
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
 

by  
 

Qingwei Mo 
 

2004 
 
 
 
 



  

 
 
 

The Dissertation Committee for Qingwei Mo certifies that this is the  
approved version of the following dissertation: 

 
 
 
 

Vertical Cavity Surface Emitting Laser Based on  

GaAs/Air-gap Distributed Bragg Reflectors: 

       From Concept to Working Devices 

 

 

 

Committee: 
 
_____________________________________ 
Dennis G. Deppe, Supervisor 
 
_____________________________________ 
Dean P. Neikirk  
 
_____________________________________ 
Jack C. Lee 
 
_____________________________________ 
Ananth Dodabalapur  
 
_____________________________________ 
John G. Ekerdt 
 
 
 

 



  

 

Vertical Cavity Surface Emitting Laser Based on  

GaAs/Air-gap Distributed Bragg Reflectors: 

      From concept to Working Devices 

 
by 
 

Qingwei Mo, B.E., M.S.E  
 
 
 
 
 
 

Dissertation 

 Presented to the Faculty of the Graduate School of  

the University of Texas at Austin 

in Partial Fulfillment 

of the Requirements 

for the Degree of  

Doctor of Philosophy 

 

The University of Texas at Austin 

December 2004 

 



 iv 
 

 

 

 

 

 

 

To my grandmother, Gao Yanyun,  

my parents, Mo Yunda and Gao Shunrong, 

and my wife, Peng  Weiping  

 



 v 
 

Acknowledgements 
       I would like to express my appreciation to my supervisor, Dr. Dennis G. Deppe, 

who led me into the VCSEL field and kept inspiring and challenging me with exciting 

ideas and projects. I would also like to thank Dr. Dean P. Neikirk, Dr. Jack C. Lee, Dr. 

Ananth Dodabalapur and Dr. John G. Ekerdt for their time as my committee and giving 

me many good suggestions and helps. 

       Many thanks go to Dr. Diana Huffaker, who taught me VCSEL design and 

processing, and Dr. Gyoungwon Park, who shared his great experience of device 

processing with me. My partnership with Dr. Hao Chen is very enjoyable and it is also 

critical to the success of this project. Dr. Oleg Shchekin provided many good samples and 

insightful suggestions in my research.  My Thanks also go to my fellow graduate students 

in our group: Zhengzhong Zou, Hua Huang, Chuanshun Cao, Dingyuan Lu, Zhihong 

Huang, Manhong Zhang, Sonia, Sam, Jaemin and Deepa. Thanks for the companionship 

and assistance.  

       Finally, I wish to express my gratitude to my grandmother. This appreciation will be 

kept in my heart until I can find a way to deliver it to her in the heaven. I appreciate my 

parents for always being there for me and supporting my pursuing of educations and a 

meaningful life. My sister and brother have been supportive to me all the time. But most 

importantly, I want to thank my dear wife, Weiping, who endured the poverty, 

uncertainty and all those ups and downs in our graduate-student life, and in retaliation, 

provided only love, encouragement and delicious food. I look forward to the adventure 

ahead we are going to explore together.                    



 vi
 

Vertical Cavity Surface Emitting Laser Based on 

GaAs/Air-gap Distributed Bragg Reflectors: 

     From concept to Working Devices 

 
 

Publication No. ________________ 
 
 
 

Qingwei Mo, Ph.D.  
The University of Texas at Austin, 2004 

 
 
 

Supervisor: Dennis G. Deppe 
 
 

Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities 

in optoelectronics. However, VCSELs have so far been commercialized mainly for 

operation at 0.85 µm, despite their potential importance at other wavelengths, such as 1.3 

µm and 1.55 µm.  The limitations at these longer wavelengths come from material 

characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, 

and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum 

wells.  A similar situation, insufficient gain relative to the cavity loss, existed in the past 

for shorter wavelength VCSELs before high quality epitaxial mirrors were developed.  

Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their 

high index contrast, which leads to a high reflectivity, wide stop band and low optical 

loss mirror with a small number of pairs. This concept is ready to be integrated into 

material systems other than AlGaAs/GaAs, which is studied in this work.  Therefore, the 
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impact of these DBRs can be extended into both visible and longer infrared wavelengths 

as a solution to the trade-off between DBR and active region materials. Air-gap DBRs 

can also be used as basic building blocks of micro-opto-electro-mechanical systems 

(MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good 

platform for microcavity physics study.  

          Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell 

equations. A comparison to existing DBR technology shows the great advantage and 

potential that the air-gap DBR possesses. Two types of air-gap are proposed and 

developed. The first one includes multiple GaAs/air pairs while the second one combines 

a single air-gap with metal and dielectric mirrors. New device structures and processing 

designs, especially an all-epitaxial lateral current and optical confinement technique, are 

carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL based 

on a GaAs/air-gap DBR is successfully demonstrated. Low threshold continuous-wave 

lasing is achieved at room temperature. The device characteristics and air-gap DBR loss 

are analyzed based on experimental data.  
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Chapter 1  

Introduction 

1.1 VCSEL Basics 

     The Vertical Cavity Surface Emitting Laser (VCSEL) was first proposed by Prof. 

Kenichi Iga in 1977 at the Tokyo Institute of Technology1. It has been extensively studied 

in the following decades because of the interests in both the applications and fundamental 

physics. The basic physics governing the operation of VCSELs is the same as other types 

of diode lasers. The optical gain is provided by stimulated emission via electrical current 

injected into the active region. The optical cavity formed by mirrors in some fashion 

provides the necessary feedback to sustain the laser oscillation. However, the geometry of 

the VCSEL is substantially different from conventional edge-emitting lasers. The vertical 

cavity is formed by multi-epitaxial layers and the optical output is taken from one of the 

mirror surfaces as shown in Figure.1.1.  

     The original motivation for VCSEL development was a fully monolithic fabrication 

of the laser cavity. However, this unique structure turns out to offer a lot more than that. 

The advantages identified so far include: 1) on-wafer testing performed before dicing 

which reduces the cost of chip production; 2) easy coupling to an optical fiber due to 



 

2

good mode matching between the circular beam shape and optical fiber core; 3) 

formation of densely packed and precisely arranged 2-D arrays; 4) ultra-low threshold 

operation due to its small cavity and active region volume; 5) large relaxation frequencies 

which enables the high-speed modulation; 6) a vertical stack structure that provides the 

capability to be integrated with micromachining technology, which will be discussed in 

detail later in this dissertation; 7) compatibility with VLSI technology, which promises to 

be a potential building block for future Optoelectronic Integrated Circuits (OEIC). 

         

Figure 1.1 Basic structure of VCSEL2 

      VCSELs started being commercialized after the inception of IEEE and Fiber 

Channel standard for high-speed data communication in 1997. Since then, more than 30 

million VCSELs have been shipped for this application alone3. Besides this major 

application in optical communication, VCSELs penetrate into many non-communication 
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markets because of its unique merits. The 2-D array VCSELs are ideal for high resolution 

laser printers. The low power consumption makes them an ideal solution for many 

hand-held applications including bar-code scanners. They have also been used in 

proximity sensing and optical encoding due to their simple optical requirements and 

wavelength controllability. Red VCSELs operating at 650nm are playing an increasingly 

critical role in plastic optical fiber (POF) of the automobile and aerospace internal data 

transfer network. A novel laser scanning display based on a VCSEL array has also been 

demonstrated, indicating a promising future in the huge display market4.    

1.2 Devices designs and challenges  

Figure 1.2 materials for VCSELs2   

     Although the generic structure of a VCSEL consists of only two parallel reflectors 

and a thin active region sandwiched between them, the design and development of a 



 

4

VCSEL involves materials science, semiconductor physics and electromagnetics.  

Figure 1.3 current confinement schemes2 

Firstly, to achieve the operation at a specific wavelength, the right active material must be 

chosen and grown with high quality. Figure 1.2 shows different material candidates for 

various wavelengths and applications. Secondly, high quality reflectors must be grown on 

both sides with material that is lattice-matched with the rest of the cavity. The typical 

reflectivity of a VCSEL mirror is higher than 99.9%. Most VCSELs use DBRs as mirrors 

to provide optical feedback. DBR technology and its compatibility with the active region 

materials will be the major topic of Chapter 2. Thirdly, the confinement of the current and 

lasing mode into a small volume is necessary to achieve lasing operation. Several 

schemes for current confinement have been proposed and developed, as shown in Figure 
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1.3. Figure 1.3(a) is a simple ring structure, which is very easy to build but cannot 

confine the current effectively. Figure 1.3(b) is a proton implantation technique that is 

used in a lot of commercialized devices. In Figure1.3(c), the mesa and active region is 

buried in a wide band-gap material. This is an ideal structure but hard to build. An air 

post is etched in Figure 1.3(d) for confinement, which may cause nonradiative 

recombination. In Figure 1.3(e) and Figure 1.3(f), Al(Ga)As layers either inside the cavity 

or in the DBR are converted into AlOx, which provide both current confinement, due to 

its insulating properties and optical confinement, due to its smaller refractive index. This 

is a major milestone of VCSEL development for achieving efficient, low threshold 

operation5,6. In this dissertation, another all-epitaxial current and optical confinement 

scheme is demonstrated. It eased the process integration with air-gap DBRs in this work 

and has a very promising future because of its advantages and flexibility. This technique 

will be described in detail in Chapter 3.  

      The development of qualified active region materials and high quality DBRs has 

been challenging. Integrating these two features without generating high defect densities 

or exorbitant costs is even more difficult. This is the main obstacle hindering the 

extension of VCSEL wavelengths from 780nm, 850nm and 980nm to longer and shorter 

wavelengths. The primary motivation for this work is to solve this problem by developing 

a novel DBR technology, with concepts and principles that can easily be applied to 
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different material platforms and wavelengths.         

1.3 Motivation 

There are three major motivations for developing this air-gap DBR technology and 

integrating it with VCSELs. First, it is a promising solution to the trade-off between the 

active region and DBR material quality. Previously, we always have to sacrifice one for 

the other. Secondly, it marries micromachined structures with VCSELs, which may add 

new features and controllability to these devices. Third, a high Q optical cavity with 

small mode volume can be employed as a platform for studying microcavity 

electrodynamics (QED).  

