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Sound reservoir management involves making decisions in the presence

of uncertainty and complexity. Because projects handled in the oil and gas

industry are often highly risky and uncertain, the decision-making methods

the geoscientists employ must be self-consistent, systematic, and defensible.

This dissertation addressed three example problems commonly encoun-

tered in reservoir management: water injection allocation optimization, hori-

zontal well refrac scheduling, and infill drilling scheduling. Solutions to each

problem employ different algorithms and data analytic techniques that allow

a coherent integration of uncertainty and decisions. The specific algorithms

and statistical tools used for each problem are provided below.

The solution to water injection allocation draws from simple models

as well as appropriate statistical methods. The capacitance-resistance model

(CRM) is used to model interactions between injectors and producers to help

vii



predict the reservoir’s fluid production response. The CRM is paired with

Koval’s K-Factor method to decouple oil and water from total fluid produc-

tion. The models are fitted using a bootstrapped dataset to generate a diverse

distribution of history matched solutions. Next, the best injection scheme

corresponding to each history matched model is determined using ensemble

optimization (EnOpt). Finally, a sampling algorithm called Thompson sam-

pling is called upon to determine the optimal injection scheme while reducing

the number of less promising simulations. This way, one can select the best

injection scheme that is robust to uncertainties in history matching while si-

multaneously minimizing the number of simulation runs where it is unneces-

sary. Validation against a reservoir simulation model is provided at the end

to confirm that the injection scheme selected is indeed optimal.

The refrac scheduling problem examines a horizontal gas well that is

a candidate to refracturing. The analysis employs a real options approach to

find the current and future conditions in which refracing is the best decision, as

well as to provide an accurate valuation that reflects the managerial flexibility

of the project. An algorithm called least-squares Monte Carlo (LSM) will

be used to achieve the two goals. In parallel, the Ornstein-Uhlenbeck model

is calibrated using the ensemble Kalman filter (EnKF) to account for the

gas price changes through time stochastically. The results of the valuations

are compared against a myopic Monte Carlo/discounted cash flow (MC-DCF)

method to demonstrate that the latter provides an underestimate of the true

value. The underestimation results from that the MC-DCF approach neglects
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the alternatives available in managing the project. The difference between

the two estimates of project value is calculated to determine the value of

flexibility. Finally, the optimal policies determined is examined to confirm

that the recommended response to the realization of uncertainties is intuitively

consistent.

Finally, a Monte Carlo tree search (MCTS) algorithm is paired with a

reservoir simulator to optimize the infill drilling schedule in a reservoir under-

going waterflooding. Because of the permutative nature of sequence-dependent

actions, the problem suffers from the curse of dimensionality. MCTS allows

the user to find an approximate solution to the scheduling problem that is oth-

erwise intractable. The final optimized schedule specifies 1) whether an infill

well should be drilled at candidate locations, 2) whether an injector or pro-

ducer should be drilled, and 3) when the well should be drilled. A provisional

validation is provided at the end by comparing the cumulative oil production

and the NPV of the MCTS-optimized schedule against those resulting from

randomly generated schedules.

Overall, the goal of this dissertation is to demonstrate that different

algorithms can be tailored to optimize decisions or policies. The proposed

solutions systematically integrate the relevant uncertainties in the analysis

as they search for the most preferred action. Such rational approach where

uncertainty plays an active role in decision-making provides the geoscientists

with the confidence that the final optimized decision is the best action to

take. Workflows designed and recommended in this dissertation are strongly
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preferred over the alternatives where uncertainty and sensitivity analyses are

conducted after decisions have already been made using deterministic methods.
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Chapter 1

Introduction

In the oil and gas industry, engineers and geoscientists are challenged to

make many different types of decisions. The decisions can vary in many ways,

such as time-sensitivity, spatial-sensitivity, types of information relevant to

the decision, and the uncertainties associated with the available information.

Among many decisions that are commonly encountered in the industry, three

example problems are selected and solved in this dissertation: water injection

allocation optimization, horizontal well refrac scheduling, and infill drilling

scheduling. The provided solutions to the problems will exemplify ways in

which decisions and uncertainties are systematically integrated to logically

and intuitively approach the optimal decisions.

In this dissertation, the three challenges will be analyzed in three fun-

damental ways. They will be investigated in terms of 1) the number of alter-

natives considered, 2) the time-sensitivity of the decisions, and 3) the extent

to which the uncertainties are incorporated in the analyses. Suitable methods

and algorithms will be proposed as solutions for each problem and will be

applied to find optimal policies or decisions.

In solving the injection allocation problem in Chapter 2, we will pri-
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marily focus on finding the optimal injection scheme while simultaneously

managing the uncertainties associated with history matching. Because the

number of alternatives in the possible injection schemes is infinite, the number

of options considered is large. The proposed method actively combines this

vast decision space with the uncertainty in history matching to find the injec-

tion scheme that is expected to yield the largest returns. In the way that the

problem is formulated in this work, the impact of time-sensitivity is small.

The goal of Chapter 2 is to select the best injection scheme that is

robust to uncertainties in history matching, while simultaneously minimizing

the number of simulation runs where it is unnecessary. We will first take ad-

vantage of simple models to generate multiple alternatives of injection schemes

we could implement to maximize oil recovery. Then an intelligent sampling

method called Thompson sampling will be called upon to determine which

one of the generated alternatives is likely to yield the most significant returns.

Because a reservoir simulation model is considered to be the "true case" in

this study, a validation is provided at the end of the chapter to illustrate that

the final selected injection scheme is indeed optimal.

In the refrac schedule optimization problem of Chapter 3, the number

of alternatives considered is small. The three available options are 1) main-

tain current production, 2) refracture the horizontal well, and 3) terminate

production. Because the challenge is to find the optimal time of refracturing

and termination, the problem is highly time-sensitive. The primary source of

uncertainty considered for this study is the future gas prices.

2



The refrac scheduling challenge will be solved using the least-squares

Monte Carlo (LSM) method. LSM is an algorithm designed for real options

valuation of projects with a small number of available options. Two main

advantages of using the LSM algorithm for this problem are 1) it provides an

accurate valuation of the project that reflects its managerial flexibility, and

2) it outlines the optimal policy as a function of random variables included

in the analysis. In other words, the LSM method incorporates the possibility

of future refracing in its valuation and qualitatively informs us of current and

future conditions in which refracing is the best decision. In this dissertation,

we will apply the method to a horizontal gas well that is a candidate for

refracturing. The results will then be analyzed to determine the value of

flexibility, and examine how the optimal policy changes through time.

In the infill drilling scheduling section (Chapter 4), we will pair a reser-

voir simulation model with the Monte Carlo tree search (MCTS) algorithm to

determine 1) whether an infill well should be drilled at different candidate loca-

tions, 2) whether an injector or a producer should be drilled, and 3) when the

wells should be drilled. NPV will be used as a measure of schedules’ optimal-

ity. Because the actions are sequence-dependent, the number of alternatives

suffers from the curse of dimensionality, i.e. the number of alternatives are in-

tractably large. Also, the order in which the wells are drilled has a significant

impact on oil recovery, making the problem highly time-sensitive. Because the

reservoir simulator used is relatively computationally costly, we assumed that

the uncertainties associated with the models and reservoir’s response to new
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wells are deterministic. This shortcoming can be made up for by using simple

models that have smaller computational costs, the potential alternatives of

which is discussed in the Appendix section of the dissertation. A provisional

validation is provided at the end by comparing the cumulative oil production

and the NPV of the MCTS-optimized schedule against those resulting from

randomly generated schedules.

Overall, the goal of this dissertation is to provide examples of how

different algorithms can be tailored to optimizing decisions or policies. The

proposed solutions systematically integrate the relevant uncertainties in the

analysis while they search for the most preferred action. Such rational ap-

proach where uncertainty plays an active role in the decision-making process

provides the geoscientists with the confidence that the final optimized deci-

sion is the best action to take. Workflows designed and recommended in this

dissertation are strongly preferred over the alternatives where uncertainty and

sensitivity analyses are conducted after decisions have already been made using

deterministic models.
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Chapter 2

Injection Allocation Optimization

Using Thompson Sampling

2.1 Literature Review

Waterflooding is the use of water injection intended to increase pressure

and displacement in the formation and consequently hydrocarbon recovery. In

a reservoir that consists of injectors and producers, one of the key decisions

involves determining how much water will be injected at each injection wells

to maximize returns. The decision may be further complicated by limited

injection water availability at different locations, by changing economic condi-

tions, and by how water injection impacts the production differently at varying

points in time and location, contingent on the static and dynamic conditions

of the reservoir.

Many works have proposed solutions to this problem. For instance

Liang et al. (2007) approached the problem using a combination of CRM,

Gentil’s (2005) two-phase model, and a simple cashflow model. CRM is used

to account for total fluid production, Gentil’s model to decouple oil and water

rates from total fluid production, and the cashflow model to determine net

present value (NPV). Liang et al. then put the combined model under a con-

5



strained nonlinear optimizer with a variety of economic conditions to observe

how optimal injection schemes were affected.

Weber (2009) also studied the problem of injection allocation using

CRM by deriving Kuhn-Tucker optimality condition for the NPV of the oil

recovery problem. Kuhn-Tucker conditions are useful because if a given pa-

rameter set corresponds to a local minimum on the objective function, then it

must satisfy the Kuhn-Tucker conditions. Therefore it can serve as an indicator

that the optimized parameters are at local extrema. Using this configuration,

Weber conducted sensitivity analysis on the economics of water flooding by

varying oil price, water cost, and discount rate, and found that the NPV of

predicted oil recovery behaves in a predictable manner.

Mandal et al. (2007) provided the solution a similar problem of allo-

cating the injection water between reservoirs, rather than injection wells. The

work solves the problem by calculating the individual water injection needs

for every reservoir, and optimizing them by ranking key criteria. The factors

that constitute the criteria for water injection needs include voidage replen-

ishment ratio, threshold operating pressure above bubble point, conformance

loss caused by injection out of pay, oil response per barrel of water injected,

and crude quality. Mandal et al. then uses “influence functions” to determine

weighting factors to each of the criteria, and uses the weighting factors and the

criteria to find “rationalized injection allocation” that maximizes the value of

injection water.

6



2.2 Models, Methods, and Algorithms Used

This section of the dissertation will list out the tools used to tackle the

problem of injection allocation. The following section (2.3) will describe how

these methods are woven together as the proposed solution to the problem.

The models, methods, and algorithms to be described in the following sections

are: the capacitance-resistance model, Koval’s K-factor method, bootstrap

analysis, and Thompson sampling.

2.2.1 Capacitance-Resistance Model (CRM)

Capacitance-Resistance Model (CRM) is a simple reservoir model that

captures the relationship between injectors and producers in a reservoir under-

going waterflooding. It is designed to estimate the producers’ liquid flow rates

in response to varying liquid injection rates. There are multiple variants of

CRM that define control volumes differently. CRM-Producer (CRMP) defines

the control volume to be centered around producers and is the one selected

for this research. The following equation describes the CRMP model.

τj
dqj
dt

+ qj(t) =

Ninj∑
i=1

fijwi(t)− τjJj
dpjwf
dt

(2.2.1)

τj =
ctVp,j
Jj

(2.2.2)

qj: Liquid flow rate at producer j [bbl/mo]
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wi: Water injection rate at injector i [bbl/mo]

τj: Time constant for producer j [mo]

fij: Inter-well connectivity between injector i and producer j [frac.]

Jj: Productivity index for producer j [bbl/mo/psi]

pjwf : Flowing bottomhole pressure at producer j [psi]

ct: Total compressibility [psi−1]

Vp,j: Pore volume of control volume defined around producer j [bbl]

The model parameters of CRM can be categorized into three groups:

the time constant (τj), the inter-well connectivity (fij), and the productivity

index (Jj).

The time constant τj is a measure of the time necessary for the pressure

wave (caused by a variation in the injection rate) to propagate in the porous

media and effectively influence the production signal. The inter-well connec-

tivity fij represents the volume fraction of injected water from an injector (i)

that flows toward a producer (j), for each injector-producer pair at steady-

state conditions (Sayarpour, 2008). The productivity index Jj is defined as

flow normalized by the drawdown pressure, which serves as a measure of well

potential.

If the reservoir is a closed system, and formation and fluids are assumed

to be incompressible, the sum of inter-well connectivities should sum to unity.
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If injected water is lost in the formation, the sum value is below one. If fluids

other than injected water enter the control volume (for instance aquifer influx),

then the sum value is larger than one. In this study, it is assumed that the sum

of connectivities are less than or equal to one. The constraint was assigned

through nonlinear optimizer implementation.

The flowing bottomhole pressure values are assumed to be determined

operationally; they are accounted for in the history matching stage, but for

making future projections and injection scheme optimizations, they are as-

sumed to be constant. This is for us to clearly examine the oil production and

net present value as functions of injection scheme, without flowing bottomhole

pressures acting as confounding variables.

