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ABSTRACT 

This paper presents a modeling methodology capable of accounting for spatial correlation across 

choice alternatives in discrete choice modeling applications. Many location choice (e.g., 

residential location, workplace location, destination location) modeling contexts involve choice 

sets where alternatives are spatially correlated with one another due to unobserved factors.  In the 

presence of such spatial correlation, traditional discrete choice modeling methods that are often 

based on the assumption of independence among choice alternatives are not appropriate. In this 

paper, a generalized spatially correlated logit (GSCL) model that allows one to represent the 

degree of spatial correlation as a function of a multidimensional vector of attributes 

characterizing each pair of location choice alternatives is formulated and presented. The 

formulation of the GSCL model allows one to accommodate alternative correlation mechanisms 

rather than pre-imposing restrictive correlation assumptions on the location choice alternatives. 

The model is applied to the analysis of residential location choice behavior using a sample of 

households drawn from the 2000 San Francisco Bay Area Travel Survey (BATS) data set.  

Model estimation results obtained from the GSCL are compared against those obtained using the 

standard multinomial logit (MNL) model and the spatially correlated logit (SCL) model where 

only correlations across neighboring (or adjacent) alternatives are accommodated.  Model 

findings suggest that there is significant spatial correlation across alternatives that do not share a 

common boundary, and that the GSCL offers the ability to more accurately capture spatial 

location choice behavior.   

 

Keywords: spatial correlation, spatially correlated logit model, residential location choice, 

distance-decay function, activity-travel behavior modeling, discrete choice modeling 
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1. INTRODUCTION 

Many choices encountered in land use and transportation modeling are spatial in nature.  

Individuals make decisions about where to live and work, where to go to school, where to pursue 

various activities such as shopping, personal business, and social-recreation, and which route to 

take when traveling between an origin-destination pair. Despite the clear recognition of the 

importance of the space dimension in modeling people’s location choice behavior, research 

advances in modeling spatial effects in the travel behavior field has generally lagged advances in 

modeling temporal effects. There has been much research in understanding time use patterns, 

modeling temporal constraints associated with time-space prisms, and analyzing trade-offs and 

synergies in time allocation across activities of various types and across individuals in a 

household.   

The modeling of spatial effects in activity-travel behavior analysis has generally lagged 

that of its temporal counterpart for two main reasons.  First, modeling spatial dependencies and 

interactions is inherently more complex due to the difficulty in characterizing, defining, and 

measuring such effects. Second, activity-travel behavior data sets offer rich temporal 

information, but often lack much detail along the spatial dimension.  Location information in 

typical activity-travel data sets tend to be either missing entirely, or where available, is coarse in 

nature – either because of the difficulty in measuring spatial dimensions or because of concerns 

regarding respondent privacy. However, in recent years, advances have been made on both 

fronts. Data sets from activity-based travel surveys, household panel surveys, census surveys, 

residential choice and mobility surveys, personality and behavior surveys, and real-estate sales 

data are beginning to offer richer information about spatial choices and the availability of 

detailed spatial information is only going to get better with the increasing use of GPS-based 

surveys. Second, advances in discrete choice modeling, both in terms of formulation and 

estimation, provide the framework for incorporating complex spatial effects in models of 

activity-travel behavior.   

This paper addresses a key spatial effect known as spatial autocorrelation (or simply 

spatial correlation in the rest of this paper) across alternatives in a cross-sectional discrete choice 
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setting.1 Cross-sectional spatial correlation across alternatives is prevalent when discrete location 

alternatives in a choice set are correlated or related to one another in contemporaneous time.  

While such correlation can occur due to observed (to the analyst) and unobserved (to the analyst) 

factors, the former does not pose any substantial problems as long as the analyst introduces the 

observed “correlation-generating” variables appropriately as exogenous variables in the discrete 

choice model. However, in the latter case (that is, when alternatives share unobserved attributes 

that influence choice-maker behavior), the fundamental assumptions of independence across 

choice alternatives that form the basis of the multinomial logit formulation are violated.  In 

virtually any location choice context, one would expect alternatives (locations) that are closer to 

one another to be more correlated with one another in unobserved factors than those that are 

farther apart (in the rest of this paper, and as is not uncommon in the spatial analysis literature, 

we will use the term “spatial correlation across alternatives” to specifically refer to the cross-

sectional spatial correlation across the utility of alternatives due to unobserved factors).  Thus, 

the consideration of proximity is an important criterion in understanding and modeling spatial 

correlation effects in models of location choice.   

The current paper presents a discrete choice modeling methodology that explicitly 

incorporates spatial correlation across location choice alternatives. The key feature of the 

proposed modeling methodology is that the extent of spatial correlation is a function of a 

multidimensional vector of attributes characterizing the relationship between each pair of 

locations. For instance, distance can be one element of this multi-dimensional vector, since 

locations that are closer to one another are likely to be more correlated than others.  Similarly, 

whether or not locations share a common boundary and the length of the shared common 

boundary can also be elements of the multidimensional vector. By incorporating generalized 

spatial correlation patterns into advanced discrete choice modeling methods, one can model an 

array of discrete behavioral phenomena while accommodating flexible substitution patterns in a 

random utility-maximization framework.  

The Generalized Spatially Correlated Logit (GSCL) model formulated and presented in 

this paper is applied to the context of residential location choice analysis, an important choice 
                                                            
1 Other spatial effects across alternatives in the context of discrete choice modeling may include temporal 
dependence generated by the utility of an alternative at a certain location being dependent on the choice at that 
location and other locations at earlier periods in time (see Páez and Suzuki, 2001) and/or differential spatial 
variation magnitudes across alternatives (see Hunt et al., 2004). In the current paper, we do not consider these other 
elements of spatial effects across alternatives.  
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dimension that influences and is influenced by the built environment and human activity-travel 

patterns (see Guo and Bhat, 2007). Virtually all integrated land use–transportation 

microsimulation model systems include residential location models as a key component of the 

framework (see, for instance, Pinjari et al., 2006 and Habib and Miller, 2007). As many activity-

travel choices are influenced by built environment attributes associated with residential locations, 

it is of utmost importance and interest to ensure that the residential location choice model 

component is robust with respect to accounting for spatial correlation effects that inevitably exist 

in residential location choice contexts (see Miyamoto et al., 2004 and Bhat and Guo, 2004). 