   The development of the 1.3µm VCSEL is a good example to illustrate the dilemma of 

active region versus DBR material quality. VCSELs operating at 1.3µm have been touted 

for a long time due to their low dispersion transmission in optical fibers. However, 

commercialization of these devices has not been achieved until recently7. Table 1.1 shows 

the approaches that have been pursued. InGaAsP/InP can be grown monolithically on InP 

substrate, but suffers from a low refractive index contrast between InGaAsP and InP. 

InGaAs quantum dots8, GaAsSb9, and GaInNAs10 have gained a lot of attention, because 

they can take advantage of the mature AlGaAs/GaAs DBR technology. However, more 

research is needed to improve the gain and stability of these materials. Another approach 

is to bond the AlGaAs/GaAs DBRs to an InGaAsP cavity11. This has achieved good 
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performance, but is questioned for the manufacturability and cost. Doubtlessly, this 

dilemma will continue to hinder the endeavors to push VCSELs into 1.55µm or the 

visible spectrum. Air-gap DBRs can potentially be used in these different material 

platforms monolithically and provide high reflectivity to the devices. 

 

.   Table 1.1 Approaches for 1.3µm VCSEL 

        

     The integration of micromachined structures with VCSELs opens the way to 

combine active optoelectronic devices with micro-mechanical functions and develop new 

generation smart devices. Existing and future applications include tunable VCSELs12, 

highly selective and widely tunable Fabry-Pérot filters13, wide-band optical switchs, 

selective and tunable detectors 14 , etc. The MBE or MOCVD grown compound 

semiconductor structure also offers superior flexibility and precision for micromachining. 

Active region DBR Challenges 

InGaAsP InGaAsP/InP Low Index contrast 

InAs Quantum Dots AlGaAs/GaAs Low material gain 

InGaAsP  AlGaAs/GaAs (Bonding) Manufacturability 

GaAsSb AlGaAs/GaAs Gain blue shift  

GaInNAs AlGaAs/GaAs Gain and reliability 
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The surface quality and built-in strain can be controlled to realize very fine and complex 

geometries and configurations. 

   Air-gap DBRs may also play a critical role in microcavity physics research. As 

indicated by Purcell in 1946 15 , Microcavities have a fundamental impact on the 

spontaneous recombination process described by Equation 1.116,  
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Where τsp,0 is the cavity free spontaneous emission lifetime, V is mode volume, ω and ω0 

are the frequency of the emitter and microcavity respectively, γ is the emitter dephasing 

rate, Q0 is the photon loss rate of the cavity mode , and w0 is the lateral size of the 

confined optical mode. αwg is the coupling into the waveguide, which does not change 

much over free emission. The impact of an air-gap DBR is present in two aspects of this 

equation. It increases Q due to high reflectivity and shrinks the mode volume V due to 

the small penetration depth, resulting from a large refractive index contrast. 

                  

1.4 Dissertation Outline 

This dissertation will present the author’s study on air-gap based VCSELs. This research 

has gone through the procedures of device modeling, process development, process 
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integration, device demonstration and device analysis. The same procedure is followed in 

writing this dissertation. After the introduction of VCSEL technology and motivation for 

these projects in Chapter 1, air-gap DBR modeling and process development are 

presented in Chapter 2. Process integration is discussed in Chapter 3 followed by the 

demonstration of VCSEL lasing operation. Chapter 3 concludes with analysis and 

discussion of the performance of the VCSELs observed during development. Chapter 4 

summarizes the dissertation. 
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Chapter 2   

Air-gap Distributed Bragg Reflectors:  

Theory and Micromachining 

2.1 DBR modeling 

VCSELs need mirrors with high reflectivity, usually >99%, due to a short gain region. 

Most VCSELs employ Distributed Bragg Reflectors as shown in Figure 2.1. Quarter 

wavelength thick layers of two different index materials are alternated during growth. 

The concept is that many small reflections can add up to a large reflection. When the 

electromagnetic field in the cavity is at the Bragg frequency, the reflection at each 

interface will add up in phase with each other and generate a very high reflectivity. 

 
Figure 2.1 Schematic of a DBR structure 
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   One elegant way to model a DBR is to use transmission matrix formulation of 

Maxwell’s equations17, which is the approach used in this work. One transmission matrix 

is used to express the normalized amplitudes relationship between the input and output at 

a given port in terms of the other ports. Therefore, one network shown in Figure 2.2 can 

be expressed by Equation. 2.1.          
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Figure 2.2 Single two-port network 
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  Figure 2.3 Network for DBR interface 
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Figure 2.4 Network for each layer inside 
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      In this way, a multilayer DBR or even a complete optical cavity can be divided 

down to two basic components: the dielectric segment and the interface of refractive 

index discontinuity. These two building blocks and their transmission matrix are 

illustrated in Figure 2.3 and 2.4, respectively. In Equation 2.2, r and t represent 

reflectivity and transmission, respectively. β~ in Equation 2.3 is the complex propagation 

constant which includes loss, gain and the phase change of the electromagnetic field. 

Therefore, multiple DBR layers can be modeled by multiplying the matrix of each 

component. A typical DBR reflectivity curve and that of a complete VCSEL cavity is 

shown in Figure 2.5. As indicated in Figure 2.5(a), there is a regime of wavelength where 

the reflectivity is very high. It is the stop-band of the dielectric stack. There is a dip in the 

stop-band of the complete VCSEL structure, which reveals the axial mode of the Fabry-P

érot cavity. The transmission matrix can also be used to calculate the electromagnetic 

field distribution inside the cavity. In order to maximize the optical gain, the active region 

should be placed at the antinodes of the electromagnetic field inside the cavity. The 

E-field distribution of a typical 980nm VCSEL with GaAs/AlAs DBR is shown in Figure 

2.6. The interface of each epitaxial layer is indicated by the periodic short vertical lines. 

The numerical simulation also reveals the relationship between high/low index order, 

cavity length, and the position of antinodes/nodes inside the cavity. Four configurations 

with different index ordering and cavity length are shown in Figure 2.7. 
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Figure 2.5 (a) Reflectivity of a typical GaAs DBR 
(b) Reflectivity of a complete 980 VCSEL cavity 
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Figure 2.6 E-Field of 980nm VCSEL  
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Figure 2.7 Configuration of Index high/low ordering, cavity length 
and antinodes/nodes position18 
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    The numeric calculation based on the transmission matrix of Maxwell’s equations 

gives satisfying results and serves as a powerful tool in VCSEL DBR and cavity design. 

However, the simplified analytic model with appropriate approximations reveals 

underlying physics and insights into the properties of these dielectric stacks. When the 

Bragg condition is met in a lossless dielectric stack, and the reflectivity at each interface 

is small, the total reflectivity of the DBR can be reduced to Equation 2.4 or more 

generally, to Equation 2.517, where n1 and n2 (nLi, nHi) are the alternating indices of the 

dielectric stack, and m is the total number of pairs. Equation 2.4 is plotted in Figure 2.8, 

showing that the more pairs achieve a higher r, which agrees with intuition. Also, the 

higher the index contrast, the fewer number of DBRs needed to reach the same 

reflectivity. Air-gap DBR can provide highest index contrast to any material system, 

which also brings the advantages such as lower absorption loss and serial resistance. 

Furthermore, with the same assumption of lossless material and small reflectivity at each 

interface, the reflectivity ratio between m pairs DBR and that of one single pair, meff, 

denotes the effective number of periods seen by the incident field. When multiplied by 

the period (L1+L2), meff determines the penetration depth of the field into the dielectric 

stack. Minimizing the penetration depth is a critical step for confining the photons into a 

small volume for microcavity physics research. It also helps to suppress lateral diffraction 

loss. As shown in Equation 2.6 and 2.7, high index contrast can effectively decrease the 
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penetration depth. Another important parameter in DRB design is the stop band. A wide 

stop-band translates to a slow phase change on the reflection. The flatter the phase change, 

the smaller the resonance shifting when the epitaxial layer thickness of the VCSEL 

deviates from the design number. This can be described by Equation 2.919, where L is the 

cavity length, n is the cavity effective refractive index, λres is the VCSEL resonant 

frequency, and Φa, Φb are the phase change of the top and bottom DBRs, respectively.  

Detailed modeling of air-gap DBR and a comparison to existing technology will be 

discussed in the next section. 
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Figure 2.8 DBR reflectivity vs. index contrast and number of pairs 
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2.2 DBR Technology 

     One of the principal obstacles in pushing VCSEL technology into longer (1.3µm, 

1.55 µm) and shorter (UV and visible) wavelengths has been the lack of high-quality 

DBRs that can be integrated with the active region materials emitting at these specific 

wavelengths. High quality here means high reflectivity, high thermal conductivity, high 

electrical conductivity and low optical loss. All these considerations must be balanced in 

order to achieve and optimize VCSEL operation. 

      VCSEL mirrors usually need to have reflectivity of 99% or higher, due to the 

short gain length. This high reflectivity is obtained by alternating high and low 
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refractive-index materials, which is called Distributed Bragg Reflectors (DBRs). The 

optical property of DBRs can by modeled using the transmission matrix of the Maxwell’s 

equations. The analytic formulas determining the reflectivity, stop-band width and 

penetration depth are given by Equation 2.4-Equation 2.8. 

   The technologies used to build DBRs include monolithic epitaxy (MBE or MOCVD) 

and post-growth deposition (E-beam deposition, PECVD, sputtering, etc).  The 

materials employed include epitaxial semiconductor films, which are lattice-matched 

with the substrate, post-growth deposited dielectric films (Si/SiO2
20, MgF/ZnSe21, etc) 

and metal reflectors (Gold, Silver, etc). Epitaxial grown semiconductor DBRs have good 

crystal quality and low material absorption; therefore, they can reach a very high peak 

reflectivity. However, they suffer from low refractive index contrast, which translates to 

more pairs of DBRs needed to attain a certain peak reflectivity. Taking 1.3µm as an 

example, InGaAsP/InP has a index contrast (δn) of 0.178 and GaAs/AlAs has a contrast 

of 0.22. Therefore, 65 and 22 pairs are needed to reach a peak reflectivity of 99.9%, 

respectively.  