CRMP models total liquid rates; it does not differentiate between oil

and water. To decouple oil and water production rates from total liquid pro-

duction rates, I use the Koval model, which is presented in the next section.

2.2.2 Koval’s K-Factor Method

It is well established that miscible displacements in the field can be

unstable, depending on the mobility ratio. If unstable, the instability results in

the solvent fingering through the oil, inducing early breakthrough and reducing

sweep efficiency.

According to Koval (1963), instabilities in miscible displacements are

attributed to four major factors: longitudinal dispersion, channeling, viscosity
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(a) Miscible Displacement Front (b) K-Factor Method Modeling Sol-
vent Saturation as a Function of Dis-
tance

Figure 2.1: Two-Dimensional Miscible Displacement Front and an Example
Output of K-Factor Method (Koval, 1963)

differences, and gravity differences. To model for their impact on the emer-

gence of fingering, Koval developed the K-Factor method. The schematic of

the solvent fingering through oil and the K-Factor method’s modeling of the

phenomenon is provided in Figure 2.1.

The method introduces developments complementary to Buckley-Leverett’s

(1941) frontal advanced formula (2.2.3) and the fractional flow equation (2.2.4)

to account for longitudinal dispersion, channeling, and viscosity differences.

Koval controlled for the gravity effects by using matched density fluids in his

experiments.

(
∂x

∂t

)
Sdisp

=
q

φA

(
dFdisp
dSdisp

)
(2.2.3)

Fdisp =
1

1 + koil
kdisp

µdisp
µoil

(2.2.4)
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Re-writing the equation for solvent fractional flow in segregated flow using

Koval’s parameters (see Lake et al., 2014), we have the following:

FS =
1

1 + 1
Kval

(
1−S
S

) (2.2.5)

Kval is the Koval factor, FS is the solvent fractional flow, and S is the solvent

saturation. The Koval factor is the product of a heterogeneity factor (Hk)

and the effective viscosity ratio (E). The heterogeneity factor accounts for

dispersion and channeling effects. Therefore Kval as defined below captures the

aggregate effect of dispersion, channeling, and viscosity ratio on displacement

front’s stability in miscible flow.

Kval = HkE (2.2.6)

One way to estimate the effective viscosity ratio is to use an empirical relation

(from Koval, 1963):

E =

(
0.78 + 0.22

(
µo
µs

) 1
4

)4

(2.2.7)

where µo and µs are oil and solvent viscosities, respectively. According to the

above equation, the numerical value of effective viscosity ratio is smaller than

that of the original viscosity ratio. This agrees with the observation that the

effect of fingering caused by high viscosity ratio is not as prominent as it seems

from the original viscosity ratio (Lake et al., 2014).
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According to Lake et al. (2014), if we assume that relative permeabil-

ity of oil and water are straight lines, the Buckley-Leverett equation can be

integrated analytically to yield the following:

FS|xD=1 =


0 td <

1
Kval

Kval−
√

Kval
td

Kval−1
1

Kval
< td < Kval

1 td > Kval

(2.2.8)

td,j =
Wj

Vp,j
(2.2.9)

where FS|xD=1 is the fractional flow of solvent at the outlet (xD = 1), td is

dimensionless time, and Kval is the Koval factor, as described previously. The

dimensionless time is defined by cumulative injected solvent (Wj), which is

calculated using the CRMP model, and normalized by pore volume, (Vp).

In this study, equations (2.2.8) and (2.2.9) are used to decouple oil

and water production rates from total fluid production rates. The parameters

to be history matched are Kval and Vp, specified at control volumes defined

around each producing well. This implementation is to ensure that the control

volumes defined by CRMP are consistent with those used by the K-Factor

method. The cumulative injected water (Wj) is also defined according to

CRMP’s definition of control volumes. History matching for Koval model’s

parameter is conducted simultaneously with the CRMP parameters using the

ensemble optimization algorithm described in section 2.2.4. The Koval factor

Kval for each control volume is treated as a parameter of its own, without

separating the heterogeneity factor and the effective viscosity ratio.
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2.2.3 Bootstrap

The bootstrap is a versatile statistical tool that is used to “quantify the

uncertainty associated with a given estimator or a statistical learning method.”

(Friedman et al., 2009). It uses a resampling method on a set of observed data

points to simulate and generate realizations of a statistic of the population dis-

tribution. The bootstrap is robust because it assumes non-informative prior;

it does not require a priori information of the system nor the underlying prob-

ability distributions for the model parameters. However, for accurate results,

it requires that the data be independently and identically distributed (i.i.d.)

(Efron, 1977).

The bootstrap method works as follows. It randomly draws datasets

with replacement from the observation data, each sample of the same size as

that of the original observation dataset. This is done multiple times until a

specified number of resampled sets are generated. Then the model is fit to

each resampled set to produce a distribution of fitted model parameters. The

distribution generated can be used to infer statistics of the model’s parameters

(Friedman et al., 2009). The resampling method generates multiple realiza-

tions that are perturbed versions of the original data, the statistics of which

becomes an approximation of the Bayesian posterior (Friedman et al., 2009).

The primary form of the datasets used in this study is time series

data. When the data has time dependence, then it is no longer likely to

be independently and identically distributed because the data points often

exhibit autocorrelation (Thomas and Lake, 2017). Carlstein (1985) proposed
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the non-overlapping block bootstrap, which addresses this issue by dividing

the time series into segments of equal lengths, and conducting sampling with

replacement within every block to generate multiple instances of bootstrapped

sample set. The blocked bootstrapping procedure proposed by Carlstein is

visualized in Figure 2.2.

First, the original dataset is separated into blocks of equal lengths, as

shown on the left side of the figure by orange vertical lines. Hall et al. (1995)

has proposed a heuristic that guides the length of the blocks according to the

total length of time series. n1/3 is used as the block length, where n is the

number of data points for a single time series. In the example in Figure 2.2,

there are total of 18 data points, making the block length three data points.

After the block length have been determined, sampling with replace-

ment is done within each block to generate multiple realizations, as visualized

in the figures on the right column. The grey circles represent the possible

values that each realization point could have taken. The possible values are

determined by the value of data points within the block.

When a specified number of realization has been generated, a statistic

is estimated for each realization. A statistic is then estimated using each

bootstrapped realization is collected to generate distributions, which reflect

the a posteriori uncertainty associated with estimation of those parameters.

The block bootstrap method is used in this study to generate a di-

verse set of history matched solutions that reflect the uncertainty in each

14



Figure 2.2: Block Bootstrapping Process Schematic

parameter. The advantages of the bootstrap method are: 1) that it does not

require subjective input, including assignment of prior distributions, and 2)

that the uncertainty resulting from applying the bootstrap method is easily

reproducible. The details regarding the implementation is discussed in detail

in the results section.
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Figure 2.3: Stochastic Sampling to Approximate the Gradient at a Point on
the Error Response Surface

2.2.4 Ensemble Optimization (EnOpt)

The ensemble optimization algorithm (EnOpt) is an optimization method

based on the gradient-descent method. The discrepancy between EnOpt and

the more traditional gradient-descent algorithms is that EnOpt estimates the

gradients in the objective function space by a Monte Carlo sampling method.

At every step of the optimizing iteration, the algorithm approximates the tan-

gent plane at a point of interest in the parameter space by stochastic sampling,

and the gradient in the corresponding objective function space is calculated

16



using the plane. The process of sampling in the parameter space (θi), and

approximating the gradient at a point in parameter space is visualized in Fig-

ure 2.3. This approximation of gradient makes EnOpt robust to noisy local

minima in the error function, and also renders the algorithm suitable for opti-

mizing many parameters simultaneously. Other advantages of EnOpt include

that it can significantly reduce the computational cost to determine the gra-

dient, and that it can easily adapt to different types of functions (Hong et al.,

2016).

Mathematical details regarding the EnOpt algorithm is provided as

follows. The control vector is represented as a vector xi. This vector contains

all the control variables (injection rates for every well and timestep) that will

be modified by the algorithm to minimize the objective function f(x).

xi = [x1, x2, x3, . . . , xN
T
]i (2.2.10)

where x1, ..., xN are the control variables to be adjusted by the algorithm, and

N refers to the total number of control variables. The number of these in-

dividual control variables may be large, which prompts us to represent these

variable in a vectorized form. The subscript i denotes the index for the en-

semble member.

EnOpt uses an ensemble {x1,x2,x3, . . . ,xi, . . . ,xM}, which is sam-

pled from a multivariate Gaussian distribution with specified distribution

means x̄ and covariance matrix Cxx, representing the covariance between every
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control variable. M denotes the total number of ensemble members. The x̄

value is updated iteratively as the optimization proceeds. For this study, the

covariance matrix (Cxx) is kept constant. However, there are adaptive ways in

which the covariance matrix is updated to achieve improved efficiency (Jansen

and Fonseca, 2013), which is outside the scope of this dissertation.

The iterative updating of the control variable means (x̄) proceeds as

described below. First, a mean-shifted ensemble matrix is computed for the

control variables (x) and the objective function values (f):

∆X = [x1 − x̄,x2 − x̄, ...,xM − x̄]T (2.2.11)

f = [f1 − f̄ , f2 − f̄ , ..., fM − f̄ ]T (2.2.12)

The x̄ and f̄ are the mean values of control variables and the objective

function values. x̄ is a component-wise mean of the control vector computed

through all ensemble members, which results in a vector, while f̄ is a scalar

value. The calculations are done as below.

x̄ =
1

M

M∑
i=1

xi (2.2.13)

f̄ =
1

M

M∑
i=1

fi (2.2.14)
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Once the mean-shifted ensemble matrix for the control variables (∆X) and the

objective function values (f) are determined, then we estimate the gradient

around the described by the vector x̄. The gradient is expressed as:

g = C−1xx Cxf , where

Cxx = 1
M−1((∆X)T (∆X)) and Cxf = 1

M−1((∆X)Tf)

The gradient calculated by the above equation can then be used to

update the x̄ vector.

x̄l+1 = x̄l + αlgl (2.2.15)

where l represents the iteration number, and α is the learning rate, which

is a hyperparameter controlling for the tradeoff between stability and rate of

convergence. In this study, the learning rate α is updated according to the

following conditions:

If f̄ l+1 < f̄ l, then αl+1 = αl/2

Iteratively updating to reduce the value of α incrementally slows the

convergence rate while improving the stability.

In this study, the EnOpt algorithm outlined above will be used to de-

termine the optimal injection scheme for each non-unique history matched
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Figure 2.4: The Multi-Armed Bandit Problem

solution. The context and the results of its application will be discussed in the

results section. For alternative discussion of EnOpt’s algorithm and applica-

tions, the reader is recommended to review Chen and Zhang (2009).

2.2.5 Thompson Sampling

The multi-armed bandit problem has been extensively studied in statis-

tics, operations research, computer science, and decision analysis literature. A

bandit refers to a slot machine designed for the agent to pull a lever and ob-

serve the outcome on returns. The multi-armed bandit problem is summarized

as follows: a slot machine has multiple levers, each lever associated with cer-

tain probability of success, or probability distribution of returns. The player

has no knowledge of this probability. At every step in a sequence, the player

has to decide which lever to pull to maximize the total returns. At the initial

phase, the player ideally would experiment with different levers to estimate

the probabilities of success for each lever, and as he gains a better estimate of

these probabilities, eventually converge to pulling the lever that has the high-

est estimated probability of returns. As such, the multi-armed bandit problem
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concisely exemplifies the tradeoff between exploration and exploitation that is

commonly observed in machine learning problems.

Thompson sampling is one of many heuristics that guide the decision

maker in navigating the exploration-exploitation tradeoff. It does so by refer-

ring to a prior distribution on the probability of returns associated with each

decision, and by iteratively updating this distribution in a Bayesian frame-

work to gradually resemble the actual probability of returns of the decisions

with higher probability of large returns. It is interesting that the exploration

is asymmetrical; the algorithm’s exploration is preferential to the decisions

that demonstrate higher returns. As the sequence progresses, the user con-

verges to the decision that is close to the optimal decision. The algorithm is

based on Thompson’s foundational study investigating the issue of estimating

probability with small number of observations (Thompson, 1983).

Figure 2.5 shows the process flow diagram for Thompson sampling. A

brief description of each stage is provided in the following.

1. Specify identical initial distributions for outcomes associated with each

decision (each handle of the slot machine).

2. For every decision (handle), simulate one realization of outcome using

the outcome probability distribution. In other words, take one sample

from the outcome distribution for each decision.

3. Pull the handle that resulted in the largest simulated return in step 2.
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3. Execute Decision with  
the Highest Return Sample

4. Observe Outcome

5. Update Distribution Using  
Bayes Theorem 

1. Initial Identical Distributions for  
Returns for Every Decision

2. Sample from the Distributions

Record Selected Decision

 Terminal Conditions Satisfied? 

