
Copyright

by

César A. Garza

2015



The Dissertation Committee for César A. Garza
certifies that this is the approved version of the following dissertation:

A construction of hyperkähler metrics through

Riemann-Hilbert problems

Committee:

Andrew Neitzke, Supervisor

Dan Knopf

Dan Freed

Lorenzo Sadun

Jacques Distler



A construction of hyperkähler metrics through

Riemann-Hilbert problems

by

César A. Garza, B.S.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015



Dedicated to my wife Rebeca.



Acknowledgments

I am deeply indebted to Dr. Andrew Neitzke, my advisor. With great

patience and constant support he contributed to this thesis with brilliant ideas,

suggestions and corrections where needed. Throughout my Ph.D., his integrity,

commitment and passion for teaching was an inspiring example for me. This

thesis could not have come into being without him.

I would also like to thank Dr. Dan Knopf, Dr. Dan Freed, Dr. Lorenzo

Sadun and Dr Jacques Distler for being part of my thesis committee. I greatly

appreciate their time and effort while reviewing this paper.

Finally, I am very grateful to my beloved wife, Sara Rebeca Taŕın for
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In 2009 Gaiotto, Moore and Neitzke presented a new construction of

hyperkähler metrics on the total spaces of certain complex integrable systems,

represented as a torus fibration M over a base space B, except for a divisor D

in B, in which the torus fiber degenerates into a nodal torus. The hyperkähler

metric g is obtained via solutions Xγ of a Riemann-Hilbert problem. We inter-

pret the Kontsevich-Soibelman Wall Crossing Formula as an isomonodromic

deformation of a family of RH problems, therefore guaranteeing continuity of

Xγ at the walls of marginal stability. The latter functions are obtained through

standard Banach contraction principles. By obtaining uniform estimates on

arbitrary derivatives of Xγ, the smoothness property is obtained. To extend

this construction to singular fibers, we use the Ooguri-Vafa case as our model

and choose a suitable gauge transformation that allow us to define an inte-

gral equation defined at the degenerate fiber, whose solutions are the desired

Darboux coordinates Xγ .
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Chapter 1

Introduction

1.1 Preliminaries

Hyperkähler manifolds first appeared within the framework of differ-

ential geometry as Riemannian manifolds with holonomy group of special re-

stricted group. Nowadays, hyperkähler geometry forms a separate research

subject fusing traditional areas of mathematics such as differential and al-

gebraic geometry of complex manifolds, holomorphic symplectic geometry,

Hodge theory and many others.

One of the latest links can be found in theoretical physics: In 2009,

Gaiotto, Moore and Neitzke [7] proposed a new construction of hyperkähler

metrics g on target spaces M of quantum field theories with d = 4,N = 2

superysmmetry. Such manifolds were already known to be hyperkähler (see

[19]), but no known explicit hyperkähler metrics have been constructed.

The manifold M is a total space of a complex integrable system and

it can be expressed as follows. There exists a complex manifold B, a divisor

D ⊂ B and a subset M′ ⊂ M such that M′ is a torus fibration over B′ := B\D.

On the divisor D, the torus fibers of M degenerate, as Figure 1.1 shows.

Moduli spaces M of Higgs bundles on Riemann surfaces with prescribed
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Figure 1.1: Hyperkähler manifolds realized as torus fibrations

singularities at finitely many points are one of the prime examples of this

construction. Hyperkähler geometry is useful since we can use Hitchin’s twistor

space construction [13] and consider all P1-worth of complex structures at once.

In the case of moduli spaces of Higgs bundles, this allows us to consider M

from three distinct viewpoints:

1. (Dolbeault) MDol is the moduli space of Higgs bundles, i.e. pairs (E,Φ),

E → C a rank n degree zero holomorphic vector bundle and Φ ∈

Γ(End(E)⊗ Ω1) a Higgs field.

2. (De Rham) MDR is the moduli space of flat connections on rank n holo-

morphic vector bundles, consisting of pairs (E,∇) with ∇ : E → Ω1⊗E

a holomorphic connection and

3. (Betti) MB = Hom(π1(C) → GLn(C))/GLn(C) of conjugacy classes of

representations of the fundamental group of C.

All these algebraic structures form part of the family of complex structures

making M into a hyperkähler manifold.
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To prove that the manifolds M from the integrable systems are indeed

hyperkähler, we start with the existence of a simple, explicit hyperkähler met-

ric gsf onM′. Unfortunately, gsf does not extend toM. To construct a complete

metric g, it is necessary to do “quantum corrections” to gsf. These are obtained

by solving a certain explicit integral equation ((2.9) below). The novelty is

that the solutions, acting as Darboux coordinates for the hyperkähler metric

g, have discontinuities at a specific locus in B. Such discontinuities cancel the

global monodromy around D and is thus feasible to expect that g extends to

the entire M.

We start by defining a Riemann-Hilbert problem on the P1-slice of the

twistor space Z = M′ × P1. That is, we look for functions Xγ with prescribed

discontinuities and asymptotics. In the language of Riemann-Hilbert theory,

this is known as monodromy data. Rather than a single Riemann-Hilbert

problem, we have a whole family of them parametrized by the M′ manifold.

We show that this family constitutes an isomonodromic deformation since

by the Kontsevich-Soibelman Wall-Crossing Formula, the monodromy data

remains invariant.

Although solving Riemann-Hilbert problems in general is not always

possible, in this case it can be reduced to an integral equation solved by

standard Banach contraction principles. Uniform estimates obtained with

saddle-point analysis guarantee that solutions to this Riemann-Hilbert prob-

lem not only exist, but they preserve the smooth and holomorphic properties

on M′ × P1.

3



The extension of the manifold M′ is obtained by gluing a circle bundle

with an appropriate gauge transformation eliminating any monodromy prob-

lems near the divisor D. The circle bundle constructs the degenerate tori at

the discriminant locus D except for a small neighborhood where the pinch is,

since it is not possible to define the integral equation there (see Figure 1.2).

Figure 1.2: Construction of degenerate fibers away from the pinch

On the extended manifold M we prove that the solutions Xγ of the

Riemann-Hilbert problem on M′ extend and the resulting holomorphic sym-

plectic form ̟(ζ) gives the desired hyperkähler metric g. On the Appendix we

will give a heuristic argument based on numerical evidence as to how extend

the metric to the entire degenerate torus in a particular case known as the

“Pentagon” (a case of Hitchin systems with gauge group SU(2)).

Although for the most basic examples of this construction such as the

moduli space of Higgs bundles it was already known that M′ extends to a

hyperkähler manifold M with degenerate torus fibers, the construction here

4



works for the general case of dimC B = 1. Moreover, the functions Xγ here are

special coordinates arising in moduli spaces of flat connections, Teichmüller

theory and Mirror Symmetry. In particular, these functions are used in [5] for

the construction of holomorphic discs with boundary on special Lagrangian

torus fibers of mirror manifolds.

We start by presenting the complex integrable systems introduced in

[7].

5



Chapter 2

Complex Integrable Systems

2.1 Integrable Systems Data

As motivation, consider the moduli space M of Higgs bundles on a

complex curve C with Higgs field Φ having prescribed singularities at finitely

many points. In [8], it is shown that the space of quadratic differentials u

on C with fixed poles and residues is a complex affine space B and the map

det : M → B is proper with generic fiber Jac(Σu), a compact torus obtained

from the spectral curve Σu := {(z, φ) ∈ T ∗C : φ2 = u}, a double-branched

cover of C over the zeroes of the quadratic differential u. Σu has an invo-

lution that flips φ 7→ −φ. If we take Γu to be the subgroup of H1(Σu,Z)

odd under this involution, Γ forms a lattice of rank 2 over B′, the space of

quadratic differentials with only simple zeroes. This lattice comes with a non-

degenerate anti-symmetric pairing 〈, 〉 from the intersection pairing in H1. It

is also proved in [8] that the fiber Jac(Σu) can be identified with the set of

characters Hom(Γu,R/2πZ). If λ denotes the tautological 1-form in T ∗C, then

for any γ ∈ Γ,

Zγ =
1

π

∮

γ

λ

6



defines a holomorphic function Zγ in B′. Let {γ1, γ2} be a local basis of Γ with

{γ1, γ2} the dual basis of Γ∗. Without loss of generality, we also denote by

〈, 〉 the pairing in Γ∗. Let 〈dZ ∧ dZ〉 be short notation for 〈γ1, γ2〉 dZγ1 ∧ dZγ2.

Since dimC B
′ = 1, 〈dZ ∧ dZ〉 = 0.

This type of data arises very frequently in the construction of hy-

perkähler manifolds, so we summarize the conditions required:

We start with a complex manifold B (later shown to be affine) of dimen-

sion n and a divisor D ⊂ B. Let B′ = B\D. Over B′ there is a local system Γ

with fiber a rank 2n lattice, equipped with a non-degenerate anti-symmetric

integer valued pairing 〈 , 〉.

We will denote by Γ∗ the dual of Γ and, by abuse of notation, we’ll

also use 〈 , 〉 for the dual pairing (not necessarily integer-valued) in Γ∗. Let

u denote a general point of B′. We want to obtain a torus fibration over B′,

so let TCharu(Γ) be the set of twisted unitary characters of Γu
1, i.e. maps

θ : Γu → R/2πZ satisfying

θγ + θγ′ = θγ+γ′ + π 〈γ, γ′〉 .

Topologically, TCharu(Γ) is a torus (S1)2n. Letting u vary, the TCharu(Γ)

form a torus bundle M′ over B′. Any local section γ gives a local angular

coordinate of M′ by “evaluation on γ”, θγ : M
′ → R/2πZ.

1Although we can also work with the set of unitary characters (no twisting involved)
by shifting the θ-coordinates, we choose not to do so, as that results in more complex
calculations

7



We also assume there exists a homomorphism Z : Γ → C such that the

vector Z(u) ∈ Γ∗
a⊗C varies holomorphically with u. If we pick a patch U ⊂ B′

on which Γ admits a basis {γ1, . . . , γ2n} of local sections in which 〈, 〉 is the

standard symplectic pairing, then (after possibly shrinking U) the functions

fi = Re(Zγi)

are real local coordinates. The transition functions on overlaps U ∩ U ′ are

valued on Sp(2n,Z), as different choices of basis in Γ must fix the symplectic

pairing. This gives an affine structure on B′.

By differentiating and evaluating in γ, we get 1-forms dθγ , dZγ on M′

which are linear on Γ. For a local basis {γ1, . . . , γ2n} as in the previous para-

graph, let {γ1, . . . , γ2n} denote its dual basis on Γ∗. We write 〈dZ ∧ dZ〉 as

short notation for
〈
γi, γj

〉
dZγi ∧ dZγj , (2.1)

where we sum over repeated indices. Observe that the anti-symmetric pairing

〈 , 〉 and the anti-symmetric wedge product of 1-forms makes (2.1) symmetric.

We require that:

〈dZ ∧ dZ〉 = 0, (2.2)

By (2.2), near u, B′ can be locally identified with a complex Lagrangian

submanifold of Γ∗ ⊗Z C.

In the example of moduli spaces of Higgs bundles, as u approaches a

quadratic differential with non-simple zeros, one homology cycles vanishes (see

8



Figure 1.1). This cycle γ0 is primitive in H1 and its monodromy around the

critical quadratic differential is governed by the Picard-Lefschetz formula. In

the general case, let D0 be a component of the divisor D ⊂ B. We also assume

the following:

• Zγ0(u) → 0 as u→ u0 ∈ D0 for some γ0 ∈ Γ.

• γ0 is primitive (i.e. there exists some γ′ with 〈γ0, γ′〉 = 1).

• The monodromy of Γ around D0 is of “Picard-Lefschetz type”, i.e.

γ 7→ γ + 〈γ, γ0〉 γ0 (2.3)

We assign a complex structure and a holomorphic symplectic form on

M′ as follows (see [17] and the references therein for proofs). Take a local basis

{γ1, . . . , γ2n} of Γ. If ǫij = 〈γi, γj〉 and ǫij is its dual, let

ω+ = 〈dZ ∧ dθ〉 = ǫij dZγi ∧ dθγj . (2.4)

By linearity on γ of the 1-forms, ω+ is independent of the choice of basis.

There is a unique complex structure J on M′ for which ω+ is of type (2,0).

The 2-form ω+ gives a holomorphic symplectic structure on (M′, J). With

respect to this structure, the projection π : M′ → B′ is holomorphic, and the

torus fibers M′
u = π−1(u) are compact complex Lagrangian submanifolds.

Recall that a positive 2-form ω on a complex manifold is a real 2-form

for which ω(v, Jv) > 0 for all real tangent vectors v. From now on, we assume

9



that
〈
dZ ∧ dZ

〉
is a positive 2-form on B′. Now fix R > 0. Then we can define

a 2-form on M′ by

ωsf
3 =

R

4

〈
dZ ∧ dZ

〉
− 1

8π2R
〈dθ ∧ dθ〉 .

This is a positive form of type (1,1) in the J complex structure. Thus, the

triple (M′, J, ωsf
3 ) determines a Kähler metric gsf on M′. This metric is in

fact hyperkähler (see [6]), so we have a whole P1-worth of complex structures

for M′, parametrized by ζ ∈ P1. The above complex structure J represents

J(ζ = 0), the complex structure at ζ = 0 in P1. The superscript sf stands for

“semiflat”. This is because gsf is flat on the torus fibers M′
u.

Alternatively, it is shown in [7] that if

Xsf
γ (ζ) = exp

(
πRZγ
ζ

+ iθγ + πRζZγ

)

Then the 2-form

̟(ζ) =
1

8π2R

〈
d logXsf(ζ) ∧ d logXsf(ζ)

〉

(where the DeRham operator d is applied to theM′ part only) can be expressed

as

− i

2ζ
ω+ + ωsf

3 − iζ

2
ω−,

for ω− = ω+ =
〈
dZ ∧ dθ

〉
, that is, in the twistor space Z = M′ × P1 of [13],

̟(ζ) is a holomorphic section of ΩZ/P1 ⊗ O(2) (the twisting by O(2) is due to

the poles at ζ = 0 and ζ = ∞ in P1). This is the key step in Hitchin’s twistor

space construction. By [7, §3], M′ is hyperkähler.

10



We want to reproduce the same construction of a hyperkähler metric

now with corrected Darboux coordinates Xγ(ζ). For that, we need another

piece of data. Namely, a function Ω : Γ → Z such that Ω(γ; u) = Ω(−γ; u).

For a component of the singular locus D0 and for γ0 the primitive element in

Γ for which Zγ0 → 0 as u → u0 ∈ D0, we also require

Ω(γ0; u) = 1 for all u in a neighborhood of D0

To see where these invariants arise from, consider the example of moduli

spaces of Higgs bundles again. A quadratic differential u ∈ B′ determines a

metric h on C. Namely, if u = P (z)dz2, h = |P (z)|dzdz. Let C ′ be the curve

obtained after removing the poles and zeroes of u. Consider the finite length

inextensible geodesics on C ′ in the metric h. These come in two types:

1. Saddle connections : geodesics running between two zeroes of u. See

Figure 2.1.

Figure 2.1: Saddle connections on C ′

2. Closed geodesics : When they exist, they come in 1-parameter families

sweeping out annuli in C ′. See Figure 2.2.

11



Figure 2.2: Closed geodesics on C ′ sweeping annuli

On the branched cover Σu → C, each geodesic can be lifted to a union

of closed curves in Σu, representing some homology class γ ∈ H1(Σu,Z). See

Figure 2.3.

Figure 2.3: Lift of geodesics to Σu

In this case, Ω(γ, u) counts these finite length geodesics: every saddle

connection with lift γ contributes +1 and every closed geodesic with lift γ

contributes −2.

Back to the general case, we’re ready to formulate a Riemann-Hilbert

problem on the P1-slice of the twistor space Z = M′ × P1. Recall that in a

RH problem we have a contour Σ dividing a complex plane (or its compact-

ification) and one tries to obtain functions which are analytic in the regions

defined by the contour, with continuous extensions along the boundary and

12



with prescribed discontinuities along Σ and fixed asymptotics at the points

where Σ is non-smooth. In our case, the contour is a collection of rays at the

origin and the discontinuities can be expressed as symplectomorphisms of a

complex torus:

Define a ray associated to each γ ∈ Γu as:

ℓγ(u) = ZγR−.

We also define a transformation of the functions Xγ′ given by each γ ∈ Γu:

KγXγ′ = Xγ′(1− Xγ)
〈γ′,γ〉 (2.5)

Let Tu denote the space of twisted complex characters of Γu, i.e. maps X :

Γu → C× satisfying

XγXγ′ = (−1)〈γ,γ
′〉Xγ+γ′ (2.6)

Tu has a canonical Poisson structure given by

{Xγ ,Xγ′} = 〈γ, γ′〉Xγ+γ′

The Tu glue together into a bundle over B′ with fiber a complex Poisson

torus. Let T be the pullback of this system to M′. We can interpret the

transformations Kγ as birational automorphisms of T . To each ray ℓ going

from 0 to ∞ in the ζ-plane, we can define a transformation

Sℓ =
∏

γ:ℓγ(u)=ℓ

KΩ(γ;u)
γ (2.7)

Note that all the γ’s involved in this product are multiples of each other, so

the Kγ commute and it is not necessary to specify an order for the product.

13



To obtain the corrected Xγ , we can formulate a Riemann-Hilbert prob-

lem for which the former functions are solutions to it. We seek a map X :

M′
u × C× → Tu with the following properties:

1. X depends piecewise holomorphically on ζ , with discontinuities only at

the rays ℓγ(u) for which Ω(γ; u) 6= 0.

2. The limits X± as ζ approaches any ray ℓ from both sides exist and are

related by

X+ = S−1
ℓ ◦ X− (2.8)

3. X obeys the reality condition

X−γ(−1/ζ) = Xγ(ζ)

4. For any γ ∈ Γu, limζ→0Xγ(ζ)/X
sf
γ (ζ) exists and is real.

In [7], this RH problem is formulated as an integral equation:

Xγ(u, ζ) = Xsf
γ (u, ζ) exp

[
− 1

4πi

∑

γ′

Ω(γ′; u) 〈γ, γ′〉
∫

ℓγ′(u)

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log (1− Xγ′(u, ζ

′))

]
,

(2.9)

One can define recursively, setting X(0) = Xsf:

X(n+1)
γ (u, ζ) = Xsf

γ (u, ζ) exp

[
− 1

4πi

∑

γ′

Ω(γ′; u) 〈γ, γ′〉
∫

ℓγ′(u)

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1− X

(n)
γ′ (u, ζ

′)
)]

,

(2.10)
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More precisely, we have a family of RH problems, parametrized by

u ∈ B′, as this defines the rays ℓγ(u), the complex torus Tu where the symplec-

tomorphisms are defined and the invariants Ω(γ; u) involved in the definition

of the problem.

