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Numerical Study of the Steady/Unsteady Multibody 

Interaction in Ship Propulsion Systems 

Yiran Su, Ph. D. 

The University of Texas at Austin, 2018 

Supervisor: Spyros A. Kinnas 

The goal of this research is to reduce the computational cost of a fully unsteady 

RANS simulation for the multibody interaction problems in the ship propulsion system. To 

achieve this, the boundary element method (BEM) can be coupled with a RANS solver. 

The rapid-changing propeller-induced flow is first decoupled from the slow-changing or 

steady total flow. While RANS can be used to calculate the total flow, BEM is applied to 

the propeller-induced flow. By representing the propeller blades by a body force field and 

a mass source field, it becomes possible for RANS to use a larger time step size (or even 

run as a steady problem) and a smaller number of cells. The use of BEM to handle the 

propeller-induced flow improves the numerical efficiency and also provides a framework 

for sheet cavitation predictions. 

Depending on the level of simplifications, the coupled BEM/RANS scheme can be 

implemented by three different approaches: the unsteady approach, the time-averaged non-

axisymmetric approach, and the time-averaged axisymmetric approach. All of the three 

approaches are described in this dissertation, as well as some numerical studies on different 

body force distribution models, mass source models, effective wake calculation models, 

etc. Then, the scheme is validated by several simple cases in which the propeller’s 
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interaction with upstream bodies is not considered. Finally, the scheme is applied to a hull-

propeller-rudder interaction problem and a contra-rotating propeller problem.  



ix

Table of Contents 

Table of Contents ............................................................................................... ix 

List of Tables ................................................................................................... xiii 

List of Figures ................................................................................................... xv 

Chapter 1. Introduction ............................................................................... 1 

1.1 Background .......................................................................................... 1 

1.2 Motivation ............................................................................................ 4 

1.3 Objectives ............................................................................................. 4 

1.4 Overview .............................................................................................. 5 

1.5 Related Publications.............................................................................. 6 

Chapter 2. Literature Review ...................................................................... 7 

2.1 Potential-based Methods ....................................................................... 7 

2.2 Viscous Flow Methods.......................................................................... 9 

2.3 Potential/RANS Methods .................................................................... 10 

2.4 Originality of the Current Work .......................................................... 13 

Chapter 3. Methodology ........................................................................... 15 

3.1 Boundary Element Method ................................................................. 16 

3.1.1 Flow decomposition ................................................................ 16 

3.1.2 Boundary condition ................................................................. 17 

3.1.3 Boundary element method ....................................................... 18 

3.1.4 Effective wake......................................................................... 20 

3.1.5 Calculation of pressure and forces ........................................... 20 

3.1.6 Single-blade problem............................................................... 22 

3.1.7 Trailing wake .......................................................................... 23 

3.1.8 Multi-blade problem ................................................................ 25 

3.1.9 Boundary layer correction ....................................................... 28 

3.2 BEM/RANS Coupling ........................................................................ 28 

3.2.1 Assumptions ............................................................................ 30 



 x 

3.2.2 Coupling scheme ..................................................................... 33 

3.2.3 Unsteady BEM/RANS scheme ................................................ 34 

3.2.4 Steady non-axisymmetric and steady axisymmetric BEM/RANS 
scheme .................................................................................... 37 

3.2.5 Difference between the unsteady BEM/RANS scheme and the 
immersed boundary method..................................................... 38 

3.3 Body Force Calculation ...................................................................... 39 

3.3.1 Existing studies ....................................................................... 40 

3.3.2 Body force calculation in the unsteady BEM/RANS scheme ... 42 

3.3.3 Body force calculation in the non-axisymmetric BEM/RANS scheme
 ................................................................................................ 44 

3.3.4 Body force calculation in the axisymmetric BEM/RANS scheme44 

3.4 Thickness Blockage Effect .................................................................. 45 

3.4.1 Calculation of mass source term .............................................. 45 

3.4.2 Calculation of compensating force term ................................... 46 

3.5 Effective Wake Calculation................................................................. 46 

3.5.1 Effective wake calculation in the unsteady BEM/RANS approach47 

3.5.2 Effective wake calculation in the non-axisymmetric BEM/RANS 
approach .................................................................................. 51 

3.5.3 Effective wake calculation in the axisymmetric BEM/RANS 
approach .................................................................................. 54 

Chapter 4. Numerical Study and Validation .............................................. 56 

4.1 Definition of Non-Dimensional Numbers ............................................ 57 

4.2 Propeller P5168 in Uniform Inflow Solved by Axisymmetric BEM/RANS
 ........................................................................................................ 58 

4.2.1 Description of the problem ...................................................... 58 

4.2.2 Description of the numerical model ......................................... 59 

4.2.3 Validation of the axisymmetric BEM/RANS scheme ............... 61 

4.2.4 Study of the Thickness Blockage Effect................................... 62 

4.3 Propeller P5168 in Axisymmetric Inflow Solved by Axisymmetric 
BEM/RANS ..................................................................................... 69 

4.3.1 Description of the problem ...................................................... 69 



xi

4.3.2 Description of the numerical models........................................ 70 

4.3.3 Results .................................................................................... 71 

4.4 Propeller P2772 in Uniform Inflow Solved by Unsteady BEM/RANS 74 

4.4.1 Description of the problem ...................................................... 74 

4.4.2 Description of the numerical model ......................................... 76 

4.4.3 Numerical study on different effective wake calculation schemes78 

4.4.4 Influence of the offset distance in calculating the effective wake field
 ................................................................................................ 81 

4.4.5 Result and comparison ............................................................ 83 

4.5 Propeller P2772 in Uniform Inclined Inflow Solved by Unsteady 
BEM/RANS ..................................................................................... 87 

4.5.1 Description of the problem ...................................................... 87 

4.5.2 Description of the numerical model ......................................... 88 

4.5.3 Convergence study on mesh density and time step size ............ 89 

4.5.4 Result and comparison ............................................................ 91 

Chapter 5. Multibody Interaction Applications ......................................... 98 

5.1 Contra-Rotating Propeller Solved by Axisymmetric BEM/RANS and Non-
axisymmetric BEM/RANS ............................................................... 98 

5.1.1 Description of the problem ...................................................... 98 

5.1.2 Description of the numerical model ......................................... 99 

5.1.3 Mesh convergence study.........................................................103 

5.1.4 Results of the straight inflow case...........................................104 

5.1.5 Results of the steering case .....................................................110 

5.2 Hull-Propeller-Rudder Interaction Solved by Non-axisymmetric 
BEM/RANS ....................................................................................114 

5.2.1 Description of the problem .....................................................114 

5.2.2 Description of the numerical model ........................................116 

5.2.3 Result and comparison ...........................................................117 

5.3 Hull-Propeller-Rudder Interaction Solved by Unsteady BEM/RANS .120 

5.3.1 Description of the problem .....................................................120 

5.3.2 Description of the numerical model ........................................121 



xii

5.3.3 Results of the straight acceleration case ..................................125 

5.3.4 Results of the turning case ......................................................133 

Chapter 6. Conclusions and Recommendations ........................................140 

6.1 Conclusions .......................................................................................140 

6.2 Major Contributions ...........................................................................142 

6.3 Recommendations ..............................................................................143 

6.3.1 Larger time step size in RANS ...............................................143 

6.3.2 More accurate calculation of blade surface pressure in BEM ..144 

6.3.3 Improvement of numerical convergence .................................145 

6.3.4 Adding other models to BEM .................................................145 

Appendix A. Synchronization and Communication between PROPCAV and 
ANSYS Fluent .........................................................................................146 

Appendix B. Meshing Strategy for the Body Force Zone in Unsteady BEM/RANS 
scheme  ...............................................................................................148 

Appendix C. Basic Schemes and Models Used in the RANS Solver ............150 

References ........................................................................................................152 



xiii

List of Tables 

Table 3.1 Comparison of the unsteady scheme, the non-axisymmetric scheme, and the 

axisymmetric scheme. ................................................................... 34 

Table 4.1: Number of cells/panels used in the mesh convergence study. ............ 61 

Table 4.2: Differences between the four cases in the thickness blockage effect study.

 ..................................................................................................... 63 

Table 4.3: Comparison of predicted propeller forces and computational cost between 

BEM, BEM/RANS, and full-blown RANS. ................................... 73 

Table 4.4: Number of BEM panels and RANS inner zone cells used in the 

convergence study. The number of the BEM panels on the blade is given 

by the product of chord-wise panel count and span-wise panel count. 

The number of inner zone RANS cells is given by the product of chord-

wise cell count, span-wise cell count, and circumferential cell count. The 

equivalent time step size is the propeller’s rotation angle within a time 

step. .............................................................................................. 89 

Table 5.1: Number of BEM panels and RANS cells used in the convergence study.

 ....................................................................................................103 

Table 5.2: BEM/RANS time step size and full-blown RANS time step size during 

four different simulation phases (straight acceleration case). ........124 

Table 5.3: BEM/RANS time step size and full-blown RANS time step size during 

four different simulation phases (turning case). ............................124 

Table 5.4: Comparison of the computational cost of the unsteady BEM/RANS 

scheme and the unsteady full-blown RANS scheme. ....................125 



 xiv 

Table 5.5: Mean propeller forces during a constant-yaw-rate turning. The numerical 

error of the unsteady BEM/RANS scheme is given at different turning 

speed. The unsteady full-blown RANS result is set as the reference 

value. ...........................................................................................138 



 xv 

List of Figures 

Figure 1.1: Side view of a ship stern (left) and counter-rotating propeller (right) 

(Source: www.jmuc.co.jp 05/02/2016). ........................................... 2 

Figure 1.2: The P2772 propeller and the underwater part of the M3458 ship hull . 3 

Figure 3.1: An example BEM panel model for a 3-blade open propeller under non-

cavitating conditions. The hub surface, blade surfaces, and one (out of 3) 

trailing wake surface is shown. ...................................................... 18 

Figure 3.2: Flow chart of the unsteady boundary element method. ..................... 26 

Figure 3.3: Flow chart of the steady boundary element method. ......................... 27 

Figure 3.4: Side view of a container ship. The ship stern and the propeller are at the 

right side of the plot. ..................................................................... 29 

Figure 3.5: Data flow inside the BEM/RANS approach. .................................... 33 

Figure 3.6: Flow chart for the unsteady BEM/RANS scheme. ........................... 35 

Figure 3.7: Flow chart for the non-axisymmetric BEM/RANS scheme and the 

axisymmetric BEM/RANS scheme. .............................................. 38 

Figure 3.8: A 2D example of the surface-distribution body force model with direct 

interpolation method (left) or distribution function method (right). The 

red dashed curve is a 2-dimensional hydrofoil. The body force is applied 

to all the shadowed cells. ............................................................... 40 

Figure 3.9: Calculation of the combined force field on the blade mean camber 

surface. ......................................................................................... 41 



 xvi 

Figure 3.10: A 2D example of the camber-distribution body force model with direct 

interpolation method (left) or distribution function method (right). The 

red dashed curve is the camber line of a 2-dimensional hydrofoil. The 

body force is applied to all the shadowed cells. ............................. 42 

Figure 3.11: An example of evaluating the effective wake at a planar upstream disk in 

the unsteady BEM/RANS scheme. ................................................ 47 

Figure 3.12: Calculation of effective wake velocity at a constant offset from the blade 

surface. The left figure is a global view of the blade while the right 

figure is a close-up view of the blade base station. The black points are 

where the effective wake is evaluated. ........................................... 48 

Figure 3.13: Calculation of effective wake velocity at a constant offset from the blade 

mean camber surface. The left figure is a global view of the blade 

camber surface while the right figure is a side view of the camber 

surface. The black points are where the effective wake is evaluated.50 

Figure 3.14: An example of evaluating the effective wake at the centroids of blade 

surface panels in the non-axisymmetric BEM/RANS scheme. ....... 51 

Figure 3.15: Two possible range of integration in calculating the time-averaged 

propeller-induced velocity for the non-axisymmetric and axisymmetric 

BEM/RANS scheme. .................................................................... 54 

Figure 3.16: Three different methods to evaluate the effective wake in the 

axisymmetric BEM/RANS scheme: at an upstream straight line (solid 

line), at an offset from the blade leading edge (dashed line), and at the 

centroids of blade surface panels (points). ..................................... 55 

Figure 4.1: BEM panel model of the P5168 propeller. ....................................... 59 



xvii

Figure 4.2: Boundary conditions and the range of computational domain of the 

axisymmetric RANS model. .......................................................... 60 

Figure 4.3: The RANS mesh used in the axisymmetric BEM/RANS scheme. .... 60 

Figure 4.4: Comparison of the blade circulation distribution predicted from the 

higher-mesh-density case and from the lower-mesh -density case. . 62 

Figure 4.5: (Scheme A) Effective wake velocity components in the axial (left), radial 

(middle), and swirl (right) direction. The velocity is non-

dimensionalized by . White color means a less than 3% numerical 

error. ............................................................................................. 62 

Figure 4.6: (Scheme B) Effective wake velocity components in the axial (left), radial 

(middle), and swirl (right) direction. The velocity is non-

dimensionalized by . White color means a less than 3% numerical 

error. ............................................................................................. 63 

Figure 4.7: (Scheme C) Effective wake velocity components in the axial (left), radial 

(middle), and swirl (right) direction. The velocity is non-

dimensionalized by . White color means a less than 3% numerical 

error. ............................................................................................. 64 

Figure 4.8: (Scheme D) Effective wake velocity components in the axial (left), radial 

(middle), and swirl (right) direction. The velocity is non-

dimensionalized by . White color means a less than 3% numerical 

error. ............................................................................................. 64 

Figure 4.9: Influence of the mass source and compensating force towards the blade 

circulation at Js=0.6. ..................................................................... 67 

Figure 4.10: Influence of the mass source and compensating force towards the blade 

circulation at Js=0.8. ..................................................................... 67 



xviii

Figure 4.11: Influence of the mass source and compensating force towards the blade 

circulation at Js=1.0. ..................................................................... 68 

Figure 4.12: Influence of the mass source and compensating force towards the blade 

circulation at Js=0.8 with 150% blade thickness. ........................... 68 

Figure 4.13: Axial velocity profile of the nonuniform axisymmetric inflow (left) and 

the corresponding nominal wake field plotted on the propeller surface 

(right). ........................................................................................... 70 

Figure 4.14: Boundaries of the full-blown RANS simulation for propeller P5168 

under nonuniform axisymmetric inflow. ........................................ 71 

Figure 4.15: Blade circulation distribution at different iterations. ....................... 72 

Figure 4.16: Axial body force field (left), circumferential body force field (middle), 

and mass source field (right) plotted on the X-R projection of the 

propeller. The blade leading edge is on the left side. The unit of the body 

force field is  and the unit of the mass source field is .72 

Figure 4.17: Effective wake field  predicted by the axisymmetric BEM/RANS 

scheme (non-uniform axisymmetric inflow case). The axial (left) and 

swirl (right) velocity components are plotted on the X-R projection of 

the propeller. The blade leading edge is on the left side. ................ 73 

Figure 4.18: BEM panel model of the P2772 propeller. ..................................... 74 

Figure 4.19: Original (solid) and modified (dashed) root section thickness distribution 

of propeller P2772. ........................................................................ 75 

Figure 4.20: Boundary conditions and the range of computational domain of the 

unsteady RANS model. Only the {z = 0 and y > 0} slice of the 3-

dimensional model is shown. ......................................................... 77 

Figure 4.21: The RANS mesh used in the unsteady BEM/RANS scheme. ......... 77 



xix

Figure 4.22: The inner mesh zone (left) and its middle slice (y = 0) (right) in the 

unsteady full-blown RANS simulation. ......................................... 78 

Figure 4.23: The mid-chord effective wake field  predicted by the unsteady 

BEM/RANS scheme. The effective wake is evaluated based on the blade 

surface geometry. The axial velocity component is shown by the contour 

plot while the in-plane velocity components are shown by arrows. 80 

Figure 4.24: The mid-chord effective wake field  predicted by the unsteady 

BEM/RANS scheme. The effective wake is evaluated based on the blade 

mean camber surface. The axial velocity component is shown by the 

contour plot while the in-plane velocity components are shown by 

arrows. .......................................................................................... 80 

Figure 4.25: Error of the propeller forces predicted by the unsteady BEM/RANS 

scheme with the effective wake calculated at different offset distances. 

The full-blown RANS result is set as the reference. ....................... 82 

Figure 4.26: Axial body force field (left), vertical body force field (middle), and 

horizontal body force field (right) plotted at the x = 0 slice of the RANS 

computational domain. The unit of the body force field is . 84 

Figure 4.27: The thrust coefficient and torque coefficient predicted by the unsteady 

BEM/RANS scheme. .................................................................... 84 

Figure 4.28: Blade circulation distribution predicted by the unsteady BEM/RANS 

scheme (after fully stabilized) and by the BEM solver under the nominal 

wake (uniform inflow). ................................................................. 85 

Figure 4.29: Comparison of the thrust coefficient and torque coefficient predicted by 

unsteady BEM/RANS scheme, by unsteady full-blown RANS, by BEM 

with the nominal wake, and by experiment. ................................... 85 



 xx 

Figure 4.30: Comparison of vorticity fields from unsteady BEM/RANS scheme and 

from unsteady full-blown RANS. Six pairs of figures are shown, each 

representing a different blade angle (time). Within each pair, the top 

figure shows the vorticity field generated by non-slip wall boundaries 

while the lower figure shows the vorticity field generated by body force 

fields and mass source fields. ........................................................ 87 

Figure 4.31: Boundary conditions and the range of computational domain of the 

unsteady RANS model with inclined inflow. Only the {z = 0 and y > 0} 

slice of the 3-dimensional model is shown..................................... 88 

Figure 4.32: Comparison of the predicted thrust coefficients with a different number 

of panels on the BEM propeller surface: case A (80×30), case B 

(60×25), and case C (50×20). The accumulative blade angle is the angle 

the propeller has rotated since the start of the simulation. .............. 90 

Figure 4.33: Comparison of the predicted thrust coefficients with a different number 

of inner zone RANS cells and different equivalent time step size: case D 

(70×64×360, 1deg), case E (40×54×180, 2deg), case B (32×44×120, 

3deg), and case F (20×34×60, 6deg). The accumulative blade angle is 

the angle the propeller has rotated since the start of the simulation. 90 

Figure 4.34: The stabilized thrust coefficient and torque coefficient predicted by the 

unsteady BEM/RANS scheme and by the unsteady full-blown RANS.

 ..................................................................................................... 93 

Figure 4.35: The mid-chord effective wake field  predicted by the unsteady 

BEM/RANS scheme. The axial velocity component is shown by the 

contour plot while the in-plane velocity components are shown by 

arrows. .......................................................................................... 93 



 xxi 

Figure 4.36: Mean thrust coefficient and torque coefficient at the last revolution. 

Comparison between unsteady BEM/RANS scheme, unsteady full-

blown RANS, and BEM with nominal wake are provided. ............ 94 

Figure 4.37: Key-blade surface pressure at zero-blade-angle of the last revolution. 

Comparison between unsteady BEM/RANS with boundary layer 

correction, unsteady BEM/RANS without boundary layer correction, 

and unsteady full-blown RANS are provided. ................................ 95 

Figure 4.38: Comparison of vorticity fields from unsteady BEM/RANS scheme and 

from unsteady full-blown RANS (inclined inflow case). Six pairs of 

figures are shown, each representing a different blade angle (time). 

Within each pair, the top figure shows the vorticity field generated by 

non-slip wall boundaries while the lower figure shows the vorticity field 

generated by body force fields and mass source fields. .................. 97 

Figure 5.1: Geometry of the contra-rotating propeller unit. ................................ 99 

Figure 5.2: BEM panel models for the forward propeller (left) and aft propeller 

(right). ..........................................................................................100 

Figure 5.3: The finite volume mesh used in the axisymmetric BEM/RANS scheme 

(CRP application). ........................................................................100 

Figure 5.4: The finite volume mesh used in the non-axisymmetric BEM/RANS 

scheme (CRP application). ...........................................................101 

Figure 5.5: Boundaries conditions of the RANS model in the non-axisymmetric 

BEM/RANS scheme (CRP application)........................................102 

Figure 5.6: Comparison of the circulation distribution from case A and case B. 103 



 xxii 

Figure 5.7: Unsteady thrust coefficients (single blade) and torque coefficients (single 

blade) predicted by the axisymmetric BEM/RANS scheme and by the 

non-axisymmetric BEM/RANS scheme. ......................................105 

Figure 5.8: Convergence history of the propeller forces on both the forward propeller 

and the aft propeller. ....................................................................105 

Figure 5.9: Comparison of the predicted thrust coefficients and torque coefficients 

with experimental data (all figures are plotted with the same scale). The 

total force includes the force of the forward propeller, the aft propeller, 

the strut, and the pod. ...................................................................106 

Figure 5.10: Body force distribution and mass source distribution from axisymmetric 

BEM/RANS approach (plotted at =0 slice, upper figure of every pair) 

and from non-axisymmetric BEM/RANS approach (plotted at z = 0, 

lower figure of every pair). The body force field is nondimensionalized 

by  and the mass source is nondimensionalized by (

). ..................................................................................108 

Figure 5.11: The total flow field  from the axisymmetric BEM/RANS approach 

(plotted at the = 0 slice; upper figures) and from non-axisymmetric 

BEM/RANS approach (plotted at the z = 0 slice, lower figures). ..110 

Figure 5.12: Definitions of the angle of inclination and four different force 

components. .................................................................................111 

Figure 5.13: Propeller forces at different angles of inclination. .........................112 

Figure 5.14: Effective wake field at the mid-chord slice of the aft propeller at 

different angles of inclination. The velocity is nondimensionalized by 

the ship speed. ..............................................................................113 



 xxiii 

Figure 5.15: Ship hull and rudder geometry of the M/T Olympus tanker. An overview 

of this ship hull is given in the left figure. The ship stern geometry and 

rudder geometry are shown in the right figure. .............................114 

Figure 5.16: BEM model of the P2772 propeller geometry in the hull-propeller-rudder 

interaction case. ...........................................................................115 

Figure 5.17: Photo of the model test facilities and configurations. ....................115 

Figure 5.18: Computational domain of the RANS model in the hull-propeller-rudder 

interaction case (non-axisymmetric problem). ..............................116 

Figure 5.19: Propeller forces predicted by the non-axisymmetric BEM/RANS and 

those from the experimental measurements. .................................117 

Figure 5.20: Circulation distribution (time-averaged, Js = 0.9) at different iteration 

steps of the non-axisymmetric BEM/RANS scheme. The 1st iteration 

corresponds to a uniform inflow case. ..........................................118 

Figure 5.21: Axial component of the total flow field  plotted on the ship 

centerline plane (z = 0 slice). ........................................................118 

Figure 5.22: The nominal wake field and effective wake field plotted on the mid-

chord slice of the body force zone. Axial velocity component is 

represented by the contour while the in-plane velocity components are 

represented by arrows...................................................................119 

Figure 5.23: Thrust coefficient (single blade) and torque coefficient (single blade) on 

the key blade as a function of the blade angle. ..............................120 

Figure 5.24: BEM model of the P2772 propeller geometry in the unsteady 

BEM/RANS application ...............................................................122 

Figure 5.25: BEM model of the P2772 propeller geometry in the unsteady 

BEM/RANS application ...............................................................123 



 xxiv 

Figure 5.26: Propeller forces predicted by the unsteady BEM/RANS scheme under 

two conditions: the skin friction included as part of the body force term 

and the skin friction not included in the body force term. .............126 

Figure 5.27: The effective wake field (Js = 0.6) plotted on the mid-chord slice in the 

straight acceleration case. The axial velocity component is shown by the 

contour while the in-plane velocity components are shown by arrows.

