deformation will not impact the mode

shapes. Also, it is difficult to derive uncertainty in the modal parameters

from the precision uncertainty in the measured deformations due to the noise-

canceling effect of computational modes as described in Section 3.2 and the

double least squares approximation as described in Section 3.3. The best
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approximation of the error of calculated modal parameters is determined from

the scatter from multiple analyses.

One weakness of the ITD procedure is in calculating damping factors.

Ibrahim [17] notes that due to the exponential nature of Eq. (3.16), a small

error in the eigenvalues αr will result in a large error in the calculated damping

ratio in Eq. (3.21). The damping ratio error δ as a function of the eigenvalue

error ε is calculated as,

δ =
100

πfζact∆t
ln (1 + ε/100) (4.1)

where f is the natural frequency, ζact is the actual damping ratio, and ∆t is

the time shift between matrices in Eq. (3.4). For example, if the error in the

magnitude of a calculated eigenvalue is 2%, the natural frequency is 20 Hz,

the actual damping ratio is 0.02, and the sampling frequency is 500 Hz, the

error of the damping ratio would be approximately 790%. Implementation

of the double least squared approximation reduces the error in the damping

ratios, but the error is still much larger than that for the natural frequencies

and mode shapes. The damping ratios will therefore not be discussed in this

study.

4.4 Conclusions of Preliminary Experiments

The results of these experiments show not only that ITD analysis can

accurately determine the modal parameters of a vibrating cantilever beam, but

also that high-speed DIC can measure the deformation used by ITD analysis.
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In the following chapter, this procedure is extended to measure the modal

parameters of a rotating helicopter blade.
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Chapter 5

Helicopter Blade Experiment

An experiment was performed to determine the modal parameters of a

2.032 m diameter composite helicopter rotor blade at rotational speeds up to

900 RPM. The goals of this experiment are to demonstrate the procedure to

extract modal information from rotating cantilever beams using ITD and DIC,

determine the accuracy of the measured deformations and extracted modal pa-

rameters, and investigate how the modal parameters of the rotor blade change

with increasing rotational speed.

In this chapter, the experimental setup is described along with the

procedure to capture the deformation data using DIC and formulate an ITD

analysis of a rotating beam. This differs from a non-rotating test in that the

images captured of the beam are not in a continuous series. Instead, images

are captured at fixed azimuthal positions for every revolution of the beam. A

Hall Effect sensor detects the passage of a magnet fixed to the shaft of the

rotor, which triggers image acquisition. Thus, for a fixed rotational speed

and image acquisition rate, images will be captured of the beam at the same

azimuthal position.
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5.1 Geometry of Test Setup

A single helicopter rotor blade with a counterweight was mounted to

a UT designed and built rigid rotor stand, which was designed to be a stable

platform for tests of large diameter rotors. A detailed description of the rotor

blade is found in Section 5.2. The rotor was spun by a 100 hp hydraulic motor.

Cameras and light fixtures were mounted to a 4.6 m tall frame as-

sembled from 80/20 aluminum extrusions, which was also designed and built

in-house. A camera rail was mounted on extendable booms, which allowed the

cameras to be placed directly over the rotor disk. The experimental setup is

shown in Figure 5.1.

Images were captured using a pair of Vision Research Phantom Miro

M310 high-speed digital cameras. Each camera is capable of recording 3200

images per second at full 1280 × 800 pixel resolution. The 25.6 × 16.0 mm

CMOS camera sensor has a 12-bit resolution, and the minimum exposure time

is 1µs. The cameras were used with Nikon AF Nikkor 35mm f/2D lenses, an

f-stop of 5.6, and LaVision Scheimpflug adaptors. Images were processed using

the LaVision DaVis 8.2.2 software package, which both controlled the image

capture and performed Digital Image Correlation on the saved images.