      Post-growth deposited dielectric films can provide high index contrast. For 

example, MgF/ZnSe and Si/SiO2 have contrasts of 1.19 and 2.15, respectively, requiring 

6 and 5 pairs, respectively, for a 99.9% reflectivity. The drawback of these deposited 

dielectric mirrors is their amorphous structures, which have a much higher optical loss 
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than epitaxial semiconductor DBRs. A typical absorption coefficient for Si is α 

≈1000cm-1 at 1.3µm22, while MgF/ZnSe has an α of ~200cm-1. The peak reflectivity of a 

DBR with such high loss tends to saturate, regardless of how many additional pairs are 

deposited. Si/SiO2 saturated at 0.992 after 4 pairs were deposited and MgF/ZnSe 

saturated at 0.997 with 7 pairs. These values are not high enough to achieve lasing for 

emerging active materials, such as quantum dots. Additionally, using deposited DBRs on 

both sides of VCSEL is challenging in processing, which involves substrate holing. 

Dielectric DBRs usually require complicated current injection schemes. The thermal 

conductivity of these dielectric mirrors is not very good either, which hinders the 

dissipation of heat generated during resistive and lasing operations.23 

     Native oxide converted from AlGaAs by wet thermal oxidation has been studied as 

a promising DBR material19. GaAs/AlOx has an index contrast of 1.8 at 1.3µm and can 

achieve a reflectivity of 99.9% with 5 pairs of mirrors. Impressive VCSEL operation has 

been achieved and characterized with high optical quality DBRs based on native oxide19. 

The main obstacle preventing the manufacture of this technology is the detrimental 

thermal strain introduced during wet thermal oxidation. This strain may cause reliability 

issues in devices based on this technology. 

   Metal reflectors have a long history in VCSEL development, since the very first 

VCSEL devices were realized24. Gold and Silver are usually used, because they have a 
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fairly high reflectivity (>95%) in the desired spectrum. The reflectivity at the surface of a 

metal reflector can be derived by solving Maxell’s equations. There will be an extra phase 

shift because the good conduction properties of gold or silver. This phase shift has to be 

accommodated by designing an extra phase shift layer. The problem with metal reflectors 

is the difficulty in using them on both sides of the VCSEL cavity. It requires 

implementing a bottom-emitting scheme, which is not feasible in many applications.  

       Compared to the technologies mentioned above, air-gap DBRs enjoy many 

advantages. They have the largest achievable index contrast, which allows a high peak 

reflectivity with a minimum number of mirrors. The wide stop-band increases the cavity 

fabrication tolerance. Since air-gap are released from epitaxial sacrificial layers, they 

have an excellent interface quality and precise thickness control. Built-in strain can be 

controlled very well by epitaxial growth technologies. There are no limitations to the use 

of air-gap DBRs on both sides of the laser cavity. And extra electrical and thermal 

resistivity caused by the air-gap can be minimized by engineering the right scheme of 

sacrificial-layer etching. The last and most critical value of air-gap DBRs is the 

decoupling of material choice for active region and DBR, solving the dilemma of 

material compatibility between these two components. Any combination of 

semiconductor material can be used, regardless of the index contrast, as long as they can 

be monolithically grown with the active region and substrate and a selective etching 
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method, with a reasonably high selectivity, can be found between them. Those layers 

selected as sacrificial layers can always be etched away to form high contrast and high 

reflectivity DBRs. Table 2.1 lists the comparisons between existing DBR technologies 

and air-gap based DBR, in terms of index contrast, number of pairs required for 99.9% 

reflectivity, stop-band width and final DBR thickness. Figure 2.9 shows the reflectivity 

modeling results of air-gap based DBRs compared to conventional GaAs/AlAs pairs with 

the same reflectivity. 

 

 
Table 2.1 1.3µm DBR technology 

      

 

1.3 µm DBR 
materials 

δn = 
nh-nl 

#of pairs for 
99.9% 

Bandwidth 
(nm) 

Thickness 
( µm) 

InGaAsP/InP 0.178 65 50 13 
GaAs/AlAs 0.46 22 120 4.5 
MgF2/ZnSe 1.19 6 710 2.2 
GaAs/AlO 1.81 5 797 1.5 
GaAs/Air 

[λ/4] 
2.41 3 1433 1.3 

GaAs/Air 
[3λ/4] 

2.41 3 561 1.8 

GaAs/Air 
[5λ/4] 

2.41 3 245 2.4 
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Figure 2.9 stop-band width of 980nm DBR based 
on GaAs/AlAs and GaAs/Air with similar reflectivity 
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2.3 Proposed Air-gap DBR structures                        

 

 

Figure 2.10 two proposed air-gap DBR structure 

      

      There are two air-gap based structures proposed in this dissertation research. 

Structure I is a pure air-gap solution, which stacks three pairs of GaAs/air-gap together. It 

simplified the processing steps and is ready to be used on both the top and bottom of 

VCSELs. Intuitively, more air-gaps should be more challenging to process; however, we 

eventually found that this is not the case. A three quarter wavelength thickness was for 

GaAs in order to enhance mechanical stability. Structure II is a hybrid solution combining 

one air-gap with a post-growth dielectric film and a silver reflector. It is more robust, and 

the silver reflector contributes to a high reflectivity and mechanical support sufficient for 
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the suspended structure and the potentially current and thermal path for the VCSEL 

operation. However, this design involves more processing steps and makes process 

integration more difficult. It is also only suitable for one side of the cavity, which limits 

its applications. Transmission matrix modeling has been carried out for both structures. 

The reflectivity and final thickness of these two structures are also presented and 

compared to GaAs/AlAs and MgF/ZnSe pairs in Figure 2.11.  

Figure 2.11 comparison of reflectivity and final thickness  
between structure I, II and conventional DBRs   

2.4 Development of Air-gap DBRs 

     This work focused on developing a simple, robust, and high yield fabrication process 

to incorporate air-gap technology to GaAs-based VCSEL manufacturing. Two different 

structures are proposed in 2.2.3. Process flows have been developed for these two 

Structure I

Structure II

6pairs MgF2/ZnSe

21 Pairs GaAs/AlAs

1.53µm

2.04µm

2.19µm

4.5µm
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structures. Both of them are based on a sacrificial layer etching technique, which is a 

typical surface micromachining processing. What is unusual in this work is the extremely 

small air-gap and suspended thickness, which is ~2000-3000 Angstrom, while a typical Si 

MEMS structure is several to tens of microns. A notorious problem in surface 

micromachining is the permanent attachment of the suspended structure to the layer 

underneath, which is called sticking or stiction.25,26,27,28,29,30 Sacrificial layers are usually 

etched away using a wet chemical etching technique, because in most cases only a wet 

etching can an provide effective undercut31.  

         During drying, after the rinse, the capillary force induced by the diminishing 

liquid will pull the suspended layer down. Many theories have been proposed to explain the 

permanent stiction, which include etch residues,25,26 electrostatic forces,27 Van der Waals 

forces and hydrogen bridging28,29.  Therefore, this work focused on solving this problem 

by engineering the mechanical structure design, selective etching process, rinse and drying 

techniques. Many techniques have been developed to prevent stiction. Most of them fall 

into two categories. The first group of methods is to prevent the pulling down by freeze 

drying,32 critical point drying,33 dry etching techniques31, or temporary or permanent 

mechanical supporting structures34. The second group reduces the adhesion force and 

enables the suspended structure to recover from the physical contact by using its own 

restorative force. These methods include minimizing the surface energy,26 reducing the 
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contact area by using a bump or increasing the surface roughness.35,36  

 

2.4.1 Type I Air-Gap DBR development 

2.4.1.1 Stiction Problems 

 

Figure 2.12 Cross section of suspended structure when drying 
 
 

      There are two phases from rinse and dry to stiction. The first step is the pull-in phase, 

in which the suspended structure is pulled down to the underlying layer by capillary force. 

The second step is the adhesion phase, in which an adhesion mechanism starts dominating 

and prevents the suspended structure from recovering even after all the water is gone. In 

the phase one, the mechanism is very much like the electrostatic attraction between two 

charged parallel plates. The surface tension of the liquid causes the pull-in force to bring 
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the film down, while the bending stiffness of the suspended structure tries to recover it. 

When the deflection of the beam increases, both the capillary force of the liquid and spring 

force of the beam increase. If the equilibrium between these two forces is broken by the 

capillary force increasing at a faster rate, the suspended structure will eventually fall down 

and physically touch the layer underneath, as shown in figure 2.13.  

          The pull-in length is used to characterize this behavior, which denotes the 

longest free-standing clamped-clamped beams without being totally pulled down. It can be 

modeled by Equation 2.9 when ignoring the built-in strain37: 
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where )1/(ˆ 2ν−= EE is the modulus of the material. E and ν are Young’s modulus and 

Poisson’s ratio, respectively. θ1 and θ2 are the contact angles between the liquid and solid as 

in Figure 2.12. γ is the surface tension of the liquid used for rinsing, and d and h are the 

thickness of the air-gap and suspended film, respectively. Plug in the material parameters 

of GaAs thin film, where E=8.59*1011dyn/cm2, ν=0.31, θ1, θ2 are 0 when pulled down, γ of 

water is 73dyn/cm. The thickness of air-gap and suspended film are 3250Å and 2857Å at 

1.3µm, respectively. Lp=11µm is calculated in this case and increases to 13µm when water 

is replaced with Acetone (γ=24dyn/cm). The size budget is tight considering that the 

typical current aperture of a VCSEL is around 10µm. This model is very instructive in the 

structure and processing design. It is evident that Lp is proportional to d1/2 and h3/4. Thus, 
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we chose 3 quarter wavelength for the GaAs layer thickness to enhance the stiffness of the 

mirror. This demonstrates that the resistivity to pull-in is independent of the width of the 

bridge. Lp is also inversely proportional to the surface tension of the rinse liquid, making 

Acetone a better choice than water. For a high quality air-gap mirror, the suspended GaAs 

layers should stay perfectly flat to give high reflectivity. Therefore, this pull-down 

recovery cycle should be avoided even when the materials are able to recover. Critical 

point drying thus looks very promising, because it decreases γ nearly to zero and minimizes 

the bending of the bridge during the rinse and dry phases. This is also the essential 

technique employed to develop the type I air-gap DBR. 