 ....................................................................................................127 

Figure 5.28: Propeller forces predicted by the unsteady BEM/RANS and by the 

unsteady full-blown RANS. The acceleration starts when the cumulative 

blade angle reaches 24480 degrees and finishes when the cumulative 

blade angle reaches 25560 degrees. ..............................................129 

Figure 5.29: Pressure coefficient (Js = 0.8) at the r/R = 0.44 section of the blade 

surface. The pressure data is obtained on the key blade at four different 

blade angles of the last acceleration revolution (cumulative blade angle 

between 25200 degrees and 25560 degrees). ................................130 

Figure 5.30: Pressure coefficient (Js = 0.8) at the r/R = 0.57 section of the blade 

surface. The pressure data is obtained on the key blade at four different 

blade angles of the last acceleration revolution (cumulative blade angle 

between 25200 degrees and 25560 degrees). ................................131 

Figure 5.31: Pressure coefficient (Js = 0.8) at the r/R = 0.79 section of the blade 

surface. The pressure data is obtained on the key blade at four different 

blade angles of the last acceleration revolution (cumulative blade angle 

between 25200 degrees and 25560 degrees). ................................132 

Figure 5.32: Locations of the ship hull at different cumulative blade angles......133 



 xxv 

Figure 5.33: The effective wake field (Js = 0.6) plotted on the mid-chord slice in the 

turning case. The axial velocity component is shown by the contour 

while the in-plane velocity components are shown by arrows. ......134 

Figure 5.34: Propeller forces predicted by the unsteady BEM/RANS and by the 

unsteady full-blown RANS. The ship starts to turn when the cumulative 

blade angle reaches 24480 degrees and begins the constant-yaw-rate 

turning when the cumulative blade angle reaches 25200 degrees. .135 

Figure 5.35: Comparisons of vorticity fields (at the y = 0 slice) from unsteady 

BEM/RANS scheme (upper figures) and from unsteady full-blown 

RANS (lower figures). .................................................................138 

Figure 6.1: Flow chart of the unsteady BEM/RANS scheme with different time step 

sizes in RANS and in BEM. .........................................................144 

Figure A.1: Multi-node parallel computing structure of unsteady BEM/RANS 

scheme. ........................................................................................147 

Figure B.1: Overview of body force mesh zone in the unsteady BEM/RANS 

approach. .....................................................................................148 

Figure B.2: Body force zone mesh slices at difference radius. The camber of the blade 

aligns with the diagonal direction of the cells. ..............................149 

 

 



 1 

Chapter 1. Introduction 

 

1.1 BACKGROUND 

Modern propeller design relies heavily on hydrodynamic analysis tools to predict 

the propeller performance, propeller cavitation patterns, propeller-induced noises, etc. The 

numerical methods behind these tools can be roughly divided into two groups, the potential 

flow methods, and the viscous flow methods. 

A potential-based method assumes an irrotational external flow field and represents 

the lifting body with multiple simple potential flow components. For example, a lifting-

line method represents the blade by multiple horseshoe vortex along the span-wise 

direction and is often used for wind turbines where the span to chord ratio is large and the 

flow can be simplified to a 2-dimensional flow at each section. For marine propellers, 

which always have a much smaller span to chord ratio and are sometimes highly skewed, 

the 3-dimensional effect is stronger and, therefore, the more advanced lifting-surface 

method should be used instead. In the lifting-surface method, a blade is still represented by 

horseshoe vortex. The horseshoe vortex is distributed not only along the span-wise 

direction but also along the chord-wise direction on the mean camber surface of a blade. 

Finally, the boundary element method (BEM) is another commonly used method in the 

marine propeller field. The BEM places sources and dipoles on the exact propeller blade 

surface. It is based on fewer assumptions and considers the blade thickness inherently. 

The potential-based methods are widely used for propeller open-water analysis in 

which the propeller is working inside a uniform and irrotational incoming flow. In the case 

of a vortical inflow, which is usually caused by the wake of a moving ship hull or other 

upstream bodies, the propeller-induced potential flow can interact with the inflow and 
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alters the vortical inflow into the so-called “effective wake”. Since the potential theory 

cannot handle such interactions, the practical way is to use some empirical methods to 

predict the effective wake field and design the propeller with the predicted effective wake. 

The viscous flow methods are mostly based on the Naiver-Stokes equation and are 

able to handle more general flow fields. In the marine propeller field, the most commonly 

used methods include the Reynold’s Averaged Naiver-Stokes approach (RANS) and the 

large eddy simulation approach (LES). These methods are often based on a finite volume 

discretization and solve for the steady flow field in a rotating coordinate system fixed to 

the propeller shaft. 

To accurately evaluate the propeller performance, it is also essential to consider the 

mutual influence between the ship hull and the propeller, between the propeller and the 

rudder, between different propellers if multiple propellers are used, and between different 

rows of the propeller if a multi-row propeller is adopted.  

 

      

Figure 1.1: Side view of a ship stern (left) and counter-rotating propeller (right) (Source: 
www.jmuc.co.jp 05/02/2016). 

The use of the potential-based methods to handle such multibody interaction 

problems requires empirical functions to determine the effective wake. Such empirical 

functions may introduce numerical errors and are hard to get especially for less experienced 
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designs. According to Sánchez-Caja et al. (2015), a 2%-5% error in the effective wake 

velocity can lead to a 5%-14% numerical error in the predicted propeller forces. 

On the other hand, the viscous flow methods are capable of handling such 

multibody interaction problems. In these applications, the mesh is often divided into 

multiple zones. The propeller zone is rotating relative to the global zone. It is connected to 

other zones by sliding interfaces (Sanchez-Caja et al. 2009, Zhuang et al. 2004) or overset 

mesh (Carrica et al. 2010). Depending on whether an unsteady simulation is needed, the 

interface can be either a time-accurate interface or a time-averaged interface where all the 

flow properties are circumferentially averaged on both sides of the interface. 

Although the viscous methods excel in the capability of handling various situations, 

its computational cost can be significant especially for unsteady multibody interaction 

problems. In a typical hull-propeller interaction problem, the waterline length of the ship 

hull can be 25-50 times larger than the propeller radius, as shown in Figure 1.2. While the 

length of the ship hull determines the duration of the simulation (physical time) for flow 

around the ship hull to get stabilized, the small size and the high angular speed of the 

propeller controls the upper limit of the time step size. As a result, the cost of multibody 

interaction problems is usually much higher than a single propeller analysis. 

 

 

Figure 1.2: The P2772 propeller and the underwater part of the M3458 ship hull 

To reduce the computational cost, the propeller blades can be represented either by 

an actuator disk or by a body force field (Schetz and Favin 1979). These force fields can 

be calculated by a potential solver. Because the propeller blades are represented by a body 
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force field, it is possible to use larger cells in the propeller zone and a larger time step size 

in RANS. Both lead to a better computational efficiency. Due to the same reason, it is also 

possible to average the flow in time and reduce an unsteady simulation problem to a steady 

problem. Similarly, the flow can also be averaged in the circumferential direction in order 

to reduce a 3-dimensional problem to an axisymmetric problem. 

 

1.2 MOTIVATION 

In recent years, the requirements have been increased on improving on-board 

comfort and controlling underwater noise pollutions. As a result, the propeller designers 

are required to look at the propeller performance in more challenging situations, including 

ship maneuvering, ship motion under wave and wind conditions, etc. All of these topics 

are closely related to the multibody interaction problem. 

Although the computer hardware and multi-processing technology have been 

improved significantly, it is still too costly to perform the unsteady multibody interaction 

analysis with RANS during the design stage. On the other hand, the hybrid potential/RANS 

approach improves the computational efficiency of the viscous flow solvers. However, 

most of the current research and applications within this scope treat the problem in a time-

averaged way. Therefore, it is useful to develop an efficient time-accurate potential/RANS 

approach to study the unsteady multibody interaction behaviors.  

 

1.3 OBJECTIVES 

The objective of this research is to develop a BEM/RANS scheme which can be 

utilized by a time-averaged axisymmetric approach, a time-averaged non-axisymmetric 

approach, and a time-accurate approach. These approaches are based on different levels of 
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simplifications and can provide different levels of flow details. A designer can choose 

among these approaches based on their design requirements and hardware limitations. 

In this study, the BEM is used instead of other potential-based methods because 

BEM is more general than the lifting surface method and the lifting line method. It does 

not rely on the small blade thickness assumption and the small angle of attack assumption. 

It considers the thickness in an inherent way and provides a better framework for pressure 

calculations and cavitation predictions. 

The work in this dissertation includes: 

• Extend the capability of PROPCAV, a low order BEM solver for propellers, to 

handle non-periodical inflows. 

• Develop the time-averaged axisymmetric BEM/RANS scheme, time-averaged non-

axisymmetric BEM/RANS scheme, and the time-accurate BEM/RANS scheme. 

• Study the important factors that may influence the numerical accuracy. 

• Validate the BEM/RANS scheme via test cases and justify the assumptions. 

• Provide sample applications of the multibody interaction problem and study the 

numerical error in these applications. 

 

1.4 OVERVIEW 

This dissertation contains six major chapters: 

Chapter 1 contains the background, motivation, and objectives of this research. 

Chapter 2 contains literature reviews of the studies related to the marine propulsor 

multibody interaction problems. 

Chapter 3 introduces the BEM/RANS approach and its implementations in both a 

time-averaged way and a time-accurate way. 
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Chapter 4 provides parametric studies, convergence studies, and validation studies 

of both the time-averaged and the time-accurate BEM/RANS scheme. 

Chapter 5 shows several multibody interaction applications of the scheme. 

Chapter 6 summarizes the work in this dissertation, lists its major contributions, 

and provides recommendations for the future research. 

 

1.5 RELATED PUBLICATIONS 

The time-averaged BEM/RANS scheme is presented in (Su and Kinnas 2017a). Its 

applications to propeller P5168, to propeller P2772 (time-averaged hull/propeller/rudder 

interaction), and to contra-rotating propeller are presented in (Su and Kinnas 2017a), (Su 

and Kinnas 2017c, Su et al. 2017b), and (Su and Kinnas 2017a) respectively. The time-

accurate BEM/RANS scheme and its applications are presented in (Su and Kinnas 2018). 
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Chapter 2. Literature Review 

The interactions between marine propellers and other bodies are common. Typical 

situations include propeller-hull interaction, propeller-rudder interaction, and interactions 

between propellers in a multi-propeller application. This chapter provides literature 

reviews on the numerical studies that are related to the multibody interaction problems in 

ship propulsion systems. 

The numerical methods for these multibody interaction problems can be divided 

into three major groups: the potential-based methods, the viscous flow methods, and the 

hybrid potential/RANS methods. 

2.1 POTENTIAL-BASED METHODS 

Among all the potential-based propeller hydrodynamics analysis tools, the vortex 

lattice method and the boundary element method have been mostly used. 

The vortex lattice method (VLM) was initially developed for aerodynamic analysis 

and then introduced to propeller hydrodynamics (Kerwin and Lee 1978). The method is 

later extended and improved to predict the propeller sheet cavitation (Lee 1979, Kinnas 

and Fine 1989, Kinnas and Pyo 1999). Generally speaking, the vortex lattice method 

represents the propeller blade by multiple horseshoe vortex located on the blade mean 

camber surface and solves for the vortex strength by applying kinematic boundary 

condition on the wetted surface. Although the method is based on several linear 

assumptions which require a small thickness to chord ratio, it provides enough accuracy 

for the industry after applying several corrections (Kinnas 1992, Black 1997). 
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Comparing to VLM, the boundary element method (BEM), or panel method, is 

believed to be a more accurate numerical model for marine propellers because it is capable 

to handle blade thickness, the hub geometry, and the duct geometry in a more direct and 

realistic way. Since the pioneering work from Hess (Hess and Smith 1967), various forms 

of the panel method have been applied to propellers (Gibson and Lewis 1973, Hess and 

Valarezo 1985, Lee 1987, Hoshino 1989, Vaz 2005, Gaggero and Brizzolara 2008). Under 

the framework of the panel method, various models have been studied and implemented, 

including the sheet cavitation (Fine 1992, Vaz 2005), tip cavitation (Lee 2002), viscous 

boundary layer correction (Hufford 1992, Sun 2008), propeller-induced pressure 

calculation (Su and Kinnas 2017), etc.  

PROPCAV is a low-order panel code which was initially developed to solve the 

steady wetted performance of marine propellers (Lee 1987). It was then improved to handle 

the unsteady periodical propeller performance under non-uniform inflow (Hsin 1990) and 

to predict propeller face cavitation (Fine 1992). After that, an unsteady tip vortex model 

was added to the solver which enables the calculation of tip cavitation (Lee 2002). Sun 

(2008) coupled PROPCAV with a boundary layer integral equation solver (Drela 1989) to 

consider the boundary layer effect on the blade surface. 

Due to the limitations of the potential flow theory, the above methods are mostly 

designed to work under irrotational inflow conditions. However, in real applications, either 

it is a hull-propeller-rudder interaction or a propeller-to-propeller interaction, the incoming 

flows to the aft bodies are usually viscous due to the boundary layer of the upstream bodies. 

In such situations, the background flow field in which the propeller is operating is no longer 

the incoming flow (nominal wake) because the propeller-induced velocity can interact with 

the viscous inflow. The real background flow (called effective wake) can be calculated 

empirically or numerically (Carlton 2012). 
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The potential methods can also be used to handle the multibody interaction 

problems. Liu (2009) used BEM to predict the interaction between the forward propeller 

and the aft propeller in a contra-rotating propeller (CRP) application. In this application, 

both propellers are handled by a separate BEM model and the interaction between the two 

propellers is included by adding the perturbation flow field in every BEM model into the 

background flow of the other BEM model. Similar methods are also applied to other CRP 

geometries (Ghassemi and Taherinasab 2013) and water-jet propulsors (Kinnas et al. 

2007a, Chang 2010). In these applications, the induced flow velocity from one propeller is 

time-averaged before it is included in the background flow of the other propeller. This 

time-averaging process is important because it desingularized the perturbation flow field 

at the trailing wake surfaces. However, this also causes numerical errors because it turns 

the discrete the vortex sheet into a volumetric vorticity field and makes the inflow to the 

downstream propellers to be vortical.  

Different from the time-averaged approach, He (2010) studied the propeller-rudder 

interaction problem in a fully unsteady way. The propeller is solved by the VLM and the 

rudder is handled by the BEM. The time-accurate interaction between the propeller trailing 

wake and the rudder can be simulated in this application. To desingularize the flow when 

the rudder is very close to the wake surface, a numerical fence is applied around the rudder 

and a simplified vortex core diffusion model is applied to the propeller trailing wake.  

 

2.2 VISCOUS FLOW METHODS 

The viscous flow solvers are also widely used in predicting marine propeller 

performances. Compared to the potential solvers, the viscous flow solvers are able to 

handle more complex physics in a more general way. Due to the complexity of the propeller 
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geometry, most of the Navier-Stokes-based applications use the Reynolds averaged 

(RANS) approach (Sanchez-Caja et al. 2000, Li 2006), the detached-eddy (DES) approach 

(Mascio et al.  2014, Chase et al. 2013), or the large eddy simulation (LES) approach 

(Bensow and Bard 2010, Balaras et al. 2015). Brizzolara et al. (2008) performed a 

systematic comparison between the RANS method and the panel method for propeller 

applications. Since full-scale marine propellers usually have high Reynolds numbers, a 

complete turbulence simulation is usually considered enough for such applications. The 

laminar to turbulent transition is more likely to be a problem of model-scale propellers 

(Baltazar et al. 2017).  

To simulate the multibody interactions with the above methods, the fluid domain is 

usually divided into one global zone which is fixed to the ship hull and one (or multiple) 

propeller zone(s) which rotates with the propeller. The zones can be connected by a sliding 

interface (Sanchez-Caja et al. 2009, Zhuang et al. 2004), or the overset mesh technique 

(Carrica et al. 2010). If the unsteady propeller performance is not needed, the flow 

properties can be averaged along the  (circumferential) direction on the interface. This 

reduces the multibody interaction problem from unsteady to steady and, therefore, reduces 

the computational cost. It also enables the use of periodical condition for the propeller zone, 

where only the key blade needs to be modeled and the other blades are just periodical 

repeats of the key blade. 

2.3 POTENTIAL/RANS METHODS 

Both the potential-based methods and the viscous flow methods have some 

limitations in the multibody interaction simulations. First, the potential-based methods 

require an empirical or semi-empirical way to determine the effective wake. This may 
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introduce numerical errors especially for less experience propeller designs and off-design 

loading conditions. The viscous flow solvers can handle such interaction behaviors, but 

usually takes much longer mesh preparation times and computing times.  

To reduce the matrix size of the RANS solver, the propeller can be represented by 

either an actuator disk or a body force field. The actuator disk model eliminates the cyclic, 

unsteady, and three-dimensional components. As a result, it can cause near field numerical 

errors. Therefore, the body force model is believed to be better (Schetz and Favin 1979). 

Following the body force approach, Stern et al. (1986) coupled VLM with RANS 

to predict the unsteady effective wake. The vortex lattice solver is used to calculate the 

propeller performance and to determine the body force field while the RANS solver is used 

to predict the interaction between the vortical inflow and the propeller-induced flow. The 

main purpose of the VLM/RANS approach is to reduce the computational cost of the 

viscous flow solvers while still maintain the capability of handling viscous flow 

interactions. 

Kerwin et al. (1994) developed an iterative scheme in which the axisymmetric flow 

component is handled by RANS while the non-axisymmetric part is obtained from VLM. 

The propeller is represented by axial, radial, and circumferential body force field. Based 

on this scheme, Black (1997) studied the influence of the thickness blockage effect and 

viscous boundary layer effect.  

Similar to Stern’s approach (Stern et al. 1986), Choi (2001) coupled VLM with a 

Euler solver. In this application, the representation of body force is studied and improved. 

The scheme can be adapted to solve unsteady problems, steady non-axisymmetric 

problems, and steady axisymmetric problems. The lack of thickness blockage effect is 

claimed to be the cause of the numerical error in the dissertation.  Later, Mishra (2005) 
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replaced the Euler solver with a RANS solver. The scheme is then applied to a ducted 

propeller and a contra-rotating propeller (Kinnas et al. 2002, Tian et al. 2014). 

Due to the limited computing power in early years, most of these applications 

determines the effective wake field by solving the interactions between the vortical 

nominal-wake and the propeller. The nominal wake is determined prior to the simulation. 

In recent years, with the improvements in computer hardware and parallel computing, the 

use of BEM and large-scale RANS solver becomes much easier. As a result, it is possible 

to include the upstream bodies directly in the BEM/RANS solver. 

Greve et al. (2012) developed a time-averaged BEM/RANS approach and applied 

it to a propeller-hull interaction problem (Berger et al. 2013). Starke and Bosschers (2012) 

developed a similar approach for the propeller-hull interaction problem and studied the 

scale effect in the ship powering performance. Both applications neglected the thickness 

blockage effect in the RANS solver. However, in order to be consistent, the second 

application also neglected the source-induced velocity field term (Rijpkema et al. 2013). 

Later Hally (2015, 2017) applied the time-averaged BEM/RANS scheme to a submarine-

propeller interaction problem. In this application, the thickness blockage effect in included 

in RANS, but the associated Lagally force (Su 2017a) is not compensated. To improve the 

numerical results, a correction term is computed from the uniform inflow case and added 

to the hull-propeller interaction cases. 

There are also several applications of the time-accurate BEM/RANS scheme. In 

these applications, the body force field is confined to one or several layers of cells and 

moves with the propeller blades. This scheme provides the propeller performance inside 

an unsteady nominal wake which can be useful for unsteady force calculations, propeller-

induced noise calculations, and unsteady cavitation predictions. Nathan et al. (2012) 

coupled a delayed detached-eddy simulation (DDES) solver with an unsteady vortex lattice 
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solver and applied the scheme to a self-propulsion simulation of the DARPA sub-off. The 

results show good agreements under open-water conditions and straight-ahead conditions 

but begin to diverge at large wake distortions and low advance ratios.  