No

Figure 2.5: Process Flow Diagram for Thompson Sampling

4. Observe the outcome, and update the probability distribution for deci-

sion selected in step 3 using Bayes theorem.

5. Repeat until terminal conditions are satisfied. The posterior distribution

becomes the prior in step 1.

When the algorithm has run sufficient iterations, it will tend to converge to

repeatedly selecting the same decision. It is that decision that has the highest

probability of maximum returns, as determined by the process.

In this study, Thompson sampling will be used to make educated guesses

as to which injection scheme is the most likely to yield the highest returns given

uncertainty in history matching, without having to try out every combination
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of decision (injection scheme) and history matched model. This sampling

method will allow the users to converge to near-optimal solution efficiently

without having to exhaust all possibilities in the decision space.

A formal description of the algorithm is provided. Given a set of states

X , a set of actions A, model parameters Θ, and rewards R, the algorithm

consists of the following:

1. A likelihood function P (r|θ, a, x)

2. A set of Θ parameters θ of the distribution of r

3. A prior distribution P (θ) on these parameters

4. Past observation triplets D = {(x; a; r)}

5. A posterior distribution P (θ|D) ∝ P (D|θ)P (θ), where P (D|θ) is the

likelihood function

Thompson sampling consists of playing the action a∗ ∈ A according to the

probability that it maximizes the expected reward, represented as follows:

∫
I
[
E(r|a∗, x, θ) = max

a′
(E(r|a′, x, θ))

]
P (θ|D)dθ (2.2.16)

where the I is the indicator function.
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In practice, the rule is implemented by sampling, in each round, a

parameter θ∗ from the posterior P (θ|D), and choosing the action a∗ that max-

imizes E(r|θ∗, a∗, x), i.e. the expected reward given the parameter, the action,

and the current context. Conceptually, this means that the player instantiates

their beliefs stochastically in each round, and then acts optimally according to

them. In most practical applications, it is computationally onerous to main-

tain and sample from a posterior distribution over models. As such, Thompson

sampling is often used in conjunction with appropriate sampling techniques.

For an alternative explanation and set of examples, the reader is en-

couraged to review Russo et al. (2017).

2.3 Experiment Formulation & Results

This section of the dissertation will walk the reader through the pro-

posed workflow to find the optimal decision in the presence of uncertainty in

history matching, as well as to correctly capture the uncertainty. The proposed

workflow aims to reduce unnecessary computation by intelligently striking a

balance between exploration and exploitation (as explained in section 2.2.5)

in decision and model parameter space.

Figure 2.6 provides a visual overview of the process. In broad terms,

the process is summarized in four steps: acquiring production history, gen-

erating multiple history matched solutions, determining the optimal injection

scheme for each history matched model, and determining which one of the
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Figure 2.6: Workflow to Determine Optimal Injection Schemes Robust to Non-
Uniqueness in History Matching

many decisions are likely to be truly optimal, in the presence of uncertainty.

A validation of the final results will also be provided at the end. Each of these

stages are discussed in detail in the sections that follow (2.3.1-2.4.2).

2.3.1 Obtain Production History

The first step is to obtain the production history of the reservoir. For

field application of this procedure, the user will gather production data for
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each well, including: injection rate history, water and oil production rates,

and bottomhole pressures for producers (if available). For the purposes of the

demonstration, I will generate these data from a commercial reservoir simula-

tor. Using the simulation model as a base case is advantageous in validating

that the method is robust, and is fit for field applications. The details of

generating the production history for this experiment is detailed below.

I have used CMG commercial reservoir simulator to generate the data.

A two-dimensional sector model is taken from the original SPE-10 model1.

The wells are placed with an inverse five-spot pattern. The reservoir model

has 13 total wells, consisting of four production wells and nine injection wells.

A larger number of injectors than that of producers is chosen to increase the

dimensionality of the decision space, which challenges the workflow and the

algorithms used for the analysis.

A figure of the properties of the model is visualized in Figure 2.7. Using

this reservoir model and an arbitrary injection scheme, a set of production

data is generated. Figure 2.8 shows the injection scheme used to generate the

historical production rates, and Figure 2.9 visualizes the flowing bottomhole

pressure boundary conditions imposed on the production wells for simulation.

Figure 2.10 summarizes the production response from the injection scheme.

The injection scheme was generated using simple random walkers. This

is done by first selecting a rate value from a uniform distribution, and main-

1The model can be downloaded from https://www.spe.org/web/csp/datasets/set02.htm
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Figure 2.7: Porosity and Permeability Field of the Sector Model (from SPE-10)

taining that rate for a duration selected from another uniform distribution.

Flowing bottomhole pressures for producers is another set of boundary con-

ditions required for simulation, and are generated similarly (Figure 2.9). The

uniform distribution from which the values are drawn are defined by mini-

mum and maximum values, which were chosen so that the production rates

are within reasonable bounds.

The generated injection rates (Figure 2.8) and producing bottomhole

pressures (Figure 2.9) were provided as inputs to the simulator, which pro-

duced total fluid production rates and oil production rates (Figure 2.10).

The reservoir model will be used as a “true” case, against which the

quality of decisions and forecasts will be compared. We will assume that the

point at which the simulation ends is the present; any time period beyond this

point will be considered future projections. Assuming the reservoir model is

the “true” case has an important advantage in that it allows us to implement

various decisions, the outcomes of which can be compared with simulation. If
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Figure 2.8: Injection Schemes Imposed on Injectors to Generate Historical
Production Data (Rates in bbl/mo)
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Figure 2.9: Flowing Bottomhole Pressure Boundary Conditions Imposed on
Producers to Generate Historical Production Data (Pressures in psi)

Figure 2.10: Total Fluid and Oil Production Responses (Rates in bbl/mo)
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this method of analysis were to be used for field data, then it is advisable to

consider the field data to be analogous to the simulation result data in this

demonstration.

2.3.2 Generate Multiple History Matched Solutions

There is evidence that suggest that the best estimate of the model pa-

rameters do not coincide with the best estimate of the model’s output (Tavas-

soli et al. 2004, Begg et al. 2004). Considering this, as well as that we fit

model parameters to generate forecasts for different scenarios, we must take

an alternative route. This method relies on the bootstrapping approach to un-

biasedly capture the uncertainties around the model parameter estimation so

that we can translate this uncertainty into subsequent analyses, including one

that attempts to determine the optimal decision robust to the uncertainties.

Once the historical production data is acquired (as described in the

previous section), then begins the history matching procedure. To produce

an ensemble of history matched models consistently, I first generate multiple

realizations of the original historical production data using the block boot-

strapping method (a resampling method). The perturbed realizations of the

original dataset is then used to fit the CRMP and Koval models using standard

nonlinear regression techniques (MATLAB’s fmincon functions).

200 bootstrap realizations were generated for this study, yielding 200

model parameter sets for both CRMP and Koval. The distributions of each

parameters for both of these models are provided in Figures 2.11 and 2.12.
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The well connectivity values in 2.11 are visualized in linear scale because the

theoretical bounds of the values are 0 and 1. In 2.12, the productivity indices

(Ji) are in units of bbl/mo/psi, time constants (τi) are in months, and the

pore volumes (V̌p) are in units of bbl; other parameters are dimensionless.

The uncertainty around the estimated model parameters can then be

translated into uncertainties in the history matched models, represented as the

fits to the original data points. The diverse set of fits are visualized in Figures

2.13 and 2.14.

The history matched model parameter sets as shown in Figures 2.11

and 2.12 represent the non-uniqueness and uncertainty in the models’ history

matching. In the next section, we will attempt to find the optimal decision

that both maximizes the expected returns, and also is the most likely to be

the best decision in the presence of uncertainty in history matching.

2.3.3 Determine Optimal Injection Schemes

So far, we have generated stochastically diverse history matched solu-

tions that capture the uncertainty around the estimated model parameters.

The next step is to determine the optimal decision designed for every history

matched solution. Note that this is possible only when employing a simple

model with a very small computational cost, as is the case with CRMP-Koval

model combination.

Optimal injection will be determined using the ensemble optimization
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Figure 2.11: Histogram of Fitted Model Parameters for CRMP Connectivity
Values
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Figure 2.12: Histogram of Fitted Model Parameters for CRMP and Koval
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Figure 2.13: Simulator-Generated Total Fluid Production Data (Black
Crosses) and CRMP Fits of 200 Bootstrapped Models (Blue Lines) (Rates
in bbl/mo)
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Figure 2.14: Simulator-Generated Oil Production Data (Black Crosses) and
CRMP-Koval Fits of 200 Bootstrapped Models (Yellow Lines) (Rates in
bbl/mo)
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Factor Value Unit

Oil Price 60 $/bbl
Water Injection Cost 1 $/bbl

Produced Water Treatment Cost 0.1 $/bbl
Discount Rate 0 %

Local Injection Rate Lower Constraint 0 bbl/mo/well
Local Injection Rate Upper Constraint 14000 bbl/mo/well

Fixed Flowing Bottomhole Pressure (Producer) 50 psi
Schedule Optimization Duration 50 mo.

Table 2.1: Economic and Operational Constraints Used for Injection Scheme
Optimization

(EnOpt) algorithm, the details of which is provided in section 2.2.4. The

economic and operational constraints applied to these optimizations are in

Table 2.1.

The discount rate selected to calculate the NPV is set to zero because,

depending on how aggressively the discounting factor is set, the EnOpt al-

gorithm gradually diminishes the future operations’ contribution to the NPV

while optimizing. Because of this, the injection rates the EnOpt optimizes

quickly trails off to zero. As one may expect, the profiles with which the injec-

tion rates drop are strongly dependent on the discount rate. To eliminate the

need to justify a specific value of the discount rate, the optimization constraint

is set so that the cumulative net revenue over the 50 month interval is maxi-

mized. Figure 2.15 shows the optimized injection rates for the nine injectors

for all 200 history matched CRMP & Koval models. The injection scheme tails

off towards the end of the 50-month period because as we approach the end

of the optimization time interval, the returns from injection will be observed
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beyond the optimization interval. The rate at which it tails off is partly de-

pendent on how quickly the producers respond to the injection rates, which

is represented by the parameter τj in the CRMP model. In Figure 2.15, the

colors indicate the optimal injection schemes corresponding to different history

matched solutions.

We have determined the best injection scheme for every history matched

model. In the following section, we will determine which one of these decisions

should be actually implemented.

2.3.4 Determine the Final Injection Scheme

At this stage, we now have multiple non-unique history matched mod-

els, and the optimal injection scheme that maximizes the estimated NPV for

every corresponding history matched model. The question that this section of

the dissertation attempts to address is: given the uncertainty in the history

matched models, which injection scheme should we choose to implement in

real life? In other words, the challenge is to find the “optimal of optimals.”

We have 200 history matched models representing the uncertainty as-

sociated with our model in relation to the true reservoir, and also 200 possible

alternatives that we have determined given each history matched model is

true. A brute-force way of determining the optimal choice would be to try

out every injection scheme in all 200 history matched models, calculate the

economics, and select the injection scheme that yields the largest expected

returns. However, this is computationally inefficient as it requires a total of
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Figure 2.15: Injection Scheme Optimized for Each History Matched Model
Using EnOpt (Rates in bbl/mo)
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Figure 2.16: Plot of Selected Injection Schemes Through Thompson Sampling
Iterations

40000 simulations. Thompson sampling will help answer the question, which

will lead us to the final recommendation for water injection scheme.

Figure 2.16 shows which of the injection schemes were selected at every

iteration step during the Thompson sampling process. In the beginning, the

Thompson sampling algorithm does a breadth-first search through the decision

space, and, after a certain amount of data has been collected, it transitions to

best-first search. The indices of the top three most frequently selected injection

schemes are 98, 122, and 105. Even when the updated distributions (the final

iteration of which is shown in Figure 2.17) tell us that these decisions are the

most likely the best, it also occasionally explores other decisions to increase

confidence that the optimal is truly the optimal.

Figure 2.16 shows the number of searches (number of points along the
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Rank Inj. Scheme Index Count

1 98 38814
2 122 219
3 105 160
4 190 43
5 88 21
6 133 20
7 82 19
8 62 14
9 85 14
10 197 14
11 39 13
12 124 12
13 35 11
14 87 11
15 138 11
16 12 10
17 18 10
18 77 10
19 161 10
20 36 9
21 50 9
22 131 9
23 143 9
24 55 8
25 128 8
26 14 7
27 30 7
28 54 7
29 59 7
30 66 7
... ... ...