A LaVision High-Speed Controller synchronized image capture with an

external once-per-revolution trigger provided by a Hall Effect sensor, which

was also used to monitor rotor speed. A single-axis PCB Integrated Circuit

Piezoelectric accelerometer was used to monitor the vibration of the test stand
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Cameras 

Motor 

Blade 

LED Light 
Panel 

Halogen Light 

Rotor 
Stand 

Counterweight 

80/20 
Frame 

Figure 5.1: Helicopter blade experiment setup. Cameras and light fixtures are
mounted to the 80/20 frame. Image capture, hydraulic motor control, and
sensor monitoring is managed from inside a control room.

during operation. Signals from the two sensors were acquired with a National

Instruments PXI-6358 DAQ and LabVIEW. The Hall Effect sensor and ac-

celerometer are shown in Figure 5.2.
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Accelerometer 

Hall Effect 
Sensor 

Magnet 

Figure 5.2: Hall Effect sensor and piezoelectric accelerometer mounted to rotor
stand. The magnet is mounted to the rotating shaft.

The rotor blade was excited by a compressed air nozzle oriented normal

to the rotor disk that shot a constant jet of air through the plane of the rotor.

The span-wise location of the air nozzle and the distance to the rotor disk was

varied between tests to excite different structural modes. The hose pressure

of the compressed air was approximately 90 psi.

The geometric arrangement of the cameras, rotor blade, and air nozzle

is shown in Figure 5.3 and Figure 5.4.
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Figure 5.3: Schematic of test setup, side view. An example placement of the
air nozzle is shown.
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Figure 5.4: Schematic of test setup, front view. An example placement of the
air nozzle is shown.

Note that the cameras are not centered on the rotor stand. The cameras

were positioned so that the first image of every revolution would be aligned

horizontally at the edge of the field of view. The subsequent images would

show the rotor blade sweeping through the rest of the field of view. This is

because the DIC algorithm calculates the deformation at locations defined in

the first image, so the resulting grid in this case will be oriented approximately

horizontally. This simplifies selecting locations for ITD analysis. The spacing

of the imaged azimuthal positions is determined by the rotational speed and
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the image acquisition rate, and the number of images that can be captured

per revolution is determined by the field of view. A visualization of the image

capture sequence is shown in Figure 5.5.

Field of  
View 

Plane of Rotation 

Rotor Stand 
Image 1, 6, … 
Image 2, 7, … 
Image 3, 8, … 
Image 4, 9, … 
Image 5, 10, … 

Blade 

Figure 5.5: Imaging sequence of blade passage. At a rotational speed of 900
RPM, five images of the blade may be captured at a rate of 1000 Hz before
the blade moves out of the field of view.

5.2 Test Article

The test article under investigation is a single blade of a 2.032 m di-

ameter, Mach-scale helicopter rotor[21]. The composite blade is composed of

a foam core wrapped with carbon fiber cloth, with an additional carbon-fiber

stiffening cuff near the root. The blade profile and cross sections are shown in

Figure 5.6.
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Figure 5.6: Blade profile and cross sections. The blade has a VR-12 airfoil
section, a chord length of 0.08 m, and a design tip speed of 190 m/s.

The blade is mounted to a blade grip, which is in turn rigidly mounted

to a rotor hub. The pitch angle of the blade is set at approximately 0 degrees

to minimize rotor thrust and resultant upward bending of the rotor blade.

A steel counterweight is mounted to the opposite side of the rotor hub with

another mounting grip.

A stochastic pattern of black speckles on a white matte background

was applied to the blade. The speckles were sized to be approximately 1 mm

in diameter with 1 - 3 mm spacing between the speckles. With a 35 mm lens

at a distance of 1.1 m, this corresponded to a speckle diameter of 2 - 3 pixels.

A picture of the speckled test article is shown in Figure 5.7.
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Figure 5.7: Top view of rotor blade mounted to rotor stand. Close up view of
speckle pattern shown in image inset.

5.3 Camera Settings and Lighting

The field of view of the cameras on the rotor plane was approximately

50×75 cm, which corresponded to a maximum azimuthal range of 30 degrees.

The outer 70 cm of the blade were contained in this field of view, which includes

the outermost portion of the stiffening cuff. From previous experiments, it was

determined that the bending deformation of the stiffening cuff was negligible

compared to the deformation of the outboard section of the wing when the

blade was vibrating. Thus, the stiffening cuff was excluded from the field of

view in order to improve the spatial resolution on the rest of the blade.