When considering residential location choice alternatives, individuals often consider 

agglomerations of zones or spatial units that are not only adjacent to one another, but also closer 

to one another.  This is likely due to the common observed as well as unobserved attributes that 

spatial units in a “proximal cluster” share with one another with respect to socio-demographic 

composition of residents, income levels, density and pattern of development, proximity to 

services and shopping opportunities, availability of green space, and transit and 

pedestrian/bicycle-friendliness.    

The GSCL model is applied in this paper to examine residential location choices of a 

sample of households drawn from the 2000 San Francisco Bay Area Travel Survey (BATS) data 

set.  The activity-based travel survey data set is augmented with a host of secondary built 

environment variables to facilitate the specification and estimation of a residential location 

choice model that incorporates spatial correlation across location alternatives. The traffic 

analysis zone (TAZ) is treated as the spatial unit of analysis as most activity-travel demand 

models continue to use zone-level data sets, presumably because secondary data are available at 

this level of spatial aggregation.   

The remainder of this paper is organized as follows.  The next section presents a detailed 

description of spatial correlation considerations and how spatial correlation has been 

accommodated in models in past work.  The third section presents a detailed formulation of the 

Generalized Spatially Correlated Logit (GSCL) model proposed in this paper.  The fourth section 

describes the data set used for the residential model application while the fifth section presents 

detailed model estimation results.  Conclusions are presented in the sixth and final section.    
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2. UNDERSTANDING AND REPRESENTING SPATIAL CORRELATION IN CHOICE 

MODELS 

2.1 Analysis Context 

The existence of spatial correlation across discrete choice alternatives is best motivated by 

considering the First Law of Geography, as suggested by Tobler (1970): “Everything is related to 

everything else, but near things are more related than distant things”. For example, there may be 

a perceived similarity between neighboring or adjoining spatial choice alternatives as opposed to 

those that are farther apart (Guo, 2004, Bhat and Zhao, 2002).  The reader will note that spatial 

correlation may also exist across decision-makers (see Fleming, 2004, Paez and Scott, 2007, 

Bhat and Sener, 2009), but this is not the focus of study in the current paper. 

 

2.2 Overview of Earlier Relevant Research 

It has been long recognized that, while the multinomial logit (MNL) model offers computational 

tractability even in the presence of large choices sets, it suffers from potential violations of the 

IIA property arising from correlated choice alternatives that can lead to inconsistent parameter 

estimates and unrealistic forecasts (Horowitz, 1981; Train, 2003).  Hunt et al. (2004) and Haynes 

and Fotheringham (1990) have indicated that the IIA property is unlikely to hold true in spatial 

choice applications where alternatives are characterized by size, dimensionality, aggregation, 

location characteristics, and spatial continuity and variation.  Unlike the MNL, the nested logit 

(NL) model (see Williams, 1977; Daly and Zachary, 1978; McFadden, 1978) assumes a 

hierarchical choice structure, which makes it appropriate for representing various spatial choice 

behaviors, while potentially avoiding violations of the IIA property (see, for example, Waddell, 

1996; Abraham and Hunt, 1997; Boots and Kanaroglou, 1988; Deng et al., 2003).  However, the 

NL model is not without its limitations.  As noted by Pellegrini and Fotheringham (2002), the 

members of each cluster or nest of alternatives must be specified a priori in the NL model, 

requiring that space be divided meaningfully without accommodating the full range of spatial 

substitutability that may occur.   

Several researchers have indeed formulated and estimated more advanced discrete choice 

models than the MNL and NL models to incorporate spatial correlation.  For example, Bolduc et 

al. (1996) use a mixed logit model formulation that adopts a first-order spatial autoregressive 

process and apply this framework to model the initial practice location (among 18 spatial 
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alternatives) for general medical practitioners.  Garrido and Mahmassani (2000) propose a 

spatially (and temporally) correlated multinomial probit model for analyzing the probability that 

a shipment of a particular commodity will originate in a certain spatial unit at a certain time 

interval of the day.  Their model choice set includes between 31 and 41 location alternatives.  

Miyamoto et al. (2004) use a framework similar to Bolduc et al. (1996) for the error 

autocorrelation, but also include an autocorrelated deterministic component of utility.  They 

estimate a mixed logit structure using residential location choice data for four specific zones in 

the city of Sendai in Japan.  All of these studies employed simulation-based techniques for model 

estimation due to the open-form nature of the choice probabilities that entail evaluation of a J-

dimensional integral in the likelihood function where J is the number of choice alternatives.  

Even with recent advances in simulation approaches, model estimation in these studies becomes 

prohibitive and potentially affected by simulation error in the presence of large choice sets. It is, 

therefore, not at all surprising that the studies cited above have limited the number of spatial 

alternatives in the choice set.  

An important development in the field of discrete choice modeling was the introduction 

of the Generalized Extreme Value (GEV) class of models within the random utility 

maximization framework (McFadden, 1978, 1981).  The GEV-class of models allows flexible 

substitution patterns between different choice alternatives, while maintaining a simple closed-

form structure for the choice probabilities. Several models have been developed within the GEV 

class, as recently discussed by Daly and Bierlaire (2006), Koppelman and Sethi (2008), and 

Bekhor and Prashker (2008). The flexibility of GEV structures also allows the modeling of 

spatial location choice problems where the utilities of various location choice alternatives may be 

correlated with one another due to common unobserved spatial elements.  Thus, Bhat and Guo 

(2004) proposed a GEV-based model formulation called the spatially correlated logit (SCL) 

model that results in a closed-form expression regardless of the number of alternatives in the 

choice set.  They apply the SCL model to analyze residential location choice behavior among 98 

zones in Dallas County in Texas.  