Rank Inj. Scheme Index Count

... ... ...
171 156 2
172 157 2
173 158 2
174 162 2
175 163 2
176 165 2
177 167 2
178 168 2
179 171 2
180 173 2
181 174 2
182 176 2
183 177 2
184 178 2
185 179 2
186 180 2
187 181 2
188 183 2
189 185 2
190 187 2
191 188 2
192 191 2
193 192 2
194 193 2
195 194 2
196 195 2
197 196 2
198 198 2
199 17 1
200 103 1

Table 2.2: Number of Times an Injection Scheme was Selected by the Thomp-
son Sampling Algorithm, Ranked (Top & Bottom 30)
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x-axis) was set to the number of searches required to do a complete search,

i.e. simulating for every possible combination of history matched model and

the injection scheme (200 history matched models, and 200 optimal injection

schemes for each model). That the Thompson sampling algorithm manages to

converge to a few optimal injection schemes well before it reaches the number

of simulations required to exhaust the model-decision space attests to the value

of this method.

Table 2.2 shows the number of times each injection schemes were sam-

pled by the Thompson sampling algorithm, sorted (the list shows the top and

bottom 30). A quick inspection of the full table reveals that the Thompson

sampling algorithm evaluates all of the injection schemes at least once.

Figure 2.17 visualizes the updated distributions of NPVs for each de-

cision (injection scheme) after the final Thompson sampling iteration. The

figure shows that the injection schemes with the higher expected NPVs tend

to have lower uncertainty (standard deviation around the mean), because it

has undergone more frequent preferential sampling, which has resulted in in-

creased confidence in expected returns. The injection scheme indices for the

top three highest peaks correspond to the top three most frequently selected

in Figure 2.16.
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Figure 2.17: Estimated NPV Distributions for Each Decision After the Final
Thompson Sampling Iteration

2.4 Results Validation

This section of the dissertation proposes a method to validate the out-

come from section 2.3, and provides the results of validation.

2.4.1 Validation Method

The method used to validate the results from the previous section is

simple. The CMG simulator will simulate the results of all 200 “optimal”

injection schemes determined from 200 different history matched solutions,

and calculate the net returns from each reservoir response. The results from

CMG simulations will then be compared with the injection schemes that were

selected at the top of the list after processing using the Thompson sampling.
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Best Injection Schemes 

CMG Simulation's 
Best Injection Schemes 

Figure 2.18: Validation Process Diagram

Because the Thompson sampling’s behavior eventually converges to that of

a best-first search algorithm, only the highest-ranked injection schemes will

be compared from the two lists. The experimental design proposed above for

history matching the models and determining the optimal injection schemes

are summarized as a process flow diagram below in Figure 2.18.

2.4.2 Validation Results

So far, the Thompson sampling has determined a number of injection

schemes to be optimal, i.e. robust to the uncertainties associated with his-

tory matching, and expected to yield highest returns. This section will verify

that this is true by exhaustively subjecting the numerical reservoir model (in

CMG) to every injection schemes found in section 2.3.3. In other words, all

200 injection schemes from section 2.3.3 will be used as input to the CMG

simulator, and the results will be collected. Then we will examine how the
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Rank OptimInjScheme qoProdCum

1 98 416606.5
2 88 413484.9
3 153 408830.6
4 106 406950.4
5 62 406852.2
6 55 406817.4
7 190 402993.6
8 99 402573.6
9 59 402082.2
10 37 400417.2
11 54 400346
12 120 400024.5
13 150 399935.9
14 77 399824.3
15 82 399485.7
16 122 398932.2
17 105 398437.1
18 35 398153.5
19 159 397695.9
20 87 397333.1
... ... ...

Rank OptimInjScheme qoProdCum

... ... ...
181 83 353156.7
182 17 353102.2
183 110 353085.5
184 43 353032.4
185 192 353003.7
186 162 352949.9
187 183 352829.8
188 135 352792
189 103 352760
190 129 352706
191 196 352698.9
192 34 352690.9
193 8 352684.2
194 19 352656.8
195 145 352644
196 79 352639.1
197 163 352637.3
198 180 352609.6
199 56 352576.7
200 193 352573.6

Table 2.3: Injection Schemes’ Performance in CMG Simulation (in Cumulative
Oil Production)

top few injection schemes selected from Thompson sampling fares in the list

of actual performance results derived from the simulation.

Figures 2.19-2.21 visualize different rate responses generated from the

simulations. Figures 2.19 and 2.20 show the total fluid (oil and water) and oil

production rates at a per-well basis, while Figure 2.21 shows the cumulative

oil production. All three figures visually represent the variability in results

depending on which optimized injection scheme we choose.

Table 2.3 shows the CMG simulator’s response to every injection scheme,

numerically represented in terms of cumulative oil production. Comparing the
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Figure 2.19: Total Fluid Production Rates: CMG Response to Every Opti-
mized Injection Rate (bbl/mo)
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Figure 2.20: Oil Production Rates: CMG Response to Every Optimized In-
jection Rate (bbl/mo)
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Figure 2.21: Oil Production (Field Cumulative): CMG Response to Every
Optimized Injection Rate (bbl)
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simulation results in Table 2.3 with the number of times the decisions have

been selected by Thompson sampling algorithm (Table 2.2), we can see that

the top index for injection scheme coincides. It is promising that the two

indices match, because it indicates that the Thompson sampling successfully

shifted through the uncertainty in history matching to determine the optimal

injection scheme.

The final comparison is provided by computing the NPVs for each in-

jection/production scenario. The histogram in Figure 2.22 visualizes the NPV

resulting from running each injection scheme. The green dotted vertical line in-

dicates the NPV achieved by the injection scheme selected using the Thompson

sampling method, as outlined in this chapter. To demonstrate the advantage

of this method, this value is compared against a base case, as denoted by the

red dotted vertical line in the figure. The NPV value for the “Deterministic”

is the NPV that results from taking the injection/production history (from

CMG simulation), fitting the CRM+Koval model, and optimizing the injec-

tion scheme using ensemble optimization (EnOpt) algorithm. The larger NPV

value resulting from Thompson sampling demonstrates that it was able to find

a more optimal injection scheme that bypasses the local maximum NPV of a

single deterministic case. Although the probabilistic method required a larger

number of simulation runs to achieve this result, the lightness of simple mod-

els paired with Thompson sampling to further reduce unnecessary simulations

placed this method well within reasonable computational limits.
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Figure 2.22: NPV Validation of Injection Schemes’ Optimality
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2.5 Conclusion & Future Works

Chapter 2 proposed a workflow designed to find the optimal injection

scheme in a waterflooding scenario. The workflow has employed a combina-

tion of two simple models (CRMP and Koval) in conjunction with a method

to generate a stochastically diverse history matched models (bootstrap), a ro-

bust optimizing algorithm to determine the injection rates (EnOpt), and a

sampling method (Thompson sampling). The selected injection schemes were

then validated using a commercial, discretized reservoir simulator that was

assumed to be the true case.

The demonstration employed the CRMP & Koval models, which are

very light in computational cost. However, this workflow’s value increases as

does the simulation time required for one realization. Instead of optimizing

the injection rates using the discrete reservoir simulation models, which will

require much repetitive and mostly unnecessary computations (unnecessary

because the results will be discarded), we should use another layer of simple

models to converge to a set of decisions that are most likely to yield the highest

returns. Reservoir engineers can then apply the Thompson sampling scheme

to determine the injection scheme that is the most likely to yield the highest

returns.
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Chapter 3

Real Options Valuation of a Refrac Candidate

Well Using Least-Squares Monte Carlo

Real options are decisions a manager can make during a project’s life in

response to changing economic, technological or market conditions (Dixit and

Pindyck, 2012). The decisions often have the potential to introduce significant

changes to a project in terms of risks, cash flows, and sizes. The challenge

presented to the decision-maker is to systematically take into account the

current and future uncertainties, as well as the decisions available, to maximize

the value of the project. Such challenges are inherent in managing many

different types of assets and financial instruments, such as equity, commodity,

foreign exchange, insurance, energy, sovereign, agency, municipal, mortgage,

credit, real estate, convertible, swap, and emerging markets (Longstaff and

Schwartz, 2001).

The wide range of applicability of real options has given rise to just as

diverse real option valuation methods. Because it is often difficult to find a

closed-form solution to a real options valuations problem, many of the proposed

solutions involve numerical methods. Numerical methods facilitate incorpo-

rating multiple underlying variables and models. The methods are broadly
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categorized into three groups: simulation methods, lattice methods, and finite

difference methods. Simulation methods involve generating multiple Monte

Carlo realizations to represent the uncertainties in different variables and their

interactions. Lattice methods discretize the time until the option’s expiration

and map out the possible exercise scenarios. Finally, finite difference methods

find a numerical solution to partial differential equations describing the price

of derivatives.

The benefit of employing a real options approach to valuation is evident

when the method is compared against the more traditional discounted cash

flow (DCF) method. In the more widely-implemented DCF method, a certain

irreversible decision is assumed to be made at a time period with certain

economic assumptions, and the subsequent cash flow is generated. The cash

flow is then discounted using the interest rate and summed back to the time

of decision, resulting in an NPV value. This value is then used as the basis

for justifying one action over another.

While the DCF method is more commonly selected, it is not without

limitations. For instance, when evaluating scenarios where a decision will be

made in the future, the DCF method fails to account for the new information

relevant to the decision that one will have acquired by the time he/she makes

the decision. The shortcoming in this method of analysis is further exacerbated

if the underlying economic factors are highly volatile and capital-intensive, as

is often the case with petroleum assets (e.g. oil and gas prices). This is

because the preference for different decisions and the managements’ operating
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Figure 3.1: Discounted Cash Flow vs. Real Options Approach to Valuation

strategies are intricately related to how the market uncertainties resolve. The

real options method provides a framework in which such responses to the

resolution of uncertainties can be systematically integrated into the valuation

process. Figure 3.1 is provided to help the reader visualize the difference

between the two methods. Unlike the discounted cash flow approach, the

decision tree for the real options method contains multiple decision nodes to

represent multiple points in time where one can make a decision based on the

information accumulated until that time.

This work incorporates the LSM method, which is one of many ways

proposed to solve the real options valuation problem, to demonstrate the valu-

ation process of a horizontal well which has the option of refracturing. Because

the primary emphasis of this work is in illustrating how the real options ap-
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proach to valuation provides a robust and versatile framework that allows

the user to systematically incorporate multiple sources of uncertainty and the

flexibility in decisions, the simulational aspects of refrac and recovery are sim-

plified.

The many ways in which LSM is used is presented in the next section.

3.1 Literature Review

Least-Squares Monte Carlo (LSM) is a simulation-based solution to the

real options valuation problem. It was first devised by Longstaff and Schwartz

(2001) to help find an approximate solution to estimating the value of Ameri-

can options1 using simulation. LSM evaluates the conditional expected payoff

at each time step using least squares. Longstaff and Schwartz (2001) details

the algorithm and provides multiple detailed examples in increasing degrees

of complexity to demonstrate the application and versatility of the simulation

method. The mechanics of the algorithm is established in section 3.2.1 of this

dissertation also.

The use of LSM in petroleum engineering literature is only beginning to

gain interest in recent years. This section of the literature review will examine

the different ways in which LSM was employed to solve petroleum-related

1An American option refers to an option that can be exercised at any time before the
expiration date. An alternative to the American option is the European option, which can
be exercised only at the expiration date of the option.

54



problems.

Brandão et al. (2005) was one of the first works that proposed the use

of real options valuation approach to estimate the value of an oil production

project, with a scale option2. The work employs Monte Carlo simulations and

binomial decision trees to model for the uncertainties in how the value of a

project will evolve through time. Later in the same year, Smith (2005) put

forth an alternative solution to Brandão et al.’s example problem by using

the LSM. Smith’s argument was that for scenarios where there are many un-

derlying uncertainties, lattices or decision trees are susceptible to the curse

of dimensionality; Longstaff and Schwartz’s LSM method is the preferred so-

lution because it allows easy integration of these uncertainties as long as the

number of decisions remain small.

There are additional references in the petroleum literature that ad-

dress different engineering problems using the LSM algorithm. For instance,

Thomas and Bratvold (2015) determined the optimal time for gas blowdown

for an oil field with gas caps or associated gas. The work compared the re-

sults from a “naive” Monte Carlo simulation valuation with the real options

approach, and concluded that the latter has found the preferred decision. In

their LSM implementation, the authors have included uncertainties in oil and

gas reserves, production rates, and transition costs. They have paired it with

a material balance simulator to predict oil and gas production. The paper

2Scale option refers to the ability to “increase or decrease one’s interest in the investment
in exchange for a cash payment of receipt.” (Brandão et al., 2005)
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recommends the use of real-options approach because it “better mimics actual

information gathering and decision making” (Thomas and Bratvold, 2015),

and it is indifferent to the number of uncertain factors in the analysis.

