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Abstract 

 

Machine Learning Algorithms for 

Solving Some Seismic Inversion Challenges 

 

Son Dang Thai Phan, Ph.D. 

The University of Texas at Austin, 2021 

 

Supervisor:  Mrinal K. Sen 

 

Seismic inversion is a popular quantitative approach to extract some of the subsurface 

properties from seismic amplitudes by utilizing the physics of the wave propagation through earth 

layers, in forms of the empirical formulations that simulate the energy distribution phenomenon. 

Typical inversions are performed with limited offset angles, and in a small time-window, within 

which the wavelet is assumed to be stationary, and the property contrasts are small across the 

boundaries. These exposes the process to several major problems: (1) the limited resolution due to 

wavelet effects, (2) the dependence on some rock physics models when inverting for petrophysical 

properties, and (3) the resolution discrepancy between the time domain seismic signal and well 

logs in depth domain. The primary goal of this research is to use machine learning to solve these 

challenges, by designing and applying proper neural network structures and suitable training 

schematics. Firstly, a single-layer Boltzmann machine is implemented as an unsupervised learning 

algorithm to predict the elastic properties at higher resolution than that can be achieved by 

conventional approaches, while still retaining the physical relationship between the seismic 

amplitudes and reflectivity series. The high-resolution results are produced from the accurate post-

inversion reflectivity series, which is not bounded by the wavelet effects, and novel model update 

schemes. Secondly, a new multimodal Cross-shape deep Boltzmann machine is designed to 
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simultaneously capture six possible relationships between four different input training data to 

invert for petrophysical properties from the pre-stack seismic amplitudes in datasets with limited 

well coverages. This algorithm has a significant advantage in avoiding the uncertainties associated 

with the data fitting algorithms to create the rock physics models to guide the solution. Last but 

not the least, a novel multimodal deep learning network is applied to predict the posterior 

distribution of the subsurface elastic properties from a seismic gather, to resolve the resolution 

discrepancy challenge, by a smart preparation of the training label in the form of time dependent 

probability distributions. The biggest advantage of this algorithm is the avoidance of the heuristic 

calculation of the partition function, which is required to calculate the posterior distributions of 

common neural network outputs. While the first algorithm requires an input wavelet to constraint 

the results, the other two algorithms do not, which make them appropriate for inversion in depth 

domain, or with nonstationary signals. 
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Chapter 1 : Introduction 

1.1. Motivation 

Recorded seismograms are important sources of information to understand 

subsurface properties. On a seismic section with normal polarization, the positive 

amplitudes indicate the transition boundaries from softer to stiffer materials, and vice versa 

for the negative amplitudes. Seismic inversion (e.g Sen, 2006) is a popular quantitative 

approach to extract the subsurface elastic properties from seismic amplitudes by utilizing 

the physics of the wave propagation through earth layers. Various studies have been carried 

out to improve the overall quality of inversion results. 

Typical seismic inversions, assuming small property contrasts across the 

boundaries, are performed on a small time-window, within which the wavelet is assumed 

to be stationary, and limited offset angles up to 35 degrees (Ikelle and Amundsen, 2018) 

These work best in fields where hydrocarbon signatures are recognizable on seismic 

sections. However, they may not be valid when the background geology becomes 

complicated with significant property contrasts, or in fields in which reservoir zones 

occupy large time intervals such that waveform changes are unavoidable due to energy 

dissipation and absorption. To improve the quality of inversion results in such conditions, 

non-stationary wavelets and large incident angle reflections are required. Despite countless 

efforts (e.g., Lines and Treitel, 1985; Fomel, 2007; Dai et al., 2016, Wang and Morozov, 

2020), the estimation of source wavelets remains a difficult task. An alternative approach 

that does not directly require input wavelets is more desirable.  

Artificial neural networks are a relatively new technology that has been 

successfully developed and applied in many areas of science and engineering, with 

noticeable applications ranging from the classical speech and text recognitions to the 

current live data prediction and optimization in many engineering and financial problems. 
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In seismic data analysis, the learning and adaptive capabilities of the ANN are valuable 

assets in performing automation tasks such as horizon picking, velocity analysis etc. (e.g., 

Murat et al., 1992, McCormack et al., 1993, Fish et al 1994, Biswas et al., 2018), or 

inversion of seismic data (Roth et al. 1994, Calderon-Marcias et al., 1993, Phan and Sen, 

2019, Biswas and Sen, 2019). Recent applications in the advanced interpretation process 

include pattern recognition for structural features (Saggaf et al 1998, Diersen et al 2011, 

Brekovic et al 2017).   

A neural network is built on a large system of interconnected units called the 

neurons. The interaction between neural nodes, once information is passed through the 

system, decides the learning pattern from the input information. The training process can 

be either (1) supervised, where known input data and corresponding labels are used to guide 

the network structure toward a desired relationship, or (2) unsupervised where the 

algorithm works on its own to extract hidden information from the unlabeled input data. 

Depending on the complexity of the objective feature, a network may have no or multiple 

hidden layers. A deep learning network system includes multiple layers of neurons to 

capture hidden features or properties from the data (e.g, Goodfellow et al., 2016). The 

extracted information is contained within the weight terms of network structures such as 

perceptron, multi-layer feedforward network, or recent deep learning methods with 

different structures involving the convolution neural networks (CNN-Lecun et al., 1995); 

or the responses of the neurons, such as Hopfield Network (Hopfield et al, 1985), the self-

organizing maps (Kohonen, 1988), or the generative adversarial network (GAN-

Goodfellow et al., 2016). 

Although machine learning has been evolving as a promising technical 

advancement to seismology, a full understanding of all available algorithms becomes an 

impossible task. One may find it difficult to choose from a large number of different 
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methods that could do the same task, with almost similar outcomes. The question of which 

network structure to use for a particular problem has been a challenging topic for any 

researcher interested in applying machine learning to their studies.  

The primary goal of my research is to use machine learning to solve some 

outstanding problems in seismic inversion: (1) the wavelet effects limiting the resolution 

of recorded seismic data, (2) the source signal changing shape and amplitude when 

traveling through the earth, (3) the dependence on data fitting algorithms to create some 

rock physics models to guide the solutions, and (4) the resolution discrepancy between 

seismic signals and well log data when combined for modeling. I hypothesize that with 

proper network structures and suitable training schematics, the machine learning 

algorithms would be able to mitigate these challenges, to a great extent. 

In this chapter, I will review the common seismic inversion approaches and their 

limitations, the general neural network structures, and how to determine the efficiency of 

network training. I then outline my research objectives, and describe the organization of 

the rest of my dissertation chapters. 

1.2. Common Seismic Inversion Approaches and Their Limitations 

The inversion problem for quantitative seismic interpretation comprises (1) a 

forward problem (Equation 1.1), which assumes a convolution model1 between the source 

signal w (also represented by the Toeplitz matrix W) and a reflectivity series (r) that 

represents the changes in rock properties, (2) an objective function that compares the 

difference between the recorded and synthetic signals, and (3) a model update scheme. The 

source wavelet is often difficult to measure for its non-stationary property: its shape and 

intensity change due to the high frequency attenuation when traveling through the 

 
1 A convolution model is a highly simplified approximation of wave propagation – full waveform inversion 

uses a more rigorous numerical solver of the wave equation. 
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subsurface (Yilmaz, 2001). Meanwhile, the reflectivity series is typically calculated using 

a full Zoeppritz equation (Zoeppritz, 1919), or its linearized version such as the Aki-

Richards (1980) approximations. Such calculations are validated for reflected signals 

whose incident angles are up to the critical threshold (Wang, 1999). 

 

 𝒔 = 𝒘(∗)𝒓 = 𝑾𝒓, (1.1) 

 

For a conventional pre-stack inversion approach, low frequency starting models are 

required at the beginning of the inversion process. This requires building property models 

from the horizons interpreted on seismic sections, which come with large uncertainties, 

especially in areas with complex geological settings. Common seismic inversion methods 

also suffer from the limited bandwidth of the seismic data, where the low frequency (0-10 

Hz) and the high frequency (above 50 Hz) contents are missing. The lack of high frequency 

content limits the resolution of fine features, while the lack of low frequency content results 

in unreliable trends in the results. The methods based on statistical approaches such as that 

described by Srivastava and Sen (2010) have been applied successfully to broaden the high 

frequency bandwidth to improve the seismic resolution. Meanwhile, the common approach 

to recover the low frequency content is to use low frequency starting models to guide the 

solution (e.g., Sirgue, 2006; Innanen et al., 2011). The models are created by populating 

well log values throughout a 3D volume using some interpolation and extrapolation 

techniques. This process requires a geological framework built on the interpreted surfaces 

from a given seismic dataset. In areas with complex geological settings, the interpretation 

may have large uncertainties, which transform into uncertainties in the inversion results. 

To reduce the dependence on the guiding model, better approaches that are independent of 

human inputs are preferred. 
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1.3. Neural Networks 

A neural network is a system of interconnected units that simulates the neurons 

within human brains. The neurons are connected via communication links (weights), 

through which an activation signal passes from one to the other once an incoming signal is 

received. Each neuron can only send one signal at a time. The visible neuron layer receives 

data, while hidden layer(s) serve(s) to extract hidden properties within input data. 

Depending on the complexity of the problem, a network may have one or multiple hidden 

layers. 

 

 

Figure 1.1: A simple neural network structure with 3 neurons X1, X2 and X3 receiving 

information from a neuron Y1 via communication links W1, W2 and W3. 
 

A neural network can be characterized by its architecture (the number of neurons 

and how they are connected to each other), the method of determining the connection 

weights (via training or optimization), and the output signal via activation function 

(Fausett, 2002). The training process can be either (1) supervised, where known input data 

and corresponding labels are used to guide the network structure toward a desired 

relationship; or (2) unsupervised where the algorithm works on its own to extract hidden 

information from the unlabeled input data. For an example, in Figure 1.1, a supervised 

training will have labeled data fed into both neurons Y and X’s so that the extracted weight 
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terms w’s represent possible relationship between Y and X. Meanwhile, an unsupervised 

training will have data fed into only neuron Y, so that the internal mechanism rearranges 

and optimizes the outputs of neurons X’s and weights w’s to represent some features of 

input signal. 

Let 𝑿 = [𝑋1, 𝑋2 …𝑋𝑁]𝑇 and 𝒀 = [𝑌1, 𝑌2 …𝑌𝑀]𝑇 be the neuron values of layers X 

and Y, and 𝑾 = {𝑊𝑖𝑗} be a weighting matrix, where 𝑤𝑖𝑗 is the weighting term connecting 

𝑋𝑖 to 𝑌𝑗, and 𝒃 = [𝑏1, 𝑏2 …𝑏𝑀]𝑇be the threshold term, which determines how sensitivity 

the neuron is to the incoming signal. The data is fed into the system at layer Y.  The learning 

process is to find the best parameters that minimize an energy function at Equation 1.2. 

The incoming signal is translated at each individual neuron in layer X via connection 

weight, with an amplitude in Equation 1.3. If the signal amplitude surpasses the threshold 

terms, the neurons emit feedbacks whose amplitudes are determined by an activation 

function 𝜃 in Equation 1.4. The activation function varies from the simplest form of a 

dipole response with either 0 or 1, or -1 or 1; to more complicated forms such as the logistic 

or step functions, depending on the desired output. Returning energy toward layer Y are 

used to update the weighting terms, and in some cases, the threshold term, if not preset, 

following a backpropagation of energy differentiation in Equation 1.5. The learning terms 

𝛼𝑾, 𝛼𝒃 are used to control the updating process. The traveling back and forth of data 

between neuron layers stops when the minimum energy stage is reached, at which the 

network is trained and could be used for further analyses.   

 

 𝐸(𝑾, 𝒃, 𝑿, 𝒀) = −𝒀𝑻𝑾𝑿 + 𝒃𝑻𝑿, (1.2) 

 𝜑(𝒀,𝑾, 𝒃) = −
𝜕𝐸

𝜕𝑋
= 𝑾𝑻𝒀 − 𝒃, (1.3) 

 𝑿 = 𝜃(𝝋), (1.4) 
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 ∆𝑾 = −𝛼𝑾

𝜕𝑬

𝜕𝑾
; ∆𝒃 = −𝛼𝒃

𝜕𝑬

𝜕𝒃
. (1.5) 

   

1.4. Neural Network Training:  Determination of Efficiency  

The network accuracy is measured by how close the energy function (or loss 

function) is toward the global minimum value, while its generalization is determined by 

how well it is able to predict the independent dataset that is not used in the training process. 

A properly trained neural network should be able to generalize the expected property and 

accurately predict results. A network is said to be underfitted if it is trapped at a local 

minimum during the training process. A network which has high prediction capability, but 

poor generalization is considered an overfitted one.  

While an underfitted network can be optimized by using different optimization 

algorithms, or providing more data, an overfitted network requires careful analysis. A 

common approach to deal with such a challenge is to split the data into two parts used for 

two purposes: training and testing (Reitermanova, 2010). The system is first trained with 

training dataset, and then cross-validated (Picard et al., 1984) with the testing dataset. The 

matured network will ensure that the energy functions of both training and testing datasets 

reach stable solutions when reaching a global minimum stage (Figure 1.2). An overfitted 

network may have a stable loss curve of the training data, and an overturned test loss curve.  

Underfitting may be either due to getting trapped at a local minimum solution, or 

not reaching the globally optimal solution, given the number of epochs and data. The 

solution is to provide more training data to the network, or using a better optimization 

technique (e.g, Sen and Stoffa, 2013). Meanwhile, for an overfitting case, starting of a 

gradual increase in the test data’s loss curve indicates that the network has begun to lose 

its generalization. In such a situation, either providing more data, or modifying the 

hyperparameters may largely influence the performance.  
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Overfitting is a common problem in deep learning. Several data manipulation 

techniques have been developed to deal with such a challenge. Pooling is a technique to 

create feature maps that summarize all features in the input data. The common ones are 

MaxPooling (getting the maximum value), or AveragePooling (taking the average value). 

Dropout (Srivastava et al., 2014) is a technique to prevent overfitting when training a neural 

network by introducing noise to the learning process. At each epoch, a population of 

features are randomly chosen and dropped from the network training process. This has 

been proven to significantly reduce overfitting and improve the network performance. 