We still need one more piece of the puzzle, since the latter function Ω

may not be continuous. In fact, Ω jumps along a real codimension-1 loci in

B′ called the “wall of marginal stability”. This is the locus where 2 or more

functions Zγ coincide in phase, so two or more rays ℓγ(u) become one. More

precisely:

W = {u ∈ B′ : ∃γ1, γ2 with Ω(γ1; u) 6= 0,Ω(γ2; u) 6= 0, 〈γ1, γ2〉 6= 0, Zγ1/Zγ2 ∈ R+}

The jumps of Ω are not arbitrary; they are governed by the Kontsevich-

Soibelman wall-crossing formula.

To describe this, let V be a strictly convex cone in the ζ-plane with

apex at the origin. Then for any u /∈ W define

AV (u) =

x∏

γ:Zγ(u)∈V

KΩ(γ;u)
γ =

x∏

ℓ⊂V

Sℓ
2 (2.11)

The arrow indicates the order of the rational maps Kγ . AV (u) is a

birational Poisson automorphism of Tu. Define a V -good path to be a path p

in B′ along which there is no point u with Zγ(u) ∈ ∂V and Ω(γ; u) 6= 0. (So

2This product may be infinite. One should more precisely think of AV (u) as living in a
certain prounipotent completion of the group generated by {Kγ}γ:Zγ(u)∈V as explained in
[15]
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as we travel along a V -good path, no ℓγ rays enter or exit V.) If u, u′ are the

endpoints of a V -good path p, the wall-crossing formula is the condition that

AV (u), AV (u
′) are related by parallel transport in T along p. See Figure 2.4.

Figure 2.4: For a good path p, the two automorphisms AV (u), AV (u
′) are

related by parallel transport

In [7], it is proposed that the iterations in (2.10) converge to a unique

solution X(u, ζ) for u ∈ B′. However, this was never proved. It is one of the

main purposes of this paper to give a mathematical proof of this convergence,

thus proving the construction of the hyperkähler metric g on M′.

2.2 Statement of Results

In the general case, we want to extend the torus fibration M′ to a

manifold M with degenerate torus fibers. For example, the torus bundle M′ is

16



not the moduli space of Higgs bundles yet, as we have to consider quadratic

differentials with non-simple zeroes too. The main results of this paper center

on the extension of the manifoldM′ to a manifoldM with an extended fibration

M → B such that the torus fibersM′
u degenerate to nodal torus (i.e. “singular”

or “bad” fibers) for u ∈ D.

We will see that, to give a satisfactory extension, it was necessary to

develop the theory of Riemann-Hilbert-Birkhoff problems to suit these infinite-

dimensional systems (as the transformations Sℓ defining the problem can be

thought as operators on C∞(Tu), rather than matrices). It is not clear that

such coordinates can be extended, since we may approach the bad fiber from

two different sides of the wall of marginal stability and obtain two differ-

ent extensions. To overcome this first obstacle, we have to use the theory

of isomonodromic deformations as in [3] to reformulate the Riemann-Hilbert

problem in [7] independent of the regions determined by the wall.

Having redefined the problem, we want our Xγ to be smooth on the pa-

rameters θγ1 , . . . , θγ2n and u, away from where the prescribed jumps are. Even

at M′, there was no mathematical proof that such condition must be true. By

combining classical Banach contraction methods and Arzela-Ascoli results on

uniform convergence on compact sets, we can obtain:

Theorem 2.2.1. For large parameter R, there exists a unique collection of

functions Xγ with the prescribed asymptotics and jumps as in [7]. These func-

tions are smooth on u and the torus coordinates θ1, . . . , θ2r (even for u at the
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wall of marginal stability), and piecewise holomorphic on ζ, with jumps only

at two admissible rays r,−r.

After this is proved, we focus on the case n = 1, so Γ is a rank-1 lattice

over the Riemann surface B′ and the discriminant locus D where the torus

fibers degenerate is a discrete subset of B′. Once the {Xγi} are obtained, and

if the invariants Ω(γ1; u),Ω(γ2; u) have the correct values, it is necessary to do

an analytic continuation along B′ for the particular Xγi for which Zγi → 0 as

u → u0 ∈ D. Without loss of generality, we can assume there is a local basis

{γ1, γ2} of Γ such that Zγ2 → 0 in D. After that, an analysis of the possible

divergence of Xγ as u → u0 shows the necessity of performing a gauge trans-

formation on the torus coordinates of the fibers Mu that allows us to define

an integral equation even at u0 ∈ D. This transformation is a new result and

was not expected in [7]. We will see that in order to even define an integral

equation at D, it is necessary that Xγ2 stays bounded away from 1. This can

be achieved if θ2 is bounded away from 0 and R is big enough. As in the

case of normal fibers, we can run a contraction argument to obtain Darboux

coordinates even at the singular fibers and conclude:

Theorem 2.2.2. Let {γ1, γ2} be a local basis for Γ in a small sector centered

at u0 ∈ D such that Zγ2 → 0 as u → u0 ∈ D. For a particular value of

Ω(γ1; u),Ω(γ2; u), the local function Xγ1 admits an analytic continuation X̃γ1
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to a punctured disk centered at u0 in B. There exists a gauge transformation

θ1 7→ θ̃1 that extends the torus fibration M′ to a manifold M that is a (trivial)

fibration over an open set of B× S1 with a small neighborhood of (u0, θ2 = 0)

removed and with fiber S1 coordinatized by θ1. For R > 0 big enough, it is

possible to extend X̃γ1 and Xγ2 to M, still preserving the smooth properties as

in Theorem 2.2.1.

Unfortunately, at this point there’s no guarantee that we can choose R

uniformly giving an extension of these functions to an even bigger fibration M

where only the points (u0, θ2 = 0) are removed (the smaller θ2, the bigger R

must be). We will present a heuristic argument based on numerical evidence for

a special integrable system to be defined at the end of this section, extending

this construction to the entire degenerate torus.

Once we have the smooth extension of the {Xγi}, we can extend the

holomorphic symplectic form ̟(ζ) labeled by ζ ∈ P1 as in [13] for all points

except possibly one at the singular fiber. From ̟(ζ) we can obtain the hy-

perkähler metric g and, after a change of coordinates, we realize g locally as

the Taub-NUT metric plus smooth corrections, finishing the construction of

M and its hyperkähler metric. The following is the main theorem of the paper.

Theorem 2.2.3. M′ admits an extension to a manifold M that is a (trivial)

fibration over an open set of B× S1 with a small neighborhood of (u0, θ2 = 0)
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removed and with fiber S1 coordinatized by θ1. For R large enough and for

specific values of the integers Ω(γ; u), M admits a hyperkähler metric g ob-

tained by extending the hyperkähler metric on M′ determined by the Darboux

coordinates {Xγi}.

The construction of the coordinates Xγ are valid for systems of arbitrary

rank n, and the extensions obtained work for any general system defined in

[17] of rank n = 1. We start by fully working out the simplest example

known as Ooguri-Vafa [4]. Here we have a fibration over the open unit disk

B := {u ∈ C : |u| < 1}. At the discriminant locus D := {u = 0}, the

fibers degenerate into a nodal torus. The local rank-2 lattice Γ has a basis

(γm, γe) and the skew-symmetric pairing is defined by 〈γm, γe〉 = 1. The

monodromy of Γ around u = 0 is γe 7→ γe, γm 7→ γm + γe. We also have

functions Zγe(u) = u, Zγm(u) =
u
2πi

(log u − 1) + f(u), for f holomorphic and

admitting an extension to B. Finally, the integer-valued function Ω in Γ is

here: Ω(±γe; u) = 1 and Ω(γ; u) = 0 for any other γ ∈ Γu. There is no wall of

marginal stability in this case. The integral equation (2.9) can be solved after

just 1 iteration.

The next nontrivial system fully worked out is the Pentagon case [17].

Here B = C with 2 bad fibers which we can assume are at u = −2, u = 2 and

B′ is the twice-punctured plane. There is a wall of marginal stability where

all Zγ are contained in the same line. This separates B in two domains Bout

and a simply-connected Bin. See Figure 2.5.
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Figure 2.5: The wall W in B for the Pentagon case

On Bin we can trivialize Γ and choose a basis {γ1, γ2} with pairing

〈γ1, γ2〉 = 1. This basis does not extend to a global basis for Γ since it is not

invariant under monodromy. However, the set {γ1, γ2,−γ1,−γ2, γ1+γ2,−γ1−

γ2} is indeed invariant so the following definition of Ω makes global sense:

For u ∈ Bin,Ω(γ; u) =

{
1 for γ ∈ {γ1, γ2,−γ1,−γ2}
0 otherwise

For u ∈ Bout,Ω(γ; u) =

{
1 for γ ∈ {γ1, γ2,−γ1,−γ2, γ1 + γ2,−γ1 − γ2}
0 otherwise

In the Appendix we will present evidence in support of the following

Conjecture 2.2.4. In the Pentagon case, there exists a manifold M extending

the torus fibration M′ such that, locally over each u0 ∈ D, M is a trivial torus

fibration with a degenerate torus fiber at u0. For a fixed R > 0 big enough, it is

possible to define a suitable integral equation in M whose solutions {Xγ1 ,Xγ2}

(after analytically extending the first one around u0) represent the extension

of the Darboux coordinates of [7] to u0.

The Pentagon case appears in the study of Hitchin systems with gauge

group SU(2). The extension of M′ was previously obtained by hyperkähler
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quotient methods in [2], but no explicit hyperkähler metric was constructed.

For this case it is necessary to redefine the Riemann-Hilbert problems so that

the wallW is not an issue for continuity. The techniques used for this extension

extends to general integrable systems with possibly infinitely many nonzero

coefficients Ω(γ; u).

In the last chapter, we present a heuristic argument supported on nu-

merical evidence as to how extend the Darboux Coordinates uniformly on θe,

as θe → 0 in the particular case of the Pentagon. The only difficulty is to

choose an appropriate branch of the log in order to define the integral equa-

tions.
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Chapter 3

The Ooguri-Vafa Case

3.1 Classical Case

We start with one of the simplest cases, known as the Ooguri-Vafa

case, first treated in [4]. To see where this case comes from, recall that by

the SYZ picture of K3 surfaces [10], any K3 surface M is a hyperkähler man-

ifold. In one of its complex structures (say J (ζ=0)) is elliptically fibered, with

base manifold B = P1 and generic fiber a compact complex torus. There are

a total of 24 singular fibers, although the total space is smooth. See Figure 3.1.

Figure 3.1: A K3 surface M as an elliptic fibration
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Gross and Wilson [11] constructed a hyperkähler metric g on a K3

surface by gluing in the Ooguri-Vafa metric constructed in [18] with a standard

metric gsf away from the degenerate fiber. Thus, this simple case can be

regarded as a local model for K3 surfaces.

We have a fibration over the open unit disk B := {a ∈ C : |a| <

1}. At the locus D := {a = 0} (in the literature this is also called the

discriminant locus), the fibers degenerate into a nodal torus. Define B′ as

B\D, the punctured unit disk. On B′ there exists a local system Γ of rank-2

lattices with basis (γm, γe) and skew-symmetric pairing defined by 〈γm, γe〉 = 1.

The monodromy of Γ around a = 0 is γe 7→ γe, γm 7→ γm + γe. We also have

functions Zγe(a) = a, Zγm(a) =
a
2πi

(log a−1). On B′ we have local coordinates

(θm, θe) for the torus fibers with monodromy θe 7→ θe, θm 7→ θm+θe−π. Finally,

the integer-valued function Ω in Γ is here: Ω(±γe, a) = 1 and Ω(γ, a) = 0 for

any other γ ∈ Γa. There is no wall of marginal stability in this case.

We call this the “classical Ooguri-Vafa” case as it is the one appearing

in [18] already mentioned at the beginning of this chapter. In the next section,

we’ll generalize this case by adding a function f(a) to the definition of Zγm .

Let

Xsf
γ (ζ, a) := exp

(
πRζ−1Zγ(a) + iθγ + πRζZγ(a)

)
(3.1)

These functions receive corrections defined as in [7]. We are only interested in

the pair (Xm,Xe) which will constitute our desired Darboux coordinates for

the holomorphic symplectic form ̟. The fact that Ω(γm, a) = 0 gives that
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Xe = Xsf
e . As a → 0, Zγe and Zγm approach 0. Thus Xe|a=0 = eiθe . Since

Xe = Xsf
e the actual Xm is obtained after only 1 iteration of (2.10). For each

a ∈ B′, let ℓ+ be the ray in the ζ-plane defined by {ζ : a/ζ ∈ R−}. Similarly,

ℓ− := {ζ : a/ζ ∈ R+}.

Let

Xm = Xsf
m exp

[
i

4π

∫

ℓ+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log[1− Xe(ζ

′)]− i

4π

∫

ℓ−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log[1− Xe(ζ

′)−1]

]
.

(3.2)

For convenience, from this point on we assume a is of the form sb, where s

is a positive number, b is fixed and |b| = 1. Moreover, in ℓ+, ζ
′ = −tb, for

t ∈ (0,∞), and a similar parametrization holds in ℓ−.

Lemma 3.1.1. For fixed b, Xm as in (3.2) has a limit as |a| → 0.

Proof. Writing
ζ ′ + ζ

ζ ′(ζ ′ − ζ)
=

−1

ζ ′
+

2

ζ ′ − ζ
, we want to find the limit as a → 0

of

∫

ℓ+

{−1

ζ ′
+

2

ζ ′ − ζ

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

−
∫

ℓ−

{−1

ζ ′
+

2

ζ ′ − ζ

}
log[1− exp(−πRa/ζ ′ − iθe − πRζ ′ā)]dζ ′. (3.3)

For simplicity, we’ll focus in the first integral only, the second one can be

handled similarly. Rewrite:

∫

ℓ+

{−1

ζ ′
+

2

ζ ′ − ζ

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

=

∫ −b

0

{−1

ζ ′
+

2

ζ ′ − ζ

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′
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+

∫ −b∞

−b

{−1

ζ ′
+

2

ζ ′ − ζ

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

=

∫ −b

0

{−1

ζ ′
+

2

ζ ′ − ζ

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

+

∫ −b∞

−b

{−1

ζ ′
+

2

ζ ′
+

2

ζ ′ − ζ
− 2

ζ ′

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

=

∫ −b

0

−1

ζ ′
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

+

∫ −b∞

−b

1

ζ ′
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

+

∫ −b

0

2

ζ ′ − ζ
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

+

∫ −b∞

−b

{
2

ζ ′ − ζ
− 2

ζ ′

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′ (3.4)

Observe that

∫ −b

0

−1

ζ ′
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

= −
∫ 1

0

1

t
log[1− exp(−πRs(t + 1/t))]dt

and after a change of variables t̃ = 1/t, we get

= −
∫ ∞

1

1

t̃
log[1− exp(−πRs(t̃ + 1/t̃))]dt̃

= −
∫ −b∞

−b

1

ζ ′
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′.

Thus, (3.4) reduces to

∫ −b

0

2

ζ ′ − ζ
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′

+

∫ −b∞

−b

{
2

ζ ′ − ζ
− 2

ζ ′

}
log[1− exp(πRa/ζ ′ + iθe + πRζ ′ā)]dζ ′. (3.5)
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If θe = 0, (3.3) diverges to −∞, in which case Xm = 0. Otherwise, log[1 −

exp(πRa/ζ ′ + iθe + πRζ ′ā)] is bounded away from 0. Consequently, | log[1 −

exp(πRa/ζ ′ + iθe + πRζ ′ā)]| < C < ∞ in ℓ+. As a → 0, the integrals are

dominated by

∫ −b

0

2C

|ζ ′ − ζ | |dζ
′|+

∫ −b∞

−b

C|ζ/b|
|ζ ′(ζ ′ − ζ)| |dζ

′| <∞

if θe 6= 0. Hence we can interchange the limit and the integral in (3.5) and

obtain that, as a→ 0, this reduces to

2 log(1− eiθe)

[∫ −b

0

dζ ′

ζ ′ − ζ
+

∫ −b∞

−b

dζ ′
{

1

ζ ′ − ζ
− 1

ζ ′

}]

= 2 log(1− eiθe)[F (−b) +G(−b)], (3.6)

where

F (z) := log

(
1− z

ζ

)
, G(z) := log

(
1− ζ

z

)

are the (unique) holomorphic solutions in the simply connected domain U :=

C− {z : z/ζ ∈ R+} to the ODEs

F ′(z) =
1

z − ζ
, F (0) = 0 G′(z) =

1

z − ζ
− 1

z
, lim
z→∞

G(z) = 0.

This forces us to rewrite (3.6) uniquely as

2 log(1− eiθe)

[
log

(
1 +

b

ζ

)
− log

(
1 +

ζ

b

)]
(3.7)

Here log denotes the principal branch of the log in both cases, and the equation

makes sense for {b ∈ C : b /∈ ℓ+} (recall that by construction, we have the

27



additional datum |b| = 1). We want to conclude that

log(1 + b/ζ)− log(1 + ζ/b) = log(b/ζ), (3.8)

still using the principal branch of the log. To see this, define H(z) as F (z) −

G(z) − log(−z/ζ). This is an analytic function on U and clearly H ′(z) ≡ 0.

Thus H is constant in U . It is easy to show that the identity holds for a

suitable choice of z (for example, if ζ is not real, choose z = 1) and by the

above, it holds on all of U ; in particular, for z = −b.

All the arguments so far can be repeated to the ray ℓ− to get the final

form of (3.3):

2

{
log

[
b

ζ

]
log(1− eiθe)− log

[−b
ζ

]
log(1− e−iθe)

}
, θe 6= 0. (3.9)

This yields that (3.2) simplifies to:

Xm = Xsf
m exp

(
i

2π

{
log

[
b

ζ

]
log(1− eiθe)− log

[−b
ζ

]
log(1− e−iθe)

})

= Xsf
m exp

(
i

2π

{
log

[
a

|a|ζ

]
log(1− eiθe)− log

[ −a
|a|ζ

]
log(1− e−iθe)

})

(3.10)

in the limiting case a→ 0.

To obtain a function that is continuous everywhere and independent

of arg a, define regions I, II and III in the a-plane as follows: Xsf
m has a fixed

cut in the negative real axis, both in the ζ-plane and the a-plane. Assuming

for the moment that arg ζ ∈ (0, π), define region I as the half plane {a ∈ C :

Im (a/ζ) < 0}. Region II is that enclosed by the ℓ− ray and the cut in the
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negative real axis, and region III is the remaining domain so that as we travel

counterclockwise we traverse regions I, II and III in this order (see Figure 3.2).

Figure 3.2: The three regions in the a-plane, as we traverse them counter-
clockwise

For a 6= 0, Gaiotto, Moore and Neitzke [7] proved that Xm has a con-

tinuous extension to the punctured disk of the form:

X̃m =





Xm in region I
(1− X−1

e )Xm in region II
−Xe(1− X−1

e )Xm = (1− Xe)Xm in region III
(3.11)

Theorem 3.1.2. Xm can be extended to a = 0, independent of arg a.

