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Borehole sonic measurements are widely used to estimate formation elastic properties 

and to construct synthetic seismograms. However, presence of noise compromises the 

accuracy of sonic logs. Sonic logs are prone to errors originating from near wellbore damage or 

mud-filtrate invasion. Moreover, sonic logs are calculated from the numerical processing of 

waveforms over a wide range of receivers. Numerical processing induces errors in the sonic 

slowness because the slowness value is averaged over the length of the receiver array.  

I apply a fast modeling method using spatial sensitivity functions to calculate sonic logs. First, I 

define the spatial sensitivity function for the compressional and flexural modes. Then, I apply 

the fast modeling in a joint inversion of shear and compressional slowness logs to mitigate 

noise contaminating sonic logs. Joint inversion is performed in vertical and slightly-dipping 

wells, to estimate layer-by-layer formation elastic and mechanical properties for isotropic and 

anisotropic formations. 

Finally, I introduce a fast modeling procedure for compressional and flexural modes in deviated 

and horizontal wells. Results of the fast modeling are compared to finite-difference numerical 

simulations. The fast modeling of sonic borehole measurements in deviated wells can be 

applied in a joint inversion to estimate formation elastic and geometrical properties.  
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Chapter 1: Introduction 

 

Sonic logging is a component of formation evaluation widely used to measure elastic properties 

of rocks in-situ, which are necessary for seismic interpretation and reserves appraisal. 

Estimating formation mechanical strength is also important for completion engineers, as they 

seek to determine optimal fracturing practices. Moreover, sonic logs are used to estimate 

seismic wavelets via synthetic seismograms. Noise present in sonic logs can bias the estimation 

of seismic wavelets and degrades the quality of seismic inversion-based products. 

There are two sources of noise and error in sonic logs: error originating from the numerical 

processing of the acquired waveforms, and error due to noise in the measurement itself. The 

slowness-time-coherence (STC) method, widely used in the industry, is implemented by stacking 

the waveforms at various receivers and measuring the compressional (P) and shear (S) slowness 

of the formation. Because this method depends on the definition of a time coherence window, 

it is prone to numerical errors. Moreover, because the shear slowness is estimated from the 

low-frequency flexural or quadrupole mode and they have low energy, the estimation of shear 

slowness can be biased.  

Sonic measurements in thinly laminated formations are influenced by shoulder bed effects, 

anisotropy, and borehole environmental effects. Such effects make the interpretation of sonic 

logs difficult. When layer thicknesses are smaller than the tool’s receiver array length [1 to 2 m], 

the measurements will represent average slowness values, affecting the estimation of elastic 

properties.  

I use an inversion-based technique to eliminate the noise contaminating the logs and improve 

the estimation of the formation elastic properties in vertical wells. In high-angle and horizontal 

(HA/HZ) wells, however, sonic log interpretation is more complex; one cannot directly apply the 

same inversion scheme in vertical and HA/HZ wells.  
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In HA/HZ wells, presence of dipping bed boundaries causes multimode interference and wave 

distortion. Transmitters can excite multiple modes that interfere with each other because the 

layers cross the borehole at a high-angle. Furthermore, three-dimensional (3D) heterogeneities 

make it more difficult to detect formation velocities using the same principles and methods 

developed for vertical wells.   

In this report, I develop a fast forward model to jointly invert shear and compressional slowness 

in complex geometries to estimate the corresponding rock properties. Using these techniques 

on field data will enable the correction of slowness logs for environmental effects and 

processing errors. The fast forward modeling procedure will be approved using spatial sensitivity 

functions, that are equivalent to the Green’s function of borehole acoustic measurements.  
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Chapter 2: Literature Review 

 

2.1. Background on acoustics 
 
A sonic tool is composed of a transmitter and several receivers. Figure 1 shows a diagram of a 

LWD tool surrounding a formation with a borehole radius c; a and b are the inner and outer radii 

of the tool’s collar.  

 
Fig. 1. Diagram of LWD tool penetrating a formation with borehole diameter c. The tool consist of a steel 
drill collar of inner radius a and outer radius b. (Yang et al., 2011) 

Sonic tools use three types of acoustic sources: monopole, dipole, and quadrupole. Figure 2 

shows a diagram of three acoustic tools in a borehole with: a monopole source (left), a dipole 

source (center), and a quadrupole source (right). Black and red circles represent the azimuthal 

wave amplitude pattern for each source, and phase difference of the waves is represented by 

the plus (+) and minus (-) signs.  

Monopole sources emit acoustic energy in all directions from the tool axis. They can excite both 

surface and body waves. The propagated wave is then detected by the receivers in a receiver 

array. For a fast formation, where the shear velocity is larger than the borehole fluid velocity, 

the monopole wavetrain contains P, S, and Stoneley-wave modes. The P and S modes are non-
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dispersive, whereas the Stoneley mode is dispersive, which means that its slowness varies with 

frequency. In slow formations, where the shear velocity is smaller than the borehole fluid 

velocity, the monopole wavetrain contains P and Stoneley modes. No shear head wave develops 

in the fluid and consequently the refracted shear waves are not detectable. The Stoneley wave 

is much less dispersive in slow formations.  

Dipole sources emit energy in a figure-8 pattern. They generate surface waves that propagate 

on the borehole wall. Modern tools have two sets of dipole sources that are orthogonal. For fast 

and slow formations, the dipole wavetrain contains the flexural mode. The high frequency 

components of the flexural mode are sensitive to the borehole fluid slowness, whereas the low-

frequency components asymptote to the formation shear slowness. 

Quadrupole sources emit energy in clover-leaf pattern. The quadrupole wavetrain contains the 

screw mode. Similarly to the flexural mode, the speed of propagation of the quadrupole mode 

approaches the formation shear slowness below a certain low cut-off frequency. However, its 

cut-off frequency is higher than in the case of the flexural mode. 

 
Fig. 2. Types of sonic source. From left to right: monopole, dipole, and quadrupole. Red and black circles 
represent the propagation of the wavefront. The inner brown ring corresponds to the drill collar of the 
LWD tool surrounded by the light blue borehole fluid. (Tang et al., 2003)  

 

 

 

 

Borehole 

fluid 
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2.2. Simulation of acoustic modes 

The source emits an acoustic pulse that propagates through the formation and is detected at 

the various receivers. Tang and Chang (2004) developed an analytical solution for the wave 

equation for formations containing a borehole surrounded by concentric layers. To obtain the 

waveform across the receivers, I solve the continuity equation across the borehole wall and 

across the boundaries of each layer. The wave potential takes into account, both, the emitted 

and reflected waves.  

In complex geometries where layer boundaries cross the receiver array, analytical solutions do 

not exist. I use techniques such as finite-difference (Liu et al., 1996) to numerically simulate 

waveforms.  

 

2.3. Processing techniques 

Once the waveforms are registered at the receivers, they are processed to obtain the mode 

slowness. For non-dispersive modes, I use the STC technique to process the waveform. In this 

method, I calculate the coherence of the waveforms registered at the tool receivers. For a 

monopole source, the maximum of the coherence will correspond to the compressional or the 

shear slowness of the formation depending on the arrival time. Equation 2.1 gives the 

semblance value as defined by Kimball and Marzetta (1984): 

𝜌(𝑠, 𝑇) =
∫ |∑ 𝑋𝑚(𝑡 + 𝑠(𝑚 − 1)𝑑)𝑁

𝑚=1 |
2
𝑑𝑡

𝑇+𝑇𝑤

𝑇

𝑁 ∫ ∑ |𝑋𝑚(𝑡 + 𝑠(𝑚 − 1)𝑑)|𝑁
𝑚=1

2
𝑑𝑡

𝑇+𝑇𝑤

𝑇

 , (2.1) 

where 𝑋𝑚 is the acoustic time signal at the mth receiver; N the total number of receivers; d the 

receiver spacing, and s the sonic slowness;  𝑇 is the center of the time window 𝑇𝑤.  

