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Abstract

Stability and Dynamics of Systems of Interacting Bubbles with

Time-Delay and Self-Action Due to Liquid Compressibility

Publication No.

Derek Clyde Thomas, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Mark F. Hamilton

A Hamiltonian model for the radial and translational dynamics of clusters of

coupled bubbles in an incompressible liquid developed by Ilinskii, Hamilton, and

Zabolotskaya [J. Acoust. Soc. Am. 121, 786-795 (2007)] is extended to included the ef-

fects of compressibility in the host liquid. The bubbles are assumed to remain spher-

ical and translation is allowed. The two principal effects of liquid compressibility

are time delay in bubble interaction due to the finite sound speed and radiation

damping due to energy lost to acoustic radiation. The incorporation of time delays

produces a system of delay differential equations of motion instead of the system of

ordinary differential equations in models of bubble interaction in an incompressible

medium. The form of the Hamiltonian equations of motion is significantly different

from the commonly used models based on Rayleigh-Plesset equations for coupled
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bubble dynamics, and it provides certain advantages in numerical integration of the

time-delayed equations of motion. Corrections for radiation damping in clusters

of interacting bubbles are developed in the form of a time-delayed expression for

bubble self-action following the method of Ilinskii and Zabolotskaya [J. Acoust. Soc.

Am. 92, 2837-2841 (1992)]. A set of approximate series expansions of this delayed

expression is calculated to first order in the ratio of bubble radius to the charac-

teristic wavelength of acoustic radiation from the bubble, and to varying orders in

the ratio of bubble radius to characteristic bubble separation distance. Stability of

the delay differential equations of motion is analyzed with four successive levels of

approximation for the effects of radiation damping and time delay. The stability is

analyzed with and without the effects of viscous and thermal damping. The effect

of time delay and radiation damping on the pressure radiated by small systems of

bubbles is considered. An approximate method to account for the delays in bubble

interaction in a weakly compressible liquid is presented. This method converts

the system of delay differential equations into an approximate system of ordinary

differential equations, which may simplify numerical integration. Several sets of

model equations incorporating propagation time delay in bubble interactions are

solved numerically with existing algorithms specialized for delay differential equa-

tions. Numerical simulations of the dynamics of single bubbles, pairs of bubbles,

and clusters of bubbles are used to compare the different levels of approximation

for compressibility effects for low- and high-amplitude radial motion in systems of

bubbles under free response and pulsed excitation by an external pressure source.
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Chapter 1

Introduction

This dissertation is focused on developing a more accurate model for the

dynamics of clusters of interacting bubbles in high-amplitude motion produced

by acoustic excitation in a compressible liquid. The two primary effects of liquid

compressibility considered here are radiation damping due to bubble self-action,

and time delays in bubble interactions due to acoustic propagation. The original

focus of this research effort was to develop a model for the large bubble clusters in

high-amplitude motion observed in laboratory shock-wave lithotripsy experiments.

Because of the large cluster sizes and high-amplitude bubble motion observed in

lithotripsy experiments, a model which incorporated the effects of compressibility

in the host medium was sought. Unanticipated numerical difficulties encountered

when attempting to model large numbers of interacting bubbles motivated closer

examination of compressibility effects, especially associated with the finite acoustic

propagation time for the motion of one bubble to be affected by the motion of

another bubble some distance away. The dearth of work on time-domain simulation

of the dynamics of coupled-bubble systems containing more than two bubbles while

including the time delays in bubble interactions and the effect of radiation damping

prompted the research presented in this dissertation. An extensive analysis of the

stability of multi-bubble systems and the combined effects of time delay in bubble
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interactions and radiation damping due to bubble self-action has been undertaken.

The results of this analysis were used to develop and evaluate corrections for time

delay and radiation damping that provide a consistent and stable model for the

motion of systems of multiple interacting bubbles in a compressible medium.

1.1 Motivation

The primary motivation for this work was a desire to model and investigate

the effects that large clusters of acoustically driven bubbles have on kidney stone

comminution in extracorporeal shock-wave lithotripsy,1 with particular emphasis

on the role of bubble interaction within the clusters. We therefore begin with a

brief discussion of shock-wave lithotripsy, followed by comments on several other

applications in which bubble cluster dynamics are of interest.

1.1.1 Extracorporeal shock-wave lithotripsy

Extracorporeal shock-wave lithotripsy (ESWL) is a procedure for the treat-

ment of kidney stones. In ESWL a single-cycle, shock-wave pulse of very high

amplitude (30-100 MPa) is focused on the region in which the kidney stone lies.

The rarefaction phase of a lithotripsy pulse produces acoustic cavitation, which

results in bubble clusters consisting of thousands of interacting bubbles. It has

been found that whereas the shock waves induce fracturing of larger stones, bub-

ble collapse erodes the smaller stone fragments down to sizes that permit them to

pass through the urinary tract.1 Cavitation bubble activity has also been correlated

with tissue damage.2,3 Thus bubble activity is connected to both the positive effect
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of stone comminution and with undesirable renal damage. It is hoped that a more

accurate model for collective bubble dynamics in clusters will guide improvements

to lithotripsy treatment.

1.1.2 Other applications

Bubbles clusters have a significant impact on other biomedical treatments

such as high-intensity focused ultrasound (HIFU) and histotripsy. In HIFU,4 a

high-intensity ultrasonic pulse is focused in a small region of tissue. This produces

heating which results in hyperthermia and tissue necrosis in a precise location.

HIFU can also stimulate acoustic cavitation5 which shields the target region and

increases acoustic scattering, and which in turn alters the size of the lesion and

reduces the precision of the treatment.6 Histotripsy7–9 employs ultrasonic pulses

which are comparable in amplitude to the shock waves used in ESWL, but consist

of 3–50 acoustic cycles instead of just one.7 The activity of clusters of cavitation

micro-bubbles created by the acoustic pulses drives the tissue erosion in the focal

region.8,9

The action of clusters of coupled bubbles is also important in ultrasonic

cleaning,10 sonochemistry,11 and SONAR scattering from bubbly regions generated

by breaking waves, ship wakes, and other marine activity.12 Additionally, gas

bubbles coated with a lipid or polymer shell are called ultrasound contrast agents

(UCA) and are used to improve ultrasound images and for targeted drug delivery.

For high UCA concentrations, bubble interaction effects may be significant. UCA

microbubbles in nonlinear motion have been used in the construction of acoustic
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meta-materials, with applications including an acoustic diode;13 these applications

rely on the highly nonlinear response of bubbles and UCAs, but it is not known if

bubble interaction effects are significant. Thus an accurate model for the coupled

dynamics of gas bubbles in a compressible liquid has myriad applications.

1.2 Overview of previous research on coupled bubble dynamics

The dynamics of bubbles in liquids has been actively researched since the

late nineteenth century.14 The first theoretical model for the dynamics of a bubble

was due to Lord Rayleigh.15 Since the time of Lord Rayleigh a large body of work

focused on the modeling of bubbles in a liquid has developed.

1.2.1 Coupled bubbles

In all of the applications mentioned in the previous section, the collective

behavior of clusters of interacting bubbles is important. These diverse applica-

tions have driven research on the dynamics of coupled bubbles. Three distinct

approaches have been used to model bubbly media and bubble systems: effective

medium models, direct numerical simulation, and discrete bubble models.

In an effective medium model, a liquid containing bubbles is modeled as

a medium possessing the same average properties (density, etc.) as the bubbly

medium, typically through the use of volume-averaged equations.16 Because ef-

fective medium models are usually based on volume-averaged equations and a

linearized bubble model they do not capture local features of the field or the ef-

fects of nonlinear bubble motion. Recently, several models which combine discrete
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bubble models with volume-averaged model equations have been proposed. A

model based on volume-averaged equations modified to include the nonlinear mo-

tion of coupled bubbles in a compressible medium was developed by Fuster and

Colonius.17 A continuum model for bubbly media with a cluster substructure was

developed by Grandjean et al.18

In direct numerical simulations, a region containing gas inside the bub-

bles and the surrounding liquid is discretized and the governing partial differential

equations are solved numerically. Direct numerical simulation of bubbles in a liquid

has been undertaken with impressive results,19 but the computational requirements

severely limit the number of bubbles that may be simulated. Boundary element

methods have also been applied to simulations of multiple bubbles.20 Boundary ele-

ment methods are limited to simulations of bubbles in incompressible media, suffer

from instabilities in the presence of high-amplitude motion and surface tension,

and are limited in the number of bubbles that can be simulated.

An alternate approach is to treat the bubbles as discrete entities and use

a multipole expansion or similar method to model the bubbles as coupled oscil-

lating spheres or higher-order shapes.21 This method is attractive because, unlike

most effective medium models, it models the behavior of individual bubbles. Un-

like direct numerical simulation, it does not require discretization of large regions

and surfaces with high resolution. By modeling bubbles as oscillating spheres,

Doinikov22 and Ilinskii et al.23 developed Lagrangian formulations to obtain the

equations of motion for coupled bubble systems. Ilinskii et al.23 also developed

a related Hamiltonian formulation for the equations of motion. The Lagrangian
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and Hamiltonian formulations treat the bubbles as a system of coupled nonlinear

oscillators. The majority of the work on discrete bubble models has focused on

bubbles in an incompressible liquid.

1.2.2 Bubble dynamics in a compressible medium

Liquid compressibility produces two distinct effects that must be incor-

porated in a bubble model: damping due to acoustic radiation and time delays

between the motion of bubbles and their effects on other bubbles. It has been

shown24 that radiation damping can be connected to the time delay due to acoustic

propagation.

Radiation damping

Early efforts to include the effects of liquid compressibility in models of

bubble dynamics were motivated by a need to model underwater explosions.25,26

Various approximate models for the motion of a single bubble in a compressible

liquid were proposed by Gilmore27 and Akulichev28 (Gilmore-Akulichev model),

Keller and Kolodner,26 and Keller and Miksis29 (Keller-Miksis model). Both the

Gilmore-Akulichev model and the Keller-Miksis model rely on expansions to first

order in the Mach number of the bubble wall motion. Tomita and Shima30 devel-

oped an approximate model valid to second order in the Mach number.31 These

models for bubble motion were compared and unified by the work of Prosperetti

and Lezzi32 and Lezzi and Prosperetti.33 A comparison of the Gilmore-Akulichev,

Keller-Miksis, and Tomita-Shima models with the results of numerical integration
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of the Navier-Stokes equations31 showed reasonable agreement of the three ap-

proximate models with the direct numerical simulation. All these models rely on a

series expansion of the damping terms in powers of the acoustic Mach number.

A significant departure from the series expansions used previously was

introduced by Ilinskii and Zabolotskaya,24 who showed that expressions for the

radiation damping of a bubble could be obtained by delaying the pressure radiated

by the bubble by the time required for the signal to propagate from the center of

the bubble to the bubble wall. This approach is key to the work presented in this

dissertation. In their work, Ilinskii and Zabolotskaya showed that the results of a

series expansion could be obtained from the delayed self-action term. Rather than

considering radiation damping only by a series expansion, here it is considered as a

result of time delay in the self-action of a bubble, and as a related series expansion.

1.2.3 Coupled bubble dynamics in a compressible medium

Compared to the work on coupled bubbles in an incompressible liquid, there

is a much smaller body of work concerning the dynamics of interacting bubbles in

a compressible liquid.

Frequency-domain analyses

Much of the previous work has been focused on acoustic scattering by bub-

ble systems.34–43 The scattering problem is typically posed in the frequency domain

and considers steady-state behavior of linearized bubble systems and therefore

necessarily very small pulsation amplitudes. Mettin et al.44 considered the effect of
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time delays on the Bjerknes force between two bubbles by analysis in the frequency

domain. Feuillade38,40 analyzed the radiation damping due to bubble interaction

in two- and three-bubbles systems over a range of separation distances and de-

termined that bubble interaction effects in a compressible liquid tend to increase

damping for closely spaced bubbles oscillating in phase, and reduce damping for

anti-phase oscillations. Using the method of images, Cui et al.45 employed an ana-

lytical solution for an infinite line array of equally spaced bubbles in a compressible

fluid to model the dynamics of an acoustically driven bubble between infinite rigid

parallel plates. Doinikov et al.46 and Ooi et al.47 considered the time delays in a line

array of bubbles through an eigenvalue analysis of the linearized equations of mo-

tion for a system of coupled bubbles, but no time-domain results were presented.

Atkisson48 developed models of planar arrays of bubbles in a compressible fluid

for several geometries relevant to analysis of single-bubble dynamics in rigid tubes

(rectangular, triangular, and hexagonal) by the method of images. The analyses

were conducted primarily in the frequency domain, although Fourier transforms

were used to obtain time-domain results.

Time-domain analyses

The high-amplitude, transient response of bubbles in biomedical systems

requires that simulations be conducted in the time domain. The earliest explicit in-

clusion of time delays due to acoustic propagation in bubble-interaction dynamics

was by Fujikawa and Takahira,49 who considered time delay effects on the inter-

action of a pair of coupled bubbles. Ilinskii and Zabolotskaya24 modeled a system
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of coupled bubbles with by converting the delay differential equations of motion

to an approximate set of ordinary differential equations by means of a series ex-

pansion for small time delays. Ilinskii et al.50 and Hamilton et al.51 considered the

effect of liquid compressibility by including single-bubble radiation damping and

delayed interactions. However, their results were obtained with a numerical inte-

grator that was not specialized for the integration of delay differential equations.

Heckman et al.52 considered the dynamics and stability of bubble pairs with time

delay in the interaction. However, the coupling used was non-physical, consisting

of a “coupling strength” parameter multiplying the first-order time derivative of

the bubble radius. Sinden et al.53 also considered the dynamics and stability of a

pair of bubbles oscillating in phase. Heckman et al. and Sinden et al. both reported

instability in the system for certain parameter values, but no further investigation

was undertaken to determine if the instability was due to a shortcoming of the

model or a physical property of the system.

The previous work on time-domain simulation of coupled bubbles in a

compressible medium with time delay in bubble interaction is extremely limited.

In all previous work, the effects of radiation damping were considered through

damping terms obtained by an asymptotic series expansion for a single bubble.

1.3 Summary and preview

Previous work on bubbles in a compressible medium has not adequately

considered the effects of time delays and radiation damping due to liquid compress-

ibility. The inclusion of compressibility effects transforms the ordinary differential
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equations of motion for a bubble system into a system of delay differential equa-

tions.50,51 The work of Hamilton et al.51 and Ilinskii et al.50 explicitly considered

time delays in bubble interactions without an integrator specialized for the numer-

ical integration of delay differential equations. In all previous time-domain models

and all frequency-domain models except those of Ilinskii and Zabolotskaya24 and

Atkisson,48 the single-bubble radiation damping expression has been used.

To date there has been no complete model for the behavior of coupled

bubbles in a compressible liquid which includes the effect of bubble translation,

integrated with methods specialized for the treatment of the delay differential

equations of motion. The goal of this work is to incorporate the effects of liquid

compressibility into a model for the dynamics of coupled translating bubbles that

may be used to predict bubble motion in response to the high-amplitude acoustic

excitation typical of biomedical treatments such as shock-wave lithotripsy. This

dissertation presents modifications to the model of Ilinskii et al.23 to include time

delay and radiation damping due to liquid compressibility and analyzes the impact

of these modifications on the stability of the model and the predicted dynamics of

a bubble system.

Chapter 2 presents the model for the dynamics of systems of coupled bub-

bles in an incompressible liquid developed by Ilinskii et al.23 using a Hamiltonian

formalism. Modifications to the model to incorporate the effects of liquid com-

pressibility are discussed.

In Chapter 3, various metrics for assessing the behavior of bubble systems

are presented. The equations of motion obtained in Chapter 2 are linearized and
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four different approximations for the effects of self-action and time delay due to

liquid compressibility are presented. The linearized equations of motion are used to

analyze the response of a two-bubble system and determine the effect of the different

approximations for liquid compressibility by comparing the natural frequencies

and damping coefficients of natural modes of the bubble system. The nonlinear

delay differential equations of motion from Chapter 2 are integrated numerically to

simulate high-amplitude free response of a two-bubble system and for a two-bubble

system subjected to a short acoustic pulse, and the results are analyzed.

Chapter 4 contains stability analyses of the linearized equations of motion

for systems of multiple bubbles in a random cluster and in a line array. The

stability is analyzed with and without viscous and thermal damping. The results

are compared to previous work on modeling line arrays of interacting bubbles.46,47,54

The response of systems containing multiple bubbles to transient acoustic excitation

is considered.

Because the numerical integration of delay differential equations is compu-

tationally intensive, the delayed equations of motion cannot be integrated directly

for systems containing more than 30–50 bubbles. In Chapter 5, two approxima-

tions are developed to facilitate numerical integration of the equations of motion.

Similar methods are used to convert the implicitly defined interaction delays given

in Chapter 2 to explicit expressions for the delay, and to convert the delay dif-

ferential equations of motion into an approximate system of ordinary differential

equations. A comparison of the results of numerical integration of the delayed

equations and the approximate versions is used to assess the accuracy and utility
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of the approximations.
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Chapter 2

Model Equations for Coupled Bubbles
in a Compressible Medium

This chapter describes the model equations that will be used to study the

dynamics of bubble clusters. First, the Hamiltonian formalism used to obtain the

equations of motion for translating, coupled bubbles in an incompressible liquid

is presented. Second, several methods by which the effects of liquid compress-

ibility are included in the model for coupled bubble dynamics are described. The

two primary effects of liquid compressibility are time delay in bubble interaction

and damping of bubble motion due to acoustic radiation of energy. Following

the work of Ilinskii and Zabolotskaya,24 the radiation damping is considered as a

consequence of time delay due to acoustic propagation. Several different approxi-

mations for the inclusion of radiation damping in systems of interacting bubbles in

a compressible medium are presented in this chapter and will be compared in Chap-

ters 3 and 4. It should be noted that although the expressions for bubble translation

are included in the model equations developed in this chapter for completeness,

the analysis of the stability and dynamics of the model equations in subsequent

chapters will neglect translation.
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2.1 Description of the coupled-bubble model

The bubble interaction model used in this work was developed by Ilinskii

et al.23 Because a detailed derivation is presented in their paper, only an overview

and relevant considerations are presented here.

2.1.1 Modeling bubbles with systems of coupled nonlinear oscillators

The approach that has been chosen for this work models the bubbles as

a collection of coupled nonlinear oscillators. Fluid motion is often analyzed by

discretizing all fluid in the volume of interest and then integrating the governing

partial differential equations. Modeling the motion of multiple bubbles by this

method is computationally prohibitive. It is possible to model bubbles by approx-

imating them as a system of discrete, coupled, nonlinear oscillators, one for each

oscillatory mode (i.e., spherical harmonic describing the shape of the bubble wall).21

The resulting ordinary differential equations in time can significantly reduce the

computational resources required to simulate bubble motion and thereby increase

the number of bubbles that can be simulated. However, one must take care to

determine appropriate differential equations of motion for the nonlinear oscillators

that accurately capture the relevant physics of the simulated bubble system.

The model employed here uses the approximation that all bubbles in the

system are spherical, and undergo spherically symmetric radial motion. The effects

of translation are also included. The model allows for large amplitude, nonlinear,

radial oscillations of the bubbles. The model does not account for nonspherical bub-

ble shapes, bubble fission, or bubble coalescence, although a method to incorporate
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effects due to bubble coalescence will be discussed in Appendix D. In summary,

the model accounts for interactions between the spherical pulsation mode of the

bubbles, and allows for translation of bubbles in the system. Nonlinearity in bubble

motion is also included.

Energy-based formalisms such as Lagrangian or Hamiltonian dynamics of-

fer robust methods to obtain governing equations of motion of complicated systems.

These methods require analytical expressions for the total kinetic and potential en-

ergy in the system. Initially, to obtain expressions for the energy quantities, it is

necessary to assume that the liquid occupied by the bubble system is incompress-

ible, inviscid, and irrotational. New techniques to correct for the assumption of an

inviscid, incompressible fluid will be introduced in Section 2.2 and compared with

existing methods in Chapters 3 and 4.

2.1.2 Potential energy

It is assumed that all potential energy in the system is stored by the com-

pressed state of the gas inside the bubbles and by surface tension at the gas-liquid

interface. Because the surrounding fluid is assumed to be incompressible, no en-

ergy is stored in compression of the liquid. Furthermore, it is assumed that the gas

within the bubble is all equally compressed, that is, there are no spatial variations of

the pressure within the gas. In other words, the bubble diameter is small compared

with the wavelength of sound in the gas contained inside the bubble.

The assumption of uniform compression is justified by the fact that the

radius of the bubble is much smaller than the acoustic wavelength both inside and
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outside the bubble. It follows that the pressure within the bubble can be completely

determined by the bubble radius, and that the gas within the bubble can be modeled

as a gas undergoing a polytropic thermodynamic process such that the equation of

state is

Pg = P0

(
ρg

ρg0

)γ
. (2.1)

Therefore the gas is characterized by the pressure and density of the gas inside the

bubble, Pg and ρg, respectively, the equilibrium gas density ρg0, the atmospheric

pressure P0, and the polytropic index γ.

For bubbles with radii much smaller than the thermal diffusion length, the

thermodynamic process inside the bubbles is nearly isothermal and the polytropic

index is near unity. For bubbles that are large in comparison to the thermal diffusion

length, the process is approximately adiabatic and the polytropic index tends to the

ratio of specific heats.55 Effects of gas diffusion and vaporization are not considered

in this dissertation. The effects of thermal damping are not considered in the

nonlinear model presented in this chapter. Thermal damping of bubble motion is

considered with a linearized model in Section 4.2.

The energy stored in the gas inside a bubble (labeled i) is found by integrat-

ing the internal, or potential, energy differential

dVi = (P0 + pei − Pi) dVi, (2.2)

where Pi is the pressure on the exterior surface of the bubble without the effect of

the external source, dVi is the differential volume element, and pei is the external
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pressure due to the acoustic source evaluated at the center of the bubble. The

pressure Pi is a function only of the bubble radius and can be written as55

Pi =

(
P0 +

2σ
R0i

) (R0i

Ri

)3γ
− 2σ

Ri
, (2.3)

where σ is the surface tension, Ri is the bubble radius, and R0i is the equilibrium

bubble radius in the presence of surface tension.

Equation (2.3) may be used to evaluate the potential energy differential to

obtain

Vi =
4πR3

i

3

[
1

γ − 1

(
P0 +

2σ
R0i

) (R0i

Ri

)3γ]
+

4πR3
i

3
(P0 + pe) + 4πσR2

i (2.4)

(with the assumption that γ > 1). The first term in Eq. (2.4) is the internal energy

of the gas inside the bubble, the second term is equal to the work done to create a

cavity of volume 4
3πR3

i , and the third term is the potential energy stored in surface

tension. The total potential energy is found by summing over all the bubbles in the

system:

V =
∑

i

Vi. (2.5)

2.1.3 Kinetic energy

An expression for the kinetic energy of the bubble system in terms of the

generalized coordinates is derived in Ref. 23 by considering the motion of an invis-

cid incompressible liquid with density ρ0. The irrotational motion of such a liquid

may be described by a scalar velocity potential φ that satisfies Laplace’s equation,

∇2φ = 0. (2.6)
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The kinetic energy in the fluid is given by the integral

K =
ρ0

2

∫
V
|∇φ|2 dV (2.7)

over the entire liquid volume, excluding the volume occupied by bubbles (and thus

ignoring the negligible kinetic energy of the gas). With the assumption that the

liquid is at rest at infinity, Eq. (2.7) can be rewritten as56

K = −ρ0

2

∑
i

∫
Si

φ (∇φ) · ni dSi, (2.8)

where Si represents the surface of the ith bubble, ni is the outward unit normal

of this surface, and the sum is carried out over all bubbles in the cluster. This

reformulation is obtained by combining Green’s theorem with the requirement that

the potential function satisfy Laplace’s equation.

Evaluation of the kinetic energy integral (Eq. (2.8)) requires knowledge of

both the velocity potential and its normal derivative on surface of each bubble.

Hereafter, overdots will be used to denote derivatives with respect to the time t.

Hence the translational velocity of the bubble, the time derivative of the position

vector X, is
.
X. A translating sphere with a dynamic radius R and velocity

.
X has a

surface velocity given by the sum of two velocity vectors, one for the radial motion

and the other for the translation,

us =
.
Rn +

.
X, (2.9)

where n is again the outward surface normal. By definition ∇φ is the fluid velocity.

Thus the condition that the fluid velocity at the bubble surface match the velocity
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of the surface requires that

u|Si = ∇φ|Si =
.
Rini +

.
Xi (2.10)

on the surface of the ith bubble. Substitution of this expression into Eq. (2.8) yields

K = −ρ0

2

∑
i

∫
Si

(
.
Ri +

.
Xi · ni)φ dSi. (2.11)

Further progress requires an expression for the velocity potential, which

is obtained by means of an expansion of the potential as a system of monopole

and dipole sources. The interaction between the bubbles is included by using

a series expansion to approximate the potential and requiring that the potential

field satisfy the velocity boundary condition on the surface of the bubbles to order

(R/D)4, where R is a characteristic bubble radius and D is a characteristic bubble

separation distance. It is necessary to retain fourth-order terms in the expansion

in order to accurately represent the effect of an external acoustic source. Once this

effect has been determined it is sufficient to retain terms only to second order. This

process will not be covered here, and the reader is referred to Ref. 23 for a detailed

description of the derivation. Here the boundaries are the moving surfaces of the

bubbles in the system, and the velocity potential can be expressed in terms of the

natural coordinates of the bubbles, Ri and Xi, and their time derivatives.

One physical interpretation of the multipole expansion is that the system of

bubbles has been replaced by a system of point sources with multipole moments

that reproduce the imposed conditions on all boundaries. This interpretation of

the multipole expansion will be useful later when considering the effects of liquid

compressibility on bubble interaction.
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With expressions for the kinetic and potential energy of the system ex-

pressed in terms of the chosen coordinates, the dynamical equations may be ob-

tained through either a Lagrangian or Hamiltonian formalism. The Hamiltonian

formalism has been chosen for this work. This choice is motivated by several

advantages provided by the Hamiltonian equations of motion when integrating

the equations numerically and considering the effect of liquid compressibility on

the system dynamics. The advantages of the Hamiltonian formulation will be

discussed in Sections 2.1.7 and 2.2.

2.1.4 Lagrangian and Hamiltonian mechanics

Both Lagrangian and Hamiltonian mechanics are reformulations of classical

Newtonian mechanics. The two are closely related and will be discussed briefly.

Lagrangian mechanics begin with a function, known as the Lagrangian L,

defined as the difference between the kinetic and potential energy of the system:

L(qi,
.
qi, t) = K (qi,

.
qi, t) −V(qi), (2.12)

where qi and
.
qi represent the generalized coordinates of the system and their time

derivatives (velocities), respectively. The Lagrangian can be shown57,58 to com-

pletely characterize the dynamics of the system. The dynamical equations can be

calculated from a suitable Lagrangian by means of the Euler-Lagrange equations,

d
dt

(
∂L
∂

.
qi

)
=
∂L
∂qi

. (2.13)

For a system with N generalized coordinates, the Euler-Lagrange equations yield

N second-order differential equations that describe the evolution of the system in
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time.

Hamiltonian mechanics reformulate Lagrangian mechanics through a Leg-

endre transform of the Lagrangian to obtain a new function, the Hamiltonian,

H(qi, pi, t) =
∑

j

p j
.
q j − L(qi,

.
qi, t). (2.14)

The new variables pi are known as the generalized or conjugate momenta of the

coordinates qi and are defined by

pi =
∂L
∂

.
qi
. (2.15)

This equation must ultimately be used to replace all instances of
.
q with functions of

pi on the right-hand side of Eq. (2.14). If the relationship between the generalized

coordinates and their conjugate momenta are independent of the time (i.e., if L
does not depend explicitly on the time t), which pertains to the case at hand, then

it can be shown that the Hamiltonian is simply the total energy in the system,57

H = K +V. (2.16)

The equations of motion for the system are obtained from Hamilton’s canonical

equations,
.
qi =

∂H
∂pi

,
.
pi = −∂H

∂qi
. (2.17)

For a system with N generalized coordinates, Hamilton’s equations yield 2N first-

order differential equations that describe the evolution of the system. An important

feature of the Hamiltonian equations of motion is that no time derivatives of the

generalized coordinates or their momenta appear on the right-hand side of any

equation. The Hamiltonian formalism can be used to obtain the first-order equa-

tions of motion for the bubble system.
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2.1.5 Equations of motion for the bubble model

In order to obtain the equations of motion for the system it is necessary to

choose an appropriate coordinate system. The generalized coordinates are chosen

as the bubble radius R and the position vector X. The momenta conjugate to these

coordinates are the radial momentum G and the linear, or translational momentum

vector M, respectively. The coordinates and momenta of different bubbles are

distinguished by subscripts. This coordinate system is illustrated in Fig. 2.1. The

O

Ri

Gi

Mi
Xi

i

X j

j

Di j

Figure 2.1: Coordinate system and generalized coordinates for Hamiltonian bubble
model. R is the bubble radius, G is the radial momentum, the position vector of the
bubble is X, and the linear, or translational momentum vector is M. Subscripts are
used to distinguish between bubbles, and Di j is the separation distance between
bubbles i and j.

generalized momenta obtained from Eq. (2.15),

Gi =
∂L
∂

.
Ri
, Mi =

∂L
∂

.
Xi
, (2.18)
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are given by23

Gi = 4πρ0

R3
i

.
Ri +

∑
j,i

R2
i R2

j

Di j

.
R j − 1

2

∑
j,i

R2
i R3

j

D2
i j

(
.
X j − uej) · ni j

 (2.19)

and

Mi =
1
2
ρ0Vi(

.
Xi − uei) +

3
2
ρ0Vi

∑
j,i

R2
j

Di j

.
R jni j, (2.20)

where Vi is the volume of the ith bubble, Di j = |X j − Xi| is the separation distance

between the ith and jth bubbles, ni j = (X j − Xi)/Di j is the normal vector pointing

from the ith bubble to the jth bubble, and uei is the liquid velocity due to an

external source evaluated at the center of the ith bubble. Although they may

appear complicated, these expressions for the momenta may be recognized as the

product of the liquid mass entrained by the bubble moving radially (Eq. (2.19)) or

in translation (Eq. (2.20)) with the radial and translational velocity of the bubble

relative to the surrounding fluid, respectively. While the bubble radius and position

are natural coordinate choices, their conjugate momenta are not commonly used

quantities in studies of bubble dynamics.