A series of images was captured at a rate of 1000 Hz every time the

Hall Effect Sensor detected the passage of the magnet attached to the rotor

shaft. At the maximum rotational speed of 900 RPM, this allowed for 5 image
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captures per revolution before the rotor blade would move out of the field of

view. The aperture of the camera lens was set to 5.6 f/D.

The exposure time was selected based on the maximum allowable blur

at the tip of the blade. From the results of previous experiments, this was

determined to be 1 mm. At 900 RPM, this corresponded to an exposure time

of 11µs.

The test article was illuminated by a Dracast LED1000 Pro Daylight

light panel, which provided flicker-free illumination. When very short exposure

times were required, additional lighting was provided by a Smith Victor Q60

halogen light.

5.4 Calibration

Before each test, a calibration was performed to determine the map-

ping function to convert image coordinates into physical coordinates. A Type

1000 calibration plate (0.8 × 1 m) was mounted in the field of focus of the

cameras, and a series of three images of the plate were averaged to produce

the calibration image. The resultant standard error of fit varied between 0.1

and 0.15 pixels between calibrations. The calibration plate mounted in place

is shown in Figure 5.8.
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Calibration 
Plate 

Figure 5.8: Calibration setup. Calibration plate is mounted to rotor hub and
80/20 frame. The plate is large enough to cover the field of view of the cameras.

5.5 Image Acquisition and Deformation Calculation

For the non-rotating test, the blade was struck with a small hammer and

1200 images were captured of the blade as it vibrated. The impact occurred

at the 110th image, or 0.11 seconds after recording began.

For rotating tests, 100 unexcited blade passage were recorded, and

500 excited blade passage were recorded. The unexcited blade passages are

recorded to determine the rigid body motion and elastic deformation of the
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blade that is not caused by the applied excitation. The unexcited deforma-

tions will be averaged and subtracted from the excited blade passages, leaving

only the deformation from the vibration of the blade around the baseline de-

formation. A set of 500 images of the stationary blade positioned at the same

azimuthal position as the first image of each revolution was also captured to

provide a reference for DIC calculation.

5.6 DIC Settings

The subset size (interrogation window size) for performing the DIC was

set to 31 pixels. The step size was chosen to be 12 pixels, which corresponds

to a 61% overlap between windows. These settings produced a vector grid

with a spatial resolution of 12 pixels between vectors. With the geometric

arrangement shown in Section 5.1, this corresponded to a physical spatial

resolution of 7.2 mm. A geometric mask was applied to the images to exclude

regions away from the test article from the DIC calculations and decrease

computation time. Three seeding points near the root of the test article were

chosen as initial start points for the DIC algorithm. Approximately 850 vectors

were calculated over the surface of the test article, though the total number

of vectors varied slightly between tests due to small changes in setup and

calibration.

The nominal accuracy of the DIC measurements for these settings ac-

cording to the LaVision manual is 3 µm. The accuracy according to the study

performed by Sicard and Sirohi[13] is 6 µm for in-plane deformation and 60
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µm for out-of plane deformation.

For the non-rotating rap test, DIC was performed on images relative

to an image of the blade before it was impacted by the hammer. For the

rotating tests, an image of the stationary blade was inserted before the first

image of each revolution. The deformation of the blade was then calculated

relative to the image of the stationary blade. Because the blade moved through

the entire field of view for each rotation, the pixel shift from the last images

relative to the stationary image was too large to find correlation. Therefore,

the deformation in each image after the first was calculated relative to the

preceding image, and the total deformation was calculated as the sum of the

deformations from all the previous images. This procedure was performed for

both the unexcited blade passages and the excited blade passages.

5.7 ITD Analysis Parameters

ITD analysis was performed using deformation vectors at constant

chord-wise locations along the blade. In order to generate a set of modal

parameters that could be statistically analyzed, multiple ITD analyses were

performed on strips of vectors at different chord locations. Additionally, the

number of locations along each strip, the starting azimuthal position, and the

ratio of time instants to measurement locations were varied. The sampling

rate was also artificially reduced to 500 Hz by formulating the ITD analysis

using the deformation from every second image.