Proof. We’ll use the following identities:

log(1− eiθe) = log(1− e−iθe) + i(θe − π), for θe ∈ (0, 2π) (3.12)
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log

[ −a
|a|ζ

]
=





log
[

a
|a|ζ

]
+ iπ in region I

log
[

a
|a|ζ

]
− iπ in regions II and III

(3.13)

log[a/ζ ] =

{
log a− log ζ in regions I and II
log a− log ζ + 2πi in region III

(3.14)

to obtain a formula for X̃m at a = 0 independent of the region. Formula (3.14)

can be proved with an argument analogous to that used for the proof of (3.8).

Starting with region I, by (3.10), (3.11), (3.12) and (3.13):

X̃m = exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|ζ

]
+

1

2
log
(
1− e−iθe

)]
in region I.

By (3.14),

= exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|

]
+
θe − π

2π
log ζ +

1

2
log
(
1− e−iθe

)]

In region II, by our formulas above, we get

X̃m = exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|ζ

]
− 1

2
log
(
1− e−iθe

)] (
1− e−iθe

)

= exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|ζ

]
− 1

2
log
(
1− e−iθe

)
+ log

(
1− e−iθe

)]

= exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|

]
+
θe − π

2π
log ζ +

1

2
log
(
1− e−iθe

)]
in region II.

Finally, in region III, and making use of (3.12), (3.13), (3.14):

X̃m = exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|ζ

]
− 1

2
log
(
1− e−iθe

)] (
1− eiθe

)

= exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|

]
+
θe − π

2π
log ζ − i(θe − π)

−1

2
log
(
1− e−iθe

)
+ log

(
1− e−iθe

)
+ i(θe − π)

]
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= exp

[
iθm − 1

2π
(θe − π) log

[
a

|a|

]
+
θe − π

2π
log ζ +

1

2
log
(
1− e−iθe

)]
.

(3.15)

Observe that, throughout all these calculations, we only had to use the

natural branch of the complex logarithm. In summary, (3.15) works for any

region in the a-plane, with a cut in the negative real axis.

This also suggest the following gauge transformation

θ′m = θm +
i(θe − π)

4π

(
log

a

Λ
− log

ā

Λ

)
(3.16)

Here Λ is the same cutoff constant as in [7]. Let ϕ parametrize the phase of

a/|a|. Then (3.16) simplifies to

θ′m = θm − (θe − π)ϕ

2π
(3.17)

On a coordinate patch around the singular fiber, θ′m is single-valued.

If we regard M′ as a S1-bundle over B′ × S1, with the fiber parametrized

by θm, then the above shows that we can glue to M′ another S1-bundle over

D × (0, 2π), for D a small open disk around a = 0, and θe ∈ (0, 2π). The

S1-fiber is parametrized by θ′m and the transition function is given by (3.17).

In this patch, we can extend X̃m to a = 0 as:

X̃m

∣∣∣
a=0

= eiθ
′
mζ

θe−π
2π (1− e−iθe)

1
2 (3.18)

where the branch of ζ
θe−π
2π is determined by the natural branch of the logarithm

in the ζ plane.
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Now consider the case that arg ζ ∈ (−π, 0). Label the regions as one

travels counterclockwise, starting with the region bounded by the cut and the

ℓ− (See Figure 3.3). We can do an analytic continuation similar to (3.11)

starting in region I, but formulas (3.13), (3.14) become now:

Figure 3.3: The three regions in the case arg ζ < 0.

log

[ −a
|a|ζ

]
=





log
[

a
|a|ζ

]
− iπ in region II

log
[

a
|a|ζ

]
+ iπ in regions I and III

log[a/ζ ] =

{
log a− log ζ in regions I and II
log a− log ζ − 2πi in region III

By an argument entirely analogous to the case arg ζ > 0, we get again:

X̃m

∣∣∣
a=0

= eiθ
′
mζ

θe−π
2π (1− e−iθe)

1
2
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The case ζ real and positive is even simpler, as Figure 3.4 shows. Here

we have only two regions, and the jumps at the cut and the ℓ+ ray are com-

bined, since these two lines are the same. Label the lower half-plane as region

I and the upper half-plane as region II. Start an analytic continuation of Xm

in region I as before, using the formulas:

Figure 3.4: Only two regions in the case arg ζ = 0.

log

[ −a
|a|ζ

]
=





log
[

a
|a|ζ

]
− iπ in region II

log
[

a
|a|ζ

]
+ iπ in region I

log[a/ζ ] = log a− log ζ in both regions

The result is equation (3.18) again. The case arg ζ = π is entirely

analogous to this and it yields the same formula, thus proving that (3.18)

holds for all ζ and is independent of a.
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3.2 Generalized Ooguri-Vafa coordinates

We can generalize the previous extension to the case Zγm := 1
2πi
a log a+

f(a), where f : B′ → C is holomorphic and admits a holomorphic extension

into B. In particular,

Xsf
m = exp

(−iR
2ζ

a log a +
πRf(a)

ζ
+ iθm +

iζR

2
a log a+ πRζf(a)

)
(3.19)

The value at the singular locus f(0) does not have to be 0. All the other data

remains the same.

The first thing we observe is that Xe remains the same. Consequently,

the corrections for the generalized Xm are as before. Using the change of

coordinates as in (3.17), we can thus write

X̃m

∣∣∣
a=0

= exp

[
πRf(0)

ζ
+ iθ′m + πRζf(0)

]
ζ

θe−π
2π (1− e−iθe)

1
2 (3.20)

3.3 Turning points

In this section we interpret equations (3.18) and (3.20) as a flat section

of a meromorphic connection on the ζ-plane. Take a small open disc with a

cut along a fixed ray D centered at 0 in the a-plane such that Γ is a trivial

rank-2 lattice over this open submanifold. This gives a trivial complexified

torus fibration T̃ → D with fibers T̃a, the twisted complex characters of Γa.

Any γ ∈ Γa defines a canonical C
×-valued function Xγ on T̃a with the property

XγXγ′ = (−1)〈γ,γ
′〉Xγ+γ′
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There is a manifold M and a map π : M → D which is a torus fibration

except at a = 0, where the preimage becomes a nodal torus ([7]). Let T denote

the pullback π∗T̃ . Since Γ is trivial, all fibers Ta,θe,θm of T are isomorphic to a

single complexified torus T0 ∼= (C×)2 with Poisson structure specified by

{Xγ, Xγ′} = 〈γ, γ′〉Xγ+γ′

This Poisson structure is, in fact, a symplectic structure ω on T0. This struc-

ture is translation invariant ([15]). Let G := Ham(T0, ω) denote the group of

hamiltonian symplectomorphisms of T0. Recall that g ∈ Symp(T0, ω) is called

hamiltonian if there is a hamiltonian isotopy gt ∈ Symp(T0, ω) from g0 = id

to g1 = g. Let g denote the Lie algebra1 of G consisting of hamiltonian vector

fields on T0 and let t be the Lie algebra of T0. Denote by H the Lie algebra

of regular functions on T0. Then one has the decomposition ([15], [9]):

g = t⊕ H

= t⊕
⊕

γ∈Γ

gγ

= t⊕ [t, g], (3.21)

where gγ is a 1-dimensional space generated by the function Xγ .

We can now interpret our functions Xm,Xe (and, in general, the basis

{Xγ1 , . . . ,Xγ2r} in [7]) as a global function

X : M× P1 → T

1By definition, the Lie algebra consists of vector fields of the form
d

dt

∣∣∣∣
t=0

g(t), where

t 7→ g(t), t ∈ (−1, 1) is a smooth mapping into G with g(0) = id, see [14, §20]

35



Fixing the parameter u ∈ M and identifying the fibers of T , we can

write X(u) : P1 → G (by abuse of notation, an element in T0 and the symplec-

tomorphism it induces by translation are considered the same). Let P be the

trivial principal bundle over P1 with fiber G. Then X(u) is a flat section for a

family of connections parametrized by M of the form

∇(u) = d−
(
iπRZ(u)

ζ2
+

Λ(u)

ζ
+ f(u)

)
dζ, (3.22)

where ζ is a coordinate for P1 centered at 0, and Λ, f are in g. The leading

entry Z is the central charge in [7] and can be regarded as an element in

t. By (3.21), every γ ∈ Γ is a root γ ∈ t∗ in the root space decomposition

for g with pairing 〈Z(u), γ〉 = Zγ(u). For u ∈ M away from the singular

fiber at a = 0, Z(u) is regular semisimple, i.e. Zγ(u) 6= 0 for all γ ∈ Γ. In

the Ooguri-Vafa case, Z(0, θe, θm) = 0 ∈ t, which makes the singular fiber a

turning point for the family of connections as in (3.22). In general, flat sections

around turning points are not continuous, and they are obtained through ad

hoc methods. Here the irregular singularities at ζ = 0 and ζ = ∞ degenerate

into a regular singularity with monodromy X̃m 7→ −XeX̃m according to (3.18).

Observe that this monodromy is the limit as u approaches the singular fiber

of the topological monodromy of the irregular connections in (3.22), which, by

(3.11), is X̃m 7→ −XeX̃m. Furthermore, if a = 0 and θe = 0, X̃m = 0 by (3.15).

In the generalized case, Z(0, θe, θm) 6= 0 is irregular semisimple, since

〈Z, γe〉 = 0 there (but the pairing with γm is nonzero). Therefore, the irregular

singularities do not degenerate at the singular locus. This is reflected in the

existence of essential singularities at ζ = 0 in (3.20).
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Chapter 4

Extension of the Ooguri-Vafa metric

4.1 Classical Case

4.1.1 A C1 extension of the coordinates

In section 3.1 we extended X̃m continuously to the bad fiber at a = 0.

Now we extend the metric by extending the holomorphic symplectic form̟(ζ).

Recall that this is of the form

̟(ζ) = − 1

4π2R

dXe

Xe
∧ dX̃m

X̃m

Clearly there are no problems extending d logXe, so it remains only to extend

d logXe.

Lemma 4.1.1. Let X̃m denote the analytic continuation around a = 0 of the

magnetic function, as in the last chapter. The 1-form

d log X̃m =
dX̃m

X̃m

, (4.1)

(where d denotes the differential of a function on the torus fibration M′ only)

has an extension to a = 0

Proof. We proceed as in section 3.1 and work in different regions in the a-plane

(see Figure 3.2), starting with region I, where X̃m = Xm. Then observe that
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we can write the corrections on Xm as a complex number Υm(ζ) ∈ (M′
a)

C such

that

Xm = exp

(−iR
2ζ

(a log a− a) + iΥm +
iζR

2
(a log a− a)

)
.

Thus, by (4.1) and ignoring the i factor, it suffices to obtain an extension of

d

[−R
2ζ

(a log a− a) + Υm +
ζR

2
(a log a− a)

]

=
−R
2ζ

log a da+ dΥm +
ζR

2
log a da. (4.2)

Using (3.2),

dΥm = dθm − 1

4π

∫

ℓ+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

Xe

1− Xe

(
πR

ζ ′
da+ idθe + πRζ ′da

)

+
1

4π

∫

ℓ−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

X−1
e

1− X−1
e

(
−πR
ζ ′
da− idθe − πRζ ′da

)
.

We have to change our θm coordinate into θ′m according to (3.17) and differ-

entiate to obtain:

dΥm = dθ′m − i(θe − π)

4π

(
da

a
− da

a

)
+

arg a

2π
dθe

− 1

4π

∫

ℓ+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

Xe

1− Xe

(
πR

ζ ′
da+ idθe + πRζ ′da

)

+
1

4π

∫

ℓ−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

X−1
e

1− X−1
e

(
−πR
ζ ′
da− idθe − πRζ ′da

)
(4.3)

If (4.2) extends to a = 0, then every independent 1-form extends individually.

Let’s consider the form involving dθe first. By (4.3), this part consists of:

arg a

2π
dθe −

i

4π

∫

ℓ+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

Xe

1− Xe
dθe −

i

4π

∫

ℓ−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

X−1
e

1− X−1
e

dθe. (4.4)
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We can use the exact same technique in section 3.1 to find the limit of (4.4)

as a → 0. Namely, split each integral into four parts, use the symmetry of

Xe

1− Xe
between 0 and ∞ to cancel two of these integrals and take the limit in

the remaining ones. The result is:

arg a

2π
− ieiθe

2π(1− eiθe)
log

[
ei arg a

ζ

]
− ie−iθe

2π(1− e−iθe)
log

[−ei arg a
ζ

]

=
arg a

2π
− ieiθe

2π(1− eiθe)
log

[
ei arg a

ζ

]
+

i

2π(1− eiθe)
log

[−ei arg a
ζ

]
(4.5)

in region I (we omitted the dθe factor for simplicity). Making use of formulas

(3.13) and (3.14), we can simplify the above expression and get rid of the

apparent dependence on arg a until finally getting:

−i log ζ
2π

− 1

2(1− eiθe)
, θe 6= 0.

In other regions of the a-plane we have to modify X̃m as in (3.11). Nonetheless,

by (3.13) and (3.14), the result is the same and we conclude that at least the

terms involving dθe have an extension to a = 0 for θe 6= 0.

Next we extend the terms involving da. By (4.2) and (4.3), these are:

−R
2ζ

log a da−i(θe − π)

4πa
da−R

4

∫

ℓ+

dζ ′

(ζ ′)2
ζ ′ + ζ

ζ ′ − ζ

Xe

1− Xe
da−R

4

∫

ℓ−

dζ ′

(ζ ′)2
ζ ′ + ζ

ζ ′ − ζ

X−1
e

1− X−1
e

da

In what follows, we ignore the da part and focus on the coefficients for the

extension. The partial fraction decomposition

ζ ′ + ζ

(ζ ′)2(ζ ′ − ζ)
=

2

ζ ′(ζ ′ − ζ)
− 1

(ζ ′)2
(4.6)

splits each integral above into two parts. We will consider first the terms

−i(θe − π)

4πa
+
R

4

∫

ℓ+

dζ ′

(ζ ′)2
Xe

1− Xe
+
R

4

∫

ℓ−

dζ ′

(ζ ′)2
X−1
e

1− X−1
e

. (4.7)
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Use the fact that Xe (resp. X−1
e ) has norm less than 1 on ℓ+ (resp. ℓ−) and

the uniform convergence of the geometric series on ζ ′ to write (4.7) as:

−i(θe − π)

4πa
+
R

4

∞∑

n=1

{ ∫

ℓ+

dζ ′

(ζ ′)2
exp

(
πRna

ζ ′
+ inθe + πRnζ ′a

)
+

∫

ℓ−

dζ ′

(ζ ′)2
exp

(−πRna
ζ ′

− inθe − πRnζ ′a

)}
,

= −i(θe − π)

4πa
+

(
R

4

)(−2|a|
a

) ∞∑

n=1

(
einθe − e−inθe

)
K1(2πRn|a|)

= −i(θe − π)

4πa
− R|a|

2a

∞∑

n=1

(
einθe − e−inθe

)
K1(2πRn|a|).

Since K1(x) ∼ 1/x, for x real and x→ 0, we obtain, letting a→ 0:

− i(θe − π)

4πa
− R|a|

2a · 2πR|a|

∞∑

n=1

(
einθe − e−inθe

)

n

= −i(θe − π)

4πa
+

1

4πa
[log(1− eiθe)− log(1− e−iθe)]

and by (3.12),

= −i(θe − π)

4πa
+
i(θe − π)

4πa
= 0.

Therefore this part of the da terms extends trivially to 0 in the singular fiber.

It remains to extend the other terms involving da. Recall that by (4.6),

these terms are (after getting rid of a factor of −R/2):

log a

ζ
+

∫

ℓ+

dζ ′

ζ ′(ζ ′ − ζ)

Xe

1− Xe
+

∫

ℓ−

dζ ′

ζ ′(ζ ′ − ζ)

X−1
e

1− X−1
e

. (4.8)
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We’ll focus in the first integral in (4.8). As a starting point, we’ll prove

that as a→ 0, the limiting value of this integral is the same as the limit of

∫

ℓ+

dζ ′

ζ ′(ζ ′ − ζ)

exp
(
πRa
ζ′

+ iθe

)

1− exp
(
πRa
ζ′

+ iθe + πRζ ′a
) . (4.9)

It suffices to show that

∫

ℓ+

dζ ′

ζ ′(ζ ′ − ζ)

exp
(
πRa
ζ′

)

1− exp
(
πRa
ζ′

+ iθe + πRζ ′a
) [1−exp(πRζ ′a)] → 0, as a→ 0, θe 6= 0

(4.10)

To see this, we can assume |a| < 1. Let b = a/|a|. Observe that in the ℓ+ ray,

| exp(πRa/ζ ′)| < 1, and since θe 6= 0, we can bound (4.10) by

const

∫

ℓ+

dζ ′

ζ ′(ζ ′ − ζ)
[1− exp(πRζ ′b)] <∞.

Equation (4.10) now follows from Lebesgue Dominated Convergence and the

fact that 1 − exp(πRζ ′a) → 0 as a → 0. A similar application of Dominated

Convergence allows us to reduce the problem to the extension of

∫

ℓ+

dζ ′

ζ ′(ζ ′ − ζ)

exp
(
πRa
ζ′

+ iθe

)

1− exp
(
πRa
ζ′

+ iθe

) . (4.11)

Introduce the real variable s = −πRa/ζ ′. We can write (4.11) as:

eiθe
∫ ∞

0

ds

s
[
−πRa
s

− ζ
] e−s

1− eiθe−s

= −1

ζ

∫ ∞

0

ds

s+ πRa
ζ

· e−s

e−iθe − e−s

=
1

ζ

∫ ∞

0

ds

s+ πRa
ζ

· 1

1− es−iθe
(4.12)
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The integrand of (4.12) has a double zero at ∞, when a → 0, so the only

possible non-convergent part in the limit a = 0 is the integral

1

ζ

∫ 1

0

ds

s+ πRa
ζ

· 1

1− es−iθe
.

Since ∫ 1

0

ds

s

[
1

1− es−iθe
− 1

1− e−iθe

]
<∞,

we can simplify this analysis even further and focus only on

1

ζ(1− e−iθe)

∫ 1

0

ds

s+ πRa
ζ

(4.13)

= − log(πRa/ζ)

ζ(1− e−iθe)
. (4.14)

We can apply the same technique to obtain a limit for the second integral in

(4.8). The result is

− log(−πRa/ζ)
ζ(1− eiθe)

,

which means that the possibly non-convergent terms in (4.8) are:

log a

ζ
− log a

ζ(1− e−iθe)
− log a

ζ(1− eiθe)
= 0. (4.15)

Note that the corrections of Xm in other regions of the a-plane as in (3.11)

depend only on Xe, which clearly has a smooth extension to the singular fiber.

The extension of the da part is performed in exactly the same way as

with the da forms. We conclude that the 1-form

dX̃m

X̃m
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has an extension to the fiber at a = 0 in the classical Ooguri-Vafa case. This

holds true also in the generalized Ooguri-Vafa case since here we simply add

factors of the form f ′(a)da and it is assumed that f(a) has a smooth extension

to the singular fiber.

In Chapter 4, we will reinterpret these extension of the derivatives of

Xm if we regard the gauge transformation (3.17) as a contour integral between

symmetric contours. It will be then easier to see that the extension can be

made smooth.