 

 
Figure 2.13 Clamped-Clamped structure pulled down by capillary force 

 

      Following the pull-down phase is the adhesion phase. Different models are 

developed to explain the interactions between solids, which induce adhesion. Long-range 

mechanisms including capillary forces, van der Waals forces and electrostatic forces are 

among them. Short-range mechanisms include hydrogen bonds, chemical bonds and 
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metallic bonds37. Based on these theories, different solutions are proposed. Among them is 

an anti-stiction surface treatment or coating, a stand-off bump to limit the contact area, an 

increased surface roughness, etc. However, considering the uniqueness and high optical 

quality requirements for VCSEL devices, these methods are not applicable.  

2.4.1.2 Critical Point Drying 

Surface Tension 

      The critical point phenomenon was first discovered by French baron Charles 

Cagniard de La Tour in 1821 when he observed the disappearance of the gas/liquid 

interface of carbon dioxide in a sealed gun. This actually exhibited one of the fundamental 

natures of the transition between the vapor and liquid phase. This particular point is 

characterized by a fixed temperature, pressure and density, at which the distinction 

between the gas and the liquid phase simply disappears. As we discussed in 2.4.1.1, the 

primary cause of the stiction problem is the surface tension of the liquid. The origin of the 

liquid surface tension is the decreasing molecular density through the interface between the 

liquid and vapor when the phase equilibrium is set. Thus, the molecules at the interfacial 

zone will experience more attraction force from inside the liquid than from outside the 

vapor. The surface potential therefore gets higher across the interface in the direction of the 

vapor. A cross section of the interface between liquid and vapor are shown in Figure 2.14 
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along with the molecular density and surface potential distribution. The critical point, 

where the density of liquid and vapor becomes the same, is favorable in 

micro-electro-mechanical structure (MEMS) release due to the zero surface tension. A 

MEMS specimen immersed in the liquid can experience a transition to a “dry” gas 

environment without being exposed to a liquid-vapor interface, thus avoiding the damage 

of surface tension. 

 

 
Figure 2.14 Cross section through the interface between liquid and vapor 
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Critical Point Drying (CPD) with CO2  

     

Table 2.2 critical point of different material 
 

         In the experiment, liquid carbon dioxide is chosen because its critical point is 

comparatively easier to reach, as shown in Table 2.2, and it is also inexpensive and 

environmentally friendly. Figure 2.15 shows the CO2 phase diagram and the typical route 

of CO2 critical point drying. The principle of using liquid carbon dioxide is best understood 

by considering a group of experimental curves carried out to determine the relationship 

between volume and pressure at a certain temperature as shown in Figure 2.16. This type of 

curve is also called Isothermal.  

        Using the 10°C curve as an example, CO2 starts from low pressure at point “R” 

and shrinks in volume while the pressure increases until point “S”. In this range, CO2 is 

generally considered a vapor. A slight increase of pressure after “S” leads to a large 

volume reduction and a transition to liquid status at “T”. This is also called condensation. 

After “T”, CO2 is virtually incompressible like a typical liquid. The 20°C curve is almost 
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the same as 10°C one, except that the volume shrinkage is much smaller when 

condensation occurs. This indicates that the densities of saturated vapor and liquid are 

approaching each other. It is also evident that the properties of CO2 liquid and vapor are 

becoming similar and will eventually coincide. This in fact is realized at 31.1°C 

Isothermal, which does not show horizontal discontinuity. We therefore have continuity 

of states.  

       Figure 2.16 is a typical way to use critical point drying to avoid surface tension 

induced damages. The sample is immersed in the liquid CO2 at the phase equilibrium of 

the vapor phase. The temperature is raised beyond critical temperature, and held there 

while the pressure is decreased by venting the CO2 slowly. The sample is then dried 

without experiencing any abrupt phase transition or surface tension. In the CPD 

procedure, the initial status also makes differences, as shown in Figure 2.16. If the start 

point is X, where liquid has more volume than vapor (or more than half of the chamber is 

filled with liquid), the pressure of the system may be too high when it reaches the critical 

point, and the pressure relief valve is used to decrease the pressure. On the other hand, if 

the start point is Z, where less than half of the chamber is filled with liquid, the liquid 

may start to vaporize before reaching the critical point when the temperature is raised. 

This may leave the sample uncovered with liquid. Therefore, a proper start condition 

should be used for a good drying. 
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Figure 2.15 Phase diagram of CO2 and typical CPD route 38 
 
 

 
Figure 2.16 Pressure-Volume relation of CO2 at different temperature 
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Figure 2.17 Condition changes during critical point drying 

 

Intermediate/Dehydration Liquid 

      Because the CO2 is not miscible with water, some intermediate liquid should be 

used to replace the water. This step is critical because the CPD result is directly related to 

the completeness of the water replacement and dehydration. Table 2.3 shows three 

intermediate fluid candidates. Acetone and Ethanol are chosen based on environmental 

consideration. 
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Table 2.3  
 
 

CPD set up 

Figure 2.18 illustrates the set up of the CPD process. A Siphon cylinder provides the 

liquid CO2 source to the Quorumtech E3100 critical point dryer. The temperature of the 

chamber is controlled by a Quorumtech E4800 circulating heater and chiller. Internal 

pressure can be manually controlled by adjusting the valves of the liquid CO2 drain and 

vapor CO2 vent. The liquid surface can be monitored by the flow rate of the CO2 drain 

and input.   
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Figure 2.18 CPD experiment set up 

CPD Process flow 

     Figure 2.19 shows the flow chart of CPD process. After the sample is etched by 

wet chemicals, it is rinsed with water. The water is then replaced with Acetone by mixing 

it with Acetone and pouring out part of it again and again. Better equipment should 

provide a dynamic flush and drain of Acetone. In this process, the complete replacement 

of water is ensued by doing multiple processes and Acetone soaking. The sample is then 

transferred to a boat and loaded into the chamber. The chamber should be chilled at 5°C. 

After the loading, the sample is flushed with liquid CO2 for 5 minutes, followed by a 

10-minute soak. The flush and soak are repeated twice to ensure that the Acetone is 

totally gone. Liquid CO2 is kept at an optimum height as discussed previously and all of 

the valves are closed. The temperature is raised to ~40°C, while the pressure is increased 
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to ~1200 PSI simultaneously. During this process, the disappearance of the vapor-liquid 

interface can be observed, which is a good indication of the CO2 passing the critical point. 

After passing the critical point, the pressure can be decreased by gradually opening the 

venting valve. This venting process must be very slow to prevent the CO2 from 

re-condensing. It takes ~40-60 minutes for the venting process. The chamber can then be 

opened to unload the sample boat, after the pressure returns to atmosphere. 

Figure 2.19 CPD process flow 
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2.4.1.3 Crystallographic Etching 

Selectivity 

       Selective etching of sacrificial layers by undercutting using a wet etchant is a 

critical step for suspended structure fabrication. For VCSEL DBRs, the thickness accuracy 

and surface quality are crucial. It greatly affects the reflectivity and optical loss. Therefore, 

the layers to be grown, their composition and thickness, the selective etchant, the pattern 

dimensions and the masking technique must be optimized. 

        In this work, GaAs/AlGaAs is chosen because it is a mature DBR combination for 

GaAs substrates. Wet etchants for AlGaAs with high selectivity to GaAs are available. 

Diluted HCl, diluted HF or diluted buffered oxide etch have effectively infinite selectivity 

to etch AlGaAs from GaAs39. HF based etchant tends to degrade the adhesion between 

photoresist and the sample surface during long etchings. However, the etch rate must be 

slowed down in order to achieve clean surface, which requires an alternative masking 

technique other than the commonly used photoresist. HCl is a better solution in this 

perspective. The etching can be well controlled, and it is very mild to normal photoresist. 

After calibrating various AlGaAs and HCl etchant compositions, Al80Ga20As and 

HCl/water (1:1) are chosen. This gives a very well controlled etching rate of ~ 

0.8-1µm/minute and a very nice, clean GaAs face after etching. The photoresist (AZ5214) 

remains intact after a typical 12~15 minute etching. 
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Anisotropy 

         Wet chemical etching, like any chemical reaction, exhibits two different modes. 

One mode is reaction-rate limited etching and, the other is mass-transfer-rate limited 

etching. In our experiments, we observed both depending on the etch window size. When 

the window dimension is smaller than 4µm, it generally shows a mass-transfer-rate limited 

etching mode. The undercut area extends uniformly in all directions. The etching mode 

transits to reaction-rate limited when the window size is bigger than 5µm and the undercut 

pattern will depend on the different etching rate for different crystalline planes. III-V 

compound semiconductors with zinc blend symmetry usually follow the etching rate 

sequence: {110}>V-{111}>{100}>III-{111} for low index planes.  

     In this work, Al80Ga20As exhibits similar behaviors, as shown in Figure 2.20. Two 

squares are etch-window prepared using reactive ion etching (RIE). The picture was taken 

with infrared CCD camera for longer penetration depth. It clearly shows that the {110} 

planes have the fastest etching rate. By aligning the etch-window with the correct direction, 

the AlGaAs underneath can be etched away in this preferred manner, as shown in Figure 

2.20, where minimum AlGaAs material is removed. In this way, more AlGaAs material is 

left to provide mechanical supports and the paths for electrical and thermal conduction. A 

very gentle stirring is usually applied while etching to help keep the etching in the 

reaction-rate limited mode.  
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Figure 2.20 crystallographic underetching of Al80Ga20As with 
HCl/water(1:1) for 7 minutes at room temperature. Very 
gentle stirring applied.  
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2.4.1.4  Process Flow 

Figure 2.21 Process flow of type I air-gap DBR. (a) Etch-window defined by 
lithography; (b) Etch-window etched by RIE; (c) Al80Ga20As etched by 
HCl/water (1:1) undercut; (d) Rinse and dry with (water->Acetone->CPD) 

       

        A process flow is developed based on selectively etching away Al80Ga20As 

sacrificial layers and releasing them with critical point drying (CPD). Multiple 

GaAs/Al80Ga20As pairs are grown via molecular beam epitaxy (MBE). The process flow 

illustrated in Figure 2.21 is carried out. Two rectangular etch-windows (20µm by 30µm) 

are defined by common lithography using photoresist AZ5214. The windows are etched 

using RIE with SiCl4 and BCl3 chemistry. Thus the sidewalls of the Al80Ga20As layers are 

exposed for undercut. The sample is then put into HCl:H2O (1:1) etchant for 10-15 minutes 

depending on the mirror size. After the mirrors are etched through, the sample is rinsed and 

loaded into the critical point dryer to finish the drying and release process. 
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      Figure 2.22 is a bridge structure fabricated by this technique. It is a one λ cavity 

sandwiched by 3 pairs of GaAs/air-gap top DBRs and 4 pairs of GaAs/air-gap bottom 

DBRs. The SEM picture shows the seven air-gaps hold very well. There is no distortion or 

stiction found in the picture. Figure 2.23 is a closer side-view of this 7-layer structure, 

which shows that the suspended GaAs layers stay very flat. The dark strips are the 

side-view of the etched air-gaps and the light areas indicate GaAs layers. Figure 2.24 is the 

top-view picture taken by infrared CCD camera. The shadow region in the center is the 

under cut area, which shows that the air-gaps have been etched through, and they are flat, 

indicated by the uniform grey scale. The crystallographic etching is also evident from the 

picture. Figure 2.25 shows a similar structure with some of the layers distorted or adhered 

together. The reason for this failure is that the CO2 and soak was not done correctly. Some 

Acetone, or even water, is trapped between the GaAs layers. When they are vaporized, the 

surface tension pulls them together, as discussed before. 