For dispersive modes, in the frequency domain, the semblance is given by  
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𝜌(𝑠0, 𝑓) =
|∑ 𝑋𝑚

∗(𝑓)𝑍0
𝑛−1𝑁

𝑚=1 |

√𝑁 ∑ 𝑋𝑚
∗(𝑓)𝑋𝑚(𝑓)𝑁

𝑚=1

 , (2.2) 

where 𝑍0 = exp(−𝑖2𝜋𝑓𝑠0𝑑 + 𝜀), with 𝑠0 the slowness and 𝜀 the error term; * denotes the 

complex conjugate of the spectrum 𝑋𝑚, where 𝑋𝑚 = ℎ𝑘(2𝜋𝑓) ⋅ exp(−𝑖2𝜋𝑓𝑠𝑘(𝑛 − 1)𝑑) with 

ℎ𝑘 the amplitude of the 𝑘th wave mode, and 𝑠𝑘 the corresponding slowness. The semblance is 

maximized when 𝑠0 = 𝑠𝑘. This processing method is the weighted spectral semblance method. 

 

2.4. Errors in sonic logs 
 
As discussed in previous sections, the sonic response is detected at several receivers. Therefore, 

when multiple layers cross the receiver array, the measured slowness is averaged through the 

layers. In formations with thin layers, compressional and shear logs will be affected by shoulder 

beds (Peyret and Torres-Verdín, 2006). 

Because the depth of investigation of sonic logs is approximately 0.6 m, sonic logs are sensitive 

to near well-bore alterations and invasion. Other sources of noise for sonic logs are: caliper 

variations, presence of gas in the formation, and presence of fractures (Oyler et al., 2008). In 

addition, processing techniques can introduce numerical errors in the calculated slowness, 

which will be more significant for tools with fewer receivers.  

I use inversion techniques to overcome these problems and have a better interpretation of sonic 

logs. By jointly inverting shear and compressional logs, it is possible to obtain better estimations 

of the formation’s elastic properties such as Poisson’s ratio and Young’s modulus. Numerical 

simulations are not suitable for inversion purposes because they are extremely time-consuming. 

Therefore, developing a fast forward model will enable the implementation of an inversion 

technique to understand and interpret sonic logs. 
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2.5. Fast modeling and sensitivity functions in vertical wells 

 

2.5.1. Radial sensitivity function 

The slowness of a formation is sensitive to elastic property variations in the radial direction due 

mud-filtrate invasion or near well bore alteration. Sinha (1997) studied the impact of five elastic 

properties on the flexural mode using radial sensitivity functions. Moreover, to estimate the 

radial profile of shear velocity, Sinha et al. (2006b) developed an inversion interpretation of the 

flexural mode using radial sensitivity functions.  

 

The radial sensitivity function of a formation where elastic properties vary only in the radial 

direction is given by 

𝐺𝑟(𝑟,𝑀𝑟, 𝑓) =
[𝑠(𝑟, 𝑓) − 𝑠𝑟(𝑓)]/𝑠𝑟(𝑓)

[
𝑀 − 𝑀𝑟

𝑀𝑟
]𝑟∆𝑟

, (2.3) 

where 𝑠𝑟 and 𝑀𝑟 are the slowness and elastic property of the reference homogeneous 

formation, respectively; 𝑠 is the perturbed formation slowness due to a cylindrical layer of 

thickness ∆𝑟 and elastic property 𝑀 located at position 𝑟; 𝑠 is measured at the center of the 

receiver array by the various receivers. For dispersive modes, the value of slowness 𝑠 is a 

function of the frequency, f. Slowness 𝑠 is calculated analytically by solving the wave equation in 

a formation with concentric layers using a root finding technique. 

The diagram in Fig. 3 shows the model used for calculating the sensitivity function at a specific 

location 𝑟. To obtain the sensitivity function for all the locations we translate the layer of 

thickness ∆𝑟 in the horizontal 𝑟 direction. 

I calculate the radial sensitivity functions of the flexural mode to perturbation of shear slowness. 

I consider the slow formation given in Table 1 and the sonic tool properties given in Table 2. I 

use Equation 2.3 where 𝑠(𝑟, 𝑓) and 𝑠𝑟(𝑓) are the flexural slowness at frequency f of the 

perturbed and homogeneous formations, respectively. The perturbed shear velocity and the 
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reference shear velocity of the formation are given by 𝑀 and 𝑀𝑟, respectively. In this example, I 

take a perturbation of 10%, therefore  
𝑀−𝑀𝑟

𝑀𝑟
= 0.1. 

 
Fig. 3. Diagram of a homogeneous formation with an embedded layer perturbation in the radial direction. 
The formation is penetrated by a sonic tool with one transmitter and several receivers. 

Figure 4 shows the calculated radial sensitivity function of the flexural mode to shear velocity for 

a slow formation.  Formation and tool properties are given in Tables 1 and 2, respectively. Radial 

sensitivity functions are given at discrete frequencies from 2.5 kHz to 7 kHz. As frequency 

increases, the depth of investigation decreases from about 0.5 m at 2 kHz to 0.3 m at 7 kHz. 

Therefore, at high frequencies, the sensitivity of the flexural mode to shear velocity is high near 

the borehole and decreases to almost 0 at 0.3 m away from the borehole. 

 

Compressional velocity 

Vp (m/s) 
3000 

Shear velocity 

Vs  (m/s) 
1500 

Density 

ρ (kg/m3) 
2500 

Table 1. Elastic properties of a homogenous slow formation. 
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2.5.2. Axial sensitivity function 
 
Numerical simulation of sonic logs requires high computational time which prevents the use of 

inversion-based interpretation on shear and compressional slowness logs. A fast forward model 

using sensitivity functions was introduced by Huang et al. (2015) for the fast modeling of sonic 

logs. The shape of the axial sensitivity function depends on tool configuration, borehole 

properties, and the choice of reference medium. The axial sensitivity function of a formation 

where elastic properties vary only in the axial direction is given by 

𝐺𝑧(𝑧,𝑀𝑟, 𝑓) =
[𝑠(𝑧, 𝑓) − 𝑠𝑟(𝑓)]/𝑠𝑟(𝑓)

[
𝑀 − 𝑀𝑟

𝑀𝑟
]∆𝑧

, (2.4) 

where 𝑠𝑟 and 𝑀𝑟 are the slowness and elastic property of the reference homogeneous 

formation, respectively; 𝑠 is the perturbed formation slowness due to a horizontal layer of 

thickness ∆𝑧 and elastic property 𝑀 located at position 𝑧; 𝑠 is measured at the center of the 

receiver array by the various receivers. For dispersive modes, the value of slowness 𝑠 is a 

function of frequency, f.  

Tool diameter (m) 0.0920 

Compressional velocity: Vp (m/s) 1650 

Shear velocity: Vs  (m/s) 400 

Density: ρ (kg/m3) 4452 

Number of receivers 13 

Inter-receiver distance (m) 0.1524 

First receiver offset (m) 3.2766 

Table 2. Properties of the assumed sonic tool. 

The diagram in Fig. 5 shows the model used for calculating the sensitivity function at a specific 

depth 𝑧. To obtain the sensitivity function for all the locations of the receiver array, I translate 

the layer of thickness ∆𝑧 in the vertical, 𝑧 direction. Figure 5 shows the axial sensitivity function 
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calculated for the slow formation given in Table 1. The axial sensitivity functions are given at 

discrete frequencies from 2.5 kHz to 7 kHz. The value of the sensitivity function is maximal at the 

center of the receiver array and is equal to zero outside the receiver array range. 

 

Fig. 4. Radial sensitivity functions of the flexural mode to shear velocity calculated using Equation 2.3 for a 
slow formation. Radial sensitivity curves are shown at 2.5, 3, 4, 5, 6, and 7 kHz. Radial distance from the 
borehole is given by r (m). 

 

 
Fig. 5. Diagram of a homogeneous formation with a horizontal layer perturbation. 
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To avoid time-consuming numerical simulations to calculate 𝑠(𝑧, 𝑓), I use semi-analytical 

formulations to calculate the sensitivity functions by modeling wave propagation through a one-

dimensional (1D) layered medium (Huang et al., 2015). 

First, I consider a homogeneous formation with phase slowness 𝑠𝑟. The nth receiver on the sonic 

tool registers a wave spectrum, 𝑋, defined as 

𝑋𝑛(𝑓) = 𝐴𝑍(𝑛−1), (2.5) 

𝑍 = 𝑒−𝑖2𝜋𝑓𝑠𝑟𝑑 , (2.6) 

where f is frequency, 𝐴 is amplitude, and 𝑑 is inter-receiver spacing.  