The main limitation of the SCL model is that it accommodates spatial correlation only 

across contiguous location alternatives that share a common border.  If the location alternatives 

are not adjacent to or adjoining one another, then the spatial correlation is assumed to be zero.  

Although this specification may be applicable in some choice situations, it is likely to prove 
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unnecessarily restrictive in model specifications for most choice situations.  In most choice 

contexts, one expects the degree of spatial correlation to be greater among alternatives that are 

close to one another and less for those that are farther apart. In other words, one expects that, 

while there may be a certain level of heightened correlation between adjacent spatial alternatives, 

there is also likely to be a decay function-based correlation that decreases as the degree of spatial 

separation between alternatives increases.  This paper is aimed at enhancing the SCL model to 

accommodate such flexible spatial correlation specifications, while retaining the appealing 

closed form nature of the SCL model.  Random taste preferences due to unobserved decision-

maker characteristics can also be captured by introducing a mixed version of the GSCL model.   

 

3. GENERALIZED SPATIALLY CORRELATED LOGIT (GSCL) MODEL 

FORMULATION 

The SCL model proposed by Bhat and Guo (2004) constitutes a GEV-based formulation adopted 

in the context of spatially correlated discrete choice models. The SCL model is based on a 

special case of the generalized nested logit (GNL) model originally proposed by Wen and 

Koppelman (2001).   

The SCL model is derived from the following generator function: 

1
1 1/ 1/

, ,
1 1

( ,..., ) (( ) ( ) )njn nI ni
I I VV V V

i ij j ij
i j i

G e e e eμ μ μα α
−

= = +
= +∑ ∑  (1) 

In the above formulation, iji,α represents the allocation parameter that characterizes the portion 

of alternative i that belongs to the i-j location pair, with 0 < iji,α < 1 for all i  and j , and ∑
j

ijα = 

1 for all i . Vni represents the deterministic component of the utility associated with location 

alternative i for individual n.  μ  is a dissimilarity parameter capturing the correlation between 

spatial units ( 0 1μ< ≤ ). As indicated in Bhat and Guo (2004), the correlation between two 

alternatives in the generator function form of Equation (1) increases as μ  gets closer to zero, and 

also increases as iji,α and ,j ijα increase (the correlation values need to be computed numerically, 

and are tabulated in Bhat and Guo for various combinations of μ , iji,α and ,j ijα ).2 When 1=μ , 

                                                            
2 See also Marzano and Papola (2008) and Abbe et al. (2007) for discussions of the correlation structure for the 
GNL model. 
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the generator function in Equation (1) collapses to that of the MNL model generator function, 

and the SCL model becomes equivalent to the MNL model. The SCL model is formulated so that 

only adjacent (or contiguous) alternatives share common unobserved characteristics. 

Specifically, in the SCL model, the allocation parameter, iji,α , is defined as the proportion of 

number of neighboring zonal alternatives.  This formulation is consistent with the assumption 

that sensitivity to changes in neighboring spatial units is larger for a zone with fewer neighboring 

zones.  Specifically, in the SCL model, the allocation parameter for zone i is defined as follows: 

,
ij

i ij
ik

k

ω
α

ω
=
∑

  (2) 

In the above allocation equation, ijω  is 1 if zone i  is contiguous to zone j, and 0 

otherwise (by convention iiω = 0 for all i). The specification of the allocation parameter as in 

Equation (2) implies equal allocation of zone i  to each nest formed by pairing i with each of its 

adjacent alternatives. Thus, zone i  is equally correlated with all neighboring zones that 

themselves have the same number of adjacent zones to them. In addition, the SCL model does 

not accommodate general patterns of spatial correlation across alternatives. In practice, the 

analyst will never know a priori the form of the “true” correlation pattern between alternatives, 

and it therefore is important to have a methodology that allows the empirical testing of various 

alternative forms of spatial correlation. For example, it is possible that there is some level of 

spatial correlation among alternatives even if the alternatives are not contiguous. Further, the 

magnitude of correlation between two spatial alternatives may be a function of a 

multidimensional vector of observed variables. In these respects, the model proposed in this 

paper extends the SCL model by allowing general and flexible patterns of spatial correlation 

rather than pre-imposing restrictive spatial correlation patterns.3  

The specific generalization of the SCL model is based on allowing the allocation 

parameter iji,α  to be a function of a multidimensional vector of attributes ijz characterizing the 

spatial relationship between spatial choice alternatives i and j, rather than imposing the structure 

in Equation (2). Of course, the following two conditions should still be met by the allocation 
                                                            
3 Another approach to empirically test alternative forms of spatial correlation (rather than pre-imposing restrictive 
forms) is to estimate different non-nested model forms and then select an appropriate form based on non-nested 
statistical tests (see Kelejian, 2008).  
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parameters: 0 < iji,α < 1 for all i and j, and ∑
j

iji ,α = 1 for all i.  While many functional forms that 

satisfy the two conditions noted above may be employed for the mapping from ijz  to iji,α , we 

use the simple multinomial logit form in the proposed generalized spatially correlated logit 

(GSCL) model: 