   In summary, by using the right design of structure and geometry, and optimizing the 

etching and CPD techniques, the development of a high yield and robust processing 

technique for air-gap DBRs is accomplished.  
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Figure 2.22 7 pairs of GaAs/air DBR structure 
 
 

Figure 2.23 closer side-view of 7-pair DBR structure 
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Figure 2.24 Top view of a 7-layer DBR shows uniform undercut 
shadow and crystallographic etching   

   

Figure 2.25 side-view of a 7-layer DBR after improper rinse and drying  
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2.4.2 Type II Hybrid Air-gap DBR development 

  
    

Figure 2.26 schematics of type II hybrid air-gap DBR  
(a) side view, (b) top view 

       

      As proposed in chapter 2.3, a hybrid air-gap DBR combining a metal reflector, 

air-gap and dielectric mirror can present a very high reflectivity and wide bandwidth. It is 

also a robust structure and process, because there is only one air-gap included in the 
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structure. The drawback is that this structure is only good for one side of the cavity because 

of the opacity of the metal reflector.  

       The approach taken in this project is shown in Figure 2.26. The free-standing 

structure is held by a silver cap and 5 silver posts. The silver post is 5µm in diameter and 

the silver cap is 2µm in thickness. The silver posts are standing on the GaAs layer under the 

air-gap and the silver cap is adhered to both the silver posts and the GaAs layer on top of 

the air-gap. Such a structure is mechanically very stable with straightforward processing. 

Also the silver posts and cap can improve the thermal dissipation of the device, which is 

crucial for air-gap VCSELs.  

2.4.2.1 Process Flow 

     The process flow for type II hybrid air-gap DBRs is illustrated in Figure 2.27. After 

the wafer is grown with MBE, a MgF2 film is deposited with a Leybold E-beam deposition 

system after lithography patterning of the photoresist. A MgF2 disk with a 15µm diameter 

is defined by the photoresist lift-off technique. Five holes with 5µm diameter are defined 

by photolithography and RIE etch. The depth of these holes is enough to etch through 

Al80Ga20As sacrificial layer into the GaAs layer underneath. This provides a solid ground 

for silver supporting posts to stand on. The photoresist is not striped off after RIE because it 

is necessary for lift-off in the next step. The sample is then loaded into a CHA E-beam 

deposition system. Silver film is deposited to fill these holes. Lift-off is carried out to 
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remove all of the silver on the surface, and only the silver inside the holes remains. This 

leaves a flat surface for the silver cap layer. The sample is loaded into the CHA E-beam 

deposition system again, and a 2µm silver film is coated on top of the wafer. This is 

followed by photolithography and wet chemical etching to define the silver disk. 

Commercially available TRANSCENE silver thin film etchant is used in this step. An 

isotropic wet etching (H2SO4:H2O2:H2O = 1:8:80) is performed afterwards to etch through 

the top GaAs layer and the Al80Ga20As sacrificial layer. Now the side-wall of the sacrificial 

layer is exposed and a wet selective etching is done to undercut and eventually remove the 

entire sacrificial layer. This completes the process.  

      Figure 2.28 shows the process results of a type II DBR structure. As the SEM 

pictures indicate, the sacrificial layer has been removed. The silver disk and GaAs layer 

attached to it from underneath are supported by five silver posts. No collapse is found 

across the wafer, which indicates a good yield. Of course, SEM is not an effective 

technique for determining the status at the center of the mirror, thus the emission spectra of 

electroluminescence or photoluminescence is used, as discussed in next section. 
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Figure 2.27 Type II hybrid air-gap DBR process flow (a) MgF2 mirror defined by lift-off 
after E-beam deposition. (b) Five holes etched by RIE. (c) Five-holes are filled with 
silver by E-beam deposition. (d) Silver cap defined by lift-off after E-beam deposition. (e) 
Mesa etched by wet etching. (f) Sacrificial layer removed by wet etching undercut 
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Figure 2.28 (a) Overview of a type II hybrid DBR structure 
(b) A closer side-view of the suspended silver disk supported 
by five silver posts  

   .   
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2.4.3 Air-gap DBR Characterization 

 
Figure 2.29  Micro-photoluminescence from a one-λ cavity with 3-pair 
GaAs/air as top DBRs and 25 pairs of GaAs/AlAs as bottom DBR. InAs 
quantum dots emitting at 1.3µm are used as the active region.  

 

       Before the developed air-gap is integrated into the VCSEL, some preliminary 

characterizations are performed to examine the performance of these novel mirrors. A 

one-λ microcavity sample is grown with MBE. The top DBR is formed by 3 pairs of 

GaAs/air mirror and the bottom mirror consisted of 25 pairs of GaAs/AlAs semiconductor 

mirrors. One sheet of InAs quantum dots is used as an active region embedded in the center 

of the cavity. Micro-photoluminescence is done by focusing the pumping laser source 

using an objective onto the center of the air-gap DBR and collecting the excited 
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photoluminescence signal. The emission spectrum shown in Figure 2.29 has a FWHM of 

4Ǻ, which indicates that a microcavity with a quality factor Q~3000 is formed. Although 

the Q factor is much lower than the theoretical value (>20000), it clearly shows that the 

air-gaps are successfully formed and start working, although the quality still needs 

improvement. 

       An electrically pumped microcavity was also built to preliminarily characterize the 

quality of air-gap DBRs. To simplify the processing, a single pair of GaAs/air-gap mirror is 

incorporated. The schematic of this structure is shown in Figure 2.30. It is a one-λ cavity 

with InAs quantum dots embedded in the center as an active region. The quantum dots are 

emitting at 1.3µm. The bottom mirror is formed by 31 pairs of N-doped GaAs/AlAs 

semiconductor DBRs. Lateral current and optical confinement is provided by AlOx 

aperture converted from AlGaAs by thermal oxidation. This confinement is very important 

for efficient VCSEL operation. Figure 2.31 shows the electroluminescence spectrum when 

current is injected into the device. The measured quality factor (~250) is well matched with 

the transmission matrix modeling. This match shows the air-gap is working properly as 

designed. However, the yield of the process used in this scheme is low, which we attribute 

to the strain and volume shrinkage induced by wet oxidation of the AlGaAs layer40. This 

raises a serious processing integration problem for air-gap DBR based VCSEL devices. 

This problem and its solution will be discussed in more detail in next chapter. 
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Figure 2.30  Electrically pumped microcavity formed with one air-gap DBR on 
the top and 31 pair of GaAs/AlAs at the bottom. Lateral optical and current 
confinement is realized by native oxide aperture converted from AlGaAs by wet 
thermal oxidation.    
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Figure 2.31 Electroluminescence of one-pair air-gap DBR structure, the 
FWHM (Q factor) matched that of the simulated spectrum 

 

2.5 Summary 

      Distributed Bragg reflectors are an essential component to provide the high 

reflectivity necessary for VCSEL lasing operation. However, the absence of a suitable 

DBR is usually a major hurdle for VCSEL development.  

      The air-gap DBR is a potential solution to this problem. The large refractive index 

contrast and good interface quality enable high reflectivity with a very small number of 

pairs. The analysis shows its advantages also include a wide stop-band and shorter 

penetration depth. The air-gap DBR can be made from any pair of materials, given that a 

highly selective etching is available between them. This flexibility eases many of the 
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material compatibility issues often emerging during VCSEL development. 

      Two types of air-gap DBR are proposed. One contains multiple 

semiconductor/air-gap stacks, and the other is a hybrid structure combining air-gap, 

dielectric and metal reflectors.  

       Processes for both types of DBRs were developed. The fundamental issue in air-gap 

mirror fabrication is the stiction problem, which is induced by the surface tension of 

diminutive liquid when the devices are exposed for rinse and drying. Critical point drying 

and silver supporting posts are used in type I and II structures, respectively, to counteract 

this problem. Both types are successfully demonstrated. SEM, electroluminescence and 

photoluminescence are used to confirm that these mirrors are functioning. The exhibited 

characteristics are matched well with the transmission matrix simulation.    
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Chapter 3  

Air-Gap VCSEL: Process Integration and 
Device Demonstration 

3.1 All-epitexial Current and Optical Confinement Technique 

3.1.1 Introduction 

Efficiently pumping a small volume gain region in a low loss (high Q) semiconductor 

cavity is crucial for VCSEL operation. The optical loss includes vertical and lateral 

components. The vertical loss is mostly due to the non-unity mirror reflectivity, which can 

be controlled and improved by high reflectivity and high contrast DBRs. The lateral loss is 

ultimately due to diffraction and comparatively small to the vertical loss, until the lateral 

mode size reaches a certain minimum value determined by vertical loss rate41. The Q starts 

decreasing significantly once the mode size is smaller than this minimum for a planar 

cavity. By introducing a thin dielectric aperture into a high Q cavity, this limitation is 

greatly reduced42. This discovery is a milestone toward efficient high-performance VCSEL 

development and was adopted by the industry as a standard technology. The current 

standard method is performed by wet thermal oxidation to convert part of the Al(Ga)As 

layer into AlOx. However, the volume of the AlOx tends to be reduced compared to that of 
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the original semiconductor layer, due to the small volume of O (~2.85Ǻ3) compared to Al 

(~3.57 Ǻ3). This translates to a theoretical volume shrinkage of 20% and is measured 

experimentally at 13%. The huge thermal strain and uneven surface resulting from this 

shrinkage are the main culprits responsible for the low yield of air-gap DBR. The Changes 

in etch behavior of Al80Ga20As and GaAs after this wet thermal cycle are another factor, 

which deserves more careful study.  