Then, I place a thin layer of slowness 𝑠𝑝 between two consecutive receivers at locations 𝑧𝑚 and 

𝑧𝑚+1. The receivers below receiver 𝑚 will sense an up-going wave of amplitude 𝐴 and a 

reflected wave of amplitude 𝐵 that is due to wave reflection at the lower boundary of the thin 

layer. Similarly, receiver m+1 will sense the up-going wave 𝐶 and a reflected wave of amplitude 

𝐷 that is due to wave reflection at the upper boundary of the thin layer. Finally, receivers above 

location m+1 will sense an up-going wave of amplitude 𝐸. 

To obtain the wave amplitudes, I solve the displacement and stress continuity equations across 

the two layer boundaries. Because amplitude 𝐴 depends on the choice of the sonic source, I 

normalize the system of equation by 𝐴 and obtain the following system of equations 

[
 
 
 
 
−2𝜋𝑓𝑠𝑟𝑒

−𝑖2𝜋𝑓𝑠𝑟𝑧𝑚 −2𝜋𝑓𝑠𝑝𝑒
−𝑖2𝜋𝑓𝑠𝑝𝑧𝑚 2𝜋𝑓𝑠𝑝𝑒

𝑖2𝜋𝑓𝑠𝑝𝑧𝑚 0

(2𝜋𝑓)2𝜌𝑒𝑖2𝜋𝑓𝑠𝑟𝑧𝑚 −(2𝜋𝑓)2𝜌𝑒−𝑖2𝜋𝑓𝑠𝑝𝑧𝑚 −(2𝜋𝑓)2𝜌𝑒𝑖2𝜋𝑓𝑠𝑝𝑧𝑚 0

0 −2𝜋𝑓𝑠𝑝𝑒−𝑖2𝜋𝑓𝑠𝑝𝑧𝑚+1 2𝜋𝑓𝑠𝑝𝑒𝑖2𝜋𝑓𝑠𝑝𝑧𝑚+1 2𝜋𝑓𝑠𝑟𝑒
−𝑖2𝜋𝑓𝑠𝑟𝑧𝑚+1

0 −(2𝜋𝑓)2𝜌𝑒−𝑖2𝜋𝑓𝑠𝑝𝑧𝑚+1 −(2𝜋𝑓)2𝜌𝑒𝑖2𝜋𝑓𝑠𝑝𝑧𝑚+1 (2𝜋𝑓)2𝜌𝑒−𝑖2𝜋𝑓𝑠𝑟𝑧𝑚+1]
 
 
 
 

[

𝐵
𝐶
𝐷
𝐸

] 

=[

−2𝜋𝑓𝑠𝑟𝑒
−𝑖2𝜋𝑓𝑠𝑟𝑧𝑚

−(2𝜋𝑓)2𝜌𝑒−𝑖2𝜋𝑓𝑠𝑟𝑧𝑚

0
0

]. (2.7) 

To calculate the values of  𝑠𝑟 and 𝑠𝑝 at frequency f, I use an analytical dispersion estimation 

method in homogeneous formations. I then solve Equation 2.7 to obtain 𝐵, 𝐶, 𝐷 and 𝐸. I neglect 
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the contribution of reflected waves of amplitude B and D because their influence is minimal on 

sonic slowness. Therefore the spectrum at each receiver becomes 

[𝑋1(𝑓), 𝑋2(𝑓),… , 𝑋𝑚(𝑓), 𝑋𝑚+1(𝑓), 𝑋𝑚+2(𝑓),… , 𝑋𝑁(𝑓)] =

[𝐴, 𝐴𝑍,… , 𝐴𝑍(𝑚−1), 𝐶𝑒−𝑖2𝜋𝑓𝑠𝑝𝑚𝑑 , 𝐸𝑍(𝑚+1) … ,𝐸𝑍(𝑁−1)],  
(2.8) 

where N is the total number of receivers. Because 𝑠𝑟 and 𝑠𝑝 are measured by a sonic tool 

penetrating a fluid filled borehole, the spectrum incorporates the contribution from the 

borehole and tool on the sonic response. In practice, while m varies from 1 to N, the thin layer, 

shown in Fig. 5, moves across the receiver array.  

To calculate the slowness of the formation 𝑠(𝑧, 𝑓), I process the spectrum calculated at each 

receiver when using the weighted spectral semblance method. Figure 6 shows the calculated 

axial sensitivity function of the flexural mode to shear velocity for the slow formation given in 

Table 1. 

 

Fig. 6. Axial sensitivity functions of the flexural mode to shear velocity calculated using Equation 2.4 for a 
slow formation. Axial sensitivity curves are shown at 2.5, 3, 4, 5, 6, and 7 kHz. Distance from the source is 
given by z while the receiver array extends from 3.2766 m to 5.1054 m. 
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2.5.3. Axial-radial sensitivity function 
 
The axial-radial sensitivity function consists of perturbing the formation in the radial and in the 

axial direction as shown in Fig. 7. Therefore, the perturbed volume has the shape of a toroid 

with a rectangular cross section, and in cylindrical coordinate the sensitivity function is given by 

𝐺𝑟𝑥𝑧(𝑟, 𝑧,𝑀𝑟, 𝑓) =
[𝑠(𝑟, 𝑧, 𝑓) − 𝑠𝑟(𝑓)]/𝑠𝑟(𝑓)

[
𝑀 − 𝑀𝑟

𝑀𝑟
]𝑟∆𝑟∆𝑧

, (2.9) 

where 𝑠𝑟 and 𝑀𝑟 are the slowness and elastic property of the reference homogeneous 

formation, respectively; 𝑠 is the perturbed formation slowness due to a mesh of volume 𝑟∆𝑟∆𝑧 

and elastic property 𝑀 located at position (𝑟, 𝑧); 𝑠 is measured at the center of the receiver 

array by the various receivers. For dispersive modes, the value of slowness 𝑠 is a function of 

frequency, 𝑓.  

Because the axial and radial sensitivity functions are uncorrelated, I calculate the axial-radial 

sensitivity function 𝐺𝑟𝑥𝑧 using the cross product of both the sensitivity functions: 

𝐺𝑟𝑥𝑧 =
𝐺𝑟 ∗ 𝐺𝑧

∬ 𝐺𝑟 ∗ 𝐺𝑧 𝑟𝑑𝑟𝑑𝑧
𝑟,𝑧

, (2.10) 

where 𝐺𝑟 and 𝐺𝑧 are the radial and axial sensitivity functions, respectively. Figure 8 shows the 

axial-radial sensitivity map of the slow formation given in Table 1 for discrete frequencies form 

2.5 kHz to 7 kHz. 
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Fig. 7. Diagram of a homogeneous formation with a perturbation of radial thickness ∆𝑟 and axial thickness 
∆𝑧. 

 

Fig. 8. Axial-radial sensitivity functions of the flexural mode to shear velocity perturbation at (a) 2.5, (b) 3, 
(c) 4, (d) 5, (e) 6, and (f) 7 kHz, calculated in the slow formation described in Table 1. Color scale indicates 
the sensitivity function value. 
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2.5.4. Forward model 

For a formation with multiple horizontal layers, the modeled sonic slowness at a certain 

frequency is given by 

𝑠 = 𝑠𝑟 + ∑∑∑
𝑀(𝑟, 𝑧) − 𝑀𝑟

𝑀𝑟
𝑟𝑧

𝐺𝑟𝑥𝑧(𝑟, 𝑧,𝑀𝑟)

𝑀𝑟

𝑠𝑟𝑟∆𝑟∆𝑧, (2.11) 

where 𝑠𝑟 is the slowness of a reference homogeneous formation of elastic property 𝑀𝑟; 𝑀(𝑟, 𝑧) 

is the elastic property of the perturbed toroid at the location (𝑟, 𝑧). The cross sectional area of 

the toroid is ∆𝑟∆𝑧 and 𝐺𝑟𝑥𝑧 is the radial-axial sensitivity function. The first sum in Equation 2.11 

refers to the perturbation in the elastic properties, namely shear velocity, compressional 

velocity, and density, where second and third sums loop over the radial and axial domain, 

respectively. 