Computational modes were separated from structural modes by requir-
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ing modes from two different formulations to have an MSCC greater than 0.95

and frequencies matching to within 5%. These settings frequently did not filter

out all computational modes, forcing modes, and harmonics, so the expected

frequencies and mode shapes were used to assess whether a produced mode

was indeed a structural mode.

The accuracy of the modal parameters was determined from a 95%

confidence interval of the mean of the collected parameters.

5.8 Assumptions and Approximations

The procedure outlined above makes certain assumptions and approx-

imations in determining the modal parameters of rotating cantilever beams;

these are described in this section. Suggestions to improve the current method-

ology and minimize or eliminate these assumptions are listed in Section 7.2.

One assumption is that the response due to excitation from the rotor

hub is negligible compared to the response from the applied excitation. The

applied excitation is an impulse before the beam enters the field of view of the

cameras, so the measured response is approximated to be a free response as

required by the basic ITD formulation in Section 3.1. If the excitation from the

rotor hub were not negligible, then the response could not be approximated

as a free response.

A second assumption is that because the applied forcing is periodic, the

ITD analysis will produce a “forced mode” that can be identified and excluded.
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This forced mode will match the frequency of rotation and have a damping

ratio close to zero.

A third assumption is that any identified mode with a natural frequency

that is an integer multiple of another mode or the frequency of rotation is a

harmonic and can be excluded. It is important to perform a non-rotating test

to identify the expected natural frequencies so that structural modes are not

accidentally assumed to be forced or harmonic modes.
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Chapter 6

Results and Analysis

6.1 DIC Deformations

The deformation of the blade was calculated at approximately 850 loca-

tions over the surface of the blade while rotating at 0, 300, 600, and 900 RPM.

The deformation from 100 rotations with no applied excitation was averaged

at each captured azimuthal position to determine the elastic deformation and

rigid body motion of the blade out of the plane-of-rotation. This baseline

deformation was subtracted from 500 excited blade passages to determine the

bending vibration of the blade. The average baseline deformation and asso-

ciated uncertainty is plotted with a sample excited deformation at 600 RPM

in Figure 6.1. Three successive time instants separated by 0.001 s are shown,

which corresponds to three different azimuthal positions.
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Figure 6.1: Excited and unexcited blade deformations at 600 RPM.

The magnitude of the baseline deformation is much larger than the

vibration, which is shown by the proximity of the excited and unexcited de-

formation shapes. The variance of the baseline deformation is small, with 5%

uncertainty at the root and 1% uncertainty at the tip. The negative deforma-

tion values indicate that the blade was positioned with a slight negative pitch

angle, although the resultant elastic deformation at the tip is less than 1 cm.

The difference between the three time instants for the baseline measurements

corresponds to the rigid body motion that arises due to the misalignment of

the calibration plate with the plane of rotation.

There is some unusual deformation near the tip of the blade for both

the excited and unexcited blade passages. Upon further investigation, it was

concluded that this was caused by a region of glare on the blade. Because the

glare remains stationary while the blade moves, the deformation calculated in
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this region differs from surrounding areas. This condition exists for both the

excited and unexcited blade passages, so the bias is removed with the elastic

deformation and rigid body motion.

The deformation of the blade with the elastic deformation and rigid

body motion removed is shown in Figure 6.2.
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Figure 6.2: Excited blade deformations with rigid body correction at 600 RPM.

The series of corrected deformations indicate that the blade is flap-

ping downward as it passes through the field of view. There is some random

variation in the corrected deformation that is on the order of 50 µm. This

is approximately the magnitude of the predicted uncertainty for out-of-plane

deformation (60 µm).

62



6.2 ITD Analysis Results

The natural frequencies and mode shapes associated with the first three

flap bending modes of the blade were determined from the corrected deforma-

tions. The natural frequencies and mode shapes are compared to an analytical

model of the same rotor blade, developed by Schmaus and Chopra[22] using the

University of Maryland Advanced Rotorcraft Code (UMARC). The analytical

solution was developed by modeling the blade as a second-order, nonlinear,

isotropic Euler-Bernoulli beam with flap, lag, torsion, and axial motion. A

fan plot comparing the analytical and experimental natural frequencies at in-

creasing rotational speeds is shown in Figure 6.3. The frequencies in the fan

plot are normalized by 1800 RPM, which is the design speed of the blade. The

natural frequencies are summarized in Table 6.1.