 

 
Figure 1.2:  The determination of network quality by looking at the energy (loss) functions 

of the training and testing datasets. 
 

1.5. Objectives and Organization 

The primary goal of my research is to examine if machine learning algorithms can 

be used to solve three outstanding challenges in seismic inversions: (1) the limited 

resolution due to wavelet effects, (2) dependence on some rock physics models when 

inverting for petrophysical properties, and (3) quantification of the posterior distribution of 

the prediction results to resolve the resolution discrepancy between the time domain 

seismic signal and well logs in depth domain. 
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In the second chapter, I show how a single-layer network namely Boltzmann 

machine can be implemented as an unsupervised learning algorithm to predict elastic 

properties (impedances and density) at higher resolution than conventional approaches, 

while still retaining the physical relationship between the seismic amplitudes and 

reflectivity series. In the third chapter, I introduce a new multimodal network structure 

called the Cross-shape Deep Boltzmann machine that is able to simultaneously capture six 

possible relationships between four different input training data and use those to invert for 

petrophysical properties from pre-stack seismic amplitudes in a dataset with limited well 

coverages. In the fourth chapter, I design a multimodal deep learning network to construct 

the posterior distributions of the subsurface elastic properties from seismic gathers and 

demonstrate with a field data application. Chapter five summarizes the research and 

highlights some of the future research areas. 
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Chapter 2 : A Boltzmann Machine for High Resolution Pre-stack 

Seismic Inversion 

Publication: Interpretation 2019, Vol 7: SE215-SE224, ISSN 2324-8858 

https://doi.org/10.1190/INT-2018-0234.1 

2.1. Introduction 

Seismic inversion aims at predicting some indicative rock properties such as elastic 

impedances from the recorded dataset (e.g., Sen, 2006; Singha et al., 2014; Chatterjee et 

al., 2016) by utilizing the physics of wave propagation within the subsurface. Typically, it 

uses the Zoeppritz equation (Zoeppritz 1919) or its linearized versions such as the Aki-

Richards (1980) approximation for computing reflection amplitudes. This inversion 

problem comprises of (a) a forward model, which is the convolution between a source 

wavelet, which represents seismic signal sent to the subsurface, and a reflectivity series, 

which represents the changes in subsurface elastic properties, (b) an objective function that 

compares the difference between the recorded and synthetic signals, and (c) a model 

update.  

Common seismic inversion methods suffer from the limited bandwidth of the 

seismic data, where the low frequency (0-10 Hz) and the high frequency (above 50 Hz) 

contents are missing. The lack of high frequency content limits the resolution of fine 

features, while the lack of low frequency content results in unreliable trends in the results. 

The methods based on statistical approaches such as those from Srivastava and Sen (2010) 

have been applied successfully to broaden the high frequency bandwidth to improve the 

seismic resolution. Meanwhile, the common approach to recover the low frequency content 

is to use low frequency starting models to guide the solution (e.g., Sirgue, 2006; Innanen 

et al., 2011). The models are created by populating well log values throughout a 3D volume 

using some interpolation and extrapolation techniques. This process requires a geological 

https://doi.org/%7B%7Barticle.doi%7D%7D
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framework built on the interpreted surfaces from a given seismic dataset. In areas with 

complex geological settings, the interpretation comes with large uncertainties, which 

transform into uncertainties of the inversion results. In order to reduce the dependence on 

the guiding model, better approaches that are independent of human inputs are preferred. 

Tikhonov (1963) introduced the first and second derivative operators as 

regularization terms to improve the stability of the underdetermined inverse problems. 

Many scholars used those to stabilize the solution of the seismic inverse problems (e.g., 

Menke, 1989). Studies demonstrated the effectiveness of these regularization terms in 

stabilizing the solutions (Bijwaard et al., 1998; Abubakar et al., 2009; Habashy et al., 

2011). Zhang et al. (2013) successfully employed this approach to improve the lateral 

continuity of their results from basis pursuit inversion.  

A Boltzmann machine is a special neural network which comprises of a Hopfield 

Neural Network (HNN; Hopfield et al.,1985) and the Mean Field Annealing (MFA) (Bilbro 

et al., 1989). The HNN is known to converge quickly toward an optimal solution once an 

initial state of the neurons is provided and an update rule is applied. Wang and Mendel 

(1992) employed HNN in their reflectivity solver and wavelet extractor. However, the 

HNN update rule only guarantees convergence to a local minimum (Rojas 1996). To ensure 

a global minimum solution, I integrate a stochastic model update from the MFA. This 

annealing algorithm reaches the equilibrium state 1-2 orders of magnitude faster than 

simulated annealing while still retaining a close relationship with the Hopfield network 

(Bilbro et al., 1989).  Reported successful applications of HNN and MFA include Ansari 

et al. (1993), Dixon et al. (1995) in communication network design. In seismology, 

Calderon-Marcias et al. (1997) improved Wang and Mendel (1992) solution of the 

deconvolution problem by integrating HNN with MFA and applied it to multiple 

attenuation problem as well. Kahoo et al. (2006) later replicated this method and found that 
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the HNN was not sensitive to noise, the reflectivity estimator was not sensitive to frequency 

bandwidth of the wavelet, and the method improved the temporal resolution of a seismic 

section. 

In this study, I employ the Boltzmann machine framework to perform pre-stack 

inversion with the goal of obtaining high resolution elastic properties. In my inverse 

problem, the forward modeling is a convolution model, the objective function is the 

Hopfield objective function, and the model update is guided by the stochastic MFA 

algorithm for a global minimum solution. The stochastic model update schematic of the 

Boltzmann machine helps broaden the search radius for all possible solutions to reduce the 

non-uniqueness of the final solution that common iterative least square solvers suffer from. 

In addition, the incorporated Hopfield network brings a huge advantage to the 

computational cost for its great capability of parallel calculations when dealing with large 

datasets. 

The introduced algorithm includes two main steps: the first performs deconvolution 

to estimate the offset dependent reflectivity terms using a set of stationary wavelets 

calculated from the seismic data, which is similar to Calderon-Marcias et al. (1993) 

approach; the second inverts for Elastic P-, S-Impedances and density from the output 

reflectivity of the former step. To improve the lateral continuity of the results, I integrate 

the Tikhonov regularization into simultaneous inversion at multiple common depth point 

(CDP) locations. Common AVA inversions are performed on CDP-by-CDP location, 

which may result in a lack of lateral continuity in the final solutions as the algorithm does 

not take into account the relationship between neighboring traces. By reorganizing the 

order of input trace samples and introducing the first or second order Tikhonov 

regularization terms, the inversion preserves more geological events than the conventional 

trace-by-trace inversion approaches (Zhang et al., 2013).  
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For a conventional pre-stack inversion approach, low frequency starting models are 

required at the beginning of the inversion process. This requires building property models 

from the horizons interpreted on stack sections, which come with large uncertainties, 

especially in areas with complex geological settings. On the other hand, my approach 

directly inverts for reflectivity terms, bypassing the requirements of a starting model to 

guide the solution. Upon completion of the individual property reflectivity inversion step, 

I start to pick horizons on the reflectivity sections, build property models from those 

horizons and use those to predict the absolute target log values.  

I show the results of this approach on a real 2D pre-stack seismic dataset that 

contains multiple vertical well paths with sonic, shear and density logs. The results confirm 

that this method is capable of producing indicative sections with realistic features 

supported by well results and suggest some possible targets within the vicinity of the 

seismic line. 

 

 

Figure 2.1: Inversion flow to obtain final log properties with Boltzmann machine. 
 

2.2. Methods 

The general workflow of this study is summarized in Figure 1, which involves two 

inversion steps: (1) inverting for an offset dependent reflectivity series from an input angle 

gather by assuming known stationary wavelets extracted from the seismic gathers, and (2) 

inverting for individual log reflectivity series from the output of (1) using a linearized 
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Zoeppritz equation by Aki and Richards (1980). Both inversion steps use the Hopfield 

network along with Mean Field Annealing as the main optimization algorithm. To improve 

the lateral continuity of the results, I incorporate a Tikhonov spatial regularization term 

into the first inversion step. The final step involves converting from reflectivity to absolute 

log values using a simple conversion formula. 

2.2.1. Hopfield Neural Network 

The Hopfield Neural Network (HNN) introduced by Hopfield et al. (1985) is an 

auto-associative network that requires a fixed input pattern to obtain the outputs. It is well-

known for its fast convergence toward a stable solution once an initial stage of the neurons 

is provided and an update rule is applied. This neural system has been applied widely in 

engineering problems such as in communication network design. In exploration 

seismology, Wang and Mendel (1992) was the first to apply HNN in their automatic 

deconvolution and wavelet extraction problems. 

A Hopfield network is a fully interconnected neural network in which each unit is 

connected to every other unit. The net has symmetric weights with no self-connections, as 

described in the schematic plot in Figure 2.2. Consider an inverse problem y = Gx where 

the recorded data are fed into y, an operator G, and the target is to find the values of x. In 

case G is a square invertible matrix; the solution is a simple x = G-1y. Unfortunately, it is 

rarely the case as G could be a singular matrix. One could attempt to solve for this equation 

by using a direct inversion with some regularization term such as the damped least squares 

method. This is viable for a small size and simple problem. However, for large problems 

with strong heterogeneity in reservoir property, this method shows its weakness in 

computation cost in finding the inverse matrix and the requirement to update the damping 

parameter. 
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One way is to iteratively search for the values of x that minimizes the L2 norm error 

function 𝑬(𝒙) =
𝟏

𝟐
‖𝒚 − 𝑮𝒙‖𝟐, which is expanded into the general form in Equation (2.1): 

 

 𝑬(𝒙) =
𝟏

𝟐
𝒚𝑻𝒚 − (−

𝟏

𝟐
𝒙𝑻𝑮𝑻𝑮𝒙+𝒚𝑻𝑮𝒙). (2.1) 

The Hopfield network can be used to solve this optimization problem. Detailed 

description of HNN can be found in Hopfield et al. (1985), Wang and Mendel (1992), and 

Sen and Stoffa (2013). The energy or the cost function, and update rules of the network are 

given by,  

 

 
𝑬(𝒙𝒊) = −

𝟏

𝟐
𝒙𝒊

𝑻𝑾𝒙𝒊 + 𝝓𝑻𝒙𝒊, (2.2) 

 
𝒙𝑖+1 = {1 𝑖𝑓(−𝑾𝑇𝒙𝒊 + 𝝓) > 0

0 𝑒𝑙𝑠𝑒                                
. (2.3) 

 

where W represents the symmetric weighting matrix W, xi represents the status of the ith 

neuron, 𝝓  represents the threshold by which the input energy must surpass to have the 

neuron change its stage. Equation (2.2) is the energy function of the network, which is 

nothing but a reorganized form of Equation (2.1) without the constant term 
𝟏

𝟐
𝒚𝑻𝒚; 𝑾 =

𝑮𝑻𝑮-diagonal(𝑮𝑻𝑮) is a symmetric matrix; and the threshold term 𝝓 = 𝑮𝑻𝒚 +

𝐝𝐢𝐚𝐠𝐨𝐧𝐚𝐥(𝑮𝑻𝑮)𝒙  is dynamically dependent on the unknown x. Equation (2.3) is the 

activation function that represents the update rule of the network: a neuron changes its 

status when the incoming external force, which is 𝑾𝑇𝒙𝒊, surpasses the threshold 𝝓. 
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Figure 2.2: The schematic of a discrete Hopfield network. 
 

2.2.2. Mean Field Theory 

For conventional networks, a neuron can only feedback with a discrete value of 

either {0,1} or {-1,1}, depending on the format of the results. Meanwhile, the reflectivity 

series can take any value between the interval [-1, 1]. In order to capture these values, 

Wang and Mendel (1992) decomposed the reflectivity term using the geometric coding of 

Young (1971). However, such additional step increases the size of the inverse system, 

which consequently reduces the computational advantage of the network.  

A better choice is to use a stochastic activation function, like a Mean Field 

Annealing (Bilbro et al., 1989). This uses a sigmoid function, such as in Equation (2.4), 

that allows the network to capture all possible solutions in the interval [-1, 1] without 

sacrificing the calculation cost. In this equation, a temperature term T represents the 

cooling schedule of the system, which is borrowed from the simulated annealing algorithm 

(Kirkpatrick et al., 1983). The formula of this annealing schedule is shown in Equation 

(2.5), where the temperature at the kth iteration (Tk) is controlled by an initial temperature 

T0 that decays at a rate 𝛽. Details on MFA can be found in Bilbro et al (1989), Calderon-

Macias et al. (1997) and Sen and Stoffa (2013). 
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𝒙𝑖+1 =

1

1 + 𝑒𝑥𝑝 (−
𝑾𝑇𝒙𝒊 − 𝝓

𝑇𝑘
)
; 

(2.4) 

 𝑇𝑘 = 𝑇0𝑒𝑥𝑝(−𝛽√𝑘 − 1). (2.5) 

2.2.3. Forward Modeling Formulation 

Convolution Model 

The convolution model is used to connect the reflectivity term with the seismic 

trace. Ignoring the external noise, an input seismic trace y = [y1, y2…yN]T can be written 

using a stationary wavelet s and reflectivity series x =  [x1, x2…xN]T as:  

 

 

𝑦𝑘 = ∑𝑠𝑘−𝑖𝑥𝑖

𝑁

𝑖=1

, (2.6) 

which can be rewritten in the matrix form y = Sx, where y represents the input seismic 

trace; S represents the wavelet kernel which is a Toeplitz matrix created from the wavelet 

term s; and x represents the reflectivity term. The HNN algorithm can be employed in this 

case by considering unknown x to be the status of the neurons in Equations (2.2) and (2.3).  