 

2.6. Acoustics in deviated wells 

Equations developed for the sensitivity functions in section 2.5 are not applicable in HA/HZ 

wells. The geometry can no longer be simplified to a two-dimensional (2D) problem, and the 

slowness is now dependent on the geometry of the formation.  

Limited research has been published regarding sonic slowness in heterogeneous formations 

penetrated by HA/HZ wells. The propagation of sonic modes in deviated wells is more complex 

because of mode conversion and mode interference. The low-frequency flexural mode will be 

altered, which makes it difficult to extract formation shear slowness at the low-frequency 

asymptote (Mallan et al., 2011).  

Non-dispersive modes, such as compressional and shear modes, are also affected by the 

presence of dipping boundaries. Borehole-guided waves interfere with the converted body 

waves resulting in phase discontinuity of the waveforms registered at various receivers. 

However, the first arrival of the P-mode is dominated by the converted P-waves in the 
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formation (Lin et al., 2006). It is therefore possible to simplify the 3D geometry to a 1D geometry 

by eliminating the borehole (Huang, 2015), as shown in Fig. 9. Figure 9 shows a formation with 

four horizontal layers: L1, L2, L3 and L4. The sonic tool is simplified to a point source S and three 

receivers: r1, r2, and r3; z1, z2, and z3 are boundary locations of the layers. 

 

 
Fig. 9. Diagram of the simplified model used to simulate compressional slowness. 

 
Through this simplified model, I calculate the waveforms measured by the receivers to estimate 

the first arrival of the P-mode. I assume that the shear velocity of the layers is zero because 

shear velocity does not contribute to the first arrival of the compressional mode. Compressional 

potentials are defined as 

𝜙𝐴,𝑛 = 𝐴𝑛𝑒𝑖𝑘𝑐𝑛𝑧𝑒−𝑖𝑘𝑥𝑥,  (2.12) 

and 

𝜙𝐵,𝑛 = 𝐵𝑛𝑒−𝑖𝑘𝑐𝑛𝑧𝑒−𝑖𝑘𝑥𝑥 ,  (2.13) 

where 𝐴𝑛 and 𝐵𝑛 are the amplitudes of the up-going and down-going potentials, 𝜙, and 

𝑛 = 1,2,…𝑁 where 𝑁 is the total number of layers; 𝑘𝑐𝑛 and 𝑘𝑥 are the wavenumbers in the 𝑧 

and 𝑥 direction, respectively, and satisfy 

𝑘𝑐𝑛
2 + 𝑘𝑥

2 =
𝜔2

𝑣𝑝𝑛
2 , (2.14) 

where 𝜔 = 2𝜋𝑓 is angular frequency and 𝑣𝑝𝑛 is compressional velocity of layer 𝑛. To obtain the 

amplitudes, I solve the continuity equation at the boundaries. The normal displacement and the 

normal stress satisfy 
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𝑢𝑧𝑛 =
𝜕𝜙𝐴,𝑛

𝜕𝑧
+

𝜕𝜙𝐵,𝑛

𝜕𝑧
= (𝑖𝑘𝑐𝑛)(𝜙𝐴,𝑛 − 𝜙𝐵,𝑛), (2.15) 

and  

𝜎𝑧𝑛 = 𝜆𝑛

𝜕𝑢𝑧𝑛

𝜕𝑧
= (−𝜆𝑛𝑘𝑐𝑛

2)(𝜙𝐴,𝑛 + 𝜙𝐵,𝑛), (2.16) 

where 𝜆𝑛 is the first Lamé constant of layer 𝑛. I apply the global matrix method (Lowe, 1995) to 

solve for the wave amplitudes. The system to solve becomes 

 

[
 
 
 
 
 
𝑚11 𝑚12 𝑚13 0 0 0
𝑚21 𝑚22 𝑚23 0 0 0
0 𝑚32 𝑚33 𝑚34 𝑚35 0
0 𝑚42 𝑚43 𝑚44 𝑚45 0
0 0 0 𝑚54 𝑚55 𝑚56

0 0 0 𝑚64 𝑚65 𝑚66]
 
 
 
 
 

[
 
 
 
 
 
𝐵1

𝐴2

𝐵2

𝐴3

𝐵3

𝐴4]
 
 
 
 
 

=

[
 
 
 
 
 
𝑏0

𝑏1

0
0
0
0 ]

 
 
 
 
 

, (2.17) 

where non-zero coefficients of the matrix are given in Table 3. 

 

𝑚11 = 𝑖𝑘𝑐1, 
𝑚12 = 𝑖𝑘𝑐2, 

𝑚13 = 𝑖𝑘𝑐2𝑒
𝑖𝑘𝑐2(𝑧2−𝑧1), 

𝑚21 = 𝜆1𝑘𝑐1
2, 

𝑚22 = −𝜆2𝑘𝑐2
2, 

𝑚13 = −𝜆2𝑘𝑐2
2𝑒𝑖𝑘𝑐2(𝑧2−𝑧1), 

𝑚32 = −𝑖𝑘𝑐2𝑒
𝑖𝑘𝑐2(𝑧2−𝑧1), 

𝑚33 = 𝑖𝑘𝑐2, 
𝑚34 = 𝑖𝑘𝑐3, 

𝑚35 = −𝑖𝑘𝑐3𝑒
𝑖𝑘𝑐3(𝑧3−𝑧2), 

𝑏0 = −𝑒𝑖𝑘𝑐1(𝑧1−𝑧𝑠𝑜)  

𝑚42 = 𝜆2𝑘𝑐2
2𝑒𝑖𝑘𝑐2(𝑧2−𝑧1), 

𝑚43 = 𝜆2𝑘𝑐2
2, 

𝑚44 = −𝜆3𝑘𝑐3
2, 

𝑚45 = −𝜆3𝑘𝑐3
2𝑒𝑖𝑘𝑐3(𝑧3−𝑧2), 

𝑚54 = −𝑖𝑘𝑐3𝑒
𝑖𝑘𝑐3(𝑧3−𝑧2), 

𝑚55 = 𝑖𝑘𝑐3, 
𝑚56 = 𝑖𝑘𝑐4, 

𝑚64 = 𝜆3𝑘𝑐3
2𝑒𝑖𝑘𝑐3(𝑧3−𝑧2), 

𝑚65 = 𝜆3𝑘𝑐3
2, 

𝑚66 = −𝜆4𝑘𝑐4
2, 

𝑏1 =  𝑖𝜆1𝑘𝑐1𝑒
𝑖𝑘𝑐1(𝑧1−𝑧𝑠𝑜)  

Table 3. Non-zero coefficients of the matrix satisfying the continuity conditions. 

The spectra in the frequency domain at each receiver are given by 

𝑝(𝑟1) = −𝜆1𝑘𝑐1
2(

𝑖

𝑘𝑐1
𝑒𝑖𝑘𝑐1(𝑧𝑟1−𝑧𝑠0) + 𝐵1𝑒

𝑖𝑘𝑐1(𝑧𝑟1−𝑧𝑠0)) 𝑒−𝑖𝑘𝑥(𝑥𝑟1−𝑥𝑠0), (2.18) 

𝑝(𝑟2) = −𝜆2𝑘𝑐2
2(𝐴2𝑒

𝑖𝑘𝑐2(𝑧𝑟2−𝑧1) + 𝐵2𝑒
𝑖𝑘𝑐2(𝑧𝑟2−𝑧2)) 𝑒−𝑖𝑘𝑥(𝑥𝑟2−𝑥𝑠0), (2.19) 

and  

𝑝(𝑟3) = −𝜆4𝑘𝑐4
2(𝐴4𝑒

𝑖𝑘𝑐4(𝑧𝑟3−𝑧3)) 𝑒−𝑖𝑘𝑥(𝑥𝑟3−𝑥𝑠0). (2.20) 
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I integrate the spectra at the receivers to obtain the modeled waveforms. For a source of 

spectrum 𝑆(𝑓), the spectra is given by 

𝑃(𝑥𝑟, 𝑧𝑟 , 𝑡) = ∫ ∫ 𝑆(𝑓)𝑝(𝑟)𝑒−𝑖𝜔𝑡𝑑𝑘𝑥
+∞

−∞
𝑑𝑓

+∞

−∞
, (2.21) 

where 𝑆(𝑓) is the source spectrum. Rather than using time-consuming numerical simulations to 

obtain the waveforms, I use the approximated model to calculate the first arrival of the P-mode. 