      A new integration process flow was developed based on a novel all-epitaxial 

confinement technique. This technique provides a nice base for building air-gap DBRs, in 

addition to many other advantages. This chapter starts with an explanation of lateral 

diffraction loss in a planar cavity and a model of effective lateral loss suppression. The 

all-epitaxial confinement technology will be discussed, followed by a description of the 

process integration of air-gap DBRs. Working air-gap DBR based VCSELs are 

demonstrated. The experimental data is presented and analyzed at the end of this chapter.           

3.1.2 Lateral Diffraction Loss 

     A simplified model of a point source radiating from inside of a planar Fabry-Perot 

cavity is illustrated in Figure 3.143. The cavity is formed by two reflectors with 

reflectivity and transmittance of ρ1, τ1, ρ2, and τ2, respectively. The E-field starts as Ein and 

the transmitted field amplitude is built up each time the traveling wave hits the mirror. As 

shown in Figure 3.1, both the radiance with θ and (180- θ) contribute to the field in same 
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direction. The output field Eout can be calculated as the sum of all of the fields: 
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       Equation 3.1 

whereΛ is the optical path difference after each round trip, which is determine by the 

cavity length L and radiation angle θ as in Equation 3.2: 

Λ =2Lcosθ                            Equation 3.2 

φ  and ϕ  are the arbitrary starting phases for Eout(θ) and Eout(180- θ). They are related to 

each other by Equation 3.3: 

ϕ =φ +iKΛ /2                       Equation 3.3 

   
Figure 3.1  Model for diffraction loss of a point source 
embedded in a planar Fabry-Perot cavity.  
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   The intensity ratio of transmitted field to the original field can be found as: 
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R and R2 are equal to ρ1
2 and ρ2

2, respectively. The angular dependence of this intensity 

ratio is evident and leads to a decrease of transmitted light when θ increases. This implies 

the existence of an exit cone with a certain solid angle. When the divergence of this 

radiant source is bigger than this exit cone, part of the light will bounce back and forth 

between the mirrors and eventually be lost in the lateral direction. With small angle 

approximation, the FWHW angle θ0 can be expressed as: 
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≈                          Equation 3.5 

With the Gaussian beam approximation, this divergence angle can be translated to an 

equivalent mode size as: 

)1(0 R
LW
−

=
π

λ
                         Equation 3.6 

This is the minimum mode size set by the planar Fabry-Perot cavity. When the mode size 

is below this number, diffraction loss arises and part of the emission will be cut off. To 

achieve efficient lasing in small mode volume, effective optical confinement must be 

applied to the microcavity to suppress the lateral diffraction loss.   
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3.1.3 Suppression of Lateral Diffraction Loss 

   A strategically placed intracavity dielectric aperture, either an etched void44 or a 

native oxide,42 can effectively confine the optical mode and suppress lateral diffraction 

loss. A simple model can be used to explain this strong confinement45. This model also 

provides a theoretical base for the development for all-epitexial confinement technique, 

which will be discussed in the next section and is critical for the success of the process 

integration in this work.  

Figure 3.2  Schematic of a Fabry-Perot microcavity 
with dielectric aperture and coordinate system used in 
the model.     

 

The microcavity with a dielectric aperture can be simplified as illustrated in Figure 

3.2. Considering an ideal Fabry-Perot microcavity with unity mirror reflectivity, we can 

define two regions. Region r < W, confined by the aperture, has a dielectric constant ε = 

εAε0, where ε0 is the free space dielectric constant and has a cylindrical symmetry. Region 
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r ≥ W is the cladding region, which contains a dielectric layer, with dielectric constant εr < 

εA, and extends laterally outward to infinity in x-y plane. To further simplify this model, 

the cladding region is treated as having an average dielectric constant ε = εWGε0, with 

εWG< εA. The physics picture of this model can be perceived as an oscillating eigenmode 

acting like a radiation source confined in three dimensions, whose only chance for lateral 

escape is to excite or couple into the parasitic waveguide modes in the cladding region. 

We assume perfect vertical mirrors here; therefore, the mode is confined without loss in 

the vertical direction. This chance to travel laterally is determined by the mode density 

excited in the cladding region and a spatial overlap integral for each individual parasitic 

mode. The dependence of the mode density on frequency can be derived in a classical 

way. The total number of optical modes in any cavity can always be counted as: 

∑ ∑ ∑ ∑
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S denotes two different polarizations. mx, my and mz are determined by the boundary 

condition of resonance:  

πiii mLk 22 =   ( )zyxi ,,=                         Equation 3.8 

Lx, Ly and Lz are the dimensions of an optical cavity. K = ωn/c = 222
zyx kkk ++ , 

where ω is the resonant frequency and c is the speed of light. Since the cladding region is 

assumed to extend laterally to infinity in the x-y plane, the summation over mx and my 

can by replaced by an integral as: 
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Therefore, the mode density in the cladding region has a frequency dependence as a 

slanted staircase shown by the solid curve in Figure 3.3. Each step occurs at the 

frequency of ( )zr

z

L
m

c ε
πω

= . On the other hand, the confined aperture region has 

discrete allowed frequency due to the confined eigenmodes, which is shown as a sharp 

resonance peak in Figure 3.3.  

Figure 3.3  Optical density vs. frequency in the 2-D cladding 
region. Dashed curve are 3-D case with no confinement for 
comparison. 
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In order to excite the parasitic modes in the cladding region, the resonant frequency of 

the eigenmode ω0 in the confined aperture region must be the same as in the cladding 

waveguide region: 
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The factor of 4.810 comes from the cylindrical symmetry and assumption of a Bessel 

function solution for the field in the aperture46. The optical mode size is characterized by 

w0. From Equation 3.10, we can derive: 
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Since the cladding waveguide region has a smaller average dielectric constant, it leads to 

kz,A < kz,WG according to Equation 3.11. Thus there exists a range of w0 resulting in a 

minus number under the square root in Equation 3.12. In this circumstance, kρ,WG is an 

imaginary number which indicates an evanescent field in the cladding waveguide region. 

In other word, this eigenmode is confined inside the aperture. This minimum mode size is 

defined by Equation 3.12: 
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     This confinement mechanism results from the important inequality kz,A<kz,WG., 
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which indicates a vertical resonance blue shift of the cladding region from the aperture 

region. Two critical points can be derived from this fact. First, this inequity originates 

from the resonant condition of Fabry-Perot cavity. Therefore the resulting confinement is 

not due to the aperture alone, but due to both the aperture and the Fabry-Perot cavity. 

Second, the key to achieve this confinement is the blue shift of the vertical resonance set 

by the cladding layer. It does not matter by what means this blue shift is realized. 

According to 3.11, it is evident that in addition to a lower refractive index material in the 

cladding layer, shortening the effective cavity length or forcing the cladding layer to 

resonate at a higher order mode can also attain this blue shift. The latter two methods 

provide the theoretical base for the all-epitaxial confinement, which is used in this work 

and will be discussed in more detail in the next section.  

Figure 3.4 is a typical reflectivity spectrum of a VCSEL with an oxide aperture. As 

expected, the cladding region (b) shows a blue shift in the vertical resonant wavelength 

compared to that of the aperture region (a). According to Equation 3.13, the greater the 

blue shift, the smaller the optical mode can be achieved without suffering serious lateral 

optical loss. The optical confinement mechanism is also confirmed by Hadley’s effective 

index model47: 
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n

                  Equation 3.14 

where neff and λ0 are the effective index and vertical resonant wavelength, respectively. 
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This reveals that the blue shift is equivalent to a low effective index, which results in the 

optical waveguide effect. Again, there are many approaches for achieving this blue shift, 

which leaves more flexibility in the device design.  

    In the next section, an alternative all-epitaxial technique will be discussed as an 

alternative to the native oxide aperture for lateral optical and current confinement. 

 

      
Figure 3.4 Reflectivity spectrum of a typical VCSEL with native oxide 
aperture calculated using transmission matrix.  
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3.1.4 All-epitexial confinement Technology 

        The motivation for developing an alternative to the native oxide aperture technique 

comes from several drawbacks. Firstly, the thermal strain and volume shrinkage induced 

by the wet thermal oxidation may cause reliability problem. This is exactly the reason for 

the low yield of air-gap DBRs in this research. Secondly, the oxidation rate is very sensitive 

to the composition and local ambient conditions. Therefore, uniformity across a wafer or 

from one wafer to another is hard to achieve. This translates to yield losses in volume 

production. Also, the necessity to expose the sidewall of AlGaAs layer for oxidation 

requires a non-planar process, which makes the process integration difficult, especially for 

future optoelectronic integrated circuits. Furthermore, all the problems mentioned above 

get worse when the devices scale down in size, which limits the application of this 

technology in smaller micro-device.   

       In this work, an all-epitexial confinement technology is developed in which the 

thermal strain is under control. The size of the aperture is lithographically defined with 

excellent uniformity across the wafer and among different wafers. The minimum size is 

only limited by the lithography technique and equipment used in processing. Also, the 

finished devices have a planar surface, which eases the difficulties in further processing 

and integration.   

       The mechanism of this all-epitaxial confinement technology stems from the 
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discussion in the last section regarding the blue-shift principle. According to Equation 3.11, 

zWG

z
WGz L

mk
ε
π

=, . There are three ways to achieve this blue shift or larger WGzk , : (1) 

decreasing εWG; (2) decreasing Lz; (3) increasing mz while lengthening Lz, accordingly. The 

oxide aperture technique falls into the first category. The second and third approaches can 

be realized using the MBE regrowth technique, as demonstrated in this work.  