Linearized Zoeppritz Equation from Aki and Richards (1980) 

Estimating the reflectivity series is the prerequisite for the estimation of rock 

properties, which in this case the Vp, Vs and Density. The Zoeppritz equation (Zoeppritz, 

1919) gives exact reflection coefficients. Several linearized approximations of Zoeppritz 

equation by Aki and Richards (1980), Fatti et al. (1994) are widely used. In this study, I 

employ the Aki-Richards (1980) equation to calculate the PP reflection coefficient at a time 

sample as a function of offset angle θ as: 
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𝑅𝑝𝑝(𝜃) = 𝐶1(𝜃)

∆𝑉𝑝

𝑉𝑝0
+ 𝐶2(𝜃)

∆𝑉𝑠
𝑉𝑠0

+ 𝐶3(𝜃)
∆𝜌

𝜌0
, (2.7) 

where 𝐶1(𝜃) =
1

2
(1 + 𝑡𝑎𝑛𝜃2),   𝐶2(𝜃) = −4𝑠𝑖𝑛𝜃2

𝑉𝑠0
2

𝑉𝑝0
2 , 

 

 
𝐶3(𝜃) =

1

2
(1 − 4𝑠𝑖𝑛𝜃2

𝑉𝑠0
2

𝑉𝑝0
2 ). 

 

In Equation (2.7), 𝑉𝑝0, 𝑉𝑠0, 𝜌0 are the average Vp, Vs and Density across the 

boundary. Extending Equation (13) to full angle offset range  𝜃𝑖  for i=1…M, full data range 

j=1…N, and using the following rewritten terms 𝑅𝑝 =
ΔV𝑝

𝑉𝑝0
⁄ ,𝑅𝑠 =

ΔV𝑠
𝑉𝑠0

⁄ , 𝑅𝜌 =

Δ𝜌
𝜌0

⁄ , I obtain a series of equation, which can be written in the matrix form as:  

 

 

[
 
 
 
𝑅𝑝𝑝(𝑡, 𝜃1)

𝑅𝑝𝑝(𝑡, 𝜃2)

⋮
𝑅𝑝𝑝(𝑡, 𝜃𝑀)]

 
 
 

= [

𝐶1(𝑡, 𝜃1) 𝐶2(𝑡, 𝜃1) 𝐶3(𝑡, 𝜃1)

𝐶1(𝑡, 𝜃2) 𝐶2(𝑡, 𝜃2) 𝐶3(𝑡, 𝜃2)
⋮ ⋮ ⋮

𝐶1(𝑡, 𝜃𝑀) 𝐶2(𝑡, 𝜃𝑀) 𝐶3(𝑡, 𝜃𝑀)

] [

𝑅𝑝(𝑡)

𝑅𝑠(𝑡)
𝑅𝜌(𝑡)

], (2.8) 

which can be represented in the form y = Gx with unknown x = [𝑅𝑝(𝑡) 𝑅𝑠(𝑡) 𝑅𝜌(𝑡)]𝑇. 

The HNN algorithm can be used in this case to quickly find the solution of this inverse 

problem. 

 

 

[
 
 
 
 
 
 
 
 
𝑑1,1

𝑑1,2

⋮
𝑑1,𝑁

𝑑2,1

𝑑2,2

⋮
𝑑2,𝑁]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝐺1,1 𝐺1,2 … 𝐺1,𝑁 0 0 … 0

𝐺2,1 𝐺2,2 … 𝐺2,𝑁 0 0 … 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝐺𝑁,1 𝐺𝑁,2 … 𝐺𝑁,𝑁 0 0 … 0

0 0 … 0 𝐺1,1 𝐺1,2 … 𝐺1,𝑁

0 0 … 0 𝐺2,1 𝐺2,2 … 𝐺2,𝑁

⋮ ⋮ ⋱ ⋮ ⋮ … ⋱ ⋮
0 0 … 0 𝐺𝑁,1 𝐺𝑁,2 … 𝐺𝑁,𝑁]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑚1,1

𝑚1,2

⋮
𝑚1,𝑁

𝑚2,1

𝑚2,2

⋮
𝑚2,𝑁]

 
 
 
 
 
 
 

 (2.9a) 
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[
 
 
 
 
 
 
 
 
 

𝑑1,1

𝑑2,1

𝑑1,1

𝑑2,2

⋮
𝑑1,𝑁−1

𝑑2,𝑁−1

𝑑1,𝑁

𝑑2,𝑁 ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐺1,1 0 𝐺1,2 0 … 𝐺1,𝑁 0

0 𝐺1,1 0 𝐺1,2 … 0 𝐺1,𝑁

𝐺2,1 0 𝐺2,2 0 … 𝐺2,𝑁 0

0 𝐺2,1 0 𝐺2,2 … 0 𝐺2,𝑁

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐺𝑁,1 0 𝐺𝑁,2 0 … 𝐺𝑁,𝑁 0

0 𝐺𝑁,1 0 𝐺𝑁,2 … 0 𝐺𝑁,𝑁]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑚1,1

𝑚2,1

𝑚1,1

𝑚2,2

⋮
𝑚1,𝑁−1

𝑚2,𝑁−1

𝑚1,𝑁

𝑚2,𝑁 ]
 
 
 
 
 
 
 
 

 (2.9b) 

Spatial Regularization 

The 1st and 2nd order Tikhonov regularization matrices (Tikhonov, 1963) have been 

used widely to constrain the solution of some linear inverse problems. In applied 

seismology, they have been used in improving the solutions to some problems such as: (a) 

constraining the underdetermined seismic tomography problem (Bijwaard, 1998), (b) 

stabilizing the solutions of the full Waveform Inversion at some sharp boundaries 

(Abubakar et al., 2009), or (c) improving the lateral continuity of the inverted results 

(Zhang et al., 2013).  

 

 
Figure 2.3: The “Z” shape trace sample sorting method for multi-trace case. Left panel 

shows the order of sampling for two traces, while right panel shows the order of 

sampling for multiple traces. 

 

In this study, I use the “Z” shape trace sampling method to re-organize the samples 

as described in Figure 2.3. For details, see Zhang et al (2013). As an example, for an inverse 
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problem d = Gm with two traces of length N, the conventional trace by trace sorting is 

expressed as in Equation (2.9a), and the “Z” shape trace sampling is expressed in Equation 

(2.9b). 

Conversion from Reflectivity to Absolute Log Values 

Once the individual reflectivity terms at Equation (8) are obtained, I convert those 

into the absolute Vp, Vs and Density terms. One condition for Equation (7) is the small 

change in property across the boundary. With this assumption, I use the following 

conversion equation from Zhang et al (2013), where the subscripts O represent the low 

frequency models: 

 

 
𝑉𝑝(𝑡) = 𝑉𝑝0(𝑡)𝑒𝑥𝑝 (∫𝑅𝑝(𝑡)𝑑𝑡)

𝑉𝑠(𝑡) = 𝑉𝑠0(𝑡)𝑒𝑥𝑝 (∫𝑅𝑠(𝑡)𝑑𝑡)

𝜌(𝑡) = 𝜌0(𝑡)𝑒𝑥𝑝 (∫𝑅𝜌(𝑡)𝑑𝑡)

. (2.10) 

2.3. Results 

I applied this algorithm to a 2D field dataset with several wells located along the 

line. The available logs include sonic, shear and density with target to be a hot shale interval 

with low density and P-wave velocity lying between two stiffer intervals characterized by 

high Vp and density values, as shown in Figure 2.4. The pre-stack seismic data was 

converted into angle gathers, ranging from 0-35 degrees at 5 degrees interval. 

Correspondingly, I extracted 7 stationary statistical wavelets (except the zero offset) that 

best tie well logs with the seismic data to feed into the inversion algorithm.  

The provided pre-stack seismic data comes with four already interpreted horizons, 

where the purple horizon is represented on the reservoir top, as shown in Figure 2.5. The 

quality of the purple and green horizons is supported by strong seismic events well 
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correlated with well log data. The objective is to better delineate the geobody distributions 

in two areas: between the blue and purple horizons, which is highlighted by yellow arrows.  

From the well log property analysis in Figure 2.6, I observe that the P- and S-

impedance can highlight the hot shale from the over- and under-lying stiffer materials. The 

P-impedance versus density cross-plot with color coding of gamma ray index (GR) 

strongly outlines a hot shale interval to be located toward the low P-impedance values. 

Moreover, the histogram plots of the P- and S-impedance values show clear separations 

between reservoir and non-reservoir values. Therefore, I performed pre-stack AVA 

inversion to obtain the elastic P- and S-impedance and the density section to assist further 

mapping process. 

I first tested the algorithm at the well locations for quality control before inverting 

the data for the entire 3D line. I performed the multi-trace inversion with a pair of 

neighborhood CDP locations and used the first order Tikhonov regularization term. I was 

able to obtain the best-fit results that match very well with the controlling angle gather, and 

the final inverted P-reflectivity matches very well with the actual P-reflectivity calculated 

from well logs, as shown with three example wells in Figure 2.7.  

The inverted P- and S-reflectivity sections are of higher resolutions with sharper 

events with clear terminations, as shown in the highlighted zone in Figure 2.8. This allows 

me to perform horizon tracing with higher confident level to build up a more detailed 

structural framework for the P-, S and Density models used for converting reflectivity 

sections into absolute log values. I used a low frequency model of 10-15 Hz of P-, S-

impedances and density to convert the log reflectivity into absolute log values using 

Equations 10. With this workflow, I expect to obtain results with more details. The final 

predicted logs match very well with the well logs, as shown in Figure 2.9. With the 

inversion results, I was able to map the low density, Vp and Vs reservoir intervals. The 
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predicted logs in the shallow section of Well 1 follows the log trends in Well 2 and 3 of 

the same intervals, therefore I believe these to be of reliable quality. However, I also 

observe some minor mismatches in areas where very strong property contrasts are 

predicted within thin sections. These random features are below seismic resolution, 

therefore may not be captured by this dataset. 

With satisfactory results at well locations, I applied the inversion results to the 2D 

line. Figures 2.10-2.12 show the comparisons between the estimated P-, S- impedances and 

Density sections using Boltzmann machine and from a regular model-based deterministic 

inversion. The inversion algorithm is capable of outlining more features than from the latter 

method. I observe multiple geobodies with low P-impedances in the shallower sections and 

below the base of the reservoir. Comparing those with the inverted S-impedance and 

density sections, and incorporate with the well analysis result, I predict that there are 

possible targets distributed in the deeper section toward the left portion of the 2D seismic 

lines highlighted by outstandingly low P-impedances, S-impedances and average density 

values. The termination of the bright amplitude anomaly along with the possible structural 

closure from dipping event are two strong indicators of possible change in fluid content at 

this location. 

2.4. Summary 

I present a new application of a machine learning algorithm for pre-stack inversion 

to produce high resolution indicative sections to assist in the interpretation process. I 

employed a Boltzmann machine, which comprises of a Hopfield neural network and a 

stochastic model update from Mean Field Annealing algorithm to automatically invert for 

the elastic impedances and density. I first inverted for offset dependent reflectivity series 

and use those to solve for the reservoir properties. To improve the quality of the inverted 
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sections, I applied a “Z” shape trace sorting schematic and the 1st order Tikhonov as a 

spatial regularization term to improve the lateral continuity of the inverted sections.  

One significant aspect of this method is that the inversion process does not require 

a starting model. Therefore, I was able to avoid any uncertainties or biases introduced from 

the horizon mapping process to create a model. I introduced a low frequency model only 

after the deconvolution by inversion was performed and observed that the resulting 

reflectivity sections are of high resolution. 

 

 

Figure 2.4: The well log responses at one well and the corresponding horizons on seismic 

section. In this case, the top of target zone is the purple horizon, while the base is 

the green event. 
 

I demonstrated the algorithm on a 2D pre-stack dataset with several control wells. 

The primary objectives were to estimate high resolution P- and S-impedance sections to 

delineate possible features in the shallow and deeper sections from the main reservoir 

interval. The input parameters calibrated at well locations show excellent matches with 

seismic data and original well logs. The algorithm is capable of capturing multiple high 
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frequency features of the well logs and populates those away from the wells with the 

guidance of seismic data. The satisfactory results when applying the methods to 2D lines 

suggest that there might be some isolated geobodies in the deeper left portion of the 2D 

seismic line. 

 

 

Figure 2.5: The seismic section showing interpreted horizons. The reservoir interval is 

between purple and green horizons. The objective is to better delineate geobody 

distributions in two areas: between the blue and purple horizons, which is 

highlighted by yellow arrows. 

 
 

 

Figure 2.6: The well log analyses with cut-off value for reservoir and non-reservoir zones 

using P-Impedance (Zp) and S-impedance (Zs). The histogram of P-impedance and 

2D Seismic Stacked Section 
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S-impedances for reservoir and non-reservoir intervals suggests clear separation 

and the cut-off values are useful for adjusting color-bar for displaying purposes. 
 

 

Figure 2.7: Inverted Offset Reflectivity is supported by excellent match between the 

synthetic and the real angle gathers. The final inverted P reflectivity matches very 

well with actual log calculated from well log. 
 

 

Figure 2.8: Inverted Rp and Rs sections (right two panels) are of higher resolution than the 

original stacked section. Sharper events for picking are in highlighted area. 
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Figure 2.9: Inverted results (blue curves) plotted against the real logs (red curves) and the 

smooth model used to convert from reflectivity to absolute log values (cyan curves) 

at some well locations. Note the time scale is for reference only. 
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Figure 2.10: Inverted P-Impedance shows excellent matches at well locations. Notice the low impedance events in the reservoir 

interval as highlighted by white arrows. A prospective zone is highlighted with black ellipse and green arrow.  

Reservoir Zone 

Well 3 Well 2 Well 1 

Well 3 Well 2 Well 1 
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Figure 2.11: Inverted S-Impedance shows excellent matches at well locations. The reservoir zone is highlighted by low shear 

impedances highlighted by white arrows. The additional prospective zone is in white ellipse with low S-Impedance. 
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Figure 2.12: Inverted Density section shows excellent matches at well locations. Notice the reservoir is well defined by the low-

density interval in the middle of the section, following the white arrows. The prospective zone is in white ellipse with 

low density.  
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Chapter 3 : A Cross-shape Deep Boltzmann Machine for Petrophysical 

Seismic Inversion 

Manuscript Submitted to the AAPG Bulletin 

3.1. Introduction 

Typical petrophysical logs include porosity (𝜙), water saturation (Sw) and shale 

volumetric (Vshale). The lithological units in sand-shale environments are determined by 

the shale volume contrasts, and water saturation indicates hydrocarbon bearing zones. 