,
)exp(

)exp(
, ∑ ′

′
=

k
ik

ij
iji z

z
φ
φ

α                   (3) 

where, by convention, iiz = 0 for all i, and φ  is a coefficient vector to be estimated. The ijz  

vector may include variables such as the shared boundary length for contiguous alternatives, the 

inter-alternative distance, whether alternatives share some common observed characteristic (such 

as say presence of a mall or presence of a large park or being part of the same “neighborhood”), 

similarity measures based on observed location characteristics (such as intensity or density of 

land-use in certain types of activities), presence of physical barriers such as rivers and 

mountains, and other measures of network connectivity and topography.4  

The reader will note that Equation (2) for the allocation parameters in the SCL model is 

not a restricted version of Equation (3) for the allocation parameters in the GSCL model. Thus, 

the GSCL model does not nest the SCL model. However, the GSCL model does generalize the 

SCL model by allowing multiple variables in the ijz  vector, including the contiguity dummy 

variable ijω . The GSCL and the SCL models can be formally compared using a non-nested 

likelihood ratio test. On the other hand, the GSCL model, like the SCL model, nests the MNL 

model, which is obtained when 1=μ .5  

                                                            
4 The use of the functional form in Equation (3) allows relatively easy interpretation of the φ  coefficient vector. 
Thus, for example, if the element of the φ  vector corresponding to shared boundary length is positive, it implies 

that iji,α  will be higher than iki,α  for a spatial unit j closer to i than is spatial unit k. This has the effect of a higher 

correlation between alternatives i and j than i and k. Also, note that we have chosen to parameterize the iji,α  terms 

instead of the alternative of maintaining the SCL form of Equation (2) for the iji,α terms, writing μ  as ijμ , and 

then parameterizing ijμ  as a function of the ijz vector. This is because this alternative way of generalizing the SCL 
model will still impose zero spatial correlations for non-contiguous alternatives (even if allowing a more flexible 
correlation patterns among contiguous alternatives).  
5 When µ = 1 in the GSCL model, the φ  parameter vector in Equation (4) becomes econometrically unidentifiable. 
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One other special case of the GSCL model that we will discuss here (because this was the 

form that came out to be relevant in the empirical context of the current study) is the distance-

based spatially correlated logit (DSCL) model. In particular, consider the case where the only 

variable in the ijz  vector of Equation (3) is inter-alternative distance. While many different 

functional forms can be tested for the inter-alternative distance (including linear distance, 

logarithm of distance, “cliff-distance” specifications where zones that exceed a certain distance 

threshold fall off the correlation “cliff” and become uncorrelated, etc.), consider the simple 

logarithm form of distance in the ijz  vector. In this case, Equation (3) collapses to the following 

form: 

∑∑
=

′

′
=

k
ik

ij

k
ik

ij
iji d

d
d

d
φ

φ

φ
φ

α
)lnexp(

)lnexp(
,                          (4) 

The expectation in the above DSCL model allocation form is that the parameter φ  is negative, so 

that correlation between alternatives reduces as the distance between them increases. This is 

essentially a distance decay function for the allocation parameters.   

The GSCL model is derived based on the generator function of Equation (1), but with 

iji,α  as specified in Equation (3). Based on the function given in Equation (1), the vector of the 

unobserved portion of utility, ),...,,( 21 nInnn εεεε = , has the following cumulative extreme-value 

distribution: 

 [ ]
⎭
⎬
⎫

⎩
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⎧

+−= −−
−

+==
ΣΣ

μμεμε ααε /1
,

/1
,

1
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I
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I

i
n             (5) 

Note that the marginal cumulative distribution function (CDF) of each stochastic element iε  has 

a univariate extreme-value distribution, which is the standard Gumbel distribution function: 

{ }ii eeF iji
ij

i
εεαε −−

≠

−=
⎭
⎬
⎫

⎩
⎨
⎧
−= Σ expexp)( ,              (6) 

The bivariate marginal CDF for two stochastic elements iε  and kε  of two spatial units i  and k , 

whether i  and k  are adjacent or not, is as follows: 
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The probability function of the GSCL model (i.e. the probability of decision maker n  

choosing alternative i ) is obtained by substituting the generator function of Equation (1) into 

McFadden’s (1978) probability expression: 
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The direct and cross elasticity formulas for the GSCL model are similar to those derived 

for the SCL model, except for the cross elasticity expressions for non-adjacent alternatives (see 

Table 1 for the elasticity expressions). As can be seen from the elasticity formulations, the cross 

elasticities for the SCL model are higher than the MNL model only for spatial units adjacent to 

alternative i. In other words, the cross elasticity expression of the SCL model is the same as that 

for the standard MNL for all choice alternatives not adjacent to alternative i.  This is because the 

correlation between alternative i and all non-adjacent alternatives is assumed to be zero in the 

SCL, which is consistent with the assumption of independence of choice alternatives intrinsic to 

the standard MNL formulation.  On the other hand, the GSCL model relaxes this assumption and 

does not yield constant cross elasticities, even for alternatives that are not adjacent to alternative i 

because correlation between non-adjacent locations is accommodated.  

The GSCL model discussed thus far accommodates correlation across spatial units 

regardless of adjacency. However, it does not consider heterogeneity across decision makers in 

the responsiveness to exogenous determinants of the choice alternatives. This sensitivity 

variation can be incorporated by superimposing a mixing distribution into the GEV structure of 

the GSCL model.  
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To summarize, the GSCL model provides a more general functional form than the SCL 

model to explore potential correlation mechanisms across spatial units. Further, the GSCL model 

obviates the need to use any kind of simulation machinery, and hence, can be simply estimated 

by direct maximum likelihood techniques. This is in stark contrast to earlier studies in the 

literature that have accommodated spatial correlation across non-contiguous alternatives using 

mixed logit and multinomial probit model structures (see Section 2.1). These model structures 

are estimated using simulation-based techniques, which become impractical and/or infeasible in 

situations with even a moderate number of spatial alternatives. Indeed, this explains the fact that 

the earlier studies reviewed in Section 2.1 have confined themselves to few spatial alternatives. 

On the other hand, there is no limit to the number of spatial alternatives that can be handled in 

our closed-form GSCL model.  