When expressed in terms of the generalized coordinates and momenta, the

expression for the kinetic energy obtained by the method described in Section 2.1.3

is

K =
1

4πρ0


1
2

∑
i

G2
i

R3
i

+ 3
∑

i

M2
i

R3
i

− 1
2

∑
i, j
i, j

GiG j

RiR jDi j

+ 3
∑

i, j
i, j

Gi

(
M j · ni j

)
RiD2

i j

+
1
2

∑
i, j,k
k,i, j

R jGiGk

RiRkDi jD jk

 +
∑

i

Mi · uei. (2.21)
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The kinetic energy is combined with the potential energy derived in Section 2.1.2

to obtain the Hamiltonian for the bubble system,

H = K +V

=
1

4πρ0


1
2

∑
i

G2
i

R3
i

+ 3
∑

i

M2
i

R3
i

− 1
2

∑
i, j
i, j

GiG j

RiRkDi j

+ 3
∑

i, j
i, j

GiM j · ni j

RiD2
i j

+
1
2

∑
i, j,k
k,i, j

R jGiGk

RiRkDi jD jk


+

∑
i

Mi · uei +
∑

i

Vi,

(2.22)

whereVi is defined in Eq. (2.2). When written in terms of the chosen coordinates,

Hamilton’s equations are

.
Ri =

∂H
∂Gi

,
.
Xi =

∂H
∂Mi

,
.
Gi = −∂H

∂Ri
,

.
Mi = −∂H

∂Xi
. (2.23)

After carrying out the necessary differentiation and simplifying, one obtains the

equations of motion for a system of gas bubbles in an incompressible, inviscid, and

irrotational liquid with excitation due to an external source written in terms of the
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generalized coordinates and momenta:

.
Ri =

1
4πρ0

 Gi

R3
i

−
∑
j,i

G j

RiR jDi j
+ 3

∑
j,i

M j · ni j

RiD2
i j

+
∑
k,i, j

RkG j

RiR jDikD jk

 , (2.24a)

.
Gi =

1
4πρ0

3
2

G2
i

R4
i

+ 9
M2

i

R4
i

−
∑
j,i

GiG j

R2
i R jDi j

+
∑
k,i, j

RkGiG j

R2
i R jDikD jk

− 1
2

∑
i, j,k

GiGk

R jRkDi jDik
+ 3

∑
j,i

Gi(M j · ni j)

R2
i D2

i j


+ 4πR2

i
(
Pi − P0 − pei

)
, (2.24b)

.
Xi =

3
2πρ0

Mi

R3
i

− 3
4πρ0

∑
j,i

G jni j

R jD2
i j

+ uei, (2.24c)

.
Mi =

1
4πρ0

∑
j,i

GiG jni j

RiR jD2
i j

− 4π
3

R3
i ∇pei − (∇uei)TMi. (2.24d)

Here the expression ∇uei is interpreted as the spatial gradient of the vector field

uei evaluated at the bubble center. ∇uei is a second-order tensor field. A modified

summation convention is used to express the equations of motion. Unless otherwise

indicated, the subscript i represents the index of the current bubble and is not

summed. A single summation symbol is used to indicate sums over all other

indices, subject to the stated conditions. It should be noted that the corresponding

equations presented in Ref. 23 contain an error in the indices of the fifth term on

the right-hand of the radial momentum equation. The restrictions on the ranges of

the indices are given there as k , i, j, whereas they should be i , j, k. In order to

integrate the equations of motion presented here, a suitable nondimensional form

is required. The nondimensionalization scheme chosen for this work is presented
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in Section A.1.

2.1.6 Viscosity

The same method used by Ilinskii et al.23 to include the effects of liquid

velocity in the radial and translational equations of motion is used here. The effect

of viscosity on the radial motion is included by adding the term

− 4η
.
Ri

Ri
, (2.25)

where η is the coefficient of shear viscosity, to the right-hand side of Eq. (2.3).

This term can be interpreted as an effective pressure on the bubble surface due to

viscosity of the medium. In the Hamiltonian formalism, the analytical expression

for
.
Ri (Eq. (2.24a)) must be substituted into the damping term. The result of this

substitution in Eq. (2.24b) is the augmented radial momentum equation for a bubble

in a viscous incompressible fluid,

.
Gi =

1
4πρ0

3
2

G2
i

R4
i

+ 9
M2

i

R4
i

−
∑
j,i

GiG j

R2
i R jDi j

+
∑
k,i, j

RkGiG j

R2
i R jDikD jk

− 1
2

∑
i, j,k

GiGk

R jRkDi jDik
+ 3

∑
j,i

Gi(M j · ni j)

R2
i D2

i j


+ 4πR2

i
(
Pi − P0 − pei

)
+ 4η

− Gi

R2
i ρ0

+
∑
i, j

G j

Di jR jρ0
−

∑
j,i,k

R jGk

Di jD jkRkρ0

 . (2.26)

The effect of viscosity on the bubble translation is included by adding a drag

force to the right-hand side of the translational momentum equation (Eq. (2.24d))
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to obtain
.

Mi =
1

4πρ0

∑
j,i

GiG jni j

RiR jD2
i j

− 4π
3

R3
i ∇pei − (∇uei)TMi + Fvis

i . (2.27)

While there are many models for the viscous drag force Fvis
i , the simplest is a

modified form of Stokes’ formula for the drag force on a sphere23,59,60 given by

Fvis
i = −4πχηRiuri, (2.28)

where uri is the velocity of the bubble relative to the fluid, and the parameter χ

is 1 for flows with a low Reynolds number and 3 for flows with a high Reynolds

number. This is the model for viscous drag employed here. When Eq. (2.28) is

written in terms of the Hamiltonian coordinates it takes the form

Fvis
i = −2χ

η

ρ0R2
i

Mi. (2.29)

The augmented translational momentum equation with viscosity is then

.
Mi =

1
4πρ0

∑
j,i

GiG jni j

RiR jD2
i j

− 4π
3

R3
i ∇pei − (∇uei)TMi − 2χ

η

ρ0R2
i

Mi. (2.30)

2.1.7 Comparison of Hamiltonian and Lagrangian equations of motion

The Lagrangian equations of motion for a system of interacting bubbles

without the effect of an external source, bubble translation, or viscosity are

Ri
..
Ri +

3
2

.
R

2
i =

Pi − P0

ρ0
−

∑
j,i

R j

Di j

(
R j

..
R j + 2

.
R

2
j

)
. (2.31)

Without the summation, this is a general form of the Rayleigh-Plesset equation, the

most widely used model of single bubble pulsation in an incompressible fluid. With

27



the summation retained, and with bubble volume given by V j = 4
3πR3

j , Eq. (2.31)

can be rewritten as

ρ0

(
Ri

..
Ri +

3
2

.
R

2
i

)
= Pi − P0 −

∑
i, j

ρ0
..
V j

4πDi j
. (2.32)

From this formulation it is seen that the summation is over pressure terms given

by the solution for a simple source with volume velocity
.

V j (see Pierce,61 p. 155).

That is, the summation accounts for the acoustic pressure on bubble i radiated by

the pulsation of bubble j. Thus, the interaction between the bubbles is transmitted

by the acoustic pressure in the medium. Because the host medium is assumed to

be incompressible the sound speed is infinite and the interaction occurs instanta-

neously. Driven by the pressures on the right-hand side, the terms on the left-hand

side of Eq. (2.32) represent the inertia of the liquid associated with the motion of

bubble i. Equation (2.32) is thus a statement of Newton’s law for the radial motion

of a bubble.

As is discussed by Hamilton et al.,51 it is generally necessary to invert a

matrix at each time step in order to integrate Eq. (2.31) numerically. This can

introduce numerical error into the integration and increase the computational com-

plexity, especially for large systems of bubbles. In contrast, the equations obtained

through the Hamiltonian formalism are naturally in the form required for direct

numerical integration. They do not require any numerical inversion because no

time derivatives appear on the right-hand side of the equations of motion. This is

one advantage of the Hamiltonian formulation.
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2.2 Time delay due to liquid compressibility

This section describes the effects that the compressibility of the medium

surrounding the bubbles has on the dynamics of the system. Methods to extend the

model derived in Section 2.1 for an incompressible medium are presented so that

the model may be used to study the dynamics of bubbles in compressible media.

2.2.1 Limitations of incompressible theory

The model equations in Section 2.1.5 are derived under the assumption that

the compressibility of the liquid surrounding the bubbles is negligible. However,

in most bubble systems the effects of liquid compressibility cannot be neglected.

The effects of compressibility are typically expected to be important when bubbles

are separated by large distances and the acoustic propagation times (delays) are

not necessarily short. Also, during large amplitude oscillations, the bubble wall

velocities may have Mach numbers near unity in the host medium, and hence

compressibility effects are expected to be important. In Chapters 3 and 4 it will be

shown that time delay and radiation damping due to liquid compressibility can also

have a significant impact on the motion of bubbles in relatively small amplitude

oscillations and in close proximity to one another. The present section discusses

various effects of liquid compressibility and offers methods by which these effects

may be included in the bubble model.
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2.2.2 Effects of liquid compressibility

In an incompressible medium, any disturbance immediately influences the

entire body; in this sense, an incompressible medium can be considered to have

an infinite sound speed. Contrast this with a compressible medium where dis-

turbances travel with a finite propagation speed, which is an intrinsic property of

the medium. Small disturbances propagate at the constant acoustic small-signal

propagation speed c0, which can be calculated from the physical properties of the

medium.62 In liquids, the sound speed is

c0 =

√
K
ρ0
, (2.33)

where K is the bulk modulus of the liquid.

2.2.3 Time delays in bubble-bubble interaction

The method for including the effects of acoustic radiation from the bubbles

is most transparent in the Lagrangian formulation of the equations of motion. The

results may then be extended to the Hamiltonian equations. The Lagrangian equa-

tions of motion for a system of interacting bubbles without the effect of an external

source or bubble translation is given in Eq. (2.32), repeated here for convenience:

ρ0

(
Ri

..
Ri +

3
2

.
R

2
i

)
= Pi − P0 −

∑
i, j

ρ0
..
V j

4πDi j
. (2.34)

As stated previously, the sum on the right-hand side of this equation represents the

pressure on bubble i produced by the other bubbles in the system. In a compressible

medium, a pressure signal requires a finite time to propagate from one bubble to

30



another. This suggests that for a compressible medium the bubble interaction terms

on the right-hand side of Eq. (2.34) should be delayed by some time τi j:

ρ0

(
Ri

..
Ri +

3
2

.
R

2
i

)
= Pi − P0 −

∑
j,i

ρ0
..
V j(t − τi j)
4πDi j

. (2.35)

This delayed-interaction method has been used by others to include the effects of

time delay due to liquid compressibility,49–52,63 but there is some variation in the

choice of the delay between bubbles. The time required for a signal to propagate

between two points in space is determined by the distance D between the two

points and the propagation speed c0 by the equation τ = D/c0. When considering

bubble interaction, it is necessary to choose the appropriate distance across which

the signal propagates in order to accurately calculate the delay. Some choices for

the delay τi j used previously are

τi j =
1
c0

(
|[X j]τi j − Xi| − [R j]τi j

)
, (2.36)

used by Fujikawa and Takahira,49

τi j =
1
c0

(
|[X j]τi j − Xi| − Ri − [R j]τi j

)
, (2.37)

used by Sinden et al.,53

τi j =
1
c0
|X j − Xi|, (2.38)

used by Doinikov et al.,46 Ilinskii et al.,50 Hamilton et al.,51 Ooi et al.,47 and Heckman

et al.52, and

τi j =
1
c0
|[X j]τi j − Xi|, (2.39)

which is very similar to Eq. (2.39), but the position of bubble j is delayed by the

distance between the current position of bubble i and the position occupied by
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bubble j at the time t− τi j. If translation is neglected, then Eqs. (2.38) and (2.39) are

identical. Note that the position and radius of the jth bubble are delayed by the

time delay τi j in Eqs. (2.36)–(2.38). The solutions for R j and X j are not known a pri-

ori, therefore the presence of delayed instances of these variables on the right-hand

sides of these equations represents an implicit definition of the delay τi j because the

equations cannot be solved algebraically. A method by which these equations can

be solved by suitable numerical integrators is given in Section B.2.1, and an approx-

imate method to generate explicit definitions for the implicitly defined delays in

appropriate cases will be discussed in Section 5.1. Because the physical reasoning

for choice of time delay is rarely presented and will be necessary in the coming

discussion of the damping of bubble motion due to acoustic radiation, the physical

interpretation of each of these delays will be discussed here.

All of the delays except Eq. (2.37) evaluate the effect of other bubbles at

the center of the receiving bubble. To justify the choice to evaluate the effect at the

bubble center, recall that the bubble is assumed to be much smaller than the acoustic

wavelengths of interest. The external pressure field exerts a force on the bubble

wall. Given the small size of the bubble in relation to the characteristic acoustic

wavelength, it is reasonable to assume that the product of the bubble surface area

with the average pressure on the surface of the bubble best approximates this force.

Even in transient cases, the average pressure at the center of the bubble provides

the best estimate of the pressure experienced by the bubble.

In the bubble model employed here, the pressure produced by a bubble is

equivalent to that produced by an ideal point source at the center of the bubble
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with the same volume velocity as the motion of the bubble wall. Therefore, in order

to consider the appropriate form for the delayed pressure produced by one bubble

on another, it is helpful to consider the pressure on a sphere produced by an ideal

point source placed near the sphere.
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Figure 2.2: The pressure produced by a point source radiating a triangular pulse
(a), and a smoothed pulse (b), placed 50µm from a 20µm radius sphere: averaged
over the surface of the sphere (blue), and evaluated at the center (green), at the near
wall (red), and at the far wall (light blue).

The average pressure on the surface of a sphere of radius a due to a point
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pressure source with a waveform f , placed a distance D from the center of the

sphere, is given by the integral

pavg =
1
2

∫ π

0

f
(
t − D

c0

√
1 + 2 a

D cosθ + a2

D2

)
D

√
1 + 2 a

D cosθ + a2

D2

sinθ dθ. (2.40)

The result of numerical evaluation of this integral for two different pulse shapes

produced by a point source is shown in Fig. 2.2. The sphere has radius a = 20µm

and is placed D = 50µm from the source, thus a/D = 0.4. The sphere is close enough

to the source that the pressure varies significantly over the surface of the sphere,

which can be seen in the difference in Fig. 2.2 between the pressure at the near and

far sides of the sphere. The pulse is 10 µs in duration or 148 µm long in water, thus

the product of wavenumber (k = 2π/λ, where λ is the acoustic wavelength in the

liquid) and radius is ka ≈ 0.85. Note that even though the model is based on the

assumption that ka� 1 and that this is not the case here, the pressure at the center

of the sphere provides a reasonable approximation of the amplitude and arrival of

the average pressure on the surface of the sphere.

From Fig. 2.2 it is apparent that the pressure evaluated at the center of the

sphere provides the best approximation to both the amplitude and the arrival time

of an external pressure wave. By the same reasoning, because Eq. (2.37) evaluates

the effect of one bubble at the wall of the receiving bubble instead of at the center,

it does not provide the most appropriate delay.

In order to compare the other delays in Eqs. (2.36)–(2.39), the positions of the

centers and walls of two bubbles are shown in Fig. 2.3 along with the propagation

paths, or characteristics, corresponding to each delay. The times and coordinates
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Figure 2.3: Streak plot showing the time evolution of the bubble walls and displace-
ments for two bubbles, along with possible characteristics for propagation of the
acoustic signal that couples the bubbles.

of the points shown in the figure will be indicated with subscripts, so that the time

at point a is ta. In order to determine the effect of bubble 2 (the bubble on the

right) on bubble 1 at t = ta it is necessary to determine τ12, the time it takes the

motion of bubble 2 to affect bubble 1. The characteristic along which the signal from

bubble 2 propagates to bubble 1 is marked by the dashed line. Figure 2.3 illustrates

the reasoning for each delay type. Equation (2.37) is the minimal time delay for

propagation between the bubbles. The corresponding characteristic is the segment

e f . The results presented in the previous paragraph demonstrate that this is not

the appropriate delay. Fujikawa and Takahira49 chose Eq. (2.36) by reasoning that
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because the pressure is generated by the motion of the bubble wall, the interaction

should be delayed by the distance from the bubble wall at the time the interaction

signal was generated to the center of the receiving bubble. This characteristic is

represented by the segment ac in the figure. The two delays given by Eq. (2.39) and

Eq. (2.38) are equal if the bubbles do not translate. If the bubbles are translating,

as is the case in Fig. 2.3, then Eq. (2.38) represents radiation (characteristic segment

ab) from a location that does not correspond to any portion of the radiating bubble.

The propagation from the past center of one bubble to the current center of another

is represented by the characteristic segment ad

Figure 2.3 seems to suggest that because the propagation characteristic seg-

ment ac is closest to the path traveled by the physical pressure signal that couples

the bubbles, Eq. (2.36) is the best choice for the delay, but this is not the case. In order

to determine which of these delays is most appropriate, it is necessary to consider

the analytical model for the field produced by the motion of a single bubble. With

the assumptions given in Section 2.2.2, the velocity potential in the medium must

satisfy the linear wave equation,

∇2φ =
1
c2

0

∂2φ

∂t2 . (2.41)

The solution for a spherically symmetric, outward propagating field may be ex-

panded as

φ(r, t) = − f (t − r/c0)
r

. (2.42)

The pressure field p and velocity field u in the liquid may be calculated from the
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velocity potential:

p = −ρ0
∂φ

∂t
, (2.43)

u = ∇φ

=
∂φ

∂r
r̂, (2.44)

where r̂ is the unit vector in the outward radial direction. For a single bubble

undergoing spherically-symmetric radial pulsation, the function f is determined

by requiring that the bubble wall velocity and fluid velocity match at the bubble

wall,

∂φ

∂r

∣∣∣∣∣∣
r=R

=
.
R, (2.45)

or

f (t − R/c0)
R2 +

f ′(t − R/c0)
Rc0

=
.
R, (2.46)

where the prime indicates the total derivative with respect to the argument. The

left-hand side of this equation can be expanded in a Taylor series in powers of R/c0

to obtain:

.
R =

f (t − R/c0)
R2 +

f ′(t − R/c0)
Rc0

=

 f (t)
R2 −

f ′(t)
Rc0

+
f ′′(t)
2c2

0

+ · · ·
 +

 f ′(t)
Rc0
− f ′′(t)

c2
0

+ · · ·


=
f (t)
R2 −

f ′′(t)
2c2

0

+ · · ·

=
f (t)
R2

1 + O

 R2

c2
0T2

0

 . (2.47)
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The last expression can be rearranged to obtain

f (t) = R2 .
R

=

.
V
4π
, (2.48)

where V = 4
3πR3. The acoustic pressure field valid to O(1/c0) produced by the

bubble is thus given by Eq. (2.43) as

p(r, t) =
ρ0

4πr
..
V(t − r/c0). (2.49)

This equation indicates that, at O(1/c0), the pressure produced by the bubble is not

delayed by the distance between the receiving point and the bubble wall generating

the pressure, but rather by the distance between the receiving point and the bubble

center. Thus, the best approximation for the time delay in bubble interactions is

proportional to the distance from the center of the radiating bubble at the time the

signal was produced to the center of the receiving bubble at the time the signal is

received. Therefore, the most appropriate delay is given by Eq. (2.39).

2.2.4 Inclusion of time delays in the Hamiltonian model

In the Lagrangian formulation, the interaction terms are easily identified

with the acoustic pressure produced by the motion of the bubble wall, and the

relevant delay can easily be determined. The Hamiltonian formulation is more

complicated and will be considered in detail here.

The Hamiltonian equations of motion in Section 2.1 are given for the ith

bubble in the cluster. All interactions with other bubbles are expressed through
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functions of the state variables of the other bubbles in the system. As an example,

consider the first interaction term in Eq. (2.24a),

−
∑
j,i

G j

RiR jDi j
. (2.50)

This term represents part of the effect that bubble j has on bubble i. The propagation

delay due to liquid compressibility is included by delaying this effect by the time

required for a pressure signal to propagate between the two bubbles. Hence, all

occurrences of variables subscripted with j in Eq. (2.50) must be replaced by the

value of that variable at some past time t−τi j, where the propagation time between

the bubbles labeled i and j is represented by τi j. To distinguish between delayed

and non-delayed quantities, delayed quantities will be enclosed by brackets with

the delay shown in subscripts, e.g., the value of R j delayed by τi j is

R j(t − τi j) = [R j]τi j . (2.51)

It is also convenient to employ the convention

[Di j]τi j =
∣∣∣[X j]τi j − Xi

∣∣∣ . (2.52)

With this notation, expression (2.50) becomes

−
∑
j,i

[G j]τi j

Ri[R jDi j]τi j

. (2.53)

The delay needed to evaluate the terms in Eq. (2.24) that contain variables

from only two bubbles may now be calculated. However, several terms in the

equations of motion (Eq. (2.24)) contain variables from three bubbles. Unlike the

two-bubble interaction terms, it is not immediately apparent how the variables in
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these terms should be delayed. Some insight may be gained by examining the

distances that appear in terms containing variables from three bubbles. The fifth

term in Eq. (2.24b) is

− 1
2

∑
i, j,i,k

GiGk

R jRkDi jDik
. (2.54)

Both distances that appear in this term are relative to the ith bubble, the primary

bubble for this equation, thus the interaction is due to the combined effect of the

fields produced by bubble j and bubble k. This interaction must be delayed by the

distance required for a signal to propagate from each bubble to bubble i, therefore

the two-bubble delays τi j and τik given by Eq. (2.36) are employed.

A more complicated three-bubble interaction is found in the last term of

Eq. (2.24a), ∑
j,i,k

R jGiGk

R2
i RkDi jD jk

. (2.55)

The presence of the distance Di j implies an interaction of the type discussed in the

previous paragraph between the current bubble i and the bubble j. Thus all terms

containing the coordinates from the jth bubble must be delayed by τi j as previously

defined. The distance D jk implies an action of the kth bubble on the jth bubble

and must be delayed accordingly. Because the variables of bubble j are already

delayed by τi j, the interaction between bubbles j and k must be delayed further.

The interaction described by expression (2.55) can be interpreted as the action of

bubble k on bubble i, mediated by bubble j. In other words, a signal propagates

from bubble k to bubble j and is passed on by bubble j to act on bubble i.

This interpretation is justified by considering the iterative substitution
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method used in Ref. 23 to obtain the evolution equations for the generalized coor-

dinates. The equation given for the time derivative of the bubble radius is

R3
i

.
Ri =

Gi

4πρ0
−

∑
j,i

R2
i R2

j

Di j

.
R j +

1
2

∑
j,i

R2
i R3

j

D2
i j

.
Xi · ni j − 1

2

∑
j,i

R2
i R3

j

D2
i j

uej · ni j. (2.56)

In a compressible liquid, each coupling term is delayed by the time required for a

signal to propagate between the bubbles. Equation (2.56) becomes

R3
i

.
Ri =

Gi

4πρ0
−

∑
j,i

R2
i [R2

j ]τi j

[Di j]τi j

[
.
R j]τi j +

1
2

∑
j,i

R2
i [R3

j ]τi j

[Di j]2
τi j

.
Xi · [ni j]τi j

− 1
2

∑
j,i

R2
i [R3

j ]τi j

[Di j]2
τi j

[uej · ni j]τi j . (2.57)

The time derivatives on the right-hand side are eliminated by iterative substitution.

The substitutions are made based on the knowledge of an approximate form of

the time derivatives of the generalized coordinates to the required order. Each

occurrence of the time derivative on the right-hand side of an equation is replaced by

its approximation and higher order terms were eliminated. This results in coupled

interactions that cannot immediately be associated with the pressure produced by

one bubble acting on another as in the Lagrangian equations of motion.

When the analytic approximations for the time derivatives of the general-

ized coordinates are used in a compressible liquid, all quantities must be delayed

appropriately. When the iterative substitutions are made for the delayed variable

[
.
R j]τi j , all coupling terms must be delayed further, thus to O(R2/D2) the second
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term in Eq. (2.57) is

−
∑
j,i

R2
i [R j]2

τi j

[Di j]τi j

[
.
R j]τi j = −

∑
j,i

R2
i [R j]2

τi j

[Di j]τi j

 G j

4πR3
jρ0
−

∑
k, j

R2
j [Rk]2

τ jk[
D jk

]
τ jk

.
R j


τi j

= −
∑
j,i

R2
i [R j]2

τi j

[Di j]τi j

 G j

4πR3
jρ0
−

∑
k, j

R2
j [Rk]2

τ jk

[D jk]τ jk

G j

4πR3
jρ0


τi j

. (2.58)

By definition,
[
[Ri]τ1

]
τ2

= [Ri(t − τ1)]τ2
= R(t − τ1 − τ2) = [Ri]τ1+τ2 , therefore the

delayed terms may be collected:

−
∑
j,i

R2
i [R j]2

τi j

[Di j]τi j

 G j

4πR3
jρ0
−

∑
k, j

R2
j [Rk]2

τ jk

[D jk]τ jk

G j

4πR3
jρ0


τi j

= − 1
4πρ0

∑
j,i

R2
i [G j]τi j

[Di jR j]τi j

+
1

4πρ0

∑
k, j

[G j]τi j[Rk]2
τi j+τ jk

[R j]τi j[Di j]τi j

[
[D jk]τ jk

]
τi j

. (2.59)

The delayed distance in the denominator of the last term on the right-hand side of

the previous equation is interpreted as

[
[D jk]τi j

]
τ jk

=

∣∣∣∣∣[[Xk]τ jk − X j

]
τi j

∣∣∣∣∣
=

∣∣∣[Xk]τi j+τ jk − [X j]τi j

∣∣∣ . (2.60)

Thus, the interpretation of this class of three-bubble interactions as the indirect

effect of bubble k on bubble i through bubble j becomes clear, and the appropriate

definition of the delay for the third bubble is obtained.

The three-bubble delay must now be calculated. The physical reasoning

follows the two-bubble case. It is convenient to introduce the definition τi jk ≡
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Figure 2.4: Streak plot showing the time evolution of bubble walls and positions for a
three-bubble interaction. The propagation characteristics for the bubble interaction
signals are included.

τi j + τ jk. Henceforth,
[
[D jk]τi j

]
τ jk

will be written as [D jk]τi jk . With the two-bubble

delay given in Eq. (2.39), τi jk is defined implicitly as

τi jk = τi j +
1
c0

∣∣∣[Xk]τi jk − [X j]τi j

∣∣∣
=

1
c0

(∣∣∣[X j]τi j − Xi
∣∣∣ +

∣∣∣[Xk]τi jk − [X j]τi j

∣∣∣)
=

1
c0

(
[Di j]τi j + [D jk]τi jk

)
.

(2.61)

A three-bubble interaction is illustrated in the streak plot in Fig. 2.4. The

three bubbles in the plot are numbered 1 to 3 from left to right. The propagation

characteristic for the first path of the three-bubble interaction is the segment bc; this
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is the action of bubble 3 on bubble 2. The signal resulting from the combination of

bubbles 2 and 3 propagates along the characteristic segment ab to act on bubble 1 at

time ta. Examination of the plot reveals that the delay τ123 = ta − tb + tb − tc = ta − tc.

The index constraints of the three-bubble interaction terms are j , i and j , k. It is

possible to have i = k and consequently, another possible three-bubble interaction

is bubble 1 acting on itself through bubble 2. This interaction signal propagates

along the characteristic segment bd and then combines with the signal from bubble

2 to propagate along the characteristic segment ab to act on bubble 1, and thus

τ121 = ta − tb + tb − td = ta − td.
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2.2.5 Modeling coupled bubbles with time delay

With the inclusion of the delays due to the compressibility of the surround-

ing liquid, the Hamiltonian equations of motion become

.
Ri =

1
4πρ0

 Gi

R3
i

−
∑
j,i

[G j]τi j

Ri[R jDi j]τi j

+ 3
∑
j,i

[M j · ni j]τi j

Ri[Di j]2
τi j

+
∑
j,i,k

[R j]τi j[Gk]τi jk

Ri[Di j]τi j[RkD jk]τi jk

 , (2.62a)

.
Gi =

1
4πρ0

3
2

G2
i

R4
i

+ 9
M2

i

R4
i

−
∑
j,i

Gi[G j]τi j

R2
i [R jDi j]τi j

+
∑
j,i,k

[R j]τi jGi[Gk]τi jk

R2
i [Di j]τi j[RkD jk]τi jk

− 1
2

∑
i, j,k

Gi[Gk]τik

[R jDi j]τi j[RkDik]τik

+ 3
∑
j,i

Gi[M j · ni j]τi j

R2
i [Di j]2

τi j


+ 4πR2

i
[
Pi − P0 − pei

]
, (2.62b)

.
Xi =

3
2πρ0

Mi

R3
i

− 3
4πρ0

∑
j,i

 G jni j

R jD2
i j


τi j

+ uei, (2.62c)

.
Mi =

1
4πρ0

∑
j,i

Gi[G jni j]τi j

Ri[R jD2
i j]τi j

− 4π
3

R3
i ∇pei − (∇uei)TMi. (2.62d)

The addition of propagation delays converts the original system of ordi-

nary differential equations (Eq. (2.24)) into a system of delay differential equations

(DDEs). Similar to many nonlinear ordinary differential equations, the delayed

equations of motion for the bubble system are analytically intractable and must be

integrated numerically. The numerical integration of DDEs requires special care

due to the dependence that the current solution has on the past solution. The delay
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maps past values of the solution to the current value and has two implications. First,

the past solution must be known not only at discrete points, but as a continuous

function. Second, the accuracy of this interpolated past solution affects the accu-

racy of the current solution. Therefore, standard methods for numerical integration

are not appropriate. Additionally, DDEs may exhibit behavior that is not present

in their non-delayed counterpart ordinary differential equations (ODEs), including

hyper-chaotic dynamics and synchronization.64 Additional relevant information on

DDEs and the tools used for numerical integration in this work may be found in

Appendix B.