Several approaches (e.g Bachrach, 2006, Spikes et al., 2007) have been developed and 

applied to predict these properties from recorded seismic data via direct inversion using 

some rock physics models that represent statistical relationships between target logs and 

elastic properties. 

Seismic inversion techniques (e.g Sen, 2006) utilize the physics of the wave 

propagation within the subsurface to predict rock elastic properties such as P-impedance, 

S-impedance, and density. The inversion process comprises of (1) a forward problem, 

which assumes a convolution model between the source signal and a reflectivity series that 

represent the changes in rock properties, (2) an objective function that compares the 

difference between the recorded and synthetic signals, and (3) a model update scheme. The 

source wavelet is often difficult to measure for its non-stationary property; its shape and 

intensity change due to the high frequency attenuation when traveling through the 

subsurface (Yilmaz, 2001). Meanwhile, the reflectivity series is typically calculated using 

a full Zoeppritz equation (Zoeppritz, 1919), or its linearized version such as Aki-Richards 

(1980) approximations. Such calculations are validated for reflected signals whose incident 

angles are up to the critical threshold (Wang, 1999).  

Commonly, inversions are performed within a small time-window, within which 

the wavelet is assumed to be stationary with minimum changes in amplitudes and 
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frequency content. The three-term Aki-Richards or Shuey (1985) approximation is often 

used to calculate the reflectivity series for incident angles up to 35 degrees (Ikelle and 

Amundsen, 2018), assuming the property contrasts across the boundaries to be small. These 

work best in fields where hydrocarbon signatures are recognizable on seismic sections. 

However, they might not be valid when the background geology becomes complicated with 

significant property contrasts or in fields in which reservoir zones occupy large time 

intervals such that waveform changes are unavoidable. To improve the quality of inversion 

results in such conditions, non-stationary wavelet and varying maximum incident angles 

are required. However, the estimation of source wavelets still remains a difficult task (e.g., 

Lines and Treitel, 1985; Fomel, 2007; Dai et al., 2016, Wang and Morozov, 2020). An 

alternative approach that does not directly require input wavelets is more desirable. 

The step after seismic inversion is to relate elastic properties to petrophysical 

properties at the well locations using the relationship established at the well locations, 

which is then used to infer the petrophysical properties away from the wells from seismic 

inversion results. Artificial neural networks (ANN) that have been applied successfully in 

many areas of science and engineering fields, have also been used for this purpose. A neural 

network is a system of interconnected units that simulate the neurons within human brains. 

The network learning capability is trained by the interaction between neural nodes when 

information is passed through the system. A properly trained network is capable of 

recognizing important features of a new dataset for predicting target outputs. The training 

process could be either (1) supervised, where known input data and corresponding labels 

are used to guide the network structure toward a desired relationship, or (2) unsupervised, 

where the algorithm works on its own to extract hidden information from the unlabeled 

input data.  
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The learning capabilities of ANN have been valuable assets in performing 

automatic computations. Unsupervised networks such as the Hopfield neural networks 

have been used for velocity analysis (Calderon-Marcias et al., 1993), or pre-stack inversion 

of seismic data (Phan and Sen, 2019) by rearranging the network structure to resemble the 

physical framework of the inverse problem. Supervised deep learning systems such as 

convolution neural networks (CNN-Lecun et al., 1995) or autoencoder-decoders (Hinton 

et al., 2011) are widely used to simulate the inversion operator from labeled data to 

compute elastic impedances (e.g., Li et al, 2020, Zheng et al., 2019, Biswas et al., 2019). 

The supervised networks for seismic inversion may be designed such that they do not 

require any prior knowledge of the wavelets. However, they do require a large amount of 

training data coverage to be able to capture all possible scenarios. 

 In common network designs for applications in seismic inversion, the training data 

are fed into visible layers located at two ends of the network structures. For pre-stack 

inversion problems that involve solving for multiple rock property terms, the training 

models are first merged and reorganized into a single neuron layer before they are input 

into the network. During the learning process, model parameters are updated to minimize 

an objective function. These update schemes do not clearly provide information on how 

individual model is manipulated.  

A Boltzmann machine is a probabilistic deep learning network that is composed of 

two layers of neuron units which connects with each other via bidirectional weights. A 

cross-shape deep Boltzmann machine (CDBM) is a multimodal deep Boltzmann machine 

(Srivastava et al., 2014) created by connecting four different Boltzmann machines at the 

vertices via a hidden neuron layer located at the center of the cross. This arrangement 

allows the center units to distribute changes of input data at any visible vertex throughout 

the network toward remaining vertices. In an inversion problem for petrophysical 
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properties, the CDBM network structure simulates simultaneous interaction between the 

rock properties and the seismic amplitudes: any changes in any output terms are transmitted 

and results instantly in a change in seismic amplitude, and vice versa. Once the network is 

trained, one could deduce any geological information from the established mathematical 

relationships between various input terms. 

A CDBM is designed here to carry out pre-stack seismic inversion that can estimate 

petrophysical properties directly. Unlike the conventional seismic inversion, this approach 

is not restricted to stationary wavelets, and does not require any rock physics model to 

direct the inversion algorithm. Four different data types, including seismic gathers, and 

three target logs of porosity, water saturation and shale volumetric, are used to train the 

network. Six different nonlinear relationships between 4 data types are simultaneously 

captured, among which the three connections from seismic amplitudes to the petrophysical 

logs are expected for property predictions. Unlike any conventional deep learning system, 

which expects large data for all what-if scenarios into training, the CDBM only requires 

the anticipated upper and lower bounds of the data and labels, which could be obtained 

from available well data. A field dataset with 2D seismic angle gather sections and 7 wells 

along the line is used for demonstration purposes. A total of 140 intervals ranging from the 

minimum to maximum property values are used for each data type fed to the vertices, which 

make up of 1403 combinations of possible scenarios of these three parameters. This makes 

the algorithm a perfect candidate for problems with limited dataset, but powerful and robust 

enough to account for uncertainties while still retaining the generalization outside of the 

training information. 
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3.2. Method 

3.2.1. Neural Network and Deep Learning 

A neural network is a system of interconnected units that simulate the neurons 

within human brains. The neurons are connected via communication links (weights), 

through which activation signal is passed from one to the other once an incoming signal is 

received (Figure 3.1). The neuron layer where data is fed into the system is called a visible 

layer. The other layer that serves to extract information from data is called hidden layer. 

Depending on the complexity of the data property, a network may have no or multiple 

hidden layers. A deep learning network system includes multiple layers of hidden neurons 

to extract hidden features or properties from the data (e.g, Goodfellow et al., 2016). The 

extracted relationship between input and output is contained within the weight terms, or 

the responses of the hidden neurons, depending on the nature of the data and the 

expectations of the algorithms. 

 

 

Figure 3.1: A simple neural network structure with 3 neurons X1, X2 and X3 receiving 

information from a neuron Y1 via communication links w1, w2 and w3. A supervised 

training will have labeled data fed into both neurons Y and X’s so that the extracted 

weight terms w’s represent possible relationship between Y and X. Meanwhile, an 

unsupervised training will have data fed into only neuron Y, so that the internal 

mechanism rearranges and optimizes output of neurons X’s and weights w’s to 

represent some features of input signal. 
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A neural network can be characterized by its architectures (the number of neurons 

and how they are connected to each other), the method of determining the connection 

weights (via training or optimization), and the output signal via activation function 

(Fausett, 2002). The training process could be either (1) supervised, where known input 

data and corresponding labels are used to guide the network structure toward a desired 

relationship; or (2) unsupervised where the algorithm works on its own to extract hidden 

information from the unlabeled input data. For an example, in Figure 3.1, a supervised 

training will have labeled data fed into both neurons Y and X’s so that the extracted weight 

terms w’s represent possible relationship between Y and X. Meanwhile, an unsupervised 

training will have data fed into only neuron Y, so that the internal mechanism rearranges 

and optimizes output of neurons X’s and weights w’s to represent some features of input 

signal.  

3.2.2. Restricted Boltzmann Machine (RBM) 

A Boltzmann machine is an energy based probabilistic deep learning network that 

is composed of two layers of neuron units which connects with each other via bidirectional 

weights. A restricted Boltzmann machine (RBM) by Smolensky (1986) is a variant of the 

single layer Boltzmann machine without the connections between neurons of the same 

group (Figure 3.2). The removal of the interconnection weights allows more efficient 

training such as the Contrastive Divergence algorithm of Hinton (2002). The learning 

process does not involve any back propagation, instead, requires random initializations of 

Markov chains to reach an equilibrium stage, at which the network is able to reconstruct 

the input data probabilistically. 

 

 𝐸(𝒗, 𝒉) = −𝒗𝑻𝑾𝒉 − 𝝓𝒗
𝑻𝒗 − 𝝓𝒉

𝑻𝒉, (3.1) 
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 𝑃(𝒉 = 𝟏|𝒗) = 𝝈(
𝜕𝐸

𝜕ℎ
); 𝑃(𝒗 = 𝟏|𝒉) = 𝝈(

𝜕𝐸

𝜕𝑣
), (3.2) 

 𝝈(𝑥) = 1/(1 + exp (−𝑥)), 

∆𝑾 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒗𝒉𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒗𝒉𝑻]). (3.3) 

For a binary network with M visible neurons v and N hidden neurons h connected 

by a weighting matrix W, the energy function of the system is shown in Equation (3.1), 

where 𝜙v and 𝜙h are the threshold terms of the visible and hidden layers. The probability 

of the neuron to change its status are shown in Equation (3.2), where 𝜎 represents the 

logistic activation function. The update of the weighting matrix W is not a back propagation 

process, but is governed by the difference between the data-dependent expectation (Hdata) 

and the model expectation (Hmodel) scaled with a learning constant 𝛼 (Equation 3.3). The 

expectation values are calculated using the Markov chain random initializations to find the 

best fit responses to the input data. 

 

 

Figure 3.2: A schematic diagram of a restricted Boltzmann machine. The data is fed into 

visible layer with red neurons Vi, fully interconnected with a hidden layer of orange 

neurons hi via a weighting matrix W. 
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3.2.3. Cross-shape Deep Boltzmann Machine 

A deep Boltzmann machine (DBM – Salakhutdinov and Hinton 2009) is a multi-

layer probabilistic network consisting of multiple layers of RBM for capturing hidden 

patterns within an unlabeled dataset. The layers are linked together with bidirectional 

connections, which allows the DBM to be more robust when incorporating uncertainty 

about ambiguous inputs. 

A cross-shape deep Boltzmann machine (CDBM) is created by connecting four 

different RBMs at the vertices via a hidden neuron layer located at the center of the cross 

(Figure 3.3). This arrangement allows the center units to distribute changes of input data at 

any visible vertex throughout the network toward remaining vertices. In a pre-stack 

inversion problem for petrophysical properties, the CDBM network structure simulates 

simultaneous interactions between the rock properties and the seismic amplitudes: any 

changes in any output term are transmitted and results instantly in a change in seismic 

amplitude.  

 

 

Figure 3.3: The schematic diagram of the cross-shape deep Boltzmann machine with four 

red visible neuron layers {X, Y, Z, T} in the outer area; and 5 hidden layers {h1, 

h2, h3, h4, h5} toward the center. The neuron layers are connected with bidirectional 

weighting matrices I, J, K, L, M, N, O and P. Hidden neuron h2 (in blue) reflects 

with simultaneous interactions between visible input neurons. 
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The four RBM includes four visible layers {X, Y, Z, T}, and five hidden layers {h1, 

h2, h3, h4, h5} located in the inward direction, as shown in Figure 3.2. The hidden layer h2 

in the center of the cross instantly transmits changes of any input into other visible layers 

via the bidirectional weight terms I, J, K, L, M, N, O, P. When data is fed into visible 

neuron layers, the network transmits information inward to the center via h1, h3, h4 and h5. 

When incoming signals arrive at layer h2, these neurons handle and send back response 

signal outward to the vertices in the opposite direction. This back-and-forth data traveling 

are repeated until an equilibrium stage is achieved. 

 

 𝐸 = −𝒀𝑻𝑰𝒉𝟏 − 𝒉𝟏
𝑻𝑱𝒉𝟐 − 𝒉𝟑

𝑻𝑲𝒉𝟐 − 𝑿𝑻𝑳𝒉𝟑 − 𝒉𝟒
𝑻𝑴𝒉𝟐 − 𝒁𝑻𝑵𝒉𝟒

− 𝒉𝟓
𝑻𝑶𝒉𝟐 − 𝑻𝑻𝑷𝒉𝟓 − 𝝓𝒀

𝑻𝒀 − 𝝓𝑿
𝑻𝑿 − 𝝓𝒁

𝑻𝒁 − 𝝓𝑻
𝑻𝑻. 

(3.4) 

The general form of the energy or loss function for this design is shown in Equation 

(3.4), where 𝜙i represents the threshold of the layer noted in subscription. The learning 

process of this network is described by Equations (3.5) – (3.14). The training data is first 

input into the visible layers, after which the hidden neurons start to interact to extract the 

patterns from dataset. Major steps in the algorithm include: 

• Calculating the data-dependent expectation by fixing the visible neurons with input 

data and estimating hidden neuron responses until equilibrium. 

• Estimating the model expectation by running multiple Gibbs sampling on all 

neuron responses to capture the uncertainties in model parameters. 