 

2.7. Sonic logs acquired in anisotropic formations 

Many formations such as shale exhibit anisotropic characteristics. Transverse isotropy (TI) is 

commonly used to model formation anisotropy. In a transverse isotropic formation, the material 

elastic properties have an axis of symmetry: elastic properties are homogeneous along any 

transverse direction to the axis of symmetry (Plona et al., 2004). The elastic properties of a 

formation are defined using a stiffness tensor. The stiffness tensor, 𝐶, of a formation linearly 

associates the stress 𝜎 to the strain 𝜀 in the three directions of space x, y, and z. Similarly to 

Hooke’s law, the nine equations relating stress to strain are written as 

𝜎𝑖𝑗 = ∑ ∑𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

3

𝑙=1

, 𝑤𝑖𝑡ℎ 𝑖, 𝑗 = 1, 2, 3.

3

𝑘=1

 (2.22) 

Because the stress and the strain satisfy 𝜎𝑖𝑗 = 𝜎𝑗𝑖 and 𝜀𝑘𝑙 = 𝜀𝑙𝑘, only 6 of these equations are 

independent. The coefficients 𝑐𝑖𝑗  are functions of the Lamé parameters λ and µ of the 

formation, and the stiffness tensor, 𝐶, is given by 

𝐶 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐22 𝑐23 0 0 0
𝑐13 𝑐23 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

, (2.23) 
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where for isotropic formations, 𝑐11 = 𝑐22 = 𝑐33 = 𝐾 + 4/3µ, 𝑐44 = 𝑐55 = 𝑐66 = µ, 𝑐12 = 𝑐13 =

𝑐23 = 𝑐33 − 2𝑐55 , with 𝐾 and µ the bulk and shear modulus parameters. For TI formations, 

𝑐11 = 𝑐22 = 𝐾 + 4/3µ, 𝑐44 = 𝑐55 = 𝑐66 = µ, 𝑐12 = 𝑐13 = 𝑐23 = 𝑐11 − 2𝑐66. 

In the case of isotropic formations, sonic tools can measure compressional velocity 𝑣𝑝 = √
𝑐33

𝜌
=

√
𝜆+2µ

𝜌
, and shear velocity 𝑣𝑠 = √

𝑐44

𝜌
= √

µ

𝜌
. 

However, in anisotropic formations, the compressional and shear velocities measured by the 

sonic tool no longer satisfy these equations. Daley and Hron (1977) developed analytical 

solutions to provide equivalent isotropic shear and compressional velocities for TI formations. 

These velocities can be measured by the sonic tool and are referred to as quasi-compressional 

and quasi-shear velocities. 

The solution of the wave equation for an anisotropic formation has three solutions for velocity: 

one quasi-longitudinal (quasi-compressional velocity: 𝑣𝑝−𝑞𝑣), one transverse (horizontal shear 

velocity: 𝑣𝑆𝐻) and one quasi-transverse (vertical shear velocity: 𝑣𝑠−𝑞𝑠) . In formations where the 

axis of symmetry of anisotropy is at an angle 𝜗 from the borehole, the quasi-compressional and 

quasi-shear velocities are functions of the stiffness parameters [𝑐11 , 𝑐13 , 𝑐33 , 𝑐44, 𝑐66 ] (Chi and 

Tang, 2003), and are given by 

𝑣𝑠−𝑞𝑠 = [𝑐11𝑠𝑖𝑛
2(𝜗) − 𝑐33𝑐𝑜𝑠2(𝜗) + 𝑐44 − √𝑀]

0.5
(2𝜌)−0.5, (2.24) 

𝑣𝑝−𝑞𝑣 = [𝑐11𝑠𝑖𝑛
2(𝜗) − 𝑐33𝑐𝑜𝑠2(𝜗) + 𝑐44 + √𝑀]

0.5
(2𝜌)−0.5, (2.25) 

and  

𝑣𝑆𝐻 = [𝑐66𝑠𝑖𝑛
2(𝜗) + 𝑐44𝑐𝑜𝑠2(𝜗)]0.5(𝜌)−0.5, (2.26) 

where,  𝑀 = [(𝑐11 − 𝑐44)𝑠𝑖𝑛
2(𝜗) − (𝑐33 − 𝑐44)𝑐𝑜𝑠2(𝜗)]2(𝜌)−0.5, and 𝜌 is the density of the 

formation. Therefore, 𝑣𝑝−𝑞𝑣 is the velocity of the compressional head wave along the borehole 

axis and registered at the receivers; 𝑣𝑝−𝑞𝑣 and 𝑣𝑆𝐻 are the low-frequency asymptote of both 

flexural waves propagating along the borehole axis and measured using orthogonal dipoles 

(Sinha et al., 2006a; He et al., 2010).   
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Chapter 3: Method 

 

3.1. Introduction 

Well logging can be performed at the time of drilling using logging-while-drilling (LWD) tools or 

after drilling using wireline tool. These tools have different configurations and different elastic 

and geometrical properties. The sonic modes and the sonic response will differ depending on 

the type of tool used. For a given tool configuration, we can construct spatial sensitivity 

functions of borehole sonic modes for fast modeling compressional, shear, and Stoneley logs in 

vertical wells penetrating horizontal layers. The fast model will take into account any variations 

of properties in the radial direction due to invasion or wellbore alterations. An example of such 

radial variations is shown in Fig. 10. The gray rectangle on the left represents the sonic tool with 

one transmitter at the bottom and 6 receivers at the top; 𝑅𝑏ℎ is the borehole radius. The 

formation on the left has four horizontal layers with velocities: 𝑣1, 𝑣2, 𝑣3, and 𝑣4.  Velocities 

near the borehole change due to invasion or wellbore damage.  

 

Fig. 10. (Left) A sonic tool with one transmitter (red) and 6 receivers (blue) in a borehole of radius 𝑅𝑏ℎ. 
(Right) Formation with four horizontal layers. 

In thinly laminated formations, where the layer thickness is smaller than the tool receiver array, 

sonic logs are affected by layer boundaries. These averaging effects will introduce errors when 
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estimating elastic properties from sonic logs. By applying a fast forward model, sonic logs can be 

jointly inverted to accurately estimate formation elastic properties. Because most shaly 

formations exhibit vertical transverse isotropy, analyzing the Stoneley log allows the detection 

of anisotropy in a rock. Inverting the Stoneley log allows the extraction of additional anisotropic 

stiffness parameters of the rock (Sinha et al., 2006a). 

 

3.2. Fast modeling of sonic logs in vertical wells 

In this section, I implement the fast simulation of compressional, shear, and Stoneley logs in 

vertical wells using both LWD and wireline tools.  

LWD and wireline tools have different geometries which will affect sonic modes. In wireline 

logging, the modes used to extract shear and compressional logs are the low-frequency flexural 

mode and the compressional mode, respectively. In LWD, however, the flexural mode can no 

longer be used to estimate shear slowness. Presence of a steel drill collar in LWD tools give rise 

to tool modes that interfere with the flexural mode at low-frequency. The flexural mode is 

inadequate in sonic LWD interpretation. Therefore, we typically use the low-frequency of the 

quadrupole mode to obtain shear slowness with LWD tools (Sinha et al., 2009). 

For this reason, for wireline tools, I calculate sensitivity functions of compressional, flexural, and 

Stoneley mode. For LWD tools, I calculate sensitivity functions of the compressional, 

quadrupole, and Stoneley modes. Another difference between wireline and LWD tools is the 

receiver array length: wireline tools have larger receiver arrays than LWD tools. A larger receiver 

array length means that the slowness of the layers will be averaged over a wider distance while 

smaller receiver arrays will increase the vertical resolution of the measurement. To better 

simulate the tool response, the sensitivity function will take into account the length of the 

receiver arrays. 

The sensitivity function not only depends on tool geometry, but also on the reference 

background. Therefore, to perform fast forward modeling of a model with thin layers, we need 
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to adaptively select a sensitivity function at each depth. The selection of the function will 

depend on the formation slowness at that depth. 