An important note is in order here regarding the choice of the general formulation used to 

specify the allocation parameter before proceeding to the empirical section.  In our empirical 

analysis, a wide variety of variables was formulated and tested to examine their impacts on the 

allocation parameters, as discussed in the text surrounding Equation (3). It was found that the 

simple distance-based measure specified in Equation (4) turned out to be statistically adequate in 

the context of the empirical application in this paper (that is none of the other elements of the φ  

parameter vector in Equation (3) turned out to be statistically significant). The remainder of the 

paper is dedicated to describing the empirical application, model estimation results, and model 

interpretation in the context of this distance-based SCL (DSCL) model, which is a special case of 

the GSCL model proposed in the paper.    

 

4. THE EMPIRICAL CONTEXT 

4.1. Background 

Residential location choice is one of the most critical decisions made by a household, and has a 

profound and lasting impact on the activity-travel patterns of household members as well as non-

household members with whom a household interacts. Residential location choices of 

households have impacts on the evolution of the built environment as transport, land use, and 

urban form change in response to the needs of the resident population.  The study of residential 

location choice is of major interest at the nexus of transportation and land use modeling and is 
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considered fundamental to the development of integrated land use–transportation modeling 

systems (regardless of whether or not the transportation model is activity-based).   

More broadly, and as indicated by Guo (2004), “[t]he home is where people typically 

spend most of their time, a common venue for social contact and, for most people, a major and 

personal investment. One’s choice of residence also reflects one’s choice of surrounding 

neighborhood, which has a significant impact on one’s well-being and quality of life”. As a 

consequence of this awareness, the study of residential location choice has attracted considerable 

attention from researchers in several disciplines, including geography (see Waller et al., 2007), 

ecology (Brown and Robinson, 2006), human genetics (Whitfield et al., 2005), conservation 

biology (Peterson et al., 2008), psychology (Jokela et al., 2008), urban economics (Clark and 

Huang, 2003), regional science (Kim et al., 2005), transportation (Prashker et al., 2008), real-

estate (Uyar and Brown, 2005), and land-use (Cho et al., 2008). As expected, this increasing 

interest has led to a substantial and rich body of literature on residential location choice 

modeling. Discrete choice modeling has a unique place in this literature since it helps understand 

the trade-offs of various sociodemographic and locational variables, and allows the identification 

of the sensitivity of different demographic segments to the residential choice attributes (see 

Sermons and Koppelman, 2001; Bhat and Guo, 2004).  Examples of discrete choice studies of 

residential location in the transport geography field include McFadden (1978), Clark and Onaka 

(1985), Timmermans et al. (1992), Waddell (1993), Abraham and Hunt (1997), Ben-Akiva and 

Bowman (1998), Sermons and Koppelman (1998, 2001), Bhat and Guo (2004), Miyamoto et al. 

(2004), Bhat and Guo (2007), Prashker et al. (2008), and Pinjari et al. (2009). An extensive 

review of this body of literature is beyond the scope of this paper, but is available in Bhat and 

Guo, 2004 and Prashker et al., 2008. However, most previous discrete choice studies of 

residential location choice ignore spatial correlation considerations.  

 

4.2. Data Description and Variable Specification 

The modeling methodology is applied in this paper to the study of residential location choice for 

a sample of households extracted from the 2000 San Francisco Bay Area Travel Survey (BATS).  

Details about the survey and sampling procedures may be found elsewhere (MORPACE 

International, Inc., 2002).  The survey data set includes detailed information about individual and 

household socio-demographic and employment characteristics for over 15,000 households in the 
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Bay Area.  The data set also includes detailed information on all activity-travel episodes for a 

two-day period for all household members.  

In addition to the data set from the 2000 BATS, several secondary Geographic 

Information System (GIS) data layers of highways (including interstate, toll, national, state and 

county highways), local roadways (including local, neighborhood, and rural roads), bicycle 

facilities, businesses, as well as land-use/demographics and zone-to-zone travel level of service 

(LOS) data were used to obtain spatial and built environment variables that characterize the 

choice behavior of households in the region (see Bhat and Guo, 2007 for a detailed description of 

these secondary data sets as well as the data extraction and merging procedures).   

The sample of households extracted for use in this study is that with residential locations 

in San Mateo County in the San Francisco Bay Area. In particular, the county-specific subsample 

consisted of 702 households which, for the purposes of this study, are assumed to have the 

choice of residing in one of the 115 traffic analysis zones (TAZs) that comprise San Mateo 

County.6  

The secondary data sources provided a rich set of built environment variables for each 

TAZ.  In addition to the direct impacts of built environment variables on residential location 

choice, the interaction effects between household socio-demographics and built environment 

variables are considered to account for the taste variations of households to zonal attributes.  The 

following categories of variables were considered for inclusion in the model specifications.   

• Zonal Land Use Structure Variables include housing-type measures (proportion of 

single-family, multi-family, duplex, and other dwelling units), land use composition 

measures (proportion of zonal area devoted to residential, commercial, and other land 

uses), and a land use diversity index (between 0 and 1 where zones with greater land use 

diversity obtain higher index values) computed from land use composition variables. 

• Zonal Size and Density Measures include total population, number of housing units, 

population density, household density, location indicators (CBD, suburban, urban, rural), 

and employment density by employment type or category.   

                                                            
6 Note that use of a mixed logit or multinomial probit model of the type used in earlier literature would lead to 
probability expressions with an integration order of 115 dimensions. Even with recent advances in simulation, 
handling such a large number of dimensions for integration is impractical.  
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• Regional Accessibility Measures include measures that capture the amount of 

employment, shopping, and other activity opportunities that can be reached by auto and 

transit. 

• Zonal Ethnic Composition Measures include variables that describe the ethnic/racial 

composition of the population in each zone. 