 

 
𝑃(𝒉𝒊 = 𝟏|𝒗) = 𝜎 (

𝜕𝐸

𝜕𝒉𝒊
) ; i = [1,5] (3.5) 

 
𝑃(𝒗𝒋 = 𝟏|𝒉) = 𝜎 (

𝜕𝐸

𝜕𝒗𝒋
) ; 𝑗 = [1,4] (3.6) 

 ∆𝑰 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒀𝒉𝟏
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒀𝒉𝟏

𝑻]) (3.7) 
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 ∆𝑱 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒉𝟏𝒉𝟐
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒉𝟏𝒉𝟐

𝑻]) (3.8) 

 ∆𝑲 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒉𝟑𝒉𝟐
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒉𝟑𝒉𝟐

𝑻]) (3.9) 

 ∆𝑳 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝑿𝒉𝟑
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝑿𝒉𝟑

𝑻]) (3.10) 

 ∆𝑴 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒉𝟒𝒉𝟐
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒉𝟒𝒉𝟐

𝑻]) (3.11) 

 ∆𝑵 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒁𝒉𝟒
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒁𝒉𝟒

𝑻]) (3.12) 

 ∆𝑶 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝒉𝟓𝒉𝟐
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝒉𝟓𝒉𝟐

𝑻]) (3.13) 

 ∆𝑷 = 𝛼(𝐻𝑑𝑎𝑡𝑎[𝑻𝒉𝟓
𝑻] − 𝐻𝑚𝑜𝑑𝑒𝑙[𝑻𝒉𝟓

𝑻]) (3.14) 

Reorganizing the visible layers as v = {X, Y, Z, T}, the hidden layers as h = {h1, h2, h3, h4, 

h5} and the weighting matrices as W = {I, J, K, L, M, N, O, P}. The hidden neuron 

responses are calculated by following the order of data transmission within the network, 

which is: 

1. Update hidden neurons h1, h3, h4, h5 using Equation (3.5), 

2. Update hidden neurons h2 using Equation (3.5), 

3. Update visible neuron layers using Equation (3.7), 

4. Update weighting terms using Equations (3.7) - (3.14), 

5. Update hidden neurons and weighting terms until equilibrium is achieved. 

One significant advantage of the CDBM network, besides the structural framework, 

is its capacity in accounting for what-if scenarios the training data. Unlike other supervised 

deep learning algorithm, the CDBM only requires the upper and lower bounds of input 

labeled data so that the internal mechanism automatically generate all possible 

combinations of the data fed to the vertices.  

3.2.4. CDBM Implementation in Inversion for Petrophysical Properties 

The CDBM is implemented into an inversion problem to predict the shale 

volumetric, porosity and water saturation from pre-stack angle gathers. This supervised 
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training is set-up to capture the nonlinear relationship between seismic data and rock 

property terms. Once the network is trained, it can predict properties away from the wells. 

Let the seismic gather be input Y, while Vshale, 𝜙 and Sw are fed to vertices X, Z 

and T. The training efficiency is quantified by a least square misfit function of all inputs, 

as shown in Equation (3.15). Expanding this equation, and replacing the terms h1, h3, h4 

and h5 with corresponding function from h2 (Equation 3.16), and the intermediate terms 

such as 𝑱̅, 𝑲̅, 𝑶̅, 𝝓𝑿 =
𝟏

𝟐
𝑿;𝝓𝒀 =

𝟏

𝟐
𝒀, 𝝓𝒁 =

𝟏

𝟐
𝒁,𝝓𝑻 =

𝟏

𝟐
𝑻 , the final misfit function is 

obtained, as in Equation 3.17, and shares the same form with the general misfit function in 

Equation 3.6. 

 

𝐸 =
1

2
‖𝒀 − 𝑰𝒉𝟏‖2 +

1

2
‖𝑿 − 𝑳𝒉𝟑‖2 +

1

2
‖𝒁 − 𝑵𝒉𝟒‖2 +

1

2
‖𝑻 − 𝑷𝒉𝟓‖2 (3.15) 

  Where 𝒉𝟏 = 𝑱𝒉𝟐; 𝒉𝟑 = 𝑲𝒉𝟐; 𝒉𝟒 = 𝑴𝒉𝟐; 𝒉𝟓 = 𝑶𝒉𝟐, (3.16) 

𝐸 = −𝒀𝑻𝑰𝒉𝟏 ± 𝒉𝟏
𝑻𝑱̅𝒉𝟐 − 𝒉𝟑

𝑻 𝑲̅𝒉𝟐 − 𝑿𝑻𝑳𝒉𝟑 − 𝒉𝟒
𝑻 𝑴̅𝒉𝟐 − 𝒁𝑻𝑵𝒉𝟒 −

𝒉𝟓
𝑻 𝑶̅𝒉𝟐 − 𝑻𝑻𝑷𝒉𝟓 + 𝝓𝒀

𝑻𝒀 + 𝝓𝑿
𝑻𝑿 + 𝝓𝒁

𝑻𝒁 + 𝝓𝑻
𝑻𝑻, 

(3.17) 

where 
𝑱̅ = −

1

2
𝑱; 𝑲̅ = −

1

2
𝑲; 𝑴̅ = −

1

2
𝑴; 𝑶̅ = −

1

2
𝑶,  

 ∆ 𝝓𝑿 =
𝟏

𝟐
𝑿;𝝓𝒀 =

𝟏

𝟐
𝒀,𝝓𝒁 =

𝟏

𝟐
𝒁,𝝓𝑻 =

𝟏

𝟐
𝑻.  

3.3. Examples 

The designed network is applied to a 2D field dataset (Figure 3.4) for demonstration 

purposes. Seven vertical wells are located along the line. All wells come with logs fully 

covering most of the target intervals shown with low impedances between stiffer intervals 

of high impedance values, and outstandingly high gamma ray reading, while leaving out 

the underlying sections in some wells. The pre-stack gathers were converted into angle 

gathers, ranging from 0 to 28 degrees at 5 degrees increment to ensure the highest 

correlation between well logs and seismic data. The petrophysical logs are calculated using 
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common approaches: total porosity is calculated from the density log with a sandstone base 

line; Vshale is extracted by normalizing the gamma ray index, and water saturation is 

calculated using the Wyllie time average rock physics model. The target zone is highlighted 

by a hot shale interval. To examine the generality of the network, recorded seismic data 

and logs at Well 2 are used for blind test. This well is located in the middle of the line, with 

full data coverage of the target intervals.  

 

 

Figure 3.4: The seismic stack section through all wells within the 2D field data line. The 

available logs include the gamma ray (GR), density (RHOB), sonic (DT) and shear 

(DTS) velocity, and resistivity. The target is a hot shale interval with outstandingly 

high GR values (above 175 API) of softer material (smaller density and sonic 

readings than overlaid stiffer materials. Correspondingly, the top of hot shale 

interval is a strong trough event on the seismic stacked section.  
 

The CDBM is ideal for this dataset, due to the limited number of wells available, 

which restricted the amount of data that could be used for training any conventional deep 

learning system. A total of 140 intervals ranging from the minimum to maximum property 

values are used for each data type fed to the vertices, which comprise 1403 combinations 

of possible scenarios of these three parameters. 

Following the same implementation procedure, the data is fed into the deep learning 

system at visible vertices. All hidden layers are set with the same number of units. A small 
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learning rate of 0.001 is used to accommodate the updating of all weight matrices. The 

network reaches an equilibrium stage when the overall error value is flattened after 10 

epochs (Figure 3.5). At this stage, the network successfully reconstructed all peaks and 

troughs of the input data (Figure 3.6-3.9). In detail, reconstructed angle gathers, porosity 

and water saturation well overlay the real values at all visible events, with minor 

differences in amplitudes at Well 2 and Well 3 locations. Meanwhile, the machine 

underpredicts the hot shale interval in most of the wells. This is reasonable considering the 

seismic signature of this zone is similar to the signature of a clean sandstone interval: strong 

trough overlaying peak events. Also, the inconsistent data coverages of the environment 

below the target interval strongly affect the algorithm’s decision in predicting the features 

there. 

 

 
Figure 3.5: The plot of update values for the internal weighting I, J, K, L, M, N, O, P 

illustrate the maturation of this CDBM network toward stability after 20 epochs. 
 

The trained network is applied to the entire 2D line to predict petrophysical sections 

(Figure 3.10-3.12).  The resulting porosity section shows likely prospective intervals of 

high values at the bottom of the target. Meanwhile, the predicted Vshale and water 
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saturation sections suffer lateral resolution where multiple vertical stripes strongly occupy 

the display along with the geological sound events. These are due to insufficient data 

coverage to represent features outside of the target zones. 

 

 

Figure 3.6: The comparison between reconstructed (black) and real seismic gathers that 

were used to train the network. Notice that Well 2 was not used for training, and 

the trained network was able to recreate the data at this location. 
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Figure 3.7: The comparison between reconstructed (black) and real total porosity values 

that were used to train the network. Notice that Well 2 was not used for training, 

and the trained network was able to recreate the data at this location. 
 

3.4. Summary 

This study introduces a newly designed cross-shape deep Boltzmann machine to 

capture the non-linear relationship between seismic amplitude and rock properties in the 

pre-stack inversion problem. The network includes four separated vertices of visible 

neuron layers following four hidden layers, all of which are connected by a hidden neuron 

at the center of the cross-shape. 

For the prestack inversion for petrophysical properties, this deep learning algorithm 

requires four different input data types, including a seismic amplitude, and three 

petrophysical logs such as the porosity, water saturation and shale volumetric for training. 

Inherently from the deep Boltzmann family, the CDBM, unlike any conventional deep 

learning system, which expects large data for all what-if scenarios into training, only 

requires the anticipated upper and lower bounds of the data and labels, which could be used 

by the internal mechanism to account for any possible value combinations.  
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In the demonstration, 2D dataset with 7 well controls with limited data coverage 

around the low impedance hydrocarbon bearing shale interval overlaid by stiffer sealing 

shales is used. From the property bounds, the CDBM generates a total of 140 intervals 

ranging from the minimum to maximum property values for each data type to feed to the 

vertices, which make up of 1403 combinations of possible scenarios of these three 

parameters. The trained network was able to recognize and replicate the majority of 

features in the original logs, except for the shale volumetric readings of the hydrocarbon 

shale interval. This is due to the similarity in seismic signatures of the hot shale and 

sandstone overlaid by similar stiffer materials, and the complication of labeling the shale 

volumetric values to better distinguish between the sealing and prospective shale.   

 

 
Figure 3.8: The comparison between reconstructed (black) and real shale volumetric 

(Vshale) values that were used to train the network. The network underestimates 

the Vshale readings of hot shale interval, which is expected as the hot shale is 

having similar seismic characterization as porous sandstones of other intervals. 
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Figure 3.9: The comparison between reconstructed (black) and real water saturation values 

that were used to train the network. The network over-estimates the water saturation 

readings in some wells, such as Well 5. 
 

 

Figure 3.10: The predicted porosity section from trained CDBM network. 
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Figure 3.11: The predicted shale volumetric section from trained CDBM network. 

 

Figure 3.12: The predicted water saturation section from trained CDBM network. Notice 

the patchy results along the line, which insufficient training data. 
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Chapter 4 : Quantifying Uncertainty in AVA Inversion 

Using Deep Learning 

Manuscript submitted to Geophysics. 

4.1. Introduction 

Recorded seismograms are an important source of information to understand 

subsurface rock properties. Pre-stack inversion is a popular seismic reservoir 

characterization method to extract the subsurface properties from the recorded 

seismograms. On a seismic section with normal polarization, the positive amplitudes are at 

the transition boundaries from softer to stiffer materials, and vice versa for the negative 

amplitudes. However, the inverse problem usually suffers from non-uniqueness due to the 

fact that multiple combinations of elastic properties may be able to match the observed 

data, the noise and measurement errors (Brown, 1998).  

A set of recorded logs in depth domain from drilling locations is used to guide the 

inversion process and reduce uncertainties. They are first converted to time domain via 

seismic well-tie process (Walden and White, 1984; White and Shimm, 2003) before being 

used for further analyses. There lies a huge discrepancy in resolution between the seismic 

signals and well log events: a 2 milli-second two-way-time interval of 3,000 meters per 

second acoustic velocity is equal to 30 meters of depth, which could correlate within an 

interval of 200 recorded log values sampled at 15 centimeters spacing. As a result, 

matching a single log value to a single amplitude is not enough, unless the interval is 

completely homogenous. A probabilistic relation expressing all possible depictions of such 

a situation is more reasonable. A good prediction of this posterior distribution provides 

better understanding of the uncertainty in the inversion results associated with the seismic 

amplitudes. 



49 
 

Many studies have been carried out to quantify the uncertainty of predicted results 

using some statistical methods, such as the Bayesian approach (Sen and Stoffa, 2013; 

Mukerji et al., 2001; Buland et al. 2003; Tarantola, 2005), which combines the prior 

information on the target model with the likelihood function that links the model 

parameters to the observed data. The prior information is estimated from the conceptual 

models of existing well data analyses or inferred from regional studies. The likelihood 

function represents the physical relationship between the model parameters and recorded 

seismic signal, such as the full-wave equation, or the Zoeppritz equation and its linearized 

approximation (Aki and Richards, 1980). The resulting posterior distribution calculated 

from the seismic sections allow quantifying the uncertainty of the inverse problem.  

The prediction of elastic properties and their uncertainties are challenging due to 

the complexity of the geological background, and the choice of an algorithm itself. For a 

full-wave inversion algorithm (Virieux et al., 2017), the complete physics of the wave 

propagation is integrated into the forward modeling, and the solution is obtained via an 

iterative gradient-based model update schematic to minimize the misfit between synthetic 

and observed data. The result will be accurate if the starting model is within the vicinity of 

the true model. However, this method is computationally expensive, especially for large 

datasets. Meanwhile, the amplitude variation with offset (AVO) inversion, which takes 

advantage of the linearized Zoeppritz equation for reflectivity calculation and a 

convolution model to convert reflectivity to seismic amplitudes, is generally faster, but 

limited to small incident angles and the non-converted signals (reflection and 

transmission).  

Artificial neural networks have become powerful computational tools with 

successful applications in many fields of studies. A network structure is built on a system 

of neurons, which transmits signals via connection units once information is passed into 
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the system. A network structure is capable of capturing hidden information within the data, 

provided with a proper structure and suitable training schematic to best exploit training 

information (Fausett, 2002). Deep learning is one artificial neural network algorithm that 

employs the computing powers of processing units to extract hidden information from the 

input dataset. By properly manipulating and organizing seismic data and the elastic 

property logs into an input dataset, the deep learning can be taught to establish a 

mathematical sound relationship that could later be used to predict the distribution of elastic 

properties from a seismic section. 