Salvatore et al. (2015) and Calcagni et al. (2017) developed a fully-unsteady 

BEM/DES scheme for the propeller-rudder interaction problem. In this application, the 

mesh density in the propeller zone is much higher than the rest of the domain. The body 

force is firstly combined to the mean camber surface and then applied to several layers of 

volume cells by a Gaussian distribution function along the normal direction. The thickness 

blockage effect is not considered in this work. 

Gaggero et al. (2017) developed a fully unsteady BEM/RANS approach for the 

self-propulsion simulation of a surface ship. This scheme also uses higher mesh density in 

the propeller region, so that there can be 3 to 4 layers of cells inside the propeller blade 

thickness. The body force is applied directly to the blade surface and distributed to nearby 

cells by a smooth distribution function.  

2.4 ORIGINALITY OF THE CURRENT WORK 

The work in this dissertation is based on a time-averaged VLM/Euler scheme 

(Choi 2001, Choi and Kinnas 2001), a time-averaged VLM/RANS scheme (Mishra 

2005, Tian et al. 2014) and a periodical version of the boundary element code PROPCAV 

v3.3 (Su et al. 2016). The work includes: 

• Improve the VLM/RANS interface to support the time-averaged BEM/RANS

coupling; Study the influence of different body force distribution models, thickness

models, and effective wake calculation models

• Improve the PROPCAV code to handle non-periodical inflow conditions
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• Develop the unsteady BEM/RANS scheme; Perform parametric studies and

validation tests on the unsteady BEM/RANS scheme. Unlike most of the existing

time-accurate BEM/RANS implementations, this scheme does not rely on a highly-

refined body force zone mesh and does not rely on the upstream disk to evaluated

the effective wake. As a result, the BEM/RANS scheme can be more efficient and

more accurate in calculating the effective wake field.

• Apply the unsteady BEM/RANS scheme to ship maneuvering cases

Compared to other unsteady BEM/RANS (or BEM/DES) implementations, the 

major difference in this dissertation is the use of only one single layer (per blade) of RANS 

panels to applied the body force. The benefit is a higher computational efficiency due to 

the reduced number of cells and the increased time step size limit. Other differences are 

described in the coming chapters. 
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Chapter 3. Methodology 

This chapter describes the boundary element method, the BEM/RANS coupling 

scheme, and the implementation of the BEM/RANS scheme. Different ways of body force 

calculation, mass source calculation, and effective wake evaluation are also described in 

this chapter and compared in the following chapter. Since the time-averaged problem can 

be seen as a simplified version of the time-accurate problem, the time-accurate version of 

the scheme is always described first, followed by the time-average version and the 

axisymmetric version. To distinguish between these three different approaches, the 

following terms can be defined: 

• Unsteady problem/scheme/approach

This is the most general situation. There are no restrictions on the periodicity of the

propeller performance. The effective wake (observed from the ship-fixed coordinate 

system) may change with time.  

• Non-axisymmetric problem/scheme/approach

This is the time-averaged version of the unsteady problem. The effective wake

cannot change with time (observed from the ship-fixed coordinate system) but can vary in 

space. The propeller performance is a function of the blade angle and has to be periodical 

in time. In this case, the time-averaged assumption has two underlying meanings: (a) The 

incoming flow and the ship motion does not change with time; (b) Like a quasi-steady 

state, the rotation of the propeller does not introduce any time-dependency (approximately) 

to the ship/global system. 

• Axisymmetric problem/scheme/approach:
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This is the circumferentially-averaged version of the non-axisymmetric problem. 

The effective wake cannot change in time or in the circumferential direction. The propeller 

performance is a constant and does not change with the blade angle. This problem requires 

the incoming flow and the upstream bodies to be axisymmetric. 

3.1 BOUNDARY ELEMENT METHOD 

3.1.1 Flow decomposition 

According to the Helmholtz’s theorem, a twice differentiable vector field can be 

decomposed into a curl-free component and a divergence-free component. 

 (3.1) 

There is an infinite number of decompositions that satisfy the theorem because the 

curl-free component can always be decomposed into two curl-free components and either 

one can be added to the divergence-free component without violating the theorem. In this 

propeller application, we choose the propeller-induced potential flow as the curl-free 

component, as shown in Equation (3.2). 

 (3.2) 

In Equation (3.2), the total flow 𝑞𝑞𝑡𝑡 is decomposed to the effective wake flow 𝑞𝑞𝑒𝑒 

and the propeller-induced flow 𝑞𝑞. 

The above equation can also be defined in a rotating coordinate system fixed to the 

propeller shaft, as shown in Equation (3.3). 
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 (3.3) 

Since the propeller-induced flow is a potential flow, it can be written as the gradient 

of the perturbation potential 𝜙𝜙 which is governed by the Laplace equation. 

 (3.4) 

 (3.5) 

 

3.1.2 Boundary condition 

Although PROPCAV code is capable of solving a cavitating propeller, the propeller 

cavitation is not the focus of this research. Therefore, only the boundary conditions and 

equations under the wetted situation are given in this chapter. The detailed description of 

the cavitation solver is given in (Fine 1992) and (Young 2002). 

As shown in Figure 3.1, a kinematic boundary condition is applied to the propeller 

blade and hub surfaces 𝑆𝑆𝐵𝐵. After applying Equation (3.3) - (3.5), the boundary condition to 

the perturbation potential field can be derived: 

 (3.6) 

At the far field, the perturbation potential should vanish: 

 (3.7) 
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Since the propeller blade is a lifting body, there should be a vortex sheet following 

the trailing edge of the blade. On the two sides of the vortex sheet, the perturbation potential 

is different. A force-free condition should be applied on the wake surface and, therefore, 

on the blade trailing edge as well. In Figure 3.1, the trailing wake surface is only plotted 

on one blade.  

 (3.8) 

 

Figure 3.1: An example BEM panel model for a 3-blade open propeller under non-
cavitating conditions. The hub surface, blade surfaces, and one (out of 3) 
trailing wake surface is shown. 

 

3.1.3 Boundary element method 

The boundary element method is used to solve the boundary value problem 

described above. Equation (3.5) is first inserted into the Green’s second identity, as shown 

X

Y

Z
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in Equation (3.9). In this equation, 𝐺𝐺(𝑝𝑝; 𝑞𝑞) is the Green’s function for the Laplace operator, 

as shown in Equation (3.10), 𝜙𝜙𝑝𝑝 is the perturbation potential at any point (p) of the domain, 

𝜙𝜙𝑞𝑞  is the perturbation potential at the integration point (q), ∆𝜙𝜙𝑞𝑞 is the potential difference 

between both sides of the wake surface. The integration is performed at the propeller blade 

and hub surfaces 𝑆𝑆𝐵𝐵 and at the trailing wake surfaces 𝑆𝑆𝑊𝑊. The normal vector on the 

integrated surface is noted as 𝑛𝑛𝑞𝑞. 

 (3.9) 

 (3.10) 

Depending on whether point p is located inside the fluid domain, outside the fluid 

domain, or on the propeller surface, the 𝐼𝐼𝑝𝑝 factor should be given a different value, as 

shown in Equation (3.11). 

 (3.11) 

If we take the gradient of Equation (3.9), the propeller-induced velocity inside the 

fluid domain can be calculated by: 

 (3.12) 

where . 
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3.1.4 Effective wake 

In Equation (3.3), the flow is decomposed to the effective wake and the propeller-

induced flow. Then the boundary condition of the perturbation potential is given in 

Equation (3.6) assuming the effective wake is known. In reality, we might not know the 

effective wake field before solving BEM.  

Typically, the flow information we can get before a propeller analysis is the 

nominal wake. A nominal wake is defined by the flow observed in the absence of the 

propeller. It can be obtained by empirical equations (Carlton 2012), by model tests, or by 

CFD simulations of the flow around the ship hull.  

To calculate the effective wake from the nominal wake, there are two different 

situations: 

• If the nominal wake is irrotational, it is also governed by the Laplace equation. 

Therefore, we can simply add the propeller-induced flow to the nominal wake to 

form the total flow. In other words, the effective wake is equal to the nominal wake. 

• If the nominal wake is vortical, it is governed by the nonlinear Navier-Stokes 

equation and can no longer be linearly added to the propeller-induced flow. 

Therefore, including the propeller’s effect on the flow also modifies the nominal 

wake. We call this modified nominal wake to be the effective wake. According to 

(Carlton 2012), the effective wake can be expressed in two ways:  

 effective velocity = nominal velocity + interaction velocity 

 effective velocity = total velocity – propeller-induced velocity 
 

3.1.5 Calculation of pressure and forces 

To calculate the pressure distribution on the propeller surface, the head-loss/gain 

caused by the viscous/turbulence diffusion is neglected and the Euler equation in the 
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rotating coordinate system is used to derive the Bernoulli equation (3.13), where 𝜔𝜔 is the 

rotation vector of the coordinate system and 𝑥𝑥 is the coordinate vector. Then, the time 

derivative term can be decomposed and some vector identities can be applied (Kinnas 

2006), resulting in the Equation (3.14). The total head 𝐻𝐻 is defined by Equation (3.15). 

 (3.13) 

 (3.14) 

 (3.15) 

If we integrate Equation (3.14) along the streamline 𝑠𝑠 from point 𝑝𝑝0 to point 𝑝𝑝1, the 

second term on the right-hand side vanishes and we get: 

 (3.16) 

This is the general equation for calculating the pressure inside the BEM solver. 

However, under certain situations, the equation can be simplified. If the effective wake 𝑞𝑞𝑒𝑒 

is steady and irrotational, the right-hand side of Equation (3.14) becomes zero and, 

therefore, the total head 𝐻𝐻 is uniform across the flow field. If we apply the integration of 

Equation (3.14) along any curves from far upstream to the target point, we can get Equation 

(3.17). 𝑝𝑝𝑠𝑠 is the far upstream shaft pressure, 𝑞𝑞𝑡𝑡∞ is the far upstream relative velocity 

magnitude at the same radius as 𝑥𝑥. 
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 (3.17) 

In the current PROPCAV code, Equation (3.17) is always used to calculate the 

pressure on the propeller surface even if the effective wake is unsteady or vortical. In 

practice, this does not seem to create much numerical error as long as the change of the 

effective wake along the streamwise direction is not large.  

After the calculation of the pressure, the total force acting on the blade can be 

calculated by the following equation. In Equation (3.18) - (3.19), 𝑛𝑛 is the normal vector on 

the propeller surface, 𝛾𝛾 is the unit vector in the total velocity’s direction. The skin friction 

𝑓𝑓 can be calculated either empirically or by solving the boundary layer integral equation 

(Sun 2008). 

 (3.18) 

 (3.19) 

 

3.1.6 Single-blade problem 

To solve Equation (3.9), the surface of the propeller 𝑆𝑆𝐵𝐵 and the trailing wake surface 

𝑆𝑆𝑊𝑊 can be discretized to BEM panels, as shown in Figure 3.1. Given a single-blade 

propeller, Equation (3.9) can be discretized to the following equation: 

 (3.20) 
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In Equation (3.20), i and j are blade/hub panel indexes; k is the wake panel index. 

𝐴𝐴𝑖𝑖𝑖𝑖, 𝐵𝐵𝑖𝑖𝑖𝑖, and 𝑊𝑊𝑖𝑖𝑖𝑖  are dipole influence coefficient from a blade/hub panel, source influence 

coefficient from a blade/hub panel, and dipole influence coefficient from a wake panel 

respectively. They can be calculated by Equation (3.21) - (3.23). Here, 𝑃𝑃𝑖𝑖 is the control 

point (usually the centroid) of the i-th panel; 𝑞𝑞 is a point on the panel surface 𝑆𝑆𝑗𝑗 or 𝑆𝑆𝑘𝑘; n is 

the normal vector on point 𝑞𝑞. 

 (3.21) 

 (3.22) 

 (3.23) 

To solve Equation (3.20),  term is known and moved to the right-hand side 

while 𝐴𝐴𝑖𝑖𝑖𝑖𝜙𝜙𝑗𝑗 term is to be solved and put to the left-hand side. ∆𝜙𝜙𝑘𝑘 is generally known 

except for the first row of panels. Therefore, the 𝑊𝑊𝑖𝑖𝑖𝑖∆𝜙𝜙𝑘𝑘  term is partially in the left-hand 

side and mainly in the right-hand side. In the case of an axisymmetric problem, ∆𝜙𝜙𝑘𝑘 does 

not change along the streamwise direction and, therefore, the 𝑊𝑊𝑖𝑖𝑖𝑖∆𝜙𝜙𝑘𝑘 term is put purely in 

the left-hand side. 
 

3.1.7 Trailing wake 

In order to solve Equation (3.20), we also need two types of information about the 

trailing wake: the wake surface geometry and the dipole strength ∆𝜙𝜙 on the first row of 

wake panels.  
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According to the Helmholtz theorem, for any ideal and barotropic fluid subject only 

to conservative forces, the vortex line moves with the flow and does not change in strength 

(circulation). Therefore, the move of the wake surface can be described by: 

 (3.24) 

In other words, the dipole panels on the wake surface move and deform with the 

flow. However, the dipole strength on the panel remains unchanged. This explains why the 

dipole strength is known on the wake surface except for the first row of panels. 

In the case of an axisymmetric problem or a problem in which the unsteady wake 

behavior is ignored, the flow is steady in the rotating coordinate system. Therefore, the 

path-line defined by Equation (3.24) coincides with the streamline and the wake surface no 

longer change with time. 

To calculate the dipole strength ∆𝜙𝜙 on the first row of wake panel, the zero pressure 

jump condition should be applied at the trailing edge. For a 2D foil, the zero pressure jump 

condition leads to the Morino condition: 

 

Here, the 𝜙𝜙𝑘𝑘+ and 𝜙𝜙𝑘𝑘− represent the perturbation potential at the suction side of the 

trailing edge and at the pressure side of the trailing edge respectively; k is the panel index 

number in the span-wise direction. Special treatment is needed if the perturbation potential 

is not stored at the trailing edge (Lee 1987). 

For a 3-dimensional propeller flow, the different velocity direction on two sides of 

the trailing edge and the different total head caused by the inflow vorticity makes the 

Morino condition no longer valid. As a result, an iterative pressure Kutta condition, defined 
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by Equation (3.25), should be used (Lee 1987, Kinnas and Hsin 1992). In the iterative 

scheme, the Morino condition is first used as the initial guess. Then, the wake dipole 

strength is adjusted in an iterative way. Here, k and n are panel indexes in the span-wise 

direction; i is the iteration number. Matrix 𝑅𝑅𝑛𝑛𝑛𝑛  is determined by the Newton-Raphson 

method. 

 (3.25) 

 

3.1.8 Multi-blade problem 

• Unsteady problem 

For the multi-blade unsteady problem, in order to reduce the matrix size, only one 

blade (called the key blade) is solved at the time, as shown in Equation (3.26). Z is the 

number of blades; , , and  are the influence coefficients matrix from the source, the 

dipole, and the wake; subscript  means the influence coefficients matrix is from j-th 

blade to the key blade;  is the perturbation potential (BEM solution) on the j-th blade 

at time t; superscript  and  represent the first row of wake panels and the other 

rows of wake panels respectively. 

 (3.26) 
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The interactions between blades are considered in an iterative manner, as shown in 

Figure 3.2. Within every time step, each blade is solved in a sequential manner and the 

process is repeated until fully converged. Every blade can have a unique solution and the 

solution is a function of time. 

 

 

Figure 3.2: Flow chart of the unsteady boundary element method. 

 

• Non-axisymmetric problem 

For the multi-blade non-axisymmetric problem, the above equation can be modified 

to reduce the computational cost. In the non-axisymmetric problem, the solution is 

periodical and is only a function of the blade angle. Therefore, we only need to solve the 

problem at different blade angles. All the blades should have the same solution except for 

a phase difference. The equation for the non-axisymmetric problem is given below: 
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 (3.27) 

Here, 𝜃𝜃𝑙𝑙
𝑗𝑗  is the blade angle of the j-th blade when the key blade is located at 𝜃𝜃𝑙𝑙1, as 

shown in Equation (3.28).  

 (3.28) 

Equation (3.27) is solved sequentially at different blade angles, 𝜃𝜃1 … 𝜃𝜃𝑛𝑛, as shown 

in Figure 3.3. It usually takes 3 – 6 revolutions for the solution to converge. 

 

 

Figure 3.3: Flow chart of the steady boundary element method. 
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• Axisymmetric problem 

In the axisymmetric problem, the solution is the same for every blade and at every 

blade angle. Therefore, we only need to solve Equation (3.29) once to get the solution. 

 (3.29) 

 

3.1.9 Boundary layer correction  

Although BEM is only a potential solver and is not able to calculate the flow inside 

the boundary layer, corrections can be made to consider the boundary layer’s effect to the 

outside flow (Drela 1989, Sun 2008, Kinnas et al. 2012). The scheme simplifies the 

boundary layer into blowing sources and places those sources onto the blade surface panels. 

The source strength  𝜎𝜎� can be calculated by Equation (3.30) where 𝑈𝑈𝑒𝑒  is the edge velocity, 

𝛿𝛿∗ is the displacement thickness, and s is the panel direction. The edge velocity and 

displacement thickness can be solved by coupling PROPCAV with a boundary layer solver 

XFOIL. 

 (3.30) 

 

3.2 BEM/RANS COUPLING 

An unsteady RANS simulation of the multibody interaction problem can be costly. 

Take the hull-propeller interaction as an example. Usually, the dimension of the ship hull 

is much larger compared to the dimension of the propeller, as shown in Figure 3.4. If we 

solve both the hull and the propeller in the same RANS model, it may take a long simulation 
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time for the flow around the ship hull to stabilize while it also requires a small time-step-

size due to the small dimensions and the fast rotation of the propeller. As a result, the 

computational cost can be very high. 

In fact, there is no need to solve both the ship hull and the propeller in the same 

model. The flow around the ship hull can be seen as in a quasi-steady state. In other words, 

since the dimensions of the propeller are so small and the propeller is moving much faster 

than the ship hull, the propeller-induced unsteady flow can be decoupled from the ship hull 

flow system. Given that the flow can be decomposed to a steady (or slow-changing) ship 

hull flow and a rapid-changing propeller flow, we can then use a much larger time-step-

size for the ship hull flow and saves time. 

 

 

Figure 3.4: Side view of a container ship. The ship stern and the propeller are at the right 
side of the plot. 

The BEM/RANS coupling scheme is based on such kind of flow decomposition. 

The steady or slow-changing ship hull flow is solved by a steady RANS or an unsteady 

RANS with a larger time-step-size1. The rapid-changing propeller-induced flow can be 

solved by BEM. In order to include the propeller’s effect in RANS, the propeller blades 

can be represented by body force fields and mass source fields. 

 

                                                
1 The RANS solver in this dissertation refers to ANSYS Fluent v18.2 
(https://www.ansys.com/products/fluids/ansys-fluent). 
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3.2.1 Assumptions 

In the BEM/RANS scheme, due to the large time-step-size, the propeller blades 

cannot be represented by non-slip wall boundaries. In order to consider the influence of the 

propeller to the ship hull flow, a propeller blade can be represented by the following terms: 

 

• Normal pressure and skin friction 

This term includes all the forces a propeller blade imposes to the surrounding flow. 

It can be represented by a body force term in the momentum equation. The normal pressure 

on the propeller blade can be evaluated by the Bernoulli Equation, as shown in Equation 

(3.16). The skin friction can be calculated by the boundary layer solver or simply by an 

empirical skin friction coefficient. 

• Thickness blockage effect 

The thickness blockage effect means the displacement of mass due to the blade 

thickness. Therefore, this term can be represented by a mass source field which can be 

applied to the continuity equation.  

• Boundary layer blockage effect 

The boundary layers on both sides of the blade have a similar effect to the blade 

thickness effect. Due to the velocity deficit near the wall, the external flow is “pushed” 

outward by the displacement thickness. Thus, the boundary layer term can also be 

represented by the mass source term and applied to the continuity equation. 

• Compensating force 

If a non-zero source term is added to the continuity equation, another term is 

automatically included in the non-conservative form of the momentum equation. This term 

reduces the local velocity when mass is added and increases the local velocity when mass 

is subtracted. This term needs to be compensated by an extra body force term. 
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Based on the assumptions above, the unsteady RANS equation can be written as: 

 (3.31) 

 (3.32) 

In Equation (3.31) and (3.32), 𝑈𝑈� is the unsteady Reynolds averaged velocity and 𝑃𝑃� 

is the unsteady Reynolds averaged pressure. Depending on the reference frames used in 

each zone, certain inertial force terms should be added to the momentum equation.  

Instead of using non-slip wall boundaries, the propeller blades can be represented 

by the mass source term  and the body force term . These terms are non-zero only 

inside the propeller zone. The use of these terms enables the representation of a time-

averaged propeller effect. In the unsteady problem, more specifically, both the mass source 

term and the body force term are time-averaged within the RANS time-step-size.  

The unsteady problem can be simplified to the steady non-axisymmetric problem 

at certain conditions or certain assumptions. If the ship flow does not change with time, the 

propeller performance should be periodic and can be expressed as a function of the blade 

angle. If we integrate Equation (3.31) and  (3.32) over the propeller revolution period, we 

get: 

  (3.33) 

 (3.34) 
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In Equation (3.33) and (3.34), 𝑈𝑈� is the steady Reynolds averaged velocity and 𝑃𝑃� is 

the steady Reynolds averaged pressure. The unsteady components are dropped due to the 

periodical flow condition. The cross terms originated from the convection term are also 

neglected because of the assumption that the propeller-induced unsteady velocity is much 

smaller than the time-averaged velocity components. This scheme can be seen as the 

unsteady scheme with the time-step-size set to the propeller revolution period. 