The delayed Hamiltonian equations of motion shown here can be classified

as a system of state-dependent regular delay differential equations. They are regular

because no leading order derivative of any state variable is delayed. Because the

delay τi j is a function of the current and past state variables, the system is classified

as state dependent.

Compare the Hamiltonian equations of motion (Eqs. (2.62)) to those ob-

tained by the Lagrangian formalism, shown here with propagation delay, without

translation and without the effect of an external source:

Ri
..
Ri +

3
2

.
Ri =

Pi − P0

ρ0
−

∑
j,i

[
R j

Di j

(
R j

..
R j + 2

.
R

2
j

)]
τi j

, (2.63)

where the delay τi j is given by Eq. (2.39). Because the delay is defined in the same

way as in the Hamiltonian equations of motion, the delay will be state depen-

dent if bubble translation is considered. However, a key difference between the

Hamiltonian and Lagrangian equations is the appearance of delayed leading-order
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derivatives on the right-hand side of Eq. (2.63).

Delay equations in which the leading order derivatives are delayed are

labeled neutral DDEs, thus the Lagrangian formulation produces a set of neutral,

state-dependent delay differential equations. This is significant because neutral

DDEs can present special difficulties in numerical integration. Many available

DDE solvers cannot integrate neutral DDEs, and with those that do it cannot be

guaranteed that a solution will be found. An additional complication is the fact that

for state-dependent neutral DDEs, the existence of a solution for the general case

has not been proven. Thus the regular nature of the delayed Hamiltonian equations

of motion provides a significant advantage when seeking numerical solutions. In

contrast, the neutral nature of the Lagrangian DDEs limits the solvers that may be

used. Bubble simulations performed with the delayed Hamiltonian equations of

motion are successful for significantly larger ranges of bubble motion than those

performed with the delayed Lagrangian equations of motion.53

Because the energy in a system provides a useful metric, it is also necessary

to incorporate the effect of delay due to liquid compressibility into the energy

expressions. There are no terms representing bubble coupling in the expressions

for the potential energy of the system, and therefore these expressions do not change

in the presence of compressibility. The expression given for the kinetic energy in

Eq. (2.21) must be adapted with the same reasoning used in Section 2.2.4 to include

the effects of propagation delay. With the inclusion of the two- and three-bubble
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delays, the kinetic energy becomes

K =
1

4πρ0


1
2

∑
i

G2
i

R3
i

+ 3
∑

i

M2
i

R3
i

− 1
2

∑
i, j
i, j

Gi[G j]τi j

Ri[R jDi j]τi j

+3
∑

i, j
i, j

Gi[M j · ni j]τi j

Ri[Di j]2
τi j

+
1
2

∑
i, j,k
k,i, j

[R j]τi jGi[Gk]τi jk

Ri[Di j]τi j[RkD jk]τi jk


+

∑
i

Mi · uei. (2.64)

2.3 Radiation damping due to bubble self-action in a compressible liq-
uid

In addition to delaying bubble interaction, liquid compressibility has an

effect on the energy in an oscillating bubble. A compressible medium permits wave

propagation. These waves carry energy away from the bubble into the fluid. The

radiation of energy from the bubble into the fluid manifests itself in the equations

of motion as a damping term. These damping terms are especially important over

long time scales, and in large amplitude oscillations when the velocity of the bubble

wall is high enough that the Mach number of the bubble wall motion in the liquid

is no longer small.

2.3.1 Radiation damping due to self-action of a single bubble

For the case of a single bubble, singular perturbation methods have been

used to correct the equations of motion for an incompressible liquid to include the
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effects of compressibility.29,32,33 These corrections are expressed as series expansions

in powers of 1/c0. An elegant and insightful approach was used by Ilinskii and

Zabolotskaya24 to show that the radiation damping is the result of delayed action of

the pressure produced by the bubble acting on itself. Corrections to the dynamical

equations can be derived from a suitable Taylor expansion of the delayed pres-

sure. See Chicone65 for a mathematical justification of Taylor expansion of delay

differential equations. An understanding of their method is necessary to determine

the correct compressibility damping expressions for the Hamiltonian equations of

motion.

First recognize that the standard Rayleigh-Plesset equation,

ρ0

( ..
RR + 2

.
R

2
)
− ρ0

2
.
R = P − P0 − pe, (2.65)

can be written as a pressure balance at the bubble wall,24

p1(R, t) + p2(R, t) + P0 + pe = P, (2.66)

where P is the pressure just outside the bubble wall given by Eq. (2.3). Here p1

represents the acoustic, or radiated, pressure produced by the motion of the bubble

wall,

p1(r, t) =
ρ0

r
(
..
RR2 + 2

.
R

2
R) (2.67)

=
ρ0

..
V

4πr
, (2.68)

and p2 is the Bernoulli pressure due to the motion of the liquid,

p2(r, t) = −ρ0

2
R4

r4

.
R

2
. (2.69)
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With P0, pe, and P considered known, Eq. (2.66) is an exact reformulation of the

momentum equation for an incompressible fluid (the Bernoulli equation). The

pressures p1 and p2 can be termed “self-action” pressures because they are due to

the motion of the fluid in response to the motion of the bubble. It was shown in

Section 2.2.3 that in a compressible liquid, the acoustic pressure produced by the

motion of the bubble wall is delayed by the distance between the bubble center and

the receiving point, so that Eq. (2.66) becomes

p1(R, t − R/c0) + p2(R, t) + P0 = P, (2.70)

where p1 is delayed by the distance from the bubble center to the bubble wall. The

Bernoulli pressure p2 is not delayed because it is proportional to 1/r4. There is no

spherically symmetric solution to the linear wave equation that falls off as 1/r4, and

thus p2 represents a non-propagating near-field pressure produced by the inertia of

the liquid and is not delayed at this order of approximation. With the definitions

in Eqs. (2.67) and (2.69), Eq. (2.70) can be written

C1:
ρ0

R

[ ..
RR2 + 2

.
R

2
R
]

t=t−R/c0

− ρ0

2
.
R

2
= P − P0 − pe. (2.71)

This approximation for the effects of liquid compressibility is labeled C1 in this

work (see Sections 3.3 and 4.1).

Equation (2.71) was obtained by Ilinskii and Zabolotskaya24 as an interme-

diate step. As in their work, in order to remove the delay and simplify the problem,

it is assumed that the bubble radius is small in comparison to the distance traveled

by some acoustic signal in the characteristic time T0 of the system (R/c0T0 � 1). If

this assumption holds, then p1 on the left-hand side of Eq. (2.70) may be expanded
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in a Taylor series in the time delay τ = R/c0. The result of this expansion about

τ = 0 is

p1(R, t − τ) = p1(R, t) − τ∂p1

∂t
+ O(τ2)

=
ρ0

4πR
..
V − ρ0

4πc0

...
V + O(1/c2

0). (2.72)

After this approximation is substituted into Eq. (2.71), expanded, and rearranged,

the equation of motion is

ρ0

( ..
RR + 2

.
R

2
)
− ρ0

2
.
R = P − P0 − pe +

ρ0

4πc0

...
V. (2.73)

This is the modified form of the Rayleigh-Plesset equation for single bubble dy-

namics in a compressible method that was derived by Ilinskii and Zabolotskaya.24

In Eq. (2.73) a pressure correction proportional to the third derivative of the bubble

volume appears at O(1/c0). It should be noted that corrections to equations of mo-

tion for the position and the translational momentum should occur at O(1/c2
0), and

therefore are not considered here.66 Interpreting this correction as a modification of

the pressure at the bubble surface guides the incorporation of self-action radiation

damping into the Hamiltonian bubble model.

Numerical integration of Eq. (2.73) is difficult due to the small [O(1/c0)]

coefficient of the leading-order derivative. It is necessary to use an iterative sub-

stitution method to obtain a second-order equation valid to the same order in the

expansion parameter 1/c0. This is accomplished by solving Eq. (2.73) for
..
R and then

differentiating to find an expression for
...
R valid to O(1/c0), and the result is then

substituted into Eq. (2.73) and terms up to the desired order in 1/c0 are kept. If nec-

essary, this procedure is repeated until all higher-order derivatives are eliminated.
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This approach recovers the commonly used damping terms derived by singular

perturbation methods.32 The result of the recursive substitution is the following

form of the Keller-Miksis equation,29

C2:
(
1 −

.
R
c0

)
R

..
R +

3
2

(
1 −

.
R

3c0

)
.
R

2
=

1
ρ0

(
1 +

.
R
c0

+
R
c0

d
dt

) (
P − P0 − pe

)
. (2.74)

This approximation was obtained by Taylor expansion and iterative substitution

of the C1 approximation for including the effects of liquid compressibility, and

is labeled C2 (or C3 in later chapters). It should be noted that the distinction

between the approximations labeled C2 and C3 is only relevant in systems of

coupled bubbles, thus C2 is used here.

A similar procedure may be used to incorporate the effects of radiation

damping into the Hamiltonian equations of motion. The Hamiltonian equivalent

of the Rayleigh-Plesset equation is

.
R =

1
4πρ0

G
R3 , (2.75a)

.
G =

3
8πρ0

G2

R4
+ 4πR2 (

P − P0 − pe
)
, (2.75b)

where P is the pressure just outside the bubble without the effect of the external

source, given by Eq. (2.3). The pressure balance at the surface of the bubble in

Eq. (2.71) is rewritten as a force balance in Eq. (2.75b) (recall that the force is the time

derivative of the momentum). The first term on the right-hand side of Eq. (2.75b) is

the force produced by the motion of the surrounding fluid (Bernoulli pressure times

bubble surface area), and the remaining terms are due to the internal, ambient, and

external source pressures, respectively.
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The pressure correction for bubble self-action in a compressible liquid is

added to the pressure terms in the right-hand side Eq. (2.75b) to obtain a set of

equations for the dynamics of a single bubble in a compressible medium,

.
R =

1
4πρ0

G
R3 , (2.76a)

.
G =

3
8πρ0

G2

R4
+ 4πR2

(
P − P0 − pe +

ρ0

4πc0

...
V
)
. (2.76b)

Equations (2.76) should be used instead of Eqs. (2.75) to include the effects of liquid

compressibility. The third-order derivative on the right-hand side of Eq. (2.76b)

must be eliminated before this equation can be used to simulate the system with

numerical integration by standard methods. An alternate expression for
...
V in terms

of the state variables is found by differentiating Eq. (2.75a) twice and iteratively

substituting Eqs. (2.24) on the right-hand side to eliminate time derivatives. Only

term to O(1/c0) are kept, and the result is

...
V =

G
4πρ3

0R3

[
R
∂P
∂R

+ 2
(
P − P0 − pe

)] − ∂pe

∂t
R
ρ0
− 3G3

16π2ρ3
0R9

. (2.77)

This expression is then substituted into Eq. (2.76) to obtain a numerically integrable

system of differential equations describing the radial motion of the bubble,

C2:
.
R =

1
4πρ0

G
R3 , (2.78a)

.
G =

3
8πρ0

G2

R4
+ 4πR2 (

P − P0 − pe
)

+
1
c0

 G
4πρ3

0R

[
R
∂P
∂R

+ 2
(
P − P0 − pe

)] − ∂pe

∂t
R3

ρ0
− 3G3

16π2ρ3
0R7

 .
(2.78b)
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Whereas the C1 approximation in Eq. (2.71) and the C2 approximation in Eq. (2.74)

were expressed in the coordinates of the Lagrangian formulation, this equation is

written in the coordinates and momenta of the Hamilton formulation. Because it

was obtained by Taylor expansion and iterative substitution to eliminate higher-

order derivatives, it is a C2 approximation like Eq. (2.74). Equations (2.78) are

equivalent to the Keller-Miksis equation for a single bubble given in Eq. (2.74).

2.3.2 Radiation damping due to self-action in systems of coupled bubbles

In previous studies of coupled bubbles in compressible media,38–40,46,47,66

the effect of radiation damping was included by adding the single-bubble damping

term to the equations of motion. In this section and in the next chapter it will be

shown that this method does not fully describe the effects of bubble self-action and

radiation damping in systems of coupled bubbles.

If the method used to incorporate radiation losses in the single-bubble case

is applied to the coupled-bubble case, the effect of radiation damping is included

in the dynamical equations for a system of interacting bubbles by adding the
...
Vi

pressure correction to the radial momentum equation. An iterative method must

again be used to eliminate third-order derivatives from the equations of motion.

In the coupled-bubble case, this process is considerably more difficult due to the

the interaction terms. It is necessary to use a computer algebra system to carry out

the calculations required to obtain the correct expressions for radiation damping

in coupled-bubble systems. To illustrate the magnitude of the problem, at one

point the calculation requires that the product of two expressions each containing
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approximately 4000 individual terms, many of which contain one or more sums,

be expanded. The computer algebra package Maxima67 was used for this work. A

special set of Maxima utilities was developed to carry out the necessary calcula-

tions. These utilities use the Hamiltonian of the system to calculate the equations

of motion, perform the iterative substitutions, and generate Fortran code, thus

eliminating human errors.

After the result of these calculations is included, the equation for the radial

momentum (Eq. (2.24b)) modified to include viscosity and compressibility becomes

C2:
.
Gi =

1
4πρ0

3
2

G2
i

R4
i

+ 9
M2

i

R4
i

−
∑
j,i

GiG j

R2
i R jDi j

+
∑
k,i, j

RkGiG j

R2
i R jDikD jk

− 1
2

∑
i, j,k

GiGk

R jRkDi jDik
+ 3

∑
j,i

Gi(M j · ni j)

R2
i D2

i j


+ 4πR2

i
(
Pi − P0 − pei

)
+ 4η

− Gi

R2
i ρ0

+
∑
i, j

G j

Di jR jρ0
−

∑
j,i,k

R jGk

Di jD jkRkρ0


+ C(c,0)

i + C(c,1)
i + C(c,2)

i + C(η,0)
i + C(η,1)

i + C(η,2)
i , (2.79)

where the C(c,n)
i represent the corrections for compressibility to O(1/c0) and nth

order in R/D. The C(η,n)
i represent the corrections for compressibility to O(1/c0)

and nth order in R/D that also contain the viscosity coefficient η. Currently, only

terms up to second order in R/D and first order in 1/c0 are considered. In this

work, an approximation for compressibility effects obtained by Taylor expansion

of the C1 approximation given in Eq. (2.79) and iterative substitutions of the result
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to eliminate higher-order derivatives while retaining terms up to O(R2/D2) and

O(1/c0) is labeled C2. Thus, Eq. (2.79) is a C2 approximation. The C([c,η],n)
i are

defined as follows:

C(c,0)
i =

1
ρ0c0

− G3
i

16π2ρ0R7
i

+ 2
Gi

Ri

(
Pi − P0 − pei

)
+
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∂Ri
Gi
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∂t
− 9Gi|Mi|2

4π2R7
i ρ0
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i ∇pei · uei
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i

 , (2.80)
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 , (2.81)
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∑
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Direct tensor notation is employed in the previous expressions. The velocity gra-

dient ∇u is a second-order tensor, and the right-hand product of a tensor and a

vector [(∇u)M] is a vector. The center dot (·) represents the dot product between

vectors, and a superscript T represents the tensor transpose. The third-order tensor

expression in the last term of Eq. (2.82) may be written in standard index notation

as

(∇ {[∇ (u ·M)] · n}) ·
(

M
2πρ0R3 − u

)
=

3∑
i, j,k=1

∂2ui

∂x j∂xk
Min j

(
Mk

2πρ0R3 − uk

)
. (2.83)

All three indices are summed from 1 to 3. Here the indices refer not to the bubble

number, but to vector components. The Mi are the components of a single-bubble

momentum vector M, ni represent the components of a unit normal vector n, and

ui are the components of the velocity vector field. All expressions containing ui are

evaluated at the bubble center.

The viscosity terms are

C(η,0)
i =

χη

3ρ0c0

 G2
i

2πρ0R5
i

+
16ηGi

ρ0R3
i
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i

 , (2.84)

C(η,1)
i =

∑
i, j

χη

3ρ0c0Di j

− GiG j

πρ0R3
i R j

+
2GiG j

πρ0RiR3
j

+
RiG2

j

2πρ0R5
j

−
R3

i G2
j

2πρ0R7
j

+ 16πR2
i

(
R j

Ri
+

Ri

R j

)
(P j − P0 − pej) +

9R3
i |M j|2
πρ0R5

j

 1
R2

i

+
4

R2
j




−
∑
i, j

16χη2

c0ρ2
0Di j

 G j

RiR j
+

RiG j

R3
j

+
R3

i G j

R5
j

 , (2.85)
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and
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As was explained in Section 2.1.6 following Eq. (2.28), χ varies depending on
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the Reynolds number of the flow. The relative importance of these additional

expressions will be considered in Chapter 3.

It should be mentioned that the model equations given in Eqs. (A44)–(A48)

of Fuster and Colonius17 appear to be analogous to the model equations in Eqs. (2.62)

and (2.79), but written in terms of bubble radius Ri, radial velocity
.
Ri, and radial

acceleration
..
Ri. Fuster and Colonius do not use a Lagrangian or a Hamiltonian

formulation to derive their equations of motion. Their equations are obtained by

an expansion of the coupled velocity potential for the medium surrounding the

bubbles. The equations of Fuster and Colonius contain terms to the same order

in 1/c0 and R/D, but neglect translation and are valid only to O(R/D), whereas

the model equations presented in this chapter include translation and are valid to

O(R2/D2). Even without the effects of translation in Eqs. (2.62) and (2.79), the large

number of terms in both sets of equations precludes direct comparison.

If in Eq. (2.79) all coupling terms associated with liquid compressibility

(terms of O(1/c0) that are also O(R/D)) are neglected, then only C(c,0)
i remains. This

requires the assumption that the interaction between the bubbles in the cluster

does not influence the radiation damping of the bubbles in the system, and hence

the expression for the single-bubble radiation damping may be used. C(c,0)
i can be

recognized as the compressibility terms in Eq. (2.78b), augmented to include the

effects of bubble translation. This approximation is labeled C3 in this work. If the

time delays in bubble interaction are neglected in the C3 approximation, then the

result is labeled C4. The labels assigned to the various approximations for liquid

compressibility effects used in this work are summarized in Table 2.1. All labels

61



with corresponding equations are presented together in Appendix C.

Label Description Equations
C1 Delayed self-action pressure, delays in bubble

interaction
Eq. (2.71) (single),
Eq. (3.12) (coupled)

C2 Delayed self-action pressure expanded in Tay-
lor series, terms up to O(1/c0) ×O(R2/D2) kept,
delays in bubble interaction

Eqs. (2.62) and (2.79)

C3 Delayed self-action pressure expanded in Tay-
lor series, terms of O(1/c0)×O(R/D) discarded,
delays in bubble interaction

Eqs. (2.62) and (2.79),
only C(c,0)

i in Eq. (2.79)

C4 C3 without delays in bubble interaction Eqs. (2.62) and (2.79),
only C(c,0)

i in Eq. (2.79),
no delays

C1-L Linearized form of C1 Eq. (3.13)
C2-L Linearized form of C2 Eq. (3.23)
C3-L Linearized form of C3 Eq. (3.15)
C4-L Linearized form of C4 Eq. (3.24)

Table 2.1: Summary of labels assigned to methods of approximation for the effects
of liquid compressibility along with equations in which the approximations are
given.

2.4 Summary

The Hamiltonian model developed by Ilinskii et al.23 was presented and

adapted to include the effect of compressibility in the host medium and viscosity.

The liquid compressibility manifests itself through a delay in the bubble interac-

tion, and radiation damping due to the delayed action of a bubble on itself. When

compared with the equations of motion obtained by a Lagrangian formalism, the

Hamiltonian equations of motion afford several advantages. In an incompressible

medium, numerical matrix inversion is not required. In a compressible medium,
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the Hamiltonian equations of motion are regular delay differential equations in-

stead of neutral delay differential equations as are obtained in the Lagrangian case.

Thus in the case of a compressible liquid, the Hamiltonian differential equations

are better suited to numerical integration with existing software tools. Also, in

problems requiring iterative substitutions to eliminate higher-order derivatives, as

in Section 2.3.2, the Hamiltonian equations provide a simpler approach. This prop-

erty will again be useful in developing approximations for the implicitly defined

delays and the delay equations, which is discussed in Chapter 5.

Four possible expressions for the bubble interaction time delay were pre-

sented, along with the physical motivation for choosing Eq. (2.39) as the most

appropriate expression. A physical interpretation of the three-bubble interaction

terms in the Hamiltonian equations of motion was presented and used to motivate

the selection of suitable delays for the elements of these terms. The effect of radi-

ation damping was considered first for the single-bubble Hamiltonian model and

then for the coupled-bubble system.

The method of Ilinskii and Zabolotskaya,68 wherein the self-acting radiated

pressure produced by a bubble is delayed by the time required for the pressure to

propagate from the bubble center to the bubble wall, was employed. This approx-

imation for compressibility effects (Eq. (2.71)) was labeled C1. A new expression

for the radiation damping due to the self-action of a bubble in the Hamiltonian

equations of motion for a system of coupled bubbles was presented in the form of

a series expansion to first order in 1/c0 and second order in R/D. This approxima-

tion for liquid compressibility effects, consisting of delays in bubble interactions
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and the approximate series expansion for the delayed self-action, was labeled C2

(Eq. (2.79)). The related approximation for compressibility effects in which the effect

of bubble interactions on the bubble self-action expansion is neglected was labeled

C3. The C3 approximation is obtained by retaining only the term C(c,0)
i in the last

line of Eq. (2.79).
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Chapter 3

Stability and Dynamics of One- and Two-Bubble Systems
in a Compressible Liquid

Results of numerical integration of the Hamiltonian equations of motion for

a single bubble, modified to include radiation damping due to liquid compress-

ibility (Eqs. (2.76)), are compared to results from integration of the corresponding

Lagrangian (Keller-Miksis) equation of motion, an accepted standard for single-

bubble dynamics in a compressible fluid, to demonstrate that radiation damping is

taken into account consistently in the Hamiltonian formulation. Metrics to evalu-

ate and compare coupled-bubble systems are presented. Three linearized models

that include time delay and radiation damping due to liquid compressibility at

differing orders of approximation in systems of interacting bubbles are developed.

The linearized model for coupled bubbles with single-bubble radiation damping

and without time delay is included for comparison. An eigenvalue analysis of the

linearized models is used to evaluate the relative importance of the corresponding

four levels of approximation that were discussed in Chapter 2 (C1, C2, C3, C4;

see Table 2.1) for the self-action and time delay due to liquid compressibility in a

two-bubble system. Nonlinear time-domain motion predicted by the C2 model for

a compressible liquid and compared to the predictions of the C4 model with single-

bubble radiation damping, and without time delay in bubble interactions. The
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pressure produced by a system of two bubbles excited by a tone burst is predicted

by the C2 model for a compressible medium is compared to the predictions of the

C4 model for a range of bubble separation distances and excitation amplitudes.

3.1 Verification of single-bubble radiation damping in the Hamiltonian
formulation

In order to demonstrate that the corrections for radiation damping in a

Hamiltonian bubble system agree with commonly used models, results from the

numerical integration of both the new Hamiltonian system in Eq. (2.78) and the

Keller-Miksis equation given in Eq. (2.74) are compared. The Keller-Miksis model

is chosen for comparison not because it is most accurate, but rather because it is

most frequently used to include the effects of liquid compressibility.32,33 A single

bubble with an equilibrium radius of R0 = 20µm, characteristic period T0 = 6.08µs,

an initial radius of 10R0, and initially at rest is simulated in free response using both

models, with the results shown in Fig. 3.1. The bubble radius accelerates into a

collapse at t/T0 ≈ 3, after which the bubble rebounds and undergoes successively

smaller oscillations. Because the effects of liquid viscosity are neglected, the major-

ity of the damping occurs during the initial collapse (t/T0 ≈ 3) due to the enormous

acceleration, and corresponding radiation of a high-amplitude acoustic pulse. The

subsequent damping due to acoustic radiation is much lower. Part (a) of the fig-

ure shows the bubble radius normalized by the equilibrium radius R0, and part (b)

shows the difference between the Hamiltonian model presented here and the Keller-

Miksis model that is often used. This case was chosen to illustrate the agreement

between the two models during a violent collapse when compressibility effects are
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especially strong. Part (b) of the figure shows that the two models provide the same

result to within the numerical tolerances.
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Figure 3.1: Comparison of radiation damping in Keller-Miksis and Hamiltonian
formulations of single bubble motion. The free response of a bubble released from
rest with an initial radius of 10R0, where R0 = 20µm, is shown. The normalized
bubble radii [part (a)] agree within numerical precision. The difference between
the Keller-Miksis prediction (RKM) and the Hamiltonian prediction (RH) is shown
in part (b).
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3.2 Bubble system metrics

While comparison of single bubble systems is simple, comparisons of sys-

tems containing multiple bubbles are considerably more complicated. Direct com-

parison of the radius-time curves can be difficult for a two-bubble system, con-

fusing for a three-bubble system, and nearly impossible for a ten-bubble system,

even when the bubbles do not translate. To provide concise means for comparing

different systems, several metrics are employed for the bubble radii, positions, and

combined quantities that characterize the system. Because no single metric com-

pletely characterizes the system, it is often necessary to use several metrics together

in order to gain insight into the behavior of the system.

3.2.1 Radial metrics

Two previously used metrics are the average bubble radius,66 given by

Ravg =
1
N

N∑
i=1

Ri, (3.1)

and the effective bubble radius,50 which is the radius of a sphere with the same

volume as that of all of the bubbles in the system when added together,

Reff =

 N∑
i=1

R3
i


1/3

. (3.2)

It is useful to reference these metrics to an appropriate equilibrium radius

calculated by applying the metric to the equilibrium state of the system,

R0,avg =
1
N

N∑
i=1

R0i, (3.3)
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R0,eff =

 N∑
i=1

R3
0i


1/3

, (3.4)

to obtain measures of relative displacement from equilibrium, Ravg − R0,avg and

Reff − R0,eff . Both of these metrics suffer from the same shortcoming, which is that

they may return small values for systems that contain bubbles in anti-phase motion.

In these cases, a similar but more sensitive metric is the average radial displacement,

Rdisp =
1
N

N∑
i=1

|Ri − R0i|. (3.5)

These three metrics are compared in Figs. 3.2 and 3.3. Both figures show the

three metrics applied to the free response of a two-bubble system consisting of two

equal-sized bubbles with equilibrium radius of 20µm, separated by 200 µm and

initially at rest. In Fig. 3.2, the bubbles are released in phase from 1.1R0. In Fig. 3.3,

the bubbles are initially in anti-phase, meaning that one bubble starts with a radius

of 0.9R0 and the other bubble starts with a radius of 1.1R0.

Figure 3.2 shows that, for in-phase motion, the three metrics give fairly

similar results, with the average radial displacement approximating a rectified

version of the average bubble radius. However, the anti-phase case shown in Fig. 3.3

exhibits significant differences between between the three metrics. Both the average

radius and the effective radius show apparently small variations from equilibrium,

while the average radial displacement correctly characterizes the motion of the

bubble system as being nearly identical in amplitude to the in-phase case. The

dramatic difference in the damping of the in- and anti-phase cases will be discussed

later in the chapter.
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Figure 3.2: Comparison of three different metrics for the radii in a bubble system.
The three metrics are applied to a pair of bubbles each with a radius of 20 µm,
separated by 20 bubble radii (200 µm). The bubbles are in in-phase free response
from 1.1R0 and released from rest. Part (a) shows the average radius given by
Eq. (3.1), part (b) shows the effective radius given by Eq. (3.2), and part (c) shows
the average radial displacement given by Eq. (3.5). All metrics are normalized by
the equilibrium radius R0 = 20µm.
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Figure 3.3: Comparison of three different metrics for the radii in a bubble system.
The three metrics are applied to a pair of bubbles each with a radius of 20 µm,
separated by 20 bubble radii (200 µm). The bubbles are in anti-phase free response
from 1.1R0 and 0.9R0 and released from rest. Part (a) shows the average radius given
by Eq. (3.1), part (b) shows the effective radius given by Eq. (3.2), and part (c) shows
the average radial displacement given by Eq. (3.5). All metrics are normalized by
the equilibrium radius R0 = 20µm.
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3.2.2 Positional metrics

The most natural positional metric for a two-bubble system is the center-to-

center distance,

D = |X2 − X1|. (3.6)

This metric can only be applied to two-bubble systems. Related metrics for multi-

bubble systems will be discussed in Chapter 4. Two other metrics can be used as

indicators for the amount of displacement experienced by bubbles in a system. The

average displacement is

Davg =
1
N

N∑
i=1

|Xi − Xi0|, (3.7)

where Xi0 = Xi|t=t0 is the initial position of the bubble, and the average total dis-

placement is found by integrating,

Dtot =
1
N

N∑
i=1

∫ t

t0

| .Xi| dt. (3.8)

Together, the average displacement and average total displacement can serve as

indicators of translational trends within the system. For example, a small average

displacement combined with a large average total displacement would be indica-

tive of oscillatory motion in the bubble positions, while similar values for both

displacement quantities would suggest bulk translation of the system. Clearly, for

models without translation, all of these positional metrics will be constant.

3.2.3 Combined metrics

It is also useful to define combined metrics that indicate the overall state of

the system. An especially useful combined metric is the total energy in the bubble
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system, which is equal to the Hamiltonian of the system defined by Eq. (2.22),

E =
1

4πρ0


1
2

∑
i

G2
i

R3
i

+ 3
∑

i

M2
i

R3
i

− 1
2

∑
i, j
i, j

GiG j

RiRkDi j

+ 3
∑

i, j
i, j

GiM j · ni j

RiD2
i j

+
1
2

∑
i, j,k
k,i, j

R jGiGk

RiRkDi jD jk


+

∑
i

Mi · uei +
∑

i

Vi,

(3.9)

whereVi is given by Eq. (2.4). The total energy in the system can be decomposed

into kinetic energy due to the bubbles,Kbub, potential energy in the bubbles,Vbub,

and energy due to the external acoustic source, Esrc, such that E = Kbub +Vbub +Esrc.

It is often convenient to subtract the equilibrium energy,

E0 =
∑

i

Vi
∣∣∣
Ri=R0i

, (3.10)

from the total energy so that the resultant quantity is zero when the system is at

rest.