4.1.2 Extension of the metric

The results of the previous section already show the continuous exten-

sion of the holomorphic symplectic form

̟(ζ) = − 1

4π2R

dXe

Xe
∧ dX̃m

X̃m

to the limiting case a = 0, but we excluded the special case θe = 0. Here we

obtain ̟(ζ) at the singular fiber with a different approach that will allow us

to see that such an extension is smooth without testing the extension for each

derivative. Although it was already known that M′ extends to the hyperkähler

manifold M constructed here, this approach is new, as it gives an explicit

construction of the metric as we will see. Furthermore, the Ooguri-Vafa model

can be thought as an elementary model for which more complex integrable

systems are modeled locally (see Chapter 5).
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Theorem 4.1.2. The holomorphic symplectic form ̟(ζ) extends smoothly to

a = 0. Near a = 0 and θe = 0, the hyperkähler metric g looks like a constant

multiple of the Taub-NUT metric gTaub-NUT plus some smooth corrections.

Proof. By [7], near a = 0,

̟(ζ) = − 1

4π2R

dXe

Xe
∧
[
idθm + 2πiA+ πiV

(
1

ζ
da− ζdā

)]
,

where

A =
1

8π2

(
log

a

Λ
− log

ā

Λ

)
dθe−

R

4π

(
da

a
− dā

ā

)∑

n 6=0

(sgnn)einθe |a|K1(2πR|na|)

should be understood as a U(1) connection over the open subset of C × S1

parametrized by (a, θe) and V is given by Poisson re-summation as

V =
R

4π




1√
R2|a|2 + θ2e

4π2

+

∞∑

n=−∞
n 6=0


 1√

R2|a|2 + ( θe
2π

+ n)2
− 1

n





 . (4.16)

Observe that the above sum converges even at a = 0, θe 6= 0. The curvature

F of the unitary connection satisfies

dA = ∗dV. (4.17)

Consider now a gauge transformation θm 7→ θm + α and its induced change

in the connection A 7→ A′ = A − dα/2π (see [7]). We have idθ′m + 2πiA′ =

idθm+ idα+2πiA− idα = idθm+2πiA. Furthermore, for the particular gauge

transformation in (3.16), at a = 0 and for θe 6= 0:

A′ = A− dα

2π
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=
1

8π2

(
log

a

Λ
− log

ā

Λ

)
dθe −

1

8π2

(
da

a
− dā

ā

)[ ∞∑

n=1

einθe

n
−

∞∑

n=1

e−inθe

n

]

− 1

8π2

(
log

a

Λ
− log

ā

Λ

)
dθe −

i(θe − π)

8π2

(
da

a
− dā

ā

)
,

(here we’re using the fact that K1(x) → 1/x as x→ 0)

=
i(θe − π)

8π2

(
da

a
− dā

ā

)
− i(θe − π)

8π2

(
da

a
− dā

ā

)
= 0.

since the above sums converge to − log(1− eiθe) + log(1− e−iθe) = −i(θe − π)
for θe 6= 0.

Writing V0 (observe that this only depends on θe) for the limit of V as

a→ 0, we get at a = 0

̟(ζ) = − 1

4π2R

(
πR

ζ
da+ idθe + πRζdā

)
∧
(
idθ′m + πiV0

(
da

ζ
− ζdā

))

=
1

4π2R
dθe ∧ dθ′m +

iV0
2
da ∧ dā− i

4πζ
da ∧ dθ′m − V0

4πRζ
da ∧ dθe

− iζ

4π
dā ∧ dθ′m +

V0ζ

4πR
dā ∧ dθe.

This yields that, at the singular fiber,

ω3 =
1

4π2R
dθe ∧ dθ′m +

iV0
2
da ∧ dā (4.18)

ω+ =
1

2π
da ∧

(
dθ′m − iV0

R
dθe

)
(4.19)

ω− =
1

2π
dā ∧

(
dθ′m +

iV0
R
dθe

)
(4.20)
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From the last two equations we obtain that dθ′m− iV0/Rdθe and dθ
′
m+

iV0/Rdθe are respectively (1,0) and (0,1) forms under the complex structure J3.

A (1, 0) vector field dual to the (1, 0) form above is then
1

2

(
∂θ′m + iR/V0∂θe

)
.

In particular,

J3(∂θ′m) = −R

V0
∂θe , J3

(
−R

V0
∂θe

)
= −∂θ′m .

With this and (4.18) we can reconstruct the metric at a = 0. Observe that

g(∂θe, ∂θe) = ω3(∂θe , J3(∂θe)) = ω3

(
∂θe ,

V0
R
∂θ′m

)
=

V0
4π2R2

g(∂θ′m, ∂θ′m) = ω3(∂θ′m , J3(∂θ′m)) = ω3

(
∂θ′m ,−

R

V0
∂θe

)
=

1

4π2V0

Consequently,

g =
1

V0

(
dθ′m
2π

)2

+ V0d~x
2,

where a = x1 + ix2, θe = 2πRx3. Since V0(θe) is undefined for θe = 0, we have

to check that g extends to this point. Let (r, ϑ, φ) denote spherical coordinates

for ~x. The formula above is the natural extension of the metric given in [7] for

nonzero a:

g =
1

V (~x)

(
dθ′m
2π

+ A′(~x)

)2

+ V (~x)d~x2

To see that this extends to r = 0, we rewrite

V =
R

4π


 1√

R2|a|2 + θ2e
4π2

+
∑

n 6=0


 1√

R2|a|2 + ( θe
2π

+ n)2
− 1

n






=
1

4π


 1√

|a|2 + θ2e
4R2π2

+R
∑

n 6=0


 1√

R2|a|2 + ( θe
2π

+ n)2
− 1

n





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=
1

4π

(
1

r
+ C(~x)

)
, (4.21)

where C(~x) is smooth and bounded in a neighborhood of the origin.

Similarly, we do Poisson re-summation for the unitary connection

A′ = − 1

4π

(
da

a
− dā

ā

)[
i(θe − π)

2π
+R

∑

n 6=0

(sgnn)einθe |a|K1(2πR|na|)
]
.

Using the fact that the inverse Fourier transform of (sgn ξ)eiθeξ|a|K1(2πR|aξ|)

is
i( θe

2π
+ t)

2R
√
R2|a|2 + ( θe

2π
+ t)2

,

we obtain

A′ = − i

8π

(
da

a
− dā

ā

) ∞∑

n=−∞




θe
2π

+ n√
R2|a|2 + ( θe

2π
+ n)2

− κn




=
1

4π

(
da

a
− dā

ā

)
− iθe

4π
√
R2|a|2 +

(
θe
2π

)2 − i

2

∑

n 6=0




θe
2π

+ n√
R2|a|2 + ( θe

2π
+ n)2

− κn






since dφ = d arg a = −id log a

|a| = − i

2

(
da

a
− dā

ā

)
and cos ϑ =

x3

r
, this

simplifies to:

=
1

4π
(cosϑ+D(~x))dφ. (4.22)

Here κn is a regularization constant that makes the sum converge, and D(~x)

is smooth and bounded in a neighborhood of r = 0. By (4.21) and (4.22), it
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follows that near r = 0

g = V −1

(
dθ′m
2π

+ A′

)2

+ V d~x2

= 4π

(
1

r
+ C

)−1(
dθ′m
2π

+
1

4π
cosϑdφ+Ddφ

)2

+
1

4π

(
1

r
+ C

)
d~x2

=
1

4π

[(
1

r
+ C

)−1 (
2dθ′m + cosϑdφ+ D̃dφ

)2
+

(
1

r
+ C

)
d~x2

]

=
1

4π
gTaub-NUT + smooth corrections.

This shows that our metric extends to r = 0 and finishes the construction of

the singular fiber.

4.2 General case

Here we work with the assumption in subsection 3.2. To distinguish this

case to the previous one, we will denote by ̟old, gold, etc. the forms obtained

in the classical case.

Theorem 4.2.1. In the General Ooguri-Vafa case, the holomorphic symplectic

form ̟(ζ) and the hyperkähler metric g extend to the singular fiber.

Proof. By formula (3.19),

d logXsf
m = d logXsf

m,old +
R

ζ

(
− i

2
+ πf ′(a)

)
da+Rζ

(
i

2
+ πf ′(a)

)
da (4.23)

Recall that the corrections of Xm are the same as the classical Ooguri-

Vafa case. To simplify the equations, let C := lima→0(−i/2 + πf ′(a)). Thus,
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using (4.23), at a = 0

̟(ζ) = ̟old(ζ) +
iR

2π
Im Cda ∧ da+ iC

4π2ζ
da ∧ dθe +

iζC

4π2
da ∧ dθe.

Decomposing ̟(ζ) = −i/2ζω+ + ω3 − iζ/2ω−, we obtain:

ω3 = ω3,old +
iR

2π
Im Cda ∧ da, (4.24)

ω+ = ω+,old −
C

2π2
da ∧ dθe (4.25)

ω− = ω−,old −
C

2π2
da ∧ dθe (4.26)

By (4.25) and (4.26),

dθ′m − i

R

(
V0 −

iRC

π

)
dθe and dθ′m +

i

R

(
V0 +

iRC

π

)
dθe

are, respectively, (1,0) and (0,1) forms. It’s not hard to see that

−V0π − iRC

Rπ
∂θ′m − i∂θe

or, rearranging real parts,

(
−V0
R

− Im C

π

)
∂θ′m − i

(
Re C

π
∂θ′m + ∂θe

)

is a (1, 0) vector field. This allow us to obtain

J3

[(
−V0
R

− Im C

π

)
∂θ′m

]
=

Re C

π
∂θ′m + ∂θe

J3

[
Re C

π
∂θ′m + ∂θe

]
=

(
V0
R

+
Im C

π

)
∂θ′m .

By linearity,

J3(∂θ′m) = const · ∂θ′m − Rπ

V0π +RIm C
∂θe
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J3(∂θe) =

(
V0π +RIm C

πR
+

(Re C)2R

π(V0π +RIm C)

)
∂θ′m + const · ∂θe .

With this we can compute

g(∂θ′m, ∂θ′m) = ω3(∂θ′m , J3(∂θ′m))

=
1

4π(V0π +RIm C)

g(∂θe, ∂θe) = ω3(∂θe , J3(∂θe))

=
V0π +RIm C

4π3R2
+

(Re C)2

4π3(V0π +RIm C)
.

Define B0 as V0 + RIm C/π. A condition that f ′(0) must satisfy for

positive definiteness of g is that B0 > 0. If this is true, then, in this case, the

metric at a = 0 is

g =
1

B0

(
dθ′m
2π

)2

+B0d~x
2 +

(
R · Re C

π

)2
dx23
B0

. (4.27)

This metric can be extended to the point θe = 0 (r = 0 in §4.1) exactly as

before, by writing g as the Taub-NUT metric plus smooth corrections and

observing that, since limθe→0B0 = ∞,

lim
θe→0

(
R ·Re C

π

)2
dx23
B0

= 0.

50



Chapter 5

The Pentagon and other cases

5.1 Solutions

Now we will extend the results of the Ooguri-Vafa case to the general

problem. We will start with the Pentagon example. This example is presented

in detail in [17]. By [8], this example represents the moduli space of Higgs

bundles with gauge group SU(2) over P1 with 1 irregular singularity at z = ∞.

Here B = C with discriminant locus a 2-point set, which we can assume

is {−2, 2} in the complex plane. Thus B′ is the twice-punctured plane. B is

divided into two domains Bin and Bout by the locus

W = {u : Z(Γu) is contained in a line in C} ⊂ B

See Figure 5.1. Since Bin is simply connected Γ can be trivialized over Bin by

primitive cycles γ1, γ2, with Zγ1 = 0 at u = −2, Zγ2 = 0 at u = 2. We can

choose them also so that 〈γ1, γ2〉 = 1.

Take the set {γ1, γ2}. To compute its monodromy around infinity, take

cuts at each point of D = {−2, 2} (see Figure 5.2) and move counterclockwise.

By (2.3), the jump of γ2 when you cross the cut at −2 is of the form γ2 7→

γ1 + γ2. As you return to the original place and cross the cut at 2, the jump

of γ1 is of the type γ1 7→ γ1 − γ2.
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Figure 5.1: The wall W in B for the Pentagon case

Figure 5.2: The monodromy around infinity of Γ

Thus, around infinity, {γ1, γ2} transforms into {−γ2, γ1 + γ2}. The set

{γ1, γ2,−γ1,−γ2, γ1+γ2,−γ1−γ2} is therefore invariant under monodromy at

infinity and it makes global sense to define

For u ∈ Bin, Ω(γ; u) =

{
1 for γ ∈ {γ1, γ2,−γ1,−γ2}
0 otherwise

For u ∈ Bout, Ω(γ; u) =

{
1 for γ ∈ {γ1, γ2,−γ1,−γ2, γ1 + γ2,−γ1 − γ2}
0 otherwise

(5.1)

Let M′ denote the torus fibration over B′ constructed in [17]. Near

u = 2, we’ll denote γ1 by γm and γ2 by γe (the labels will change for u = −2).

To shorten notation, we’ll write ℓe, Ze, etc. instead of ℓγe , Zγe , etc. Let θ

denote the vector of torus coordinates (θe, θm). With the change of variables

a := Ze(u) we can assume, without loss of generality, that the bad fiber is at
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a = 0 and

lim
a→0

Zm(a) = c 6= 0. (5.2)

Let T denote the complex torus fibration over M′ constructed in [7]. By the

definition of Ω(γ; a), the functions (Xe,Xm) both receive corrections. Recall

that by (2.10), for each ν ∈ N, we get a function X
(ν)
γ , which is the ν-th

iteration of the function Xγ . We can write

X(ν)
γ (a, ζ, θ) = Xsf

γ (a, ζ, θ)C
(ν)
γ (a, ζ, θ).

It will be convenient to rewrite the above equation as in [7, C.17]. For that,

let Υ(ν) be the map from Ma to its complexification MC
a such that

X(ν)
γ (a, ζ, θ) = Xsf

γ (a, ζ,Υ
(ν)). (5.3)

We’ll do a modification in the construction of [7] as follows: We’ll use

the term “BPS ray” for each ray {ℓγ : Ω(γ, a) 6= 0} as in [7]. This terminology

comes from Physics. In the language of Riemann-Hilbert problems, these are

known as “anti-Stokes” rays. That is, they represent the contour Σ where a

function has prescribed discontinuities.

The problem is local on B, so instead of defining a Riemann-Hilbert

problem using the BPS rays ℓγ , we will cover B′ with open sets {Uα : α ∈ ∆}

such that for each α, Uα is compact, Uα ⊂ Vα, with Vα open and M′|Vα a

trivial fibration. For any ray r in the ζ-plane, define Hr as the half-plane of

vectors making an acute angle with r. Assume that there is a pair of rays r,−r

such that for all a ∈ Uα, half of the rays lie inside Hr and the other half lie
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in H−r. We call such rays admissible rays. If Uα is small enough, there exists

admissible rays for such a neighborhood. We are allowing the case that r is a

BPS ray ℓγ, as long as it satisfies the above condition. As a varies in Uα, some

BPS rays (or anti-Stokes rays, in RH terminology) converge into a single ray

(wall-crossing phenomenon) (see Figures 5.3 and 5.4).

Figure 5.3: 3 anti-Stokes rays before hitting the wall

Figure 5.4: At the other side of the wall there are only 2 anti-Stokes rays
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For γ ∈ Γ, we define γ > 0 (resp. γ < 0) as ℓγ ∈ Hr (resp. ℓγ ∈ H−r).

Our Riemann-Hilbert problem will have only two anti-Stokes rays, namely r

and −r. The specific discontinuities at the anti-Stokes rays for the function

we’re trying to obtain are called Stokes factors (see [3]). In (2.8), the Stokes

factor was given by S−1
ℓ .

In this case, the Stokes factors are the concatenation of all the Stokes

factors S−1
ℓ in (2.7) in the counterclockwise direction:

S+ =
x∏

γ>0

KΩ(γ;a)
γ

S− =
x∏

γ<0

KΩ(γ;a)
γ

We will show that such Riemann-Hilbert problem has unique solutions,

henceforth denoted by Y. As in (5.3), we can write Y as

Yγ(a, ζ, θ) = Xsf
γ (a, ζ,Θ), (5.4)

for Θ : Ma → MC
a .

A different choice of admissible pairs r′,−r′ gives an equivalent Riemann-

Hilbert problem, where the two solutions Y,Y′ differ only for ζ in the sector

defined by the rays r, r′, and one can be obtained from the other by analytic

continuation. The difference will be made explicit as we solve the Riemann-

Hilbert problem.

In the case of the Pentagon, we have two types of wall-crossing phe-

nomenon. Namely, as a varies, ℓe moves in the ζ-plane until it coincides with
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the ℓm ray for some value of a in the wall of marginal stability (Fig. 5.3 and

5.4). We’ll call this type I of wall-crossing. In this case we have the Pentagon

identity

KeKm = KmKe+mKe, (5.5)

As a goes around 0, the ℓe ray will then intersect with the ℓ−m ray now.

Because of the monodromy γm 7→ γ−e+m around 0, ℓm becomes ℓ−e+m. This

second type (type II) of wall-crossing is illustrated in Fig. 5.5 and 5.6.

Figure 5.5: 2 anti-Stokes rays before hitting the wall

Figure 5.6: At the other side of the wall there are now 3 anti-Stokes rays

This gives a second Pentagon identity

KeKm = KmKe+mKe
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In any case, the Stokes factors above remain the same even if a is in

the wall of marginal stability. The way we defined S+, S− makes this true for

the general case also.

Specifically, in the Pentagon the two Stokes factors for the first type of

wall-crossing are given by the maps:

Ym 7→ Ym(1− Ye(1− Ym))
−1

Ye 7→ Ye(1− Ym)

}
S+ (5.6)

and, similarly

Ym 7→ Ym(1− Y−1
e (1− Y−1

m ))
Ye 7→ Ye(1− Y−1

m )−1

}
S− (5.7)

For the second type:

Ym 7→ Ym(1− Y−1
e )

Ye 7→ Ye(1− Ym(1− Y−1
e ))

}
S+ (5.8)

Ym 7→ Ym(1− Ye)
−1

Ye 7→ Ye(1− Y−1
m (1− Ye))

−1

}
S− (5.9)

If we take the power series expansion of the above Stokes factors, the

integral formula is then:

Y(ν+1)
γ (a, ζ) = Xsf

γ (a, ζ) exp

〈
γ,

1

4πi

{ ∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)Y
(ν)
γ′ (a, ζ

′)+

∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)Y
(ν)
γ′ (a, ζ

′)

}〉
,

(5.10)
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where we abbreviated
dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
as K(ζ ′, ζ). The vector f γ ∈ ΓQ is obtained

by power series expansion of log(S+Yγ), log(S
−Yγ). Explicitly, for any pair of

integers i, j and for the type of wall-crossing in (5.6), (5.7):

f γie+jm =





−1

j2
γjm if i = 0

(−1)j

i2
(
|i|
|j|

)
γie if 0 ≤ j ≤ i or i ≤ j ≤ 0

0 otherwise.