• Zonal Demographic and Housing Cost Variables include such variables as average 

household size, median household income, and median housing cost in each zone. 

• Zonal Commute-related Variables include variables that measure the commute time and 

cost as aggregate values across all workers in the household based on the assumption that 

employment location is predetermined. 

• Zonal Activity Opportunity Variables include variables constructed from the InfoUSA 

business directory to describe the composition of the zones with respect to intensity or 

density of various types of activity opportunities including shopping, physically active 

recreation (e.g., gym), physically passive recreation (e.g., movie theater), natural 

recreation (e.g., park), and eat out.   

• Zonal Transportation Network Measures include variables that describe highway density 

(lane-miles per square mile), local roadway density, bikeway density, transit availability, 

and street-block density.  

• Interaction Effects Variables include those that capture interaction effects between 

household socio-demographics and zonal attributes such as the absolute difference 

between the median zonal income and household income, absolute difference between 

zonal average household size and household size, and household income interacted with 

accessibility measures.  

• Spatial Correlation Variables include those that characterize spatial correlation patterns 

across alternatives and may be used to formulate alternate specifications of the allocation 

parameter that represents the degree of dependency across choice alternatives, as 

discussed in the text following Equation (3). 

 

5. MODEL ESTIMATION RESULTS 

The final model specification was based on intuitive considerations, insights from previous 

literature, parsimony in specification, and statistical fit/significance considerations.  In order to 
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empirically demonstrate the value of incorporating spatial correlation across contiguous and non-

contiguous zones, three different residential location choice models were estimated.  These 

include: 

1. A standard MNL model in which the residential choice alternatives are considered 

uncorrelated 

2. A SCL model in which the residential choice alternatives are allowed to be endogenously 

correlated only across adjacent or contiguous zones 

3. A GSCL model in which the residential choice alternatives are allowed to be 

endogenously correlated across contiguous and non-contiguous zones 

As noted earlier in the paper, the MNL model is a restricted version of the SCL and 

GSCL models.  Therefore, to allow a behaviorally and statistically sound comparison of models, 

each model is estimated with the same sample data and set of variables. Table 2 presents model 

estimation results for the MNL and GSCL models.  It should be noted that, in this particular 

application context, the dissimilarity (or correlation) parameter in the SCL model is found to be 

not statistically significantly different from one.  When the dissimilarity parameter is equal to 

one, the SCL model reduces to the standard MNL model.  Therefore, the MNL and SCL model 

estimation results are one and the same in this paper.  Also, the GSCL model specification 

collapsed to the DSCL model, and so we will henceforth substitute the acronym DSCL for the 

GSCL model (including in Table 2).  

In general, from a qualitative examination of the model estimation results in Table 2, the 

MNL and DSCL models offer similar behavioral interpretations.  Coefficient values and signs 

are generally consistent with respect to behavioral interpretation across the two model 

specifications. In both models, it is found that households do not tend to locate or reside in zones 

with greater degrees of land use mix.  This is further corroborated by the finding that households 

tend to be positively inclined to locate in zones with larger numbers of households.  These 

findings are consistent with the pattern of land use development where households tend to reside 

in homogeneous residential zones or subdivisions with little mix of other land uses.  A clustering 

effect is observed for the Caucasian population, as evidenced by the positive coefficient 

associated with the interaction variable capturing the tendency of Caucasian households to locate 

themselves in predominantly Caucasian zones.  Such a clustering effect is not found for other 

ethnic groups in this particular sample.  Additional clustering effects are observed with respect to 



 

16 

zonal demographics and housing cost.  Households tend to locate in zones with similar income 

levels and household sizes.  As the difference between the household income or household size 

and that of the zone increases, the likelihood that the household will reside in that zone 

decreases.  Housing affordability is another major factor influencing household residential 

location choice.  Model estimation results suggest that, as the median housing value rises, the 

likelihood of that zone being chosen by a household as a residential location falls. The effect of 

the zonal activity opportunity measures reflects the positive influence of the physically active 

recreation centers such as fitness centers, sports centers, dance, and yoga studios. As the number 

of these physical activity centers increases in a zone, households are more likely to reside in such 

a zone. Consistent with several other findings, residential location choice is negatively associated 

with highway density. Once again, considering that the general pattern of residential 

development/location is one where households reside in low density suburban locations, this 

finding of a negative association with highway density is consistent with expectations.  

Commute-related variables are important factors in household residential location choice.  As the 

total commute time (aggregated over all commuters in a household) rises, the likelihood of 

residential location in a particular zone falls.  On the other hand, residential location choice is 

positively impacted by the availability of transit between the home and work zones.  As the 

number of commuters in the household who have transit connectivity increases, the likelihood of 

residential location in a zone increases as well.  This suggests that transit availability can play a 

role in shaping residential location choices of households.  The combination of the effects of 

these two commute-related variables, coupled with the high and rising fuel prices seen in the last 

few years, makes the case for enhancing transit service availability, enhancing residential 

location opportunities along transit lines, and mixing land uses so that commute times are 

reduced.  Such measures may result in households locating in neighborhoods that foster the use 

of alternative modes of transportation and reduce the amount of distance and time involved in 

commuting.  It is interesting to note that, in this particular application context, regional 

accessibility measures were not found to be statistically significant in explaining residential 

location choice.  As the transportation system is generally of a ubiquitous nature in virtually all 

urban areas in the United States, it is not surprising that these variables have not turned out 

statistically significant in explaining residential location choice.   
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Two key parameters of interest in the context of this study are the dissimilarity or 

correlation parameter μ , and the distance coefficient in the allocation parameter, φ . The 

dissimilarity or correlation parameter for the MNL model is 1 because the MNL model assumes 

independence across all choice alternatives.  In this particular context, it was found that the SCL 

model offered the same result.  The dissimilarity parameter for the DSCL is 0.617 and this 