For low-amplitude oscillations, it is possible to identify a damping coef-

ficient by fitting an exponential curve to the energy in the system. The damping

coefficient provides a single number metric which facilitates comparison of systems

across large variations in parameters. Unfortunately, for high-amplitude radial

motion, the energy dissipation no longer follows an exponential trend and thus a

standard damping coefficient cannot be calculated. Thus the damping coefficient

may only be used as a metric for systems in low-amplitude motion. Generally, there
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is a damping coefficient associated with each individual mode of a system. The

presence of multiple modes can complicate the analysis of a system using damping

coefficients as metrics.

Another physical quantity that is useful as a metric is the pressure produced

by the bubble system. The pressure at the point x is

ps(x, t) =
∑

i

ρ0
..
Vi(t − τi)

4π|Xi(t − τi) − x|

=
∑

i

ρ0

|Xi(t − τi) − x|
[
R2

i

..
Ri + 2Ri

.
R

2
i

]
t=t−τi

, (3.11)

where the delay τi is defined implicitly by τi = (|[Xi]τi − x|)/c0. The pressure

produced by a bubble system is a useful metric because it often provides the clearest

indicator of the effect that the system will have on the surrounding environment.

3.3 Analysis of compressibility coupling terms

3.3.1 Stability analysis of linearized systems

Section 2.3.2 describes corrections for the effects of liquid compressibility

in systems of coupled bubbles. The present section develops a linearized model

to evaluate the relative importance of these corrections. Initial analysis is most

easily conducted using a Lagrangian (modified Rayleigh-Plesset) system. In this

section only the effects of liquid compressibility are considered. The effects of

viscosity, thermal damping, and surface tension are neglected here and included in

Section 4.2.

For a linearized system without bubble translation, it is possible to derive

expressions that allow comparisons of the corrections for compressibility effects
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presented in Chapter 2. The derivation begins by combining the single bubble

equation for the delayed self-action of a bubble (Eq. (2.63)) and the time-delayed

Lagrangian equations of motion (Eq. (2.71)) to obtain

1
Ri

[
R2

i

..
Ri + 2Ri

( .
Ri

)2
]

t=t−Ri/c0

− 1
2

( .
Ri

)2
=

Pi − P0 − pei

ρ0
−

∑
i, j

[
R j

Di j

(
R j

..
R j + 2

.
R j

)]
t=t−τi j

.

(3.12)

Equation (3.12) is linearized by defining Ri = R0i + ξi, where |ξi| is the radial

displacement of the ith bubble. It is then necessary to assume ξi � R0i and expand

Eq. (3.12), retaining only terms up to O(ξ). The result is

C1-L:
..
ξi(t − R0i/c0) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = − pei(t)

R0iρ0
, (3.13)

whereω2
0i = 3γP0/R2

0iρ0 is the square of the natural angular frequency in the absence

of losses and surface tension, often called the Minnaert frequency.55 The approxi-

mation for the effects of liquid compressibility obtained by appropriately delaying

the self-action term is labeled C1 in the current work (see Table 2.1). The linearized

version in Eq. (3.13) is labeled C1-L. All labeled approximations are collected in

Appendix C. The delay in bubble interactions is

τi j =
Di j

c0
. (3.14)

In previous work,46,47 rewritten in the current notation and neglecting ther-

mal and viscous damping the following approximations of Eq. (3.13) is used:

C3-L:
..
ξi(t) + ω0iδi,rad

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = − pei(t)

R0iρ0
(3.15)
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and the associated time-harmonic version produced by introducing e jωt time de-

pendence on the right-hand side38–40 have been used to model coupled bubbles. In

the time-harmonic version, the time delayed terms on the left-hand side become the

phase terms e− jkDi j . This approximation for the effects of liquid compressibility is

labeled C3 here, and the linearized version is labeled C3-L. Note that Eqs. (3.13) and

(3.15) differ only in the first term on the left-hand side of Eq. (3.13) and the first two

terms on the left-hand side of Eq. (3.15). The constant δi,rad is the nondimensional

radiation damping coefficient defined by Leighton55 as

δi,rad =
ω0iR0i

c0
. (3.16)

Thus the second term on the left-hand side of Eq. (3.15) is the common damping

expression for the radiation damping of a single bubble derived by Devin69 and

which appears in Ref. 55.

In order to relate Eq. (3.13) to Eq. (3.15) it is necessary to expand the first

term on the left-hand side of Eq. (3.13) in a Taylor series for small values of the

delay R0i/c0 to find the approximate form

..
ξi(t) − R0i

c0

...
ξ i(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = − pei(t)

R0iρ0
. (3.17)

Equation (3.15) is obtained if it can assumed that

...
ξ i(t) = −ω2

0i

.
ξi(t). (3.18)

The validity of this assumption may be tested by solving Eq. (3.17) for
..
ξi and

differentiating the result to obtain an expression for
...
ξ i,

...
ξ i(t) = −ω2

0i

.
ξi(t) − 1

R0iρ0

∂pei

∂t
−

∑
i, j

R2
0 j

Di jR0i

...
ξ j(t − τi j) + O(1/c0). (3.19)
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Because this expression will be multiplied by R0i/c0 in the equation of motion, all

terms of O(1/c0) here will be O(1/c2
0) in the equation of motion and only terms of

O(1/c0) will be kept in the final equation, all terms of O(1/c0) are neglected here.

Comparison of Eqs. (3.18) and (3.19) reveals the implicit assumption in Eq. (3.15)

that the neighboring bubbles and the external source have a negligible impact on

the radiation damping. The current chapter will demonstrate that assuming bubble

interactions and source coupling do not affect the radiation damping is not always

appropriate.

Iterative substitution of Eq. (3.19) into itself to eliminate third-order deriva-

tives on the right-hand side while neglecting O(1/c0) terms and retaining terms up

to O(R2
0/D

2
i j) results in an alternate expression,

...
ξ i(t) = −ω2

0i

.
ξi(t) − 1

R0iρ0

∂pei

∂t
+

∑
i, j

R2
0 j

Di jR0i

(
ω2

0 j

.
ξ j(t − τi j) +

1
R0 jρ0

∂pej

∂t
(t − τi j)

)

−
∑
j,i,k

R0 jR2
0k

Di jD jkR0i

(
ω2

0k

.
ξk(t − τi j − τ jk) +

1
R0kρ0

∂pek

∂t
(t − τi j − τ jk)

)
. (3.20)

With this expression, the damping term in Eq. (3.17) is

−R0i

c0

...
ξ i(t) =

R0iω2
0i

c0

.
ξi(t) +

1
ρ0c0

∂pei

∂t
−

∑
i, j

R2
0 j

c0Di j

(
ω2

0 j

.
ξ j(t − τi j) − R0i

R0 jρ0

∂pej

∂t
(t − τi j)

)

+
∑
j,i,k

R0 jR2
0k

c0Di jD jk

(
ω2

0k

.
ξk(t − τi j − τ jk) +

1
ρ0

∂pek

∂t
(t − τi j − τ jk)

)
. (3.21)

Similar to the Keller-Miksis equation (Eq. (2.74)), the time derivative of the source

pressure enters the dynamical equations through the iterative substitution. The

first term on the right-hand side of Eq. (3.21) is the leading order contribution to
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the single-bubble radiation damping. The remaining terms are corrections to the

radiation damping due to bubble-bubble interactions and source effects.

For free response the damping term is

−R0i

c0

...
ξ i(t) =

R0iω2
0i

c0

.
ξi(t) −

∑
i, j

R2
0 j

c0Di j
ω2

0 j

.
ξ j(t − τi j)

+
∑
j,i,k

R0 jR2
0k

c0Di jD jk
ω2

0k

.
ξk(t − τi j − τ jk). (3.22)

The contribution of each of these terms to the damping in the system can now be

analyzed. The first term on the right-hand side is the commonly used expression for

linear radiation damping, and it has a purely resistive effect on the radial motion.

The sign of the second term leads to the conclusion that in-phase arrivals from

other bubbles in the system tend to reduce the radiation damping, while arrivals

that are out of phase tend to increase the radiation damping. The third term is a

three-bubble interaction with the opposite effect (note that for negligible time delay,

the terms have opposite signs).

The expanded damping term in Eq. (3.21) is substituted into Eq. (3.17) to

obtain the the linearized equations of motion with coupling corrections for radiation
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damping,

C2-L:
..
ξi(t) +

R0iω2
0i

c0

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j)

−
∑
i, j

ω2
0 jR

2
0 j

c0Di j

.
ξ j(t − τi j) +

∑
j,i,k

ω2
0kR0 jR2

0k

c0Di jD jk

.
ξk(t − τi j − τ jk)

= − pei(t)
R0iρ0

− 1
ρ0c0

∂pei

∂t
(t) −

∑
i, j

R0iR0 j

ρ0c0Di j

∂pej

∂t
(t − τi j)

+
∑
j,i,k

R0 jR2
0k

ρ0c0Di jD jk

∂pek

∂t
(t − τi j − τ jk), (3.23)

which has been rearranged to place all source terms on the right-hand side of the

equation. The approximation resulting from retention of terms to first order in 1/c0

and second order in R/D in the iterative substitution used to eliminate the third-

order derivative in the Taylor expansion of the C1 approximation is labeled the C2

approximation. The linearized form in Eq. (3.23) is labeled C2-L. The first term in

the second row on the right-hand side of Eq. (3.23) is the single-bubble radiation

damping expression used in Eq. (3.15) (the C3-L approximation). The remaining

terms are corrections for bubble interaction effects. It can now be seen that the C3-L

approximation results from neglecting terms of O(R/D) that are also O(1/c0).

If the time delays in bubble interaction are neglected in the C3 model, the

resulting model is labeled C4. The C4-L model is presented here for reference.

C4-L:
..
ξi(t) + ω0iδi,rad

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t) = − pei(t)

R0iρ0
. (3.24)

The homogeneous equations of motion for the four linearized approxima-
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tions are:

C1-L:
..
ξi(t − R0i/c0) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = 0, (3.25)

C2-L:
..
ξi(t) +

R0iω2
0i

c0

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j)

−
∑
i, j

ω2
0 jR

2
0 j

c0Di j

.
ξ j(t − τi j) +

∑
j,i,k

ω2
0kR0 jR2

0k

c0Di jD jk

.
ξk(t − τi j − τ jk) = 0, (3.26)

C3-L:
..
ξi(t) +

R0iω2
0i

c0

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = 0, (3.27)

C4-L:
..
ξi(t) +

R0iω2
0i

c0

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t) = 0. (3.28)

In this form the C2-L (Eq. (3.26)) and C3-L (Eq. (3.27)) approximations can be

compared. The C2-L approximation contains two coupling terms that do not appear

in the C3-L approximation. These two terms appear on the second row of the

right-hand side of Eq. (3.26) and represent corrections for bubble interactions in a

compressible medium.

The homogeneous equations of motion will now be analyzed to compare

the damping in the C1-L, C2-L, and C3-L equations of motion. The change in the

damping of a system is most easily seen by an eigenvalue analysis of the governing

homogeneous differential equations. To simplify the analysis, a two bubble system

with equally sized bubbles is considered. Both the approximate model and the

analytical model are analyzed. For the system of two equal bubbles Eq. (3.25)
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reduces to

..
ξ1(t − R0/c0) + ω2

0ξ1 +
R0

D
..
ξ2(t − τ) = 0 (3.29a)

..
ξ2(t − R0/c0) + ω2

0ξ2 +
R0

D
..
ξ1(t − τ) = 0, (3.29b)

where τ is given by

τ =
D
c0
. (3.30)

A decoupled system of equations may be found by adding and subtracting

Eqs. (3.29a) and (3.29b) and defining ξ+ = ξ1 + ξ2 and ξ− = ξ1 − ξ2. The new

variables correspond to the in-phase mode (r+) and the anti-phase mode (r−) of the

system. When written in terms of the new variables, the C1-L equations of motion

are

..
ξ+(t − R0/c0) + ω2

0ξ+(t) +
R0

D
..
ξ+(t − τ) = 0, (3.31a)

..
ξ−(t − R0/c0) + ω2

0ξ−(t) − R0

D
..
ξ−(t − τ) = 0. (3.31b)

The solutions to Eq. (3.31) are assumed to be of the form ξ = χest, where χ is

a constant. Substitution of this ansatz into Eq. (3.31) produces the characteristic

equations for the C1-L approximation:

s2
+

(
e−s+R0/c0 +

R0

D
e−s+τ

)
+ ω2

0 = 0, (3.32a)

s2−
(
e−s−R0/c0 − R0

D
e−s−τ

)
+ ω2

0 = 0. (3.32b)

The roots of these equations are the eigenvalues of the system; s+ is the eigenvalue

of the in-phase mode and s− is the eigenvalue of the anti-phase mode.
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The same procedure applied to the C2-L model (Eq. (3.23)) produces the

characteristic equations

s2
+

(
1 +

R0

D
e−s+τ

)
+ s+

R0ω2
0

c0

1 − R0

D
e−s+τ +

R2
0

D2 e−s+τ

 + ω2
0 = 0 (3.33a)

s2−
(
1 − R0

D
e−s−τ

)
+ s−

R0ω2
0

c0

1 +
R0

D
e−s−τ +

R2
0

D2 e−s−τ
 + ω2

0 = 0. (3.33b)

The analogous characteristic equations for the C3-L model (Eq. (3.15)) are

s2
+

(
1 +

R0

D
e−s+τ

)
+ s+

R0ω2
0

c0
+ ω2

0 = 0 (3.34a)

s2−
(
1 − R0

D
e−s−τ

)
+ s−

R0ω2
0

c0
+ ω2

0 = 0. (3.34b)

In general, the eigenvalues are complex, s = −δω/2 ± iω, where δ is the nondi-

mensional damping coefficient (reciprocal of the quality factor) andω is the natural

frequency of the corresponding mode. Although Eqs. (3.32)–(3.34) are transcenden-

tal and in general will have an infinite number of eigenvalues, the stability of the

system is determined by the right-most root in the complex plane. The remainder

of the current section will be concerned with the right-most eigenvalues of the two

natural modes, or eigenvalues for which δ is negative.

It is known that for small-amplitude oscillations, bubbles moving in phase

produce a mutual load on each other that results in an increased effective mass of

the oscillating system.68 The increased effective mass reduces the natural frequency

of the bubbles in the system relative to the natural frequency of a single bubble. An

opposite effect occurs for bubbles moving in anti-phase, where the bubble motion

reduces the effective mass and raises the natural frequency of the system.
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It has also been observed38–40,46,47 that the inclusion of time delays due to

liquid compressibility in coupled-bubble interaction models can either increase or

decrease the damping relative to the damping of each bubble in isolation. The

change in damping occurs because the propagation delay alters the relative phase

of the bubble interactions and is thus highly dependent on the distance between

the bubbles.

For two closely-spaced (less than half an acoustic wavelength) bubbles os-

cillating in-phase, the pressure produced by one bubble acts on the other bubble by

increasing the pressure the other bubble experiences, and vice versa. This increased

pressure can increase the damping of the bubble system by up to a factor of two.

On the other hand, for bubbles in the same configuration, but oscillating in anti-

phase, the pressure produced by the motion of one bubble reduces the pressure

experienced by the other bubble, and hence the damping is reduced significantly.

To evaluate the effect of the approximations for liquid compressibility (C1,

C2, C3, and C3; see Table 2.1 and Eqs. (3.25)–(3.28)) without the additional effects

produced by including time delays in bubble interactions, the time delay in bubble

interactions is removed by setting τ = 0 in Eqs. (3.32)–(3.34). As a note, later in

this work, a suffix N will be appended to the label of models in which the delay is

neglected. As an example, the characteristic equation for the C1-L approximation

with τ = 0 is

s2
+

(
e−s+R0/c0 +

R0

D

)
+ ω2

0 = 0, (3.35a)

s2−
(
e−s−R0/c0 − R0

D

)
+ ω2

0 = 0, . (3.35b)
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The characteristic equations are solved numerically for s and the damping coeffi-

cient δ and natural frequency f are calculated from the real and imaginary parts of

each eigenvalue (s = δω/2 + iω). The resulting natural frequencies and damping

coefficients are shown in Fig. 3.4 for a system of two bubbles with an equilibrium

radius of 20 µm and with separation distances ranging from 2 to 1000 bubble radii.

Although the models in Eqs. (3.32)–(3.34) require R2/D2 � 1 and thus are not

strictly valid for closely spaced bubbles, the results are presented for separation

distances ranging for 2R0 (bubble walls touching) to 1000R0. No viscous or thermal

losses are included in the system; the effects of viscous and thermal damping will

be considered in Chapter 4. The only damping in the system is due to acoustic ra-

diation. The calculated damping and natural frequency of the two-bubble system

are marked with a subscript 2. In the figures, both the natural frequency of the

two-bubble system ω0,2 = Im{s±} and the effective radiation damping coefficient

δrad,2 = 2Re{s±}/ω0,2 are normalized by the natural frequency

ω0 =
1

R0

√
3γP0

ρ0
(3.36)

and radiation damping coefficient of a single bubble at resonance,

δrad =
ω0R0

c0
. (3.37)

For an air bubble in water, δrad = 0.014, a constant and independent of R0

in the long wavelength limit. Three cases are shown in Fig. 3.4, the C1-L case,

Eq. (3.32) (solid), the C2-L case, Eq. (3.33) (dashed), and the C3-L case, Eq. (3.34)

(dash-dot). In all three cases the interaction delay τ is set to zero. The C4-L case is
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not shown because without delay, the C3-L and C4-L cases are equivalent. The top

row shows the natural frequency of the two-bubble system for in-phase motion on

the left and anti-phase motion on the right. For all three cases the natural frequency

behaves as expected. The frequency of the in-phase mode (part (a)) decreases for

more closely spaced bubbles while the frequency of the anti-phase mode (part (b))

increases.

The bottom row shows the damping coefficient of the system, again with

in-phase motion on the left and anti-phase motion on the right. The C1-L approx-

imation, Eq. (3.32) (solid), slightly decreases the damping of the in-phase mode

compared to the system without the radiation damping corrections, Eq. (3.34) (dash-

dot). The result of the C2-L approximation, Eq. (3.33) (dashed) agrees well with the

C1-L approximation.

In contrast, for the anti-phase mode, shown on the right, the damping

coefficient for the C1-L approximation is as much twice as large as the system with

the C3-L for closely spaced bubbles. The C2-L approximation matches the C1-L

approximation well and thus it is apparent that the corrections for bubble interaction

in a compressible medium introduced by the C2-L approximation significantly affect

the damping of closely spaced bubbles.

The importance of using the C1-L or C2-L approximation when modeling

bubble dynamics in compressible media is emphasized when time delays in bubble

interactions are included. Figure 3.5 shows the natural frequencies (top row) and

damping coefficient (bottom row) of the system with delayed bubble interactions

with the C1-L and C3-L approximations. Stable regions of the parameter space
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Figure 3.4: Comparison of systems with the C1-L approximation for compressibility
effects (solid lines), the C2-L approximation (dashed lines) and the C3-L approx-
imation (dash-dot lines) for in-phase (left column) and anti-phase motion (right
column). The bubble-interaction delay τ is zero. The upper row shows the natural
frequency of the coupled system normalized by the natural frequency of a single
bubble (the three curves overlay each other). The lower row shows the effective
nondimensional radiation damping coefficient normalized by the nondimensional
radiation damping coefficient of a single bubble.

are indicated by a white background, unstable regions are indicated by a colored

background. The C3-L approximation without delays in bubble interactions is

included for comparison. For convenience, the special case of a C3 model without

delays has been given the label C4. Thus, C4-L represents a model with single-

bubble radiation damping without interaction delays. The characteristic equations
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for the C4-L approximation are

ω2
0 + s+

R0ω2
0

c0
+ s2

+

(
1 +

R0

D

)
= 0 (3.38a)

ω2
0 + s−

R0ω2
0

c0
+ s2−

(
1 − R0

D

)
= 0. (3.38b)

The inclusion of liquid compressibility effects has a negligible effect on the

natural frequency of either oscillation mode shown in parts (a) and (b) of Fig. 3.5.

The C1-L approximation (solid line) slightly decreases the damping of the in-phase

mode (part (c)). The damping of the anti-phase mode is shown in part (d). The

effect of the C1-L approximation on the damping of the anti-phase mode is more

significant as the damping is dramatically reduced in comparison to the C4-L case

(dash-dot line). This agrees with the results of Feuillade.38–40 Indeed, the model

with the C3-L approximation (dashed line) for liquid compressibility exhibits a

negative damping coefficient for closely spaced bubbles, and thus the C3-L model

system is unstable.

Instability in model two-bubble systems with delay has been observed by

Heckman et al.52 and Sinden et al.53 However, no work was done to determine

whether the instability was due to an incomplete model or correlated with a phys-

ical phenomenon. The damping of the system with the C1-L approximation does

not become negative, but rather approaches zero. Thus, the C1-L or C2-L ap-

proximation eliminates the observed instability and therefore must be included

in simulations. The work performed here shows that the instability is due to the

incomplete incorporation of the effects of liquid compressibility in the C3-L model.

87



3 10 30 100 300 1000
0.8
0.9
1.0
1.1
1.2
1.3
1.4

ω
0,

2/
ω

0

(a)

in-phase

C1-L
C2-L

C3-L
C4-L

3 10 30 100 300 1000
0.8
0.9
1.0
1.1
1.2
1.3
1.4

(b)

anti-phase

3 10 30 100 300 1000
D/R0

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

δ r
ad

,2
/
δ r

ad

stable

unstable

(c)

3 10 30 100 300 1000
D/R0

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

(d)

Figure 3.5: Comparison of normalized natural frequencies and damping coefficients
predicted by the C1-L model (blue lines), the C2-L model (green lines), the C3-L
model (red lines), and the C3-L model without interaction delays (light blue lines).
The upper row shows the natural frequency of the coupled system normalized
by the natural frequency of a single bubble (the four curves overlay each other).
The lower row shows the nondimensional damping coefficient. Stable regions of
the parameter space are indicated by a white background, unstable regions are
indicated by a colored background.

Figure 3.6 compares the results of the linearized C1-L model in Eq. (3.32) to

the result obtained by numerical integration of the Hamiltonian delay differential

equations given in Chapter 2 with the C2-L approximation and the C3-L approx-

imation. Only small-amplitude oscillations are considered here and the effects of

viscous and thermal damping are neglected. The results produced by the C1-L
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model are plotted with a blue line, and the results produced by the C4-L model are

plotted with a light blue line. Stable regions of the parameter space are indicated

by a white background, unstable regions are indicated by a colored background.

Again the natural frequencies remain the same for all systems (parts (a) and (b)).

The behavior of the numerically obtained damping coefficient of the in-phase mode

shown in part (c) agrees with the behavior shown in part (c) of Fig. 3.5. As expected,

for the anti-phase mode (part (d)) the numerical model with the C3-L approximation

(red line) displays instability for closely spaced bubble configurations. The result

of numerical integration with C2-L approximation (green lines) does not display

the same instability. Instead there is a slight increase in the calculated damping

coefficient for small bubble separation distances. The difference between the C1-L

model based on a modified Rayleigh-Plesset equation and the numerical model

based on a Hamiltonian formalism may be attributed to the fact that both are valid

to O(R2/D2). The fact that the difference between the two occurs only when R2/D2

is not necessarily small suggests that the discrepancy is due to series truncation

effects.
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Figure 3.6: Comparison of the natural frequency and damping coefficient predicted
by the C1-L model (blue lines) and the C4-L model (light blue lines) to the natural fre-
quency and damping coefficient calculated from numerical simulations produced
by integrating the Hamiltonian equations of motion (Eq. (2.62)) with the C2-L ap-
proximation (green lines) and the C3-L approximation (red lines) for in-phase (left
column) and anti-phase motion (right column). The upper row shows the natural
frequency of the two-bubble system normalized by the natural frequency of a single
bubble (the four curves overlay each other). The lower row shows the nondimen-
sional damping coefficient normalized by the nondimensional radiation damping
coefficient for a single bubble. Stable regions of the parameter space are indicated
by a white background, unstable regions are indicated by a colored background.
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3.3.2 High-amplitude free-response motion

The equations of motion presented in Chapter 2 were derived for the fully

nonlinear case and can be applied to cases in which the linearized equations of

motion used in Section 3.3.1 are not applicable. Figures 3.7 and 3.8 show the

medium-amplitude free response of a system of two bubbles separated by 10R0

predicted by the C2 model for bubbles in a compressible medium (Eqs. (2.62) and

(2.79)) and the model produced by using the C3 model without delays in the bubble

interaction (Eqs. (2.24) and (2.78b)). For convenience the C3 model without time

delays in bubble interactions is labeled C4. Neither viscous or thermal damping

is included in systems in this section. The a numerical implementation of the C1

model has not yet been developed.

As was discussed in the previous section, the damping of two bubbles oscil-

lating in-phase is increased, while the damping of the same two bubbles oscillating

in anti-phase is reduced. The eigenvalue analysis of the linearized equations of

motion in the previous section confirmed this behavior. Now the effect of the same

phenomenon is examined in the predictions of the nonlinear equations of motion.

The results of simulations with three different initial conditions are shown,

in-phase (left column), where both bubbles start at 2R0, mixed-phase (center col-

umn), where one starts at 2.1R0 and the other at 2R0, and anti-phase (right column),

where one starts at 2R0 and the other at 0.2R0. The top row contains plots of the

total energy in the system. The bottom row contains plots of the average radial

displacement normalized by the equilibrium radius R0. The energy plot in part (a)

of Fig. 3.7 show that for the in-phase case, the damping is increased in the C2 model
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(black curves) relative to the C4 model (red curves), as expected. Part (c) shows

that for the anti-phase case, the damping is decreased in the C2 model relative to

the C4 model, as expected. In the mixed-phase case shown in part (b) both the in-

and anti-phase modes are excited. It can be seen that the damping of the C2 model

is initially greater while the in-phase portion of the initial excitation is damped.

After this initial period, the damping of the C2 model is lower because only the

anti-phase portion of the initial disturbance remains, and the anti-phase portion is

damped more slowly than in the C4 model. The behavior shown in the average ra-

dial displacement curves in the bottom row of Fig. 3.7 (parts (d)-(f)) agrees with the

energy plots in the top row. In-phase motion is damped more quickly, anti-phase

motion more slowly, and in mixed-phase motion the in-phase component of the

initial state is damped more quickly while the anti-phase component is damped

more slowly.

The motion of the individual bubble radii as a function of time is shown

in Fig. 3.8 with the lines for one bubble shown in green and the lines for the other

in blue. The C2 model is shown on the top row and the C4 model is shown on

the bottom row. Scrutiny of the radius-time curves in Fig. 3.8 reveals that for

the in-phase case, the bubbles do indeed remain in phase and the radial motion

is damped much more quickly for the C2 model (part (a)) than the C4 model

(part (d)). In the mixed case, for the C2 model (part (b)) the in-phase portion is

quickly damped out, and the remaining motion appears to be dominated by the

anti-phase mode. It is interesting to note that the beat frequency of the C2 model is

higher than the C4 model (part (e)). The reason for the difference in beat frequencies
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is unknown, although it may be due to the presence of other natural frequencies

in the delayed system.70 For the anti-phase case, the C2 model (part (c)) is damped

more slowly than, but does not exhibit the same beating as, the C4 model (part (f)).

The reduced damping is expected, but the reason for the absence of beats in the C2

model is unknown. The previous section presented the minimum damping case

for each mode of the system. However, due to the transcendental nature of the

characteristic equations (Eqs. (3.32) and (3.33)) it is possible for other eigenvalues

and corresponding natural frequencies to exist in the system.70 In the anti-phase

case, despite the high-amplitude, non-sinusoidal radial motion, the two bubbles

remain in anti-phase and the C2 model exhibits reduced damping compared to the

C4 model.
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Figure 3.7: Comparison of models for bubbles in a compressible medium (C2) and
an incompressible medium with single-bubble radiation damping (C4). The in-
phase systems start with both bubbles at 2R0, the mixed systems start with one at
2.1R0 and the other at 2R0, and the anti-phase systems start with one at 2.0R0 and
the other at 0.2R0. Shown are the total energy (top row), the average displacement
(bottom row).
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Figure 3.8: Comparison of models for bubbles in a compressible medium (C2) and
an incompressible medium with single-bubble radiation damping (C4). The in-
phase systems start with both bubbles at 2R0, the mixed systems start with one at
2.1R0 and the other at 2R0, and the anti-phase systems start with one at 2.0R0 and
the other at 0.2R0. The motion of the individual bubbles is shown for the C2 (top
row) and C4 (bottom row) models.
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3.4 Forced response

In this chapter it has been shown that the C2 model for bubble motion in

a compressible medium derived in Section 2.3.2 agrees well with an C1-L model

when the amplitude of the radial oscillations is small, and that the corrections for

liquid compressibility are significant in high-amplitude, nonlinear motion. The

importance of including the effects of liquid compressibility in systems driven by

an external acoustic source typical of biomedical treatment applications is analyzed

in the present section. The bubble system response to short, high-amplitude pulses

that produce inertial bubble growth is considered in this section.

In the presence of an external acoustic source, the evaluation of the equations

of motion with the C2 approximation for liquid compressibility requires knowledge

of the pressure and particle velocity due to the source as well as their spatial and

temporal derivatives up to order 2. For a planar source with a pressure waveform

96



f the necessary quantities are

pe = f (t − x · n/c0), (3.39a)

∂pe

∂t
= f ′(t − x · n/c0), (3.39b)

∂2pe

∂t2 = f ′′(t − x · n/c0), (3.39c)

∇pe = − n
c0

f ′(t − x · n/c0), (3.39d)

∂
∂t
∇pe = − n

c0
f ′′(t − x · n/c0), (3.39e)

∇(∇pe) =
n ⊗ n

c0
f ′′(t − x · n/c0), (3.39f)

ue =
n
ρ0c0

f (t − x · n/c0), (3.39g)

∂ue

∂t
=

n
ρ0c0

f ′(t − x · n/c0), (3.39h)

∂2ue

∂t2 =
n
ρ0c0

f ′′(t − x · n/c0), (3.39i)

∇ue = −n ⊗ n
ρ0c2

0

f ′(t − x · n/c0), (3.39j)

∂
∂t
∇ue = −n ⊗ n

ρ0c2
0

f ′′(t − x · n/c0), (3.39k)

∇(∇ue) =
n ⊗ (n ⊗ n)

ρ0c3
0

f ′′(t − x · n/c0), (3.39l)

where the prime indicates differentiation with respect to the argument and ⊗ rep-

resents the tensor or outer product defined so that (a ⊗ b) · c = (b · c) a, where a, b,

and c are vectors.
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Figure 3.9: Geometry of two bubbles excited by an externally applied pressure field.
The bubbles are separated by a distance D. The pressure produced by the bubbles
is calculated at three locations, a distance D to the left of the left-most bubble (pL),
in between the bubbles (pC), and a distance D to the right of the right-most bubble
(pR).