Mode 0 RPM 300 RPM 600 RPM 900 RPM
Analytical (Hz) 16.6 17.6 19.0 25.5
Experimental (Hz) 13.6±0.01 14.5±1.2 14.9±0.8 18.8±1.6

First
Flap

Percent Difference 22% 21% 28% 36%

Analytical (Hz) 94.7 95.6 97.7 103.8
Experimental (Hz) 81.9±0.01 82.6±0.8 83.1±0.6 88.0±1.9

Second
Flap

Percent Difference 16% 16% 18% 18%

Analytical (Hz) 245.2 246.1 249.0 254.7
Experimental (Hz) 214.8±0.3 195.5±12.7 199.8±2.0 209.7±1.9

Third
Flap

Percent Difference 14% 26% 25% 21%

Table 6.1: Analytical vs. experimental natural frequencies.
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Figure 6.3: Natural frequencies vs. rotational speed. Dashed lines correspond
to one, five, ten, and fifteen per revolution frequencies.
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The experimental natural frequencies are consistently lower than the

analytical natural frequencies. In order to verify the results of the non-rotating

test, a rap test was performed on the blade mounted in the rotor hub using

an ICP accelerometer. The accelerometer was attached to the stiffening cuff

of the blade, and the rotor hub was impacted with a small hammer. The

vibration response was collected at a sampling rate of 1000 Hz over an interval

of 1 s, and an FFT was performed on the signal to determine the frequency

content. The power spectrum averaged over five tests is presented in Figure

6.4.
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Figure 6.4: Averaged power spectrum of accelerometer response from rap tests.
The first three flap bending natural frequencies are circled in red.

The peaks circled in red at 13.6, 81.6, and 212.8 Hz correspond closely

with the first three flap bending natural frequencies determined from the ITD
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analysis at 0 RPM. This indicates that these are indeed the natural frequen-

cies and that the UMARC simulation did not accurately predict the natural

frequencies for these test conditions. The discrepancy is caused by differ-

ing boundary conditions between the simulation and the test. The UMARC

simulation assumes the blade is perfectly clamped, however there is some com-

pliance in the bearings of the actual rotor stand.

In order to better compare the development of the natural frequencies

with increasing rotational speed, the analytical flap bending frequencies were

scaled according to the results of the rap test. The adjusted fan plot is shown

in Figure 6.5. The experimental frequencies are compared with the adjusted

analytical frequencies in Table 6.2.

Mode 0 RPM 300 RPM 600 RPM 900 RPM
Analytical (Hz) 13.6 14.4 15.6 20.9
Experimental (Hz) 13.6±0.01 14.5±1.2 14.9±0.8 18.8±1.6

First
Flap

Percent Difference 0.0% 0.6% 4.3% 10.0%

Analytical (Hz) 81.6 82.4 84.2 89.4
Experimental (Hz) 81.9±0.01 82.6±0.8 83.1±0.6 88.0±1.9

Second
Flap

Percent Difference 0.3% 0.2% 1.3% 1.6%

Analytical (Hz) 212.8 213.6 216.1 221.0
Experimental (Hz) 214.8±0.3 195.5±12.7 199.8±2.0 209.7±1.9

Third
Flap

Percent Difference 0.9% 8.5% 7.5% 5.1%

Table 6.2: Adjusted analytical vs. experimental natural frequencies. Analyti-
cal frequencies have been scaled to the results of the rap test.
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Figure 6.5: Natural frequencies vs. rotational speed. Analytical frequencies
have been scaled according to the results of the rap test. Dashed lines corre-
spond to one, five, ten, and fifteen per revolution frequencies.
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The experimentally determined natural frequencies agree with the scaled

analytical natural frequencies. The second flap bending frequencies in particu-

lar agree within 2% of the analytical predictions for all rotational speeds. The

first flap bending frequency at 900 RPM was the furthest from the predicted

value with a 10% difference between the experimental and analytical natural

frequencies. With an uncertainty of ±8.5%, it was also the least repeatable of

the measurements. This is a result of the sampling frequency used to generate

the response. At 900 RPM, the blade would move out of the field of view

before enough images could be captured to formulate a response at a sampling

rate of 500 Hz, so the modal parameters were determined using a sampling rate

of 1000 Hz. As discussed in Section 4.2.0.3, if the sampling rate is greater than