The steady non-axisymmetric problem can be further simplified to the steady 

axisymmetric problem. If the inflow and the geometry of the upstream body are both 

axisymmetric, the propeller performance should be a constant and does not change with 

the blade angle. If we integrate Equation (3.33) and (3.34) in the 𝜃𝜃-direction, we get the 

axisymmetric RANS equation: 

  (3.35) 

 (3.36) 

In Equation (3.35) and (3.36), 𝑈𝑈� is the axisymmetric Reynolds averaged velocity 

and 𝑃𝑃� is the axisymmetric Reynolds averaged pressure. The non-axisymmetric components 

are dropped. The cross terms originated from the convection term are also neglected 

because of the assumption that the propeller-induced non-axisymmetric velocity is much 

smaller than the axisymmetric velocity components. 
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3.2.2 Coupling scheme 

In Chapter 3.2.1, assumptions are made to represent the propeller blades by body 

force field and mass source field. In order to determine these field functions, the BEM 

solver can be used. On the other hand, the BEM solver requires the effective wake field to 

determine the boundary condition for the perturbation potential field, as shown in Equation 

(3.6). This effective wake field can be calculated by subtracting the propeller-induced flow 

from the total flow. As a result, the data flow inside the BEM/RANS scheme can be shown 

as in Figure 3.5. It can be seen that both solvers depend on the results from the other solver 

and, therefore, an iterative scheme is required for the scheme to converge.  

 

 

Figure 3.5: Data flow inside the BEM/RANS approach. 

The scheme can be implemented in three different ways: unsteady, steady non-

axisymmetric, and steady axisymmetric. The difference between the three is given in  Table 

3.1. The unsteady scheme couples the unsteady RANS solver with an unsteady non-

periodical BEM solver. It does not impose any requirement on the upstream bodies and 

incoming flows. The non-axisymmetric scheme couples the steady 3-dimensional RANS 

solver with unsteady periodical BEM solver. It requires the nominal wake of the propeller 

to be steady so that the propeller performance is periodic. This requirement can be further 

defined as a zero-ship-hull-acceleration condition and a steady-incident-flow condition. 

The axisymmetric scheme couples the steady axisymmetric RANS solver with a steady 

BEM Solver

RANSE Solver

body force
mass source propeller-induced flowtotal floweffective wake =                  –
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BEM solver. It requires the nominal wake of the propeller to be steady and axisymmetric 

so that the propeller performance is a constant. This requirement can be further defined as 

an axisymmetric-upstream-body condition, a zero-acceleration condition, and a steady-

axisymmetric-incident-flow condition. 

Comparisons of the body force field, mass source field, and effective wake field 

will be given in greater details in Chapter 3.3 – 3.5.  

 

Scheme Unsteady Non-axisymmetric Axisymmetric 

RANS solver type unsteady 3D steady 3D axisymmetric 2D 

BEM solution non-periodical unsteady periodical steady 

Body force field2 function of 𝑥𝑥, 𝑟𝑟, 𝜃𝜃, 𝑡𝑡 function of 𝑥𝑥, 𝑟𝑟, 𝜃𝜃 function of 𝑥𝑥, 𝑟𝑟 

Upstream body no requirement zero-acceleration zero-acceleration 
axisymmetric shape 

Inflow requirement no requirement steady inflow steady axisymmetric 

Table 3.1 Comparison of the unsteady scheme, the non-axisymmetric scheme, and the 
axisymmetric scheme. 

 

3.2.3 Unsteady BEM/RANS scheme 

Figure 3.6 shows the algorithm for the unsteady BEM/RANS scheme: 
                                                
2 The same applies to mass source field and effective wake field as well. 
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Figure 3.6: Flow chart for the unsteady BEM/RANS scheme. 

As shown in the figure, the BEM solver and the RANS solver start by exchanging 

geometry information and calculating interpolation parameters between the RANS mesh 
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and the BEM panels. Then, the steady BEM solution is calculated based on a uniform 

incoming flow condition. The solution provides the initial body force strength and mass 

source strength for unsteady RANS. 

Currently, the BEM solver and the RANS solver must have the same time step size. 

This restriction can be removed so that the RANS solver can have a larger time step size 

than BEM. This topic is a part of the future work. 

Within each time step, both the BEM solver and the RANS solver use inner 

iterations to achieve the converged solution. The body force field, mass source field, and 

effective wake field data are exchanged between the two solvers multiple times within a 

time step. In other words, an implicit time-stepping is used for updating these three terms. 

More specifically, the body force term and the mass source term are calculated via the 

Crank-Nicolson scheme. The use of unsteady time-stepping schemes is important for 

maintaining numerical stability at large time step sizes. In some test versions of the 

unsteady BEM/RANS scheme where the explicit time-stepping schemes are used, the 

numerical convergence is always a big issue.  

The number of inner iterations between data exchanges should be determined to 

minimize the overall computational cost to achieve numerical convergence. Three factors 

need to be considered: the data exchange cost, the load balancing between the two solvers, 

and the convergence rate.  

The BEM/RANS scheme will terminate the current time step and proceed to the 

next time step when certain convergence criteria are met. Aside from the convergence 

criteria imposed by the RANS solver, a new condition is added with respect to the overall 

propeller thrust force: 
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 (3.37) 

where 𝑇𝑇𝑁𝑁 and 𝑇𝑇𝑂𝑂 are the thrust force at the current and the previous time step; 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 is the 

thrust force predicted in the steady BEM step.  

In the unsteady BEM/RANS approach, the BEM solver and the RANS solver run 

simultaneously and exchange data multiple times during the process. This requires some 

special techniques to ensure the data integrity and the data exchange efficiency. 

Semaphores and shared memory are used in this application. Detailed information about 

synchronization and inter-process communication are given in Appendix A.  

The mesh zone that contains the body force in the unsteady BEM/RANS scheme is 

also designed in a special way so that the body force field is confined to one layer of cells. 

This reduces the body force/mass source interpolation error and increases the accuracy of 

the effective wake field. More details about the body force zone mesh can be found in 

Appendix B. 

 

3.2.4 Steady non-axisymmetric and steady axisymmetric BEM/RANS scheme 

The non-axisymmetric scheme and the axisymmetric scheme can be implemented 

in the same way, as shown in Figure 3.7. The only differences between the two schemes 

are the type of BEM solvers used, the type of RANS solvers used, and whether the body 

force field, mass source field, and effective wake field are circumferentially averaged. 

The steady RANS problem can be seen as a single-step unsteady RANS simulation 

with an infinite time step size. It only takes 5-9 iterations for the BEM/RANS scheme to 

achieve the converged state. Because of this, there is no need to run BEM and RANS 
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simultaneously.  We can simply call the RANS solver the BEM solver in a sequential and 

repetitive manner until the solution converges. 

 

 

Figure 3.7: Flow chart for the non-axisymmetric BEM/RANS scheme and the 
axisymmetric BEM/RANS scheme. 

 

3.2.5 Difference between the unsteady BEM/RANS scheme and the immersed 
boundary method 

The major similarity between the unsteady BEM/RANS scheme and the immersed 

boundary scheme is the use of the body force field to represent the internal wall boundaries. 

Although the BEM/RANS method can be called a special type of immersed boundary 

method, there are actually several major differences between the unsteady BEM/RANS 

approach and the basic form of the immersed boundary method.  
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determine the body force field (Mittal and Iaccarino 2005, Lai and Peskin 2000, 

Balaras 2004). In the unsteady BEM/RANS approach, the body force field is 

determined by an external BEM solver. 

• The immersed boundary method relies on the string function (feedback forcing 

approach) or a pressure reconstruction step (direct forcing approach) to determine 

the pressure distribution on the boundary. In the BEM/RANS approach, the 

propeller forces are determined by the BEM solver using the Bernoulli equation. 

• To handle high Reynolds number flows immersed boundary method usually refines 

the mesh near the wall boundary in order to resolve the boundary layer velocity 

profile. In the unsteady BEM/RANS scheme, the boundary layer is not represented 

in the RANS solver. Instead, a boundary layer correction can be made to the BEM 

solver. This reduces the number of cells in the propeller zone and enables larger 

time step sizes. 

• The immersed boundary method does not use source terms in the continuity 

equation. 

 

3.3 BODY FORCE CALCULATION 

The body force term contains three components: normal pressure, skin friction, and 

the compensating force. The way to calculate the first two components is described in this 

part and the compensating force will be discussed together with the thickness blockage 

effect in Chapter 3.4. 
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3.3.1 Existing studies 

To represent the propeller blades by body force field, there are mainly two different 

approaches: the surface-distribution approach and the mean-camber-distribution approach.  

The surface-distribution approach uses either a direct interpolation scheme, as 

shown in Figure 3.8 (left), or a smooth distribution function, as shown in Figure 3.8 (right), 

to distribute the surface pressures on the BEM panels to the surrounding finite volume 

cells. The direct interpolation scheme distributes the pressure on a BEM panel using its 

intersection areas/volumes with the finite volume cells (Choi 2001). The distribution 

function method, however, uses a smooth function to distribute the body force to the 

surrounding cells within a certain range (Gaggero 2017).  

 

   

Figure 3.8: A 2D example of the surface-distribution body force model with direct 
interpolation method (left) or distribution function method (right). The red 
dashed curve is a 2-dimensional hydrofoil. The body force is applied to all 
the shadowed cells. 

The camber-distribution approach adds an additional step before the force is 

distributed. The normal pressure and skin friction on both sides of the blade (called pressure 

side and suction side) is first combined in a conservative way, as shown in Equation (3.38) 

and Figure 3.9. Then, the combined force field is distributed from the mean camber panels 
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to the finite volume cells with either the direct interpolation method (Choi 2001) or the 

distribution function method (Salvatore 2015, Calcagni 2017), as shown in Figure 3.10. 

 (3.38) 

 

Figure 3.9: Calculation of the combined force field on the blade mean camber surface. 

 

Choi (2001) studied the difference between the surface-distribution approach and 

the camber-distribution approach on a 2-dimensional hydrofoil solved by an Euler solver. 

The direct interpolation method is used to distribute the forces to finite volume cells. 

Results are compared with BEM solutions. The study shows that both the surface-

distribution model and the camber-distribution model can accurately represent the 

hydrofoil. The error of the total flow velocity away from the foil is always less than 1%. 

However, due to the lack of mesh granularity, the velocity near the foil surface (or camber 

surface) is not accurate. 
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Figure 3.10: A 2D example of the camber-distribution body force model with direct 
interpolation method (left) or distribution function method (right). The red 
dashed curve is the camber line of a 2-dimensional hydrofoil. The body 
force is applied to all the shadowed cells. 

 

3.3.2 Body force calculation in the unsteady BEM/RANS scheme 

The surface-distribution approach requires a higher mesh density than the camber-

distribution approach because it requires at least two layers of cells inside the blade 

thickness. Therefore, in order to reduce the number of cells in the propeller zone, the 

camber-distribution approach is adopted in the unsteady BEM/RANS scheme. The direct 

interpolation scheme is also used to support the calculation of effective wake close to the 

propeller blade.  

The body force in the unsteady BEM/RANS scheme can be calculated by the 

following steps: 

First, the normal pressure and skin friction on both sides of the blade is summed, 

as shown in Equation (3.39). In the BEM model, a structured surface mesh is used to 

represent the propeller blade, as shown in Figure 3.1. p is the static pressure; f is the skin 

friction;  is the unit vector in the flow direction;  is the normal vector; + and – 
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represent the suction side panel and pressure side panel respectively, as shown in Figure 

3.9; S is the area of the panel. As shown in Figure 3.9, the forces on the suction side panel 

and the forces on the pressure side panel can be summed to obtain the equivalent force  

on the mean camber panel. 

 (3.39) 

The force is then distributed to one or multiple finite volume cells based on the 

intersection volume, as shown in Equation (3.40).  and  are the volume and the body 

force strength of the i-th finite volume cell;  is the total force at the j-th camber panel; 

 is the volume defined by sweeping the j-th mean camber panel by the angle of propeller 

rotation during a time step and can be calculated by Equation (3.41);  is the intersecting 

volume between the i-th finite volume cell and the swept volume . In Equation (3.41), 

 is the area of the camber panel;  is the time step size;  is the normal vector of the 

camber panel;  is the unit vector in the circumferential direction;  is the centroid 

radius of the i-th cell; M is the number of mean camber panels on all blades; N is the 

number of finite volume cells. 

 (3.40) 

 (3.41) 
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3.3.3 Body force calculation in the non-axisymmetric BEM/RANS scheme 

In the non-axisymmetric version of the BEM/RANS scheme, the time-average of 

Equation (3.40) should be used to calculate the body force field, as shown in Equation 

(3.42). Here, the force on the camber  is a function of the blade angle, instead of time; 

 is the volume defined by sweeping the j-th mean camber panel by  and can be 

calculated via Equation (3.43);  is the intersection volume between the i-th finite volume 

cell and the swept volume . 

 (3.42) 

 (3.43) 

 

3.3.4 Body force calculation in the axisymmetric BEM/RANS scheme 

In the axisymmetric version of the BEM/RANS scheme, the circumferential 

average of Equation (3.42) should be used to calculate the body force field, as shown in 

Equation (3.44). Here, the force on the camber  is no longer a function of blade angle; 

 is the area of the i-th finite volume cell;  is the area of the X-R projection of the j-th 

mean camber panel and can be calculated by Equation (3.45);  is the intersection area 

between the i-th finite volume cell and the projection of j-th mean camber panel. 

 (3.44) 

 (3.45) 
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3.4 THICKNESS BLOCKAGE EFFECT 

3.4.1 Calculation of mass source term 

The calculation of the mass source term is very similar to the calculation of the 

body force term. The BEM sources on both sides of the blade are first combined, as shown 

in Equation (3.46). In this equation, + and – represent the suction side panel and pressure 

side panel respectively, as shown in Figure 3.9. Then, this source term can be distributed 

to finite volume cells based on the direct interpolation scheme. 

 (3.46) 

In the unsteady BEM/RANS scheme, the mass source field can be calculated by 

Equation (3.47) while  is calculated by Equation (3.41). 

 (3.47) 

In the non-axisymmetric BEM/RANS scheme, the mass source field can be 

calculated by Equation (3.48) and  is calculated by Equation (3.43). 

 (3.48) 

In the axisymmetric BEM/RANS scheme, the mass source field can be calculated 

by Equation (3.49) and  is calculated by Equation (3.45). 

 (3.49) 
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3.4.2 Calculation of compensating force term 

When the mass source term is included in the continuity equation, the conservative 

form of the convection term in the incompressible momentum equation can be written to 

the non-conservative form by the following way: 

 (3.50) 

Here,  is the non-conservative form of the convection term;  is a 

force term induced by the added/subtracted mass sources and is called the “Lagally force”. 

Depending on the implementation of the RANS solver, this term may reduce the local 

velocity when mass is added and increase the local velocity when mass is subtracted. To 

eliminate this effect, an extra body force field should be included wherever the mass source 

term is none-zero. The compensating force field can be calculated by Equation (3.51). 

 (3.51) 

 

3.5 EFFECTIVE WAKE CALCULATION 

As shown in Figure 3.5, the effective wake is calculated by subtracting the 

propeller-induced velocity from the total velocity. The calculation of the total velocity is 

straight-forward because it just requires an interpolation of the RANS solution. The 

calculation of the propeller-induced velocity is based on Equation (3.12) and can actually 

be implemented in several different ways. Another important aspect is the location where 

the effective wake is calculated.  

In this part, different schemes for calculating the effective wake field are described. 

The comparison between different effective wake schemes will be given in Chapter 4. 
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3.5.1 Effective wake calculation in the unsteady BEM/RANS approach 

Theoretically, the best location to evaluate the effective wake field is exactly on the 

blade surface. However, according to Chapter 3.3.1, the RANS solution is not accurate 

close to the propeller blade due to the lack of mesh density. 

In the existing unsteady BEM/RANS applications, the effective wake is usually 

evaluated at an upstream disk (Chase et al. 2013, Calcagni 2017). This disk can either be a 

planer disk, as shown in Figure 3.11, or a curved disk that conforms to the shape of the 

propeller leading edge. This scheme avoided the region where the RANS solution is not 

accurate but also introduced additional numerical errors because it constrains the change 

of the effective wake field in the axial direction. As a result, the effective wake can be 

inaccurate near the trailing edge of the propeller.  

 

 

Figure 3.11: An example of evaluating the effective wake at a planar upstream disk in the 
unsteady BEM/RANS scheme. 
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In this application, the above issues are solved by evaluating the effective wake at 

a small constant offset from the propeller blade control points. To implement this idea, two 

different approaches are tested: 

• Calculating effective wake on a constant offset from the blade surface

In this application, the effective wake velocity for the j-th BEM panel is evaluated

at the location  defined by a constant distance offset from the panel centroid , as 

shown in Figure 3.12 and Equation (3.52). In the equation,  is the normal vector of the 

j-th BEM panel and  is the offset distance. 

(3.52) 

Figure 3.12: Calculation of effective wake velocity at a constant offset from the blade 
surface. The left figure is a global view of the blade while the right figure is 
a close-up view of the blade base station. The black points are where the 
effective wake is evaluated. 
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To evaluate the induced velocity on these points, the Equation (3.12) can be used. 

In this equation,  includes the blade surface and the hub surface.  

The offset distance  is an important parameter in this scheme. If  is too small, 

the total velocity from RANS is not accurate due to the lack of mesh density; the calculated 

propeller-induced velocity from Equation (3.12) is not accurate as well because of the 

“saw-tooth effect” (Kinnas and Hsin 1994). If the offset distance is too large, the calculated 

wake field cannot accurately represent the flow near the propeller blade and, thus, create a 

numerical error. A parametric study on choosing the offset distance is given in Chapter 4. 

• Calculation of effective wake based on the mean camber geometry

In this application, the effective wake velocity for the j-th BEM panel is evaluated

at the location  defined by a constant distance offset from the corresponding mean 

camber panel centroid , as shown in Figure 3.13 and Equation (3.53). In the equation, 

 is the normal vector of the mean camber panel and  is the offset distance. The 

symbol is the equation is determined by which side (pressure side or suction side) is the j-

th BEM panel located. 

(3.53) 

In this approach, the blade-induced velocity can still be calculated by Equation 

(3.12). However, the boundary  in this equation needs to be changed in order to be 

consistent with the locations where the effective wake is calculated. Therefore, instead of 

integrating over the blade surfaces, the mean camber surfaces are used to calculate the 

blade-induced velocity. In other words,  includes the mean camber surfaces and the hub 

surface. The source and dipole strength on a mean camber panel can be determined by the 
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summation of the sources and dipoles from the blade surface panels on both sides of the 

camber panel, as shown in Equation (3.54). In this equation, , , and  are the areas 

of the suction side surface panel, pressure side surface panel, and mean camber panel. 

, , and  are can be the source strength or dipole strength of the suction side surface 

panel, pressure side surface panel, and the mean camber panel 

(3.54) 

Figure 3.13: Calculation of effective wake velocity at a constant offset from the blade 
mean camber surface. The left figure is a global view of the blade camber 
surface while the right figure is a side view of the camber surface. The black 
points are where the effective wake is evaluated. 
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3.5.2 Effective wake calculation in the non-axisymmetric BEM/RANS approach 

In the non-axisymmetric BEM/RANS scheme, the effective wake can be evaluated 

either at an upstream disk, as shown in Figure 3.11, or at the centroids of the blade surface 

panels, as shown in Figure 3.14. The upstream disk model constrains the change of the 

effective wake field along the axial direction and this can cause numerical errors. 

According to Tian (Tian et al. 2014), evaluating the effective wake on the propeller blade 

surface can improve the numerical accuracy for various types of propellers.  

It is worth noting that although the effective wake is always evaluated on the blade 

surface, the effective wake can still change with the blade angle.  

 

 

Figure 3.14: An example of evaluating the effective wake at the centroids of blade 
surface panels in the non-axisymmetric BEM/RANS scheme. 

Unlike the unsteady BEM/RANS scheme, in the non-axisymmetric BEM/RANS 

scheme, we can either neglect or avoid the numerical errors in calculating the total flow 

velocity and propeller-induced velocity close to the propeller blade. This is why it is 

possible to evaluate the effective wake exactly on the blade surface. The following 

paragraphs explain why those errors can be neglected. 
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Since RANS solves for the time-averaged problem, the body force field and mass 

source field are distributed to the whole propeller region instead of a few layers of cells. 

This time-average reduces the numerical error in the unsteady approach due to the lack of 

local mesh granularity.  

According to the previous description, the error in calculating the near-field blade-

induced velocity is due to the “saw-tooth” effect. To avoid this numerical error, the 

propeller-induced velocity on the blade surface can be evaluated via another way, as shown 

in Equation (3.55) - (3.57). Here,  and  are the chord-wise and the span-wise panel 

directions;  is the panel normal direction. 

 (3.55) 

 (3.56) 

 (3.57) 

In the non-axisymmetric BEM/RANS scheme, RANS solves for the time-averaged 

total flow while BEM solves for the unsteady propeller-induced flow under the time-

averaged effective wake field. To calculate the time-averaged effective wake, the unsteady 

propeller-induced flow should be time-averaged first and subtracted from the total flow. 

There are two possible ways to calculate the time-averaged propeller-induced flow 

velocity : 

• Average the propeller-induced velocity within a blade passing period, 

including the period when the target point is inside the blade thickness. As 

shown in Equation (3.58),  and  are the time-accurate propeller-induced 
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velocity defined in the rotational coordinate system and in the ship coordinate 

system; Z is the number of blades, T is the propeller revolution period, and  is 

the angular velocity;  is an arbitrary angle that can be chosen based on the 

propeller panel geometry to simplify the integration process. This equation converts 

the time integral into a spacial integral so that it is more straight-forward to 

implement in the PROPCAV solver. It is worth noting that according to the BEM 

theory, the propeller-induced velocity  is zero inside the propeller blade 

thickness. 

 (3.58) 

 (3.59) 

 

• Average the propeller-induced velocity within a blade passing period, NOT 

including the period when the target point is inside the blade thickness. As 

shown in Equation (3.60), the only change is the range in which the averaging is 

performed. Here,  and  are the angular range of the fluid domain between to 

nearby propeller blades, as shown in Figure 3.15. 

 (3.60) 
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Figure 3.15: Two possible range of integration in calculating the time-averaged propeller-
induced velocity for the non-axisymmetric and axisymmetric BEM/RANS 
scheme.  