The maximum pressure predicted by the C2 model is compared to the

maximum pressure predicted by the C4 model for two equally sized bubbles placed

a distance D apart. The geometry of the bubbles is shown in Fig. 3.9. The bubbles

are initially at rest, the excitation is produced by a 5.8µs duration, single-cycle tone

burst (this corresponds to a frequency of 173 kHz) with amplitude p0, propagating

along the shared axis of the bubbles The amplitude p0 of the pulse ranges from

0.1 to 2 MPa. In these simulations, both bubbles have an equilibrium radius of 10

µm. The effect of viscosity as given by Eq. (2.25) is included in both models. The

pressure produced by the bubbles is calculated at three locations, a distance D to

the left of the left-most bubble (pL), in between the bubbles (pC), and a distance D to

the right of the right-most bubble (pR). These thee points are marked in the figure.

The percent difference between the pressure predicted by the two models is

shown in Fig. 3.10 for a range of values of D. The percent difference is defined as

p(C2)
max − p(C4)

max

p(C4)
max

× 100%, (3.40)
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where p(C4)
max is the maximum pressure predicted by the C4 model for bubbles in

a incompressible liquid with single-bubble radiation damping, and p(C2)
max is the

maximum pressure predicted by the C2 model for bubbles in a compressible liquid.

The figure shows the results for the pressure at a distance D behind the bubbles (pL,

part (a)), in between the two bubbles (pC, part (b)), and a distance D in front of the

bubbles (pR, part (c)). In Fig. 3.10, dark red indicates regions where the pressure

predicted by the C2 model is larger than that predicted by the C4 model, and dark

blue indicates regions where the pressure predicted by the C2 model is smaller

than that predicted by the C4 model. The white area represents the region of the

parameter space where the bubbles collide and the simulation is halted.

Comparison of parts (a)-(c) in Fig. 3.10 shows that the inclusion of com-

pressibility effects in the bubble model significantly changes the predicted pressure.

Whether the resultant pressure is increased or decreased is highly dependent on

the separation of the two bubbles, the drive amplitude, and the amplitude of the

bubble motion.

The change in the resultant pressure due to the inclusion of liquid compress-

ibility effects observed in Fig. 3.10 is most easily analyzed in the case of two bubbles

undergoing a violent collapse. Consider that the collapse of the two bubbles is

slightly staggered due to the different times at which the driving pulse reaches each

bubble. If the bubble separation and collapse occur such that the pulse produced

by the collapse of the first bubble arrives during the collapse phase of the second

bubble, the collapse of the second bubble can be significantly accelerated. This ac-

celeration increases the pressure produced by the collapse of the second bubble. In
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Figure 3.10: Comparison of pressure predicted by C2 and C4 models for two
bubbles of 10µm radius driven by a 5.8µs duration, single-cycle tone burst with
amplitude p0. The percent difference between the two models is shown for a range
of separation distances (D = 10R0–100R0) and source pressures (p0 = 0.01–2 MPa)
at three locations left of the bubbles (pL) in the center of the bubbles (pC) and to the
right of the bubbles (pR).

contrast, if the bubble separation and collapse occur such that the pulse produced

by the collapse of the first bubble arrives during the rebound of the second bubble,

the growth of the second bubble can be retarded or reversed, and this reduces the

pressure produced by the second bubble. This explanation is supported by the fact

that regions of reduced pressure in Fig. 3.10 are very narrow. This occurs because

suppression is strongest when the pulse from the first bubble arrives during the
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rebound of the second bubble. This is a very narrow window since the rebound

occurs quickly. In contrast, the initial inertial collapse of a bubble is relatively long,

and any positive pressure pulse that arrives during this collapse will accelerate

the collapse and increase the resultant pressure. Consequently, the regions of in-

creased pressure are much larger than the regions of reduced pressure. In addition

to the delay effects, the additional interaction terms in the C2 approximation for

compressibility increases the strength of the interaction between the bubbles.

The acceleration and deceleration of the radial motion that results in an

increase or decrease in pressure can be observed in plots of the bubble radius as a

function of time. An instance of reduced pressure occurs when the drive pressure

is approximately 0.35 MPa and the bubbles are separated by 10.4R0 (104 µm).

Figure 3.11 shows the bubble radii (a) and pressure in between the bubbles (b) for

this case at the time of the first collapse. The times at which the bubble rebound

occurs are different, thus it is difficult to distinguish significant differences between

the shape of the radial curves for the C2 (solid) and C4 (dashed) models at the time

of rebound. The curve for the second bubble (blue) predicted by the C2 model is

slightly more rounded at the point of rebound, and the minimum bubble radius is

slightly larger than the rebound predicted by the C4 model (dashed curve). This

indicates a less violent collapse. It can also be seen that the rebound of the second

bubble (blue curve) occurs approximately 0.07µs after the rebound of the first (green

curve). The pressure pulse caused by the rebound of the first bubble takes 0.071 µs

to arrive at the second, and thus the second bubble experiences a significant positive

pressure during its rebound. This positive pressure decelerates the bubble during
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its rebound and reduces the radiated pressure. Thus the significant reduction in

the radiated pressure produced by the pair is caused by the fact that the motion of

the first bubble at these amplitudes has a collapse at just the right time to inhibit

the rebound of the second when the delay due to propagation is included.
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Figure 3.11: Bubble radii (a) and pressure between two bubbles (b) predicted by C2
and C4 models. The bubbles have an equilibrium radius of 10µm and are separated
by 10.4R0 (104µm). They are driven by a 5.8µs duration, single-cycle, sinusoidal
pulse with an amplitude of 0.35 MPa. Only the first rebound is shown.

Now consider Fig. 3.12, which shows the first rebound of two bubbles

subjected to a pulse with the same waveform, but with an amplitude of 2.0 MPa.

The bubbles are separated by 50R0 (500µm). In part (a) of Fig. 3.12 it can be seen

that the pulse generated by the collapse of the first bubble (green curve) arrives at

the second bubble (blue curve) while it is still collapsing. The time at which the
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pressure produced by the initial collapse of the first bubble arrives at the second is

indicated by arrow A for the C4 case and arrow B for the C2 case. The sudden change

in pressure produces an abrupt change in the radial motion of bubble 2 predicted

by the model for a compressible liquid and the corresponding collapse becomes

significantly more violent. The pressure in between the two bubbles is shown in

part (b) of Fig. 3.12. The pressure produced by the collapse of the second bubble is

approximately 40% higher for the model for a compressible liquid (C2) than for the

incompressible liquid with single-bubble radiation damping (C4). This increase in

pressure is due to the more violent collapse caused by the stronger coupling and

the propagation delay in bubble interaction in the model for a compressible liquid.

The increased coupling strength between the bubbles due to the C2 approx-

imation for fluid compressibility can also be observed by noting that there is no

abrupt change in the radial motion of the second bubble predicted by the C4 model

(arrow A) when the first bubble collapses. As mentioned previously, there is an

abrupt change in the motion predicted by the C2 model (arrow B). It is also possible

to discern an arrested expansion when the pulse produced by the collapse of bubble

2 arrives at bubble 1. This event is marked by arrow D. The corresponding location

in the motion of bubble 2 is indicated by arrow C. There is no similar abrupt change

at point C. Were the coupling strength between the two bubbles similar in both

models, then more significant changes would be expected in the C4 simulations

at the points marked by arrows A and C. Thus the corrections in the C2 model

for a compressible liquid increase the strength of the interaction between the bub-

bles relative to the model for an incompressible liquid with single-bubble radiation
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Figure 3.12: Bubble radii (a) and pressure between two bubbles (b) predicted by
the models for compressible and incompressible liquids. The bubbles have an
equilibrium radius of 10 µm and are separated by 50R0 (500 µm). They are driven
by a 5.8 µs duration, single-cycle, sinusoidal pulse with an amplitude of 2.0 MPa.
Only the first rebound is shown.

Fujikawa and Takahira49 noted that the inclusion of acoustic propagation

delay in a model of two-bubble dynamics resulted in the production of significantly

higher pressures for certain configurations undergoing large oscillations. Their

study was conducted for bubble pairs in free response without the inclusion of

viscosity, and the C3 method was used to include compressibility effects. The

numerical approach used is not clear. The trends of the results shown here agree

with their results in cases where the pressure is increased. In addition to the
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cases with increased pressure, there are also cases in which the effects of liquid

compressibility significantly reduce the pressure produced by the bubble system.

Examination of the first collapse of bubble 1 (green curve) in Figs. 3.11 and 3.12

suggests that the first collapse of bubble 1 predicted by the C2 model is slightly

more violent than the prediction of the C4 model. This effect can also be seen in the

calculated pressure at the center of the bubble pair, where the pressure predicted

by the C2 model is higher than the pressure predicted by the C4 model. This is

because the retarded interaction due to propagation delay allows the bubbles in

the C2 model to develop greater inertia before experiencing the effects of the other

bubble in the system, and thus they collapse more violently.

3.5 Comparison with experimental results

Acoustic scattering by a system of two bubbles was considered experimen-

tally by Kapodistrias and Dahl.43 In their work they compared experimental results

obtained by measuring the field scattered by a system of two bubbles to the predic-

tions of multiple scattering theory. It is possible to compare the models developed

here to the results obtained by Kapodistrias and Dahl. In their experiment, the bub-

bles were of approximately equal size, and measurements were taken for a range

of separation distances. The source was positioned so that the bubbles experienced

approximately the same field and thus oscillated in unison.

For low-amplitude excitation, the same system may be modeled with either

of the approximations in Eqs. (3.25) and (3.26). A similar approach was used

by Feuillade38 to analyze bubble pairs. The C1-L model is chosen here for the
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comparison. For a pair of bubbles oscillating in phase, the C1-L equation of motion

(Eq. (3.13)) for one of the bubbles in the system can be reduced to a single equation:

..
ξ(t − R0/c0) + ω2

0ξ(t) +
R0

D
..
ξ(t − τ) = − pe(t)

R0ρ0
. (3.41)

It is assumed that the system is in steady state and that the external source pressure

pe is time-harmonic with amplitude p0 and angular frequency ωs (pe(t) = p0e−iωst).

In this case, the response of each bubble is also harmonic with a solution of the

form ξ(t) = χe−iωst. With the assumptions of time-harmonic source and response,

Eq. (3.41) can be rewritten as

− ω2
sχei(ksR0−ωst) + ω2

0χe−iωst − ω2
s

R0

D
χei(ksD−ωst) = − p0

ρ0R0
, (3.42)

where ks = ωs/c0. Equation (3.42) can be solved for the complex radial displacement

amplitude χ:

χ = − p0

ρ0R0

[
ω2

0 − ω2
s

(
eiksR0 +

R0

D
eiksD

)]−1
. (3.43)

In the work of Kapodistrias and Dahl, the experimental results are presented

in terms of target strength (TS) defined as

TS = 10 log10

∣∣∣∣∣pT

p0
r
∣∣∣∣∣2 dB re 1 m, (3.44)

where pT is the pressure measured far from the system and r is the distance at which

the measurement is made, which is the same for each bubble due to the symmetric

geometry of the experiment. Thus, in order to compare with their work, the pressure

produced by the system must also be calculated. The pressure produced by a single

bubble is

p(r, t) =
ρ0

..
V(t − r/c0)

4πr
. (3.45)
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For the small-amplitude, time-harmonic oscillations considered here linearization

yields
..
V = −4πR2

0ω
2
sξ. (3.46)

The pressure produced by the motion of the bubbles at a point r equidistant from

the two bubbles is

pT = 2
ρ0R2

0ω
2
sχ

r

= 2p0
R0

r

[(
ω0

ωs

)2
−

(
eiksR0 +

R0

D
eiksD

)]−1

. (3.47)

With this expression for the pressure produced by the bubbles, the target strength

can be calculated from Eq. (3.44) as

TS = 10 log10

4R2
0

∣∣∣∣∣(ω0

ωs

)2
−

(
eiksR0 +

R0

D
eiksD

)∣∣∣∣∣−2 dB re 1 m. (3.48)

Equation (3.48) is to be compared with Fig. 9 of Kapodistrias and Dahl at

the source frequency 136 kHz (the results for all other frequencies in their Fig. 9 are

virtually identical). Their nominal bubble radius is 585 µm, for which the natural

frequency is in the neighborhood of 3 kHz. For these frequencies the term (ω0/ωs)2

in Eq. (3.48) is negligible, and therefore the limiting value of the target strength

for large bubble separation (R0/D � 1) is TS = 20 log10 R0 + 6 dB, which for their

bubble radius yields TS = −58.7 dB.

Shown in Fig. 3.13(a) are the results from Fig. 9 of Kapodistrias and Dahl

at 136 kHz, in which the circles are measurements and the curves are calculations

based on their scattering theory for R0 = 550 µm (lower curve), R0 = 585 µm

107



(middle curve), and R0 = 620 µm (upper curve). The horizontal coordinate kd in

our notation equals kD/2, because their quantity d is half the separation distance D.

Shown in Fig. 3.13(b) is the result from Eq. (3.48) for R0 = 585 µm. The agreement

with their results for R0 = 585 µm is good, although Eq. (3.48) predicts a ∼ 1 dB

higher target strength.

3.6 Summary

In this chapter, the expression for single-bubble radiation damping in the

Hamiltonian model given in Section 2.3.1 was compared to the commonly used

Keller-Mikisis model for a single bubble in a compressible liquid, and agreement

between the two models was shown to be within numerical precision.

Three levels of approximation for liquid compressibility effects in the lin-

earized equations of motion for a bubble system were presented. The analysis

was conducted using linearized forms of the modified Rayleigh-Plesset equations

rather than the Hamiltonian equations of motion presented in Chapter 2. The first

approximation is an extension of the method used by Ilinskii and Zabolotskaya,24

in which the radiated pressure produced by a bubble and acting on itself (self-

action) is delayed by the time required to propagate from the center of the bubble

to the bubble wall. This approximation was labeled C1-L (L for linearized). Ilinskii

and Zabolotskaya expanded the delay differential equation associated with the C1

method using a Taylor expansion for small delays. A similar Taylor expansion of the

delayed self-action term was used here. The third-order derivatives produced by

the Taylor expansion were eliminated by an iterative substitution of the linearized
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(b)

(a)

Figure 3.13: Part (a) shows experimental and theoretical results for the target
strength of a system of two bubbles, taken from the plot for 136 kHz in Fig. 9
in Kapodistrias and Dahl.43 Theoretical results were obtained using multiple scat-
tering theory. Part (b) shows target strength computed using the C1 model as given
in Eq. (3.48).

equations of motion analogous to the method by which higher-order derivatives

were eliminated from the equations of motion in Section 2.3.2. When, during the

iterative substitution, terms of O(R2/D2) and O(1/c0) were retained, then the result-
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ing approximation was labeled C2-L. The accuracy of the C2-L equations of motion

obtained here is equivalent to that of the C2 approximation given in Section 2.3.2.

When terms of O(R/D) that were also O(1/c0) were neglected in the iterative sub-

stitution, the resulting approximation was labeled C3-L. The approximation for a

incompressible host liquid in which the single-bubble radiation damping expres-

sion is used, but delays in bubble interaction are neglected is labeled C4, or C4-L

for the linearized case.

The remainder of the chapter focused on two-bubble systems. An eigen-

value analysis of the linearized equations of motion was used to show that bubble

interaction has a significant impact on the damping and stability of a coupled bub-

ble system and cannot be neglected as is the case in the C3 approximation. The C3

approximation has been used by others to include the effects of liquid compress-

ibility in bubble models.38–40,46,47,50,51,71 It was shown that the C2 approximation

for liquid compressibility produces a stable model for two-bubble systems with

much smaller separation distances than the C3 model. Also, the low-amplitude

predictions of the nonlinear C2 model from Chapter 2 were compared to the C1-L

model with good agreement. Results from numerical integration of the nonlin-

ear C2 and C4 (single-bubble radiation damping, no delay) models were used to

demonstrate the presence of reduced damping of anti-phase motion and increased

damping of in-phase motion in moderate-amplitude, nonlinear free response in

the C2 model as compared to the C4 model, as is expected. The high-amplitude

response of a bubble pair to an external pressure source was considered. It was ob-

served that the inclusion of time delay and the compressibility corrections resulted
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in either higher or lower amplitude pressures being predicted by the model for a

compressible liquid relative to the model for an incompressible liquid. Whether the

radiated pressure is higher or lower is dependent on the separation distance of the

bubbles and the amplitude of the driving pressure and subsequent bubble motion.

Finally, the predictions of the C1-L model were compared to the experimental and

theoretical results of Kapodistrias and Dahl43 with excellent agreement.
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Chapter 4

Stability and Dynamics of Multi-Bubble Systems
in a Compressible Liquid

The effect of time delay and bubble self-action on stability and damping in

a multi-bubble system in a compressible liquid is examined through an eigenvalue

analysis of the linearized equations of motion. An eigenvalue analysis of thermally

and viscously damped motion of bubble arrays and clusters with varying numbers

of bubbles is conducted to compare the three levels of approximation for the effects

of liquid compressibility obtained in Chapters 2 and 3 by Taylor expansion of

delayed self-action terms. The results are compared to previous work on coupled

bubble systems in a compressible liquid. Also, the response of a cluster undergoing

nonlinear motion is presented. Finally, the pressure produced by high-amplitude

motion of an acoustically driven system of two bubbles near a rigid wall is predicted

using models for bubble motion in both incompressible and compressible liquids,

and the results are compared to evaluate the impact of compressibility effects on

the resultant pressure.

4.1 Compressibility effects in multi-bubble systems

This section extends the analysis of two-bubble systems presented in Sec-

tion 3.3 to systems containing an arbitrary number of bubbles. Three possible
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methods for including the effects of liquid compressibility were presented in Chap-

ter 3, the results from which are used here. The homogeneous forms of the C1, C2,

and C3 approximations given in Eqs. (3.25)–(3.27) are used to analyze the stability

of systems containing multiple bubbles. The approximation labels are summa-

rized in Table 2.1 and the corresponding equations are collected in Appendix C for

reference.

In this section, an eigenvalue analysis of the linearized, homogeneous equa-

tions of motion is used to investigate the stability of the three approximations for

the effect of bubble self action in a compressible liquid. With the ansatz ξi = χiest,

where χi are the elements of a vector χ = [χ1 χ2 · · · χN]T, the linearized equations

of motion can be written in matrix form as

(S + C)χest = 0, (4.1)

where 0 is the zero vector, and S and C may be functions of s. The matrix S contains

single-bubble terms and the matrix C contains coupling terms. Equation (4.1) will

only have nontrivial solutions if S + C is singular. Thus a necessary and sufficient

condition for nontrivial solutions is that

det (S + C) = 0. (4.2)

This is the characteristic equation for the system, and the values of s that are roots of

Eq. (4.2) are the eigenvalues of the system. The characteristic equation is equivalent

to Eqs. (3.32)–(3.34) given in Section 3.3. However, the equations in Section 3.3 are

for composite variables representing the distinct modes of the system. In general
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it is not convenient to separate the individual modes of an N-bubble system, and

therefore the characteristic equation is left in determinant form.

The homogeneous equations of motion for a system of bubbles in an incom-

pressible liquid without damping are

..
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t) = 0. (4.3)

For these equations the matrices S and C are

S[i j] =

ω2
0i + s2, i = j

0, i , j,
(4.4a)

C[i j] =

0, i = j

s2 R2
0 j

Di jR0i
, i , j.

(4.4b)

For the equations of motion with the C1-L approximation (Eq. (3.13)), the elements

of S and C are given by

S[i j] =

ω2
0i + s2e−sR0i/c0 , i = j

0, i , j,
(4.5a)

C[i j] =

0, i = j

s2 R2
0 j

Di jR0i
e−sτi j , i , j.

(4.5b)

The equations of motion for the C2-L approximation are more complicated. In order

to write the equations of motion in matrix form it is useful to let diag(ai) represent

the diagonal matrix

diag(ai) =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · aN

 .
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It is also convenient to define a matrix of delayed signal amplitudes:

D[i j] =

0, i = j
e−sτi j

Di j
, i , j.

(4.6)

The matrices S and C are written as

S = diag(ω2
0i) +

s
c0

diag(R0iω
2
0i) + s21, (4.7a)

C =
s
c0

[
D diag(R0i) D diag(ω2

0iR0i) −D diag(ω2
0iR

2
0i)

]
+ s2diag(1/R0i) D diag(R2

0i), (4.7b)

where 1 is the identity matrix. With the C3-L approximation, the equations of

motion in Eq. (3.15) may be written in matrix form by defining

S[i j] =

ω2
0i + s2 + s

R0iω2
0i

c0
, i = j

0, i , j,
(4.8a)

C[i j] =

0, i = j

s2 R2
0 j

Di jR0i
e−sτi j , i , j.

(4.8b)

For a system of N bubbles without compressibility effects (Eq. (4.3)), S and

C are given by Eqs. (4.4a) and (4.4b). In this case Eq. (4.1) can be manipulated to

obtain (
A − s21

)
χest = 0, (4.9)

where A = −(1 + s−2C)−1diag(ω2
0i). Because C is defined as a constant, real matrix

multiplied by s2, A is a real matrix. The eigenvalues s of the system are given by

the square root of the eigenvalues of A. For the undamped bubble system without

delays, the eigenvalues s are purely imaginary.

115



When propagation delays are included in the bubble interactions, the char-

acteristic equation becomes transcendental and, in general, possesses an infinite

number of roots. It is still possible to study the stability in spite of the infinite

number of eigenvalues. The presence of even one eigenvalue in the right half of

the complex plane indicates an unstable mode, and therefore an unstable system.

An eigenvalue analysis of the stability of a two-bubble system was consid-

ered in Section 3.3 and it was shown that no instability occurs in the model with

the C1-L approximation for liquid compressibility. The anti-phase mode of the

model with the C3-L approximation becomes unstable when the bubble separation

distance is less than ∼50R0. In contrast, the model with the C2-L approximations,

derived in Section 2.3, is stable.

A similar analysis will be conducted here for a system of N bubbles. In a two-

bubble system the relevant parameter for the coupled dynamics is the separation

distance between the bubbles. Because in this case there is only one parameter, it is

possible to analyze the behavior of the system over the parameter space of interest

for the eigenvalues of all (two) modes with the lowest damping. It is impossible

to conduct an equivalent analysis of the set of possible configurations even for

a three-bubble system. Thus, a statistical analysis is required for multi-bubble

systems.

The behavior of a 20-bubble system is examined by calculating the damp-

ing coefficient corresponding to the eigenvalue with the smallest value of δ (the

right-most eigenvalue in the complex plane). The minimum damping coefficient is

calculated by solving Eq. (4.2) numerically with S and C given by Eq. (4.5), Eq. (4.8),
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or Eq. (4.7). Test cases are generated by placing bubbles with a radius of 3.5 mm

at random locations within a sphere. This size was chosen to facilitate compari-

son with previous work on bubbles in a compressible medium46,47,54 that will be

discussed in Sections 4.2.1 and 4.2.2. Because the bubbles are all of equal size, the

subscript i of the equilibrium radius R0i and natural frequency ω0i is suppressed.

Although the results are nominally computed for bubbles with an equilibrium ra-

dius of 3.5 mm, because the effects of surface tension, and viscous and thermal

damping are neglected here and the calculations are performed at the natural fre-

quency, the equations can be written in a form that is independent of the bubble

radius. Thus the results presented here are valid for bubbles of any size.

The damping coefficient is computed for clusters with a radius Rcl ranging

from 10R0 to 1000R0. The calculations are carried out for 100 realizations at each

distinct bubble cluster radius. The spread of the damping coefficients calculated

with all three approximations is shown in Fig. 4.1. These figures summarize the

behavior of 10,000 distinct bubble cluster geometries. The horizontal axis is the

nominal cluster radius Rcl normalized by the equilibrium bubble radius R0, and

the vertical axis is the minimum damping coefficient normalized by the nondimen-

sional radiation damping coefficient for a single bubble (Eq. (3.37)), shown on a

symmetric log scale (both negative and positive values are log-scaled). The value

of δrad is approximately 0.014 for air bubbles in water.55 Stable regions of the pa-

rameter space are indicated by a white background, unstable regions are indicated

by a colored background.

The full range of values is shown in light gray, the range of the second and
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Figure 4.1: Quartiles of the distribution of damping coefficients calculated for
clusters containing 20 bubbles as a function of the cluster radius Rcl. The quartiles
are obtained from the calculated damping coefficients of 100 realizations of random
bubble configurations for each cluster radius. Stable regions of the parameter space
are indicated by a white background, unstable regions are indicated by a colored
background.
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third quartiles is shown in dark gray, and the median value is indicated by the solid

black line. Part (a) corresponds to the C1-L approximation (Eq. (4.5)), part (b) to the

C2-L approximation (Eq. (4.7)), and part (c) to the C3-L approximation (Eq. (4.8)).

The model with the C1-L approximation is uniformly stable. Presumably

this occurs because the C1 approximation relies only on the assumption that the

bubble radius is much smaller than the acoustic wavelength in the surrounding

medium, which is always true here. In contrast, the C2 approximation to C1 is only

valid to O(R2/D2), O(1/c0), and O(R2/(D2c0)) for both the self-action of the bubble

and the interaction with other bubbles. For the C2-L model shown in part (b),

before the cluster radius reaches 50R0, the majority of the bubble configurations are

stable (positive damping coefficient). After this point, for most configurations the

damping predicted by the C2-L model closely follows the prediction of the C1-L

model. However, there are a few outlying configurations that remain unstable until

the cluster radius is nearly 300R0. In contrast, for the C3-L model shown in part (c)

of Fig. 4.1, at least half of the realizations are unstable for cluster radii less than

∼200R0, and some realizations are unstable even for cluster radii of nearly 300R0.

It should be noted that in the C3-L approximation, terms of O(R/D) that are also

O(1/c0) are neglected.

Similar to the two-bubble anti-phase case shown in Fig. 3.5, the model with

the C3-L approximation is unstable for larger bubble spacing. All clusters with

radii less than ∼100R0 are unstable with the C3-L approximation. The model with

the C2-L approximation performs significantly better than the C3-L model, but the

large range of values of Rcl and the isolated outlying values for which the models
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predict unstable systems suggest that the cluster radius is not the relevant length

scale for system stability.

Additional insight into the behavior of the bubble systems can be gained

by considering the damping as a function of other characteristic lengths. Several

possibilities include the minimum separation distance Dmin between bubbles in the

cluster, the mean separation distance Dmean between bubbles, the minimum sepa-

ration distance normalized by the cluster radius Dmin/Rcl, and the mean separation

distance normalized by the cluster radius Dmean/Rcl.

The ranges of Dmin/Rcl and Dmean/Rcl for clusters containing 10, 20, and

30 bubbles are shown in Fig. 4.2. Dmin/Rcl may be very small for large clusters

that happen to have a pair of closely spaced bubbles. Because the bubbles cannot

overlap, the minimum possible value of Dmin is 2R0. Therefore, as the cluster

radius decreases, Dmin/Rcl increases. This increase can be observed in Fig. 4.2.

In the configurations considered here, the smallest cluster has a radius of Rcl =

10R0. Thus, the minimum value of Dmin/Rcl approaches 0.2. The curvature of

the minimum value of Dmin/Rcl as Rcl approaches 10R0 is due to the presence

of Rcl in the denominator. The value of Dmean/Rcl exhibits greater variation for

clusters containing fewer bubbles. As the number of bubbles in the cluster increases,

Dmean/Rcl approaches 1. This occurs because there are more pairs separated by

distances greater than Rcl than by distances less than Rcl, or in other words, there is

a greater number of more distant bubble pairs than of close bubble pairs.

The minimum damping coefficient δmin normalized by the single bubble

radiation damping coefficient δrad is shown in Fig. 4.3 as a function of Dmin/Rcl (left
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column) and Dmean/Rcl (right column). These are the same data that were presented

in Fig. 4.1. The scattered data demonstrate virtually no correlation between either

δmin/δrad and Dmin/Rcl or δmin/δrad and Dmean/Rcl. The lack of correlation with either

length suggests that neither Dmean/Rcl nor Dmean/Rcl is the appropriate length scale

for the cluster system stability.

The minimum separation distance Dmin and mean separation distance Dmean

are now considered. Figure 4.4 shows the spread of the minimum damping coeffi-

cient predicted by the C2-L model (top row) and the C3-L model (bottom row) as a

function of the two different characteristic lengths. The left column in Fig. 4.4 shows

the damping as a function of the minimum separation distance Dmin in a cluster,

while the right column shows the damping as a function of the mean separation

distance Dmean. It can be seen in part (b) of Fig. 4.4 that the damping coefficient

is negative for a large range of parameter values and at several outlying points.

This suggests that Dmean/R0 is not the relevant length parameter for the stability

of the C2-L model. Part (a) in Fig. 4.4 shows that the C2-L model is stable for

all configurations having a minimum separation distance greater than 10R0. This

result is reasonable considering the expansion to O(R2/D2) that was used to obtain

the C2 approximation. This suggests that the unstable modes in the C2-L model

are due to truncation errors in the expansion. It appears that unstable modes only

occur when R2/D2 is not much less than 1. Thus, the characteristic parameter for

the system stability is Dmin/R0.

In contrast, the C3-L model shown in part (b) of Fig. 4.1 and parts (c) and

(d) of Fig. 4.4 is unstable for much higher values of all three characteristic lengths.
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Instability occurs for cluster radii and mean separation distances of 100R0 − 400R0

and for minimum separation distances greater than 50R0.

The same effects can be seen in clusters with different numbers of bubbles.

The minimum damping coefficients for the 10- and 30-bubble clusters shown in

Fig. 4.2 are shown in Figs. 4.5 and 4.6, respectively. As was the case for the 20-bubble

system, the C2-L approximation for both the 10- and 30-bubble systems (part (a)

in Figs. 4.5 and 4.6, respectively) produces unstable systems when Dmin < 10R0.