(5.11)

A similar equation holds for the jumps in (5.8), (5.9) with the tags

reversed. Formula (5.10) requires an explanation. Assuming Y
(ν−1)
γ′ , γ′ ∈ Γ

has been constructed, by definition, Y
(ν)
γ′ has jumps at r and −r. By abuse of

notation, Y
(ν)
γ′ in (5.10) denotes the analytic continuation to the ray r (resp.

−r) along Hr (resp. H−r) in the case of the first (resp. second) integral. We’re

looking for a solution of the integral equation

eiΘγ = eiθγ exp

〈
γ,

1

4πi

{ ∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ) +

∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ)

}〉
. (5.12)

The solution is obtained through iterations. By (5.4), we can write

(5.10) equivalently as:

Θ(0)(ζ, θ) = θ, (5.13)

eiΘ
(ν+1)
γ = eiθγ exp

〈
γ,

1

4πi

{ ∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν)) +

∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))

}〉
. (5.14)
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Recall that we are denoting by θ the map P1 × T → C2n, which is just

the inclusion T →֒ C2n for all ζ ∈ P1. We need to show that Θ(ν) converges

uniformly in a to a well-defined Θ : Ma × P1 → MC
a as ν → ∞ with the right

smooth properties on a and ζ . The following proof will work for the general

case, so from now on assume (5.13) and (5.14) hold for arbitrary coefficient

vectors f γ
′
. Since M′ is trivial in each Uα, we can identify all fibers Ma in Uα

to T := (R/2πZ)2n, where 2n is the rank of Γ in the general case. Define X

as the completion of the space of functions Φ : P1 × T × Uα → C2n that are

smooth on T× Uα and bounded in P1 × T× Uα, under the norm

‖Φ‖ = sup
ζ,θ,a

‖Φ(ζ, θ)‖C2n , (5.15)

where C2n is assumed to have as norm the maximum of the Euclidean norm

of its coordinates. Notice that we have not put any restriction of Φ in the P1

slice, except that it is bounded. Our strategy will be to solve the Riemann-

Hilbert problem in X and show that for sufficiently big (but finite) R, we

can get uniform estimates on the iterations yielding such solutions and any

derivative with respect to the parameters a, θ. The Arzela-Ascoli theorem will

give us that the solution Φ not only lies in X , but it preserves all the smooth

properties. The very nature of the integral equation will guarantee that its

solution is piecewise holomorphic on ζ , as desired.

We’re assuming as in [7] that Γ has a positive definite norm satisfying

the Cauchy-Schwarz property

|〈γ, γ′〉| ≤ ‖γ‖ ‖γ′‖
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as well as the “Support property”

‖γ‖ < const|Zγ|, (5.16)

for all γ such that Ω(γ; a) 6= 0. For any Φ ∈ X , let Φj denote the composition

of Φ with the jth projection πj : C
2n → C, j = 1, . . . , 2n. Instead of working

with the full Banach space X , let X ∗ be the collection of Φ ∈ X in the

closed ball

‖Φ− θ‖ ≤ ǫ, (5.17)

for an ǫ > 0 so small that

sup
ζ,θ,a

∣∣eiΦj
∣∣ ≤ 2, (5.18)

for j = 1, . . . , 2n. In particular, X ∗ is closed, hence complete. Note that by

(5.18), if Φ ∈ X ∗, then eiΦ ∈ X .

Now we can state the general version of (5.14). Define:

Θ(0)(ζ, θ) = θ, (5.19)

eiΘ
(ν+1)
γ = eiθγ exp

〈
γ,

1

4πi

{ ∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν)) +

∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))

}〉
. (5.20)

Observe that, by construction, the transformation in ζ is only as an

integral transformation, so Θ(ν) is holomorphic in either of the half planes Hr

or H−r. We will prove the first of our uniform estimates on Θ(ν):

Lemma 5.1.1. Θ(ν) ∈ X ∗ for all ν.
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Proof. We follow [7], using induction on ν. The statement is clearly true for

ν = 0 by (5.19). Assuming Θ(ν) ∈ X ∗, take the log in both sides of (5.20):

Θ(ν+1)
γ − θγ = − 1

4π

〈
γ,
∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))+

∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))

〉
, (5.21)

where γ is one of the basis vectors {γ1, . . . , γ2n}. For general Φ ∈ X ∗, Φ

can be very badly behaved in the P1 slice, but by our inductive construction,

Θ(ν+1) is even holomorphic in Hr and H−r. Consider the integral

∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν)) (5.22)

The function Θ(ν) can be analytically extended along the ray r so that it is

holomorphic on the sector V bounded by r and ℓγ′ , γ
′ > 0 (see Figure 5.7).

By Cauchy’s theorem, we can move (5.22) to one along the ray ℓγ′ , possibly

at the expense of a residue of the form

4πi exp

[
iΘ

(ν)
γ′ + πR

(
Zγ′

ζ
+ Zγ′ζ

)]
(5.23)

if ζ lies in V . This residue is in control. Indeed, by the induction hypothesis,
∣∣∣eiΘ

(ν)

γ′

∣∣∣ < 2‖γ
′‖, independent of ν. Moreover, we pick a residue only if ζ lies in

the sector S bounded by the first and last ℓγj , γj ∈ {γ1, . . . , γ2n} included in Hr

traveling in the counterclockwise direction, regardless if they are BPS rays or

not. This sector is strictly smaller than Hr (see Figure 5.8), so argZγ′−arg ζ ∈

(−π, π) and, since r makes an acute angle with all rays ℓγ′ , γ
′ > 0:
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Figure 5.7: Translating the integral to the ray ℓγ′

Figure 5.8: A residue appears only if ζ lies in S
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| argZγ′ − arg ζ | > const >
π

2
for all γ′ > 0, ζ ∈ S.

In particular,

cos(argZγ′ − arg ζ) < −const < 0 for all γ′ > 0, ζ ∈ S. (5.24)

Using the fact that inf(|ζ |+ 1/|ζ |) = 2, the sum of residues of the form (5.23)

is bounded by:
∑

γ′>0

∣∣∣
〈
γ, f γ

′
〉∣∣∣ 2‖γ′‖e−constR|Zγ′ | (5.25)

Recall that ‖γ′‖ < const|Zγ′|, so (5.25) can be simplified to

∑

γ′>0

∣∣∣
〈
γ, f γ

′
〉∣∣∣ e(−constR+δ)|Zγ′ | (5.26)

for a constant δ. We’re assuming that the Ω(γ′; a) do not grow too quickly

with γ′ as in [7], so the above sum can be made arbitrarily small if R is big

enough. This bound can be chosen to be independent of ν, ζ and the basis

element γ (by choosing the maximum among the γ1, . . . , γ2n). The exact same

argument can be used to show that the residues of the integrals along −r are

in control. In fact, let ǫ > 0 be given. Choose R > 0 so that the total sum of

residues Res(ζ) is less than ǫ/2.

Thus, we can assume the integrals are along ℓγ′ and consider
∫

ℓγ′

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν)) (5.27)

The next step is to do a saddle point analysis and obtain the asymptotics for

large R, following [16]. The integral 5.27 is of the type

h(R) =

∫

ℓγ′

g(ζ ′)eπRf(ζ
′) (5.28)
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where

g(ζ ′) =
ζ ′ + ζ

ζ ′(ζ ′ − ζ)
, f(ζ ′) =

Zγ′

ζ ′
+ ζ ′Zγ′ .

The function f has a saddle point ζ0 = −ei argZγ′ at the intersection of the

BPS ray ℓγ′ with the unit circle. Moreover, f(ζ0) = −2|Zγ′ |. The ray ℓγ′ and

the unit circle are the locus of Im f(ζ ′) = Im f(ζ0) = 0. It’s easy to see that

in ℓγ′ f(ζ
′) < f(ζ0) if ζ

′ 6= ζ0, so ℓγ′ is the path of steepest descent (see Figure

5.9).

Figure 5.9: Paths of steepest descent and ascent

Introduce τ by

1

2
(ζ ′ − ζ0)

2f ′′(ζ0) +O((ζ ′ − ζ0)
3) = −τ 2
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and so

ζ ′ − ζ0 =

{ −2

f ′′(ζ0)

} 1
2

τ +O(τ 2) (5.29)

for an appropriate branch of {f ′′(ζ0)}1/2. Let α = arg f ′′(ζ0) = −2 argZγ′+

π. The branch of {f ′′(ζ0)}1/2 is chosen so that τ > 0 in the part of the steep-

est descent path outside the unit disk in Figure 5.9. That is, τ > 0 when

arg(ζ ′ − ζ0) =
1
2
π − 1

2
α, and so {f ′′(ζ0)}1/2 = i

√
2|Zγ′|e−i argZγ′ . Thus (5.29)

simplifies to

ζ ′ − ζ0 =
−ζ0√
|Zγ′|

τ +O(τ 2)

We expand g(ζ ′(τ)) as a power series1:

g(ζ ′(τ)) = g(ζ0) + g′(ζ0)

{ −2

f ′′(ζ0)

} 1
2

τ +O(τ 2) (5.30)

As in [16],

h(R) ∼ eRf(ζ0)g(ζ0)

{ −2

f ′′(ζ0)

} 1
2
∫ ∞

−∞

e−Rτ
2

dτ + . . .

and so

h(R) =

√
2π

R|f ′′(ζ0)|
g(ζ0)e

Rf(ζ0)+(i/2)(π−α) +O

(
eRf(ζ0)

R

)

1In our case, g depends also on the parameter R, so this is an expansion on ζ′
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in our case, and since ζ0 = −ei argZγ′

= −ζ0 + ζ

ζ0 − ζ
exp

(
iΘ(ν)(ζ0)

) 1√
R|Zγ′|

e−2πR|Zγ′ | +O

(
e−2πR|Zγ′ |

R

)
(5.31)

By (5.18),
∣∣∣exp

(
iΘ

(ν)
γ′ (ζ0)

)∣∣∣ ≤ 2‖γ
′‖. Thus, for ζ bounded away from

the saddle ζ0, we can bound the contribution from the integral by

const
∣∣∣
〈
γ, f γ

′
〉∣∣∣ 2‖γ′‖ e

−2πR|Zγ′ |

√
R|Zγ′|

(5.32)

if R is big enough.

If ζ → ζ0, we take a different path of integration, consisting of 3 parts

ℓ1, ℓ2, ℓ3 (see Figure 5.10).

Figure 5.10: If ζ → ζ0, a modification of the path is required

If we parametrize the ℓγ′ ray as ζ ′ = −et+i argZγ′ = −etζ0,−∞ < t <

∞, the ℓ2 part is a semicircle around t = −ǫ and t = ǫ, for small ǫ. The

contribution from ℓ2 is clearly (up to a factor of 2πi) half of the residue of the
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function in (5.27). As in (5.25), this residue is:

2πi exp
(
iΘ(ν)(ζ0)− 2πR|Zγ′|

)
. (5.33)

If we denote by exp
(
iΘ(ν)(t)

)
the evaluation exp

(
iΘ(ν)(−tζ0)

)
, the

contributions from ℓ1 and ℓ3 in the integral are of the form

lim
ǫ→0

{ ∫ −ǫ

−∞

dt
−et + 1

−et − 1
exp

(
iΘ(ν)(t)

)
exp

(
πR(et + e−t)

)

+

∫ ∞

ǫ

dt
−et + 1

−et − 1
exp

(
iΘ(ν)(t)

)
exp

(
πR(et + e−t)

)}
(5.34)

If we do the change of variables t 7→ −t in the first integral, (5.34)

simplifies to

∫ ∞

0

dt
−et + 1

−et − 1

[
exp

(
iΘ(ν)(t)

)
− exp

(
iΘ(ν)(−t)

)]
exp

(
πR(et + e−t)

)
(5.35)

(5.35) is of the type (5.28), with

g(ζ ′) =
ζ ′ + ζ0

ζ ′(ζ ′ − ζ0)

[
exp

(
iΘ(ν)(ζ ′)

)
− exp

(
iΘ(ν)(1/ζ ′)

)]

Since ζ0 = 1/ζ0, the apparent pole at ζ0 of g(ζ ′) is removable and the

integral can be estimated by the same steepest descent methods as in (5.27).

The only difference is that the saddlepoint now lies at one of the endpoints.

This only introduces a factor of 1/2 in the estimates (see [16]). If g(ζ0) 6= 0 in

this case, the integral is just

g(ζ0)

2
√
R|Zγ′|

e−2πR|Zγ′ |+i argZγ′ +O

(
e−2πR|Zγ′ |

R

)
(5.36)
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If g(ζ0) = 0, then the estimate is at least of the order O
(
e
−2πR|Z

γ′
|

R

)
.

In any case, since exp
(
iΘ

(ν)
γ′ (ζ0)

)
≤ 2‖γ

′‖ by (5.18) and by (5.32), (5.33) and

(5.36),

∣∣∣∣∣
∑

γ′

〈
γ, f γ

′
〉∫

ℓγ′

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))

∣∣∣∣∣ < const
∑

γ′

∣∣∣
〈
γ, f γ

′
〉∣∣∣ e(−2πR+δ)|Zγ′ |.

(5.37)

The δ constant is the same appearing in (5.26). This sum is convergent by the

tameness condition on the Ω(γ′; a) coefficients, and can be made arbitrarily

small if R is big enough. Putting everything together:

sup
ζ,θ

∣∣Θ(ν+1)
γ − θγ

∣∣ = const
∑

γ′

∣∣∣
〈
γ, f γ

′
〉∣∣∣ e(−2πR+δ)|Zγ′ | + Res(ζ)

<
ǫ

2
+
ǫ

2
= ǫ.

Therefore
∥∥Θ(ν+1) − θ

∥∥ < ǫ. In particular,
∥∥Θ(ν+1)

∥∥ < ∞, so Θ(ν+1) ∈ X ∗.

Since ǫ was arbitrary, Θ(ν+1) satisfies the side condition (5.18) and thus Θ(ν) ∈

X ∗ for all ν if R is big enough.

Now let β = (β1, . . . , β2n, β2n+1, β2n+2) be a multi-index in N2n+2, and

let Dβ be a differential operator acting on the iterations Θ(ν):

DβΘ(ν)
γ =

∂

∂θβ11 · · · θβ2n2n ∂a
β2n+1∂aβ2n+2

Θ(ν)
γ (5.38)

We need to uniformly bound the partial derivatives of Θ(ν) on compact

subsets:
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Lemma 5.1.2. Let K be a compact subset of Uα × T. Then

sup
P1×K

∥∥DβΘ(ν)
∥∥ < Cβ,K

for a constant Cβ,K independent of ν.

Proof. Lemma 5.1.1 is the case |β| := ∑ βi = 0, with ǫ as C0,K . To simplify

notation, we’ll drop the K subindex in these constants. Assume by induction

we already did this for |β| = k−1 derivatives and for the first ν ≥ 0 iterations,

the case ν = 0 being trivial. Take partial derivatives with respect to θs, for γs

one of the basis elements of Γ in (5.21). This introduces a factor of the form

i
∂

∂θs
Θ

(ν)
γ′ (5.39)

By (5.17), (5.18) and since no γ′ appearing in the integrals for Θγ is a multiple

of γ, the above can be bounded by ‖γ′‖C0, C0 < 1. When we take the partial

derivatives with respect to a in (5.21), we add a factor of

πR

ζ ′
∂

∂a
Zγ′(a) + i

∂

∂a
Θ

(ν)
γ′ (5.40)

in the integrals (5.22). Similarly, a partial derivative with respect to a adds a

factor of

πRζ ′
∂

∂a
Zγ′(a) + i

∂

∂a
Θ

(ν)
γ′ (5.41)

As for (5.39), the second term in (5.40), (5.41) can be bounded by ‖γ′‖C0.

Since Zγ′ is holomorphic on Uα ⊂ B′, and since K ⊂ Uα × T is compact,

∣∣∣∣
∂k

∂ak
Zγ′

∣∣∣∣ ≤ k! ‖γ′‖C (5.42)
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for all k and some constant C, independent of k and a. Likewise for a, Z ′
γ.

Thus if we take DβΘ
(ν+1)
γ in (5.21) for a multi-index β with |β| = k, the right

side of (5.21) becomes:

− 1

4π

〈
γ,
∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))Pγ′(a, ζ
′, θ)+

∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))Qγ′(a, ζ
′, θ)

〉
, (5.43)

where each Pγ′ or Qγ′ is a polynomial obtained as follows:

Each Xsf
γ′(a, ζ

′,Θ(ν)) is a function of the type eg, for some g(a, ā, θ1, . . . , θ2r).

If {x1, . . . , xk} denotes a choice of k of the variables a, ā, θ1, . . . , θ2r (possibly

with multiplicities), then by the Faà di Bruno Formula:

∂k

∂x1 · · ·∂xk
eg = eg

∑

π∈Π

∏

B∈π

∂|B|g∏
j∈B ∂xj

:= egPγ′ (5.44)

where

• π runs through the set Π of all partitions of the set {1, . . . , k}.

• B ∈ π means the variable B runs through the list of all of the “blocks”

of the partition π, and

• |B| is the size of the block B.