To map the posterior distribution of any multi-label output, a regular deep learning 

system requires the calculation a partition function. This process involves a heuristic 

backpropagation process to estimate all possible labels from the input data, and use those 

to calculate the probability of individual label within the output layer. However, the 

exhaustive computation associated with the backpropagation can be shown to be 

susceptible to false minima (Specht, 1990). For a single layer network, such as Hopfield 

neural network, the partition function can be approximated by using a sigmoid activation 

function (e.g, Bilbro et. al, 1990). Meanwhile, for a multi-layer deep learning system such 

as the probabilistic neural network (Specht,1990), the probability map of the outputs can 

be made using an exponential function that can compute nonlinear decision boundaries 

which approach the Bayes optimal.  

This study examines a complete alternative approach to predict the posterior 

distribution of elastic properties from seismic data, without the need of directly calculating 

the partition function or using modified activation function to approximate it. Instead, the 

expected outputs in form of time varying probability maps of the acoustic and shear 

impedances, and density terms are used as training labels and the deep learning system is 

designed to establish the nonlinear function that maps these labels with the training data, 
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which is prestack seismic amplitude. We assume that the recorded well log and seismic 

data are of reliable quality. Two major steps are involved in this study: (1) generating 

training data and labels, and (2) designing a deep learning system to extract the desired 

relationship. The training data, which includes the seismic angle gathers, are transformed 

via wavelet transform operation to generate extra information that leads to better extraction 

of hidden features than the regular amplitude data from raw angle stacks. Meanwhile, the 

training labels, which are the measurements of the acoustic impedance (Zp), shear 

impedance (Zs) and density (RHOB) are resampled from depth to time domain, and 

mapped to probability distribution to accommodate the deep learning process. Of note, the 

multimodal network design allows multiple output labels to be input into the system, 

without the need of complicated merging and relocating different label values as needed in 

a common deep learning process with single output. The algorithm is demonstrated with a 

field dataset that includes 2D seismic gathers and multiple wells along the line.  

4.2. Methodology 

4.2.1. Deep Learning Structure with Convolution Network 

Convolution neural network (CNN - Lecun et al.,1995) is a popular neural network 

structure to analyze hidden features from input data. Unlike a regular neural network, 

which applies a linear transformation to the input layer, a CNN performs the convolution 

operation on a pre-set window size that slides through the extent of the input signal. 

A common deep learning structure with convolution network implementation 

includes one or multiple packages of CNN-MaxPooling-Dropout sequence, as depicted in 

Figure 4.1. The CNN layer extracts hidden features within input data, while MaxPooling 

and Dropout improve the performance of the network. The extracted features are flattened 

into a column (or row) format that is then fed into a system of interconnected layers to 

simulate the values of the input labels.  
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The network accuracy is measured by how close the energy function (or loss 

function) is to the global minimum value, while its generalization is determined by how 

well it could predict the independent dataset that is not involved in the training process. A 

properly trained neural network should be able to generalize the expected property and 

make accurate predictions. A network is called underfitted if it is trapped at a local 

minimum during the training process. A network which has high prediction capability, but 

poor generalization is considered an overfitted one.  

 

 

Figure 4.1: A common deep learning structure with convolution network implementation. 
 

While an underfitted network can be improved by choosing a different type of 

optimization algorithm, or providing more data, an overfitted network is more complicated. 

A common approach to deal with such challenge is to split the data into two parts: training 

and testing (Reitermanova, 2010). The system is first trained with the training dataset, and 

then cross-validated (Picard et al., 1984) with testing dataset. The matured network will 

ensure the energy functions of both training and testing datasets reach stable solution when 

reaching a global minimum stage (Figure 4.2). An overfitted network could have a stable 

loss curve of the training data, and an overturned test loss curve.  

Overfitting is a common problem in deep learning. Several data manipulation 

techniques have been developed to deal with this challenge. Pooling is a technique to create 

feature maps that summarize all features in the input data. The common ones are 

MaxPooling (getting the maximum value), or AveragePooling (taking the average value). 
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Dropout (Srivastava et al., 2014) is a technique to prevent overfitting when training a neural 

network by introducing noise to the learning process. At each epoch, a population of 

features is randomly chosen and dropped from the network training process. This has been 

proven to significantly reduce overfitting and improve the network performance. 

 

 

Figure 4.2: The determination of network quality by looking at the energy (loss) functions 

of the training and testing dataset. A matured network will ensure the energy 

functions of both training and testing datasets reach stable solution when reaching 

a global minimum stage. 
 

4.2.2. Multi-modal Design for Pre-stack Seismic Inversion 

The multimodal deep learning design aims at separating different data label types 

by locating them in different output modals (e.g, Srivastava et al, 2014, Phan and Sen, 

2019). In the pre-stack seismic inversion problem, the data labels include P-impedance, S-

impedance and density, which consequently requires three output branches connecting to 

the main feature extraction flow at a flattening node, as shown in Figure 4.3.  
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Figure 4.3: The general schematic diagram of the multimodal deep learning network to 

predict the posterior distribution (e.g probability) of the N different categorical data 

labels. 
 

Unlike the common deep learning flow described in the previous section, the input 

labels do not need be merged into one layer. This allows flexible manipulations of the label 

data, where users can combine their interpretation (e.g., prior knowledge) into training the 

network. Consider the case where unknown data X = (X1, X2, X3) are three target logs from 

a measured data Y, and the weight terms W represent the connections between data and 

labels. The loss (energy) function of the common deep learning design measures the 

difference between the labels and network prediction results (Equation 4.1). Meanwhile, 

the loss function of the multimodal design deep learning is a weighted sum of all individual 

parameters (Equation 4.2).  

 

𝐸(𝑾,𝑿|𝒀) ~ ‖𝑿 − 𝑿𝒑𝒓𝒆𝒅𝒊𝒄𝒕‖, (4.1) 

𝐸(𝑾,𝑿|𝒀) ~ 𝛼1‖𝑿𝟏 − 𝑿𝟏
𝒑𝒓𝒆𝒅𝒊𝒄𝒕

‖ + 𝛼2‖𝑿𝟐 − 𝑿𝟐
𝒑𝒓𝒆𝒅𝒊𝒄𝒕

‖ + 𝛼3‖𝑿𝟑 − 𝑿𝟑
𝒑𝒓𝒆𝒅𝒊𝒄𝒕

‖, 

where 𝛼𝑖 is the weighted term of the unknown data 
(4.2) 

4.2.3. Data preparation 

The training data is fed into the input layer, while labels are fed into the output 

layer. The preparation of these data is essential to the overall performance of the network. 

This section briefly introduces the additional processing steps to generate training data 
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from angle gather seismograms, as we create labels in form of the prior distributions of 

elastic properties. 

Training Data Generation with Continuous Wavelet Transform 

The continuous wavelet transform (CWT) is an invertible mathematical operation 

to examine the similarity of an input signal to a model function. Popular applications 

include image compressions, edge and corner detection, solving partial differential 

equations, texture analyses (Mallat, 1999). In reflection seismology, considering varying 

the scale factor, the CWT is applied to decompose the seismograms into different 

corresponding contents, which consequently increase the amount of data available for deep 

learning purposes. 

Let f(t) be the time varying seismic signal, and ψ(t) be the model function, which is 

usually chosen as a wavelet signal. The CWT transformation is expressed in Equation (4.3), 

where 𝑏 ∈ ℛ is the translational term, which relates to the phase of the model function, and 

𝑎 ∈ ℛ is the scale factor, which determines the width of the model function. The model 

function is called a mother wavelet when 𝑏 = 0 and 𝑎 = 1.  

 

 𝑋(𝑎, 𝑏, 𝑓,Ψ) =
1

𝑎
1

2⁄
∫ 𝑓(𝑡)Ψ(

𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
. (4.3) 

Theoretically, the translational and scaler terms can take any value. In reality, these 

can be determined from the content of input seismic data. The translational term is directly 

related to the phase of the statistical wavelet extracted on the target interval, while the 

scaler term corresponds to the frequency content of the wavelet: the higher the frequency, 

the narrower the model function, which reflects smaller scaler value; and vice versa. Figure 

4.4 shows the CWT section (with b = 0 and 𝑎 𝜖 [5,25]) of a single seismogram trace.  
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Figure 4.4: The continuous wavelet transform of a single seismic trace with a Ricker 

wavelet and zero transition and a scaling term ranging from 5 to 25. 
 

Creating Probability Distribution as Training Label 

The training labels are required to be in forms of probability distribution. The 

conversion from a single value to a distribution is described in Figure 4.5, where the log is 

first normalized to fall within a desired range that can best describe the data, and then 

categorized into binary distribution by setting a value 0 or 1 at the proper bin of the original 

value. 

 

 𝑍𝑝𝑛𝑜𝑟𝑚 =
𝑍𝑝−𝑍𝑝𝑚𝑖𝑛

∆𝑍𝑝
, (4.4) 

 𝑍𝑠𝑛𝑜𝑟𝑚 =
𝑍𝑠−𝑍𝑠𝑚𝑖𝑛

∆𝑍𝑠
. (4.5) 

For this particular study where P-, S- impedances and density are label data, the 

desired range is determined to cover the minimum and maximum values of the 

corresponding types. The normalization process is performed by subtracting the impedance 

log with their expected minimum value (Equation 4.4-4.5) to reduce the range of the data 

25                                      5 
Scaling Term 
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coverage. Then, the categorization process converts the normalized log readings into a 

distribution by putting binary values (0 or 1) at the corresponding bins.  

 

 

Figure 4.5: An illustration of the categorization process to convert a regular log into a spiky 

distribution. A log value of 0.65 is decomposed into a 101-bin probability 

distribution with a spike value (1) at the sixty-sixth bin and flat 0 value at the 

remaining locations. 
 

 

Figure 4.6: Spiky distribution from synthetic model due to one-to-one correspondence 

between the model and time sample. 

4.3. Results 

The network design is examined in three different tests for three different scenarios. 

The objective is to predict the posterior distributions of the acoustic and shear impedances 

and density from angle gathers. There are seven wells available along the line. The incident 

angles from the gather range from 0 to 28 degrees at 5-degree increment. The seismograms 
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after wavelet transformation are treated as training data, while the impedances and density 

logs are used as label data to the corresponding ends of the deep learning system. Well 2, 

which is located in the middle of the line, with full data coverage of the target intervals, is 

used for blind test purpose.  

 

 

Figure 4.7: An illustration of probability distribution generated from real log data after 

depth-to-time conversion extracted at the 2178 millisecond time sample (lower) and 

the corresponding log curve and probability distribution maps (upper). In the 

comparison plots, the resampled curves are extracted from the values with 

maximum probability values. Notice the slight mismatch between the resampled 

log curves (black) and the true models (reds) are due to the truncated values of other 

possible solutions. 
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The first scenario requires examining the accuracy with a set of synthetic 

seismograms generated from an anticipated impedance and density volume that covers a 

large interval of 1,200 milliseconds. This study will also determine whether the training 

data and labels could be of enough coverage such that the network is able to predict away 

from the well locations.  

In the second scenario, the model is trained with real seismic gathers and applied 

to a real 2D section ranging from 1,600ms to 2,800ms. In this case, the wells are with 

limited log coverages in the same reservoir interval, ranging from 2,100ms to 2,400ms. On 

log responses, those are indicated with outstandingly high gamma ray reading and low 

acoustic impedances located between stiffer intervals of high impedance readings (Figure 

4.8). The result of this scenario demonstrates the algorithm performances with limited 

training data. 

In the third scenario, the pre-trained network with synthetic data is applied to a real 

seismic dataset to predict the elastic properties. This is to verify the effectiveness of cross-

model training, and examine how insufficient input data affects the algorithm performance. 

 

 

Figure 4.8: The seismic data and typical well log responses of the coverage interval. 
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4.3.1. Synthetic Data Application 

The synthetic seismograms are generated for the whole 2D section using synthetic 

models of P-, S-impedances and density. The amplitudes are calculated with the 3-term 

Aki-Richards (1980) approximations of the Zoeppritz equation for angle offsets ranging 

from 5 to 25 degrees in 5 degrees increment, and a 10 percent of random noise is added to 

each seismogram. A sample synthetic seismogram of corresponding Zp, Zs and density is 

shown in Figure 4.9.  

 

 

Figure 4.9: A synthetic angle gather generated from the impedances (Zp and Zs) and 

density log using the 3-term Aki-Richards approximation. 
 

The models used for synthetic generation are recorded at the same time sampling 

interval with seismic trace, which results in spiky training label distributions. The network 

is trained with a small learning rate (10-7), on a batch size of 32 using the adaptive moment 
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(ADAM - Kingma and Ba, 2014) optimization algorithm. The log values corresponding to 

the maximum predicted probability distribution are used for comparison with the original 

well logs. The learning stops when the validation error (blind test well) starts to increase 

from the global minimum value, which happens around the 2,800th epoch (Figure 4.10). At 

the blind test well location, the network reproduces all features in the original impedance 

and density models. The posterior distribution maps of properties (Figure 4.11) fully cover 

the associated true models, which suggests the network structure is well trained, and can 

provide reliable predictions away from the training wells. Meanwhile, the broad variation 

in the likelihood in the shear impedance prediction suggests non-uniqueness in the model 

predictions, where multiple possible solutions exist. 

 

 

Figure 4.10: Loss curves of training and validation data for QC purposes. The training stops 

after 2800 epochs when validation loss starts to increase. 
 

The same network structure is applied to the raw training data, which is not wavelet-

transformed. For comparison purposes, the network structure is kept the same, where the 

only change is the input shape of the training data to better reflects the dimension of this 

different dataset. As displayed in Figure 4.12, at the blind-test location, after well trained, 
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the network is able to partially reproduce the training labels for P-impedance and density 

logs, where most of the predicted posterior distribution maps fully cover the real models. 

Meanwhile, it encounters difficulties reproducing the S-impedance, since the resulting 

distribution map does not accurately cover the true model curve. The scattering patterns in 

the S-impedance suggests multiple solutions that could satisfy the training data, which 

suggest current input dataset is not enough for the algorithm to clearly identify the hidden 

patterns. This suggests that the application of the CWT before training the network does 

significantly improve the overall performance of the deep learning system. 