Hong et al. (2018) used a two-factor production model by (Parra-

Sanchez, 2010), combined with LSM to determine the optimal time to initiate

an improved oil recovery (IOR) process. The work introduces slight modifi-

cations to the original LSM algorithm proposed by Longstaff and Schwartz

(2001) by relaxing the Markov assumption associated with the behavior of

state variables (i.e. reservoir properties). The paper then compares the re-

sults with that from a closed-loop reservoir management framework, which

does not take into account the potential impact of the future information rel-

evant to the decision under consideration. The comparison establishes that

the solution derived from the closed-loop reservoir management framework is

indeed suboptimal, suggesting that a dynamic programming approach—such

as LSM—can significantly improve the quality of decisions.

Willigers and Bratvold (2009) demonstrated an example of using LSM

to determine a value of a gas field with two available options: to trade the

produced gas on the spot market and to sell the gas through a supply contract.

The work incorporates three factors, each associated with different uncertainty:

the gas price, the operational costs, and the rate of production decline. The

first two, the gas price and the operational costs, are assumed to be positively

correlated to reflect historical trends. The paper discusses the advantages

of real-option-valuation methods over the net present value approach, one of
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which is that it incorporates the value of flexibility in a project.

3.2 Models, Methods, and Algorithms Used

This section will introduce the tools that were used to solve the problem

of when to implement the hydraulic refracturing, given uncertain economic

conditions. Least-Squares Monte Carlo (LSM) is used to establish the overall

framework of analysis, the Ornstein-Uhlenbeck process is used to model for

gas price, and ensemble Kalman filter (EnKF) is used to iteratively update

the parameters of the price model given hypothetical price realizations.

3.2.1 Least-Squares Monte Carlo (LSM)

The Least-Squares Monte Carlo is a simulation-based approach in-

tended to find an approximate solution to the real options valuation prob-

lem (Powell, 2011). Using its dynamic outlook, the algorithm integrates the

flexibility of a project that will allow the decision-maker to adapt to the res-

olution of uncertainties to maximize the value. In the context of valuating

an American option, for which the algorithm was originally devised, Longstaff

and Schwartz (2001) describes it as follows: “[...] at any exercise time, the

holder of an American option optimally compares the payoff from immediate

exercise with the expected payoff from continuation, and then exercises if the

immediate payoff is higher.” In the LSM model, the expected payoff condi-
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tional to the decision to continue is modeled using least squares. The least

squares solution at every time step not only allows for an accurate estimate

of option’s value, but also serves to outline the optimal policy as a function of

how the uncertainties resolve in the future.

As the name suggests, the LSM is largely in two parts: the Monte
Carlo, and the least squares:

1. Monte Carlo simulation is used to stochastically generate multiple real-

izations of state variables.

• State variables refer to factors in the analysis containing uncer-

tainty.

• If the state variables are expected to behave in a certain way (e.g.

correlated or autocorrelated), then the realizations can be made to

reflect these assumptions.

2. Starting from the last point in time and proceeding backwards, determine

the optimal action at each time step.

• The optimal action is determined using the option with the largest

expected returns.

• The expected returns is determined by regressing (using least-squares)

the simulated returns to realizations of state variables.

• The analysis begins from the end point and proceeds in reverse

time order because at each time step, the availability of the exercise

option is contingent on that the option was not previously exercised.
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Additional detail regarding the mechanics will be provided using an example

in section 3.3.3.

There are many reasons why the LSM algorithm is a suitable solution

to this problem. First, LSM provides a general, versatile framework with

which analysts could use to incorporate multiple uncertainty factors without

suffering the curse of dimensionality (Smith, 2005). The use of LSM is made

possible because the number of options considered at every time step is small

(refrac or continue production). More generally, choosing the real options

approach to valuation is beneficial because it is able to accurately reflect the

value of managerial flexibility. The fact that the product of analysis includes

the optimal choices as a function of the resolution of uncertainties, as well as

an accurate valuation, compounds to the reasons for selecting this approach.

As advantageous as it is to choose the LSM for this analysis, alterna-

tives exist. The suitability of the algorithm in solving a real options valuation

problem depends generally on the following: 1) whether a stochastic differ-

ential equation exists that accurately describes the system, 2) the number of

decisions considered, and 3) the number of uncertainties to be included in the

valuation. Other details such as path-dependence3 can also affect the choice

of algorithm. If the system can be easily described using a stochastic differ-

ential equation, finding a more immediate solution to the equation may be

preferred over taking a more simulation-based approach. If there are path-

3Path dependence refers to how the availability or optimality of decisions are contingent
upon the decisions previously made or the events previously transpired.
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dependent aspects of economics that should be included, then a lattice- or

decision tree-based model may be preferred.

3.2.2 Ornstein-Uhlenbeck Process

The framework of analysis established by the LSM valuation method

involves generating many hypothetical future economic scenarios. Because

the gas price is closely interrelated with the economics of the decision, it is

important to select the model that accurately captures the price behavior. In

this study, the Ornstein-Uhlenbeck process is used to model for gas prices’

change through time. The model’s parameter is estimated by sequentially

updating the model parameters using the ensemble Kalman filter (EnKF) over

historical Henry Hub gas spot prices. The data set of historical Henry Hub

prices were monthly, end-of-the-month prices in the period from January 1991

to June 2017.

The Ornstein-Uhlenbeck process is advantageous because it provides a

simple yet realistic way to capture the behavior of price through time. It is

described by the following equation:

dxt = θ(µ− xt)dt+ σWt (3.2.1)

where

xt: State variable undergoing Ornstein-Uhlenbeck process at time t
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µ: Equilibrium, long-term value

σ: Degree of volatility around µ caused by shocks

θ: Mean reversion rate

Wt: Wiener-Lévy process (Brownian motion) Wt = N(0, 1)
√
dt

Ornstein-Uhlenbeck process is mean-reverting. Mean reversion refers to

the tendency of a state variable to eventually return to (and fluctuate around)

a long-term mean. Such mean-reverting price models have been found to be

appropriate for pricing many commodities (Dixit and Pindyck (2012), Smith

and McCardle (1998)). The intuition behind mean-reverting processes is found

in the way in which prices of commodities equilibrate through a simple dynamic

between supply and demand (Schwartz and Smith, 2000). When the price

of a commodity rises above the equilibrium level, the supply increases as a

response because additional suppliers will enter the market. Increased supply

will then cause the prices to decrease. On the other hand, when the prices are

lower than the equilibrium price, then some suppliers will be forced to exit

the market, inducing the price to rise. Depending on the market, the rate at

which these events occur will vary, but in general the prices will tend towards

the equilibrium at a rate proportional to the price’s deviation away from its

equilibrium (Begg et al., 2004).

Given the understanding of mean reversion in the Ornstein-Uhlenbeck

process, we can intuitively understand the model parameters. µ refers to the
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long-term mean value to which the state variable will tend to return, σ refers

to the extent of variability away from µ, θ refers to how fast the state variable

will tend to approach µ, and Wt refers to the Brownian motion, accounting

for the stochastic nature of the process.

Depending on the problem, other pricing models can be used in the

place of the Ornstein-Uhlenbeck process. An example is Gibson and Schwartz’s

(1990) two-factor model, which models for the spot price of oil and the in-

stantaneous convenience yield. Another candidate for the price model is by

Schwartz and Smith (2000), who proposed a model that not only includes

the Ornstein-Uhlenbeck process of short-term fluctuations and mean-reversion,

but also longer-term changes to the mean to which the short-term fluctuations

revert. The authors have used geometric brownian motion (GBM) to model

for the long-term changes in commodity price.

3.2.3 Ensemble Kalman Filter (EnKF)

One of the main advantages of using the real options approach in val-

uation is that the user can account for what has been learned until the time

of decision. Bayesian analysis is often used to update one’s predictions and

estimations as new observations are made on relevant state variables. In this

study, the Kalman filter is used to update the parameters of the Ornstein-

Uhlenbeck process model, i.e. reflect the learning that will have occurred after

observing how the prices change through time. At the core of Kalman filter’s

62



mechanism is sequential Bayesian updating, which is integral in the framework

of real options valuation method.

The Kalman filter is a “recursive procedure for computing estimates of

unobserved state variables based on observations that depend on these state

variables” (Schwartz and Smith, 2000). At every iteration, Kalman filter es-

timates the current state using the most recent observations, predicts what

the next observations will be given the current set of observations and esti-

mated state, and compares the next set of observations to update the current

estimation of state variables. The type of Kalman filter used for this study

is called the ensemble Kalman filter (EnKF), which uses stochastically gener-

ated ensemble of states to approximate the covariance matrix in the standard

Kalman filtering process.

The Kalman filter is selected for this process because it provides a

systematic way in which the price model’s parameters can be estimated in a

reproducible way. According to West and Harrison (1997), the variance in the

state variable estimates will asymptotically approach a value that is indepen-

dent of particular sequence of observations or the assumed prior distributions

of the model parameters. Another reason that makes the Kalman filter a

suitable selection of model calibration tool is that it is iterative. As time pro-

gresses and new observations are made in sequence, Kalman filter provides a

methodical and consistent way to introduce and incorporate new information

to the body of pre-calibrated parameters. In other words, it is not necessary

to re-calibrate the whole model using all the data simultaneously when new
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data is acquired.

Kalman filter is not the only method available to estimate the price

model parameters given historical data. The reader is directed to Begg and

Smit (2007) for a comprehensive review of alternative methods to estimate

pricing model parameters from historical prices, such as section, weighted

section, moving window, and weighted moving window method. Dixit and

Pindyck (2012) also discusses parameter extraction from futures and option

data for modeling risk-adjusted value paths. Additional relevant references for

the reader include West and Harrison (1997) and Harvey and Peters (1990).

3.3 Experiment Formulation

In this study, we apply the real options approach to valuate a refrac

candidate horizontal well. The least-squares Monte Carlo (LSM) algorithm is

used to find an approximate solution to the dynamic programming problem

that the real options method poses. The results section (3.4) will then discuss

the advantages of using LSM, which are twofold: 1) accurate valuation of an

asset that incorporates the value of flexibility, and 2) mapping of optimal policy

as a function of the way in which uncertainties (random variables) resolve.

This portion of the dissertation will detail the way in which the problem

is formulated to cultivate many advantages of real options valuation. Section

3.3.1 will review the reservoir simulation model designed to predict the gas

production rate’s response to refracs at varying time periods. Section 3.3.2
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will then discuss how Ornstein-Uhlenbeck model is calibrated to historical

Henry Hub prices, and the economic parameters used for this study. Finally,

section 3.3.3 will discuss in detail how least-squares Monte Carlo algorithm

is applied to determine the optimal policy, as well as provide an accurate

valuation of the project that incorporates its flexibility.

3.3.1 Reservoir Simulation for Rate Response to Refrac

A reservoir simulation model is used to predict the gas production’s

response to refracs at different time periods. The reservoir model used for this

study is simple because 1) the primary objective of the study is discussing

the application of the valuation method and the determination of the optimal

policy, and 2) the complexity of the reservoir is irrelevant to the discussion of

the objectives.

As visualized in Figure 3.2, the reservoir model is only a portion of

the total reservoir volume stimulated by existing and impending fractures.

The resulting production rates are multiplied by the number of stages (15).

The properties of the reservoir model is provided in Table 3.1. The model is

homogeneous and isotropic, and one new fracture for every existing frac stage

is simulated. The results of the simulation is provided in Figure 3.3. As the

simulation results show, the model assumes that the refrac procedure and the

corresponding rate response is instantaneous.
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Figure 3.2: Sector Model of the Stimulated Reservoir Volume

Property Value Unit

Nx 120 -
Ny 100 -
Nz 1 -
dx 1 ft
dy 5 ft
dz 300 ft
Lx 120 ft
Ly 500 ft
Lz 300 ft
φ 0.06
k 0.0003 mD

kfrac 50 mD
Lfrac 300 ft

Table 3.1: Reservoir Simulation Model Properties
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Figure 3.3: Gas Production Rates and Cumulative Gas Production Simulated
with Refracs at Varying Years

3.3.2 Price Model Calibration & Economic Parameters

The next step is to use the ensemble Kalman filter (EnKF) to calibrate

the Ornstein-Uhlenbeck model parameters. Historical Henry Hub prices from

1991 through 2017 are used to calibrate the parameters of Ornstein-Uhlenbeck

model. Figure 3.4 displays the 80% confidence interval of stepwise EnKF pre-

diction of the Henry Hub prices as it iteratively updates the model parameters.

The three histograms in Figure 3.5 show the distribution of model parameters

after the final time step of calibration. 100 ensemble members were used for

EnKF. The mean values of each histogram in Figure 3.5 is selected as the final

calibrated parameters for the price model.

Once the Ornstein-Uhlenbeck process is calibrated with the historical

Henry Hub prices, 200 price path forecasts are generated, as shown in Fig-

ure 3.6. The values visualized in the figure will serve as the price projections

from which the LSM algorithm will learn. The “learning” process is also done

using EnKF, and is discussed in the LSM discussion section (section 3.3.3).