parameter is statistically significantly different from 1 at the 0.05 level of significance. The 

finding of a dissimilarity parameter that is statistically significantly smaller than one indicates 

that the DSCL model rejects the MNL (and SCL) models, and that there is a high level of spatial 

correlation across contiguous and non-contiguous zones in residential location choice, which 

both the MNL and SCL fail to recognize in this particular application.  In addition, the distance 

coefficient in the allocation parameter, φ , is also found to be statistically significant at the 0.05 

level of significance. The parameter is negative suggesting that the degree of correlation 

decreases as the distance between zones increases. It is also interesting to note that this 

coefficient is approximately equal to a value of 2, which is similar to a gravity model-type 

formulation where the decay function assumes that the interaction between two zones falls off as 

the square of the distance between them.  This parameter does not exist in the MNL and SCL 

models; given that it is found to be statistically significant in this study, the DSCL is capturing a 

distance-based correlation effect between zones that is completely ignored in the MNL and SCL 

models.  The DSCL model is also found to offer a statistically superior goodness-of-fit in 

comparison to the MNL/SCL models.  In particular, the likelihood ratio test comparing the 

DSCL model and the MNL/SCL models is 5.78, which is statistically significant at the 0.0162 

level of significance when compared with the chi-square distribution with one degree of 

freedom. This clearly indicates the superiority of the DSCL model over the MNL/SCL models. 

Differences between the MNL/SCL and DSCL model are further elucidated through a 

comparison of elasticity effects or measures offered by the alternative model specifications. 

Tables 3 and 4 present direct and cross-elasticity effects estimated for a randomly selected 

household in the survey subsample.  The elasticities are computed for the randomly chosen 

household with respect to changes in attributes of the residential location (zone) where the 

household currently resides. Thus, the direct and cross elasticities reflect the change in likelihood 

of choosing a zone as a residential location in response to change in attribute of the zone where 

the household currently resides.  Cross elasticities are computed for four alternate zones where 
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two zones are contiguous or adjacent to the chosen residential zone and two zones are non-

contiguous.  The four zones are considered in the tables in ascending order of distance from the 

chosen residential zone.   

Direct elasticity values are provided in the first column of the tables.  Just as the model 

coefficients in Table 2 showed differences between the MNL/SCL and DSCL models, the direct 

elasticity values also show some differences.  As the DSCL model incorporates a different 

spatial correlation structure, these differences are consistent with expectations.  Although the 

magnitudes and signs of direct elasticities are generally consistent across the model 

specifications, one should recognize that these elasticity differences could have substantial 

consequences when applied to a large population of households.   

More significant and noteworthy in the context of this study is the comparison of cross-

elasticity values.  In Table 3, it should be noted that there is only a single cross-elasticity value 

across all four alternate zones because the SCL model reduced to the MNL model in this 

particular specification.  If the SCL model offered a dissimilarity parameter significantly less 

than one, then the SCL model would have offered two sets of cross-elasticity values – one set for 

the two contiguous zones and one set for the two non-contiguous zones.  On the other hand, the 

DSCL model presents four distinct cross-elasticity values because the degree of spatial 

correlation between the chosen subject zone and the four alternate zones is dependent on the 

distance between the zones.  Cross-elasticity values would be identical only in instances where 

the spatial separation between zones under consideration was equal.   

An examination of the cross-elasticity measures in Table 4 shows that the cross-elasticity 

decreases as the distance between the chosen subject zone and the alternate zone increases.  This 

continuous variation in cross-elasticity is a manifestation of the distance-based specification of 

the spatial correlation allocation parameter in the DSCL model.  The DSCL model is a more 

flexible version of the SCL model in that it accommodates disproportionate shifts in residential 

location choice probabilities in response to changes in built environment and zonal attributes.  

These findings suggest that the DSCL is a behaviorally realistic and statistically robust 

representation of spatial correlation across choice alternatives in location choice modeling 

contexts. 
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6. CONCLUSIONS 

Location choice behavior of households and individuals lies at the heart of activity-travel 

demand modeling. Activity-travel behavior is characterized by interactions in time and space and 

it is widely recognized that the incorporation of time-space interaction effects is critical to 

understanding, explaining, and modeling activity-travel demand under a wide range of land use, 

transport, technology, and policy scenarios. Although great strides have been made in 

recognizing temporal constraints and dimensions in activity-travel demand modeling, the 

incorporation of spatial effects in modeling frameworks has generally lagged advances made in 

the temporal domain.  This paper contributes to the profession’s ability to reflect spatial effects 

in discrete choice models of travel behavior.  

This paper focuses on the issue of spatial correlation that pervades most location choice 

modeling contexts where choice alternatives are correlated with one another.  In many instances, 

location choice alternatives are correlated with one another due to unobserved spatial and 

demographic attributes that lead to spatial correlation.  In the presence of correlation across 

choice alternatives over space, the assumption of independency of choice alternatives intrinsic to 

the classic multinomial logit (MNL) model is violated and parameter estimates of standard logit 

models will be biased and inconsistent. Although there are several methods to accommodate 

spatial correlation, many of these methods have limitations and require the analyst to have a 

priori knowledge about the nature of the spatial correlation prevalent in the choice set.  Existing 

methods are also unsuitable to deal with contexts where the location choice set is very large, a 

situation that is often encountered in travel demand modeling.   

In previous work, Bhat and Guo (2004) proposed a spatially correlated logit (SCL) model 

that accommodated correlations across location alternatives that were contiguous to one another.  