100 times the frequency of interest, not enough modal displacement will occur

between each time shifted response matrix to accurately determine the modal

parameters. A sampling rate of 1000 Hz approaches this limit for the first flap

bending mode, so it is not as well resolved as the mode shapes generated with

a 500 Hz sampling rate, especially near the root.

The experimental natural frequencies also generally exhibit the ex-

pected trend of increasing natural frequency with increasing rotational speed.

One notable discrepancy is the decrease in frequency of the third flap bending

mode calculated by the ITD method between the non-rotating case and at 300

RPM. This unexpected result bears further investigation, especially as after

the initial drop in frequency, the third mode then increases with frequency

as predicted. It must be noted that for the rotating tests, the excitation was
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generally near the tip of the blade, which would not excite the third mode

as strongly as the first two modes. Thus, the third mode was much more

difficult to resolve using ITD analysis. In particular, the third mode at 300

RPM exhibited a large amount of scatter for different formulations of the re-

sponse matrices as described in Section 5.7, and typically it would not pass

the frequency matching and MSCC thresholds set to remove computational

modes.

The first flap bending mode shape at each rotational speed overlaid on

the analytical prediction is shown in Figure 6.6 through Figure 6.9.
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Figure 6.6: First flap bending mode shapes at 0 RPM.

69



100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

Spanwise Location (mm)

A
m

p
lit

u
d
e

 

 

Analytical, 14.4 Hz

Experimental, 14.5 Hz

Figure 6.7: First flap bending mode shapes at 300 RPM.
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Figure 6.8: First flap bending mode shapes at 600 RPM.
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Figure 6.9: First flap bending mode shapes at 900 RPM.

The experimental first flap bending mode shapes closely follow the an-

alytical prediction for all rotational speeds. The variance of the first mode

shape at 900 RPM is greater than the other rotational speeds. Again, this is

a result of the high sampling rate used to formulate the ITD analysis at 900

RPM.

The number of measurement locations along the span of the blade was

varied to produce more mode shapes that could be averaged and statistically

analyzed. If a formulation was used with a lower spatial resolution, only the

measurement locations found in every formulation were collected and averaged.

This prevented biasing the mode shapes in favor of the formulations with high

spatial resolution.

The second flap bending mode shapes are shown in Figure 6.10.
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Figure 6.10: Second flap bending mode shapes. First plot is at 0 RPM, second
is at 300 RPM, third is at 600 RPM, fourth is at 900 RPM
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For every rotational speed, the second flap bending mode was the best

resolved and most repeatable mode shape produced. It is therefore interest-

ing to note that as the rotational speed increases the difference between the

analytical and experimental mode shape increases.

The slight discontinuity in the mode shape at the node near the tip is an

artifact of the spatial resolution and the method of approximating real-valued

mode shapes from complex mode shapes. The magnitude of the complex

shapes was plotted, and when a minimum was found, the sign of the amplitude

was flipped. The slope of the shape is large at the location of the discontinuity,

so if a minimum was found at slightly different locations for different solutions

the resultant variation would be large.

The third flap bending mode shapes are shown in Figure 6.11.
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Figure 6.11: Third flap bending mode shapes. First plot is at 0 RPM, second
is at 300 RPM, third is at 600 RPM, fourth is at 900 RPM
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As previously discussed, the third mode shapes are not as well resolved

as the other mode shapes for the rotating tests. This is primarily a result of

the method of excitation. However, the experimental shapes still follow the

analytical shapes well.

To better investigate the development of the mode shapes with increas-

ing rotational speed, the mode shapes from the different tests were overlaid

on one another. The first flap bending mode shapes are shown in Figure 6.12.
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Figure 6.12: First flap bending mode shapes with increasing rotational speed.
The upper plot shows the analytical mode shapes at 0, 300, 600, and 900
RPM. The lower plot shows the experimental mode shapes.