Table 3.2 lists the economic parameters used for the analysis. These

67



Figure 3.4: Ensemble Kalman Filter’s Calibration of Ornstein-Uhlenbeck
Model Parameters using Historical Henry Hub Prices from 1991 through 2017

values are assumed to be fixed.

3.3.3 Least-Squares Monte Carlo (LSM)

Now that the stochastic price model is calibrated and the economic

conditions are established, Least-Squares Monte Carlo (LSM) is used to deter-

mine the optimal policy as a function of the resolution of stochastic variables

Economic Parameter Value

Hydraulic Fracture CAPEX 8 MM$
Hydraulic Refracture CAPEX 7 MM$

Pre-Refrac OPEX 2 MM$
Post-Refrac OPEX 2.5 MM$

Annual Discount Rate 5%

Table 3.2: Economic Parameters Used for Refrac Timing Decision Analysis
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Figure 3.5: Calibrated Values of Ornstein-Uhlenbeck Model Parameters (µ,σ,
and θ)

Figure 3.6: Gas Price Path Realizations with EnKF-Calibrated Ornstein-
Uhlenbeck Model (Individual Realizations & 95% Confidence Interval, with
P50)
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in the analysis. At every time step between years 10 and 30, three options

are considered: continue production without refrac, refrac the well and resume

production, and terminate production. Beginning at year 30 and proceeding

in reverse temporal order, the following sequence of computation is executed:

1. EnKF is used to update the Ornstein-Uhlenbeck model parameters using

the price path generated, which is previously shown in Figure 3.6. This

is an important step in the LSM algorithm that simulates the learning

that will have occurred in the hypothetical scenario where the generated

price path is true.

2. Using the Ornstein-Uhlenbeck price model calibrated in step 1, generate

a price path realization 20 years into the future.

3. Using the price path generated in step 2, the simulated production re-

sponse to refrac and the economic parameters, calculate the cash flow

during the next 20 years, and convert it to NPV at the current time step

using the discount rate. NPV is calculated using one of the following

equations, depending on the option:

NPVt+1,continue =
t+20∑
j=t+1

(qgas,continue,t$gas,t −OPEX)∆t

(1 + r)j−t
(3.3.1)

NPVt+1,refrac =
t+20∑
j=t+1

(qgas,refrac,t$gas,t −OPEX)∆t

(1 + r)j−t
− $refrac (3.3.2)
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NPVt+1,end = 0 (3.3.3)

qgas,t: Gas production rate at time t, with or without refrac [scf/year]

$gas,t: Gas price [$/MMscf]

$refrac: Refrac cost [$]

OPEX: Annual operating expense [$/year]

∆t: Time interval [1 year]

r: Interest rate

tswitch : Optimal refrac time

4. For each option, regress the realized gas prices and production rates to

NPV using a linear basis function to determine the optimal policy as

a function of realization of uncertainties at the current time step. The

linear basis functions for each option are provided below.

NPVt+1,continue = a0 + a1qgas,t + a2$gas,t (3.3.4)

NPVt+1,refrac = b0 + b1qgas,t + b2$gas,t (3.3.5)

NPVt+1,end = 0 (3.3.6)

5. Proceed to the previous time step (the algorithm proceeds in reverse

temporal order) and repeat the above.

Iterating through the above five procedures through all the considered decision

time steps (years 10 through 30) will result in the estimation of NPVs as a
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function of the option (continue production, implement refrac, or terminate

production) and the realization of uncertain variables, i.e. gas prices and

production rates.

The results from completing the process listed in this section is provided

in section 3.4.

3.4 Results

As discussed in the previous section, iterating through the LSM algo-

rithm results in regressed models that provide estimates of the expected NPV

(calculated using the 20-year cash flow following the decision) at every decision

time step as a function of gas prices and production rates. As an example,

the regressed linear models for year 10 are shown in Figure 3.7. The regressed

models in the figure give expected returns associated with each decision at year

10. The figure can then be used to determine the optimal policy, depending

on the future realization of the uncertain variables.

Figure 3.8 shows the regressed models for years 10, 20, and 30. The plot

is shown from a bird’s-eye view to delineate the optimal policy (the decision

with the largest NPV) at every combination of gas price and production rates.

The three cross-sectional view in time also demonstrate how the optimal policy

changes through time.

There are apparent trends captured by the visualization of optimal
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Figure 3.7: Least-Squares Approximation of NPVs of Three Options as a
Function of Gas Production Rate and Gas Price at Year 10
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Figure 3.8: Visualization of Optimal Policies’ Dependence on Realization of
Random Variables at Years 10, 20, and 30

trends in this form. For instance, in Figure 3.8, the orange band is narrowing

as the well matures. This indicates that as the well continues to produce,

economic and physical conditions (i.e. gas price and production rates) wherein

maintaining production is economic becomes increasingly constraining. The

manager is slowly pushed to make a decision between refracturing the well

and terminating the production. For instance, Figure 3.9 shows a hypothetical

scenario where 800 MMscf/year production rates are observed at years 10, 20,

and 30. The regions crossing the horizontal line indicate that, while for years

10 and 20, there exist ranges of gas prices where continuing production will be

the most economic, the same is not the case for year 30. As such, the optimal

policy generated using LSM is informed by the different stages of production

the well is expected to undergo.

The slopes of the boundary lines between optimal policies yield inter-
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Figure 3.9: An Observation of the Optimal Policy at a Fixed Production Rate

esting insight into the problem. The boundaries are approximately vertical in

Figure 3.8. Considering that the x and y ranges of the figure were selected to

reflect the typical values we expect to see in the formulated problem, the steep

boundary lines indicate that the future gas price has a much more significant

role than the gas production rates in determining the optimal decision be-

tween continuing production, refracing, or terminating production. Generally,

the larger the gas price, the more favorable it is to refrac the well or continue

producing; this aligns with our intuition.

Despite their near verticality, the signs of the slopes of the boundary

lines also coincide with what is expected. The terminate-continue (red-orange)

line has a negative slope, indicating that the higher observed production rates

tend to favor the decision to continue production. Similarly, the continue-refrac

(orange-blue) boundary has a positive slope, showing preference for continuing

production over refracing at high observed flow rates.
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Figure 3.10: An Observation of the Optimal Policy at a Fixed Gas Price

A further observation in Figure 3.10 reveals that the slope of the thresh-

old boundary lines between continue and refrac options (orange-blue) are al-

most nearly vertical in years 10 and 20, but has a more positive slope at year

30. This suggests that as the well matures and its productivity diminishes, the

relative significance of the production rate in determining the optimal policy

increases. The increased relative significance is related to the boundary line’s

deviation from the vertical line.

The optimal policies determined at every decision time step can now

be used to estimate the value of the horizontal well. For each realized gas

price path and production rates (for both continue and refrac), the valuation

process will involve the following:

1. At each decision time step, take action as recommended by the regressed

linear models and the simulated gas price and production rate.
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Figure 3.11: NPVs Estimated Using the Standard Discounted Cash
Flow/Monte Carlo Method vs. Least-Squares Monte Carlo Method, and the
Value of Flexibility

2. Determine the cash flow resulting from exercising the optimal policy at

every time step.

3. Using the discount rate, determine the NPV.

4. Repeat above for all realized gas price paths and production rates.

Executing the procedure outlined above will result in a distribution of NPVs

as visualized in blue in Figure 3.11. The expected value and the standard

deviation of the NPVs determined in the figure are $33.8MM and $16.1MM,

respectively.

This valuation result will now be compared against the NPV values

estimated using a more myopic Monte Carlo and discounted cash flow (MC-
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(a) Myopic MC-DCF Method (b) Real Options Method

Figure 3.12: Decision Tree Schematics for MC+DCF and Real Options Method

DCF) method. The method uses Monte Carlo realizations of gas price paths

and determines the present-day NPV distributions associated with refracing at

every decision time step. The difference in the two methods is visualized using

decision trees in Figure 3.12. As the first tree shows, the decision of when

the refrac should be implemented is based only on the current estimation of

uncertainties. The second tree better represents how decisions are made in

reality because it includes the time-varying and learning aspects of decision-

making. The manager is able to defer their decisions until a later time, and

the real options method is able to account for the future learning that will

occur if a decision is deferred.

In the Monte Carlo and discounted cash flow (MC-DCF) method, the

optimal decision time is determined to be the period of refracing that yields

the largest NPV, and the refrac is assumed to be implemented at this time.
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The myopic DCF valuation implemented for comparison is calculated as:

NPVMC =
T∑
t=1

(qgas,t$gas,t −OPEX)∆t

(1 + r)t
+

$refrac
(1 + r)tswitch

(3.4.1)

tswitch = argmax
t

[NPVMC ] (3.4.2)

qgas,t: Gas production rate at time t, with or without refrac [scf/year]

$gas,t: Gas price [$/MMscf]

$refrac: Refrac cost [$]

OPEX: Annual operating expense [$/year]

∆t: Time interval [1 year]

r: Interest rate

tswitch : Optimal refrac time

The distribution of NPVs resulting from the above calculations is visu-

alized in red in Figure 3.11. The expected value and the standard deviation

of the NPVs estimated using the Monte Carlo & DCF method are $13.2MM

and $19.3MM, respectively.

The difference of the two expected values derived from real options

and DCF valuations reflects the value of flexibility. Value of flexibility derives

from splitting decisions into multiple decisions over time to allow learning

in between decisions, resulting in better, more informed decisions (Bratvold
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and Begg, 2010). In this problem, the value of flexibility is determined to

be $20.6MM ($33.8MM−$13.2MM). This corresponds to the value that the

DCF method failed to take account of by ignoring the versatility of decision

makers to respond to changing gas prices and production rates. As such, the

LSM algorithm (and the real options approach) provides an accurate valuation

method that is reflective of learning about uncertainties over time. Also, we

have demonstrated that the LSM method also provides a valuable map of

optimal policies through time.

Another way of understanding the value of flexibility is in Figure 3.11.

It is apparent that the LSM valuation has a very small fraction of NPV real-

izations that are below zero. This is because the real options method allows

for the possibility for the decision maker to take appropriate actions if the

economic conditions are not favorable. Decision makers strive to minimize the

downside and maximize the upside; the real options valuation method is able

to reflect this in its valuations.

3.5 Conclusion & Future Works

This chapter demonstrated an application of real options method to

determine the value of a refrac candidate horizontal well. Using the LSM

algorithm, we were able to incorporate the flexibility of the project (i.e. con-

tinue production, implement refrac, or terminate production) as well as the

future uncertainties associated with the gas price. The algorithm allows future
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decisions to be based on what the manager will have learned by the decision

time. The final product of implementing this method is 1) a map of optimal

strategy through time contingent upon the future resolution of variables, and

2) an accurate valuation of the asset that reflects the flexibility available to

the managers regarding the project.

There are many ways in which this work could be extended. Because

the emphasis of this work was primarily in demonstrating how real options

valuation approach provides a versatile framework that allows users to sys-

tematically integrate multiple information, the physical aspects of simulating

the refrac and the corresponding gas recovery were greatly simplified. Incorpo-

rating either a more realistic representation of the complexities of a subsurface

reservoir system, or a simple model that elegantly captures these complexities

will further extend the validity and the utility of this approach.
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Chapter 4

Infill Drilling Planning

Using Monte Carlo Tree Search

In this chapter, we pair a reservoir simulation model with Monte Carlo

tree search (MCTS) algorithm to optimize the infill drilling schedule. In a

2-dimensional reservoir simulation model, we will first delegate/identify can-

didate infill well locations in a grid-like structure. Then, using MCTS and

multiple instances of reservoir simulations, we will 1) determine whether an

infill well should be drilled at the specified candidate locations, 2) determine

whether an injector or producer should be drilled, and 3) optimize the order

in which the wells should be drilled. Economic parameters will be assigned

to calculate the NPV, which is used as a measure of optimality of production

schedules.

Additional detail regarding the problem formulation is provided in sec-

tion 4.3. The next section discusses the relevant literature review.
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4.1 Literature Review

Infill drilling refers to the addition of wells in a producing reservoir.

Infill drilling reduces average well spacing while increasing sweep efficiency

and estimated ultimate recovery. The decision regarding infill drilling involves

determining whether additional drilling is economically justified, and, if so,

when and where infill wells should be placed. This section will review some

previous attempts either to identify locations for infill drilling or to optimize

drilling and production schedules.

Chitsiripanich (2015) identified potential infill locations using CRM

along with other reservoir characteristic properties such as porosity, thickness,

and permeability. The author did so by visually comparing the CRM well

connectivities and the spatial distribution of the bypassed oil in a mature wa-

ter flooded reservoir, and also by qualitatively examining the well log data

to identify locations of high permeability and large pore volumes. Chitsiri-

panich validated the method using simulated data, and also demonstrated its

application to field data.