    Figure 3.5 illustrates the cross section of a VCSEL with a regrowth-defined aperture 

design based on method (2) above. The decreased Lz in the cladding region is realized by 

interrupting the MBE growth in a strategically selected layer. Then the aperture size is 

defined by lithography after it is unloaded from MBE growth chamber. The step selectively 

etches away one layer in the cladding region. The device is carefully cleaned and reloaded 

back into the MBE chamber. Figure 3.6 shows the calculated reflectivity spectrum of this 

design. Photoluminescence spectrum is also shown in the plot. A blue-shift in the vertical 

resonant wavelength is achieved as designed. We can expect lateral optical confinement 

from such a structure, just as in oxide aperture. 
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Figure 3.5  Schematic of a regrowth-defined optical aperture. The cavity 
length is longer in the aperture region than cladding region. 

Figure 3.6 calculated reflectivity and measure photoluminescence spectrum. 
(a) is aperture region and (b) is cladding layer with a layer etched away. 
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      Based on method (3), one VCSEL can be designed with even longer Lz in the 

cladding region, given that a higher order mz is satisfied for the vertical resonant condition. 

Figure 3.7 illustrates such a design. In this design, a recessed region is defined in the center,   

Figure 3.7 Structure designed based on method (3), recess version, and its 
reflectivity spectrum. An equivalent design based on method (2), pillar version, 
and its reflectivity curve is also shown.   
   

instead of a pillar, as in method (2) designed. The reflectivity spectrum with a 36nm pillar 

and a 100nm recess are simulated. They achieved the same blue shift in the cladding region, 

thus they are equivalent in terms of lateral optical confinement. This can be understood as 

below: 
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Applying the parameters of the design into Equation 3.15, (λ = 940nm, naverage = 3.45), we 
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get dLz/dmz=136nm. This simple calculation shows that a 136nm longer cavity length is 

equivalent to raising the resonance to one higher order mz, while the vertical resonant 

wavelength remains the same.  

        The advantage of this method is that it leaves room in the cladding region where 

for inserting a current blocking layer. Therefore, both the lateral current and optical 

confinement can be realized with the same structure. Figure 3.8 illustrates a design 

combining the current and optical confinement. A reversed p-n junction and a low- 

temperature grown AlGaAs (LTG-AlGaAs) are inserted into the cladding region. The high 

resistivity of AlGaAs has been researched for a long time48. The turn-on voltage with and 

without the current blocking layers is compared in Figure 3.9 The much higher turn-on 

voltage in curve (b) indicates that the current-blocking is working well.  

This recess design was successfully integrated with air-gap DBRs and eventually led to 

the demonstration of the first GaAs/air-gap DBR VCSEL. 
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Figure 3.8 A recess version design of confinement. Reversed p-n 
junction and low temperature grown AlGaAs (LTG-AlGaAs) layer 
is inserted for current blocking in the cladding region.  
 
  

Figure 3.9 I-V curves of device regions (a) with and (b) without 
current-blocking layer. (b) shows much higher turn-on voltage, 
indicating the effectiveness of the current blocking.   
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3.2 Process Flow and Integration 

      Air-gap DBRs and all-epitaxial confinement are designed, fabricated and tested 

separately as discussed previously. By combining these two techniques, air-gap VCSELs 

were realized and lasing operation was successfully demonstrated. 

3.2.1 Device Structure 

 
Figure 3.10 VCSEL structure designed to integrate air-gap DBR. 
All-epitaxial recess confining aperture is incorporated.  

 



 

74

    The VCSEL structure is designed to integrate air-gap DBR and all-epitaxial recess 

confining aperture. An N+ GaAs substrate is used to simplify the current injection scheme. 

The Bottom DBR employs 30.5 pairs of GaAs/AlAs. Three 6-nm-thick In0.2Ga0.8As 

quantum wells are embedded as active region in a full wavelength cavity spacer. They are 

separated from each other with a 10nm GaAs barrier layer. Recess aperture structure is 

inserted after a quarter wavelength of AlGaAs is grown. Two or three pairs of air-gap 

DBRs are used as top mirrors. Metal ring contacts are patterned on the wafer surface.         

3.2.2 Process Flow 

Figure 3.11 illustrates the process flow for an air-gap DBR based VCSEL. The 

whole process can be divided into four steps: (1) first part growth; (2) confinement 

aperture definition; (3) second part regrowth; (4) air-gap micromachining    

First part growth 

The process starts with MBE growth on an N doped GaAs substrate. After the growth of 

31 pairs of n-type GaAs/AlAs bottom DBRs, one full wavelength cavity spacer with a 

quantum well active region embedded inside, and a quarter wavelength p-type AlGaAs 

layer, a 20 nm p-type GaAs layer is grown and the substrate temperature is decreased to 

280°C. A 20 nm thick undoped AlGaAs layer is grown at this low temperature and 

substrate temperature is raised back to 590°C. This temperature is held for 15 minutes to 

anneal the LTG-AlGaAs. This is critical for achieving highly resistive LTG-AlGaAs. The 
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80nm n-type (2e18 cm-3) GaAs layer is then grown for the formation of a reversed PN 

junction. A low temperature InAs protective layer is grown before the first part growth is 

completed.  

Aperture definition 

     After finishing the first part growth, the wafer is pulled out of MBE chamber. A 

10µm hole pattern is formed by standard photolithography. The InAs protective layer and 

80nm n-type GaAs layer are selectively etched away using (citric acid + H2O2). The 

photoresist is then removed by oxygen plasma and the LTA-AlGaAs is removed with 

diluted HF (1:10). 

Second part regrowth 

   Both oxygen plasma and diluted HF are effective and necessary methods for cleaning 

the wafer before they are reloaded back into the MBE chamber. The InAs protection 

layer is then thermally etched away by controlling the temperature and Arsenic flux rate. 

The optimum temperature scheme and Arsenic flux rate are found by careful calibration49. 

After the growth of a p-type GaAs layer to finish the formation of the reversed PN 

junction, two or three pairs of GaAs/Al0.8Ga0.2As layers are grown. This completes the 

MBE growth for the entire structure. 

 

 



 

76

Air-gap DBR micromachining  

      After the wafer is unloaded from the MBE chamber, a ring P-metal (200Ǻ 

Cr/800Ǻ Au) is deposited with the probing pad on one end. The mesa is also defined by 

unselective wet etch (H2SO4+H2O2+H2O) for electrical isolation. The type I air-gap 

discussed in Chapter 2.4 is used in this device. A two-step etch is performed. The first 

RIE etch defines two rectangular etch-windows (20µmX30µm) with a 15µm separation 

from each other. The sidewalls of the AlGaAs sacrificial layers are also exposed. 

HCl:H2O selective undercutting is carried out to remove the sacrificial layer with 

0.8µm/minute etch rate. The wafer is then rinsed and dried with critical point drying, as 

discussed in chapter 2.4. This concludes the processing of the air-gap VCSEL. 

     Figure 3.12 shows a SEM picture of air-gap VCSEL after all the processing 

completed. A color picture of the top view, Figure 3.13, is also shown in which the 

crystallographic undercut shadow clearly reveals that the air-gaps are formed, and the 

uniform color of the shadow indicates the flatness of the air-gaps. The small ring in the 

center shows the location of the confinement aperture formed by all-epitaxial regrowth. 

The flatness of the air-gaps is also confirmed by a side view of the devices taken by SEM 

in Figure 3.14. These devices demonstrated low threshold CW lasing at room temperature. 

Their performance will be analyzed and discussed in next section.    
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Figure 3.11  Process flow of air-gap VCSEL. (a) First part growth with 
LTG-InAs protection layer. (b) Recess aperture defined by selective wet 
etching. (c) After careful cleaning, wafer is loaded into MBE again and 
InAs is thermally etched away. (d) Top 2 or 3 GaAs/AlAs pairs are 
re-grown. (e) p-metal is formed. Mesa is etched. Air-gap etch-windows 
defined by RIE. (f) AlGaAs sacrificial layers are selectively etched away 
by HCl:H2O(1:1). Air-gap DBR is rinsed and dried using critical point 
drying.  
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Figure 3.12  Air-gap VCSEL after processing completed 

 
 

Figure 3.13  Top view of a air-gap VCSEL. The 
crystallographic shadow shows the formation of air-gaps 
and the circle in the center reveals the position of regrowth 
aperture.  
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Figure 3.14  Side view of an air-gap VCSEL top DBRs shows the 
flatness   
 
       

3.3 Device Demonstration 

      Two types of air-gap VCSELs are fabricated. One has two pairs of GaAs/air-gap 

top DBR and the other has three. Both are tested at room temperature with continuous 

wave electrical pumping. As shown in Figure 3.15, the device with 2 pairs of 

GaAs/air-gap DBRs starts lasing at a threshold of 1mA, corresponding to a threshold 

density of 1.27kA/cm2. Lasing spectrum is also presented, which indicates a lasing 

wavelength of 9655Ǻ. The output power saturates at 1.4mW with a 9mA injection 

current. We attribute this saturation to the failure of the current blocking. According to 

Figure 3.9, the applied voltage increases to 6V when a 2mA current is injected into the 

device, and the cladding region with the LTG-AlGaAs layer plus reversed PN junction, 

starts turning on at this voltage. This means that we are pumping the laser together with 

the cladding region, which greatly reduces the efficiency and eventually leads to the 
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output saturation. A 22% differential quantum efficiency is derived from the L-I curve.  

       Devices with 3 pairs of air-gap DBRs are also tested at room temperature and 

demonstrated CW lasing. These devices exhibit a threshold current of 600µA, which 

corresponds to a current density of 764A/cm2. The differential quantum efficiency is 

calculated as 5% from the L-I curve shown in Figure 3.16. Mirror loss and the loss 

mechanism will be analyzed in next section. 