For the fast forward model, two cases of laminated formations can be considered: 

 Formations with no invasion with isotropic or anisotropic layers: in this case we only 

need a 1D axial sensitivity function. 

 Formations with invasion: In these formations the slowness varies radially due to 

changes in fluid properties. In this case, we need 2D axial-radial sensitivity functions. 

To verify that the model is robust, I compare the results obtained with numerical simulations.  

The simulation is carried out as follows: 

1. Define the earth model and build the sonic tool. 

2. Use a finite-difference method to simulate sonic waveforms.  

3. Use the STC method to extract compressional slowness.  

4. Use a 2D finite element method (Matuszyk et al., 2013) to simulate the spectrum at 

different frequencies.  

5. Add tool attenuation to minimize the effect of tool modes in the case of LWD tools. 

(Matuszyk et al., 2010). 

6. Obtain the flexural or quadrupole dispersion curve using a spectral semblance 

processing technique (Nolte and Huang, 1997). 

7. Correct for slowness shift of the quadrupole mode in the low-frequency limit for the 

case of LWD tools (Zhang et al., 2010). 

Figure 11 describes the numerical simulation and fast forward modeling procedures. 
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Fig. 11. Diagram showing the steps followed to simulate sonic logs in vertical wells. 

 

3.3. Inversion of shear and compressional logs in vertical wells 

 

3.3.1. Joint inversion 

I jointly invert shear and compressional slowness logs to estimate formation elastic properties in 

thinly laminated formations. Synthetic logs examined have thin layers with large contrasts in 

slowness properties for both fast and slow formations.  

The joint inversion of P and S slowness logs are performed using the axial sensitivity function 

and forward model given in Equations 2.4 and 2.11. To perform the joint inversion, I first define 

the parameters 𝐿 and 𝑁 as a function of compressional velocity (𝑣𝑝) and shear velocity (𝑣𝑠), 
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where 𝐿 = 𝑣𝑠
2  and 𝑁 = 𝑣𝑝

2 − 2𝑣𝑠
2. Next, I build the cost function 𝑒(𝑚) = ‖𝑓(𝑚) − 𝑑‖2

2, where 

𝑚 = [𝑁1 …𝑁𝑛𝑡
, 𝐿1 …𝐿𝑛𝑡

] and 𝑛𝑡 is the number of layers; 𝑑 = [Ʃ𝑝, Ʃ𝑠] , where Ʃ𝑝 and Ʃ𝑠  are 

the numerically simulated logs; 𝑓(𝑚) = [𝑠𝑝(𝑚), 𝑠𝑠(𝑚)] = [𝑠1(𝑚)…𝑠𝑇(𝑚)], where 𝑠𝑝 and 𝑠𝑠 

are the compressional and shear slowness logs modeled using the sensitivity function and 𝑇 is 

the total number of data. Finally, I use the Levenberg-Marquardt nonlinear least-squares 

method to minimize the cost function (Aster et al., 2005). To apply the Levenberg-Marquardt 

method, I build the Jacobian matrix 𝐽(𝑚) as  

𝐽(𝑚) =

[
 
 
 

𝜕𝑠1

𝜕𝑚1
⋯

𝜕𝑠1

𝜕𝑚𝑛

⋮ ⋱ ⋮
𝜕𝑠𝑇

𝜕𝑚1
⋯

𝜕𝑠𝑇

𝜕𝑚𝑛]
 
 
 

. (3.1) 

The model vector 𝑚 is calculated iteratively, and at iteration 𝑘 I calculate 𝑚𝑘+1 = 𝑚𝑘 + ∆𝑚𝑘, 

where ∆𝑚𝑘 is the solution of the system of equations 

[
𝐽𝑘
𝛼𝐼

] ∆𝑚𝑘 = [
𝑑 − 𝑓(𝑚𝑘)

0
], (3.2) 

where 𝐼 is the identity matrix and 𝛼 is updated at each iteration to ensure convergence. 

 

3.3.2. Examples 

I consider a fast, homogeneous formation penetrated by an 8-in vertical borehole. The LWD tool 

is rigid and assumed to be centered in the borehole. Table 4 shows the properties of the tool 

used to simulate logs. Figure 12a shows the sonic slowness logs of a thin layered horizontal 

formation. The true and inverted properties of the layers are shown in green and red, 

respectively. Figure 12b shows the true and inverted shear and bulk modulus, respectively. I 

calculate the uncertainty of inversion products by adding Gaussian noise to the synthetic logs 

used in the inversion. The relative uncertainty between the true slowness parameters and the 

inversion result is below 3%. 

The second synthetic case considered includes vertical transverse isotropy (VTI). In VTI 

formations, the vertically and horizontally polarized shear waves are different.  By applying the 
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joint inversion described in the previous paragraph, we only estimate the vertical shear and 

compressional slowness of the thin layers. 

Collar outer radius (m) 0.0857 

Collar inner radius (m) 0.0254 

Number of receivers 12 

Inter-receiver distance (m) 0.1524 

First receiver offset (m) 2.13 

Table 4. Assumed LWD tool properties. 

 

 
Fig. 12. Joint inversion result for the 17-layer formation: (a) P and S slowness and (b) elastic properties; µ 
and Kb are the shear and bulk moduli, respectively, and ρ is the density. The curves are simulated logs 
where circles represent modeled logs. Continuous and dashed blocky lines with error bars are the true 
and inverted (a) slowness and (b) elastic properties. 

The low-frequency Stoneley log is predominantly sensitive to the horizontally polarized shear 

wave (Yang et al., 2011). Therefore, the Stoneley log allows the detection of anisotropy in the 
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layers. I invert the low-frequency Stoneley log to estimate the horizontal shear slowness using 

the sensitivity function method.  

I modify the previous 17-layer formation shown in Fig. 9 by introducing anisotropy to layers 5, 8, 

11, and 15 at depths 3 m, 6 m, 9 m, and 11 m, respectively. Shear and compressional slowness 

logs are not affected by the presence of anisotropy. However, the Stoneley log is sensitive to 

horizontal shear slowness. In layers 5, 8, 11, and 15, the vertical and horizontal shear slownesses 

are different. Figure 13a shows the Stoneley logs for the isotropic and VTI cases. To estimate the 

horizontal shear of the formation, I invert the Stoneley log using the axial sensitivity method. 

Figure 13b shows the corresponding inversion results. The average relative error of the 

estimation is below 2.1%. Because the logs measured by the LWD sonic tool are averaged over 

several layers, this method increases the vertical resolution of the logs by a factor of 2.4. 

 

 
Fig. 13. Inversion of the Stoneley log using axial sensitivity functions. Dashed and continuous lines in (a) 
correspond to the isotropic and VTI cases, respectively. Continuous and dashed blocky lines in (b) are the 
true and inverted horizontal shear slowness, respectively. 
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3.4. Application of the axial sensitivity function to field cases 

 

3.4.1. Introduction 

Sonic logs are usually contaminated with spikes and noise. Some methods to remove noise 

include: using filters and reprocessing sonic waveforms, and reproducing sonic logs via effective 

medium theories (Sayar and Torres-Verdín, 2015). However, filtering and reprocessing sonic 

waveforms is time-consuming, and effective medium theories are not always practical because 

they provide non-unique results. In this chapter, I propose a new technique for removing noise 

in shear and compressional logs by applying the sensitivity function in a joint inversion of shear 

and compressional logs (Huang and Torres-Verdín, 2016).  

3.4.2. Correction of sonic logs in the Deep Water Gulf of Mexico 

One of the major issues affecting sonic measurements are changes in borehole size. These 

situations can generate noise and spikes, especially in shear logs. Moreover, compressional and 

shear logs are sensitive to fractures and gas in the mud or formation because the amplitude of 

the sonic modes is lower, thus making its detection more difficult (Souder, 2002). The logs will 

show a sharp deflection due to the high transit time caused by the presence of gas. This 

deflection is what is usually referred to as cycle skipping. Cycle skipping occurs when the first 

compressional cycle is too low to be detected at the near receiver (Ellis and Singer, 2007). 

Therefore, a rapid fluctuation in the compressional log is a sign of cycle skipping.  