The resulting monomials in Pγ′ (same thing holds for Qγ′) are prod-

ucts of the variables given by (5.39), (5.40), (5.41) or their subsequent partial
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derivatives in θ, a, a. For each monomial, the sum of powers and total deriva-

tives of terms must add up to k by (5.44). For instance, when computing

∂3

∂θ1∂a2
Xsf
γ′(a, ζ

′,Θ(ν)) =
∂3

∂θ1∂a2
eg,

a monomial that appears in the expansion is:

∂g

∂θ1

[
∂g

∂a

]2
= i

∂

∂θ1
Θ

(ν)
γ′

[
πR

ζ ′
∂

∂a
Zγ′(a) + i

∂

∂a
Θ

(ν)
γ′

]2

There are a total of (possibly repeated) Bk monomials in Pγ′, where Bk is

the Bell number, the total number of partitions of the set {1, . . . , k} and

Bk ≤ k!. We can assume, without loss of generality, that any constant Cβ is

considerably larger than any of the Cβ′ with |β ′| < |β|, by a factor that will

be made explicit. First notice that since there is only partition of {1, . . . , k}

consisting of 1 block, the Faà di Bruno Formula (5.44) shows that Pγ′ contains

only one monomial with the factor DβΘ(ν). The other monomials have factors

Dβ′
Θ(ν) for |β ′| < |β|. We can do a saddle point analysis for each integrand of

the form ∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))P i
γ′(a, ζ

′, θ),

for P i
γ′ (or Q

i
γ′) one of the monomials of Pγ′ (Qγ′). The saddle point analysis

and the induction step for the previous Θ(ν) give the estimate

Cβ · const
∑

γ′

∣∣∣
〈
γ, f γ

′
〉∣∣∣ e(−2πR+δ)|Zγ′ |

for the only monomial with DβΘ(ν) on it. The estimates for the other mono-

mials contain the same exponential decay term, along with powers s of Cβ′, C
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such that s · |β ′| ≤ |β|, and constant terms. By making Cβ significantly bigger

than the previous Cβ′, we can bound the entire (5.43) by Cβ, completing the

induction step

5.1.1 Example: The case |β| = 3

To see better the estimates we obtained in the previous section, let’s

consider the particular case k = |β| = 3. In the Pentagon case we have to take

derivatives with respect to 4 variables: a, ā, θe, θm. If k = 3, there are a total

of
(
4+3−1

3

)
= 20 different third partial derivatives for each Θ(ν+1). There are a

total of 5 different partitions of the set {1, 2, 3} and correspondingly

∂3

∂x1∂x2∂x3
eg =

eg
[

∂3

∂x1∂x2∂x3
g +

(
∂2

∂x1∂x2
g

)(
∂

∂x3
g

)
+

(
∂2

∂x1∂x3
g

)(
∂

∂x2
g

)

+

(
∂2

∂x2∂x3
g

)(
∂

∂x1
g

)
+

(
∂

∂x1
g

)(
∂

∂x2
g

)(
∂

∂x3
g

)]

If x1 = x2 = x3 = a,

∂3

∂a3
Xsf
γ′(a, ζ

′,Θ(ν)) = Xsf
γ′(a, ζ

′,Θ(ν))

[
πR

ζ ′
∂3

∂a3
Zγ′ + i

∂3

∂a3
Θ

(ν)
γ′

+ 3

(
πR

ζ ′
∂2

∂a2
Zγ′ + i

∂2

∂a2
Θ

(ν)
γ′

)(
πR

ζ ′
∂

∂a
Zγ′ + i

∂

∂a
Θ

(ν)
γ′

)

+

(
πR

ζ ′
∂

∂a
Zγ′ + i

∂

∂a
Θ

(ν)
γ′

)3
]

= Xsf
γ′(a, ζ

′,Θ(ν))P (Θ
(ν)
γ′ )
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There is one and only one term containing ∂3

∂a3
Θ

(ν)
γ′ . By induction on ν,

| ∂3
∂a3

Θ
(ν)
γ′ | < Cβ. For the estimates of

i
〈
γ, f γ

′
〉∫

r

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))
∂3

∂a3
Θ

(ν)
γ′ ,

we do exactly the same as in the proof of Lemma 5.1.1. Namely, move the

ray r to the corresponding BPS ray ℓγ′ , possibly at the expense of gaining a

residue bounded by

Cβ · const
∣∣∣
〈
γ, f γ

′
〉∣∣∣ e(−2πR+δ)|Zγ′ | (5.45)

The sum of all these residues over those γ′ such that 〈γ, γ′〉 6= 0 is just a

fraction of Cβ. After moving the contour we estimate

i
〈
γ, f γ

′
〉∫

ℓγ′

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν))
∂3

∂a3
Θ

(ν)
γ′ .

As in (5.37), we run a saddle point analysis and obtain a similar estimate

(5.45) as in Lemma 5.1.1. The result is that the estimate for this monomial is

an arbitrarily small fraction of Cβ.

If we take other monomials, like say

P 1
γ′ = 3

(
πR

ζ ′

)2
∂2

∂a2
Zγ′

∂

∂a
Zγ′

and estimate

3
〈
γ, f γ

′
〉 ∂2

∂a2
Zγ′

∂

∂a
Zγ′

∫

r

(
πR

ζ ′

)2

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Θ(ν)),

we do as before, computing residues and doing saddle point analysis. The

difference with these terms is that partial derivatives of Zγ′ are bounded by
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(5.42), and at most second derivatives of Θ(ν) (for this specific monomial, no

such terms appear). The extra powers of πR
ζ′

that appear like here don’t affect

the estimates, since Xsf
γ′ has exponential decay on πR

ζ′
. The end result is an

estimate of the type

Cs1
β′
1
· · ·Csm

β′
m
Cj · const

∣∣∣
〈
γ, f γ

′
〉∣∣∣ e(−2πR+δ)|Zγ′ | (5.46)

with all si · |β ′
i|, j ≤ |β|. By induction on |β|, we can make Cβ big enough

so that (5.46) are just a small fraction of Cβ. This completes the proof that

sup |DβΘ(ν+1)| < Cβ on the compact set K.

Now we’re ready to prove one of our main theorems in this paper.

Theorem 5.1.3. The sequence {Θ(ν)} converges in X . Moreover, its limit Θ

is piecewise holomorphic on ζ with jumps along the rays r,−r and continuous

on the closed half-planes determined by these rays. Θ is C∞ on a, a, θ1, . . . , θ2n.

Proof. We first show the contraction of the Θ(ν) in the Banach space X thus

proving convergence. We will use the fact that ex is locally Lipschitz and the

Θ(ν) are arbitrarily close to θ if R is big. In particular,

sup
ζ,θ,a

∣∣∣eiΘ
(ν)
γ − eiΘ

(ν−1)
γ

∣∣∣ < const · sup
ζ,θ,a

∣∣Θ(ν)
γ −Θ(ν−1)

γ

∣∣ ≤ const
∥∥Θ(ν) −Θ(ν−1)

∥∥ ,

for γ one of the basis elements γ1, . . . , γ2n. For arbitrary γ′, recall that if

γ′ = c1γ1 + . . .+ cnγ2n, then Θ
(ν)
γ′ = c1Θ

(ν)
γ1 + . . .+ c2nΘ

(ν)
γ2n . It follows from the

last inequality that

sup
ζ,θ

∣∣∣eiΘ
(ν)

γ′ − e
iΘ

(ν−1)

γ′

∣∣∣ < const‖γ
′‖
∥∥Θ(ν) −Θ(ν−1)

∥∥ (5.47)
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We estimate

∥∥Θ(ν+1) −Θ(ν)
∥∥ =

1

4π

∥∥∥∥∥
∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)
[
Xsf
γ′(a, ζ

′,Θ(ν))− Xsf
γ′(a, ζ

′,Θ(ν−1))
]

+
∑

γ′<0

f γ
′

∫

−r

K(ζ, ζ ′)
[
Xsf
γ′(a, ζ

′,Θ(ν))− Xsf
γ′(a, ζ

′,Θ(ν−1)
]
∥∥∥∥∥

≤ 1

4π

∥∥∥∥∥
∑

γ′>0

f γ
′

∫

r

K(ζ, ζ ′)
∣∣Xsf

γ′(a, ζ
′, θ)
∣∣
∣∣∣eiΘ

(ν)

γ′ − e
iΘ

(ν−1)

γ′

∣∣∣
∥∥∥∥∥

+
1

4π

∥∥∥∥∥
∑

γ′<0

f γ
′

∫

r

K(ζ, ζ ′)
∣∣Xsf

γ′(a, ζ
′, θ)
∣∣
∣∣∣eiΘ

(ν)

γ′ − e
iΘ

(ν−1)

γ′

∣∣∣
∥∥∥∥∥

As in the proof of Lemma 5.1.1, we can move the integrals to the rays ℓγ′

introducing an arbitrary small contribution from the residues. The differences

of the form
∣∣∣eiΘ

(ν)

γ′ − e
iΘ

(ν−1)

γ′

∣∣∣

can be expressed in terms of
∥∥Θ(ν) −Θ(ν−1)

∥∥ by (5.47).

The sum of the resulting integrals can be made arbitrarily small if R is

big by a saddle point analysis as from (5.28) onwards. By (5.47):

∥∥Θ(ν+1) −Θ(ν)
∥∥ < const

∥∥∥∥∥
∑

γ′

f γ
′

e(−2πR+δ)|Zγ′ |

∥∥∥∥∥
∥∥Θ(ν) −Θ(ν−1)

∥∥ ,

By making R big, we get the desired contraction in X and the convergence is

proved.

The holomorphic properties of Θ on ζ are clear since Θ solves the inte-

gral equation (5.12) and the right side of it is piecewise holomorphic, regardless

of the integrand.
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Finally, by Lemma 5.1.2, {DβΘ(ν)} is an equicontinuous and uniformly

bounded family on compact setsK for any differential operatorDβ as in (5.38).

By Arzela-Ascoli, a subsequence converges uniformly and hence its limit is of

type Ck for any k. Since we just showed that Θ(ν) converges, this has to be the

limit of any subsequence. Thus such limit Θ must be of type C∞ on Uα × T,

as claimed.

Remark 5.1.1. Our construction used integrals along a fixed admissible pair

r,−r and our Stokes factors are concatenation of the Stokes factors in [7].

Thus, the coefficients f γ
′
are different here, but they are still obtained by

power series expansion of the explicit Stokes factor. In particular, it may not

be possible to express

f γ
′

= cγ′γ
′

for some constant cγ′. For instance, in the pentagon, wall-crossing type I, we

have, for 0 ≤ j ≤ i and γ′ = γie+jm:

f γ
′

=
(−1)j

(
i
j

)

i2
γie.

Because of this, we didn’t use the Cauchy-Schwarz property of the norm in Γ

in the estimates above as in [7]. Nevertheless, the tameness condition on the

Ω(γ′, a) invariants still give us the desired contraction.

Observe that, since we used admissible rays, the Stokes matrices don’t

change at the walls of marginal stability and we were able to treat both sides

of the wall indistinctly. Thus, the solution to (5.12) Θ is smooth across the

wall.
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Let’s reintroduce the solutions in [7]. Denote by X(ν) the iterations in

the Riemann-Hilbert problem defined in [7]. That is, X(ν) = Xsf(Υ(ν)), where

Υ(0) = θ and

eiΥ
(ν+1)
γ = eiθγ exp

(
1

4πi

∑

γ′

cγ′ 〈γ, γ′〉
∫

ℓγ′

K(ζ, ζ ′)Xsf
γ′(a, ζ

′,Υ(ν))

)
,

for

cγ′ =
∑

n

Ω(γ′/n; a)

n2
.

In a patch Uα ⊂ B′ containing the wall of marginal stability, define the

admissible ray r as the ray where ℓe, ℓm (or ℓe, ℓ−m) collide. By our proof of

Lemma 5.1.1, X and Y differ only in a small sector in the ζ-plane bounded by

the ℓe, ℓm (ℓe, ℓ−m) rays, for a not in the wall. As a approaches the wall, such

a sector converges to the single admissible ray r. Thus, away from the ray

where the two BPS rays collide, the solutions X in [7] are continuous in a.

5.2 Extension to the bad fibers

At points a ∈ D where the bad fibers are, the generic picture for a

fixed value of ζ in B is a collection of rays {ℓγ : Ω(γ; u) 6= 0}. We will be

working in the case dimCB = 1 and Γ is a rank-2 lattice. Consider the case

of the Pentagon first. We can assume that the two bad fibers are at −2, 2 in

the complex u-plane. For almost all ζ ∈ P1, the BPS rays converge in a point

of the wall of marginal stability away from any bad fiber:

It is assumed that limu→2Zγ1 exists and it is nonzero. If we denote this
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Figure 5.11: For general ζ , there is only 1 pair of rays at each fiber

limit by c = |c|eiφ, then for ζ such that arg ζ → φ + π, the ray ℓγ1 emerging

from -2 approaches the other singular point u = 2 (see Figure 5.12).

Figure 5.12: The BPS rays in B nearly coalesce at the singular locus

When arg ζ = φ + π, the locus {u : Zγ(u)/ζ ∈ R−}, for some γ such

that Ω(γ; u) 6= 0 crosses u = 2. See Figure 5.13.

As ζ keeps changing, the rays leave the singular locus, but near u = 2,

the tags change due to the monodromy of γ1 around u = 2. Despite this
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Figure 5.13: For ζ in a special ray, the rays intersect u = 2

change of labels, near u = 2 only the rays ℓγ2 , ℓ−γ2 pass through this singular

point. See Figure 5.14

Figure 5.14: After the critical value of ζ , the rays leave u = 2 and their tags
change

In the general case of Figures 5.11, 5.12 or 5.14, the picture near u = 2

is like in the Ooguri-Vafa case, Figure 3.2.

In any case, because of the specific values of the invariants Ω, it is
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possible to analytically extend the function Xγ1 around u = 2. The global

jump coming from the rays ℓγ2 , ℓ−γ2 is the opposite of the global monodromy

coming from the Picard-Lefschetz monodromy of γ1 7→ γ1 − γ2 (see (2.3)).

Thus, it is possible to obtain a function X̃γ1 analytic on a punctured disk on

B′ near u = 2 extending Xγ1 .

From this point on, we use the original formulation of the Riemann-

Hilbert problem using BPS rays as in [7]. We also use a = Zγ2(u) to coordina-

tize a disk near u = 2, and we label {γ1, γ2} as {γe, γm} as in the Ooguri-Vafa

case. Recall that, to shorten notation, we write ℓe,Xe, etc. instead of ℓγe ,Xγe ,

etc.

By our work in the previous section, solutions Xγ (or, taking logs, Υγ) to

the Riemann-Hilbert problem are continuous at the wall of marginal stability

for all ζ except those in the ray ℓm = Zm/ζ ∈ R− = ℓe (to be expected by

the definition of the RH problem). We want to extend our solutions to the

bad fiber located at a = 0. We’ll see that to achieve this, it is necessary to

introduce new θ coordinates.

For convenience, we rewrite the integral formulas for the Pentagon in

terms of Υ as in [17]. We will only write the part in Bin, the Bout part is

similar.

Υe(a, ζ) = θe −
1

4π

{∫

ℓm

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

m(a, ζ
′,Υm)

]

−
∫

ℓ−m

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

−m(a, ζ
′,Υ−m)

]}
, (5.48)
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Υm(a, ζ) = θm +
1

4π

{∫

ℓe

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

e (a, ζ
′,Υe)

]

−
∫

ℓ−e

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

−e(a, ζ
′,Υ−e)

]}
(5.49)

By doing the iteration method:

Υ(ν+1)
e (a, ζ) = θe −

1

4π

{∫

ℓm

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

m(a, ζ
′,Υ(ν)

m )
]

−
∫

ℓ−m

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

−m(a, ζ
′,Υ

(ν)
−m)

]}
, (5.50)

Υ(ν+1)
m (a, ζ) = θm +

1

4π

{∫

ℓe

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

e (a, ζ
′,Υ(ν)

e )
]

−
∫

ℓ−e

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

−e(a, ζ
′,Υ

(ν)
−e)
]}

(5.51)

We can focus only on the integrals above, so write Υ
(ν)
γ (a, ζ) = θγ +

1

4π
Φ

(ν)
γ (a, ζ), for γ ∈ {γe, γm}. To obtain the right gauge transformation of

the torus coordinates θ, we’ll split the integrals above into four parts and then

we’ll show that two of them define the right change of coordinates (in Bin,

and a similar transformation for Bout) that simplify the integrals and allow an

extension to the singular fiber.

As preparation, we need to check a “reality condition”, which expresses

a symmetry in the behavior of the complexified coordinates Υ.

Lemma 5.2.1. Υ
(ν)
m (a, ζ) = Υ

(ν)
m

(
a,−1/ζ

)
(resp. Υ

(ν)
e ) for all ν and a 6= 0. In

particular, letting ν → ∞, the same holds for the actual solution Υ discussed

in the previous section.

81



Proof. Let ζ = teiϕ not in any of the rays where Υm jumps. If ν = 0, Υ(0) = θ,

real and independent of ζ , so the statement is true in this case. Assuming this

result for ν, we show it for ν + 1. It suffices to prove this for the corrections

Φ(ν+1). For the proof only, parametrize ℓe by se
iρ. For the magnetic corrections

in the “inside” part of the wall of marginal stability we have:

Φ
(ν+1)
m (a, ζ) = Φ

(ν+1)
m (a, teiϕ)

=

∫

ℓe

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

e (a, ζ
′,Υ

(ν)
e )
]

−
∫

ℓ−e

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

−e(a, ζ
′,Υ

(ν)
−e)
]

=

∫ ∞

0

ds

s

seiρ + teiϕ

seiρ − teiϕ
log
[
1− Xsf

e (a, se
iρ,Υ

(ν)
e (a, seiρ))

]

−
∫ ∞

0

ds

s
· −se

iρ + teiϕ

−seiρ − teiϕ
log
[
1− Xsf

−e(a,−seiρ,Υ(ν)
−e(a,−seiρ))

]

=

∫ ∞

0

ds

s

se−iρ + te−iϕ

se−iρ − te−iϕ
log
[
1− Xsf

e (a, se
iρ,Υ

(ν)
e (a, seiρ))

]

−
∫ ∞

0

ds

s
· −se

−iρ + te−iϕ

−se−iρ − te−iϕ
log
[
1− Xsf

−e(a,−seiρ,Υ(ν)
−e(a,−seiρ))

]

=

∫ ∞

0

ds

s

seiϕ + teiρ

seiϕ − teiρ
log
[
1− Xsf

e (a, se
iρ,Υ

(ν)
e (a, seiρ))

]

−
∫ ∞

0

ds

s

seiϕ − teiρ

seiϕ + teiρ
log
[
1− Xsf

−e(a,−seiρ,Υ(ν)
−e(a,−seiρ))

]

=

∫ ∞

0

ds

s

1
t
eiϕ + 1

s
eiρ

1
t
eiϕ − 1

s
eiρ

log
[
1− Xsf

e (a, se
iρ,Υ

(ν)
e (a, seiρ))

]

−
∫ ∞

0

ds

s

1
t
eiϕ − 1

s
eiρ

1
t
eiϕ + 1

s
eiρ

log
[
1− Xsf

−e(a,−seiρ,Υ(ν)
−e(a,−seiρ))

]

introducing the change of variables s 7→ 1
s
:

=

∫ ∞

0

ds

s

seiρ + −1
t
eiϕ

seiρ − −1
t
eiϕ

log

[
1− Xsf

−e

(
a,−1

s
eiρ,Υ

(ν)
−e

(
a,−1

s
eiρ
))]
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−
∫ ∞

0

ds

s
· −se

iρ + −1
t
eiϕ

−seiρ − −1
t
eiϕ

log

[
1− Xsf

e

(
a,

1

s
eiρ,Υ

(ν)
e

(
a,

1

s
eiρ
))]

by the definition of Xsf and since the lemma is assumed true for ν:

=

∫ ∞

0

ds

s

seiρ + −1
t
eiϕ

seiρ − −1
t
eiϕ

log
[
1− Xsf

e

(
a, seiρ,Υ(ν)

e

(
a, seiρ

))]

−
∫ ∞

0

ds

s
· −se

iρ + −1
t
eiϕ

−seiρ − −1
t
eiϕ

log
[
1− Xsf

−e(a,−seiρ,Υ
(ν)
−e(a,−seiρ))

]

= Φ(ν+1)
m

(
a,−1

t
eiϕ
)

= Φ(ν+1)
m

(
a,−1/ζ

)
.

The proof for Φ
(ν+1)
e is analogous. Since we only used the symmetry between

pairs {γ,−γ} and since by assumption Ω(γ; a) = Ω(−γ; a), the theorem also

holds in the region Bout.

If we write as Υ
(ν)
0 (resp. Υ

(ν)
∞ ) the asymptotic of this function as ζ → 0

(resp. ζ → ∞) so that

Υ
(ν)
0 = θ +

1

4π
Φ

(ν)
0 ,

for a suitable correction Φ
(ν)
0 . A similar equation holds for the asymptotic as

ζ → ∞. The following reality condition was stated in [17] without proof:

Lemma 5.2.2. Φ
(ν)
0 is imaginary for all ν. Consequently, Φ0 is also imagi-

nary.