Again, the C3-L approximation produces unstable systems (part (c) in Figs. 4.5 and

4.6) when Dmin < 50R0.

Doinikov et al.46 and Ooi et al.47 performed a similar analysis of the change

in damping produced by the inclusion of time delay in bubble-bubble interactions.

Their work was performed using the C3-L model (Eq. (4.8)) but no instabilities were

observed. Their work included the effects of liquid viscosity and thermal damping,

which are not included in the present section. Simulations of bubble clusters with

the effects of liquid viscosity and thermal damping are considered in Section 4.2,

where a direct comparison to the results of Doinikov et al. and Ooi et al. is made.

Figures 4.1 and 4.4–4.6 illustrate that the instabilities observed in the simple

two-bubble case are not merely artifacts of the symmetries present in a two-bubble

system, but are also present in large, asymmetric systems. Therefore, the C1-L

model must be used to accurately predict the behavior of a system of bubbles in

a compressible medium. For systems in which the minimum bubble separation

distance is large enough, the C2-L model may be used.
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Figure 4.2: Scatter plots of Dmin/Rcl (left) and Dmean/Rcl (right) as a function of
Rcl/R0 for clusters containing 10, 20, and 30 bubbles. The cluster radius ranges
from 10R0 to 1000R0.
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124



10−3
10−2
10−1

100 (a) C2-L

3 10 30 100

−100
−10−1
−10−2
−10−3

δ m
in

/
δ r

ad

median
range
q. 2 and 3

10−3
10−2
10−1

100 (b) C2-L

10 30 100 300

−100
−10−1
−10−2
−10−3

10−3
10−2
10−1

100 (c) C3-L

3 10 30 100
Dmin/R0

−100
−10−1
−10−2
−10−3

δ m
in

/
δ r

ad

10−3
10−2
10−1

100 (d) C3-L

10 30 100 300
Dmean/R0

−100
−10−1
−10−2
−10−3

stable

unstable

Figure 4.4: Quartiles of the minimum damping coefficient for a 20 bubble cluster
as a function of the minimum bubble separation distance Dmin (left column) and
mean bubble separation distance Dmean (right column). The top row was produced
by the C2-L model (Eq. (4.7)) and the bottom row was produced by the C3-L
model (Eq. (4.8)). Stable regions of the parameter space are indicated by a white
background, unstable regions are indicated by a colored background.
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Figure 4.5: Quartiles of the minimum damping coefficient for a 10-bubble cluster
as a function of the minimum bubble separation distance Dmin (left column) and
mean bubble separation distance Dmean (right column). The top row was produced
by the C2-L model (Eq. (4.7)) and the bottom row was produced by the C3-L
model (Eq. (4.8)). Stable regions of the parameter space are indicated by a white
background, unstable regions are indicated by a colored background.
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Figure 4.6: Quartiles of the minimum damping coefficient for a 30-bubble cluster
as a function of the minimum bubble separation distance Dmin (left column) and
mean bubble separation distance Dmean (right column). The top row was produced
by the C2-L model (Eq. (4.7)) and the bottom row was produced by the C3-L
model (Eq. (4.8)). Stable regions of the parameter space are indicated by a white
background, unstable regions are indicated by a colored background.
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4.2 Compressibility effects with viscous and thermal damping in multi-
bubble systems

The effects of liquid viscosity and thermal damping were not included in

the linearized equations of motion analyzed in the previous section. In order to

simulate real physical systems and compare with experiments, it is necessary to

modify the equations of motion to include viscous and thermal damping effects.

The viscous damping term for the nonlinear equations of radial motion was

given in Eq. (2.25). Equation (2.25) can be converted to an expression that accounts

for viscous damping in the linear approximation. The viscous effects are included

by adding
4η

.
ξi(t)

ρ0R2
0i

(4.10)

to the left-hand side of each relevant equation (Eqs. (3.13), (3.15), (3.23), and (4.3)).

For example, Eq. (4.3) becomes, without the coupling terms and for a single bubble,

..
ξ + δviscω0

.
ξ + ω0ξ = 0, (4.11)

where

δvisc =
4η

ρ0R2
0ω0

(4.12)

is the viscous damping coefficient. In this form, δvisc is the reciprocal of the quality

factor and is thus consistent with Eq. (3.37) for δrad. Equations (3.13), (3.15), and

(3.23) are modified in the same way. The definition in Eq. (4.12) is identical to the

expressions given by Clay and Medwin72 and Leighton.55 Unlike the viscous and

radiation damping coefficients, which are constants at our order of approximation,

the thermal damping coefficient is a function of frequency. For solutions of the
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form ξ(t) = χest, where ω = Im{s}, Eq. (4.11) becomes, when augmented to account

for radiation and thermal damping,

{
s2 + [δrad + δvisc + δth(ω)]ω0s − ω2

0

}
χest = 0, (4.13)

such that δth(ω) is defined consistently with δrad and δvisc.

The work of Doinikov et al.46 and Ooi et al.47 was conducted using the

thermal damping coefficient given by Clay and Medwin,72 and therefore the same

expression for δth will be used here:

δth(ω) = 3(γ − 1)
[

z(sinh z + sin z) − 2(cosh z − cos z)
z2(cosh z − cos z) + 3(γ − 1)z(sinh z − sin z)

]
, (4.14)

where

z = R0

√
2ωρgCp

κg
,

κg is the thermal conductivity of the gas inside the bubble, ρg is the density of the

gas, and Cp is the specific heat of the gas. In the multi-bubble case, the individual

bubble values (R0, R, ω) require subscripts.

The inclusion of viscosity and thermal damping in the equations of motion

only affects the matrix S in Eqs. (4.4), (4.5), (4.7), and (4.8). The change due to

viscosity is included by adding

4ηs
ρ0

diag(1/R2
0i) (4.15)

to S, and the effects of thermal damping are included by adding

s diag[ω0iδi,th(Im{s})] (4.16)
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to S. The characteristic equation is still det(S+C) = 0, but with the matrix S modified

for viscosity and thermal effects. In the remainder of this section an eigenvalue

analysis of the characteristic equations with viscous and thermal damping is used

to examine the behavior of multiple bubbles in a line and in a spherical cluster.

4.2.1 Line array of bubbles

Previous work by Doinikov et al.46 and Ooi et al.47 on compressibility effects

in a system of coupled bubbles considered the natural modes of a linear chain of

equally sized bubbles with uniform spacing in a compressible liquid. An equivalent

system will be considered here. Bubbles of equal size with equilibrium radius R0

are placed in a line with distance D0 between bubbles. Because the bubbles are all of

equal size, the subscript i of the equilibrium radius R0 and natural frequency ω0 is

suppressed. An example geometry for a system of five bubbles in this configuration

is shown in Fig. 4.7.

R0 R0 R0 R0 R0

D0

D0

D0

D0

Figure 4.7: Line array of five equally sized bubbles with equilibrium radius R0 and
successive spacing D0.

Previous analyses46,47 and experiments47,54 were conducted on a system of

equally sized bubbles with an equilibrium radius of R0 = 3.5 mm and a spacing

of D0 = 32.1 mm between bubbles in the array such that D ≈ 9.1R0. To enable
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comparison of results, the work in this section will consider a system of bubbles

with the same equilibrium radius, R0 = 3.5 mm. Doinikov et al.46 and Ooi et al.47

presented results for the variation in damping coefficients for N modes in a system

of N bubbles with N ranging from 2 to 11. The inclusion of delays due to liquid

compressibility transforms the characteristic equation (Eq. (4.2)) into a transcen-

dental equation with an infinite number of roots.73 This is starkly different from

the standard case for a system of (instantaneously) coupled oscillators in which the

characteristic equation has twice as many roots (complex conjugate pairs) as the

number of oscillators in the system. For a system of delay differential equations

(DDE) system it may be impossible to completely characterize the eigenvalues due

to the transcendental nature of the characteristic equation. The minimum damp-

ing coefficient is of key importance because if any mode has negative damping,

the solution of the equations of motion for the response of the system to arbitrary

excitation will generally be unstable. Therefore, only the minimum damping coef-

ficient of any mode in the system is considered here. In contrast, in the previous

analysis46,47 in which the damping of a selected number of modes was considered,

they were not necessarily the modes with the lowest damping.

The minimum damping coefficient is calculated for systems containing N =

2, 5, 10, and 20 bubbles with the bubble spacing D0 ranging from 2R0 to 1000R0 (7

mm to 3.5 m). All three methods for including compressibility effects (C1-L, C2-

L, and C3-L) are employed, with the matrices in the characteristic equation being

given in Eqs. (4.5), (4.7), and (4.8). The matrix S is augmented by Eqs. (4.15) and

(4.16) to include the effects of viscosity and thermal damping in the calculations.
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The results of these calculations are shown in Fig. 4.8.
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Figure 4.8: Calculated minimum damping coefficient for a line array of equally
sized bubbles (R0 = 3.5 mm). Results for line arrays containing 2, 5, 10, and 20
bubbles are shown. The spacing between successive bubbles D0 ranges from 2R0 to
1000R0. The damping coefficient is normalized by the total dimensionless radiation
damping of a single bubble at resonance, δtot .

In Fig. 4.8 the vertical axis is the minimum damping coefficient δmin nor-
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malized by the total damping coefficient δtot for a single bubble at resonance,

δtot = δrad + δvisc + δth(ω0). (4.17)

The radiation damping coefficient is given by Eq. (3.37), the viscous damping

coefficient is given by Eq. (4.12), and the thermal damping coefficient δth(ω) is

given by Eq. (4.14) evaluated at ω = ω0. For a bubble with equilibrium radius

R0 = 3.5 mm, δtot is approximately 0.027 for an air bubble in water.

In Fig. 4.8, the horizontal axis is the spacing D0 between bubbles in the

line array normalized by the equilibrium radius R0, and D0 is also equal to the

minimum distance between any bubble pair in the system. Each plot corresponds

to a different number of bubbles in the array, with the arrays containing 2, 5, 10, and

20 bubbles. The C1-L, C2-L, and C3-L approximations are marked with blue, green,

and red lines, respectively. All three approximations approach δmin/δtot = 1 as the

separation distance becomes large and the strength of the coupling between the

bubbles is reduced. The sawtooth shape is due to the separation distance passing

through multiples of the acoustic wavelength at the natural frequency of the mode.

The C1-L model remains stable (positive minimum damping coefficient) for

the four different numbers of bubbles in the system and for the full range of bubble

spacings. In contrast to the undamped case in Section 4.1, the minimum damping

does not approach zero for closely spaced bubble systems as it did for the undamped

systems in Sections 3.3 and 4.1. This is expected from the increase in damping due to

the inclusion of liquid viscosity and thermal effects. As was discussed in Section 3.3,

the damping of the anti-phase mode of the two-bubble system without viscous and
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thermal damping approaches zero as the bubble separation distance decreases.

However, the inclusion of viscous and thermal damping prevents the minimum

damping coefficient from approaching zero. The C2-L approximation converges to

the C1-L model for values of D0 greater than ∼4R0 for all four numbers of bubbles

considered here. For the 2-bubble case (and the 3-bubble case, which is not shown)

both the C1-L and C2-L approximations predict a slight increase in damping for

more closely spaced bubbles. This is the opposite of the effect observed in clusters

containing more than 4 bubbles, in which the damping decreases as D0 decreases.

It is also opposite the behavior of the minimum damping observed in the 2-bubble

system shown in Fig. 3.5. The reason for this unexpected increase is unknown but

it is consistent with the results presented in Fig. 6, part (b) of Ref. 40.

The C3-L approximation is stable for the 2-bubble case and requires values

of D0 > 3R0 for stability in the 5-, 10-, and 20-bubble cases. The C3-L model

converges to the results of the C1-L approximation for values of D0 > 10R0 for

all four numbers of bubbles shown in Fig. 4.8. The C3-L approximation for the

5-bubble case converges to the C1-L model near D0 = 3R0, but this appears to be

coincidental. As the number of bubbles increases, the C3-L system remains unstable

at slightly higher values of D0, but the curve remains essentially unchanged for

systems containing more than 20 bubbles.

The work of Doinikov et al.46 and Ooi et al.47 considered some of the same

configurations presented here with the same viscous and thermal damping in-

cluded. Bubbles in each system were separated by 9.1R0, and systems consisting

of 2 to 11 bubbles were considered. The C3-L approximation was used to include
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compressibility effects, and viscous and thermal damping were included with the

same methods that are used here. Our results may be compared to the results of

Doinikov et al. and Ooi et al. when D0 = 9.1R0 for the 2-, 5-, and 10-bubble sys-

tems. The values for comparison are obtained from Fig. 3 in Doinikov et al.46 The

minimum effective dimensional damping coefficients reported by Doinikov et al.

are 47.6s−1 for the 2-bubble array, 47.3s−1 for the 5-bubble array, and 46.8s−1 for the

10-bubble array. The dimensional damping coefficient with viscous, thermal, and

radiation damping for a single bubble is reported as 87.5s−1, which is obtained from

Fig. 1 in Doinikov et al.46 The minimum damping of the 5- and 10-bubble arrays is

thus approximately half that of a single bubble. In order to compare to the current

results, it is necessary to compute the ratio of the minimum damping coefficient to

the single-bubble damping coefficient. The ratio of damping coefficients is 0.544

for the 2-bubble case, 0.54 for the 5-bubble case, and 0.535 for the 10-bubble case.

For the calculations shown in Fig. 4.8, the ratio of minimum damping coef-

ficient to the single-bubble damping coefficient is 0.49 for the 2-bubble case, 0.47 for

the 5-bubble case, and 0.48 for the 10-bubble case. This corresponds to 11%, 15%

and 11% differences, respectively, between the damping coefficients calculated here

and those reported in Doinikov et al.46 Presumably, the reason for these differences

lies in the method used to obtain the eigenvalues of the system. In their analyses,

Doinikov et al. and Ooi et al. used the roots of the characteristic equation of the

model for bubbles in an incompressible liquid as the initial guess to numerically

solve for the roots of the delayed characteristic equation. Numerical methods for

finding roots can be extremely sensitive to the initial guess of the root value. Be-
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cause the characteristic equation of a time-delayed system possesses an infinite set

of roots, it is likely that one of those roots will lie near the roots of the related delay-

free system. However, the closest root is not necessarily the root corresponding to

the minimum damping. Therefore, to obtain the results presented here, multiple

initial guesses were used to explore the region near each root and the minimum re-

sult is reported. Thus, while Doinikov et al. and Ooi et al. report reduced damping,

it is not necessarily the minimum damping present in the system.

4.2.2 Bubble cluster

The same approach used in Section 4.1 is now used to study systems of

bubbles placed randomly in a sphere, with the inclusion of viscous and thermal

damping in the equations of motion. All bubbles in the systems considered here are

of equal size, with an equilibrium radius of 3.5 mm. Bubbles of this size are chosen

to facilitate comparison with the results of the previous section. The minimum

damping coefficient is calculated from the characteristic equation (Eq. (4.2)) with

the matrix S augmented to include the effects of viscous and thermal damping as

given by Eqs. (4.15) and (4.16). The bubbles are placed randomly within a sphere

with nominal cluster radius Rcl. Again, 100 realizations are considered for each

cluster radius, with the cluster radius ranging from 10R0 to 500R0.

The same 20-bubble systems used in Section 4.1 are used here and the results

are presented in the same format. Figure 4.9 shows the quartiles for the distribu-

tion of the minimum damping coefficients calculated for the viscous and thermal

damped systems using the C1-L approximation (part (a)), the C2-L approximation
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(part (b)), and the C3-L approximation (part (c)) to include the effects of liquid

compressibility.

The horizontal axis is the bubble cluster radius Rcl normalized by the equi-

librium radius R0 of the bubbles in the system. The vertical axis is the minimum

damping coefficient δmin normalized by the total damping of a single bubble δtot

given by Eq. (4.17). For a bubble with equilibrium radius R0 = 3.5 mm, δtot is

approximately 0.027. The damping coefficients for clusters of bubbles are similar

to the coefficients for lines of bubbles reported in the previous section. Figures 4.1

and 4.9 show results for the same systems, the only difference being the inclusion of

viscous and thermal damping in Fig. 4.9. Similarly, Figs. 4.4 and 4.10 show the min-

imum damping coefficients for the same systems as functions of Dmin and Dmean,

with viscous and thermal damping included in Fig. 4.10. The overall damping in the

systems is increased by the inclusion of viscous and thermal damping. The behav-

ior of the mode with the minimum damping coefficient is dominated by the viscous

and thermal damping. The C1-L and C2-L approximations have converged even

for the smallest configurations, and in neither case does the minimum damping

approach zero. It is apparent that the fluid compressibility reduces the damping.

For the C1-L approximation shown in part (a) of Fig. 4.9 the minimum damping

is in the range of 30–50% of the single bubble damping. The C2-L approximation

produces similar results.

Only the C3-L approximation produces unstable systems, but the instabil-

ities disappear for much smaller clusters than in the undamped case considered

in Section 4.1. Without damping, the C3-L system was unstable for cluster radii
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Figure 4.9: Quartiles of the distribution of minimum damping coefficients cal-
culated for clusters containing 20 bubbles as a function of the cluster radius Rcl.
Viscous and thermal damping effects are included. Stable regions of the parameter
space are indicated by a white background, unstable regions are indicated by a
colored background.

greater than 100R0. With the effects of damping, the system is stable by Rcl = 12R0

and has converged to the C1-L model by Rcl = 20R0.
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Figure 4.10: Quartiles of the distribution of minimum damping coefficients for
a 20 bubble cluster with viscous and thermal damping effects as a function of
the minimum bubble separation distance Dmin (left column) and mean bubble
separation distance Dmean (right column). The bubbles have an equilibrium radius
of 3.5 mm. The top row was produced by the C2-L model (Eq. (4.7)) and the bottom
row was produced by the C3-L model (Eq. (4.8)). Stable regions of the parameter
space are indicated by a white background, unstable regions are indicated by a
colored background.
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It was observed in Section 4.1 that the stability of the system appears to

be correlated with the minimum bubble spacing in the system. Figure 4.10 shows

plots of the spread of δmin as a function of the minimum separation distance (left

column) and the mean separation distance (right column). The top and bottom rows

correspond to the C2-L and C3-L approximations for compressibility, respectively.

As noted earlier, the C2-L approximation is uniformly stable with the increased

damping. The C1-L and C2-L models are stable. The C3-L model is unstable for

some geometries with minimum separation distance Dmin < 3R0, but the stability

is greatly improved by the increased damping. The C3-L model does not converge

to the C1-L model until Dmin ≈ 6R0. As was observed in Fig. 4.9, the transition

from unstable to stable in damped systems occurs for much lower values of the

characteristic lengths when compared to the undamped system. It is interesting to

note that the increased damping due to viscous and thermal effects is sufficient to

stabilize many of the systems where the single-bubble radiation damping alone did

not produce a stable system.

Because the bubbles in the systems considered in this section are rather large

(3.5 mm), the damping is relatively low. The damping coefficients at resonance for

a single bubble given by Eqs. (3.16), (4.12), and (4.14) are shown in Fig. 4.11 as

functions of bubble radius. Shown are the viscous, thermal, and radiation damping

coefficients along with the total damping coefficient. The figure shows that the

damping increases significantly for smaller bubbles. Therefore, systems containing

smaller bubbles will be more stable than the systems examined here. This has been

verified with simulations similar to those presented here, but the results are not

140



presented graphically at this time.
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Figure 4.11: Dimensionless damping coefficients for a single bubble as functions of
bubble radius. Shown are the viscous, thermal, and radiation damping coefficients
along with the total damping coefficient.

The results in this section apply only to the stability of the system and not

to the general dynamics. Although the stability of the systems obtained by all three

method for including compressibility effects is essentially the same for clusters with

Dmin > 12R0, this does not mean that the dynamics of the systems will be similarly

equivalent. A more thorough analysis of the eigenvalues of the system is required

to determine the overall convergence of the three levels of approximation.
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4.3 Forced response of a bubble system

Here, the transient response of a 20 bubble system to pulsed external forcing

as predicted by the fully nonlinear equations of motion with liquid viscosity is

considered. The pulses used to excite the bubble system here are very short and

therefore the response of the system is similar to free response, the only difference

being the variation in times at which the pulse arrives at a given bubble. The

pressure produced by a pair of acoustically driven bubbles near a rigid plane is also

considered.

4.3.1 Bubble cluster

For the first case, the chosen geometry is a cluster of 20 bubbles with an

equilibrium radius of 10 µm randomly placed within an oblate ellipsoidal region.

The bubble size here is greatly reduced in comparison to the bubbles considered in

the previous section. The bubble size in the previous section was chosen specifically

to coincide with previous work by Doinikov et al.46 The smaller bubble size chosen

in the current section more closely reflects the bubble sizes observed in lithotripsy

and other biomedical treatments that motivated the work in this dissertation. Also,

the damping experienced by bubbles increases as the bubble size decreases.55 Two

of the semi-principal axes are equal with a length of 10R0 while the third semi-

principal axis has a length of 50R0. The total length of the ellipse is 100R0 (0.1 mm)

and the width is 20R0 (0.02 mm). The bubbles are placed so that the minimum

spacing between any pair of bubbles is greater than 10R0. The forcing is produced

by a pressure pulse consisting of two cycles of a sine wave with a frequency of 173
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MHz. Thus the pressure wave is 1.7 cm long, 1700 times the equilibrium bubble

radius, or 17 times as long as the whole bubble cluster. The pulse is planar and

propagates parallel to the longest semi-principal axis of the system.

Due to the lack of an appropriate model for the thermal damping of multi-

bubble systems in nonlinear motion, thermal damping effects are neglected here.

However, it should be noted that the damping coefficient of viscosity and radiation

damping combined is 0.029 for a single bubble at this size. The total single-bubble

damping coefficient δtot in the previous section was 0.027 (see Fig. 4.11), and thus the

damping of the relevant linearized systems is comparable. The minimum damping

coefficient δmin calculated for this geometry by the method given in the previous

section with the C3 approximation is 0.01, and therefore the system is expected to

remain stable.

A solution to the Hamiltonian equations of motion for the bubbles in an

compressible liquid with the C2 approximation for compressibility, Eqs. (2.62) and

(2.79), and the C3 approximation for compressibility, Eqs. (2.24) and (2.78b), are

obtained by numerical integration using the delay differential equation numerical

integration package RADAR574,75 (see Appendix B).

The average radial displacement Rdisp given by Eq. (3.5), normalized by the

equilibrium bubble radius, is shown in Fig. 4.12. The normalized average radial

displacement has values near 0.5R0, which indicates that the nonlinear equations

of motion are required. The predictions of two different models are shown, the C2

approximation for liquid compressibility effects (blue curve) and the C3 approxi-

mation (green curve). The response predicted by the two models is dramatically
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Figure 4.12: Normalized average radial displacement for a cluster of 20 bubbles
randomly placed in an ellipsoid, subjected to a 0.04 MPa single-cycle pulse at 173
kHz. Two different models are shown, the C2 approximation for compressibility
effects (blue) and the C3 approximation (green). All cases include liquid viscosity
but not thermal effects.

different. The prediction of the C2 model remains stable, but is still oscillating at

the end of the simulation. The model for a compressible liquid with single-bubble

radiation damping becomes unstable, and the simulation is halted near t/T0 = 80

due to a bubble collision. The simulation of the C2 model cannot currently be con-

tinued due to restrictions on simulation length imposed by the super-computing

facility utilized to make these computations. The computation must be parallelized

in order to continue, but this work has not yet been completed.

144



There are two important results from this simulation. First, although the

equivalent linearized system is stable, the nonlinear system is not. One hypothesis

for this fact is that the effects of liquid compressibility become more important as

the amplitude of the radial motion in the system increases. This increase may act

to destabilize the system of equations obtained by the C3 approximation for com-

pressibility effects even when the linearized system is stable. Second, although the

C2 approximation for compressibility effects remains stable, the amplitude of the

radial motion does not decrease as expected. The fact that the amplitude of the mo-

tion remains relatively large suggests that the dynamical system for this geometry

may possess a limit cycle or bifurcation in the phase space.76 It is not known if this

reduction in damping for large amplitude motion is due to the artificial restriction

of fixed bubbles, i.e., no translation, or if it represents a precursor to an instability

due to series truncation errors. Ideally the model with the C1 approximation for

compressibility effects would be studied, but a numerical version of this model has

not yet been implemented.

4.3.2 Two bubbles near a wall

In an attempt to simulate systems relevant to shock-wave lithotripsy and

other biomedical treatments in which bubbles undergo violent collapse in response

to short pulses of high amplitude, a system of two bubbles near a rigid boundary

is now considered. The geometry is shown in Fig. 4.13, where two bubbles are

separated by a distance D1 and positioned so that their common axis is normal to

the wall. The bubble nearest the wall is a distance D2 away from the wall. The
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system is modeled by the method of images; the rigid wall is removed and an image

bubble is placed opposite each bubble. The image method is exact for rigid planar

surfaces in the absence of viscosity. An image source is also included, and thus the

reflection of the incident plane wave from the wall is modeled. The geometry with

the images is shown in Fig. 4.14. Also shown in the figure are the two locations at

which the pressure produced by the bubble system will be computed, pL to the left

of the bubbles and pW at the wall (or in the center of the cluster including the image

bubbles). Thus, the problem of two-bubbles near a rigid wall requires a simulation

of four bubbles.

R0 R0

D1

D2

Figure 4.13: Geometry of two bubbles near a rigid wall.

pWpL

D1

R0 R0 R0 R0

D1

2D2

D1

Figure 4.14: Geometry of equivalent four-bubble system with image source. Loca-
tions of the pressures compared in Fig. 4.15 are marked by pW and pC.
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In the systems considered here, the bubbles are equally sized with an equi-

librium radius of R0 = 10µm and are placed so that the separation distance between

each bubble is equal to D1. Physically this means that the distance from the nearest

bubble to the wall is half the distance separating the bubble furthest from the wall

from the bubble nearest the wall (D1 = 2D2). The excitation is provided by an

acoustic plane wave consisting of a single cycle of a sine wave which is 5.8 µs in

duration (8.6 mm long), which is equal to a single cycle of a 172 kHz sine wave.

The simulations are carried out for a range of pressure source amplitudes ranging

from 0.01 MPa to 1.0 MPa, and a range of the separation distances D1 from 20R0

to 100R0. The ratio of bubble separation distance D1 to pulse length ranges from

0.02 to 0.12. With this waveform, a 1 MPa pulse can generate radial displacement

in excess of 15R0. The effects of liquid viscosity are included in the simulations but

thermal effects are neglected. Bubble translation is also neglected.

Two different models are used to simulate the system and the predicted

pressures are compared. One is the C4 model for bubbles in an incompressible

liquid (no delays) with single-bubble radiation damping and viscous damping.

This model has been used previously to simulate high-amplitude motion of coupled

bubbles.22 This model is marked C4 here, with the suffix N to indicate that delays

are neglected. The other is the C2 model for compressibility effects with viscous

damping (including time delays in bubble interaction). The Hamiltonian form of

each model is integrated numerically with the numerical DDE package RADAR5.

In order to compare the predictions of the two models, the percent difference

between the maximum predicted pressures is calculated. This is the same method
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used to compare predicted pressures in Section 3.4. The percent difference is given

by
p(C2)

max − p(C4)
max

p(C4)
max

× 100%, (4.18)

where p(C4)
max is the maximum pressure predicted by the C4 model (C3 without delays)

and p(C2)
max is the maximum pressure predicted by the C2 model for compressibility

effects. The results of these calculations for the full range of source pressure am-

plitudes and bubble separation distances is shown in Fig. 4.15. The vertical axis

is the source pressure amplitude in MPa and the horizontal axis is the distance D1

normalized by the equilibrium radius R0. The white portion in the upper left corner

of each plot represents the region of the parameter space in which the bubbles grow

large enough to collide and the simulation is halted.

The results in Fig. 4.15 clearly demonstrate the importance of including the

effects of liquid compressibility when simulating bubble systems. The system with

C2 compressibility effects predicts pressures that range from less than half to more

than twice the pressure predicted by the C4 model for bubbles in an incompressible

liquid with single-bubble radiation damping. As was discussed in Section 3.4,

this variation in pressure can be attributed to the variation in arrival times due to

propagation delays and the increased coupling strength in the C2 model. However,

the differences in the predictions are much larger for the system of two bubbles near

a rigid wall considered here. If the pressure produced by the collapse of the first

bubble to experience the incident pulse arrives during the rebound of the (second)

bubble nearest the wall, then the rebound can be significantly damped and the

pressure radiated by the system will be reduced. Because the rebound event occurs
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Figure 4.15: Comparison of pressure produced by two bubbles near a rigid wall
as predicted by the C4 model for single-bubble radiation damping without delays
and the C2 model for a compressible medium. The percent difference between the
two maximum pressure predictions at two locations is shown. The top plot shows
the percent difference a distance D1 behind the bubble farthest from the wall. The
bottom plot shows the percent difference at the wall.

very rapidly, the regions of the parameter space in which the re-radiated pressure

will be damped are narrow (dark blue in the plot). If the pressure produced by

the collapse of the first bubble arrives during the collapse of the second bubble, the

collapse will be accelerated and the radiated pressure can be dramatically increased

(gray up to dark red in the plot). If the pulse from the first bubble arrives during the

growth phase or after rebound then the outcome is uncertain. The pressure may be
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affected but the effect is not as strong.

4.4 Summary

In this chapter the C1, C2, and C3 approximations for liquid compressibility

in a multi-bubble system were analyzed. The C1 approximation incorporates liquid

compressibility in the bubble model by delaying the radiated self-acting pressure

produced by a bubble by the time required to propagate from the center the bubble

to the bubble wall. The C2 approximation is the result of a Taylor expansion of the

delayed self-action term in the C1 approximation, and an iterative substitution is

used to reduce third-order derivatives, and terms up to O(R2/D2) and O(1/c0) are

retained. The C3 approximation is similar to the C2 approximation but terms of

O(R/D) that are also of O(1/c0) are neglected. Thus the C3 approximation uses the

single-bubble radiation damping expression.

An eigenvalue analysis of the linearized equations of motion was employed

to study the stability of systems of bubbles placed randomly in a spherical cluster.