 

Figure 3.15 L-I curve and lasing spectrum for VCSEL with 2 air-gap DBR 
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Figure 3.16 L-I curve and lasing spectrum of VCSEL with 3 air-gap top DBR 
 
 
 

3.4 Mirror Loss Analysis 

      The theoretical reflectivity of a 2-pair and 3-pair air-gap DBR are 0.9927 and 

0.9994, respectively, based on transmission matrix calculations. The differential 

efficiency drops from 22% to 5% when the air-gap DBR increases from 2 pairs to 3 

pairs, which is associated with optical losses of the air-gap structures. Considering the 

top mirror output only, we can write the classic expression of differential efficiency as: 

bottomtopbottomtopi

top
id TT

T
++++

=
ααα

ηη                Equation 3.16 
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Since we are trying to extract the equivalent absorption of a lossy mirror, it is 

advantageous to write the mirror related photon loss explicitly as those photons 

escaping from the cavity as output (Ttop, Tbottom) and those lost inside the DBR ( αtop, 

αbottom). The internal DBR loss could be anything causing the photon lost from the 

lasing mode, such as absorption, scattering or diffraction. We expect αi << αtop and 

αbottom, although this will overestimate the air-gap mirror loss. Equation 3.16 can then 

be simplified for 2 and 3 pair DBR devices as: 
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Then the ratio of these two differential efficiencies can be expressed as: 
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                Equation 3.19 

 

We assume that ηi, αbottom, and Tbottom do not change when the DBR changes from 2 

pairs to 3 pairs. We also assume that the mirror internal loss is uniformly distributed, 

which makes it possible to compare with research data in the literatures. Figure 3.17 is a 

plot of the ηd,2/ηd,3 ratio versus distributed air-gap mirror loss. Curves with different 

assumptions for bottom DBR loss (0, 5cm-1, 10cm-1 and 15cm-1) are plotted. The 

distributed loss of the air-gap is then extracted as 160cm-1, 106cm-1, 55cm-1 and 0cm-1, 

respectively. It is reasonable to take the value of 5cm-1 for the bottom DBR, considering 
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the doping level 5x1017cm-3 and the value found in the literatures, which lead to a 

distributed loss of 106cm-1 for the air-gap DBR. This number is higher than expected. 

Part of the reason is that the internal optical loss is ignored in the calculation. Those 

losses are in fact attributed to air-gap DBR loss. Thus, if they are comparable to the 

internal DBR losses, it will lead to a substantial overestimation in mirror loss. In fact, 

based on the device design and processing for these devices, the loss is most likely 

overestimated. 

 
Figure 3.17 ηd,2-pair/ηd,3-pair versus air-gap mirror loss. Four curves are 
plotted based on different bottom semiconductor mirror loss assumption. 
The horizontal line shows the experiment value of the differential 
efficiency ratio 
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  First, as illustrated in Figure 3.10, this device design adopts a recess aperture 

for lateral optical and electrical confinement. The optimum design is a pillar structure, 

in which a small step can ensure good index guiding. Although the simulation shows 

the 100nm recess design is equivalent to a 36nm step structure, the regrowth quality 

may greatly change the optical characteristics of the microcavity. The SEM pictures 

reveal a dramatic difference in step height along the boundary, which may lead to 

strong anti-guiding effects, instead of guiding effects. This can increase the internal 

loss significantly, which is attributed to mirror loss in our calculation.  

Second, the 100nm height difference between the recess center and the higher 

cladding region is quite disadvantageous. The first reason for such a high step is to 

have enough thickness to accommodate the depletion region in the reversed PN 

junction at the given doping level and at a reasonable operation voltage. The second 

reason is to achieve the desired blue shift in the vertical resonant wavelength. 

However, such a high step makes it difficult to control the regrowth quality, especially 

at the edge. We found crystallographic roughness existing at the edge, which will 

cause high scattering loss when lasing mode passes the edge region. Also, the high 

step itself can cause scattering loss even if it is grown perfectly. All these scattering 

loss are also attributed to the air-gap mirror loss. 

Third, although the wet selective etching and CPD drying are optimized to 

micromachine the air-gap DBR structure, some imperfections may still exist. Direct 

evidence needs to be collected about the mirror quality in addition to the SEM and 
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infrared CCD pictures. Laser or white light interferometry can be used to measure the 

curvature and roughness of the air-gap. These parameters are important information 

for analyzing the mirror quality and can help correct the estimation of optical loss 

caused by the mirror.  

3.5 Summary 

  A robust and high yield process flow is developed to integrate air-gap DBRs into 

VCSELs. Type I air-gap structures which contain multiple GaAs/air-gap stacks, as 

discussed in Chapter 2, are employed in these devices. 

  A proper lateral electrical and optical confinement is critical for achieving 

efficient VCSEL operation. The oxide aperture technology was developed to serve 

this function. The analysis of the mechanism of oxide aperture led to a more insightful 

understanding of lateral optical mode confinement. More flexible methods were 

discovered to provide the same confinement, by realizing an effective blue shift of the 

vertical resonant wavelength in the cladding region. This blue shift can be obtained by 

a center pillar structure or a recessed region also according to the theoretical 

simulation. An all-epitaxial confinement technique is developed based on this theory. 

  This novel all-epitaxial confinement technique eases process integration due to 

the well-controlled strain and planar geometry. VCSELs with 2 and 3 pairs of air-gap 

DBRs were built with this all-epitaxial confinement technique. Room temperature and 

CW lasing were achieved for both devices. A low threshold of 600µA was 
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demonstrated with the 3-pair air-gap DBR devices. Differential efficiency decreases 

from 22% to 5% when the mirrors change from two pairs to three pairs.  

  A 106cm-1 distributed loss is extracted from the experimental data. The higher 

than expected loss is attributed to the diffraction loss resulting from possible 

anti-guiding effects at the aperture boundary and the scattering loss induced by the 

rough edge and large step height surrounding the recess aperture. The optical loss can 

be greatly reduced by a pillar aperture design. In this way, the index-guiding is 

ensured and a smaller height of step can be used.  

  The device efficiency and maximum output can be improved significantly by 

using a more robust current confinement technique. A careful doping profile design 

and band-gap engineering can also help solve this problem by reducing the operating 

voltage. 

  The Author believes that the performance of the air-gap VCSELs can be greatly 

improved by doing above modifications.  
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Chapter 4  

Summary 

Distributed Bragg reflectors (DBR) are an essential part of VCSEL devices. Low 

loss and high reflectivity DBRs are conventionally obtained by growing alternating 

semiconductor layers on a substrate. Crystal lattice match is required to avoid a high 

misfit dislocation density. This limits the material choice, especially when combining 

other requirements, such as large refractive index. The absence of a suitable DBR has 

been a major hurdle for VCSEL development. Air-gaps provide the largest achievable 

refractive index contrast with semiconductor materials and can be made from any pair 

of materials, as long as a highly selective etching is available. This material flexibility 

and its merits as a high quality mirror make air-gap DBRs a key technology for 

VCSEL development. Other applications for air-gap structures include MOEM 

systems, microcavity physics and device research.  

This dissertation focuses on the development of air-gap VCSELs, from concept 

to demonstration of working devices on the GaAs material system.  

Air-gap DBRs are simulated by solving the transmission matrix formulas of 

Maxwell’s equations. Reflectivity higher than 0.999 and an ultra-wide stop-band can 

be obtained at 1.3µm with just 3 pairs. Comparisons are made with other current DBR 

technology and show evident advantage for air-gap DBR.  
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 Two types of air-gap DBR structures are proposed. One contains multiple 

GaAs/air-gap stacks, and the other is a hybrid mirror combining one air-gap structure 

with dielectric and metal reflectors. Both mirrors are analyzed using the transmission 

matrix method and show very high reflectivity with a small total thickness.  

The principle obstacle of making air-gap structure is stiction problem, which is 

caused by the surface tension of a diminutive liquid between suspended films when 

the devices is exposed to rinsing and drying. Different techniques were approached to 

deal with stiction based on the understanding of the origin and physics of this problem. 

In the first structure with multiple semiconductor/air-gap stacks, a critical point drying 

technique was employed to counteract the problem. For the second structure 

consisting of hybrid mirrors, a combination of five silver posts and one silver top disk 

were used to provide the necessary mechanical support to withstand the capillary 

force induced by liquid surface tension. Both structures with good quality were 

demonstrated. 

Process integration was hindered by the wet thermal oxidation during 

development. The thermal strain and volume shrinkage induced by wet thermal 

oxidation make it difficult to build high quality air-gap mirrors on top of the structure. 

This thermal process also makes the sacrificial layer etching less controllable and 

predictable. All of these result in a challenging process integration and poor overall 

yield. Unfortunately, the lateral electrical and optical confinement offered by the 

oxide aperture is an indispensable mechanism for efficient VCSEL lasing operation. 
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This mechanism was analyzed using a simple 3-D optical mode confinement model, 

which led to a more general understanding that blue shifting of the vertical resonance 

is the cause to the confinement. This theory is also confirmed by experiments and an 

effective index theory developed by other researchers. Based on these theoretical 

analyses, an all-epitaxial technique was developed. Basically, the blue-shift of the 

cladding region can be obtained, not only by a change in average index, but also by a 

change in effective cavity length. Both recess and pillar aperture designs were 

analyzed using transmission matrix methods, and their effectiveness was confirmed. 

In this research, the recess aperture is adopted because it leaves space for the insertion 

of a current blocking structure. A reversed PN junction and a highly resistive 

LTG-AlGaAs layer are used to confine the injected current inside the center aperture. 

This aperture is formed by selective wet etching after interrupting the MBE growth. 

Regrowth is performed to finish the device epitaxy. By replacing the oxide aperture 

with the regrowth aperture, process integration is simplified. A robust and high yield 

process flow is eventually developed for air-gap VCSELs.  

CW and room temperature lasing is demonstrated for devices with two and three 

pair top GaAs/air-gap DBRs. When the DBR changes from 2 to 3 pairs, the threshold 

decreases from 1mA to 600µA, while the differential efficiency drops from 22% to 

5%. A 1.4mW maximum power output is achieved, which is limited by the failure of 

current blocking. A distributed loss of ~100cm-1 is extracted from the experimental 

data. The cause of this loss is believed to originate in scattering loss from the high 
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aperture step and rough regrowth edge. Possible strong anti-guiding effects at the 

boundary also contribute to the total optical loss. Therefore, there is much room for 

device improvement by eliminating or reducing these optical losses. A small step 

pillar aperture is more advantageous for optical loss control. With the combination of 

a better optical aperture and a more robust current blocking structure, device 

performance can be greatly improved in many aspects. 

In conclusion, this research demonstrates that air-gap DBRs are a feasible 

alternative to current DBR technology. The advantages of air-gap DBRs will enable 

the development of VCSELs in different spectrum. 
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