As expected, the analytical first flap bending mode tends to flatten out

with increasing rotational speed, although the effect is small at these speeds.

The variance of the experimental modes is too large to identify a trend.

The second flap bending mode shapes are shown in Figure 6.13.
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Figure 6.13: Second flap bending mode shapes.

The amplitude of the analytical second mode shapes near the midspan

decreases with increasing rotational speed. The effect is even smaller than

for the first mode. The trend of the experimental mode shapes is opposite of

what was expected, however. With increasing rotational speed, the amplitude

of vibration at the center of the beam apparently increases. As previously

mentioned, the second mode shapes were the best resolved and most repeatable

mode shapes produced, and the trend observed is quite distinct. Further

experimentation is required to identify the cause of this trend.
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The third flap bending mode shapes are shown in Figure 6.14.
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Figure 6.14: Third flap bending mode shapes.

There is almost no difference in the analytical mode shapes with in-

creasing rotational speed. The large uncertainty in the experimental mode

shapes make it difficult to determine a trend, however it appears that the

inboard amplitude of the mode shape at 900 RPM is less than that of the

non-rotating case.

As discussed in Section 4.3, the damping ratios calculated though ITD

analysis are much less accurate than the natural frequencies and mode shapes.
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The damping ratios from this study are therefore not presented as part of the

results, but are instead shown in Appendix A.
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Chapter 7

Conclusion

7.1 Results Overview

The first three flap bending natural frequencies and mode shapes of

a rotating helicopter blade were experimentally determined over a range of 0

to 900 RPM and were compared to an analytical model of the system (finite

element method). It was found that the analytical model over-predicted the

natural frequencies due to differing boundary conditions between the model

and the experiment. The analytical frequencies were scaled to the results

of a rap test using traditional frequency domain analysis and compared to

the experimental frequencies. The scaled analytical and experimental natural

frequencies showed good agreement, especially for the non-rotating test and

the 2nd flap bending mode for the rotating test. The non-rotating frequencies

matched to within 0.9%, and the rotating 2nd natural frequencies matched to

within 1.6%. The first flap bending mode at 900 RPM had the largest deviation

from the analytical value with a 10.0% difference between the frequencies. The

third mode for rotating tests also deviated from the analytical prediction by

5.1% to 8.5%.

The uncertainty of the natural frequencies ranged from 0.1% for the
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third mode at 0 RPM to 8.5% for the first mode at 900 RPM. The average

uncertainty of the mode shapes ranged from 0.09% for the first mode at 0

RPM to 5.6% for the third mode at 600 RPM.

One notable unexpected result is an apparent decrease in the third flap

bending natural frequency from non-rotating to rotating conditions. Another

unexpected result is an increase in the amplitude of vibration at the midspan

of the second flap bending mode with increasing rotational speed. Further

investigation is required to definitively determine the cause of these results.

This body of work represents the first integration of DIC with ITD

analysis. The results suggest that this operational modal analysis procedure

is an effective method to experimentally determine the modal parameters of

rotating systems.

7.2 Research Recommendations

While the results from this first attempt at rotational modal analysis

using this procedure are promising, there are several aspects of both the data

collection and analysis procedures that may be improved to increase the ac-

curacy, repeatability, and functionality of the results. Recommendations for

further research and development are as follow:

1. Data Collection

(a) Improve calibration procedure. The calibration used to produce the

results in this analysis was performed using a single view of a 2D
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calibration plate. While this is sufficient to produce an acceptable

mapping function, the calibration can be further improved by cap-

turing multiple images of the plate at different heights and angles of

tilt. An adjustable mount may be constructed to accomplish this.

(b) Provide stochastic excitation. The current method of excitation

provides a single impulse per revolution. This produces a strong

forcing mode that can be difficult to separate from the first flap

bending mode. Developing a method to randomly excite the blade

may alleviate this issue, although it will likely not eliminate it due

to the cyclic nature of rotating systems. Activating and deacti-

vating the air nozzle or translating it during the test should be

investigated.