The stability was determined by numerically calculating the minimum damping of

any mode in the system. The C1-L approximation for compressibility was shown

to produce uniformly stable systems. The C2-L and C3-L approximations produce

systems that become unstable for clusters with closely spaced bubbles. Several

characteristic lengths for the cluster were considered and it was shown that the min-

imum separation distance between bubbles in the cluster correlated most strongly

with system stability. In undamped systems with only compressibility effects, the

C2-L approximation is consistently stable for minimum separation distances greater
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than 10R0. This is consistent with the accuracy of the iterative expansion used to

obtain the C2 approximation. On the other hand, the C3-L approximation is stable

only for systems with minimum separation distances greater than 50R0.

An eigenvalue analysis was also used to study the behavior of systems

with viscous and thermal damping. Systems consisting of a line of equally spaced,

equally sized bubbles were analyzed. Although the inclusion of viscous and ther-

mal damping mitigates the instability of systems with the C3-L approximation, the

C2-L approximation still produces more stable systems that agree with the results

of the C1-L approximation. The results from analysis of bubble arrays were com-

pared to the work of Doinikov et al.46 and Ooi et al.47 Differences between the

current work and previous work are attributed to the fact that the previous work

reported a reduced damping coefficient, but not necessarily the minimum damping

coefficient. This discrepancy results from the transcendental nature of the charac-

teristic equation of a system with delays in bubble interaction. Systems consisting

of clusters of equally sized bubbles were analyzed with the inclusion of viscous

and thermal effects. It was found that cluster systems exhibit behavior similar to

line arrays, with similar stability properties and trends. These results suggest that

it is necessary to use either the C1 or C2 approximations to simulate multi-bubble

dynamics. The C2 approximation should only be used if the minimum separation

distance is greater than ∼10R0.

Simulations of bubble motion produced by the models with the C2 and C3

approximations were compared for a system of 20 bubbles placed randomly in an

ellipse responding to an external pulse. The C3 model became unstable. The C2
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model remained stable, but exhibited no observable damping. It is not known if this

lack of damping is a result of truncation error in the series expansion used to obtain

the C2 approximation or if this is a physical property of the system. Resolution of

this question requires simulations using the C1 approximation, which has not been

implemented for numerical integration.

Finally, a model for bubbles in a incompressible liquid with single-bubble

radiation damping (C4), and a model based on the C2 approximation, were used

to predict the pressure produced by a pair of bubbles near a rigid wall in response

to external forcing for a range of source pressure amplitudes and bubble spacings.

The inclusion of compressibility effects by the C2 approximation can either increase

or decrease the predicted pressure relative to the predictions of the C4 model. The

pressure was reduced by as much as half in some cases and increased by as much

as a factor of 2 in other cases. Thus the results were similar to those for the forced

two-bubble system considered in Section 3.4 but more dramatic. The results of this

chapter illustrate the importance of correctly including compressibility effects in

simulations of multi-bubble systems.
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Chapter 5

Approximations of Time Delays and Delay Differential
Equations for Bubble Systems in a Compressible Liquid

Numerical integration of delay differential equations (DDEs) is computa-

tionally intensive. Hence, the number of bubbles that can be included in a simu-

lation is limited. Two approximate methods to facilitate numerical solution of the

delayed equations of motion in order to increase the number of bubbles that may

be simulated are presented here. The first method produces approximate expres-

sions for the implicitly defined delays given in Section 2.2.3. The second method

converts the delayed equations of motion given in Eq. (2.62) from a system of DDEs

to a system of approximately equivalent ordinary differential equations (ODEs). In

both cases the method used to obtain the approximations is similar to the method

by which the C2 approximation is obtained from the C1 approximation, that is,

delayed variables are expanded in a Taylor series for small delays.

5.1 Approximations for implicitly defined delays

The expressions for the delays given in Eqs. (2.36)–(2.38) represent implicit

definitions of the interaction delays. In order to solve the equations of motion

numerically, these implicit expressions must also be solved to find the appropriate

delays. Appendix B describes a method by which certain numerical solvers may be
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used to include implicit delay expressions, but for small delays a first-order Taylor

expansion is sufficient.53,77

Our approach is identical to the method used in Section 2.3 to convert the

delayed self-action of a bubble into a delay-free, approximate expression involving

derivatives of the original expression. Only the center-to-center delay given by

Eq. (2.39) will be considered here.

Two-bubble interactions

For the two-bubble interaction terms, the implicit definition of the delay is

given by Eq. (2.39),

τi j =
1
c0

(∣∣∣[X j]τi j − Xi
∣∣∣) . (5.1)

For small values of τi j the delayed variables can be expanded in a Taylor series as

follows:

[X j]τi j = X j(t − τi j)

≈ X j − τi j
.
X j. (5.2)

These approximations are substituted into the equation for the delay to obtain

τi j =
1
c0

[
|X j − Xi| − τi j

( .
X j · ni j

)]
, (5.3)

which can be solved to find an approximate explicit expression for τi j,

τi j =

∣∣∣X j − Xi
∣∣∣

c0 +
.
X j · ni j

. (5.4)
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Eq. (5.4) is only valid for small values of τi j and when (
.
X j ·ni j)/c0 is small. Compari-

son of Eq. (5.4) and Eq. (2.38) reveals that Eq. (2.38) may be a suitable approximation

for Eq. (5.4) in systems with low translational velocities.

Three-bubble interactions

For three-bubble interactions the delay is given implicitly by Eq. (2.61),

τi jk =
1
c0

{∣∣∣[X j]τi j − Xi
∣∣∣ +

∣∣∣[Xk]τi jk − [X j]τi j

∣∣∣} , (5.5)

where τi jk = τi j + τ jk. The approximate versions of the delayed quantities obtained

by Taylor expansion are

[X j]τi j = X j(t − τi j)

≈ X j − τi j
.
X j, (5.6a)

[Xk]τi jk = X j(t − τi jk)

≈ Xk − τi jk
.
Xk. (5.6b)

These approximations can be substituted into Eq. (5.5) to obtain an approximate

expression for the three-bubble delay,

τi jk =
1
c0

[∣∣∣X j − Xi
∣∣∣ − 2τi j

.
X j · ni j +

∣∣∣Xk − X j
∣∣∣ − τi jk

.
Xk · n jk

]
, (5.7)

where τi j is given by Eq. (5.4). This equation may now be solved to obtain an

approximate explicit expression for τi jk:

τi jk =
|X j − Xi| + |Xk − X j| − 2τi j

( .
X j · ni j

)
c0 +

.
Xk · n jk

. (5.8)
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Eq. (5.8) is the approximate, explicit expression for the three-bubble interaction

delay for center-to-center delays that is used in place of Eq. (5.7).

The approximate Eqs. (5.4) and (5.8) are not suitable for use in the Hamil-

tonian equations of motion due to the time derivatives of generalized coordinates

that appear on their right-hand sides. It is necessary to eliminate these derivatives

before integrating the system numerically. One possible approach is to use the ana-

lytical expressions for
.
Xi given in Eq. (2.24) given for an incompressible medium to

provide an approximate answer; another approach that provides superior results

is presented in the following section.

5.2 Approximation of delay differential equations by Taylor expansion

For systems with small delays it is often possible to convert a system of DDEs

to a system of ODEs. The mathematical motivation for this method is provided

by Chicone.77 The method follows the same approach as in Sections 2.3 and 5.1.

A Taylor expansion of a delayed function for small values of the delays is used

to remove the delays from the system of equations. The delayed coordinates and

momenta for two-bubble interactions are expanded as

[R j]τi j ≈ R j − τi j
.
R j, (5.9a)

[G j]τi j ≈ G j − τi j
.
G j, (5.9b)

[X j]τi j ≈ X j − τi j
.
X j, (5.9c)

[M j]τi j ≈M j − τi j
.

M j. (5.9d)
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The approximate expressions for delayed variables in the three-bubble interactions

are

[Rk]τi jk ≈ Rk − τi jk
.
Rk, (5.10a)

[Gk]τi jk ≈ Gk − τi jk
.
Gk, (5.10b)

[Xk]τi jk ≈ Xk − τi jk
.
Xk, (5.10c)

[Mk]τi jk ≈Mk − τi jk
.

Mk. (5.10d)

Substitution of these approximations into Eq. (2.62) results in a system of equations

in which derivatives of the coordinates appear on both sides of the equation. The

result of this substitution for the radial equation of motion without translation is

.
Ri =

1
4πρ0

 Gi

R3
i

−
∑
j,i

(G j − τi j
.
G j)

Ri(R j − τi j
.
R j)Di j

+
∑
k,i, j

(Rk − τi jk
.
Rk)(G j − τi j

.
G j)

Ri(R j − τi j
.
R j)DikD jk

 . (5.11)

The results for the other equations are similar. These equations are non-separable,

and therefore they cannot be written in a form that is amenable to numerical

integration with standard tools.

In order to numerically solve the equations of motion containing approxi-

mate delays it is necessary to write them in a form that is well posed for numerical

integration. Success in obtaining approximate forms by iterative substitution in pre-

vious chapters (Sections 2.3, 3.3, and 4.1) motivates the use of an iterative approach

here. The two relevant ordering parameters for the problem at hand are the ratio

of bubble radius to separation distance R/D for bubble coupling, and the inverse

of the small-signal acoustic sound speed 1/c0 for effects of liquid compressibility.
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The equations presented in this work contain bubble interaction terms accurate up

to O(R2/D2) and compressibility effects accurate to O(1/c0). It is thus sufficient to

seek approximations valid to the same order.

It is possible to iteratively substitute the right-hand sides of the approximate

equations of motion for the derivatives while retaining terms of the desired order

in R/D and 1/c0. This process is extremely tedious, and while it can be carried out

by means of a computer algebra system it must be repeated for every modification

to the model which results in an explosion of terms. A more efficient approach can

be used to generate solutions accurate to the same order.

To motivate this approach, consider that in order to be integrated numeri-

cally by standard methods, a system of first-order differential equations with state

vector y must be written in the following notation:

.y = F(t,y), (5.12)

where F is a function of a vector that returns a vector of the same dimension as

y. The equations of motion for a system of bubbles in an incompressible medium

(Eq. (2.24)) can be written in this form. A system of first-order, regular, delay

differential equations requires delayed values of the state vector as input, and thus

must be written in the form

.y = F(d)[t,y,y(α)], (5.13)

where y(α) represents the state vector evaluated at the times in the vector α = [t −
τ12, t − τ13, · · · ]T to provide the required delayed values. The delayed Hamiltonian
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equations of motion for a system of bubbles in a compressible medium, Eq. (2.62),

can be written in the same form.

Rather than pursuing a system of equations with the form of Eq. (5.12) by

analytical iteration, an alternate approach is to write the approximation of Eq. (5.13)

as a system of equations with an approximate function that requires the state vector

and its derivative as inputs,

.y = F(a)(t,y, .y). (5.14)

If the derivative of the state vector .y can be approximated to the same order as

the approximation used in F(a), then this result can be used as an input to the

approximate function F(a) on the right-hand side of Eq. (5.14). It is possible to

generate a state vector that satisfies this requirement by means of an iterative

computation, rather than by an iterative algebraic substitution. Let .y(0) = F(t,y)

and let .y(n) represent the nth application of the map F(a)(t,y, ·) to .y(0), that is,

.y(1) = F(a)(t,y, .y(0)), (5.15)

.y(2) = F(a)(t,y, .y(1))

= F(a)
[
t,y,F(a)(t,y, .y(0))

]
. (5.16)

If the function F(a) is valid to mth order in some parameter χ, then .y(m) represents

an approximation to .y valid to the same order in χ.

Now consider the approximation of the delay differential equations of mo-

tion for a system of bubbles. In the approximate form of the equations of motion
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for the delayed bubble system, the function F(a) is found by substituting the ap-

proximations for the delayed variables given in Eqs. (5.9) and (5.10) into Eq. (2.62).

The result is valid to O(R2/D2) and O(1/c0), and thus two iterations to calculate the

approximate state vector are required to obtain

.y = F(a)(t,y, .y(2)), (5.17)

which may be used to calculate the required derivative of the state vector for

numerical integration. The result is valid to the same order as the approximate

function F(a).

The iterative approximation in Eq. (5.17) is well suited to use for numerical

integration of the equations of motion and permits the use of the existing expres-

sions without modification. The iterative method described here is also useful in

evaluating the delay expressions given in Section 5.1. The time derivatives required

for the right-hand side of the delay expressions may be obtained by iterative cal-

culation using the approximate form of the Hamiltonian equations of motion. In

general, the results produced by this calculation are valid to the same order as the

original approximation.

A special case that must be considered is if one of the variables becomes

small while simultaneously undergoing a high rate of change, because the approx-

imation to the delayed version of the variable may approach zero or change sign.

As an example, consider the approximate equation for the delayed bubble radius:

[R j]τi j = R j(t − τi j)

≈ R j − τi j
.
R j. (5.18)
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In high-amplitude motion, the radius of a bubble becomes very small during col-

lapse and rebound. Near the same time, the bubble wall velocity and acceleration

become large. As a result, the approximations for the delayed bubble radii may

approach zero or change sign. Because the delayed bubble radius appears in the

denominator of terms in the equations of motion, an arbitrarily small value that

may change sign for the delayed bubble radius will cause numerical integration to

become unstable or to halt. This effect limits the amplitudes at which the algorithm

described in this section may be used. If very large amplitude motion is expected,

then the iterative substitution and expansion must be carried out to obtain equa-

tions of motion in which the denominators of terms do not approach zero. This

expansion has not yet been performed.

5.3 Comparison of approximations

Here, the accuracy of the approximations presented in Sections 5.1 and 5.2

are compared to the corresponding models without approximations. Comparisons

of results for the multi-bubble systems are made by integrating the equations nu-

merically and using the metrics given in Section 3.2 to analyze the results.

The first approximation tested is that for the implicit expression of the delays

in bubble-bubble interactions, Eqs. (5.4) and (5.8). This approximation was derived

in Section 5.1. The geometry chosen for this approximation is a cluster of six

bubbles with the same equilibrium radius of R0 = 20µm placed randomly within

a sphere having a radius of 15R0. The bubbles are excited by a two-cycle 35.5 kPa

sinusoidal pulse at 173 kHz which is the resonance frequency of the bubbles. The
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wall-to-center delay given by Eq. (2.36) is used in this comparison. Although it was

determined on physical grounds in Section 2.2.3 that this delay is not the best one for

bubble interactions, it is used here because it provides a system with an implicitly

defined delay. Thus the results presented here are not physically significant, but

rather represent a proof of concept for the method of approximation.

The wall-to-center delay (Eq. (2.36)) is used rather than the correct center-

to-center (Eq. (2.39)) delay because the definition of the center-to-center delay is

implicit only in the case of translating bubbles. Including the effects of translation

complicates the comparison of the two different system, thus translation is neglected

here. Instead, by using the wall-to-center delay it is possible to neglect bubble

translation and still test the approximation for an implicitly defined delay. The

effects of liquid viscosity are included but thermal effects are neglected. The bubble

system is stable with δmin/δtot = 0.18, where δtot is the damping factor of a single

bubble.

In Fig. 5.1, the model with the approximation of the delay calculated from

the implicit relations is compared to the model with the exact delay for the same

system. The pulse generates bubble oscillations with maxima of nearly 40% of the

equilibrium radius, and thus the nonlinear equations of motion are necessary to

model the response of the system. Figure 5.1(a) shows the average radial displace-

ment of the bubbles in the system. The time along the horizontal axis is normalized

by the natural period of a single bubble, T0. The result of the calculation with

the approximate delay (dashed line) agrees extremely well with the result of the

calculation with the implicitly defined delay (solid line). In part (a) it is nearly
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Figure 5.1: Comparison of approximate and implicit methods for calculation of
bubble interaction delays. The average radial displacement normalized by the
equilibrium bubble radius (a) and the total normalized energy (b) are shown for a
system of six bubbles with equilibrium radii of 20 µm. The bubbles are subjected
to two cycles of a 35.5 kPa sinusoidal pulse at their resonance frequency (173 kHz).

impossible to distinguish the two. Part (b) shows the normalized energy in the

system calculated using Eq. (3.9), with the equilibrium energy defined in Eq. (3.10).

The energy in the system with the approximate delay deviates only slightly from

the energy in the system with the implicit delay. It thus follows the same trends and

exhibits excellent agreement with the result produced by using the implicitly de-

fined delays. The results suggest that the approximation for the implicitly defined

delay given in Section 5.1 is adequate for general use.
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In order to examine the efficacy of the approximation of the delayed vari-

ables with the results of a Taylor expansion for small delays, a system of 15 bubbles

driven by an acoustic field is considered. The 15 bubbles all have an equilibrium ra-

dius of R0 = 10µm and are randomly placed in a sphere with a radius of Rcl = 50 R0.

The minimum separation distance between bubbles is approximately 20R0 and the

maximum separation distance is approximately 85R0. The bubbles are driven by a

sinusoidal pulse with an amplitude of 15.2 kPa. The pulse consists of two cycles at

330 kHz.

The response of the bubble system is predicted using three different mod-

els, the Hamiltonian model for a system of bubbles in a compressible medium with

the C2 approximation for compressibility effects given in Eqs. (2.62) and (2.82), the

approximate version of the same model based on the method given in Section 5.2,

and finally, the C4 model. The C4 model is for a system of bubbles in an incom-

pressible medium where the bubbles experience single-bubble radiation damping

and is obtained by combining Eqs. (2.24) and (2.78b). Viscous damping is included,

and both the C2 and C4 models are stable with δmin/δtot = 0.19. The equations for

all four levels of approximation are given together in Appendix C.

The results of numerical integration of the three different models are com-

pared in Fig. 5.2. The prediction of the approximate ODE model developed in

Section 5.2 (green curve) shows good agreement with the prediction of the DDE

model (blue curve), especially in comparison to the prediction of the equations of

motion for bubbles in a nearly incompressible medium (red curve). The model

with the approximate forms of the delayed variables experiences slightly higher

164



0 5 10 15 20 25 30
t/T0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
di

sp
/

R
0

C2
approx. C2
C4.

Figure 5.2: Comparison of delay differential equation model with C2 compressibil-
ity effects (C2), corresponding approximate ODE model with C2 approximations
(approx. C2, and a model for an single-bubble radiation damping without delays
in bubble interaction (C4). The average radial displacement is shown for a system
of 15 bubbles with equilibrium radii of 10 µm subjected to two cycles of a 15.2 kPa
sinusoidal pulse at 330 kHz.

amplitude motion than the DDE model, but the general amplitude and trends are

similar.

The models with the C2 compressibility and either delays (blue curve)

or approximated delays (green curve) appear to exhibit three distinct phases of

damping. The time along the horizontal axis is normalized by the natural period

of a single bubble T0. After the incident acoustic wave has passed (t/T0 ≈ 2), the
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system enters free response. Initially, both C2 models damp much more quickly

than the model for a nearly incompressible medium (red curve). This corresponds

to the in-phase mode of the system, which damps much more quickly than would

an equivalent single bubble. The region of increased damping ends at t/T0 ≈ 6. For

6 . t/T0 . 12 the damping of the system is reduced, becoming less than the damping

of the delay-free system with the single-bubble compressibility effects shown in red.

When t/T0 & 12, the system enters the third region, when the apparent damping

is reduced even further. Presumably the last two damping regions correspond to

the modes in which compressibility effects reduce the damping. In contrast, the

system with single bubble radiation damping and no delays (red curve) experiences

apparently constant damping over the time shown. Thus, in spite of the slight

difference in amplitudes, the approximate C2 model captures the dominant effects

present in the fully delayed model.

It should be noted that the simulation shown in Fig. 5.2 is near the greatest

amplitude of radial motion that may be simulated using the approximate algorithm

from Section 5.2. Higher amplitude simulations require the development of analytic

expressions by means of an iterative algebraic substitution rather than the iterative

computation presented here.

5.4 Summary

An approximate method to replace the implicit state-dependent delay ex-

pressions for the propagation delay in a bubble system with explicit expressions

was presented. A related method to convert the system of DDEs into an approxi-
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mate system of ODEs was also presented. Good agreement between these methods

and the delayed system with implicitly defined delays was demonstrated for cases

with low amplitude radial oscillations. Both of these approximation methods re-

quire that the system possess sufficiently small delays. The method to generate a

system of ODEs that approximates the system of DDEs requires that the bubble

wall velocities be sufficiently small. This requirement severely limits the use of the

method in applications with large driving pressures and high bubble wall veloci-

ties. It is possible that an iterative algebraic substitution could produce a system

of equations that does not suffer from this restriction, but this work has not been

undertaken here.
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Chapter 6

Summary and Future Work

The work presented in this dissertation was undertaken to develop and im-

plement an accurate model to predict the high-amplitude radial motion of clusters

of bubbles in a compressible liquid. Liquid compressibility introduces two domi-

nant effects that must be included in a model. The first effect is commonly referred

to as radiation damping. This is the damping of radial bubble motion due to energy

lost to acoustic radiation into the liquid surrounding a bubble. The second effect

is the delay in bubble interaction due to the time required for a pressure wave to

travel from one bubble to the other. It is common to include the radiation damping

experienced by a single bubble but neglect the interaction delays. The majority of

previous work has focused on bubbles in an incompressible or an incompressible

liquid with single-bubble radiation damping. The effects of liquid compressibility

are expected to be most noticeable in extensive clusters, and in systems undergoing

high-amplitude radial motion, but the work presented here suggests that treating

even small bubble systems with a model for a truly incompressible liquid or an in-

compressible liquid but with single-bubble radiation damping taken into account

is insufficient. Thus corrections for the effects of liquid compressibility must be

included.

Three different levels of approximations for the effects of liquid compress-
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ibility were presented here. The first method, based on the work of Ilinskii and

Zabolotskaya,24 incorporated compressibility effects by delaying the radiated self-

acting pressure produced by a bubble by the time required to propagate from the

center of the bubble to the bubble wall. This method was labeled C1 to distinguish

it from the other methods. The C1 method relies on the assumption that the bubble

radius is much smaller than the acoustic wavelength in the surrounding medium,

a standard and valid assumption for cavitation.

The second method is also based on the work of Ilinskii and Zabolotskaya.24

The delayed self-acting pressure of the C1 approximation is expanded to first order

in a Taylor series to eliminate the delay. The resulting equations of motion are

iteratively substituted into themselves to eliminate the third-order derivatives pro-

duced by the Taylor expansion, and terms up to O(R2/D2) and O(1/c0) are retained.

This method is labeled C2. The C2 approximation requires the same assumption

as the C1 approximation, that the bubble radius be much smaller than the acoustic

wavelength in the surrounding medium.

The third method uses the same iterative approach employed in the C2

approximation to eliminate third-order derivatives, but terms of O(1/c0) that are

also O(R/D) are neglected. This is equivalent to assuming that the interaction of

the bubbles does not affect the radiation damping and hence the single-bubble

radiation damping expression can be used. This is the approach that has been used

in previous work,38–40,44,46,47,51 as was discussed in Sections 2.3.2 and 3.3.

The work presented here represents the first full implementation of the

nonlinear delay differential equations of motion for a system with multiple bubbles
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using an integrator for delay differential equations. The numerical model was based

on the equations of motion developed using a Hamiltonian formalism by Ilinskii

et al,23 which were extended to include the effects of compressibility using the C2

approximation. The number of bubbles that can be simulated is limited by the fact

that the numerical integration of DDEs is a computationally intensive process, and

the number of interactions that must be calculated scales as N3. This restricts the

number of bubbles that may simulated using the full time-delayed model to ∼30

bubbles.

Chapter 2 described the Hamiltonian model for a coupled bubble system

and presented modifications to this model to include the effects of liquid compress-

ibility. The primary modification was the inclusion of propagation delay in the

bubble self-action and in bubble-bubble interactions. This modification converted

the equations of motion from a system of ordinary differential equations to a system

of delay differential equations. All previous work on delay differential equations

for bubble systems has employed Lagrangian models, and the benefits of using

a Hamiltonian formalism for delay differential equations were considered. Four

different delay types that have been used previously were presented, and physical

justification for choosing the delay associated with propagation between bubble

centers was given. The three-bubble interaction terms present in the Hamiltonian

model were analyzed and the necessary delay expressions were found. Instead of

following the common assumption that bubble interactions do not affect radiation

damping, expressions for the radiation damping in a system of interacting bubbles

were derived to first order in 1/c0 and second order in R/D through an iterative sub-
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stitution of the Hamiltonian equations of motion. These corrections are labeled C2

in this work. The approximation of using the single-bubble radiation damping in a

system coupled bubbles, motivated by the assumption that bubble interactions do

no affect radiation damping, was labeled C3. It has also previously been assumed

that, because the speed of sound in water is high, and the time delays for closely

spaced bubbles are small, the time delays in bubble interaction can be neglected.78,79

the approximation in which time delays are neglected, and the single-bubble radi-

ation damping is employed, are labeled C4. The equations of motion produced by

the four levels of approximation (C1, C2, C3, and C4; see Table 2.1) are collected in

Appendix C.

In Chapter 3, the motion of a single bubble in a compressible medium pre-

dicted by the C2 and C3 approximations of Hamiltonian equations of motion devel-

oped in Section 2.3.1 was compared to the predictions of a Keller-Miksis model.26,29

The C2 and C3 models for single bubble systems are identical, but differences be-

tween the two arise in systems containing multiple bubbles. The predictions of

the Keller-Miksis equation agree with the results of the Hamiltonian equations to

within numerical precision. The standard linear equations of motion for a system of

coupled bubbles were modified to include the effect of liquid compressibility. The

effects of viscous and thermal damping were neglected. The new equations were

used to generate linear expressions analogous to the corrections for bubble coupling

in a compressible liquid presented in Section 2.3.2. The three levels of approxima-

tion were labeled C1, C2, and C3. The linearized versions of these approximations

were marked with an L, i.e., C1-L, C2-L, C3-L. The C3(-L) model has been used
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in previous work on coupled bubbles in a compressible medium.38–40,44,46,47 The

eigenvalue analysis of the C3-L model revealed that the model is unstable for pairs

of bubbles separated by less than ∼50R0. The results of numerical integration of

the time-delay, C2 Hamiltonian model for low-amplitude motion were compared

to the C1-L model and good agreement was obtained, the primary difference being

the slight increase in the damping of closely spaced bubbles predicted by the nu-

merical implementation of the Hamiltonian model. The predictions of numerical

integration of the Hamiltonian equations of motion with the C2 approximation

were compared to the predictions of the Hamiltonian equations of motion with the

delay-free C3 approximation The delay-free C3 model is labeled C4. Finally, sim-

ulations of a forced two-bubble system with both the C2 model and the C3 model

without delays revealed that the inclusion of compressibility effects significantly

changes the radiated field produced by the bubble system.

Chapter 4 extended the analysis presented in Chapter 3 to systems contain-

ing more than 2 bubbles. An eigenvalue analysis of the stability of the linearized

versions of the equations of motion generated by the three methods for includ-

ing compressibility effects in multi-bubble systems was conducted by calculating

the minimum damping coefficient in the system. A large number of randomly

generated spherical bubble systems was considered. The stability of the bubble

systems was shown to be most correlated with the minimum separation distance

between bubbles in the cluster. A statistical analysis of the results showed that

without damping, the C1 approximation for compressibility effects produces stable

systems, and the C2 approximation produces systems that are unstable for systems
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in which bubbles have a minimum spacing less than ∼10R0. In contrast, in some

cases the C3 approximation produces systems that are unstable despite having a

minimum spacing greater than 40R0.

The stability of systems with viscous and thermal damping was also con-

sidered for systems consisting of a line array of bubbles, and bubbles randomly

placed in a sphere. It was shown that the addition of thermal and viscous damping

improved the stability of both the C2 and the C3 systems, as expected, with C3

systems remaining stable for most systems with a minimum separation distance

greater than ∼6R0. The minimum damping is almost completely dominated by

the viscous and thermal damping, although the inclusion of compressibility ef-

fects dramatically reduces the damping. The results of the eigenvalue analysis of

damped systems was compared to previous work46,47,54 with similar results, the

slight differences being attributed to the differences in methods used to calculate

the eigenvalues. Although the analysis of minimum damping coefficients does

not reveal significant differences between the three approximations for including

compressibility effects, this does not necessarily imply that there is no difference

in the dynamics of systems considered. An expanded analysis of the eigenvalues

of the transcendental characteristic equations is required to ascertain the total ef-

fect of liquid compressibility on system dynamics. This analysis has not yet been

conducted.

The response of bubble systems to an external pressure source was also

considered in Chapter 4. Numerical integration was used to compare the response

of the same bubble geometry calculated using the C2 and C3 approximations. The
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randomly generated system of bubbles of equal size (R0 = 20µm) was driven by a

single cycle of a sine wave at 173 kHz with an amplitude of 35.5 kPa. Viscous effects

where included but not thermal effects. The system with C3 compressibility effects

was unstable, while the system with C2 compressibility remained stable. Although

the C2 system remains stable, it does not exhibit significant damping. It is not

known if this is a physical feature of the system or an artifact of the series expansion

used to obtain the C2 approximation from the C1 method for including liquid

compressibility. Resolution of this uncertainty requires a numerical implementation

of the nonlinear C1 model which has not been completed. Finally, the pressure

produced by two bubbles near a rigid wall with external forcing was predicted

using the method of images. The maximum pressure was predicted at the wall and

behind the bubbles. The pressures predicted by a model with C2 compressibility

approximations and a model with C3 compressibility approximations without delay

(nearly incompressible) were compared for a range of bubble separation distances

and source pressures. Similar to the results of Section 4.3, the delays and additional

coupling terms associated with the C2 approximations significantly altered the

pressure produced by the system. The pressure was either increased or decreased

depending on the separation distance and collapse time of the bubbles in the system.

The percent difference in the predicted pressures ranges from 50% to over 200%.

Chapter 5 presented a method to obtain explicit, approximate expressions

for the implicitly defined delays given in Chapter 2. Numerical integration of the

equations of motion with approximate delays was compared to integration of the

implicit delayed equations of motion, and there is good agreement between the
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two. The chapter also developed a method to convert the delay differential equa-

tions of motion for a bubble system into a set of approximate ordinary differential

equations. Rather than using an iterative algebraic substitution to obtain equations

of motion valid to the desired order, an iterative computation was used to generate

values for the approximations of the delayed variables. Comparison of the DDE

system with the approximate ODE system showed good agreement. The process

used to generate the approximate ODEs requires that the bubble wall velocities

be reasonably small. Both approximations are limited by a requirement that the

delays within the system be small. Unfortunately, the necessary assumptions un-

derlying the approximation for converting the equations of motion from DDEs to

ODEs limits the utility in the high-amplitude bubble motion typical of therapeutic

ultrasound applications.