 

 

Figure 4.11: The network predictions at blind test well in comparison with real log when 

trained with data undergone wavelet transform. The predicted posterior distribution 

map covers the true model, which suggests that the network well performs in this 

dataset. 
 

With satisfactory results at the well locations, the trained network with wavelet 

transform is applied to the whole 2D synthetic section. Similar to the blind test results, the 
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predicted P-impedance (Figure 4.13) and density (Figure 4.15) highly resemble the true 

models, which suggest that the training data is sufficient enough to represent the whole 2D 

dataset. Also, several variations in the shallow zones in the P-impedance suggests the 

network to have difficulty recognizing the corresponding patterns for correct solution. The 

predicted S-impedance section (Figure 4.14) also observes the variations from the true 

model in the shallower zone. 

In summary, the structure of such a neural network seems to be complicated enough 

to capture the features, and the data from 7 wells are sufficient to represent the whole 2D 

section.  

 

 

Figure 4.12: The network predictions at blind test well when trained with raw seismic angle 

gather using the same network structure and hyperparameters, except for different 

training data structure. The predicted posterior distribution maps partly cover the 

true models for the P-impedance and density logs, while mis-predicting the 

distribution of most of the S-impedance log and part of the P-impedance 

(highlighted in white oval). The scattering prediction of the S-impedance indicates 

the existence of multiple solutions that could satisfy the training data, which in this 

case is the seismic amplitudes.  
 



64 
 

4.3.2. Real Data Application 

After being tested and proven effective with synthetic dataset, the same network 

structure is applied to the real seismic dataset. The hyperparameters are set the same as 

those used in the synthetic dataset, except for the maximum epoch to be 6,000. With the 

validation test data (or blind test well), the network reproduces most of the features in in 

the true models. The dominant events on the predicted posterior probability maps cover 

most of the original data, except for two zones: the shallow moderate impedance zone 

between 2,100-2,150ms, and the stiffer zone (2,275-2,300) overlaying the low impedance 

hydrocarbon bearing interval (Figure 4.16). Such differentiation suggests the training data 

does not provide sufficient information to help the model avoid mispredictions in such 

zones. 

 

 

Figure 4.13: The comparison between the predicted and real P-impedance. The matured 

network is able to reproduce all features of the original section. 
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Figure 4.14: The comparison between the predicted and real S-impedance. The matured 

network is able to reproduce all features of the original section. 
 

The trained network is applied to the 2D data to predict the attribute sections 

(Figure 4.17). Due to the limited well data coverages, the model is only capable of 

predicting reliable results around the reservoir interval. Outside of the target zone, the 

uncertainty increases, which lead to patchy predictions, especially on the S-impedance and 

density. 
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Figure 4.15:  The comparison between the predicted and real density. The matured network 

is able to reproduce all features of the original section. 
 

 

Figure 4.16: The network predictions at blind test well location. 
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Figure 4.17: The predicted property sections corresponding to maximum probability values 

from trained network with real data. 
 

4.3.3. Cross Model Application 

The network trained with the synthetic dataset is used to predict the elastic 

impedances and density probabilities using the real seismic section. The predictions are of 

good quality, with the posterior distributions well covering the real models at well 

locations, as shown in Figure 4.18. There are some underpredicted zones due to the 

difference in dynamic ranges of the training data and models from the synthetic dataset in 

comparison with the real dataset. However, using the Pearson correlation to measure the 
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similarity between the predicted property curves (either corresponding with the maximum 

probability, or mean values) and the true models, the predictions with cross-model 

applications are better (Figure 4.19). This proves that the additional information provided 

from the shallow and deeper sections of the synthetic dataset is the key contribution to the 

advancement of the cross-model application.  

 

 

Figure 4.18: The predicted probability maps by applying the model trained with synthetic 

data on real seismograms. 

 

On the predicted 2D sections, as shown in Figure 4.20, the properties are more 

continuous and well conforming with the seismic events. Especially in the P-impedance 

section, the outstandingly low impedances are clearly highlighted, which suggests potential 

lateral continuity of the reservoir bodies away from controlling wells. 

4.4. Summary 

This study examines a multimodal deep learning structure to estimate the posterior 

distributions of elastic properties from seismic gathers, which provide insights into possible 
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what-if scenarios from the recorded field data. Two major sources of uncertainties are 

accounted for in this study: (1) the discrepancy in domain resolution in mapping between 

seismic (two-way traveling time in seconds) and well log data (depth in meters); and (2) 

the different combinations of elastic properties resulting on similar peak or trough 

amplitudes. By converting the training labels from regular time varying property values to 

2-dimensional time varying probability distributions, the network can bypass the heuristic 

computation of the partition function and directly map the posterior distributions of the P- 

and S- impedances, and density. 

 

 

Figure 4.19: The comparison between the property predictions using model trained with 

real dataset, and using model trained with synthetic data. Using the Pearson 

correlation as a benchmarking term, the predictions using model trained with 

synthetic data are matching better. 

 

The multimodal design allows more flexible training label arrangement, due to the 

introduced weighting terms that could be input by physical expectations of the desired 

outcomes. The input seismic gather is decomposed with the continuous wavelet transform 

using a Ricker mother wavelet to further generate more useful data for the deep learning 
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process. The addition of wavelet transform is shown to significantly improve the quality of 

the prediction. The properly trained network structure is demonstrated to accurately predict 

the likelihood maps of the outcomes, as the most likely distributions fully cover the true 

models. Different training scenarios, from synthetic to real dataset, indicate the importance 

of sufficient data coverage for better deep learning performance, as the more data coverage 

allows the algorithm to better capture the broader dynamic range of the desired properties.  

 

 

Figure 4.20: The predicted property sections corresponding to the maximum probability 

values from cross model application. 
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Chapter 5 : Summary and Future Work 

5.1. Summary 

Recorded seismograms contain useful information that are used to infer subsurface 

elastic properties. The seismic inversion is a powerful tool to extract the hidden information 

from seismic data, provided reasonable assumptions are made to linearly approximate the 

physical theory behind. Machine learning, on the other hand, is a more flexible and 

adaptive alternative approach to deal with the nonlinearity of the inverse problem and has 

been evolving as a promising advancement to seismology.  A properly configured neural 

network structure built up on the system of interconnected units is capable of capturing 

hidden patterns from the input information, which can be integrated into the inversion 

workflow to infer the elastic properties from seismic amplitudes. I hypothesize that with 

proper network structures and suitable training schematics, the machine learning 

algorithms could resolve some outstanding challenges in seismic inversion: (1) the limited 

resolution due to wavelet effects; (2) the dependence on some rock physics models when 

inverting for petrophysical properties; (3) the quantification of the posterior distribution of 

the prediction results to resolve the resolution discrepancy between the time domain 

seismic signal and well logs in depth domain. 

In this dissertation, I discussed the development and applications of three different 

machine learning algorithms for seismic reservoir characterization: (1) the single layer 

Boltzmann machine to predict high resolution elastic properties (Chapter 2); (2) the cross-

shape deep Boltzmann machine to estimate petrophysical properties from seismic gathers 

(Chapter 3); (3) the multimodal deep learning network to map the posterior distributions 

of the elastic properties from seismic amplitudes (Chapter 4). Also, in Appendix 1, I 

introduced a quantitative workflow to correct for potential anisotropy and fluid effects on 

recorded well logs into hydrocarbon-bearing sandstone intervals with heavy sand-shale 
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laminations, which could be effectively used to condition well log data before input to train 

any machine learning algorithms. 

In Chapter 2, the Boltzmann machine is designed to automatically extract the elastic 

impedances and density from input angle gather seismograms. This single layer neural 

network comprises of a Hopfield network structure, which is known to quickly converge 

toward an optimal solution once an initial state of neurons is provided and an update rule 

is applied; and the Mean Field Annealing optimization process that ensures a global 

minimum solution that reaches equilibrium state 1-2 orders of magnitude faster than 

simulated annealing. The optimization process evolves by minimizing the energy function, 

which shares the same characteristic of the linearized Zoeppritz equation and convolution 

model that relate the elastic impedances and density to the recorded seismic amplitudes. 

The high-resolution results are produced from the post-inversion reflectivity series, which 

is not bounded by the wavelet effects. Meanwhile, the accuracy of the overall prediction is 

achieved from the more geologically sound property models built from horizons interpreted 

on the reflectivity sections that contain multiple features that are not available in the 

original seismic stack sections commonly used in the interpretation process.  

In Chapter 3, a cross-shape deep Boltzmann machine algorithm is designed to 

predict multiple petrophysical properties from seismic amplitudes. The algorithm has the 

potential to overcome the typical challenges in common petrophysical inversion 

approaches, which are dependent on data fitting algorithms to create the rock physics 

models during well analyses, which is prone to uncertainties in input data. The cross-shape 

deep Boltzmann machine is designed by arranging four different restricted Boltzmann 

machines located at the vertices interconnected via a hidden neuron layer at the center. 

Four different input types, including the seismic amplitude, and three petrophysical logs: 

the porosity, water saturation and shale volumetric, are fed into visible layers located at the 
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vertices to training the network. Ultimately, six different nonlinear relationships between 

the inputs are simultaneously captured during the learning process, among which three 

connections between target petrophysical logs, and seismic amplitudes are used to predict 

property values. Unlike any conventional deep learning system, which expects large data 

for what-if scenarios into training, the CDBM does not involve any back propagation, but 

only requires the anticipated upper and lower bounds of the data and labels for random 

initializations of Markov chains to reach an equilibrium state, at which the network is able 

to reconstruct the input data probabilistically. This makes the algorithm ideal for problems 

with limited dataset, and for being powerful and robust enough to account for uncertainties 

while still retaining the generalization outside of the training information. A 2D field 

dataset with limited well coverage is used to demonstrate the capability of this algorithm 

with accurate reconstruction of geologically plausible petrophysical property sections. 

The deep learning algorithm in Chapter 4 is to predict the posterior distributions of 

the subsurface elastic properties from seismic gathers. It is designed to resolve the limited 

resolution of the time domain seismic signals, which are not enough to capture all features 

present in the recorded well logs in depth domain, by converting the resolution discrepancy 

to probability distributions to represent all what-if scenarios from the well log responses, 

and use them to constrain the inversion process. The greatest advantage of this algorithm 

is the avoidance of the heuristic calculation of the partition function, which is required to 

calculate the posterior distributions of common neural network outputs. In addition, the 

algorithm bypasses the assumption of the forward modelling steps, which usually include 

the convolution model and linearized Zoeppritz equation, to connect the target models to 

the observed data. Thus, it has the potential of inverting depth domain seismic gathers. 

Besides, unlike the common deep learning structure for prestack inversion, the new design 

does not require combination and reorganization of the impedances and density logs into 
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one single layer, but allows them to be input to the system at separate branches. To further 

improve on the features in capturing the hidden relationships, the seismograms are 

processed with a continuous wavelet transform to generate training data. The algorithm is 

applied to two datasets: the synthetic angle gathers generated from some elastic models 

using the three-term approximation to examine the network stability, and the field angle 

gathers with limited well coverage to demonstrate its application in real noisy data.  

The successful results from these algorithms agree with the original hypothesis that 

the network structures and training schemes can be designed and fine-tuned to solve 

different challenges in seismic inversion, while still able to simulate the underlying 

physical process that relate seismic amplitudes to the subsurface properties. 

5.2. Future Work 

The Boltzmann machine is a powerful probabilistic neural network that has not 

been fully investigated for seismological applications. Its deep learning process does not 

require any back propagation to reach the stable solutions, which is a significant advantage 

comparing to other deep learning algorithms. Therefore, the Boltzmann machine is an 

excellent candidate to integrate into computationally intensive inversion algorithms such 

as the full waveform inversion, which heavily depends on solving the wave equation and 

error back propagation to update the model.  

On the other hand, most of the machine learning algorithms are using gradient 

based optimizations to minimize the energy or loss functions. For simple network structure, 

this approach produces reasonable results. Meanwhile, for complex deep learning 

structures with multilayer designs, the model update involves the heuristic 

backpropagation process, which can be shown to get trapped to local minima. Recent 

developments include trying to incorporate the stochastic algorithms such as the very fast 

simulated annealing (VFSA), stochastic gradient descent etc. into updating the model 
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properties. More extensive studies on how to best benefit from such stochastic processes 

are required for better understanding of the effectiveness, and the associated pitfalls. 

There are multiple sources of uncertainties affecting the performance and overall 

results of the deep learning algorithms. The algorithm introduced in this dissertation to map 

the posterior distribution from seismic amplitudes mostly deals with the time-depth 

resolution discrepancy between recorded well logs and seismic data. The additional data 

preparation to convert original log values into probabilistic distributions is a novel data 

arrangement process to avoid the complications of a true probabilistic neural network. It is 

capable of incorporating multiple sources of uncertainties: from training data and labels, 

from hyperparameters from the network systems, and all what-if scenarios. A deep 

investigation on how to implement the full probabilistic network is essential to fully resolve 

all uncertainty sources in seismic reservoir characterization using machine learning 

algorithms. 
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Appendices 
 

A. Isotropy Correction and Fluid Substitution for Deviated Wells 

Paper presented at the SEG 2020 Annual Meeting 

A.1. Introduction 

Seismic reservoir characterization aims to extract further useful information from 

the elastic properties, which are represented by the velocity terms (P-wave and S-wave). 

These are calibrated with sonic logs measured at borehole locations through the synthetic 

generations and tying process, after which any further examinations are performed with the 

guidance of the well log analyses. A set of good quality sonic logs are essential 

prerequisites to any characterization processes. Therefore, it is important to carefully 

examine the input dataset and perform any necessary calibrations to improve the reliability 

of sequential results.  

Sonic logs are extracted from the refraction acoustic signals along the borehole 

surface (Sheriff et al., 1999). Bypassing the influences of the processing steps, the quality 

of recorded data is strongly dependent on the elastic properties of the host environment 

through which the logs are recorded. For clastic reservoirs, the complexity of the 

environment depends on the burial history, the diagenetic process and the lithology and 

fluid contents.  