Numerical study about the two different averaging schemes is given in Chapter 4. 

 

3.5.3 Effective wake calculation in the axisymmetric BEM/RANS approach 

In the axisymmetric BEM/RANS scheme, the effective wake can be evaluated 

either at an upstream curve or at the centroids of the blade surface panels, as shown in 

Figure 3.16. The effective wake is both time-averaged and circumferentially-averaged.  

In the axisymmetric BEM/RANS scheme, the RANS solver determines the steady 

axisymmetric total flow while BEM solves for the steady propeller-induced flow under an 

axisymmetric effective wake field. To calculate the axisymmetric effective wake, the 

propeller-induced flow should be circumferentially-averaged before it is subtracted from 

the total flow, as shown in Equation (3.61) or (3.62), where . 
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Figure 3.16: Three different methods to evaluate the effective wake in the axisymmetric 
BEM/RANS scheme: at an upstream straight line (solid line), at an offset 
from the blade leading edge (dashed line), and at the centroids of blade 
surface panels (points). 

(3.61) 

(3.62) 
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Chapter 4. Numerical Study and Validation 

In this chapter, several simple test cases are solved to validate the BEM/RANS 

approach. Numerical and parametrical studies are also made on whether to include the 

thickness blockage effect and on which is the better way to evaluate the effective wake. In 

order to make the problem simpler for the numerical and parametrical studies, the 

multibody interaction is not included in any of these cases. More realistic applications on 

the multibody interaction problems are given in Chapter 5. 

To make it easier to distinguish between different numerical scheme, the following 

terms are defined: 

• BEM: the propeller performance is solved by the boundary element solver under

the nominal wake. The interaction between the potential flow and the incoming

vortical flow is not considered.

• BEM/RANS: the propeller performance is solved by the coupled BEM/RANS

approach.  The propeller blades are represented by body force field and mass source

field in the RANS model. The scheme can be used to determine the effective wake

and to handle the multibody interaction problem. The scheme can be unsteady, non-

axisymmetric, or axisymmetric.

• RANS: (or called “full-blown RANS”) the propeller performance is solved by

RANS solver with the propeller represented by non-slip wall boundaries. The

scheme can be used to handle multibody interaction problem and can be used as a

reference to validate the BEM/RANS scheme.

* The data in chapter 4.2 and 4.3 are published in (Su and Kinnas 2017a). The data in chapter 4.4 and 4.5 
are published in (Su and Kinnas 2018). The dissertator is the primary author of both papers. 
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4.1 DEFINITION OF NON-DIMENSIONAL NUMBERS 

The non-dimensional numbers that are used in this chapter and in the next chapter 

include: 

• Thrust coefficient  is the non-dimensional thrust force generated by the whole

propeller unit. In contrast, the thrust coefficient generated by a single blade is

written as . In a contra-rotating propeller (CRP) case, the thrust coefficient of

the forward propeller and the aft propeller are  and  respectively. All these

thrust coefficients are calculated by Equation (4.1). In this equation,  is the flow

density,  the propeller diameter,  is the propeller r.p.s. (revolution per second),

and  is the thrust force. In the definition of the aft propeller  in the CRP case,

the forward propeller diameter is used.

(4.1) 

• Torque coefficient  is the non-dimensional torque generated by the propeller

unit. In contrast, the torque coefficient generated by a single blade can be written

as . In a CRP case, the torque coefficient of the forward propeller and the aft

propeller are  and  respectively. All these torque coefficients are defined

by Equation (4.2). In the definition of the aft propeller  in the CRP case, the

forward propeller diameter is used.

(4.2) 
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• Pressure coefficient  is the non-dimensional pressure and can be defined by 

Equation (4.3). In this equation,  is the pressure that is non-dimensionalized and 

 is the far upstream pressure. 

 (4.3) 

• Advance ratio  quantifies the angular velocity of the propeller compared to the 

ship speed . 

 (4.4) 

• Non-dimensionalized circulation  represents the loading at a certain station of 

the propeller blade. It is defined by Equation (4.5) where  is the propeller max 

radius and  is the blade velocity circulation at a certain station. 

 (4.5) 

 

4.2 PROPELLER P5168 IN UNIFORM INFLOW SOLVED BY AXISYMMETRIC BEM/RANS 

4.2.1 Description of the problem 

In this application, the five-blade skewed propeller P5168, as shown in Figure 4.1 

is used with a uniform incoming flow (nominal wake). The P5168 propeller is a 

representation of the current propeller designs. The inflow velocity is in the direction of 

the shaft axis. Different advance ratios are used ranging from 0.8 to 1.0.  
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According to Chapter 3.1.4, if the nominal wake is irrotational, the predicted 

effective wake should be the same as the nominal wake. This condition can be used to 

validate the BEM/RANS scheme. In other words, although there is no need to use the 

BEM/RANS approach in a uniform inflow case, the solution of BEM/RANS scheme 

reveals how much error is introduced by the assumptions in Chapter 3.2.1. 

 

 

Figure 4.1: BEM panel model of the P5168 propeller. 

 

4.2.2 Description of the numerical model 

The axisymmetric BEM/RANS scheme is used to solve this problem. The steady 

BEM solver is coupled with the steady axisymmetric RANS solver. 

In the BEM model, as shown in Figure 4.1, 80×36 panels are placed on the key 

blade surface while 70×20 panels are used for the hub surface between two blades. A PSF-

2 type wake alignment scheme is used (Greeley and Kerwin 1982). 

The axisymmetric RANS model includes 46,000 quadrilateral cells which cover a 

computational domain from -1.5D to 2.0D in the axial direction and 2.0D in the radial 

direction, as shown in Figure 4.2. The inflow velocity is set at the upstream boundary; a 
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slip-wall condition is set on the hub surface; a zero-gradient condition is used for all the 

flow variables at the downstream boundary. The mesh is refined at the propeller zone where 

body force and mass source are applied, as shown in Figure 4.3. Other settings for the 

axisymmetric RANS model are listed in Appendix C. 

By default, when calculating the time-averaged propeller-induced velocity, the 

period when the target point is inside the blade thickness is NOT included. This is the 

second method in Chapter 3.5.2 and 3.5.3. 

 

 

Figure 4.2: Boundary conditions and the range of computational domain of the 
axisymmetric RANS model.  

 

Figure 4.3: The RANS mesh used in the axisymmetric BEM/RANS scheme. 
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4.2.3 Validation of the axisymmetric BEM/RANS scheme 

In this test, the advance ratio is set to Js=0.8. The axisymmetric BEM/RANS 

scheme is used to determine the effective wake field. Since we expect the effective wake 

to be the same as the nominal wake, only one BEM/RANS iteration is performed.  

First, a mesh convergence study is made on the number of BEM panels and on the 

number of RANS cells. As shown in Table 4.1, a higher-mesh-density case and a lower-

mesh-density case are tested. The circulations after the first iteration are compared, as 

shown in Figure 4.4. Very little difference can be observed. This validates the mesh 

independence. 

The higher-mesh-density settings are used for further studies. The predicted 

effective wake on the blade is plotted in the X-R domain, as shown in Figure 4.5. For the 

most part of the blade, the error of the predicted effective wake is within 3%. The major 

difference occurs at the root of the blade and at the tip of the blade. The error near the root 

can be explained by the “saw-tooth” effect in calculating the hub-induced velocity. This 

causes a numerical error in the propeller-induced velocity near the hub panels. The error 

near the tip of the blade may be explained by the inaccurate tip vortex geometry. It is still 

challenging for potential solvers to handle propeller tip flows. But the good news is the 

error at the root and tip does not influence the overall propeller performance much. 

 

 BEM blade panels RANS cells 

Higher mesh density 80×36 46,000 

Lower mesh density 60×20 28,000 

Table 4.1: Number of cells/panels used in the mesh convergence study. 
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Figure 4.4: Comparison of the blade circulation distribution predicted from the higher-
mesh-density case and from the lower-mesh -density case. 

 

Figure 4.5: (Scheme A) Effective wake velocity components in the axial (left), radial 
(middle), and swirl (right) direction. The velocity is non-dimensionalized by 

. White color means a less than 3% numerical error.  

 

4.2.4 Study of the Thickness Blockage Effect 

To study the thickness blockage effect, 4 slightly different BEM/RANS schemes 

are used to solve the P5168 propeller with uniform inflow. As shown in Table 4.2, the 
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differences between the 4 schemes include whether the mass source term is added to the 

continuity equation, whether the compensating force is added to the momentum equation, 

and how the time- and circumferentially-averaged propeller-induced velocity is calculated. 

First, advance ratio Js=0.8 is used. The effective wake field predicted by the 4 

different schemes are shown in Figure 4.5 - Figure 4.8 respectively. 

 

 Mass source Compensating force Averaging range 

Scheme A Included Included Include the part inside a blade 

Scheme B Included NOT included Include the part inside a blade 

Scheme C NOT included NOT included Include the part inside a blade 

Scheme D Included Included NOT include the part inside blade 

Table 4.2: Differences between the four cases in the thickness blockage effect study. 

 

Figure 4.6: (Scheme B) Effective wake velocity components in the axial (left), radial 
(middle), and swirl (right) direction. The velocity is non-dimensionalized by 

. White color means a less than 3% numerical error. 



64

Figure 4.7: (Scheme C) Effective wake velocity components in the axial (left), radial 
(middle), and swirl (right) direction. The velocity is non-dimensionalized by 

. White color means a less than 3% numerical error. 

Figure 4.8: (Scheme D) Effective wake velocity components in the axial (left), radial 
(middle), and swirl (right) direction. The velocity is non-dimensionalized by 

. White color means a less than 3% numerical error. 
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Among all the 4 schemes, the most accurate effective wake field is predicted by 

scheme A in which both the mass source and the compensating force are included and the 

propeller-induced velocity is time-averaged in between two blades. 

In scheme B, the compensating force term is removed from RANS but the mass 

source term is still included. The predicted effective wake is shown in Figure 4.6. Due to 

the thickness distribution, the Lagally force tends to decelerate the axial flow at the forward 

part of a blade and accelerate the axial flow at the aft part. Therefore, an underpredicted 

axial flow is expected in the axial component effective wake velocity (left plot of Figure 

4.6).  

In scheme C, both the mass source and the compensating force are removed from 

RANS. The predicted effective wake is shown in Figure 4.7. Without the thickness 

blockage effect, the axial component of the total flow is expected to be smaller. This leads 

to an underpredicted axial effective wake velocity, as depicted in the left plot of Figure 4.7. 

Based on the above observations, it can be concluded that both the mass source 

term and the compensating force term are essential and should be included in the RANS 

model. Next, the different methods for calculating the time-averaged propeller-induced 

velocity are looked at.  

Both scheme A and scheme D included the mass source term and compensating 

force term. The only difference between the two schemes is the way how the propeller-

induced velocity is time-averaged. Scheme A averages the velocity only in between the 

blades while scheme D also includes the part inside the blade thickness where the propeller-

induced velocity is zero. Details about the two methods can be found in Chapter 3.5.2 and 

3.5.3.  

As shown in Figure 4.8, the effective wake predicted by scheme D has a larger 

numerical error than that from scheme A, especially at the root of the blade. This is because 
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the blade thickness is largest at the root. Therefore, including the zero-velocity region 

inside the blade reduces the propeller-induced velocity in the axial direction and, thus, 

increase the axial component of the effective wake near the root of the blade.  

To explain why the blade thickness region should not be included in calculating the 

time-averaged propeller-induced flow, the effect of the BEM source term should be first 

examined. In a vortex lattice representation of a propeller blade, the streamline follows the 

mean camber surface. When source terms are also added to the model to represent the blade 

thickness, the streamline is pushed outwards due to the blockage effect. As a result, the 

velocity in between the blades increases. Back to the BEM representation of the blade, the 

source on the blade surface panels (thickness blockage effect) causes the flow in between 

blades to increase and the flow velocity inside the blade thickness to be zero. Therefore, if 

only the region between two blades is considered, the thickness blockage effect is included 

in the propeller-induced velocity field. On the other hand, if the blade thickness region is 

also included, the thickness blockage effect is weakened. Finally, since the thickness 

blockage effect is included in RANS, it should also be included in the propeller-induced 

velocity so that the two flow fields are consistent. The consistency between the total flow 

field and propeller-induced flow field reduces the numerical error of the effective wake, 

which is calculated by subtracting the propeller-induced flow from the total flow. 

In conclusion, in the axisymmetric BEM/RANS scheme, the mass source and 

compensating force need to be included in RANS. The calculation of the time-averaged 

propeller-induced flow should only consider the region between the blade and not consider 

the zero-velocity blade thickness region. The same reasoning should also be true for the 

time-averaged non-axisymmetric scheme. 

The converged blade circulation predicted by scheme A, B and C is also compared. 

Different advance ratios are tested, including 0.6 (Figure 4.9), 0.8 (Figure 4.10), 1.0 (Figure 
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4.11). A special case is also solved with a 0.8 advance ratio and a 150% of the design 

thickness (Figure 4.12). 

 

 

Figure 4.9: Influence of the mass source and compensating force towards the blade 
circulation at Js=0.6. 

 

Figure 4.10: Influence of the mass source and compensating force towards the blade 
circulation at Js=0.8. 
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Figure 4.11: Influence of the mass source and compensating force towards the blade 
circulation at Js=1.0. 

 

Figure 4.12: Influence of the mass source and compensating force towards the blade 
circulation at Js=0.8 with 150% blade thickness. 
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(nominal wake) condition. The next three curves are the circulation calculated by 

PROPCAV under the effective wake predicted by scheme A, B, or C. 

According to these figures, the second curve always has the smallest numerical 

error compared to the first curve. Removing the mass source term can lead to an 

overestimated blade loading because the absence of the thickness blockage effect causes a 

weaker effective wake field. This phenomenon is more evident under higher advance ratios 

or higher blade thickness. The higher advance ratio means a weaker body force field. A 

thicker blade means a higher mass source field. Both lead to a spurious stronger blockage 

effect. Removing the compensating force alters the propeller loading distribution along the 

blade chord-wise direction. However, the overall change of the blade circulation at a certain 

radius depends on the blade thickness distribution along the chord as well as many other 

factors. Therefore, there is no clear trend on how the circulation distribution changes if the 

compensating force is removed. 
 

4.3 PROPELLER P5168 IN AXISYMMETRIC INFLOW SOLVED BY AXISYMMETRIC 
BEM/RANS 

4.3.1 Description of the problem 

In order to test how the axisymmetric BEM/RANS scheme behaves with non-

uniform inflows, the following test case is designed. The same propeller P5168 is used in 

this study. The incoming flow (nominal wake) is a nonuniform axisymmetric flow field, 

defined by Equation (4.6) and (4.7). This nominal wake contains a lower axial velocity 

region at the smaller radius and a constant velocity outside the propeller region, as shown 

in Figure 4.13. Such type of wake field can often be found in the downstream of an 

underwater axisymmetric slender body, including submarines and some other underwater 

vehicles.  
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(4.6) 

(4.7) 

Figure 4.13: Axial velocity profile of the nonuniform axisymmetric inflow (left) and the 
corresponding nominal wake field plotted on the propeller surface (right). 

4.3.2 Description of the numerical models 

First, the axisymmetric BEM/RANS scheme is used. The BEM model and RANS 

model are the same as those described in Chapter 4.2.2. The only difference is that the 

inflow boundary is set to the above velocity profile. Both the mass source term and the 

compensating force term are included. The propeller-induced velocity is only averaged in 

the region between two blades.  
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To validate the BEM/RANS result, a full-blown RANS simulation is performed for 

the same case. As shown in Figure 4.14, only 1/5 of the propeller is modeled with around 

3 million cells and periodical boundaries. The velocity profile is applied to the inflow 

boundary. The propeller blade is modeled by non-slip walls while the hub is modeled by a 

slip-wall. Other settings can be found in Appendix C. 

 

 

Figure 4.14: Boundaries of the full-blown RANS simulation for propeller P5168 under 
nonuniform axisymmetric inflow. 

 

4.3.3 Results 

In this case, since the inflow is no longer irrotational, the propeller-induced flow 

may interact with the nominal wake. Therefore, the propeller performance should change 

with the iterations. As shown in Figure 4.15, the convergence of the BEM/RANS scheme 

is established at around the fourth iteration. Figure 4.16 shows the body force field and 

mass source field. Figure 4.17 shows the axial and swirl components of the predicted 

effective wake. This effective wake field can be compared with the nominal wake, as 
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shown in Figure 4.13, to illustrate the interaction between the vortical inflow and the 

propeller-induced flow. In the effective wake, the axial velocity increases at lower radii. 

The swirl velocity component is also developed. Overall, the propeller makes the flow 

more evenly distributed. 

Figure 4.15: Blade circulation distribution at different iterations. 

Figure 4.16: Axial body force field (left), circumferential body force field (middle), and 
mass source field (right) plotted on the X-R projection of the propeller. The 
blade leading edge is on the left side. The unit of the body force field is 

 and the unit of the mass source field is . 
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Figure 4.17: Effective wake field  predicted by the axisymmetric BEM/RANS 
scheme (non-uniform axisymmetric inflow case). The axial (left) and swirl 
(right) velocity components are plotted on the X-R projection of the 
propeller. The blade leading edge is on the left side. 

 

 
Computational Cost 
(on same machine) Thrust Coef. Torque Coef. 

BEM (nominal wake) 40 seconds 0.140 0.0198 

BEM/RANS 30 minutes 0.158 
(13% error) 

0.0220 
(11% error) 

Full-blown RANS 8 hours 0.141 
(1.0% error) 

0.0197 
(0.8% error) 

Table 4.3: Comparison of predicted propeller forces and computational cost between 
BEM, BEM/RANS, and full-blown RANS. 

With the full-blown RANS results as a reference, the BEM/RANS scheme can be 

validated. The thrust coefficients and torque coefficients are first compared, as shown in 

Table 4.3. When BEM is solved directly with the nominal wake, the predicted propeller 
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forces may have as much as a 13% error compared to the full-blown RANS results. 

However, after considering the vortical inflow-propeller interaction via the BEM/RANS 

scheme, the error goes down to less than 1%. The computational cost of all three schemes 

is also listed in Table 4.3. 

4.4 PROPELLER P2772 IN UNIFORM INFLOW SOLVED BY UNSTEADY BEM/RANS 

4.4.1 Description of the problem 

In this application, a four-blade skewed propeller P2772 at P/D = 0.87, as shown in 

Figure 4.18, is used with a uniform incoming flow (nominal wake). The inflow velocity is 

in the direction of the shaft axis. The advance ratio is set to 0.6. 

Figure 4.18: BEM panel model of the P2772 propeller. 

The original P2772 propeller geometry has a round trailing edge. This makes the 

Kutta condition hard to implement and also makes the trailing wake surface hard to 

determine. In order to handle round trailing edge propellers, the propeller geometry needs 

to be modified. Pan (2011) and Du (2017) developed a trailing edge extension scheme for 
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the blunt trailing edge duct and blunt trailing edge 2-dimensional foils. The same idea can 

also be applied to extend the blunt/round propeller trailing edges.  

 

 

Figure 4.19: Original (solid) and modified (dashed) root section thickness distribution of 
propeller P2772. 

In this dissertation, a simpler method is used which modifies the blade thickness 

near the trailing edge, as shown in Figure 4.19. For every blade section, assume the original 

blade thickness distribution is defined by Equation (4.8) where  is the blade thickness 

as a ratio to the camber and  is the chord-wise coordinate which ranges from 0 to 1. 

 (4.8) 

Equation (4.9) defines the modified thickness distribution while the parameter A 

and B can be calculated by Equation (4.10). In Equation (4.9), the thickness within the 

 region is replaced by a second-order polynomial which is determined by 

two end points and the slope at . 

 (4.9) 
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(4.10) 

Similar to Chapter 4.2.1, the predicted effective wake is expected to be the same as 

the nominal wake. This serves as a validation for the unsteady BEM/RANS scheme. 

4.4.2 Description of the numerical model 

The unsteady BEM/RANS scheme is used to solve this problem. The unsteady 

BEM solver is coupled with the unsteady RANS solver. 

In the BEM model, as shown in Figure 4.18, 60×25 panels are placed on the key 

blade surface while 66×10 panels are used for the hub surface between two blades. A PSF-

2 type wake alignment scheme is used.  

The unsteady RANS model uses 2,000,000 hexahedron cells that cover a 

computational domain from -1.5D to 1.5D in the axial direction and up to 2.0D in the radial 

direction, as shown in Figure 4.20 and Figure 4.21. The inflow velocity is set at the 

upstream boundary; a slip-wall condition is set on the hub surface; a zero-gradient 

condition is used for all the flow variables at the downstream boundary. The model consists 

of two zones. The inner zone is where body force term and mass source term are applied. 

The cells in the inner zone follow that shape of the mean camber surface. More details 

about the inner zone can be found in Appendix B. The inner zone rotates with the propeller 

and is connected to the outer zone via sliding interfaces. Other settings for the RANS model 

are listed in Appendix C. 

The BEM/RANS model is solved for 6 propeller revolutions. A 3-degree equivalent 

time steps size is used. Here, the equivalent time-step size is defined as the propeller 

rotation angle during a time step. At the last propeller revolution, the boundary layer 
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correction is included in the BEM solver. However, the blowing source term is not applied 

to the RANS model. 

Figure 4.20: Boundary conditions and the range of computational domain of the unsteady 
RANS model. Only the {z = 0 and y > 0} slice of the 3-dimensional model 
is shown.  

Figure 4.21: The RANS mesh used in the unsteady BEM/RANS scheme. 
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To validate the unsteady BEM/RANS scheme, an unsteady full-blown RANS 

simulation is also performed with the same case. In this RANS model, the outer zone 

remains the same. The inner zone is a full cylindrical zone that contains 1.35 million 

polyhedral cells and non-slip boundaries to represent the propeller blades. A 1-degree 

equivalent time step size is used. Other settings in the RANS solver can be found in 

Appendix C. 