Sonic noise can be removed by treating spikes as outliers in a joint inversion of shear and 

compressional logs using the axial sensitivity function method as the fast forward model.  I apply 

this method to sonic logs acquired in the Deep Water Gulf of Mexico with very noisy shear 

slowness, in formations that are water or light-hydrocarbon saturated. To simulate the presence 

of spikes, I add additional non-Gaussian biased noise to the field data. Prior to the inversion, I 

define layer bed-boundaries using high resolution gamma ray and density logs.  The workflow 

for correction of shear and compressional logs is shown in Fig. 14.  
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3.4.3. Forward model of the shear and compressional slowness 

For formations with multiple horizontal layers, the forward model for sonic slowness is given by 

𝑠𝑖(𝑑) = 𝑠𝑟𝑖(𝑑) + ∑
𝑀(𝑧)−𝑀𝑟𝑖(𝑑)

𝑀𝑟𝑖(𝑑)
𝐺(𝑧,𝑀𝑟𝑖) 𝑠𝑟𝑖(𝑑)∆𝑧𝑧 , (3.3) 

where 𝑠𝑖(𝑑) is slowness of the formation at depth 𝑑; 𝑀𝑟𝑖(𝑑) is a reference elastic property 

whose value must be chosen close to the average value of 𝑀 in the vicinity of depth 𝑑, such that 

(𝑀(𝑧) − 𝑀𝑟𝑖(𝑑)) 𝑀𝑟𝑖(𝑑)⁄ ≪ 1; 𝑠𝑟𝑖(𝑑) is the slowness corresponding to the reference 

homogenous formation with elastic property 𝑀𝑟𝑖(𝑑); 𝑀(𝑧) is the value of 𝑀, at receiver 

location 𝑧; ∆𝑧 is the inter-receiver distance used to construct the sensitivity function 𝐺(𝑧,𝑀𝑟𝑖); 

and 𝑖 denotes either the shear or compressional mode. As long as (𝑀(𝑧) − 𝑀𝑟𝑖(𝑑)) 𝑀𝑟𝑖(𝑑)⁄ ≪

1, 𝐺(𝑧,𝑀𝑟𝑖) is independent of the choice of 𝑀𝑟𝑖 for both the shear and compressional modes. 

3.4.4. Joint inversion 

To perform the joint inversion, I first define two model parameters, L and N, as functions of 

Lamé’s parameters 𝜆 and 𝜇, and the density (ρ) of the formation, namely, 𝐿 = 𝜇 𝜌⁄ = 𝑣𝑠
2, 

𝑁 = 𝜆 𝜌⁄ = 𝑣𝑝
2 − 2𝑣𝑠

2. By imposing a positivity constraint of model parameters 𝐿 and 𝑁, I 

ensure that the ratio of compressional to shear velocity is always greater than √2. I then invoke 

the quadratic cost function 𝑒(𝑚) = ‖𝑓(𝑚) − 𝑑‖2
2, where 𝑚 = [𝑁1 …𝑁𝑛𝑡

, 𝐿1 …𝐿𝑛𝑡
], with 𝑛𝑡 the 

total number of layers, 𝑑 = [Ʃ𝑝, Ʃ𝑠] where Ʃ𝑝 and Ʃ𝑠 are the numerically simulated logs or the 

field measured logs, and 𝑓(𝑚) = [𝑠𝑝(𝑚), 𝑠𝑠(𝑚)], where 𝑠𝑝 and 𝑠𝑠 are the compressional and 

shear slowness logs, respectively, modeled using Equation 3.3. Finally, I use the Levenberg-

Marquardt method to minimize the cost function. 

The inversion method is applied to noisy shear and compressional sonic logs acquired in the 

Deep Water Gulf of Mexico. First, I define layer boundaries using the gamma ray (GR), density, 

shear slowness, and compressional slowness logs. Then, I calculate the initial estimates for 𝐿 

and 𝑁 from the average values of shear and compressional slowness within each layer. 
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Figure 15 shows the results of applying the correction algorithm on 4 sections of approximately 

100 ft in the Deep Water Gulf of Mexico. The first track corresponds to the caliper variations of 

the formation that has a 12 in borehole diameter. Caliper variability introduces uncertainty in 

the sonic logs that manifest as spikes and shifts in the readings of slowness. The second and 

third tracks are the GR and density logs, respectively. Horizontal red dashed lines in track 2 and 

track 3 represent the location of layer boundaries. The last two tracks are the compressional and 

shear slowness logs. Black logs are field measurements while red and blue logs are corrected 

compressional and shear logs, respectively calculated from the joint inversion algorithm. Dashed 

red and blue blocky logs are inverted true layer slownesses. Comparison of field logs (black) to 

inverted logs (red and blue) show that the spikes are mitigated and that the sonic logs are 

smoothed when using the joint inversion algorithm. 

 

Fig. 14. Diagram showing the steps for the mitigation of noise in sonic logs. 
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Fig. 15. (From left to right) Caliper, gamma ray, density, compressional slowness, and shear slowness logs. 
Red horizontal dashed lines identify the locations of bed boundaries. The second and third tracks compare 
noisy field logs (black) to predicted logs (blue). Dashed blocky lines with error bars describe inverted layer-
by-layer slownesses of the formation. (Figure 15 continues on page 31) 
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Fig. 15. Continued from page 30, (From left to right) Caliper, gamma ray, density, compressional slowness, 
and shear slowness logs. Red horizontal dashed lines identify the locations of bed boundaries. The second 
and third tracks compare noisy field logs (black) to predicted logs (blue). Dashed blocky lines with error 
bars describe inverted layer-by-layer slownesses of the formation.  
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Chapter 4: Fast forward modeling of sonic logs in deviated and  

horizontal wells 

 

4.1. Introduction 

Wells are drilled at high-angles to improve reservoir exposure and enhance production. 

However, interpretation of sonic logs in HA/HZ wells is more challenging than in vertical wells. 

Sonic wave propagation in a formation with thin layers is complex and not well understood by 

the industry. This is because as layer boundaries intercept the tool’s receiver array, mode 

interference and conversion distort the sonic measurements (Mallan et al., 2011). Moreover, 3D 

numerical simulations are extremely time-consuming. Therefore, it is important to use accurate 

models that can fast simulate sonic logs in HA/HZ wells.  

 

4.2. Simulation of sonic logs in deviated and horizontal wells 

In previous chapters, I introduced the fast forward modeling of sonic slowness in vertical wells. 

However, with the prevalence of unconventional reservoirs, more wells are drilled at a high-

angle or horizontally to layer boundaries; HA/HZ wells introduce challenging conditions to well-

log interpretation (Passey et al., 2005). Sonic waveforms become sensitive to the presence of 

bed boundaries and to the contrasts in slowness between layers.  

In this chapter, I perform fast forward modeling of sonic slowness in HA/HZ wells. The model is 

compared to 3D finite-difference simulations. Using 3D finite-difference simulations, I define the 

tool properties and the earth models. Simulations are done using a monopole and a dipole 

source. Waveforms are registered at various receivers. For the monopole source, I estimate the 

non-dispersive compressional mode using a modified STC method to obtain the first arrival 
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compressional slowness, whereas for the dipole source, I process the dispersive waveforms with 

a weighted spectral semblance method to obtain flexural dispersion curves. 

 

4.3. Non dispersive modes (compressional mode)  

 

4.3.1. Introduction 

Monopole sources excite two types of waves: body waves and surface waves. In vertical wells, 

the compressional slowness depends on borehole-guided waves. To estimate the compressional 

slowness of the formation, we use the STC method on the waveforms registered at various tool 

receivers. However, in deviated wells the compressional slowness is influenced by both surface 

and converted body waves. Surface and body waves interfere with each other, which leads to 

amplitude variations and phase discontinuities. Consequently, we can no longer use the STC 

method to obtain estimations of compressional slowness. However, through numerical 

simulation using 3D finite-difference method and ray tracing approximations, I can show that 

the first arrival of the compressional mode is mostly influenced by converted body waves. 

Therefore, the first arrival slowness will not be affected by mode interference. 