Weber (2009) studied injection well placement by using multiple tradi-

tional simulations to map out estimates of CRM parameters relative to pre-

existing wells, and using the parameter map to conduct economic analysis to

finally come to a recommendation of infill drilling location. Another method

proposed by Weber uses logistic regression model to extrapolate the injector-

producer well connectivity parameter to locations without wells.
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Tavallali et al. (2013) generated a model that employs mixed integer

nonlinear programming and honors the partial differential equations that de-

scribe reservoir dynamics. The model outputs the optimal number of infill

producers, the locations of the producers, and optimal production plan.

Beckner and Song (1995) optimized the field development plan using

simulated annealing on a reservoir simulator. The aspects of development

included well scheduling and placement.

In this study, Monte Carlo tree search algorithm is used to optimize

the infill drilling and production schedules. The mechanics of the algorithm is

presented in the next section.

4.2 Models, Methods, and Algorithms Used

4.2.1 Monte-Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a probabilistic tree search algo-

rithm that uses repeated random sampling to estimate the value of actions

as a game progresses. At every iterative state, stochastic sampling is used to

update the estimates of the values of actions available at a given state, and

the estimates are then used to expand the tree. Then, based on the expanded

game tree, the next action is decided. As the algorithm continues to imple-

ment actions that are expected to be optimal, the process of traversing and

expanding the tree is repeated at every iteration. MCTS is a probabilistic

method because at the core of the algorithm, there is the stochastic sampling
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Figure 4.1: Monte-Carlo Tree Search Applied to Tic-Tac-Toe

that attempts to capture the response of actions without exhaustively exam-

ining them. Although it does not guarantee that it will find the optimal series

of actions, many applications of MCTS in different fields have demonstrated

that it is able to provide a close approximation of the optimal policy.

As the name suggests, MCTS involves a tree-like structure; it is used to

represent different states and available actions. An example of a tree structure

of a tic-tac-toe game is in Figure 4.1. In the diagram, the nodes represent

different states that the tic-tac-toe board could take (nodes are more generally

represented as a simple circle than a board). At the top of the tree, we start

with the root node, with which represent the state of the board the game
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begins. Given this state, the first player has nine different actions he can

take. Four of the nine available actions are visualized in the figure. In the

diagram, the available actions are represented using edges, which are the lines

that connect the states. The states of the board resulting from these actions

are represented using the child nodes. Four of the nine child nodes are shown

in the figure in the second row as an example. Once MCTS carries out an

action, then the corresponding child node becomes the new root node, and its

sibling nodes would be discarded.

Each state carries with it an estimate of value that is calculated using

Monte Carlo simulations. These values are then used to compare the quality

of one action over another. Overall, MCTS consists of four stages: selection,

expansion, simulation, and backpropagation. The four processes are repeated

at every iteration, one of which is shown as an example in Figure 4.2. The

two numbers in the nodes of the example tree represent the number of simu-

lated wins and the number of simulations (“visits”) that particular state has

observed. The following sections will provide an overview of the mechanics of

each stage using the example tree provided.

Selection

Selection process points the algorithm to which action is likely to be

worth exploring. It takes the current state of the tree and selects decisions

down that tree to a future state at a fixed depth. The relative value of different

nodes are determined using the UCB equation (section 4.2.2), which system-
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Figure 4.2: Four Stages in Monte-Carlo Tree Search Algorithm

atically incorporates both the observed average returns and the uncertainty

associated with the estimated average.

Expansion

In this step, a new node is added to the tree as a child node of the node

selected in the previous step. Only a single node is newly introduced to the

tree at every iteration. In the figure, the expanded node has the numbers 0/0

because it has neither observed any wins nor simulations.

Simulation

The simulation step consists of randomly choosing moves until the al-

gorithm reaches the terminal state or a specified threshold. Once the terminal

conditions are met, then the algorithm calculates and returns a result of how

well it performed as a score (in this work, the value is calculated from the
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NPV). This score is then passed to the backpropagation phase. This stage

relies on a forward model that provides us with the outcomes of an action in

any state.

In this work, the optimality score is calculated using the NPV of the

resulting cashflow. For the forward model, an open-source reservoir simulator

called MRST is used.

Backpropagation

Once the value of the newly introduced node is determined in the sim-

ulation phase, the tree structure is updated. In the backpropagation step, the

algorithm updates the perceived value of a given state, not just to the state

it executed in the simulation but also every state that led to that state in the

tree. The collection of the updated nodes can be observed by tracing the arrow

that leads back up to the original parent node in Figure 4.2. This updating

scheme allows the algorithm to search for early actions that may lead to op-

portunities that that may be observed in the future. The scores are updated

until the root node (starting point) is reached.

Through the above four stages, we can take decisions to a fixed point

in the tree, simulate their outcome, propagate back the perceived value of

it. This process is repeated multiple times to balance out the optimal set of

actions. Once the simulation count limit is reached, the algorithm chooses the

optimal action leading to the state with the highest value.
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Figure 4.3: Simple Example Consisting of Four Existing Injectors and Two
Infill Well Locations Analyzed Over Two Time Intervals (Candidate Locations
Labeled)
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To help the reader understand the problem formulation, a simplified version

of the problem is provided. In Figure 4.3, we have a small reservoir system

with four injectors and one producer. If there are two candidate locations for

infill wells, and we are optimizing a schedule for the duration of two time

steps, we can draw the decision tree as shown in Figure 4.4. Even with only

a few candidate infill well locations and time steps, it is apparent from the

figure that the decision tree has a very high branching factor. In other words,

the challenge suffers from the curse of dimensionality. Despite this, the

MCTS algorithm is able to determine a drilling and production schedule that

is close to optimality. Additional detail regarding a more complex problem

formulation is provided in section 4.3.

The following section discusses the Upper Confidence Bound (UCB)

algorithm, which is the approach used in this work to guide the selection

process of MCTS.

4.2.2 Upper Confidence Bound (UCB)

The upper confidence bound (UCB) is used in the MCTS’s selection

stage to traverse the tree. UCB is used to balance the selection process between

exploration and exploitation. As described during the discussion of the multi-

armed bandit problem in section 2.2.5, exploration and exploitation refers to

the challenge posed to an agent to choose between acquiring new knowledge

about the system and returning to an option that is expected to have large
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Figure 4.4: Decision Tree for Example Problem in Figure 4.3
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returns, based on current knowledge. The UCB algorithm proposes that the

agent pull the arm that maximizes the following:

UCB =
ωi
ni

+ c

√
lnNi

ni
(4.2.1)

ωi: Sum of returns or win count for the node after the ith move

ni: Number of simulations for the node after the ith move

Ni: Total number of simulations after the ith move

c: Exploration parameter; adjusts for exploration vs. exploitation

The above equation is intuitive. The ωi

ni
term is the current estimate of

returns associated with a decision. The remaining c
√

lnNi

ni
term represent the

upper bound of the confidence interval associated with the estimate, which is

updated as the number of observations accumulate over time. The second term

decreases as more observations are sampled to represent increased confidence

in the expected returns.

The parameter c in the above equation controls for the extent to which

uncertain options are favored. If c is set to zero, then the UCB algorithm

would recommend that the agent pulls the arm solely based on the expected

returns without considering the uncertainties associated with the estimations

(i.e. exploitation). If c is set to a larger value, then the relative contribution of

the expected value is reduced in the selection process, shifting the significance
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more towards the uncertainties associated with estimates of expected returns.

In other words, a UCB algorithm with a larger c tends to favor options that are

not previously explored (i.e. exploration). An implementation of the selection

process using the UCB equation will show that the algorithm will attempt to

quickly identify the best alternative, and as it proceeds, it will keep searching

for other good options while validating the optimality of the current “best”.

4.3 Experiment Formulation

In this experiment, the MCTS algorithm (programmed in Python) will be

paired with an open-source reservoir simulator (MRST) with pre-specified

configuration of infill well locations to find the infill well drilling strategy

that maximizes the net present value (NPV) of a field undergoing

waterflooding. The reservoir model used is a 2-dimensional reservoir with

33× 33× 1 grid count in x, y, z directions. The simulator is specified to use

black oil, 2-phase, implicit solver to solve for fluid flow. Key properties of the

reservoir model are listed in Table 4.1.

The porosity and permeability field is visualized in Figure 4.5. The

correlation between the two variables and the histograms of each are provided

in Figures 4.6 and 4.7, respectively. The reservoir model is made as sector

model from the SPE-10 model (model 2) from the SPE Comparative Solution
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Property Value Unit

Nx 33
Ny 33
Nz 1
dx 25, 82 m, ft
dy 25, 82 m, ft
dz 50, 164 m, ft
Lx 825, 2706 m, ft
Ly 825, 2706 m, ft
Lz 50, 164 m, ft
µφ 0.26
σφ 0.05
µk 9.04 md
σk 1.51 md

Sw,init 0.3

Table 4.1: Properties of the Reservoir Model Used for Infill Drilling Problem

Project1.

The relative permeability model used for the simulation is the Corey-

Brooks model, which uses a simple power-law relationship. It is shown below:

kro = kro,max(
So − Sor

1− Sor − Swc
)no (4.3.1)

krw = krw,max(
Sw − Swc

1− Sor − Swc
)nw (4.3.2)

The list of fluid and relative permeability model parameters are summarized

1The model can be downloaded from https://www.spe.org/web/csp/datasets/set02.htm
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Figure 4.5: Generated Porosity and Permeability Fields

Figure 4.6: Porosity-Permeability Correlation

Figure 4.7: Histogram of Permeability and Porosity
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Property Value Unit

µw 0.72 cp
µo 1.63 cp
ρw 1014 kg/m3

ρo 859 kg/m3

Corey-Brooks Model Parameter Value

kro,max 0.8
krw,max 0.6
no 2
nw 2
Sor 0.1
Swc 0.2

Table 4.2: Summary of Fluid Parameters Used for Simulation

in Table 4.2. The relative permeability curves generated from the specified

parameters are shown in Figure 4.8.

The following bullet points summarize the conditions with which the problem

is formulated:

• There are five injector wells and four producer wells at current time (Year

0), as shown in Figure 4.9.

• 16 candidate infill well locations are specified using a grid-like arrange-

ment, as shown in red in Figure 4.10.

• At every candidate infill well location, a producer or an injector can be

drilled.

96



Figure 4.8: Relative Permeability Curve Generated Using Corey-Brooks Model

• The status of the well (injection or production) cannot be switched once

drilled.

• Injection wells will maintain the injection rates at 250 STB/day, while

the flowing bottomhole pressure of producers will be fixed at 1200 psia.

• Maximum of one well can be drilled in every year. The option to drill

no wells is also available.

• Given the above conditions, the MCTS algorithm is to determine the

optimal drilling schedule for the next 20 years that specifies the type,

location, and the time to drill the infill wells.

• The optimality of a drilling schedule is calculated using the NPV, calcu-

lated using the following equation.
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Figure 4.9: Existing Injectors and Producers (Axes in Meters)

NPV =
20∑
t=1

(qoil,t$oil −OPEX)∆t− CAPEXi

(1 + r)t
(4.3.3)

where CAPEXi is equal to $10MM for years with new infill wells and

zero for years without. Also,

qoil,t: Oil production rate at time t, with or without refrac [STB/year]

$oil,t: Oil price [$/STB]

OPEX: Annual operating expense [$/year]

∆t: Time interval [1 year]

r: Interest rate
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Figure 4.10: Candidate Infill Well Locations (Axes in Meters)

The economic parameters used for this study is summarized in Ta-

ble 4.3.

Given the above setup, a conservative estimate of the total number of

possible field development schedules can be calculated using a simple permu-

tations formula

Economic Parameter Value Unit

Oil Price 50 $/STB
Injection Price 1 $/STB

OPEX 1 MM$/Year
CAPEX (Drilling) 10 MM$/Well

Annual Interest Rate 5 %

Table 4.3: Economic Parameters Required to Determine NPV
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P (n, r) =
n!

(n− r)!
(4.3.4)

where n is equal to the number of time steps considered, and r is the number of

candidate infill well locations. The estimate of the number of different combi-

nations, as calculated using the equation, is 1.01× 1017, which is prohibitively

large. This number is an underestimate of the true count of possible com-

binations because it only includes scenarios where a well is always drilled at

every time step; including the cases where drilling may be forgone will further

increase this number. The MCTS algorithm will attempt to find the optimal

strategy in a decision space that is intractably large.

4.4 Results

Using the setup detailed in the previous section, the MCTS algorithm

was run to search for the optimal drilling and production schedule. MCTS

parameters selected to are summarized in Table 4.4. The number of search

paths and search depth is selected based on the simulation runtime; generally,

the larger the number of these parameters, the longer the time it takes for

MCTS to converge to an optimal solution. The overall runtime increases

faster for increasing number of search paths than it does for search depth

because increasing the search depth increases the number of time steps run in a

simulation that is already running, while increasing the number of search paths

increases the number of simulations altogether. The exploration constant (the
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MCTS Parameter Value

Number of Search Paths 100
Search Depth 5

Exploration Constant 107

Table 4.4: MCTS Parameters Used for Simulation

parameter c in equation (4.2.1)) is determined using the order of magnitude

of returned NPV values, as well as trial and error.