Figure 4.22: The inner mesh zone (left) and its middle slice (y = 0) (right) in the unsteady 
full-blown RANS simulation. 

4.4.3 Numerical study on different effective wake calculation schemes 

In Chapter 3.5.1, two different methods are introduced to evaluate the effective 

wake for the unsteady BEM/RANS scheme. The first method calculates the effective wake 

based on the propeller blade surface geometry while the second method calculates the 

effective wake based on the blade mean camber surface.  

To determine which method is better, two different cases are tested. 
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In the first case, the effective wake is evaluated at a constant offset from the blade 

surface. This means both the total flow velocity and the effective wake velocity are 

interpolated or calculated at those offset locations. The offset distance is 6% of the 

propeller diameter. The blade-induced velocity is calculated by an integration over all the 

blade surface panels. The predicted effective wake field at the mid-chord slice is shown in 

Figure 4.23.  

In the second case, the effective wake is evaluated at a constant offset from the 

mean camber surface. The offset distance is also 6% of the propeller diameter. The blade-

induced velocity is calculated by an integration over all the mean camber panels. The 

predicted effective wake field at the mid-chord slice is shown in Figure 4.24. 

In the unsteady BEM/RANS scheme, the effective wake field is evaluated only at 

several blade angles where the blades are currently located. In other words, the algorithm 

does not provide all the data required to generate Figure 4.23 at a certain time step. In fact, 

the data in Figure 4.23 and Figure 4.24 comes from multiple time steps within the last 

revolution. That is why a small discontinuity might be observed near the boundary line at 

around 0-degree blade angle position. This discontinuity is not obvious in this case because 

the inflow is axisymmetric. It is more noticeable in some later studies when the ship hull 

acceleration or turning is included. 

Based on Figure 4.23 and Figure 4.24, the second method behaves much better than 

the first method. As shown in Figure 4.24, the effective wake predicted by the second 

method has very small vertical and horizontal components. On most part of the mid-chord 

slice, the axial effective wake velocity has a less than 3% error (shown as the white color). 

At the root of the blade, the error rises to 5%. This might be due to the saw-tooth effect in 

calculating the hub-induced velocity. On the contrary, in Figure 4.23, the effective wake 

predicted by the first method has a much larger error in all directions. 
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Figure 4.23: The mid-chord effective wake field  predicted by the unsteady 
BEM/RANS scheme. The effective wake is evaluated based on the blade 
surface geometry. The axial velocity component is shown by the contour 
plot while the in-plane velocity components are shown by arrows. 

Figure 4.24: The mid-chord effective wake field  predicted by the unsteady 
BEM/RANS scheme. The effective wake is evaluated based on the blade 
mean camber surface. The axial velocity component is shown by the contour 
plot while the in-plane velocity components are shown by arrows. 
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To explain why the second method behaves better than the first method, the body 

force model needs to be looked at. In Chapter 3.3.1, two body force models are described: 

the surface-distribution model and the camber-distribution model. The camber-distribution 

model is finally chosen because it uses a smaller number of cells in the propeller zone. The 

camber-distribution model means the propeller’s effect on the RANS model (body force 

and the mass source) is applied at the mean camber location. Since the accurate prediction 

of the effective wake requires a consistent representation of the propeller blades in both 

RANS and BEM, the propeller-induced velocity should also be calculated based on the 

mean camber geometry (second method). 

In all future unsteady BEM/RANS calculations, the second way of calculating 

effective wake field is always used. 

Finally, although these two methods predict quite different effective wake field in 

the unsteady BEM/RANS calculations, the difference might not be significant in time-

averaged BEM/RANS calculations (non-axisymmetric scheme and axisymmetric scheme). 

One possible explanation is that the time-averaging process cancels the numerical error. 

4.4.4 Influence of the offset distance in calculating the effective wake field 

The offset distance at which the effective wake is calculated is also an important 

parameter. If the offset distance is too small, both the total flow from RANS and the blade-

induced velocity are not accurate3. If the offset distance is too large, the calculated wake 

field might not be able to represent the real effective wake on the propeller surface.  

To study how the offset distance affects the numerical result, five cases with 

different offset distances are tested. The distance ranges from 2% of propeller diameter to 

3 Refer to Chapter 3.5.1 for more details. 
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6% of propeller diameter. The numerical scheme fails to converge in the case with a 2% of 

diameter offset. The results from the other 4 cases are shown in Figure 4.25. In this figure, 

the numerical error of the predicted propeller forces is compared. The full-blown RANS 

result is set as the reference.  

Figure 4.25: Error of the propeller forces predicted by the unsteady BEM/RANS scheme 
with the effective wake calculated at different offset distances. The full-
blown RANS result is set as the reference.  

According to the figure, the numerical error decrease as the offset distance increases 

from 3% to 6% of the propeller diameter. At 6% diameter of offset, the numerical errors of 

both the thrust coefficient and torque coefficient fall below 1%. Therefore, the 6% of the 

diameter is chosen as the sweet spot for the offset distance. It is worth noting that this 

number might change when different BEM panels are used or when a different inner mesh 

density is used.  

In all future unsteady BEM/RANS calculations, the effective wake field is always 

calculated at an offset of 6% diameter. 
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4.4.5 Result and comparison 

Other results from the unsteady BEM/RANS simulation are shown in this 

subchapter. Figure 4.26 shows the body force field in all three directions at the x = 0 slice 

of the RANS computational domain. 

Figure 4.27 shows the predicted propeller forces as a function of time. There is a 

huge jump in the propeller loading at the beginning of the scheme. This is due to the starting 

vortex. As the vortex moves downstream, the propeller performance finally stabilizes after 

around one blade revolution (120th-time step).  

Figure 4.28 compares the blade circulation distribution from the unsteady 

BEM/RANS scheme and that from the BEM solver with uniform inflow (nominal wake). 

In the unsteady BEM/RANS, the circulation from the stabilized solution is used. As 

expected, the difference between the two curves is small. 

Figure 4.29 compares the thrust coefficient and torque coefficient predicted by the 

unsteady BEM/RANS scheme, by the unsteady full-blown RANS, by BEM with the 

nominal wake, and by experiment. 

Figure 4.30 compares the vorticity fields from the unsteady BEM/RANS scheme 

and from the unsteady full-blown RANS. Six pairs of figures are shown, each representing 

a different blade angle (time). Within each pair, the top figure shows the vorticity field 

generated by non-slip wall boundaries (full-blown RANS) while the lower figure shows 

the vorticity field generated by body force fields and mass source fields (unsteady 

BEM/RANS). 
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Figure 4.26: Axial body force field (left), vertical body force field (middle), and 
horizontal body force field (right) plotted at the x = 0 slice of the RANS 
computational domain. The unit of the body force field is . 

 

 

 

Figure 4.27: The thrust coefficient and torque coefficient predicted by the unsteady 
BEM/RANS scheme. 
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Figure 4.28: Blade circulation distribution predicted by the unsteady BEM/RANS scheme 
(after fully stabilized) and by the BEM solver under the nominal wake 
(uniform inflow). 

 

Figure 4.29: Comparison of the thrust coefficient and torque coefficient predicted by 
unsteady BEM/RANS scheme, by unsteady full-blown RANS, by BEM 
with the nominal wake, and by experiment. 
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(blade angle: 0-deg)                                          (blade angle: 15-deg) 

 

     

(blade angle: 30-deg)                                          (blade angle: 45-deg) 
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(blade angle: 60-deg)                                          (blade angle: 75-deg) 

Figure 4.30: Comparison of vorticity fields from unsteady BEM/RANS scheme and from 
unsteady full-blown RANS. Six pairs of figures are shown, each 
representing a different blade angle (time). Within each pair, the top figure 
shows the vorticity field generated by non-slip wall boundaries while the 
lower figure shows the vorticity field generated by body force fields and 
mass source fields. 

 

4.5 PROPELLER P2772 IN UNIFORM INCLINED INFLOW SOLVED BY UNSTEADY 
BEM/RANS 

4.5.1 Description of the problem 

In the previous study, a uniform incoming flow in the shaft axis direction is used. 

As a result, the propeller performance does not change with the blade angle. In order to 

further test the unsteady BEM/RANS scheme, it is helpful to include some non-

axisymmetric component. 
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One possible way is to change the inflow direction so that the inflow is at an angle 

with the hub axis. Due to the relative direction between the inflow and the propeller blade 

angle, the incident flow velocity and direction for a blade can change. Therefore, the 

unsteady component is included in the propeller performance. 

In real applications, some propellers are installed at an inclination angle from the 

ship longitudinal direction. Such cases can be solved as normally-placed propeller with an 

inclined inflow direction. 

In this study, the P2772 propeller is used with a 10-degree inclination angle and the 

advance ratio .  
 

4.5.2 Description of the numerical model 

The unsteady BEM/RANS scheme is first used to solve this problem. To validate 

the unsteady BEM/RANS scheme, an unsteady full-blown RANS simulation is also 

performed. The BEM model, the unsteady RANS model, and the unsteady full-blown 

RANS model are the same as those described in Chapter 4.4.2. The only difference is that 

the inflow direction is changed in both RANS models, as shown in Figure 4.31. 

 

 

Figure 4.31: Boundary conditions and the range of computational domain of the unsteady 
RANS model with inclined inflow. Only the {z = 0 and y > 0} slice of the 3-
dimensional model is shown.  
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Both BEM/RANS and full-blown RANS are solved for 6 propeller revolutions. A 

3-degree equivalent time step size is used is BEM/RANS while 1-degree equivalent time

step size is used in full-blown RANS. At the last revolution of BEM/RANS, the boundary

layer correction is included in the BEM solver. However, the blowing source term is not

applied to the RANS model.

4.5.3 Convergence study on mesh density and time step size 

The first convergence study is on the number of panels used in the BEM model 

while the RANS model is kept unchanged, shown as case A, B, and C in Table 4.4. 

The second convergence study is on the number of RANS cells in the inner zone 

and the time step size, show as case D, E, B, and F in Table 4.4. 

BEM panels on 
the key blade 

Inner zone cells 
in RANS 

Outer zone cells 
in RANS 

Equivalent time 
step size (degree) 

Case A 80×30 32×44×120 1.99 million 3 

Case B 60×25 32×44×120 1.99 million 3 

Case C 50×20 32×44×120 1.99 million 3 

Case D 60×25 70×64×360 1.99 million 1 

Case E 60×25 40×54×180 1.99 million 2 

Case F 60×25 20×34×60 1.99 million 6 

Table 4.4: Number of BEM panels and RANS inner zone cells used in the convergence 
study. The number of the BEM panels on the blade is given by the product 
of chord-wise panel count and span-wise panel count. The number of inner 
zone RANS cells is given by the product of chord-wise cell count, span-wise 
cell count, and circumferential cell count. The equivalent time step size is 
the propeller’s rotation angle within a time step.  
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Figure 4.32: Comparison of the predicted thrust coefficients with a different number of 
panels on the BEM propeller surface: case A (80×30), case B (60×25), and 
case C (50×20). The accumulative blade angle is the angle the propeller has 
rotated since the start of the simulation.  

Figure 4.33: Comparison of the predicted thrust coefficients with a different number of 
inner zone RANS cells and different equivalent time step size: case D 
(70×64×360, 1deg), case E (40×54×180, 2deg), case B (32×44×120, 3deg), 
and case F (20×34×60, 6deg). The accumulative blade angle is the angle the 
propeller has rotated since the start of the simulation.  
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Results of both convergence studies are shown in Figure 4.32 and Figure 4.33. A 

good convergence is found on the number of BEM panels under current settings. The 

convergence with respect to the RANS inner zone mesh density and time step size is also 

good except case F.  

In all the following unsteady BEM/RANS scheme, 60×25 panels are used on a 

propeller blade surface, 32×44×120 cells are used in the body force/mass source zone, and 

a 3-degree equivalent time step size is used. 

4.5.4 Result and comparison 

Figure 4.34 shows the predicted propeller forces as a function of time. Since the 

incident flow direction changes as the propeller rotate inside the inclined inflow, the 

stabilized propeller forces oscillate in a periodical manner. The mean propeller forces at 

the last propeller revolution are also compared, as shown in Figure 4.36. 

In this application, although non-axisymmetric component is included in the 

problem, the inflow remains irrotational. Therefore, the effective wake is expected to be 

the same as the uniform inclined incoming flow. Figure 4.35 shows the predicted effective 

wake on the mid-chord slice. The error of the axial effective wake velocity is within 3% 

on most part of the mid-chord slice. The error is larger near the hub due to the saw-tooth 

effect. The vertical component of the effective wake is shown by arrows. 

Figure 4.37 shows the pressure coefficient on the blade surface at 0-blade-angle of 

the last revolution. The pressure coefficients are plotted along the chord-wise direction at 

several different blade sections (r/R equals to 0.44, 0.57, and 0.79). Comparisons are made 

between results from the unsteady BEM/RANS with the boundary layer correction, from 

the unsteady BEM/RANS without the boundary layer correction, and from the unsteady 
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full-blown RANS. The boundary layer correction scheme used in this case is developed by 

Sun and Kinnas (Kinnas et al. 2007b). The scheme uses three-dimensional influence 

coefficients and considers the interaction among strips and the influence from other blades. 

If the result from the full-blown RANS is set as a reference, it can be clearly seen that the 

boundary layer correction significantly improves the results of the unsteady BEM/RANS 

scheme, especially at a lower radius, at the suction side, and near the trailing edge. This 

huge difference is due to the low advance ratio (0.6) used in this study. A lower advance 

ratio means a higher angle of attack for all the blade sections and, therefore, a larger 

boundary layer thickness at the suction side of the blade. Since the blade thickness at a 

lower radius is higher, the negative pressure gradients at these sections are more significant 

near the trailing edge. This makes the boundary layer effect more significant at the suction 

side, at a lower radius, and near the trailing edge.  

Figure 4.38 compares the vorticity fields from the unsteady BEM/RANS scheme 

and from the unsteady full-blown RANS. Six pairs of figures are shown, each representing 

a different blade angle (time). Within each pair, the top figure shows the vorticity field 

generated by non-slip wall boundaries (full-blown RANS) while the lower figure shows 

the vorticity field generated by body force fields and mass source fields (BEM/RANS). 



93

Figure 4.34: The stabilized thrust coefficient and torque coefficient predicted by the 
unsteady BEM/RANS scheme and by the unsteady full-blown RANS. 

Figure 4.35: The mid-chord effective wake field  predicted by the unsteady 
BEM/RANS scheme. The axial velocity component is shown by the contour 
plot while the in-plane velocity components are shown by arrows. 
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Figure 4.36: Mean thrust coefficient and torque coefficient at the last revolution. 
Comparison between unsteady BEM/RANS scheme, unsteady full-blown 
RANS, and BEM with nominal wake are provided. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

KT 10KQ

BEM/RANS
Unsteady RANS
BEM



95

(r/R = 0.44)  

(r/R = 0.57)  

(r/R = 0.79)  

Figure 4.37: Key-blade surface pressure at zero-blade-angle of the last revolution. 
Comparison between unsteady BEM/RANS with boundary layer correction, 
unsteady BEM/RANS without boundary layer correction, and unsteady full-
blown RANS are provided. 

X/R

-C
p

-0.15 -0.1 -0.05 0 0.05 0.1

-1.5

-1

-0.5

0

0.5

1

1.5

X/R

-C
p

-0.1 -0.05 0 0.05 0.1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X/R

-C
p

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Full-blown RANS

BEM/RANS with boundary
layer correction

BEM/RANS without
boundary layer correction

Full-blown RANS

BEM/RANS with boundary
layer correction

BEM/RANS without
boundary layer correction

Full-blown RANS

BEM/RANS with boundary
layer correction

BEM/RANS without
boundary layer correction



 96 

     

(blade angle: 0-deg)                                          (blade angle: 15-deg) 

 

     

(blade angle: 30-deg)                                          (blade angle: 45-deg) 
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(blade angle: 60-deg)                                          (blade angle: 75-deg) 

Figure 4.38: Comparison of vorticity fields from unsteady BEM/RANS scheme and from 
unsteady full-blown RANS (inclined inflow case). Six pairs of figures are 
shown, each representing a different blade angle (time). Within each pair, 
the top figure shows the vorticity field generated by non-slip wall 
boundaries while the lower figure shows the vorticity field generated by 
body force fields and mass source fields. 



Chapter 5. Multibody Interaction Applications 

In the previous chapter, the BEM/RANS schemes are used to predict the propeller 

performance under a uniform or non-uniform inflow. Several numerical studies are 

performed to improve the scheme. 

In this chapter, the more practical and more challenging problems are looked at. 

The BEM/RANS scheme is applied to multibody interaction problems. In the first part, the 

axisymmetric and non-axisymmetric BEM/RANS scheme is used to solve the interaction 

between the forward propeller and the aft propeller in a contra-rotating propeller (CRP) 

unit. In the second part, a hull-propeller-rudder interaction problem is handled by the non-

axisymmetric BEM/RANS. In the last part, the unsteady BEM/RANS scheme is used to 

solve the hull-propeller-rudder interaction at ship maneuvering conditions. 

5.1 CONTRA-ROTATING PROPELLER SOLVED BY AXISYMMETRIC BEM/RANS AND 
NON-AXISYMMETRIC BEM/RANS 

5.1.1 Description of the problem 

A contra-rotating propeller, also referred to as CRP, is a propulsion unit which 

includes two coaxial single propellers operating in opposite directions. The use of CRPs in 

marine propulsion improves the fuel efficiency and also helps underwater vehicles to 

maintain torque balance.  

As shown in Figure 5.1, the podded CRP unit includes a 3-blade forward propeller, 

a 4-blade aft propeller, a shaft, and a strut. The interaction between the forward propeller, 

the aft propeller, and the strut (only in the non-axisymmetric version) can be handled by

98
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in chapter 5.3 are published in (Su and Kinnas 2018). The dissertator is the primary author of both papers. 



 the BEM/RANS scheme.

In this study, the CRP performance is predicted under two conditions. Under the 

first condition, the inflow is uniform and the inflow velocity is in the direction of the shaft 

axis. This case is solved by both the axisymmetric version and the non-axisymmetric 

version of the BEM/RANS approach. Under the second condition, the CRP performance 

under a steering condition is simulated. In other words, the incoming flow is inclined 

inside the horizontal surface. This situation is handled by the non-axisymmetric approach. 

Figure 5.1: Geometry of the contra-rotating propeller unit. 

5.1.2 Description of the numerical model 

The first numerical model used the axisymmetric BEM/RANS to handle the straight inflow 

situation. Since this model solves for the axisymmetric problem, the effect from the strut 

has to be neglected. The steady axisymmetric RANS model is coupled with two 

separate steady BEM models. The first BEM model solves the forward propeller 

performance while the second BEM model solves the aft propeller performance. The 

interaction between the two propellers is achieved through RANS. Figure 5.2 shows the 

BEM panel models for the forward propeller and the aft propeller. In both BEM models, 

80×30 panels are placed on the key blade surface while 70×20 panels are used for the shaft 
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surface between two blades. Figure 5.3 shows the mesh of the axisymmetric RANS model. 

The mesh model includes 19,900 quadrilateral cells which cover a computational domain 

from -2.0D to 3.5D in the axial direction and up to 2.5D in the radial direction. The inflow 

velocity is set at the upstream boundary; a slip-wall condition is set on the shaft surface; a 

zero-gradient condition is used for all the flow variables at the downstream boundary. 

Other settings for the axisymmetric RANS model are listed in Appendix C. 

Figure 5.2: BEM panel models for the forward propeller (left) and aft propeller (right). 

Figure 5.3: The finite volume mesh used in the axisymmetric BEM/RANS scheme (CRP 
application). 
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The second numerical model used the non-axisymmetric BEM/RANS to handle the 

straight inflow situation. In this model, the effect from non-axisymmetric bodies, the strut, 

can be included. The steady 3-dimensional RANS model is coupled with two separate 

unsteady BEM models. The same BEM panel models are used, as shown in Figure 4.1. 

However, the BEM solver behaves differently in this case. In the axisymmetric approach, 

BEM only solves for the mean propeller performance. In the non-axisymmetric approach, 

BEM solves for the propeller performance as a function of the blade angle. As shown in 

Figure 5.4, the non-axisymmetric RANS model includes 2.2 million hexahedron and 

tetrahedron cells which cover a computational domain from -2.5D to 5.0D in the axial 

direction, from -3.0D to 3.0D in the horizontal direction, and from -3.0D up to the free 

surface in the vertical direction. The inflow velocity is set at the upstream boundaries. The 

shaft surface is represented by a slip-surface while the non-slip boundary condition is 

applied to the strut, as shown in Figure 5.5. A zero-gradient condition is used for all the 

flow variables at the downstream boundary. Other settings for the axisymmetric RANS 

model are listed in Appendix C. 

 

 

Figure 5.4: The finite volume mesh used in the non-axisymmetric BEM/RANS scheme 
(CRP application). 
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Figure 5.5: Boundaries conditions of the RANS model in the non-axisymmetric 
BEM/RANS scheme (CRP application). 

The third numerical model used the non-axisymmetric BEM/RANS to handle the 

inclined inflow situation. Both the BEM model and the RANS model is mostly the same 

as those in the second case. The only difference is that the inflow direction at upstream 

boundaries is changed.  

Since the BEM solver is nondimensionalized by the propeller’s maximum radius 

and the RANS solver is nondimensionalized by the forward propeller’s maximum radius, 

the aft propeller’s body force field and mass source field need to be scaled before they are 

used in RANS. First, the size ratio m is defined  where  and  are the 

propeller diameters for the forward propeller and the aft propeller respectively. According 

to the Buckingham-π theorem, the aft propeller’s body force field and mass source field 

can be scaled by the following equations: 

 (5.1) 

 (5.2) 
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5.1.3 Mesh convergence study 

A convergence study is first made to test whether the propeller performance is 

sensitive to the number of panels in the BEM model and the number of the cells in the 

RANS model. As shown in Table 5.1, the non-axisymmetric version of the BEM/RANS 

scheme is tested in two cases. Case B is the normal setting and has a higher number of 

panels/cells compared to case A. The predicted circulation distributions from case A and 

from case B are compared, as shown in Figure 5.6. The thrust coefficients predicted by 

case A and case B are 0.388 and 0.386 respectively, with a 0.37% difference between them. 