As shale makes up a large percentage of the sedimentary basin and exists within 

the reservoir structures, they contribute greatly to the anisotropy of the subsurface features 

(Hornby, 2003). Wave propagation through these environments suffers great uncertainties 

which are reflected on the recorded log values. Also, for an anisotropic environment, 

measured acoustic logs in deviated well-paths are not true representative of the 

environment within the well vicinity. Furre et al. (1998) reported differences in log 
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measurements between vertical and deviated wells through anisotropic environment, which 

lead to problematic usage of synthetic seismograms to tie well logs with seismic data. 

Hornby (2003) introduced methods to correct for anisotropy effects for deviated-well sonic 

logs in shale intervals. The approach assumes weak anisotropic environment to take 

advantage of the Thomsen parameters (Thomsen, 1986) to simplify the mathematical 

formulations and better accommodate the calculation process.  

Fluid content within a reservoir also affects the recorded sonic logs. Commonly, 

the compressional signal slows down when passing through fluid-filled porous media and 

speeds up when entering stiffer materials surrounding the pore space. Wells penetrating 

similar reservoir intervals with different fluid contents will report different sonic log 

responses. In order to compare the log quality between wells of similar reservoir intervals, 

the logs need to be calibrated toward similar fluid content.  

For an anisotropic environment, the common isotropic Gassmann fluid substitution 

model (Gassmann, 1951) over- or under-estimates the log responses. Meanwhile, the 

anisotropic Gassmann equation is governed by the stiffness tensors that are not fully 

characterized due to the lack of necessary measurements. Mavko and Bandyopadhyay 

(2009) proposed an approximate fluid substitution for vertical velocities in weakly 

anisotropic VTI rocks, which employs the Thomsen parameters.  

This study examines the variation in recorded sonic logs at three deviational wells 

targeting similar clastic units. The reported in situ laminated shale layers is thought to 

introduce anisotropy to recorded logs along the well bore. In order to evaluate this 

hypothesis, a quantitative approach is proposed, which involves two main steps. Firstly, 

anisotropy effect is removed by converting recorded sonic log to vertical velocity along the 

symmetry axis of the anisotropic environment using a model-based inversion algorithm. 
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Then, the fluid effect is eliminated by performing anisotropic fluid substitution to restore 

similar reservoir intervals at different well locations toward the same fluid content.  

Successful results from this study suggests a novel approach to perform calibrations 

to sonic logs measured along well bores penetrating through anisotropic environments 

before inputting these logs into further analyses for reservoir characterizations. 

A.2. Theory 

A.2.1. Weak Anisotropy Correction for VTI Media 

Thomsen (1986) proposed the formulation of the velocities along a direction 

inclined an angle 𝜃 with the symmetry axis with the assumptions of weak anisotropic 

medium. These are the phase velocities (P- and S-wave) that represent the traveling speed 

of the wave-front. The P-wave phase velocities are described in Equations A.1 with two 

Thomsen parameters 𝛿, 𝜀, which are the combinations of the stiffness tensors as in 

Equations A.2-A.3, and a phase angle 𝜃 between the wave direction and the symmetry axis.  

 

 𝑉𝑝(𝜃) = 𝑉𝑝0[1 + 𝛿𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 +  𝜀𝑠𝑖𝑛4𝜃] (A.1) 

 𝜀 =
𝐶11 − 𝐶33

2𝐶33
 (A.2) 

 𝛿 =
(𝐶13 + 𝐶44)

2 − (𝐶33 − 𝐶44)
2

2𝐶33(𝐶33 − 𝐶44)
 (A.3) 

The measured sonic logs were processed with semblance method. Wang et al 

(2012) concluded that the resulting velocity from the semblance method is actually the 

phase velocity. Therefore, in this study, it is safe to use above equations with the measured 

sonic logs.  

In Equation A.1, the term on the left is the measured sonic log along the well bore. 

The angle 𝜃 is equivalent to the angle between the well bore and the bed symmetry axis. 
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This information can be obtained from simple geometric calculations using the bed dipping 

angle, the well inclinations and azimuth.  

Equation (A.1) can be rewritten in form of d = Gm, where 𝒅 =  {𝑉𝑝𝑖(𝜃)}𝑖=1
𝑁  is the 

recorded P-wave log. At each recorded sample, the matrix 𝑮 = [1 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛4𝜃] 

and the unknown 𝒎 = [𝑉𝑝𝑜 𝛿𝑉𝑝𝑜 𝜀𝑉𝑝𝑜]
𝑇. By inverting for unknowns in this linear 

problem, the symmetry axis velocity 𝑉𝑝𝑜, and the Thomsen parameters (𝛿, 𝜀) can be 

obtained.  

A.2.2. Anisotropic Fluid Substitution 

Gassmann (1951) published the fluid substitution to simulate the changes in elastic 

properties with the changes in pore fluid contents in both isotropic and isotropic media. 

The isotropic fluid substitution assumes low frequency isotropic environment with 

homogeneous mineral property. Meanwhile, the anisotropic fluid substitution model deals 

with variations in stiffness tensors due to changes in fluid content. The process requires the 

bulk moduli of saturated and dry rock framework. These could be calculated using isotropic 

substitution, as shown in Equations A.4-A.5 where 𝜙 is the total porosity, Kfl, Km, Kdry 

and Ksat are the bulk moduli of the fluid content, mineral, dry framework, and the saturated 

rock, respectively. The fluid dependent stiffness tensors, whose indices i, j, k, l are the 

directions 1, 2 or 3, are calculated using Equation (A.6).  

 

 𝐾𝑑𝑟𝑦 =

𝐾𝑠𝑎𝑡 (
𝜙𝐾𝑚

𝐾𝑓𝑙
+ 1 − 𝜙) − 𝐾𝑚

𝜙𝐾𝑚

𝐾𝑓𝑙
+

𝐾𝑠𝑎𝑡

𝐾𝑚
− 1 − 𝜙

 (A.4) 

 𝐾𝑠𝑎𝑡 = 𝐾𝑑𝑟𝑦 +
(1 −

𝐾𝑑𝑟𝑦

𝐾𝑚
)
2

𝜙
𝐾𝑓𝑙

+
1 − 𝜙
𝐾𝑚

−
𝐾𝑑𝑟𝑦

𝐾𝑚
2

 (A.5) 
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 𝑐𝑖𝑗𝑘𝑙
𝑠𝑎𝑡 = 𝑐𝑖𝑗𝑘𝑙

𝑑𝑟𝑦
+

(𝐾𝑚𝛿𝑖𝑗 − 𝑐𝑖𝑗𝛼𝛼
𝑑𝑟𝑦

3⁄ )(𝐾𝑚𝛿𝑘𝑗 − 𝑐𝛽𝛽𝑘𝑙
𝑑𝑟𝑦

3⁄ )

(𝐾𝑚 𝐾𝑓𝑙⁄ )𝜙(𝐾𝑚 − 𝐾𝑓𝑙) + (𝐾𝑚 − 𝑐𝑝𝑝𝑞𝑞
𝑑𝑟𝑦

9⁄ )
 (A.6) 

 Where 𝛿𝑖𝑗 = {
1, 𝑓𝑜𝑟 𝑖 = 𝑗
0, 𝑓𝑜𝑟 𝑖 ≠ 𝑗

 (A.7) 

 𝑐3333
𝑑𝑟𝑦

≈ 𝑐3333
𝑠𝑎𝑡 −

(
𝐾𝑓𝑙

𝐾𝑚
) [𝐾𝑚 − 𝐾𝑖𝑠𝑜

𝑠𝑎𝑡 −
2
3 𝑐3333

𝑠𝑎𝑡 𝛿]
2

𝜙(𝐾𝑚 − 𝐾𝑓𝑙) − (
𝐾𝑓𝑙

𝐾𝑚
) (𝐾𝑚 − 𝐾𝑖𝑠𝑜

𝑠𝑎𝑡)
 (A.8) 

 𝑐3333
𝑠𝑎𝑡 ≈ 𝑐3333

𝑑𝑟𝑦
−

(
𝐾𝑓𝑙

𝐾𝑚
) [𝐾𝑚 − 𝐾𝑖𝑠𝑜

𝑑𝑟𝑦
−

2
3 𝑐3333

𝑑𝑟𝑦
𝛿]

2

𝜙(𝐾𝑚 − 𝐾𝑓𝑙) − (
𝐾𝑓𝑙

𝐾𝑚
) (𝐾𝑚 − 𝐾𝑖𝑠𝑜

𝑑𝑟𝑦
)

 (A.9) 

Since it is not possible to measure all stiffness components to fully describe the 

tensor, it is difficult to use Equation (A.6) to perform the fluid substitution. By assuming 

low frequency and mono-mineralic rock matrix, Mavko and Bandyopadhyay (2009) 

provided the approximation of this equation in case of VTI media, which is summarized in 

Equations (A.8) and (A.9). The order of calculations is similar to that of an isotropic case, 

where the stiffness tensor of the dry matrix is first calculated using Equation (A.8) and then 

fed into Equation (A.9) to predict the stiffness tensor of desired fluid saturated case. The 

symmetry P-wave velocity is related to the stiffness tensor c3333 (i.e c33 in Voigt notation - 

Voigt, 1910) as 𝑐3333 = 𝑐33 = 𝜌𝑉𝑝0
2.  

A.3. Results 

The workflow is applied to a set of logs from three deviated wells at a producing 

field. The first vertical well was drilled first with sonic log (only P-wave) measured by log-

while-drilling (LWD) and wireline log and the logs were confirmed to be of reliable 

quality. Other two wells were drilled later with directional paths to reach the targets and 

the sonic logs (P- and S-wave) were recorded with LWD method. The inclination of the 

second well was of 30 degree and the third well was of 54 degrees. The third well reached 
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targets which are within the vicinity of well 1, while the second well targeted an area far 

away from the previous two. From log responses, as described in Figure A.1, calculated 

petrophysical properties and production results, Well 1 encountered hydrocarbon intervals 

in both 2 reservoirs; Well 6 encountered hydrocarbon bearing interval in reservoir 1 and a 

mixture of hydrocarbon and water in reservoir 2; while Well 1 only recorded hydrocarbon 

in the reservoir and did not capture the existence of reservoir 2. The measured sonic log 

(Vp) at the well locations varies largely, spanning from 2750 m/s to 4000m/s, with large 

separation between well 3 and well 1 and 2, as shown in the histogram of the log values in 

Figure A.2.  

 

 

Figure A.1: Summary of the locations, the available logs with fluid contents of 3 wells used 

in the study. 
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The reliability of these histograms is questionable, due to: a) data being captured 

with different fluid contents from all wells, therefore suffers from the fluid effects, b) 

anisotropy effects at different well locations, especially at Well 6 and Well 2. 

 

 

Figure A.2: Initial histogram of the P-wave velocities from reservoir 1 and 2 intervals at 3 

wells showing clear separations of values. 

 

The anisotropy effect from measured P-wave velocities at all wells is removed by 

inverting for symmetry axis P-wave velocity using an assumption of a weak VTI medium. 

Since the reservoir bodies are flat within the area of Well 1 and Well 6, the corresponding 

well inclinations are equal to the phase angle of the measured P-wave. Meanwhile, at Well 

2 location, simple geometrical calculations resulted in an equivalent phase angle of 27 

degree for this well path. The resulting axis P-wave velocities at three well locations are 

shown in Figure A.3. Well 1 is aligned with the symmetry axis, therefore the measured 

phase velocity is equivalent to the symmetry P-wave velocity. At Well 2, the small phase 

angle resulted in small drop from measured to symmetry P-wave. At Well 6, the deviation 

or the phase angle was high enough to result in significant drop in P-wave from measured 

log to symmetry axis values. Variation in the Thomsen parameters 𝛿 and 𝜀 observed at well 

locations reflects the minor differences in reservoir conditions at three well locations, 
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especially on gamma ray readings and the reservoir thicknesses. The resulting histograms 

of symmetry direction P-wave for each reservoir at all wells after VTI corrections in Figure 

A.4 show shifting of histograms toward the lower range of Well 1 for both reservoirs. For 

reservoir 2, there is no histogram plot from Well 2 as this reservoir does not reach out to 

this well.  

 

 

Figure A.3: Comparisons between the measured velocities (red curves) and the calculated 

symmetry velocities (blue) using weak VTI from Thomsen (1986). 
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Figure A.4: Comparisons of histograms of symmetry direction P-wave for each reservoir 

at all wells after VTI corrections. 

 

 

Figure A.5: The anisotropic fluid substitutions performed at Well 6 and Well 2 from in situ 

case to 100% water saturation show jumps in Vp velocity and density as the stiffer 

material (water) replaces the softer material (gas) in the pore space. 
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Figure A.6: The comparison between the histogram of original P-wave from all wells and 

the histogram of calibrated P-wave with similar fluid content from all wells. 
 

The anisotropic fluid substitution is then performed to remove the fluid effects and 

restore reservoirs to be of the same fluid types before comparing the velocities. When all 

intervals are at 100 percent water saturation, the P-wave velocities and densities increase 

in all reservoir intervals, as water is a stiffer and heavier material than the in-situ gas. Figure 

A.5 shows the expected results in Well 6 and Well 2. At 25 percent water saturation, which 

is about the same fluid content of reservoirs in Well 1, the obtained histograms of the P-

wave velocities of all reservoirs concentrate around the velocity ranges from 2,750 to 3,600 

m/s, and no significant separations in histogram shapes were observed, as shown in Figure 

A.6. This confirms that the deviation in reading values of measured P-wave logs along the 

well bores are due to anisotropy and fluid effects. 
 

A.4. Summary 

This study proposed a novel approach to calibrate anisotropy and fluid effects on 

deviational wells penetrating sand-shale laminated clastic reservoirs. A set of recorded logs 

from two deviational and one vertical well path was used to demonstrate the process. The 
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anisotropy removal is performed by inverting for symmetry axis P-wave velocities at well 

locations using Thomsen’s weak VTI phase velocity equation. Then, the anisotropic fluid 

substitution is applied to restore the reservoir intervals in two wells toward similar fluid 

content of the vertical reference well. After the calibration process, all velocity values 

concentrated toward a reasonable distribution, with no significant discrepancy. This 

suggests that the measured P-wave logs of deviational wells into anisotropic environment 

needs to be calibrated for better usage in further investigations. 
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