(c) Increase illumination and decrease exposure time to reduce tip blur.

In order to perform DIC on the blade at higher rotational speeds,

the camera exposure time must be decreased to reduce tip blur.

This would require additional lighting. One proposed method is to

speckle the test article with a fluorescent dye such as Rhodamine

and illuminate it using a laser source.

(d) Increase field of view to capture more angular indices for response

formulation. Capturing more images per revolution allows the user

to artificially decrease the sampling rate by selecting every second,

third, fourth, etc. time instant to analyze. This would allow the

lower natural frequencies to be accurately identified at higher ro-
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tational speeds. The field of view can be increased by increasing

the camera to test article distance, however this must be balanced

against the ensuing loss of spatial resolution and accuracy. As was

seen in the results of the second flap bending mode shape, a de-

creased spatial resolution may cause large variations in the mode

shapes near the nodes.

(e) Improve test article preparation procedure. Over the course of this

research project, a method to more accurately control the size and

spacing of the speckles applied to the test article was sought. An

attempt was made to define a speckle template using MATLAB,

laser cut out the pattern on an acetate sheet, and spray paint

over the template. However it was found that the edges of the

produced speckles were not well defined. An improved speckling

method would decrease test preparation time and allow patterns to

be defined for different test cases.

2. Analysis Procedure

(a) Identify other modes. The current ITD analysis procedure can be

extended to detect torsional, lead-lag, and stretching modes. This

can be accomplished by changing the measurement locations used to

formulate the ITD analysis. For example, the torsional modes may

be found if two parallel strips of deformation vectors at the leading

and trailing edges of the blade are analyzed. However, the accuracy
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of the measurements would need to be improved, as the magnitude

of this deformation is smaller than the flap bending deformation.

(b) Improve identification of structural modes. As noted in Section 5.7,

filters employing the MSCC and frequency matching occasionally

would not remove all the computational modes characterizing the

noise. Additionally, forcing modes at harmonics of the frequency of

rotation are generally present in the solution and must be manually

identified and excluded. Furthermore, the response due to random

excitation is assumed to be negligible compared to the once-per-

revolution excitation. A possible solution to some or all of these

issues is proposed by Mohanty and Rixen [23]. They describe an

algorithm combining ITD and Single Station Time Domain analy-

sis methods that is capable of extracting modal parameters when

harmonic forcing is present at a frequency known a-priori.

(c) Develop method to measure modal participation factors. One limi-

tation of the ITD procedure is the inability to determine the relative

contribution of each mode to the measured response. A possible ap-

proach to determine the modal participation factors is to scale the

mode shapes according to the measured deflection shapes.

7.3 Future Applications

This analysis procedure may be used to develop and verify models

of rotating systems such as helicopter blades and wind turbines. Current
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methods to experimentally determine the modal parameters of such systems

under operating conditions are limited in number and functionality. Further

development of this procedure can produce an effective, robust, and relatively

simple non-contact tool to characterize rotating systems.

Another potential application of this procedure is in damage detec-

tion. There are a large number of studies of damage detection through modal

analysis of static structures. For example, Zou et al.[24] explore the use of

piezoelectric sensors and actuators to detect delamination in composite struc-

tures from the vibration response. Using ITD and DIC to perform damage

detection offers a number of advantages over traditional methods. The ability

of DIC to measure the full field deformation of a structure allows detection

of localized strain concentrations that may be missed using sensors placed at

discrete locations. Also, DIC is a non-contact method of measurement, so it

will have no effect on the vibration response, unlike accelerometers or strain

gages. Lastly, determining the modal parameters of a system in rotation may

detect damage that would be missed in a static test. For example, if the

properties of the mounting or bearing changed, the boundary conditions of

the system in rotation would change, even though the boundary conditions of

the non-rotating system may remain approximately the same. Thus, only the

modal parameters of the system while rotating would be affected.
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Appendix A

Experimental Damping Ratios

Mode Damping Ratio
First Flap 0.0145

Second Flap 0.0081
Third Flap 0.0010

Table A.1: Experimental damping ratios for cantilever beam experiment
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Figure A.1: Experimental damping ratios for helicopter blade experiment
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