 

 BEM panels (fwd) BEM panels (aft) RANS cells 

Case A 60×20 60×20 1.6 million 

Case B 80×30 80×30 2.2 million 

Table 5.1: Number of BEM panels and RANS cells used in the convergence study. 

  

(forward propeller)                                               (aft propeller) 

Figure 5.6: Comparison of the circulation distribution from case A and case B.  
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5.1.4 Results of the straight inflow case 

If we only care about the CRP’s mean performance, the non-axisymmetric 

component of the flow can be neglected and the axisymmetric version of the BEM/RANS 

scheme can be used. However, it is very important to know how much numerical error is 

introduced in neglecting the non-axisymmetric flow component. 

Before making further statements, it is helpful to think about what assumptions are 

made in reducing the non-axisymmetric problem to the axisymmetric problem. First, the 

non-axisymmetric bodies, meaning the strut and the free surface in this case, are neglected. 

Then, the three-dimensional RANS equations are integrated along the circumferential 

direction. If we assume the total flow does not change much in the circumferential 

direction, the crossing terms, which are created in the integration of the convective terms, 

can be neglected. Then, the 3D RANS equation can be written into its axisymmetric form 

(Su and Kinnas 2017a, Su and Kinnas 2017b). 

In Figure 5.7, the single-blade thrust coefficient and torque coefficient are shown 

as a function of the blade position angle. The 0-degree corresponds to the blade location 

when it passes the strut. In the non-axisymmetric case, at around the 0-blade-angle, where 

the blades are closest to the strut, both thrust and torque from the forward blade increase 

while both thrust and torque from the aft blade decrease. In the axisymmetric case, thrust 

and torque do not change with the blade position angle. More importantly, both thrust and 

torque in the axisymmetric case are very close to the thrust and torque in the non-

axisymmetric case except when they are close to the 0-blade-angle. Therefore, it is fair to 

say that the difference between the axisymmetric BEM/RANS and the non-axisymmetric 

version mainly comes from the non-axisymmetric bodies. Neglection of the crossing terms 

does not make much difference and can be seen as a reasonable assumption. 
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(forward propeller)                                            (aft propeller) 

Figure 5.7: Unsteady thrust coefficients (single blade) and torque coefficients (single 
blade) predicted by the axisymmetric BEM/RANS scheme and by the non-
axisymmetric BEM/RANS scheme. 

 

Figure 5.8: Convergence history of the propeller forces on both the forward propeller and 
the aft propeller.  

Figure 5.8 shows the convergence history of the thrust the torque on both the 

forward propeller and the aft propeller. According to the figure, the forces on the forward 

propeller does not change much with the iterations because the influence from downstream 

bodies to upstream bodies is not significant. The forces on the aft propeller, however, 
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decreases significantly with the iteration and finally converged at around the 5th iteration. 

This significant change is caused by the wake flow of the forward propeller and the wake 

flow of the strut.  

 

 

(forward propeller)                                                 (aft propeller) 

 

(total = forward + aft + strut + pod) 

Figure 5.9: Comparison of the predicted thrust coefficients and torque coefficients with 
experimental data (all figures are plotted with the same scale). The total 
force includes the force of the forward propeller, the aft propeller, the strut, 
and the pod. 
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In Figure 5.9, the thrust coefficients and torque coefficients are compared with 

experimental data at different advance ratios. These coefficients are given by individual 

propeller values as well as the total CRP values. The total thrust includes not only thrust 

on both propellers but also the drag forces on the pod and on the strut. As the figure shows, 

results from both the axisymmetric scheme and the non-axisymmetric scheme have a good 

agreement with the experimental data. Similar to what has been discovered before, 

neglecting the strut and the free surface leads to a lower forward propeller loading and a 

higher aft propeller loading. It is worth noting that the experimental error is unavoidable 

and should also be accounted for in the comparison between the predicted value and the 

experiment value. 

At lower advance ratios, the error becomes noticeable. A possible explanation can 

be made by looking at the assumptions of the BEM/RANS interactive scheme. If we start 

from the more general unsteady RANS equation and integrate them with respect to time 

over a blade-passing period, the steady RANS equation can be obtained with several 

additional crossing terms originated from the convective term. If a small amplitude 

assumption is made on the unsteady component of the total flow, the crossing term can be 

neglected. It is important to mention that the propeller perturbation flow field, which rotates 

with the propeller, is the major source of the unsteady flow component. At normal advance 

ratios, the small amplitude assumption is reasonable. 

However, as the advance ratio becomes very low and the propeller loading gets 

enough high, the stronger propeller perturbation flow leads to a more significant unsteady 

component. In this case, the small amplitude assumption may no longer be valid and, 

therefore, the error may increase. 
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(axial component of body force field)      (circumferential component of body force field) 

 

(mass source field) 

Figure 5.10: Body force distribution and mass source distribution from axisymmetric 
BEM/RANS approach (plotted at =0 slice, upper figure of every pair) and 
from non-axisymmetric BEM/RANS approach (plotted at z = 0, lower 
figure of every pair). The body force field is nondimensionalized by 

 and the mass source is nondimensionalized by ( ). 
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For the total forces in low advance ratios, the axisymmetric scheme has a relatively 

smaller error compared to the non-axisymmetric scheme. This cannot be interpreted as 

axisymmetric behaves better because the lower error comes from the cancellation between 

an underpredicted forward propeller force and an overpredicted aft propeller force. The 

overpredicted aft propeller loading, as we discussed before, is due to the lack of the strut 

effect. 

Figure 5.10 shows the axial body force field, the circumferential body force field, 

and the mass source field. Results from the axisymmetric BEM/RANS are the top figures 

and are plotted at the = 0 slice. Results from the non-axisymmetric BEM/RANS are the 

lower figures and are plotted at the z = 0 slice. Both results show great similarities although 

a non-axisymmetric pattern can be observed in the aft propeller circumferential body force 

field.  

As shown in Figure 5.10, the forward propeller and the aft propeller both generate 

a positive axial body force while the circumferential body forces they induced are in 

opposite directions. The mass source reflects the gradient of the blade thickness distribution 

in the flow direction. Therefore, it should be positive near the leading edge and negative 

near the trailing edge. 
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(axial velocity)                                                  (swirl velocity) 

Figure 5.11: The total flow field  from the axisymmetric BEM/RANS approach 
(plotted at the = 0 slice; upper figures) and from non-axisymmetric 
BEM/RANS approach (plotted at the z = 0 slice, lower figures).  

In Figure 5.11, the axial and swirl components of the total flow are plotted at the 

ship center plane (z = 0 slice). The velocity fields are nondimensionalized by the ship 

speed. As shown from the figure, the swirl component is induced by the forward propeller 

and reduced by the aft propeller. A small leakage happens near the hub.  

With a 2.7 GHz E5-2680 processor, the axisymmetric BEM/RANS scheme takes 1 

hour to finish while the non-axisymmetric BEM/RANS scheme takes 5 hours to finish. 

 

5.1.5 Results of the steering case 

In a podded CRP application, it is useful to predict the CRP performance when at 

a steering condition. To simplify this unsteady steering problem, an inclined-shaft case is 

solved instead as a preliminary study. 
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Figure 5.12: Definitions of the angle of inclination and four different force components.  

The definition of the angle of inclination and four different for components are 

shown in Figure 5.12. The predicted forces generated by the CRP at different inclination 

angles are shown in Figure 5.13. These forces are non-dimensionalized by the same way 

thrust coefficient is calculated. Force  and  are forces in the longitudinal direction 

and the horizontal direction of the ship hull coordinate system. Force  and  are 

forces in the axial direction and the horizontal direction of the propeller shaft coordinate 

system. Both horizontal forces define the positive direction as pointing from the port side 

to the starboard side.  

As shown in Figure 5.13, when the inclination angle increases, force  remains 

nearly unchanged while force  grows linearly with the angle of inclination. In the 

propeller shaft coordinate system, the horizontal force  is linear to the angle of 

inclination while the axial force  remains nearly constant.  
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Figure 5.13: Propeller forces at different angles of inclination. 

In Figure 5.14, the effective wake of the aft propeller is plotted on the mid-chord 

slice. The axial velocity fields are represented by the grayscale contours while the other 

effective wake velocity components are shown by arrows. As shown in the figures, the 

effective wake fields for the aft propeller has a strong axial component and a strong swirl 

component because of the forward propeller’s wake flow. At ±10 angle of inclination, part 

of the aft propeller falls outside of the forward propeller’s trailing wake region. At those 

outside regions, both the axial component and the swirl component of the effective wake 

become weaker. 
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(-10 degrees angle of inclination)                  (+10 degrees angle of inclination) 

 

 

(+0 degrees angle of inclination) 

Figure 5.14: Effective wake field at the mid-chord slice of the aft propeller at different 
angles of inclination. The velocity is nondimensionalized by the ship speed. 

Based on the above results, the non-axisymmetric BEM/RANS scheme is capable 

of handling a CRP propeller working at an small inclination angle. Correlations with 

experiments are needed in the future when experimental data becomes available. 
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5.2 HULL-PROPELLER-RUDDER INTERACTION SOLVED BY NON-AXISYMMETRIC 
BEM/RANS 

5.2.1 Description of the problem 

In this application, the hull-propeller-rudder interaction problem is attempted via 

the non-axisymmetric BEM/RANS scheme. 

The geometry of the hull and the rudder comes from the M/T Olympus tanker, as 

shown in Figure 5.15. The propeller used in this study is the P2772 propeller at P/D = 0.87, 

as shown in Figure 5.16. The thickness distribution the propeller blade is modified in order 

to convert the round trailing propeller to a sharp trailing edge propeller. More details can 

be found in Chapter 4.4.1. 

 

   

Figure 5.15: Ship hull and rudder geometry of the M/T Olympus tanker. An overview of 
this ship hull is given in the left figure. The ship stern geometry and rudder 
geometry are shown in the right figure. 
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Figure 5.16: BEM model of the P2772 propeller geometry in the hull-propeller-rudder 
interaction case. 

In this study, the ship speed remains constant and follows the ship hull longitudinal 

direction. The advance ratio ranges from 0.6 to 1.0.  

 

 

Figure 5.17: Photo of the model test facilities and configurations. 

The numerical results are compared with the measurements from an experiment 

inside a closed rectangular water tunnel (Hallander et al. 2013, Tani et al. 2016). In this 

experiment, the hull model (including the rudder) was mounted at its design draft on the 
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top inside a cavitation tunnel as shown in Figure 5.17. The propeller was installed onto the 

model and powered by a motor to rotate at a given speed. The atmospheric pressure was 

used inside the tunnel so that the cavitation did not happen. The propeller thrust and torque 

were measured at different advance ratios. It is worth noting that the experiment used a 

left-handed propeller, which has been converted to its right-handed counterpart in the BEM 

model. 

 

5.2.2 Description of the numerical model 

Due to the non-axisymmetric shape of the ship hull and the rudder, this problem 

should be solved with the non-axisymmetric BEM/RANS approach. 

In the BEM model, as shown in Figure 5.16, 80×20 panels are placed on the key 

blade surface while 70×20 panels are used for the hub surface between two blades. A PSF-

2 type wake alignment scheme is used. 

Since our goal is to establish a good correlation between the results from the 

BEM/RANS scheme and the experimental value, the computational domain of RANS is 

set to have the same cross-section dimensions as the water tunnel, as shown in Figure 5.18. 

 

 

Figure 5.18: Computational domain of the RANS model in the hull-propeller-rudder 
interaction case (non-axisymmetric problem). 



 117 

Four million cells are used in the RANS model. A non-slip boundary is applied to 

the ship hull surface and the rudder surface, while a slip-wall condition is used on the 

propeller shaft. The slip boundary condition helps to improve the numerical stability of the 

coupling scheme.  

It takes 5 to 7 iterations for the scheme to converge and the typical time cost is 

around 2 hours with four Xeon E5-2680 processors. 

 

5.2.3 Result and comparison 

 

 

Figure 5.19: Propeller forces predicted by the non-axisymmetric BEM/RANS and those 
from the experimental measurements. 

Five cases with different advance ratios, ranging from 0.7 to 1.1, are solved. Figure 

5.19 shows the comparison of propeller thrust coefficient and torque coefficients predicted 

by the non-axisymmetric BEM/RANS scheme with those measured in the experiment. 

Figure 5.20 shows the time-averaged circulation distribution at different iteration steps for 

Js = 0.9 case. At the same advance ratio, the axial component of the total flow is plotted on 
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the ship centerline plane, as shown in Figure 5.21. The total forces on the key blade are 

shown in Figure 5.23 as a function of the blade angle. The first figure in Figure 5.22 shows 

the nominal wake field, which is obtained by solving RANS without including the body 

force term and the mass source term. Then, the effective wake fields on the mid-chord 

plane at different advance ratios are plotted.  

 

 

Figure 5.20: Circulation distribution (time-averaged, Js = 0.9) at different iteration steps 
of the non-axisymmetric BEM/RANS scheme. The 1st iteration corresponds 
to a uniform inflow case. 

 

Figure 5.21: Axial component of the total flow field  plotted on the ship centerline 
plane (z = 0 slice). 
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                  (nominal wake field)                          (effective wake field at = 0.6) 

 
(effective wake field at = 0.8)                      (effective wake field at = 1.0) 

Figure 5.22: The nominal wake field and effective wake field plotted on the mid-chord 
slice of the body force zone. Axial velocity component is represented by the 
contour while the in-plane velocity components are represented by arrows. 
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Figure 5.23: Thrust coefficient (single blade) and torque coefficient (single blade) on the 
key blade as a function of the blade angle. 

 

5.3 HULL-PROPELLER-RUDDER INTERACTION SOLVED BY UNSTEADY BEM/RANS 

5.3.1 Description of the problem 

In the previous application, the ship hull moves at a constant speed and the time-

averaged non-axisymmetric BEM/RANS approach is used. The scheme solves for the 

periodical propeller performance as a function of the blade angle.  

If the velocity around the ship hull changes over time, the propeller performance 

will no longer be a periodical function. Therefore, for those hull-propeller-rudder 

interaction problems that involve non-zero ship hull accelerations, the unsteady 

BEM/RANS scheme needs to be used. 

The ship hull geometry, rudder geometry, and propeller geometry in this application 

are the same as those described in Chapter 5.2 and Chapter 4.4. However, the velocity of 

the ship is no longer a constant. Two different types of ship motions are tested: 
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• Straight acceleration case 

In this application, the ship initially moves at 1.0 m/s towards the forward direction. 

After the flow around the ship hull is stabilized, a constant axial acceleration is applied to 

the ship hull which increases the ship speed to 1.2 m/s linearly with respect to time. The 

acceleration last three propeller revolution periods. After the acceleration, the ship speed 

remains at 1.2 m/s for the rest of the simulation. The propeller’s angular velocity does not 

change during the iteration. The initial advance ratio (before acceleration) used in this 

application includes 0.6, 0.8, and 1.0.  

• Turning (maneuvering) case 

In this application, the ship speed remains at 1.0 m/s while the advance ratio is set 

to a constant (0.6 or 0.8) throughout the simulation. However, after the flow around the 

ship hull is stabilized, the ship hull begins to turn to its starboard side. It takes two propeller 

revolution periods for the ship to linearly accelerate to the maximum turning rate (yaw 

rate). After the two revolution periods, the ship remains at the maximum turning rate. The 

center of the turn is located on the ship centerline plane and at 57% of the ship waterline 

length from the ship stem. Multiple turning rates are used in this application, ranging from 

0.417 degrees/second to 1.251 degrees/second. It is worth noting that the rudder is fixed 

during the maneuvering process. This reduces the complexity of the RANS model and is 

for testing purpose only. In a real simulation, the rudder’s motion should be included. 

 

5.3.2 Description of the numerical model 

For both the straight acceleration application and the turning application, the hull-

propeller-rudder interaction problem is solved by the unsteady BEM/RANS scheme. The 

unsteady BEM solver is coupled with the unsteady RANS solver. 
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In the BEM model, 60×25 panels are placed on the blade surface while 66×10 

panels are used for the hub surface between two blades, as shown in Figure 5.24. A PSF-2 

type wake alignment is used. The boundary layer correction is not included in this case due 

to convergence issues.  

The RANS model divides the computational domain into an inner zone and an outer 

zone. The outer zone contains 3.2 million polyhedron cells and ranges from -50D to +50D 

in the longitudinal direction, from -43D to +43D in the transverse direction, from -32D up 

to the free surface in the vertical direction, as shown in Figure 5.25. A non-slip boundary 

is applied to the ship hull surface and the rudder surface, while a slip-wall condition is used 

on the propeller shaft. A symmetry condition is used to represent the free surface. A zero-

gradient condition is used for all the flow variables at the downstream boundary. At all 

other far field boundaries, the absolute velocity is set to zero.  

 

 

Figure 5.24: BEM model of the P2772 propeller geometry in the unsteady BEM/RANS 
application 
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Figure 5.25: BEM model of the P2772 propeller geometry in the unsteady BEM/RANS 
application 

The inner zone is where the body force term and the mass source term are applied. 

It contains 32×44×120 hexahedron cells and is connected to the outer zone via sliding 

interfaces. The cells in the inner zone follow that shape of the mean camber surface. More 

details about the inner zone can be found in Appendix B. The inner zone rotates with the 

propeller and is connected to the outer zone via sliding interfaces. Other settings for the 

RANS model are listed in Appendix C. 

Unsteady RANS solves for the flow relative to the ship hull, a non-inertial frame 

of reference. The motion of the ship hull is considered by inertial force terms in the 

momentum equation. In the straight acceleration case, an acceleration term is added in the 

direction of the acceleration. In the turning case, a Coriolis term and a centrifugal term are 

added. 

To validate the unsteady BEM/RANS, unsteady full-blown RANS simulations are 

also performed. In the full-blown RANS model, the outer zone remains the same. The inner 

zone is a full cylindrical zone that contains 1.35 million polyhedral cells and non-slip 

boundaries to represent the propeller blades. More details about the inner zone can be found 

in Chapter 4.4.2. 
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 Phase 1 Phase 2 Phase 3 Phase 4 

Condition Flow around ship hull stabilizes Acceleration Constant speed 

Number of 
revolutions 60 8 3 6 

Cumulative blade 
angle (degrees) 0-21600 21600-24480 24480-25560 25560-27720 

Ship velocity 
(m/s) 1.0 1.0 1.0  1.2 1.2 

Time step size in 
BEM/RANS 10 degrees 3 degrees 3 degrees 3 degrees 

Time step size in 
full-blown RANS 10 degrees 1 degree 1 degree 1 degree 

Table 5.2: BEM/RANS time step size and full-blown RANS time step size during four 
different simulation phases (straight acceleration case). 

 

 Phase 1 Phase 2 Phase 3 Phase 4 

Condition Flow around ship hull stabilizes Increasing 
yaw-rate 

Constant 
yaw-rate 

Number of 
revolutions 60 8 2 22 

Cumulative 
blade angle 0-21600 21600-24480 24480-25200 25200-33120 

Yaw rate 
(degrees/second) 0.0 0.0 0.0  Max Max 

Time step size in 
BEM/RANS 10 degrees 3 degrees 3 degrees 3 degrees 

Time step size in 
full-blown RANS 10 degrees 1 degree 1 degree 1 degree 

Table 5.3: BEM/RANS time step size and full-blown RANS time step size during four 
different simulation phases (turning case). 
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To reduce the computational cost and ensure the consistency between the unsteady 

BEM/RANS model and the unsteady full-blown RANS model, the simulation is divided 

into several phases. Each phase uses a different time step size, as shown in Table 5.2 and 

Table 5.3. Here, the equivalent time step size is defined as the propeller rotation angle 

during a time step. Finally, the computational cost for both cases is shown in Table 5.4. 

The unsteady BEM/RANS scheme also reduces the mesh preparation cost by roughly a 

half because the inner zone mesh can be generated automatically. This is especially useful 

when the propeller geometry needs to be changed multiple times during propeller design. 

 

 Number of 
Revolutions 

Computational Cost4 

unsteady BEM/RANS full-blown RANS 

Straight Acceleration 77 9 hours 55 hours 

Turning Case 92 13 hours 76 hours 

Table 5.4: Comparison of the computational cost of the unsteady BEM/RANS scheme 
and the unsteady full-blown RANS scheme. 

 

5.3.3 Results of the straight acceleration case 

With the straight acceleration application, the effect of the skin friction as body 

force is first studied. Since the skin friction is currently calculated by an empirical skin 

friction coefficient, it is important to know how much difference this skin friction can make 

towards the body force field. Two cases are tested. In the first case and all other unsteady 

applications in this dissertation, the skin friction is included in calculating the body force 

                                                
4 The computational cost is based on four computer nodes interconnected by 100Gbps Intel Omni-Path 
network. Each node contains two Intel Xeon Platinum 8160 CPUs. (4 nodes × 48 cores × 2.1 GHz) 
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field. In the second case, the skin friction is not included in the body force field. 

Comparison of the predicted propeller forces from both cases is given in Figure 5.26. As 

shown in the figure, the difference between the two cases is negligible. Therefore, the 

empirically determined skin friction coefficient does not play an important role in the body 

force field. 

 

 

Figure 5.26: Propeller forces predicted by the unsteady BEM/RANS scheme under two 
conditions: the skin friction included as part of the body force term and the 
skin friction not included in the body force term. 

In Figure 5.27, the effective wake field predicted by the unsteady BEM/RANS is 

plotted at the mid-chord slice of the inner zone. Since the effective wake can change with 

time in an unsteady simulation, the wake field from two different time-steps is given. The 

left figure shows the effective wake field before the acceleration (cumulative blade angle5 

equals to 24480 degrees) while the right figure shows the effective wake field after the 

acceleration period (cumulative blade angle equals to 25560 degrees). As shown in Figure 

5.27, the velocity deficit caused by the ship hull boundary layer can be observed at around 

zero-blade-angle region in both time steps. There is also a strong vertical (+y) velocity 

                                                
5 Cumulative blade angle is the angle (in degrees) that the blade has rotated since the start of the 
simulation. 
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component due to the shape of the ship stern. After the acceleration, the increased axial 

component of the nominal wake leads to an increase in the axial effective wake velocity as 

well.  