Proof. This follows from Lemma 5.2.1 by letting ζ → 0.

Lemma 5.2.1 also shows that Φ0 = −Φ∞. This and Lemma 5.2.2 gives

the reality condition

Υ0 = Υ∞ (5.52)
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Instead of working with (5.51), we let Υ denote the solution of that

integral equation. We showed in section 5.1 that such solutions exist away

from a = 0. Plugin Υ in (5.51) and split the integrals into 4 parts as in

the beginning of this paper. For example, if we denote by ζe := −a/|a|, the

intersection of the unit circle with the ℓe ray, then

∫

ℓe

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1− Xsf

e (a, ζ
′,Υe)

)
=

−
∫ ζe

0

dζ ′

ζ ′
log
(
1− Xsf

e (a, ζ
′,Υe)

)
+

∫ ζe∞

ζe

dζ ′

ζ ′
log
(
1− Xsf

e (a, ζ
′,Υe)

)

+

∫ ζe

0

2dζ ′

ζ ′ − ζ
log
(
1− Xsf

e (a, ζ
′,Υe)

)
+

∫ ζe∞

ζe

2dζ ′
{

1

ζ ′ − ζ
− 1

ζ ′

}
log
(
1− Xsf

e (a, ζ
′,Υe)

)

(5.53)

We consider the first two integrals apart from the rest. If we take the

limit a→ 0 the exponential decay in Xsf
e :

exp

(
πRa

ζ ′
+ πRζ ′a

)

vanishes and the integrals are no longer convergent.

By combining the two integrals with their analogues in the ℓ−e ray we

obtain:

−
∫ ζe

0

dζ ′

ζ ′
log
(
1− Xsf

e (a, ζ
′,Υe)

)
+

∫ ζe∞

ζe

dζ ′

ζ ′
log
(
1− Xsf

e (a, ζ
′,Υe)

)

∫ −ζe

0

dζ ′

ζ ′
log
(
1− Xsf

e

−1
(a, ζ ′,−Υe)

)
−
∫ −ζe∞

−ζe

dζ ′

ζ ′
log
(
1− Xsf

e

−1
(a, ζ ′,−Υe)

)

(5.54)

The parametrization in the first pair of integrals is of the form ζ ′ = tζe, and

in the second pair ζ ′ = −tζe. Making the change of variables ζ ′ 7→ 1/ζ ′, we
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can pair up these integrals in a more explicit way as:

−
∫ 1

0

dt

t

{
log

[
1− exp

(
−πR|a|

(
1

t
+ t

)
+ iΥe(a,−tei arg a)

)]

+ log

[
1− exp

(
−πR|a|

(
1

t
+ t

)
− iΥe(a,

1

t
ei arg a)

)]}

+

∫ 1

0

dt

t

{
log

[
1− exp

(
−πR|a|

(
1

t
+ t

)
+ iΥe(a,−

1

t
ei arg a)

)]

+ log

[
1− exp

(
−πR|a|

(
1

t
+ t

)
− iΥe(a, te

i arg a)

)]}
(5.55)

By Lemma 5.2.1, the integrands come in conjugate pairs. Therefore, we can

rewrite (5.55) as:

−2

∫ 1

0

dt

t
Re

{
log

[
1− exp

(
−πR|a|

(
1

t
+ t

)
+ iΥ(ν−1)

e (a,−tei arg a)
)]

−

log

[
1− exp

(
−πR|a|

(
1

t
+ t

)
− iΥ(ν−1)

e (a, tei arg a)

)]}

= −2

∫ 1

0

dt

t
log

∣∣∣∣∣∣

1− exp
(
−πR|a| (t−1 + t) + iΥ

(ν−1)
e (a,−tei arg a)

)

1− exp
(
−πR|a| (t−1 + t)− iΥ

(ν−1)
e (a, tei arg a)

)

∣∣∣∣∣∣
(5.56)

Observe that (5.56) itself suggest the correct transformation of the θ

coordinates that fixes this. Indeed, for a fixed a 6= 0 and θe, let Q be the map

Q(θm) = θm + ψ(a, θ),

where

ψin(a, θ) =
1

2π

∫ 1

0

dt

t
log

∣∣∣∣
1− exp (−πR|a| (t−1 + t) + iΥe(a,−tei arg a))
1− exp (−πR|a| (t−1 + t)− iΥe(a, tei arg a))

∣∣∣∣

=
1

2π

∫ 1

0

dt

t
log

∣∣∣∣
1− [Xe] (−tei arg a)
1 − [X−e] (tei arg a)

∣∣∣∣ (5.57)
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for a ∈ Bin. For a ∈ Bout where the wall-crossing is of type I, let ϕ =

arg(Zγe+γm(a)), with ζ
′ = −teiϕ parametrizing the ℓe+m ray:

ψout(a, θ) =
1

2π

∫ 1

0

dt

t

{
log

∣∣∣∣
1− exp (−πR|a| (t−1 + t) + iΥe(a,−tei arg a))
1− exp (−πR|a| (t−1 + t)− iΥe(a, tei arg a))

∣∣∣∣

+ log

∣∣∣∣
1− exp (−πR|Zγe+γm | (t−1 + t) + iΥe+m(a,−tei argϕ))
1− exp (−πR|Zγe+γm | (t−1 + t)− iΥe+m(a, tei argϕ))

∣∣∣∣
}

=
1

2π

∫ 1

0

dt

t

{
log

∣∣∣∣
1− [Xe] (−tei arg a)
1 − [X−e] (tei arg a)

∣∣∣∣+ log

∣∣∣∣
1− [Xe+m] (−teiϕ)
1− [X−e−m] (teiϕ)

∣∣∣∣
}

(5.58)

Similarly, for wall-crossing of type II, ϕ = arg(Zγ−e+γm(a)), with ζ
′ =

−teiϕ for the ℓ−e+m ray:

ψout(a, θ) =
1

2π

∫ 1

0

dt

t

{
log

∣∣∣∣
1− exp (−πR|a| (t−1 + t) + iΥe(a,−tei arg a))
1− exp (−πR|a| (t−1 + t)− iΥe(a, tei arg a))

∣∣∣∣

+ log

∣∣∣∣∣
1− exp

(
−πR|Zγ−e+γm | (t−1 + t) + iΥ−e+m(a,−tei argϕ)

)

1− exp
(
−πR|Zγ−e+γm | (t−1 + t)− iΥ−e+m(a, tei argϕ)

)
∣∣∣∣∣

}

=
1

2π

∫ 1

0

dt

t

{
log

∣∣∣∣
1− [Xe] (−tei arg a)
1− [X−e] (tei arg a)

∣∣∣∣+ log

∣∣∣∣
1− [X−e+m] (−teiϕ)
1− [Xe−m] (teiϕ)

∣∣∣∣
}

(5.59)

As a approaches the wall of marginal stability W , arg a→ ϕ. We need

to show the following

Lemma 5.2.3. The two definitions ψin and ψout coincide at the wall of marginal

stability.

Proof. First let a approach W from the “in” region, so we’re using definition

(5.57). Start with the pair of functions (Xe,Xm) in the ζ-plane and let X̃e

denote the analytic continuation of Xe. See Figure 5.15. When they reach the
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ℓe ray, Xe jumped to Xe(1 − Xm) by (5.6). Thus Xe = X̃e(1 − Xm) along the

ℓe ray.

Figure 5.15: Jump of Xe

Therefore,

ψin(a, θ) =
1

2π

∫ 1

0

dt

t
log

∣∣∣∣
1− [Xe(1− Xm)] (−tei arg a)
1− [X−e(1− Xm)−1] (tei arg a)

∣∣∣∣

Now starting from the “out” region, and focusing on the wall-crossing

of type I for the moment, we start with the pair (Xe,Xm) as before. This time,

Xe at the ℓe ray has not gone to any jump yet. See Figure 5.16. Only Xe+m

undergoes a jump at the ℓe+m ray and it is of the form Xe+m 7→ Xe+m(1−Xe)
−1.

When a hits the wall W , ϕ = arg a and the integrals are taken over the

same ray. Thus, we can combine the logs and obtain:

ψout(a, θ) =
1

2π

∫ 1

0

dt

t

{
log

∣∣∣∣
1− [Xe] (−tei arg a)
1 − [X−e] (tei arg a)

∣∣∣∣+ log

∣∣∣∣
1− [Xe+m(1− Xe)

−1] (−tei arg a)
1− [X−e−m(1− Xe)] (tei arg a)

∣∣∣∣
}
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Figure 5.16: Only Xe+m has a jump

=
1

2π

∫ 1

0

dt

t
log

∣∣∣∣
1− [Xe(1− Xm)] (−tei arg a)
1− [X−e(1− Xm)−1] (tei arg a)

∣∣∣∣ (5.60)

and the two definitions coincide. For the wall-crossing of type II the proof is

entirely analogous.

Theorem 5.2.4. Q is a reparametrization in θm; that is, a diffeomorphism of

R/2πZ.

Proof. To show that Q is injective, it suffices to show that
∣∣∣ ∂ψ∂θm

∣∣∣ < 1. We will

show this in the Bin region. The proof for the Bout region is similar.

To simplify the calculations, write

ψ(a, θ) = 2

∫ 1

0

dt

t
log

∣∣∣∣
1− Cf(θm)

1− Cg(θm)

∣∣∣∣ (5.61)
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for suitable functions f, g (they both depend on other parameters, but they’re

fixed here) and a factor C of the form

C = exp
(
−πR|a|(t−1 + t)

)

Now take partials in both sides of (5.61) and bring the derivative inside the

integral. After an application of the chain rule we get the estimate

∣∣∣∣
∂ψ

∂θm

∣∣∣∣ ≤ 2

∫ 1

0

dt

t
|C|
{
|f ||∂Υe(t)

∂θm
|

|1− Cf | +
|g||∂Θe(−t)

∂θm
|

|1− Cg|

}

Since Υ ∈ X ∗,
∣∣∣∂Υ

(ν)
e

∂θm

∣∣∣ < 1. By Lemma 5.1.1, we can bound |f |, |g| by 2. The

part C has exponential decay so if R is big enough we can bound the above

by 1 and injectivity is proved. For surjectivity, just observe that ψ(θm+2π) =

ψ(θm), so Q(θm + 2π) = θm + 2π.

With respect to the new coordinate θ′m, the functions Υe,Υm satisfy

the equation:

Υe(a, ζ) = θe +
1

4π

∑

γ′

Ω(γ′; a) 〈γe, γ′〉
∫

γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
[
1− Xsf

γ′(a, ζ
′,Υγ′)

]

(5.62)

Υm(a, ζ) = θ′m +
1

2π

∑

γ′

Ω(γ′; a) 〈γm, γ′〉
{ ∫ b′

0

dζ ′

ζ ′ − ζ
log
[
1− Xsf

γ′(a, ζ
′,Υγ′)

]
+

∫ b′∞

b′

ζdζ ′

ζ ′(ζ ′ − ζ)
log
[
1− Xsf

γ′(a, ζ
′,Υγ′)

]
}
,

(5.63)

89



for b′ the intersection of the unit circle with the ℓγ′ ray. The Ω(γ′; a) jump at

the wall, but in the Pentagon case, the sum is finite.

In order to show that Υ converges to some function, even at a = 0,

observe that the integral equations in (5.62) and (5.63) still make sense at

the singular fiber, since in the case of (5.62), lima→0 Zm = c 6= 0 and the

exponential decay is still present, making the integrals convergent. In the case

of (5.63), the exponential decay is gone, but the different kernel makes the

integral convergent, at least for ζ ∈ C×. The limit function lima→0Υ should

be then a solution to the integral equations obtained by recursive iteration, as

in Section 5.1.

As we’ve seen in the Ooguri-Vafa case, we expect our solutions lima→0Υ

to be unbounded in the ζ variable. Define a Banach space X as the completion

under the sup norm of the space of functions Φ : C× × T× U → C2n that are

piecewise holomorphic on C×, smooth on T × U , for U an open subset of B

containing 0 and such that (5.62), (5.63) hold.

Like in the Ooguri-Vafa case, let a → 0 fixing arg a. We will later get

rid of this dependence on arg a with another gauge transformation of θm. The

following estimates on Υ(ν) will clearly give us that the sequence converges to

some limit Υ(ν).

Lemma 5.2.5. In the Pentagon case, at the bad fiber a = 0:

Υ(ν+1)
e = Υ(ν)

e +O
(
e−2πνR|Zm|

)
, ν ≥ 2 (5.64)

Υ(ν+1)
m = Υ(ν)

m +O
(
e−2πνR|Zm|

)
, ν ≥ 1 (5.65)
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Proof. As before, we prove this by induction. Note that Υ
(1)
m = ΥOV, the

extension of the Ooguri-Vafa case obtained in (3.10), and Υ
(1)
m differs consid-

erably from θm because of the log ζ term. Hence the estimates cannot start at

ν = 0. Because of this reason, Υ
(2)
e differs considerably from Υ

(1)
e since this is

the first iteration where Υ
(1)
m is considered.

Let ν = 1. Since the integral equations for Υe didn’t change in this

special case, we can still perform a saddle point analysis and obtain as in (5.31)

for the general case:

Υ(1)
e = θe +

∑

γ′

Ω(γ′, a) 〈γe, γ′〉
e−2πR|Zγ′ |

4πi
√
R|Zγ′|

ζγ′ + ζ

ζγ′ − ζ
eiθγ′ +O

(
e−2πR|Zγ′ |

R

)

(5.66)

where ζγ′ = − Zγ′

|Zγ′ |
is the saddle point for the integrals in (5.62), and ζ is away

from a small neighborhood of ζγ′. Note that there is no divergence if ζ → 0 or

ζ → ∞. As before, if ζ is in such neighborhood, we can deform the paths of

integration slightly and obtain similar estimates, except for the
√
R terms in

the denominator (see (5.33)).

In any case, for the Pentagon, the γ′ in (5.66) are only γ±m, γ±e+m,

depending on the side of the wall of marginal stability. At a = 0, Ze+m = Zm,

so (5.66) gives that log[1−eiΥ(1)
e ] = log[1−eiθe ]+O(e−2πR|Zm|) along the ℓe ray,

and a similar estimate holds for log[1− e−iΥ
(1)
e ] along the ℓ−e ray. Plugging in

this in (5.33), we get (5.65) for ν = 1.

For general ν, a saddle point analysis on Υ
(ν)
e can still be performed
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and obtain as in (5.66):

Υ(ν+1)
e = θe+

e−2πR|Zm|

4πi
√
R|Zm|

{
ζm + ζ

ζm − ζ
eiΥ

(ν)
m (ζm) − ζm − ζ

ζm + ζ
e−iΥ

(ν)
m (−ζm)

}
+O

(
e−2πR|Zγ′ |

R

)
,

(5.67)

from one side of the wall. On the other side (for type I) it will contain the

extra terms

e−2πR|Zm|

4πi
√
R|Zm|

{
ζm + ζ

ζm − ζ
ei(Υ

(ν)
m (ζm)+Υ

(ν)
e (ζm)) − ζm − ζ

ζm + ζ
e−i(Υ

(ν)
m (−ζm)−Υ

(ν)
e (−ζm))

}
.

(5.68)

Observe that for this approximation we only need Υ(ν) at the point ζm. By

the previous part, for ν = 2,

eiΥ
(2)
m (ζm) = eiΥ

(1)
m (ζm)

(
1 +O

(
e−2πR|Zm|

))

Thus, for ν = 2,

Υ(3)
e = θe +

e−2πR|Zm|

4πi
√
R|Zm|

{
ζm + ζ

ζm − ζ
eiΥ

(1)
m (ζm)

(
1 +O

(
e−2πR|Zm|

))

− ζm − ζ

ζm + ζ
e−iΥ

(1)
m (−ζm)

(
1 +O

(
e−2πR|Zm|

))}
+O

(
R1/2

)

= Υ(2)
e +O

(
e−4πR|Zm|

)
(5.69)

and similarly in the other side of the wall. For general ν, the same arguments

show that (5.64), (5.65) hold after the appropriate ν.

These estimates show the following: for fixed R, there is a small neigh-

borhood V of θe = 0 such that, away from V , the corrections Υ
(ν)
e to θe are

sufficiently small so that Υ
(ν)
e does not intersect the negative imaginary axis
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for any ζ and any a in the neighborhood U where the equations (5.64), (5.65)

make sense. Thus it is still possible to define such integral equations since

we can choose the principal branch of log[1 − X
(ν)
e ]. In the next chapter we’ll

give a heuristic argument based on numerical evidence as to how define an

appropriate branch of log[1− X
(ν)
e ] inside V .

There is still one problem: the limit of X̃m we obtained as a→ 0 for the

analytic continuation of Xm was only along a fixed ray arg a = constant. To get

rid of this dependence, it is necessary to perform another gauge transformation

on the torus coordinates θ. For simplicity, we restrict to the Pentagon case.

Let a → 0 fixing arg a. Let ζγ denote Zγ/|Zγ|. In particular, ζe = a/|a| and

this remains constant since we’re fixing arg a. Also, ζm = Zm/|Zm| and this is

independent of arg a since Zm has a limit as a→ 0. The following lemma will

allow us to obtain the correct gauge transformation.

Lemma 5.2.6. For the limit X̃m

∣∣∣
a=0

obtained above, its imaginary part is

independent of the chosen ray arg a = c along which a→ 0.

Proof. Let Υ̃m denote the analytic continuation of Υm yielding X̃m. Start with

a fixed value arg a ≡ ρ0, for ρ0 different from argZm(0), arg(−Zm(0)). For

another ray arg a ≡ ρ, we compute Υm| a=0
arg a=ρ

− Υm| a=0
arg a=ρ0

(without analytic

continuation for the moment).

The integrals in (5.63) are of two types. One type is of the form

∫ ζ±e

0

dζ ′

ζ ′ − ζ
log
[
1− eiΥ±e(ζ′)

]
+

∫ ζ±e∞

ζ±e

ζdζ ′

ζ ′(ζ ′ − ζ)
log
[
1− eiΥ±e(ζ′)

]
(5.70)
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The other type appears only in the outside part of the wall of marginal stability.

Since Z : Γ → C is a homomorphism, Zγe+γm = Zγe + Zγm . At a = 0,

Ze = a = 0, so Ze+m = Zm. Hence, ℓm = ℓe+m at the singular fiber. This

second type of integral is thus of the form

∫ ζ±m

0

dζ ′

ζ ′ − ζ
log
[
1− eiΥ±(e+m)(ζ

′)
]
+

∫ ζ±m∞

ζ±e

ζdζ ′

ζ ′(ζ ′ − ζ)
log
[
1− eiΥ±(e+m)(ζ

′)
]

(5.71)

Since the ℓm stays fixed at a = 0 independently of arg a, (5.71) does not depend

of arg a. We should focus then only on integrals of the type (5.70). For a

different arg a, ζe changes to another point ζ̃e in the unit circle. See Figure

5.17. The paths of integration change accordingly. We have two possible

outcomes: either ζ lies outside the sector determined by the two paths, or ζ

lies inside the region.