The drilling schedule optimized by the MCTS paired with the reservoir

simulator is visualized in a tabular form in Table 4.5. The table outlines the

information about which wells should be prioritized for development. Loca-

tions indexed 2, 3, 4, 6, 8, 11, 12, 14, and 15 are recommended to have injectors

drilled in different years, while the remaining locations are to be left without

wells.

The optimized schedule consisting of drilling injection wells exclusively

is interesting, given that the MCTS’s search through decision space includes

drilling both injection and production wells. The strategy overall suggests

that the project is more likely to yield larger returns to push oil than to pull

it. An abridged version of the full schedule is provided Table 4.6 for easier

comparison with Figures 4.16, 4.17, 4.19, and 4.20.

Figures 4.11, 4.12, 4.13, and 4.14 represent the reservoir’s response to

implementing the MCTS-optimized production schedule. Note that in Fig-

ure 4.12, the negative production rates represent injections from the new in-

jectors. For candidate locations that do not have a well, the rates remain at
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Table 4.6: Optimized Infill Drilling Policy Table (Abridged Version of Table 4.5
for Comparison)

zero. In Figures 4.12, 4.12, and 4.13, we can see the step increase in production

responses every time a new injector is introduced to the reservoir. Figure 4.15

visualizes the undiscounted cash flow at every time step of simulation; these

values are used in conjunction with the discount factor to calculate the NPV.

Because the simulation time steps are 0.1 year, the annual discount factor is

converted accordingly.

The water saturation fields and the pressure fields for years 0, 5, 10, 15,

and 20 are provided in Figures 4.16 and 4.17, respectively. The white space in

the water saturation map represents the area that has not yet been sweeped

by the injected water; the water saturation values in these regions remain at

initial water saturation of 0.3.

In two-phase fluid flow in porous media, the mobility ratio can provide
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Figure 4.11: Fluid Production Rates for Existing Producers and Infill Wells
(Negative Rates Indicate Injectors)

Figure 4.12: Oil Production Rates for Existing Producers and Infill Wells
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Figure 4.13: Field Total Oil Production Rates Through Time

Figure 4.14: Field Total Cumulative Oil Recovery Through Time
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Figure 4.15: Undiscounted Cash Flow Through Time

a useful indicator for fluid displacement efficiency (Lake et al., 2014). The

mobility ratio is defined as the mobility of the displacing fluid divided by the

mobility of the displaced fluid. For waterflood, mobility ratio is

M =
λw
λo

(4.4.1)

where λw = kw
µw

and λo = ko
µo
. Substituting these equations and the relation of

relative permeability to permeability (kw = kkrw and ko = kkro) in the above

equation, we have the following.

M =
kw/µw
ko/µo

=
krw/µw
kro/µo

(4.4.2)

Given that the relative permeabilities for oil and water is described by a power-

law model (Figure 4.8), the mobility ratio can now be described as a function

of water saturation. The relation calculated using the simulation parameters
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Figure 4.16: Water Saturation Field at Years 0, 5, 10, 15, and 20 (Axes in
meters)
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Figure 4.17: Pressure Field at Years 0, 5, 10, 15, and 20 (Axes in meters)
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Figure 4.18: Mobility Ratio Calculated Using Relative Permeability Curves
and Fluid Viscosities

is visualized in Figure 4.18. The evolution of mobility ratios through time in

the simulation model is visualized in Figure 4.19. Also included is the map of

regions where the mobility ratio is favorable for fluid displacement (M < 1).

4.5 Provisional Validation of Results

Because of the vast number of possibilities an infill drilling plan can

take, it is impossible to prove that the final optimized plan determined by the

MCTS algorithm is in fact a true optimum. Given this limitation, a partial val-

idation will be provided by comparing the NPV and cumulative oil recovery re-

sulting from the MCTS-optimized plan against those resulting from randomly

generated infill drilling plans. 1000 random infill drilling plans were generated

and was used in the simulator, resulting in a distribution of NPVs and cumu-
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Figure 4.19: Mobility Ratio Field at Years 0, 5, 10, 15, and 20 (Axes in meters)
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Figure 4.20: Favorable Mobility Ratio Field at Years 0, 5, 10, 15, and 20 (Axes
in meters)
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Figure 4.21: NPV and Cumulative Oil Recovered of MCTS-Optimized Plan
and Randomly Generated Plans

lative oil recovery values. The generated distributions of NPV and cumulative

oil recovery, and their mean values are visualized in the two histograms in

Figure 4.21. The mean values of the distributions, the values corresponding to

simulation with no infill wells, and the values from MCTS-optimized plan are

also indicated for comparison. The specific numeric values are also summa-

rized in Table 4.7. The NPV and cumulative recovered oil values indicate that

the value of the MCTS-optimized plan far surpasses the expected NPV and oil

recovery of randomly generated infill drilling and production schedules, which

is expected. It is also interesting that none of the random schedules’ NPV and

recovered oil exceed those of the MCTS production portfolio, although a small

number of random schedules come close. Although this is an imperfect method

of validation, it nevertheless indicates that the MCTS-generated schedule is of

value.
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No Infill E[Random Schedule] MCTS-Optimized Schedule

NPV (MM$) 259.68 277.91 362.24
Cum. Oil (MMbbl) 52.24 71.21 110.25

Table 4.7: Summary of Results

4.6 Conclusion & Future Works

This chapter proposed the Monte Carlo tree search (MCTS) algorithm

as a solution to the problem of optimizing infill drilling schedule. The discussed

method employs the MCTS in conjunction with a black oil reservoir simulator

to stochastically search through the decision space to find a policy that is

likely to yield the greatest return on investment. The versatility of the MCTS

algorithm facilitates application to a diverse set of decisions that are sequence-

dependent.

This application of MCTS to solve the infill well scheduling problem

can be significantly improved by reducing the amount of computation required

to approach an optimized policy. Because the MCTS algorithm calls upon

the reservoir simulator multiple times to search for the optimal infill drilling

schedule, the process can be computational- and memory-intensive, even with

tree pruning.

A simple model that is able to predict the production responses at the

candidate infill locations can be used in the place of the reservoir simulator.

This replacement will allow higher resolution search in both time and space

for the optimal schedule with available computational resources. Another ad-

vantage of developing a simple model is that it will allow the workflow to
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stochastically represent the uncertainties associated with the reservoir model

in forms of multiple realizations. To the author’s knowledge, such simple model

that does not rely on computationally costly reservoir simulators does not ex-

ist in the literature. section §5 outlines a beginning attempt to develop such a

model based on the CRM model. Despite its incompleteness, it is nevertheless

included in the dissertation as it may be useful for researchers interested in

the subject.

Additional ways in which this work can be improved are listed below.

The first three bullet points are contingent upon a successful development and

incorporation of a computationally lighter reservoir response prediction model.

• Allow switching between existing injectors and producers. In

this study, once the type of well was set between an injector and a

producer, it was fixed for the remaining simulation run. A more realistic

and versatile strategy will also involve switching a well between injectors

and producers to maximize recovery.

• Variable injection rates. Injection rates for all injectors were fixed.

This is an operational parameter that is highly adjustable. Injectivity at

different wells may be variable; granting more flexibility in the injection

rates may yield a more adaptive and feasible solution.

• Stochasticity in the reservoir model. Reduced computational over-

head resulting from using a simple model will allow multiple reservoir
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realizations, which can be used to reflect the uncertainty associated with

the representation of the reservoir.

• Adaptive exploration constant as the simulation progresses. Be-

cause the NPV values calculated at time windows of the same width de-

crease as the recovery proceeds, by equation 4.2.1 on page 92, the relative

contribution of the uncertainty increases, favoring exploration over ex-

ploitation. While this did not seem to drastically change the results, for

scenarios where the NPV (or any measure of optimality) undergoes more

change over time, such adaptive adjustment of the exploration constant

may yield more reliable results.

• Combine with the traveling salesman problem. Although this

study ignored the efficiency associated with the proximity of infill lo-

cations to be drilled consecutively, there are unavoidable costs involved

with the logistics of transporting drilling rigs. Considering that, for in-

stance, the costs of transferring offshore rigs are significantly higher than

those of onshore rigs, including transport factor in the analysis may sig-

nificantly help improve returns on investment.
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Chapter 5

Conclusions

This concludes the discussion of the three decisional challenges solved

in this dissertation. The solution to the water injection scheme optimization

problem involved taking advantage of simple models (CRM and Koval’s K-

Factor method) and statistical methods (time series bootstrapping, EnOpt,

and Thompson Sampling) to converge to a set of actions that are the most

likely to be optimal. The computational workload were effectively reduced by

focusing primarily on the forward simulations of decisions that were promis-

ing. A validation using a simulator is provided at the end of the chapter to

demonstrate that the final selected water injection scheme is the most optimal

among the ones generated by bootstrapping & EnOpt.

In the refrac timing problem, a real options method to generate an

accurate estimate of the value of the refrac-candidate horizontal well. The LSM

algorithm also provided with the policy that instructs the manager on when

he should refrac the well depending on the gas prices and the gas production

rates. Then the real options estimate of the value is compared against a more

myopic, Monte Carlo discounted cash flow (MC-DCF) method to show that

the latter provides an underestimate of the value because it fails to account
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for the managerial flexibility inherent in the project.

Finally, in the infill drilling scheduling problem, the Monte Carlo tree

search (MCTS) algorithm is used to find the optimal scheduling solution with-

out suffering the curse of dimensionality. By pairing MCTS with a reservoir

simulation model, we determined the optimal combination of wells, their con-

figuration, and the order in which they should be drilled to maximize the

returns on investment. A provisional validation is provided to compare the cu-

mulative oil production and the NPV of the MCTS-optimized schedule against

those resulting from randomly generated schedules.
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Appendix: Approximating CRM for Infill

Well Simulations

This section of the dissertation will outline an attempt to predict the

production response of an undrilled location without relying on discretized

reservoir simulators.

As described in section 2.2.1, CRM is a physically-derived model that

takes on a data-driven approach in practical applications. In other words, while

the CRM model is derived from a mass balance, the model is put to use by

using nonlinear regression to fit the model parameters to historical production

and bottomhole pressure data. The model is attractive because its parameters

have physical relevance that are intuitive. However, the model cannot be

immediately applied to determine the optimal infill drilling schedule because

the candidate infill well locations do not have explicit injection or production

data available for the model to capture well interactions.

The procedure discussed below is a workaround to this limitation to

reduce the total amount of computation in optimal infill well scheduling. The

objective is to develop an alternative representation of the reservoir that will

accurately predict production responses at undrilled locations by modifying

the CRM. The approach is as follows:
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1. Using a reservoir simulator, drill all the candidate infill well locations.

2. Run the simulation using random, non-zero injection rates with pertur-

bations.

3. Fit the CRM parameters using the generated production and flowing

bottomhole pressure data.

4. Using the fitted CRM parameters from Step 3 and the porosity and

permeability fields, determine the CRM parameters for cases where the

infill wells are not drilled.

Despite that the first step relies on a reservoir simulator, the procedure will

significantly reduce the amount of computations required overall if the gener-

ated model were to be used for the objective. This approach to proxy designing

involves the following important assumptions:

• The CRM parameters are temporally stationary.

• The CRM parameters are independent of injection schemes (assuming

non-zero, perturbed injections).

• The changes in CRM parameters resulting from removing a well can be

accurately approximated using the CRM parameters pre-removal and

simple geometric relations (except in limiting cases of extreme hetero-

geneity).
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It is important to note that the four-step strategy described above takes the

approach of beginning with the most number of wells and attempting to find

the CRM parameters of the subset combinations of wells. This is because

CRM parameters are, as discussed in section 2.2.1, summaries of distinct fea-

tures of the inter-well system undergoing waterflooding. The time constants

represent the rate at which producers respond to injection perturbations, the

well connectivities indicate the relative contribution of injections from different

injectors, and the productivity indices suggest the producer’s responsiveness

to local pressure drawdowns.

The fourth step in the method proposed above can potentially be

achieved in multiple ways. Below lists approaches that remain to be explored

in this work:

• Machine learning approach. Using multiple different realizations of well

configurations in a reservoir simulation model, generate enough data

to train the model to predict CRM parameters in undrilled locations.

Consider random forest, gradient boosting machine (GBM), or XGBoost

algorithms. An alternative to this would be to train the models to predict

the rates directly.

• Time-of-flight- or streamline-based estimation. Generate a steady-state

pressure solution, calculate time of flight for each cell, integrate time of
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flight values along each streamline, and compare those results with CRM

gains, time constants, etc.

• Start with a simple homogeneous reservoir, and mathematically/geometrically

determine the CRM parameters at each point.
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