Additionally, four appendices have been included. Appendix A presents the

method by which implicitly defined delays may be included in numerical integra-

tion of DDEs, as well as presenting the motivation for choosing the numerical tools

used in this work. Appendix B discusses scaling constants and other considerations

for nondimensionalization of the model equations of motion. The expressions to

extract the necessary terms from sums to generate the conservation relations for

the kinetic energy in a system of coupled bubbles are also given. The equations of

motion produced by the four approximations for the effects of liquid compressibil-

ity are collected in Appendix C. In Appendix D, the method for modeling bubble

coalescence proposed by Ilinskii et al.50 is modified to conserve energy and mass in

the system, and rewritten in terms of the Hamiltonian coordinates and momenta.
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Future work will benefit from an implementation of the C1 model equations

of motion, which fully account for compressibility effects. A more detailed analysis

of the C2 approximations is also required. It is necessary to consider the relative

importance of the terms in order to determine if the long expressions given in

Section 2.3.2 may be truncated. In order to accurately consider translation effects

in high-amplitude motion it is necessary to extend the C2 corrections for liquid

compressibility to second order in 1/c0. It may be possible to apply a method

similar to the C1 approximation to the equations of motion for a translating bubble.

This is analogous to the Liénard-Wiechert potentials for a moving charge.80

It is necessary to find additional experimental results that can be used to

corroborate the importance of compressibility effects implied by the results of this

work. Some studies that could possibly be simulated with the model developed

here are the work of Bremond et al.78, and Leroy et al.41

Simulation of large systems of bubbles in high-amplitude motion will re-

quire the development of suitable ODE approximations to the DDE model presented

here. In order to convert the delay differential equations of motion to approximate

ODEs an analytic expansion of the approximate time delays by computer algebra

system should be performed. Numerical integration of the resulting equations of

motion should be compared to the results of the delay differential equations of mo-

tion for high amplitude oscillations. It may be possible to use the approximate ODEs

to develop a model in which a large cluster is divided into subclusters, with the

approximate ODEs being used to model bubble dynamics in each subcluster and

the interaction between subclusters being delayed appropriately. This approach
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may be useful for including the effects of liquid compressibility in large clusters of

bubbles.
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Appendix A

Nondimensionalization Parameters
and Manipulation of Sums

A.1 Nondimensionalization parameters

The nondimensionalization begins by choosing a reference, or scaling,

length L0. Typically the scaling length is chosen to be the characteristic equilib-

rium radius of bubbles in the system being modeled. Leighton55 presents the

natural frequency of the linearized equation for a single bubble as

ω0 =
1

R0

√
3γ

P0

ρ0
+ (3γ − 1)

2σ
ρ0R0

− (3γ − 1)Pv − 4η2

ρ2
0R2

0

. (A.1)

If the chosen scaling length corresponds to a characteristic bubble radius then it

is appropriate to set the scaling time to the duration of the natural period of a

single bubble with the characteristic equilibrium radius. The natural frequency

is used to define the scaling time by setting R0 = L0 in the equation above and

defining T0 = 2π/ω0. Thus, the nondimensional time t̃ is given by t̃ = t/T0. With

these definitions, the generalized coordinates of the bubble model (upper-case) and

derived quantities may be related to their nondimensional counterparts (lower-
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case) as follows:

vs =
L0

T0

=
1

2π

√
3γ

P0

ρ0
+ (3γ − 1)

2σ
ρ0L0

− (3γ − 1)Pv − 4η2

ρ2
0L2

(A.2a)

R0i = L0r0i, (A.2b)

Ri = L0r0iri, (A.2c)

Gi = 4πρL3
0vsr4

0igi, (A.2d)

Xi = L0xi, (A.2e)

Mi =
2π
3

L3
0vsr3

oimi, (A.2f)

Di j = L0di j. (A.2g)

A.2 Extracting indexed terms from sums

In order to obtain the correct expressions for the kinetic energy conservation

relation for bubble collision presented in Appendix D it is necessary to isolate all

terms which contain coordinates of the colliding bubbles. This is accomplished

by means of “filter” expressions generated from Kronecker delta functions, δi j. To

extract the term in which the index i = α from a single sum, simply multiply the

summation by δiα and evaluate the result:

N∑
i=1

aiδiα = aα. (A.3)
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Finding appropriate filter expressions for multi-index sums is more complicated,

especially when there are conditions on the sums. A procedure to generate the

necessary discrete filters is outlined here.

Consider that (1−δiα) is only zero when i = α. Multiplying a sum by (1−δiα),

subtracting from the original sum and evaluating will remove all terms for which

i , α. For the single index case, this is obvious because the multiplying factor

1 − (1 − δiα) simplifies to δiα, but in the multi-index case the result is not as clear.

A.2.1 Double sums

In order to isolate the terms with index α or β from a double sum subject to

the indicial constraints i , j and α , β, consider that the expression

1 − (1 − δiα)(1 − δiβ)(1 − δ jα)(1 − δ jβ) (A.4)

is zero only when i or j is not equal to α or β. Expand the product and apply the

conditions to the individual terms. The result is

1 − (1 − δiα)(1 − δiβ)(1 − δ jα)(1 − δ jβ) = δiα + δiβ + δ jα + δ jβ − δiαδ jβ − δiβδ jα. (A.5)

To extract the terms with index α or β from a double sum, multiply the sum by

δiα + δiβ + δ jα + δ jβ − δiαδ jβ − δiβδ jα (A.6)

and evaluate the delta functions. This expression is essentially a discrete filter for

the desired terms.
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A.2.2 Triple index sums

A similar process can be applied to a triple sum over i, j, and k with the

constraints k , i, j, α , β. The filter expression is given by

1 − (1 − δiα)(1 − δiβ)(1 − δ jα)(1 − δ jβ)(1 − δkα)(1 − δkβ) = δiα + δiβ + δ jα + δ jβ + δkα

+ δkβ − δiαδ jα − δiβδ jβ

− δiαδ jβ − δiβδ jα − δiαδkβ

− δiβδkα − δ jαδkβ − δ jβδkα

+ δiαδ jαδkβ + δiβδ jβδkα.
(A.7)

The discrete filter expressions given in this section can be used to obtain the expres-

sions for the total kinetic energy of two bubbles in multi-bubble system given in

Section D.7.

181



Appendix B

Delay Differential Equations

Delay differential equations (DDEs) form a rich and active area of mathemat-

ics research. Despite similarities to ordinary differential equations, the underlying

theory of delay differential equations is less well developed. For certain classes of

DDEs, including state-dependent neutral DDEs, general existence proofs for solu-

tions do not yet exist. For further information on current topics in research on delay

differential equations, the reader is referred to Lakshaman and Senthilkumar.64

Numerical integration of delay differential equations is challenging due to

the need for a continuous history of the state vector. Error control is needed over

the entire history, not just at discrete points. Without error control over the history,

the magnitude of the error in the solution is unknown. Additional information on

numerical integration of delay differential equations can be found in Bellen and

Zennaro.81

B.1 Numerical tools for delay differential equations

Two different numerical solvers are used in this work, RADAR5 and

DDE_SOLVER. Both are Fortran 90 programs developed for stiff delay differen-

tial equations with state-dependent delays, but they employ different methods and

each provides unique features.
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RADAR574,75 uses a collocation method based on a Radau IIA method to

provide continuous interpolated output of the solution.81 The solver accepts input

with a singular mass matrix on the right-hand side of the differential equation

and thus permits the use of the method given in the next section to solve singular

equations to find the implicitly defined delays. RADAR5 can be used to solve

neutral DDEs. However, it does not provide root-finding capabilities and thus

cannot be used in problems involving colliding bubbles. Additionally, the interface

is somewhat archaic.

DDE_SOLVER82 was designed to provide a simpler DDE solver with a

modern interface. It provides root-finding capabilities, and therefore it is useful in

solving colliding bubble problems. However, DDE_SOLVER cannot solve singular

equations and thus it cannot be used to calculate the implicitly defined delays.

Instead, the approximate expressions for the delays given in Section 5.1 must be

used.

B.2 State-dependent delay differential equations

B.2.1 Solving for implicitly defined delays

If a DDE solver capable of solving neutral DDEs, such as RADAR5, is used,

the implicitly defined delays may be obtained simultaneously with the solution by

augmenting the system with a set of singular equations for the delays.53,81

It is common to write systems of DDEs in the form

M .y = f
{
t,y(t),y[α1(t)], . . . ,y [αN(t)]

}
, (B.1)
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where α(t) is the vector of delayed times, and M is a (possibly singular) matrix.

If the numerical solver allows problems where M is singular, then it is possible to

represent both neutral DDEs and singular equations. As an example, consider the

Hamiltonian formulation for a system of two coupled bubbles without translation.

The equations of motion for this system may be written in the notation of Eq. (B.1)

as


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




.
R1.
R2.
G1.
G2

 =



1
4πρ0

(
G1
R3

1
− [G2]τ12

R1[R2D12]τ12

)
1

4πρ0

(
G2
R3

2
− [G1]τ21

R2[R1D21]τ21

)
1

4πρ0

(
3
2

G2
1

R4
1
− G1[G2]τ12

R2
1[R2D12]τ12

)
+ 4πR2

1(P1 − P0 − pe1)

1
4πρ0

(
3
2

G2
2

R4
2
− G2[G1]τ21

R2
2[R1D21]τ21

)
+ 4πR2

2(P2 − P0 − pe2)


. (B.2)

The delays τ12 and τ21 are defined implicitly by

τi j =
∆i j(τi j)

c0
, (B.3)

where the distance ∆i j depends on which of Eqs. (2.36)–(2.38) is chosen (Eq. (2.39)

was chosen on physical grounds presented in Section 2.2.3). Possible values for ∆i j

include

∆i j(τi j) = |X j − Xi|, (B.4a)

∆i j(τi j) = |[X j]τi j − Xi|, (B.4b)

∆i j(τi j) = |[X j]τi j − Xi| − Ri − [R j]τi j , (B.4c)

∆i j(τi j) = |[X j]τi j − Xi| − [R j]τi j . (B.4d)
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The system given in Eq. (B.2) is augmented by the delay relations to obtain



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0





.
R1.
R2.
G1.
G2
0
0


=



1
4πρ0

(
G1
R3

1
− [G2]τ12

R1[R2D12]τ12

)
1

4πρ0

(
G2
R3

2
− [G1]τ21

R2[R1D21]τ21

)
1

4πρ0

(
3
2

G2
1

R4
1
− G1[G2]τ12

R2
1[R2D12]τ12

)
+ 4πR2

1(P1 − P0 − pe1)

1
4πρ0

(
3
2

G2
2

R4
2
− G2[G1]τ21

R2
2[R1D21]τ21

)
+ 4πR2

2(P2 − P0 − pe2)

τ12 − ∆12(τ12)
c0

τ21 − ∆21(τ21)
c0


, (B.5)

which may be solved with an appropriate numerical solver.

This method may be adapted to multi-bubble systems. However, the num-

ber equations associated with the delays is large. For a system of N bubbles with

first-order coupling in R/D there are N(N − 1) delays. For a system with second-

order coupling there are N2(N − 1) delays. Modeling second-order coupling in a

system of 10 bubbles will thus require solution of 900 auxiliary equations for the

implicit delays. When applicable, the method given in Section 5.1 is preferred.
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Appendix C

Collection of Compressibility Approximations

For reference, the equations of motion corresponding to the four labels

assigned to the different levels of approximation for liquid compressibility effects

are collected here. Translation, along with viscous and thermal damping, are

neglected for simplicity.

The convention for delayed variables introduced in Chapter 2 is used here,

whereby g(t − τ) = [g]τ. The C1 approximation with delayed self-action pressure

and delay in bubble interaction is given in Lagrangian coordinates:

C1:
1
Ri

[
R2

i

..
Ri + 2Ri

( .
Ri

)2
]

Ri
c0

− 1
2

( .
Ri

)2
=

Pi − P0 − pei

ρ0
(C.1)

−
∑
i, j

[
R j

Di j

(
R j

..
R j + 2

.
R j

)]
τi j

. (C.2)

The remaining nonlinear equations of motion are given in Hamiltonian coordinates.

The C2 approximation, in which the delayed self-action terms are expanded in a

Taylor series and the higher-order derivatives are eliminated by iterative substitu-

186



tion while retaining terms up to O(1/c0) ×O(R2/D2), is

C2:
.
Ri =

1
4πρ0

 Gi

R3
i

−
∑
j,i

[G j]τi j

Ri[R jDi j]τi j

+
∑
j,i,k

[R j]τi j[Gk]τi jk

Ri[Di j]τi j[RkD jk]τi jk

 , (C.3)

.
Gi =

1
4πρ0

3
2

G2
i

R4
i

−
∑
j,i

Gi[G j]τi j

R2
i [R jDi j]τi j

+
∑
j,i,k

[R j]τi jGi[Gk]τi jk

R2
i [Di j]τi j[RkD jk]τi jk

(C.4)

− 1
2

∑
i, j,k

Gi[Gk]τik

[R jDi j]τi j[RkDik]τik

 (C.5)

+ 4πR2
i
(
Pi − P0 − pei

)
+ C(c,0)

i + C(c,1)
i + C(c,2)

i . (C.6)

The terms C(c,n)
i are defined in Eqs. (2.80)–(2.82). The C3 approximation, in which

the delayed self-action terms are expanded in a Taylor series and the higher-

order derivatives are eliminated by iterative substitution while neglecting terms

of O(1/c0) ×O(R/D), leaving the single-bubble radiation damping, is

C3:
.
Ri =

1
4πρ0

 Gi

R3
i

−
∑
j,i

[G j]τi j

Ri[R jDi j]τi j

+
∑
j,i,k

[R j]τi j[Gk]τi jk

Ri[Di j]τi j[RkD jk]τi jk

 , (C.7)

.
Gi =

1
4πρ0

3
2

G2
i

R4
i

−
∑
j,i

Gi[G j]τi j

R2
i [R jDi j]τi j

+
∑
j,i,k

[R j]τi jGi[Gk]τi jk

R2
i [Di j]τi j[RkD jk]τi jk

(C.8)

− 1
2

∑
i, j,k

Gi[Gk]τik

[R jDi j]τi j[RkDik]τik

 (C.9)

+ 4πR2
i
(
Pi − P0 − pei

)
+ C(c,0)

i . (C.10)

The C4 approximation is obtained from the C3 approximation by neglecting all
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delays in bubble interaction:

C4:
.
Ri =

1
4πρ0

 Gi

R3
i

−
∑
j,i

G j

RiR jDi j
+

∑
j,i,k

R jGk

RiDi jRkD jk

 , (C.11)

.
Gi =

1
4πρ0

3
2

G2
i

R4
i

−
∑
j,i

GiG j

R2
i R jDi j

+
∑
j,i,k

R jGiGk

R2
i Di jRkD jk

− 1
2

∑
i, j,k

GiGk

R jDi jRkDik

 (C.12)

+ 4πR2
i
(
Pi − P0 − pei

)
+ C(c,0)

i . (C.13)

The linearized equations of motion are obtained from the Lagrangian for-

mulations with Ri(t) = R0i + ξi(t) (|ξi| � R0i). The equations corresponding to the

four labels, C1-L, C2-L, C3-L, and C4-L, are

C1-L:
..
ξi(t − R0i/c0) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = − pei(t)

R0iρ0
, (C.14)

C2-L:
..
ξi(t) + ω0iδrad

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j)

−
∑
i, j

ω2
0 jR

2
0 j

c0Di j

.
ξ j(t − τi j) +

∑
j,i,k

ω2
0kR0 jR2

0k

c0Di jD jk

.
ξk(t − τi j − τ jk)

= − pei(t)
R0iρ0

− 1
ρ0c0

∂pei

∂t
(t) −

∑
i, j

R0iR0 j

ρ0c0Di j

∂pej

∂t
(t − τi j)

+
∑
j,i,k

R0 jR2
0k

ρ0c0Di jD jk

∂pek

∂t
(t − τi j − τ jk),

(C.15)

C3-L:
..
ξi(t) + ω0iδi,rad

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t − τi j) = − pei(t)

R0iρ0
, (C.16)
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C4-L:
..
ξi(t) + ω0iδi,rad

.
ξi(t) + ω2

0iξi(t) +
∑
i, j

R2
0 j

Di jR0i

..
ξ j(t) = − pei(t)

R0iρ0
, (C.17)

where δrad is the single-bubble radiation damping coefficient given by Eq. (3.37).
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Appendix D

Bubble Coalescence

A model in which bubbles may collide requires a method to account for

the physical process of bubble coalescence. The coalescence of bubbles is a compli-

cated process that cannot be fully described by a spherical bubble model. During

coalescence the bubbles undergo large surface deformations and can no longer be

approximated as spherical. However, the actual coalescence occurs very quickly

in comparison to the characteristic time scale of the bubble system,71 and hence

conservation relations are used to relate the state of the bubbles before and after the

collision occurs.

D.1 Conservation relations

The utilization of conservation relations to provide a connection between the

pre- and post-coalescence states of a bubble system as an approach to this problem

was first considered by Ilinskii et al.50 The conserved quantities and corresponding
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equations used were

center of mass : XaVa + XbVb = XcVc, (D.1a)

momentum:
.
XaVa +

.
XbVb =

.
XcVc, (D.1b)

volume: Va + Vb = Vc, (D.1c)

kinetic energy:
.

Va +
.

Vb =
.

Vc, (D.1d)

potential energy: PaVa + PbVb = PcVc, (D.1e)

where the indices a and b indicate the coalescence of bubbles a and b into bubble c.

Together these five equations determine the state of the new bubble: Rc,
.
Rc, Pc, Xc,

and
.
Xc. Equations (D.1a), (D.1b), and (D.1e) were chosen to maintain the center of

mass, conserve translational momentum, and conserve the potential energy of the

bubbles, respectively. These equations are local to the colliding bubbles. In contrast,

Eqs. (D.1c) and (D.1d) were chosen to maintain continuity of the radial mass flow

and conserve kinetic energy far from the bubbles, and they do not conserve energy

within the bubble system nor the mass of the gas within the bubbles. For systems

containing large numbers of bubbles, it is necessary to ensure that the energy and

the mass in the system is conserved. Indeed, numerical problems encountered in

simulations of multiple interacting and coalescing bubbles were a consequence of

system energy not being conserved. To achieve the conservation requirement, a new

set of conservation relations has been developed. Additionally, the old relations

were defined for the second-order Lagrangian equations of motion used in Ref. 50.
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The choice of Hamiltonian equations of motion here dictates that the new relations

be expressed in terms of the generalized coordinates and momenta.

D.2 New conservation relations

The new relations are derived from local requirements that mass, momen-

tum, and energy be conserved during bubble coalescence. Although this method

does not ensure continuity in the flow far from the bubbles, it does provide con-

tinuity in the collective state of the bubble system that is required for numerical

integration. When coalescence occurs, the center of mass, translational momentum,

mass of the gas inside the bubbles, total kinetic energy in the bubble system, and

potential energy in the coalescing bubbles are all conserved. It is informative to dis-

cuss how these conservation relations are implemented for the chosen Hamiltonian

coordinates.

D.3 Center of mass

The conservation relation for center of mass is unchanged. However,

Eq. (D.1a) requires the radius of the new bubble to determine the center of mass.

An alternate expression for the center of mass of two spheres is

Xc =
R3

aXa + R3
bXb

R3
a + R3

b

. (D.2)

Therefore, the center of mass can be calculated without knowledge of Rc.
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D.4 Translational momentum

Conservation of translational momentum is expressed naturally in the gen-

eralized coordinates of the Hamiltonian because the translational momentum is

the generalized momentum Mi. Momentum conservation is guaranteed simply by

requiring that

Ma + Mb = Mc. (D.3)

This requirement differs from the old momentum conservation relation by account-

ing for the total momentum in the system, rather than accounting for only the

momentum that would be experienced by a single bubble. This difference can be

significant in large systems and in systems undergoing high-amplitude motion.

D.5 Internal mass

The old conservation relations required that the volume of the coalescing

bubbles be conserved, whereas in the new relation it is required that the mass inside

the bubbles be conserved. The mass of the gas inside the ith bubble is

mi = ρiVi. (D.4)

In order to ensure that the mass of the gas inside the bubble is conserved it is

required that

ρaVa + ρbVb = ρcVc, (D.5)

whereρa, ρb, andρc are the densities of the gas inside bubbles a, b, and c, respectively.

In the absence of gas diffusion through the bubble surface and if the assumption of
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uniform pressure within the bubble holds, the density of the gas inside the bubbles

may be found from the equation of state,

ρ = ρ0

(
P̂
P0

)1/γ

, (D.6)

where P̂ is the pressure inside the bubble, which for the ith bubble is

P̂i =

(
P0 +

2σ
R0i

) (R0i

Ri

)3γ
. (D.7)

The mass conservation equation is thus

R3
0a

(
P0 +

2σ
R0a

)1/γ
+ R3

0b

(
P0 +

2σ
R0b

)1/γ

= R3
0c

(
P0 +

2σ
R0c

)1/γ
. (D.8)

The mass equation is only a function of the equilibrium radius, but unless σ = 0 (no

surface tension) it must be solved numerically.

D.6 Internal and potential energy

The potential energyV in the bubble system is the sum of the internal energy

stored in the compression state of the gas and the energy stored by surface tension

in the curvature of the bubble wall. In contrast, the old potential energy relation

only accounts for the internal energy in the gas. Note the difference between the

font V used to represent the potential energy and V used to represent the bubble

volume. The combined internal and potential energy stored in a single bubble is

Vi =
P̂iVi

γ − 1
+ 4πσR2

i + (P0 + pei)Vi. (D.9)

The first term represents the internal energy of the gas inside the bubble, and P̂i is

the pressure inside the bubble given by Eq. (D.7). The second term is the energy
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stored in the bubble wall by surface tension. The third term represents the potential

energy due to displacement of fluid mass and due to the primary Bjerknes force

exerted by the external source pe on the bubble (buoyancy forces are neglected).

Potential energy conservation requires that

Va +Vb =Vc. (D.10)

This equation may be solved numerically for Rc.

D.7 Kinetic energy

In order to derive an equation relating the kinetic energy in the system

before and after the collision, consider the total kinetic energy in the bubble system

given by Eq. (2.21),

K =
1

4πρ


1
2

∑
i

G2
i

R3
i

+ 3
∑

i

M2
i

R3
i

− 1
2

∑
i, j
i, j

GiG j

RiRkDi j
+ 3

∑
i, j
i, j

Gi

(
M j · ni j

)
RiD2

i j

+
1
2

∑
i, j,k
k,i, j

R jGiGk

RiRkDi jD jk

 +
∑

i

Mi · uei.

(D.11)

When the bubbles reside in a compressible medium it is necessary to include prop-

agation delays in the calculation of the kinetic energy as shown in Eq. (2.64). For

brevity, the delays are not included in the current derivation but can easily be

included. To determine the kinetic energy associated with the coalescing bubbles,

rewrite the kinetic energy of the system with the terms for the pre-collision bubbles,

labeled a and b, and the post-collision bubble, labeled c, stated explicitly. A method
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to correctly extract the required terms from the kinetic energy expression is given in

Section A.2. Terms that do not contain coordinates or momenta from the coalescing

bubbles are subtracted from both sides and do not appear here:

1
4πρ0

1
2

G2
a

R3
a

+
1
2

G2
b

R3
b

+ 3
M2

a

R3
a

+ 3
M2

b

R3
b

+
Ga Gb

Ra Rb Dab
+

1
2

Ra G2
b

R2
b D2

ab

+
1
2

Rb G2
a

R2
a D2

ab

− 3
GaMb · nab

RaD2
ab

− 3
GbMa · nba

RbD2
ab

−
∑

i
i,a

Ra Gb Gi

Rb Ri Dab Dai
−

∑
i

i,b

Rb Ga Gi

Ra Ri Dab Dbi

− 1
2

∑
i

i,a

Ri G2
a

R2
a D2

ai

− 1
2

∑
i

i,b

Ri G2
b

R2
b D2

bi

−
∑

i
i,a,b

Ri Ga Gb

Ra Rb Dai Dbi
−

∑
i

i,a

Ga Gi

Ra Ri Dai

−
∑

i
i,b

Gb Gi

Rb Ri Dbi
+ 3

∑
i

i,a

Ga Mi · nai

RaD2
ai

+ 3
∑

i
i,b

Gb Mi · nbi

RbD2
bi

+ 3
∑

i
i,a

Gi Ma · nia

Ri D2
ai

+ 3
∑

i
i,b

Gi Mb · nib

Ri D2
bi

+
1
2

∑
i, j

i, j,a

Ra Gi G j

Ri R j Dai Daj
+

1
2

∑
i, j

i, j,b

Rb Gi G j

Ri R jDbi Dbj

+
1
2

∑
i, j

i,a, j

Ri Ga G j

Ra R j Dai Di j
+

1
2

∑
i, j

i,b, j

Ri Gb G j

Rb R j Dbi Di j

]
+ Ma · uea + Mb · ueb

=
1

4πρ0

1
2

G2
c

R3
c

+ 3
M2

c

R3
c
−

∑
i

i,c

Gc Gi

Rc Ri Dci
+ 3

∑
i

i,c

Gc Mi · nci

Rc D2
ci

+ 3
∑

i
i,c

Gi Mc · nic

Ri D2
ci

+
1
2

∑
i, j

i, j,c

Rc Gi G j

Ri R j Dci Dcj
+

1
2

∑
i, j
i, j
i, j,c

RiGc G j

Rc R j Dci Di j

]
+ Mc · uec.

(D.12)
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After solving the previously stated conservation equations, the only remaining

unknown state variable for the new bubble is the radial momentum Gc. Equa-

tion (D.12) provides a relationship between the pre-collision state of the system and

the post-collision radial momentum.

In order to simplify Eq. (D.12) and solve for Gc, define the quantities

A =
1

8πρ0

1
R3

c
, (D.13a)

B =
1

4ρ0π

−
∑

i
i,c

Gi

Rc Ri Dci
+ 3

∑
i

i,c

Mi · nci

Rc D2
ci

+
1
2

∑
i, j

i, j, i, j,c

Ri G j

Rc R j Dci Di j

 , (D.13b)

C =
1

4πρ0

3
M2

c

R3
c

+
1
2

∑
i, j

i, j,c

Rc Gi G j

Ri R j Dci Dcj
+ 3

∑
i

i,c

Gi Mc · nic

Ri D2
ci

 + Mc · uec −Ka+b, (D.13c)

whereKa+b is the kinetic energy associated with bubbles a and b, corresponding to

the left-hand side of Eq. (D.12). With these definitions, Eq. (D.12) can be written as

a quadratic,

AG2
c + BGc + C = 0. (D.14)

Here A is a monotonically decreasing, positive function of Rc. Because Rc is always

positive, A is positive. Ka+b is the kinetic energy of the coalescing bubbles immedi-

ately before the collision, while the other terms on the right-hand side of Eq. (D.13c)

represent only a portion of the kinetic energy after the collision. The kinetic energy

must be the same before and after the collision, because Ka+b is subtracted from

the other energy terms. Thus, C is always negative. Therefore the product AC is
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always negative and Eq. (D.14) has only real roots,

Gc =
−B ±

√
B2 − 4AC
2A

. (D.15)

The root is chosen from the two options to match the sign of the sum Ga + Gb.

This condition is chosen so that the flow surrounding the bubble does not abruptly

reverse direction.

D.8 Comparison of results

In order to compare the new set of conservation relations derived here to

the conservation relations of Ilinskii et al.,50 a collision between two bubbles in free

response is considered. The bubbles both have an equilibrium radius of R0 = 10µm.

One bubble is initially compressed to 0.03R0 while the other is initially expanded

to 1.13R0. The bubbles are placed 6R0 apart and the system is centered at the

origin, aligned with the x-axis. The effects of translation are included. Because the

conservation relations of Ilinskii et al. do not account for surface tension, this effect

is neglected here.

The motion of the bubbles is simulated using the Hamiltonian equations of

motion, Eq. (2.24), until the collision occurs. When the collision between the two

bubbles occurs, the simulation is halted and the new conservation relations derived

here and the previous conservation relations, Eqs. (D.1), are used to calculate the

equilibrium radius, current radius, radial velocity, position, and translational ve-

locity of the new bubble. Where necessary, the corresponding momenta are also

calculated. After the new coordinates and velocities are obtained, the kinetic energy
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(Eq. (D.11)), internal energy (Eq. (D.9)), internal mass (Eq. (D.4)), translational mo-

mentum (Eq. (2.20)), and center of mass (Eq. (D.2)) of the two old bubbles and the

new bubble are calculated and compared. The results of these calculations using

the old conservation relations are presented in Table D.1. The table contains the

percent difference of the conserved quantities in the pre- and post-collision systems.

For some quantity Q, the percent difference between pre- and post-collision values

is given by
Q(post) −Q(pre)

Q(pre)
× 100%.

With the new conservation relations, the relevant quantities are conserved to

within numerical machine precision and thus are not shown in the table. Of the five

quantities shown, the only one that is conserved by the old conservation relations

is the center of mass. The other quantities increase appreciably, with the exception

of the kinetic energy, which decreases slightly. This is not surprising because the

old conservation relations were derived from far-field considerations in the host

liquid, without requiring absolute local conservation of any quantity within the

bubble system. The discrepancy between pre- and post-collision values calculated

by the old conservation relations is even greater in large systems of bubbles. This

is because the old conservation relations do not account for interaction energy

and shared momentum of the bubbles. Thus, in systems of large bubbles the

new conservation relations are preferred. This is especially true when integrating

delay differential equations (DDEs) because the large discontinuities in the pre- and

post-collision values can cause the integration to terminate, as DDEs are especially

sensitive to discontinuities in the history.
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Difference between pre- and post-collision values
Kinetic energy −4.2%
Internal energy 19%
Internal mass 50%
Translational momentum 9.3%
Center of mass 0.0%

Table D.1: Percent difference between pre- and post-collision values of the con-
served quantities calculated with the conservation relations of Ilinskii et al.50
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