 

 
(before the acceleration period)                          (after acceleration period) 

Figure 5.27: The effective wake field (Js = 0.6) plotted on the mid-chord slice in the 
straight acceleration case. The axial velocity component is shown by the 
contour while the in-plane velocity components are shown by arrows. 

In Figure 5.28, the propeller forces predicted by the unsteady BEM/RANS scheme 

is compared with those predicted by the full-blown RANS. Three different advance ratios 

are tested. When the advance ratio is at 0.8 or 1.0, the results from both methods show 

good agreement. However, at a lower advance ratio (Js = 0.6), the difference becomes more 

significant, especially at around zero-degree blade angle before the acceleration. According 

to Figure 5.27, the effective wake reaches its lowest axial velocity value at around zero-

degree blade angle. A lower axial effective wake means a higher propeller loading and a 

higher angle of attack for each section. As a result, the boundary layer at the suction side 
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of the blade becomes thicker and the boundary layer effect becomes more evident. The 

lack of boundary layer correction in this study causes the numerical error. This argument 

also explains why the numerical error becomes smaller after the acceleration period. The 

higher axial component of the incoming flow leads to a higher axial component of the 

effective wake. This reduces the angle of attack at zero-degree blade angle and, thus, 

reduces the effect of the boundary layer. 

Figure 5.29 shows the pressure coefficient on the r/R = 0.44 section of the key blade 

at different blade angles. Results from the last acceleration revolution6 of the Js = 0.8 case 

is shown. The pressure coefficient predicted by the unsteady BEM/RANS scheme is also 

compared with those predicted by unsteady full-blow RANS. In Figure 5.30 and Figure 

5.31, similar plots are shown at r/R = 0.57 section and at r/R = 0.79 section. According to 

these results, a good agreement is found between the blade pressures predicted by the 

BEM/RANS scheme and predicted by the full-blown RANS scheme at higher radial 

stations. The error becomes larger at a lower radius, at the suction side of the blade, or 

close to the blade trailing edge. Possible explanations for these differences include: 

• The current scheme assumes the streamline follows a cylindrical surface and the 

effective wake does not change in time or along the streamline. This leads to an 

accumulation of numerical error along the streamlines and, therefore, makes the 

pressure near the trailing edge more problematic. 

• Absent of the boundary layer correction causes a numerical error, especially at the 

suction side near the trailing edge. 

• Inaccurate representation of the blade when the thickness is higher. (The blade 

thickness is higher at lower radius)  
 

                                                
6 Cumulative blade angle ranges between 25200 degrees and 25560 degrees. 
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(Js = 0.6)     

 (Js = 0.8)     

(Js = 1.0)     

Figure 5.28: Propeller forces predicted by the unsteady BEM/RANS and by the unsteady 
full-blown RANS. The acceleration starts when the cumulative blade angle 
reaches 24480 degrees and finishes when the cumulative blade angle 
reaches 25560 degrees. 
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(0-degree blade angle)                                  (90-degree blade angle) 

 

 

(180-degree blade angle)                                  (270-degree blade angle) 

Figure 5.29: Pressure coefficient (Js = 0.8) at the r/R = 0.44 section of the blade surface. 
The pressure data is obtained on the key blade at four different blade angles 
of the last acceleration revolution (cumulative blade angle between 25200 
degrees and 25560 degrees). 
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(0-degree blade angle)                                  (90-degree blade angle) 

 

 

(180-degree blade angle)                                  (270-degree blade angle) 

Figure 5.30: Pressure coefficient (Js = 0.8) at the r/R = 0.57 section of the blade surface. 
The pressure data is obtained on the key blade at four different blade angles 
of the last acceleration revolution (cumulative blade angle between 25200 
degrees and 25560 degrees). 
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(0-degree blade angle)                                  (90-degree blade angle) 

 

 

(180-degree blade angle)                                  (270-degree blade angle) 

Figure 5.31: Pressure coefficient (Js = 0.8) at the r/R = 0.79 section of the blade surface. 
The pressure data is obtained on the key blade at four different blade angles 
of the last acceleration revolution (cumulative blade angle between 25200 
degrees and 25560 degrees). 
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5.3.4 Results of the turning case 

Four cases are tested in this application. First, the maximum turning rate is set at 

0.417 degrees/second while different advance ratios are tried, including Js = 0.6 and Js = 

0.8. Then, the advance ratio is set to 0.8 while different maximum turning rates are tested, 

including 0.417 degrees/second, 0.834 degrees/second, and 1.251 degrees/second. 

The ship hull movement is plotted at different cumulative blade angles, as shown 

in Figure 5.32. The maximum turning rate used in this figure is 1.251 degrees/second. 

 

 

Figure 5.32: Locations of the ship hull at different cumulative blade angles. 

In Figure 5.33, the effective wake field predicted by the unsteady BEM/RANS is 

plotted at the mid-chord slice of the inner zone. The wake field is obtained both before the 

turning (left figure) and during the constant-yaw-rate period (right figure). As shown in 

Figure 5.33, the axial component of the effective wake field at the constant turning period 
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is similar to the axial effective wake field before the turning starts. The velocity deficit 

region is pushed to the starboard side during the turning. A strong transverse flow 

component (+Z direction) can also be observed. These are due to the strong cross flow 

caused turning motion of the ship. The long distance from the propeller to the center of the 

turning leads to a large cross-flow component even if the yaw-rate is small.  

 

 
(before the turning period)                          (constant-yaw-rate turning period) 

Figure 5.33: The effective wake field (Js = 0.6) plotted on the mid-chord slice in the 
turning case. The axial velocity component is shown by the contour while 
the in-plane velocity components are shown by arrows. 

In Figure 5.34, the propeller forces predicted by the unsteady BEM/RANS scheme 

is compared with those predicted by the full-blown RANS. Two different advance ratios 

are tested. Similar to the previous observation, the results from both methods show good 

agreement at higher advance ratios (Js = 0.8). The difference becomes more significant 

when the advance ratio decreases to 0.6. 
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 (Js = 0.6)     

 (Js = 0.8)     

Figure 5.34: Propeller forces predicted by the unsteady BEM/RANS and by the unsteady 
full-blown RANS. The ship starts to turn when the cumulative blade angle 
reaches 24480 degrees and begins the constant-yaw-rate turning when the 
cumulative blade angle reaches 25200 degrees. 

 

Figure 5.35 shows the vorticity fields at the y = 0 slice from both the unsteady 

BEM/RANS simulation and the unsteady full-blown RANS simulation. Due to the use of 

the unstructured mesh in this application, the artificial diffusion at the downstream is much 

stronger than the case with structured mesh (refer to Chapter 4.4 and Chapter 4.5). 
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(before the turning period)                            (1 revolution into the turning period) 

(cumulative blade angle: 24480 degrees)        (cumulative blade angle: 24840 degrees) 

 

(start of the constant-yaw-rate turning)             (3 revolutions into the turning period) 

(cumulative blade angle: 25200 degrees)        (cumulative blade angle: 25560 degrees) 
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(4 revolutions into the turning period)         (5 revolutions into the turning period) 

(cumulative blade angle: 25920 degrees)    (cumulative blade angle: 26280 degrees) 

(6 revolutions into the turning period)         (7 revolutions into the turning period) 

(cumulative blade angle: 26640 degrees)    (cumulative blade angle: 27000 degrees) 
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(8 revolutions into the turning period)         (9 revolutions into the turning period) 

(cumulative blade angle: 27360 degrees)    (cumulative blade angle: 27720 degrees) 

Figure 5.35: Comparisons of vorticity fields (at the y = 0 slice) from unsteady 
BEM/RANS scheme (upper figures) and from unsteady full-blown RANS 
(lower figures).  

Turning Rate 0.417 degrees/sec 0.834 degrees/sec 1.251 degrees/sec 

KT 10KQ KT 10KQ KT 10KQ 

Full-blown RANS 0.223 0.333 0.229 0.345 0.234 0.351 

Unsteady BEM/RANS 0.224 0.324 0.224 0.324 0.224 0.324 

Error 0.4% -2.7% -2.1% -6.2% -4.2% -7.8%

Table 5.5: Mean propeller forces during a constant-yaw-rate turning. The numerical error 
of the unsteady BEM/RANS scheme is given at different turning speed. The 
unsteady full-blown RANS result is set as the reference value.  
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Finally, the advance ratio is set to 0.8 while three different maximum turning rates 

are tested. Full-blown RANS simulations are also performed and used as the reference. The 

numerical error of the propeller forces predicted by the BEM/RANS scheme is shown in 

Table 5.5. As the turning rate increases, the numerical error of both the thrust coefficient 

and the torque coefficient become larger. This is due to the strong cross flow (in the +Z 

direction) caused by the ship hull yaw motion. Current BEM scheme uses a rigid wake 

alignment scheme (PSF-2 type). In other words, the trailing wake surface is determined at 

the beginning of the simulation and does not change with the inflow conditions. A stronger 

cross-flow component means a larger difference between the rigid wake geometry and the 

real wake geometry. Therefore, a larger numerical error is expected. 

It is worth noting that the rudder is fixed during the maneuvering process. This 

reduces the complexity of the RANS model and is for testing purpose only. In a real 

simulation, the rudder’s motion should be included. 
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Chapter 6. Conclusions and Recommendations 

6.1 CONCLUSIONS 

In this dissertation, the boundary element method (BEM) is coupled with the 

Reynolds Averaged Navier-Stokes method (RANS) to solve the multibody interaction 

problems in the ship propulsion system. Take the hull-propeller-rudder interaction problem 

as an example. First, the propeller-induced flow is decoupled from the total flow based on 

the fact that the propeller is smaller in dimensions and faster in its movement compared to 

the ship hull. While RANS can be used to calculate the “slow-changing” (or steady) total 

flow around the ship hull, BEM is applied to the “rapid-changing” propeller-induced flow. 

In the RANS model, instead of using non-slip wall boundaries with a body-conforming 

mesh, the propeller blades are represented by a body force field and a mass source field. 

Both terms are calculated by the potential solver. On the other hand, the total flow from 

RANS is used by BEM to calculate the unsteady effective wake field.  

Due to the use of the body force field and the mass source field to represent the 

propeller blades in RANS, the influence from the propeller blades can be time-averaged in 

a larger time-step. In other words, it is possible for RANS to use a larger time step size 

than BEM. If the ship moves at a constant speed and direction, even a steady RANS solver 

can be used. Furthermore, if the upstream body is axisymmetric, the steady 3-dimensional 

solver can be reduced to a 2-dimensional axisymmetric one. All of these significantly 

reduce the number of iterations required by a RANS and the matrix dimensions in RANS. 

Both lead to a gain in the numerical efficiency. 

The BEM/RANS scheme can be implemented with an unsteady approach, a steady 

non-axisymmetric approach, and a steady axisymmetric approach. The dissertation starts 
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by introducing the theories and implementations of the steady and unsteady (periodical and 

non-periodical) boundary element methods. Then, all three BEM/RANS approaches are 

described together with multiple ways to calculate the body force field, the mass source 

field, and the effective wake field. 

In the unsteady BEM/RANS scheme, a special inner zone mesh arrangement is 

used so that the body force field and mass source field are confined to one layer of cells 

per blade. This further reduces the number of cells in RANS and increases the time-step 

size. The highly confined body force distribution also enables the calculation of the 

effective wake field closer to the blade. To be compatible with this inner zone mesh 

arrangement, a camber-distribution model is used to calculate the body force field and mass 

source field from the propeller surface pressure and the propeller surface source 

distribution. Numerical study based on an open propeller and a uniform inflow also shows 

that, in order to get an accurate prediction of the unsteady effective wake, it is important to 

calculate the blade-induced velocity from an integration over the mean camber, instead of 

the blade surface. 

Similar numerical studies are also performed with the axisymmetric version of the 

BEM/RANS scheme. Results show that the use of both mass source term and compensating 

force term is essential to reduce the numerical error on the predicted effective wake field. 

Finally, unsteady BEM/RANS scheme is applied to the hull-propeller-rudder 

interaction problem at ship acceleration or ship turning. The non-axisymmetric 

BEM/RANS scheme is used to solve a contra-rotating propeller and a hull-propeller-rudder 

interaction at a constant ship motion. Results show that by considering the interactions 

between the propeller and it vortical incoming flow, the numerical error of the thrust 

predicted by the non-axisymmetric BEM/RANS scheme reduces from 13% to 1%. The 

unsteady BEM/RANS scheme is also shown to behave well except for some extreme cases, 
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including low advance ratios, high turning rates, etc. Computational cost analysis shows 

the unsteady BEM/RANS scheme is around 6 times faster than a fully RANS simulation. 

The unsteady BEM/RANS scheme also reduces the mesh preparation cost by roughly a 

half. This is more useful when the propeller design needs to be changed multiple times 

during the design. 

6.2 MAJOR CONTRIBUTIONS 

The main contributions of the present work are: 

1. The time-averaged BEM/RANS approach is developed based on several existing 

studies from other researchers (Choi 2001, Tian et al. 2014), an unsteady periodical 

BEM solver (PROPCAV), and a commercial CFD solver (Fluent). Based on this 

time-averaged implementation, numerical studies are made on whether to include 

and how to include the mass source term and the compensating force term.

2. The unsteady periodical BEM solver is improved to handle the non-periodical 

problems. Based on this non-periodical BEM, the unsteady BEM/RANS approach 

is developed. Unlike other existing unsteady BEM/RANS implementations which 

rely on a highly refined RANS mesh in the body force zone, this scheme uses a 

special mesh arrangement and confines the body force field and the mass source 

field into only one layer of cells (per blade). As a result, this method does not rely 

on a highly-refined mesh in the body force region and, therefore, reduces the 

number of cells as well as the number of required iterations. Also, this scheme 

evaluates the effective wake at a small constant offset from the mean camber 

control points, unlike other existing unsteady BEM/RANS schemes in which the  
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effective wake is usually evaluated at an upstream disk. This reduces the 

numerical error of the effective wake field and can be especially useful in 

representing the influence of the rudder to the blade. 

3. Different ways of calculating the mass source field, body force field, and effective

wake field are studied. In order to get an accurate prediction of the effective wake,

a necessary condition is provided in choosing the body force (mass source)

distribution model and the effective wake calculation model.

6.3 RECOMMENDATIONS 

In order to reduce the numerical error and further improve the computational 

efficiency, the following improvements can be made to the current scheme. 

6.3.1 Larger time step size in RANS 

In the current scheme, the RANS solver and the BEM solver share the same time 

step size. This restriction can be removed so that the RANS solver can have a larger time 

step size compared to BEM. This is reasonable because RANS is used to solve the slow-

changing total flow. The rapid-changing propeller-induced flow is handled by the BEM 

solver which requires a smaller time step size. 

To achieve this, the time-stepping scheme should be modified. Numerical studies 

have shown that the unsteady BEM/RANS scheme requires an implicit scheme to update 

the effective wake field, body force field, and mass source field. More specifically, if a 

RANS time step covers multiple BEM steps, the implicit scheme requires the BEM solver 

to go back a certain number of time steps and re-evaluate the BEM solutions within the 

RANS time step, as shown in Figure 6.1. 
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Figure 6.1: Flow chart of the unsteady BEM/RANS scheme with different time step sizes 
in RANS and in BEM. 

6.3.2 More accurate calculation of blade surface pressure in BEM 

In calculating the blade surface pressure, the current scheme assumes that the 

streamlines follow the cylindrical surface and also assumes that the time-derivative and 

streamwise-derivative of the effective wake equal to zero. With the unsteady non-uniform 

effective wake field, the validity of these assumptions needs to be studied. 

To improve the current scheme, the non-uniform upstream total head should be 

calculated first. Then, the Bernoulli equation should be applied along streamlines on the 

propeller blade surface in order to calculate the pressure. 
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6.3.3 Improvement of numerical convergence 

The current unsteady BEM/RANS scheme does not converge when the iterative 

pressure Kutta condition is used. Although its effects on the overall propeller forces are not 

significant, having the trailing edge pressures right is essential for super-cavity predictions 

and boundary layer corrections. 

The efficiency and convergence of the boundary layer correction model should be 

improved so that the boundary layer correction can be added to the BEM/RANS scheme. 

 

6.3.4 Adding other models to BEM 

First, the unsteady wake alignment model can be added to the BEM solver of the 

unsteady BEM/RANS scheme. The current BEM/RANS approach uses a rigid wake 

surface which does not change in its shape when the inflow velocity is changed. This can 

cause a numerical error when the velocity of ship deviates from its initial value.  

The cavitation model can also be added to the BEM/RANS scheme. The cavity is 

predicted by the BEM solver and then represented by a mass source field and a 

compensating force field inside RANS.
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Appendix A. Synchronization and Communication between 
PROPCAV and ANSYS Fluent 

 

In the unsteady BEM/RANS scheme, the BEM solver and the unsteady RANS 

solver run simultaneously and exchange data multiple times during the process. The body 

force field, the mass source field, and the total flow field need to be transferred from one 

solver to the other. In order to establish communication between solvers, several techniques 

can be used: 
 

• Shared memory is usually provided by operating systems as a basic library function. 

These kinds of functions provide communication channels between two processes 

that are running on the same computer. A shared memory region is allocated and 

then mapped to certain virtual address locations of both processes. This scheme is 

fast but does not prevent race conditions on the shared memory. 

• The socket is a networking abstraction that exchanges data between servers and 

clients. The server and client do not have to be on different network addresses. 

• Message passing interface also provides a high-level abstraction for sending and 

receiving messages. It is widely used for the high-performance-computing 

community. 

• Files can also be used to exchange information between processes. Similar to the 

shared memory technique, the race condition should be avoided via external 

synchronization techniques. 
 

In order to reduce the time cost of data exchange, the System V shared memory 

libraries is used for inter-process communication (IPC). The body force field, mass source 
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filed, and the total flow field is stored at different locations of the shared memory region. 

Therefore, only two types of race conditions can happen: 
 

• The sender overwrites the data before the receiver finishes reading it; 

• The receiver begins reading the data before the sender finishes writing it. 
 

To avoid these race conditions, a synchronization step is applied both before and 

after the data exchange step. The System V semaphores are used for the multi-process 

synchronization. 

Figure A.1 shows the location of each process in a multi-node parallel computing 

implementation. First, PROPCAV is paralleled via the OpenMP library and is located in 

node #1. ANSYS Fluent uses a distributed memory parallelization. The host process is 

located in node #1 and communicates with the PROPCAV solver. The body force/mass 

source data in the host process is sent to process #0 first and then broadcasted to all the 

other processes. The flow information in the propeller zone is collected by process #0 first 

and then send to the host process. 

 

 

Figure A.1: Multi-node parallel computing structure of unsteady BEM/RANS scheme.  

Host
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Node 1 Node 2 Node 3

Node 4

PROPCAV
(OpenMP)

ANSYS Fluent
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Appendix B. Meshing Strategy for the Body Force Zone in 
Unsteady BEM/RANS scheme 

 

The mesh zone that contains the body force/mass source field in the unsteady 

BEM/RANS scheme is designed in a special way, as shown in Figure B.1 and Figure B.2. 

As shown in Figure B.2, the mean camber surface of the blade is aligned with the diagonal 

direction of the cells, so that the body force field and mass source field is contained in only 

one layer of cells (per blade). This greatly reduces the interpolation error and ensures the 

conservation of mass sources and conservation of propeller forces between the BEM solver 

and the RANS solver. It also reduces the thickness of the body force distribution which 

leads to a more accurate prediction of the effective wake field. 

 

 

Figure B.1: Overview of body force mesh zone in the unsteady BEM/RANS approach. 

 

X
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(a) 

    

(b)     (c) 

Figure B.2: Body force zone mesh slices at difference radius. The camber of the blade 
aligns with the diagonal direction of the cells. 
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Appendix C. Basic Schemes and Models Used in the RANS Solver 

 

The RANS solver used in this dissertation is ANSYS Fluent v18.27. Multiple 

simulations are used in this dissertation. Although the physical problems and geometries 

they are dealing with may be different, these RANS solvers share lots of similarities in 

terms of interpolation schemes, discretization schemes, time-stepping schemes, etc. To 

reduce the complexity of describing all the RANS solver configurations for each 

simulation, these configurations are described in this part and used as the default settings 

unless otherwise described.  

 

• Solver: incompressible segregated solver 

• Velocity-pressure scheme: pressure-implicit with splitting of operators (Issa 1986) 

• Turbulence model: k-ω SST with the following constant values 

 

       

1.176 2.0 1.0 1.168 0.31 0.075 0.0828 

       

1 0.52 1/9 0.09 8 6 2.95 

       

1.5 0.25      

 

• Discretization and interpolation: 

 Flow variables are defined at cell centroid 

                                                
7 ANSYS Fluent: https://www.ansys.com/products/fluids/ansys-fluent 
 

https://www.ansys.com/products/fluids/ansys-fluent
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 Convection term: interpolation of velocity on cell faces is handled by 

second-order upwind 

 Diffusion term: cell centroid velocity gradient is calculated by the least 

square method. Then, central difference scheme with deferred correction is 

used to calculate the face gradient. 

• Time stepping scheme (in unsteady simulations): Second-order implicit 

• Boundary conditions: non-slip boundary on the ship hull and the propeller blades; 

slip boundary on the hub; flow velocity is set at the upstream boundaries; the static 

pressure is given at downstream boundaries 

• Relative motion: In the hull-propeller-rudder interaction case, the flow is solved in 

a reference frame fixed to the ship hull while the propeller rotation is handled by 

moving mesh. In the hull is not included, the flow is solved in a reference frame 

fixed to the propeller shaft. 
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