Figure 5.17: As arg a changes, the paths of integration change
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In the first case (ζ1 on Figure 5.17), the integrands

log[1− eiΥ±e(ζ′)]

ζ ′ − ζ
,

ζ log[1− eiΥ±e(ζ′)]

ζ ′(ζ ′ − ζ)
(5.72)

are holomorphic on ζ ′ in the sector between the two paths. By Cauchy’s

formula, the difference between the two integrals is just the integration along

a path C±e between the two endpoints ζ±e, ζ̃±e. If f(s) parametrizes the path

Ce, let C−e = −1/f(s). The orientation of Ce in the contour containing ∞ is

opposite to the contour containing 0. Similarly for C−e. Thus, the difference of

Υm for these two values of arg a is the integral along Ce, C−e of the difference

of kernels (5.72), namely:

∫

Ce

dζ ′

ζ ′
log[1− eiΥe(ζ′)]−

∫

C−e

dζ ′

ζ ′
log[1− e−iΥe(ζ′)] (5.73)

By symmetry of Ce, C−e and the reality condition in Lemma 5.2.1, the

second integral is the conjugate of the first one. Thus (5.73) is only real.

When ζ hits one of the contours, ζ coincides with one of the ℓe or ℓ−e

rays, for some value of arg a. The contour integrals jump since ζ lies now inside

the contour (ζ2 in Figure 5.17). The jump is by the residue of the integrands

(5.72). This gives the jump of Xm that the analytic continuation around a = 0

cancels. Therefore, only the real part of Υm depends on arg a.

By the previous lemma, Υ̃m

∣∣∣
a=0

arg a=ρ

− Υ̃m

∣∣∣
a=0

arg a=ρ0

is real and is given by

(5.73). Define then a new gauge transformation:

θ̃m = θ′m − 1

2π

{∫

Ce

dζ ′

ζ ′
log[1− eiΥe(ζ′)] +

∫

C−e

dζ ′

ζ ′
log[1− e−iΥe(ζ′)]

}
(5.74)
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This eliminates the dependence on arg a for the limit X̃m

∣∣∣
a=0

and we

thus obtain a well defined function X̃m at the singular fiber.

5.3 Extension of the derivatives

So far we were able to extend the functions Xe, X̃m. Unfortunately, we

can no longer bound uniformly on ν the derivatives of X̃m near a = 0, so the

Arzela-Ascoli arguments no longer work here. Since there’s no difference on

the definition of Xe at a = 0 from that of the regular fibers, this function

extends smoothly to a = 0.

We have to obtain the extension of all derivatives of X̃m directly from

its definition. It suffices to extend the derivatives of Xm only, as the analytic

continuation doesn’t affect the symplectic form ̟(ζ) (see below).

Lemma 5.3.1. logXm extends smoothly to a = 0, for θe bounded away from

0.

Proof. For convenience, we rewrite Υm with the final magnetic coordinate θ̃m:

Υm = θ̃m +
1

2π

{∫

Ce

dζ ′

ζ ′
log[1− eiΥe(ζ′)]−

∫

C−e

dζ ′

ζ ′
log[1− e−iΥe(ζ′)]

}

+
1

2π

∑

γ′

Ω(γ′; a) 〈γm, γ′〉
{∫ ζγ′

0

dζ ′

ζ ′ − ζ
log
[
1− Xsf

γ′(a, ζ
′,Υγ′)

]
+

∫ ζγ′∞

ζγ′

ζdζ ′

ζ ′(ζ ′ − ζ)
log
[
1− Xsf

γ′(a, ζ
′,Υγ′)

]
}

where eiΥe(ζ′) is evaluated only at a = 0. For γ′ of the type ±γe± γm, Xγ′ and
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its derivatives still have exponential decay along the ℓγ′ ray, so these parts in

Υm extend to a = 0 smoothly. It thus suffices to extend only

Υm = θ̃m +
1

2π

{∫

Ce

dζ ′

ζ ′
log[1− eiΥe(ζ′)]−

∫

C−e

dζ ′

ζ ′
log[1− e−iΥe(ζ′)]

+

∫ ζe

0

dζ ′

ζ ′ − ζ
log
[
1− Xsf

e (a, ζ
′,Υe)

]
+

∫ ζe∞

ζe

ζdζ ′

ζ ′(ζ ′ − ζ)
log
[
1− Xsf

e (a, ζ
′,Υe)

]

−
∫ −ζe

0

dζ ′

ζ ′ − ζ
log
[
1− Xsf

e

−1
(a, ζ ′,−Υe)

]
−
∫ −ζe∞

−ζe

ζdζ ′

ζ ′(ζ ′ − ζ)
log
[
1− Xsf

e

−1
(a, ζ ′,−Υe)

]}

(5.75)

together with the semiflat part πRZm

ζ
+ πRζZm, which we assume is as in the

Generalized Ooguri-Vafa case, namely:

Xm = exp

(−iR
2ζ

(a log a− a+ f(a)) + iΥm +
iζR

2
(a log a− a+ f(a))

)

(5.76)

for a holomorphic function f near a = 0 and such that f(0) 6= 0. The deriva-

tives of the terms involving f(a) clearly extend to a = 0, so we focus on the

rest, as in §4.1.1.

We show first that
∂ logXm

∂θe
,
∂ logXm

∂θm
extend to a = 0. Since there

is no difference in the proof between electric or magnetic coordinates, we’ll

denote by ∂θ a derivative with respect to any of these two variables.

We have:

∂

∂θ
logΥm =

−i
2π

{∫

Ce

dζ ′

ζ ′
eiΥe(ζ′)

1− eiΥe(ζ′)

∂Υe(ζ
′)

∂θ
−
∫

C−e

dζ ′

ζ ′
e−iΥe(ζ′)

1− e−iΥe(ζ′)

∂Υe(ζ
′)

∂θ

97



+

∫ ζe

0

dζ ′

ζ ′ − ζ

Xe(ζ
′)

1− Xe(ζ ′)

∂Υe(ζ
′)

∂θ
+

∫ ζe∞

ζe

ζdζ ′

ζ ′(ζ ′ − ζ)

Xe(ζ
′)

1− Xe(ζ ′)

∂Υe(ζ
′)

∂θ

+

∫ −ζe

0

dζ ′

ζ ′ − ζ

X−1
e (ζ ′)

1− X−1
e (ζ ′)

∂Υe(ζ
′)

∂θ
+

∫ ζe∞

−ζe

ζdζ ′

ζ ′(ζ ′ − ζ)

X−1
e (ζ ′)

1− X−1
e (ζ ′)

∂Υe(ζ
′)

∂θ

}

when a → 0,
Xe(ζ

′)

1− Xe(ζ ′)
→ eiΥe(ζ′)

1− eiΥe(ζ′)
. The integrals along Ce and

C−e represent a difference of integrals along the contour in the last integrals

and a fixed contour, as in Figure 5.17. Thus, when a = 0,

2πi
∂

∂θ
logΥm

∣∣∣∣
a=0

=

∫ b

0

dζ ′

ζ ′ − ζ

Xe(ζ
′)

1− Xe(ζ ′)

∂Υe(ζ
′)

∂θ
+

∫ b∞

b

ζdζ ′

ζ ′(ζ ′ − ζ)

Xe(ζ
′)

1− Xe(ζ ′)

∂Υe(ζ
′)

∂θ

+

∫ −b

0

dζ ′

ζ ′ − ζ

X−1
e (ζ ′)

1− X−1
e (ζ ′)

∂Υe(ζ
′)

∂θ
+

∫ −b∞

−b

ζdζ ′

ζ ′(ζ ′ − ζ)

X−1
e (ζ ′)

1− X−1
e (ζ ′)

∂Υe(ζ
′)

∂θ

}

for a fixed point b in the unit circle, independent of a. The integrals are well

defined and thus the left side has an extension to a = 0.

Now, for the partials with respect to a, a, there are two different types

of dependence: one is the dependence of the contours, the other is the depen-

dence of the integrands. The former dependence is only present in (5.75), as

the contours in Figure 5.17 change with arg a. A simple application of the

Fundamental Theorem of Calculus in each integral in (5.75) gives that this

change is:

−2πi
∂

∂ arg a
log Υm

∣∣∣∣
a=0

= log[1− e−iΥe(ζe)]− log[1− e−iΥe(ζe)]

− log[1− e−iΥe(ζe)] + log[1− e−iΥe(ζe)] = 0,
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where we again used the fact that the integrals along Ce and C−e represent the

difference between the integrals in the other pairs with respect to two different

rays, one fixed. Compare this with (4.7), where we obtained this explicitly.

Then there is the dependence on a, a on the integrands and the semi-

flat part. Focusing on a only, we take partials on logXm in (5.76) (ignoring

constants and parts that clearly extend to a = 0). This is:

log a

ζ
+

∫ ζe

0

dζ ′

ζ ′(ζ ′ − ζ)

Xe

1− Xe
+

∫ −ζe

0

dζ ′

ζ ′(ζ ′ − ζ)

X−1
e

1− X−1
e

(5.77)

This is the equivalent of (4.8) in the general case. In the limit a→ 0, we

can do an asymptotic expansion of
eiΥe(ζ′)

1− eiΥe(ζ′)
=

eiΥe(0)

1− eiΥe(0)
+ O(ζ ′). Clearly

when we write this expansion in (5.77), the only divergent term at a = 0 is

the first degree approximation in the integral. Thus, we can focus on that

and assume that the
Xe

1− Xe
(resp.

X−1
e

1− X−1
e

) factor is constant. If we do the

partial fraction decomposition, we can run the same argument as in Eqs. (4.9)

up to (4.15) and obtain that (5.77) is actually 0 at a = 0. The only identity

needed is

1

1− eiΥe(0)
+

1

1− e−iΥe(0)
= 1

The argument also works for the derivative with respect to a, now with

an asymptotic expansion around ∞ of Υe.

This shows that X̃m extends in a C1 way to a = 0. For the C∞ ex-

tension, derivatives with respect to any θ coordinate work in the same way,
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all that was used was the specific form of the contours Ce, C−e. The same

thing applies to the dependence on the contours Ce, C−e. For derivatives with

respect to a, a in the integrands, we can again do an asymptotic expansion of

Υe at 0 or ∞ and compare it to the asymptotic of the corresponding derivative

of a log a− a as a→ 0.

Nothing we have done in this chapter is particular of the Pentagon

example. We only needed the specific values of Ω(γ; u) given in (5.1) to obtain

the Pentagon identities at the wall and to perform the analytic continuation

of Xm around u = 2. For any integrable systems data as in Chapter 2 with

suitable invariants Ω(γ; u) allowing the wall-crossing formulas and analytic

continuation, we can do the same isomonodromic deformation of putting all

the jumps at a single admissible ray, perform saddle-point analysis and obtain

the same extensions of the Darboux coordinates Xγ . This finishes the proof of

Theorem 2.2.2.

The extension of the holomorphic symplectic form̟(ζ) is now straight-

forward. We proceed as in [7] by first writing:

̟(ζ) = − 1

4π2R

dXe

Xe

∧ dXm

Xm

Where we used the fact that the jumps of the functions Xγ are via the

symplectomorphisms Kγ′ of the complex torus Ta (see (2.5)) so ̟(ζ) remains

the same if we take Xm or its analytic continuation X̃m.
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We need to show that ̟(ζ) is of the form

− i

2ζ
ω+ + ω3 −

iζ

2
̟− (5.78)

that is, ̟(ζ) must have simple poles at ζ = 0 and ζ = ∞, even at the singular

fiber where a = 0.

By definition, Xe = exp(πRa
ζ

+ iΥe + πRζa). Thus

dXe(ζ)

Xe(ζ)
=
πRda

ζ
+ idΥe(ζ) + πRζda

By (5.62), and since lima→0 Zm 6= 0, Xm (resp. X−m) of the form

exp(πRZm(a)
ζ

+ iΥm+ πRζZm(a)) still has exponential decay when ζ lies in the

ℓm ray (resp. ℓ−m), even if a = 0. The differential dΥe(ζ) thus exists for any

ζ ∈ P1 since the integrals defining it converge for any ζ .

As in [7], we can write

dXe

Xe
∧ dXm

Xm
=
dXe

Xe
∧
(
dXsf

m

Xsf
m

+ I±

)
,

for I± denoting the corrections to the semiflat function. By the form of Xsf =

exp(πRZm(a)
ζ

+ iθm + πRζZm(a)), the wedge involving only the semiflat part

has only simple poles at ζ = 0 and ζ = ∞, so we can focus on the corrections.

These are of the form

dXe(ζ)

Xe(ζ)
∧ I± =

−i
2π

{∫ ζe

0

dζ ′

ζ ′ − ζ

Xe(ζ
′)

1− Xe(ζ ′)

dXe(ζ)

Xe(ζ)
∧ dXe(ζ

′)

Xe(ζ ′)

+

∫ ζe∞

ζe

ζdζ ′

ζ ′(ζ ′ − ζ)

Xe(ζ
′)

1− Xe(ζ ′)

dXe(ζ)

Xe(ζ)
∧ dXe(ζ

′)

Xe(ζ ′)
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+

∫ −ζe

0

dζ ′

ζ ′ − ζ

X−1
e (ζ ′)

1− X−1
e (ζ ′)

dXe(ζ)

Xe(ζ)
∧ dXe(ζ

′)

Xe(ζ ′)

+

∫ −ζe∞

−ζe

ζdζ ′

ζ ′(ζ ′ − ζ)

X−1
e (ζ ′)

1− X−1
e (ζ ′)

dXe(ζ)

Xe(ζ)
∧ dXe(ζ

′)

Xe(ζ ′)

}

In the “inside” part of the wall of marginal stability. A similar equation

holds in the other side. We can simplify the wedge products above by taking

instead

dXe(ζ)

Xe(ζ)
∧
(
dXe(ζ)

Xe(ζ)
− dXe(ζ

′)

Xe(ζ ′)

)
= πR

[(
1

ζ
− 1

ζ ′

)
da+ (ζ − ζ ′)da

]
+i (dΦe(ζ)− dΦe(ζ

′))

(5.79)

Recall that Φe represents the corrections to θe, so Υe = θe+Φe. By §5.1,

Φe and dΦe are defined for ζ = 0 ζ = ∞ even if a = 0, since lima→0 Zm(a) 6= 0

and the exponential decay in Xsf
m still present guarantees convergence of the

integrals in 5.62. Hence, the terms involving dΦe(ζ)−dΦe(ζ ′) are holomorphic

for any ζ ∈ P1. It thus suffices to consider the other terms. After simplifying

the integration kernels, we obtain

πRda

ζ

∫ ζe

0

dζ ′

ζ ′
Xe(ζ

′)

1− Xe(ζ ′)
+ πRda

∫ ζe∞

ζe

dζ ′

(ζ ′)2
Xe(ζ

′)

1− Xe(ζ ′)

πRda

ζ

∫ −ζe

0

dζ ′

ζ ′
X−1
e (ζ ′)

1− X−1
e (ζ ′)

+ πRda

∫ −ζe∞

−ζe

dζ ′

(ζ ′)2
X−1
e (ζ ′)

1− X−1
e (ζ ′)

−πRda
∫ ζe

0

dζ ′
Xe(ζ

′)

1− Xe(ζ ′)
− πRζda

∫ ζe∞

ζe

dζ ′

ζ ′
Xe(ζ

′)

1− Xe(ζ ′)

−πRda
∫ ζe

0

dζ ′
X−1
e (ζ ′)

1− X−1
e (ζ ′)

− πRζda

∫ ζe∞

ζe

dζ ′

ζ ′
X−1
e (ζ ′)

1− X−1
e (ζ ′)
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The only dependence on ζ is in the factors ζ, 1/ζ . Thus ̟(ζ) has only

simple poles at ζ = 0 and ζ = ∞. This gives Theorem 2.2.3.
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Appendix 1

How to define the Darboux coordinates near

θe = 0

In the last chapter we constructed Darboux coordinates Xγ for the

Pentagon case. We saw that such coordinates extend to the singular fibers

where one Zγi = 0, for {γ1, γ2} a local basis of Γ, at least for θe bounded away

from 0. In this appendix we’ll give a heuristic argument for extending the

previous construction to the case θe close to 0.

The main obstacle is that for θe in a small neighborhood of 0, the

quantum corrections Υ
(ν)
e may hit 0 for some ζ , so the term log[1−Xe] in the

integral equations is not defined. Even if this is not the case, we have to make

sure a branch of log[1− Xe] can be defined uniformly.

First observe that by Lemma 5.2.2, at the singular fiber a = 0, Xe

cannot be 1 near ζ = 0 or ζ = ∞, so we won’t have issues there. Let ρm =

argZm(0). Numerical evidence shows that if ρm < arg a < ρm+π, 1−Xe(ζ
′) =

1−exp(iΥe(ζ
′) has negative imaginary part for ζ ′ along the path ℓe = −tei arg a.

See Figure 1.1. Thus, for this values of arg a, we can choose any branch of the

log with a cut in the closed upper half plane.

For ρm+π ≤ arg a <= ρm+2π, 1−exp(iΥe(ζ
′) jumps and it may hit 0
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Figure 1.1: 1− eiΥe for different values of arg a
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along the ℓe ray. Fortunately, for these values of arg a, the path where the Xe

jump can be deformed to a ray in a small sector centered at the ray ℓ forming

a right angle with ℓm as in Figure 1.2.

Figure 1.2: A small sector around ℓ

For θm = 0, Υe|ζ=0 = Υe|ζ=∞ and along ℓe, 1−exp(iΥe(ζ
′)) stays away

from 0 as Figure 1.3 shows. As θm goes from 0 to π, Υe|ζ=0 and Υe|ζ=∞ drift

apart and for θm in between, 1 − exp(iΥe(ζ
′) along ℓ may hit 0, as seen in

Figure 1.4.

Then as θm completes its cycle past π/2 until 2π, Υe|ζ=0 = Υe|ζ=∞

again and the behavior is mirrored in quadrant IV, as Figure 1.5

Note that by deforming the ray ℓ within the shadowed sector, we can

make that all the graphs of 1−eiΥe along this path avoid the positive imaginary

axis. Thus, it is now possible to choose a branch of log[1 − eiΥe ] that works
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Figure 1.3: 1− eiΥe at θm = 0

Figure 1.4: 1− eiΥe along ℓ for distinct 0 ≤ θm ≤ π
2
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Figure 1.5: 1− eiΥe along ℓ for distinct 0 ≤ θm ≤ 2π

for any value of arg a and θm near θe = 0.

By the definition of the integral equations (5.62), (5.63), if θe = 0,

then automatically X
(ν)
e = 1,X

(ν)
m = 0 for all ν and any θm, ζ at the singular

fiber a = Ze = 0. Since X in the Pentagon are XOV plus exponentially small

smooth corrections near a = 0, this gives solid evidence for Conjecture 2.2.4.

Note that, as before, the hyperkähler metric g looks like a factor of the Taub-

NUT metric gTaub-NUT plus smooth corrections.
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