To estimate the first arrival of compressional slowness induced by converted body waves, we 

can simplify the problem from 3D to 1D. We can neglect the borehole because we are no longer 

interested in borehole-guided waves. Moreover, we can assume layers where the shear velocity 

is zero but the compressional velocity remains unchanged. Using this new simplified model, I 

obtain a faster simulation of first-arrival compressional slowness of a formation. The equations 

used to simulate waveforms of this simplified 1D model are described in Chapter 2.6. Once we 

obtain the waveforms, we use a simplified 1D-STC method to extract the first arrival 

compressional slowness.  
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4.3.2. Examples 

I consider an example of two fast isotropic formations. Formation properties are shown in Table 

5. The formation is penetrated by an 8-in borehole and a wireline sonic tool with an angle of 75 

degrees. Two cases are considered: in the first case, the sonic source is initially in the fast 

formation and is logging from the faster formation A to the slower formation B while in the 

second case the sonic source is initially in the slower formation and is logging from formation B 

to formation A.  

Figure 16 shows the assumed layer and tool configuration for the two cases. The tool includes a 

monopole source and a receiver array of 13 receivers. Each receiver station has 8 azimuthal 

point receivers. Figure 17 shows the azimuthal receivers of the wireline sonic tool.  

 

 A B 

VS  (m/s) 2760 2300 

VP  (m/s) 4690 4000 

ρ (g/cc) 2.45 2.5 

Table 5. Assumed elastic properties of formations A and B. 

Fig. 16. Sketch of the formation and tool configuration for Case 1 (left) and Case 2 (right). 
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Traditionally, for a monopole source the waveform at each station of receivers is calculated by 

taking the average of the waveform at each azimuthal receiver. The waveform (𝑊) at each 

station is therefore calculated from 

𝑊𝑖 =
1

8
∑ 𝑊𝑖𝑛

8
𝑛=1 , (4.1) 

where 𝑖 is the index of the station of receivers and goes from 1 to 13 and 𝑛 is the index of each 

azimuthal receiver (from 1 to 8).  

In the case of deviated borehole, we can process the receivers individually to improve the 

assessment of the formation. By processing all the receivers simultaneously, we can lose 

important information, especially near layer boundaries.  

 

Fig. 17. Sonic tool (left) and azimuthal receivers (right). The sonic tool has 13 receiver stations and each 
station includes 8 azimuthal receivers. 

Using numerical simulation, I show the result of processing the first arrival of the compressional 

mode. In Fig. 18, I compare the first arrival compressional slowness measured by the 13 receiver 

stations using at each station the 8 azimuthal receivers (total of 13x8 receivers) to the one I 

measure with the 13 receiver stations at azimuthal receiver R3 (13x1 receivers) for the 

formation shown in Fig. 16, Case 2. The receiver, R3, is located on the plane of the page of Fig. 

16 and below the borehole axis. 
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Fig. 18. Comparison of the first arrival compressional mode processed using the 8 azimuthal receiver to 
the first arrival compressional mode processed using only the receivers in azimuthal location R3 
(previously defined), for the formation shown in Fig. 16, Case 2. Both compressional slownesses are 
simulated using a finite-difference method.  

To take into consideration the effect of the location of receivers in the model, I adjust the model 

shown in Fig. 9. Figure 19 shows the new model, where, at a receiver station, each pair of 

receivers is separated by the borehole diameter length. I also show a sketch of the ray path, in 

yellow, as obtained with Snell’s law from the source to receiver R3. 

 

 

Fig. 19. Sketch of the new simplified model. Receivers are shown in blue and the source shown in red; D is 
the borehole diameter. The yellow line is the ray path as obtained using Snell’s law. 

 

In Fig. 20, I compare the numerically simulated first arrival of the compressional mode 

processed from receiver 3, to the first arrival obtained using the fast modeling. Results agree 

and the difference between both slownesses does not exceed 1 µs/ft. The algorithm is 1000 

times faster in CPU time than conventional finite-difference methods. 
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Fig. 20. Comparison of the compressional first arrival calculated using a finite-difference method to the 
one using the simplified algorithm, for the formation shown in Fig. 16, Case 1 (left) and in Fig. 16, Case 2 
(right). 

 

4.4. Dispersive modes (flexural mode) 

 

4.4.1. Introduction 

For the flexural mode,  

i use sensitivity functions to fast forward model flexural dispersion curves. As mentioned earlier, 

in deviated wellbores the receiver array intercepts the layer interfaces. Consequently, mode 

interference occurs at low-frequencies, which makes it difficult to estimate the sonic slowness 

of the flexural mode. For this reason, in order to obtain accurate estimations of slowness, I only 

use the frequencies of the flexural mode above 4 kHz. We can extend the 2D sensitivity 

functions described in Chapter 2 to a 3D sensitivity function by taking into account the 3D 

geometry of the tool and of the formation.  

To process the sonic waveform for a dipole source, I subtract the waveforms registered at two 

opposite sides of the receivers. Sonic tool receivers are made of piezoelectric material. They are 

sensitive to changes in pressure. The flux will vary as a function of cos(ϑ). Therefore the 3D 

sensitivity function is given by, G (z, r, ϑ) = G (z, r) cos(ϑ), where G (z, r) is the 2D sensitivity 
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function and ϑ is the angle between a point in the formation of coordinate (z, r) with a plane 

orthogonal to the center of the receiver surface. 

Figure 21 shows the sensitivity function map for a dipole source. Sonic tool is shown as a gray 

cylinder; the source is shown in red and receivers in black. Spherical surfaces in blue, green, 

yellow, and red correspond to the sensitivity function at different frequency. The higher the 

frequency, the shorter the depth of investigation and the sensitivity is concentrated near the 

sonic tool. 

4.4.2. Examples 

 

I consider the same formation as in Fig. 16, Case 1 defined in Table 5. Assuming a dipole source I 

numerically simulate the waveforms calculated using a finite-difference method. The waveforms 

are then processed using the matrix-pencil method and the slowness of the flexural mode is 

calculated at 4 kHz, 5 kHz, 6 kHz, and 7 kHz.  

Figure 22 shows the numerically simulated flexural logs with continuous lines. I then use the 

spatial sensitivity function method to model the flexural mode logs for the same frequencies. 

Logs are modeled in a few seconds of CPU time and match the numerically simulated ones. 
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Fig. 21. Three-dimensional sensitivity function map of the flexural mode for dipole source. 

 

 

Fig. 22. Comparison of numerically simulated flexural slowness (continuous lines) to modeled slowness 
using sensitivity functions (circles) at 4 kHz, 5 kHz, 6 kHz, and 7 kHz for the formation shown in Fig. 16, 
Case 2.  
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Chapter 5: Conclusions 

 

Sonic logs are an important component of formation evaluation used to determine presence of 

hydrocarbon reserves, presence of gas, and rock elastic properties. However, sonic logs are 

often contaminated with noise and are subject to averaging effects. One method to mitigate 

noise is sonic log inversion. However, numerical simulations of sonic logs are computationally 

intensive, preventing the use of inversion-based interpretation models of shear and 

compressional logs. 

For vertical wells, I used spatial sensitivity functions to reduce the simulation time of sonic logs 

and implemented an inversion-based method to mitigate noise contaminating shear and 

compressional sonic logs. The method inverts sonic logs to estimate layer-by-layer elastic 

properties of rock formations, which are then used to calculate new shear and compressional 

logs.  I showed that: 

1. The vertical resolution was improved from 6 ft to 1.6 ft.  

2. The simulation time was reduced by a factor of 100. 

3. The spikes were mitigated. 

4. The sensitivity function can be used to calculate compressional, shear, flexural, and 

Stoneley modes in fast and slow formations.  

In deviated wells, I extended the fast modeling of the flexural mode by incorporating the 3D 

geometry of the formation into the sensitivity function, and I showed that:  

1. The results of the fast model are accurate for the flexural mode for frequencies above 4 

kHz. 

2. The simulation time for high frequency flexural mode was reduced by a factor of 1000. 
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However, the sensitivity function cannot be used for fast simulating shear and compressional 

modes in deviated wells. Therefore, I used a simplified model where the presence of the 

borehole is neglected and the layers have zero shear velocity, and I showed that: 

1. The simulation time of the first arrival of the compressional mode was reduced by a 

factor of 1000. 

2. This method can only estimate with accuracy the first arrival of the compressional 

mode. 
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