As long as two spatial units (such as traffic analysis zones) shared even a tiny stretch of common 

boundary, the alternatives were considered correlated. If two alternatives did not share a 

common boundary (i.e., they were non-contiguous), they were treated as being completely 

uncorrelated.  Although this approach accommodated spatial correlation between neighboring 

zones, it did not accommodate spatial correlation between non-contiguous zones and was 

sensitive to the configuration of zonal boundaries.  If the zonal configuration was modified, the 

spatial correlation structure in the SCL model could change drastically leading to unreasonable 

degrees of change in parameter estimates.   
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In order to overcome these limitations, this paper offers a generalized version of the SCL 

model (labeled the Generalized SCL or GSCL model) by considering spatial correlation across 

all zone pairs. The GSCL model can be enhanced in a straightforward fashion to accommodate 

random taste variations across decision-makers.   

The GSCL model is estimated and compared to the standard MNL and SCL in the 

context of a residential location modeling application.  A sample of about 700 households in the 

San Mateo County of the San Francisco Bay Area is extracted from the 2000 San Francisco Bay 

Area Travel Survey (BATS). An extensive set of secondary built environment variables were 

appended to the survey records to form a comprehensive database for model estimation.  The 

GSCL model takes a simpler distance-based SCL (or DSCL) model formulation in the empirical 

estimation, and clearly rejects the standard MNL specification.  On the other hand, in the 

particular empirical context considered in this study, the SCL offered a dissimilarity parameter 

not significantly different from one, making it essentially equivalent to the standard MNL.  The 

distance coefficient in the spatial correlation allocation parameter in the DSCL model is 

approximately -2, suggesting that the degree of correlation between location alternatives in the 

residential choice context falls as the second power of the distance between them.  Comparisons 

of cross-elasticities further demonstrate that the DSCL is able to capture the greater interaction 

effects between zones that are closer together, while simultaneously recognizing that zones that 

are farther apart (and non-contiguous) are also correlated, albeit to a lesser degree.   

In conclusion, the GSCL model offers a rigorous approach for incorporating a continuous 

spatial correlation structure in discrete choice models of location choice.  Activity-based travel 

models that purport to capture time-space interactions should be formulated to recognize these 

spatial correlation effects.  Ongoing research efforts include extending the GSCL model to joint 

discrete-continuous simultaneous equations modeling contexts, and testing the robustness of the 

findings in other empirical contexts.   
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Table 1. Expressions for the Direct and Cross-Elasticities in the MNL, SCL, and GSCL Models 
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  if i and j are contiguous or not contiguous 

 
 
 

                                                            
‡‡ Direct elasticity refers to the percentage change in the choice probability of alternative i due to a 1% change in the mth variable associated with alternative i. 
Note that we are suppressing the index for the individual in this table. 
§§ Cross-elasticity is the percentage change in the choice probability of alternative j due to a 1% change in the mth variable associated with alternative i. 
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Table 2. Estimation Results for the MNL and DSCL Models 
 

Variables 
Multinomial Logit 
Model (MNL)*** 

Distance-based  
Spatially Correlated Logit 

Model (DSCL) 
Parameter t-stat Parameter t-stat 

Zonal land-use structure     
Land-use mix -0.447 -2.24 -0.329 -1.91 

Zonal size and density     
Log # households in zone  0.916 9.45 0.750 6.35 

Zonal ethnic composition measure     
Fraction of Caucasian population interacted with Caucasian dummy variable 2.043 6.26 1.772 5.29 

Zonal demographics and housing cost     

Absolute difference between zonal median income and household income ($ x 10
-3

) -0.015 -6.94 -0.012 -5.62 
Absolute difference between zonal average household size and household size -0.210 -2.08 -0.182 -2.05 
Average of median housing value -0.153 -5.00 -0.125 -4.26 

Zonal activity opportunity variables     
Number of physically active recreation centers such as fitness centers, sports centers, dance and 

yoga studios 
0.020 2.59 0.016 2.47 

Zonal transportation network measures     
Highway density (mileage per square mile) -0.092 -1.93 -0.054 -1.36 

Household level commute variables     
Total commute time (by auto) of all commuters in the household (min.) -0.042 -13.53 -0.040 -10.98 
Number of commuters in household with home and work zones served by transit within 30 min 0.605 5.34 0.510 4.61 

Dissimilarity (correlation) parameter (µ) 1.00 --- 0.617 3.79 

Distance coefficient in allocation parameter (φ ) --- --- -2.052 -2.02 

Number of Observations 702 702 
Log-likelihood at convergence -3054.06 -3051.17 

 
                                                            
*** In this empirical context, the SCL model is equivalent to the MNL model.  
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Table 3. Disaggregate Elasticity Effects for the MNL/SCL Model 

 
 
 

    MNL and SCL Models 

    Zone 1  Zone 2  Zone 3  Zone 4 

Contiguity contiguous contiguous 
non-

contiguous 
non-

contiguous 
Distance between zones (in miles) 0.86 1.05 2.42 5.58 

Variables 
Direct 

Elasticity Cross Elasticity with respect to different zones 
Zonal land-use structure   
Land-use mix -0.1669 0.0124 

Zonal size and density   
Log # households in zone  6.9938 -0.5199 

Zonal ethnic composition measure   
Fraction of Caucasian population interacted with 

Caucasian dummy variable 
1.3699 -0.1018 

Zonal demographics and housing cost   
Absolute difference between zonal median income 

and household income ($ x 10-3) 
-0.2080 0.0155 

Absolute difference between zonal average 
household size and household size 

-0.2669 0.0198 

Average of median housing value -0.8136 0.0605 
Zonal activity opportunity variables   
Number of physically active recreation centers 

such as fitness centers, sports centers, dance and 
yoga studios 

0.2737 -0.0203 

Zonal transportation network measures   
Highway density (mileage per square mile) -0.0885 0.0066 
Household level commute variables   
Total commute time (by auto) of all commuters in 

the household (min.) 
-0.1082 0.0080 

Number of commuters in the household with home 
and work zones served by transit within 30 min 

0.5630 -0.0418 
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Table 4. Disaggregate Elasticity Effects for the GSCL Model 

 
 
 

    DSCL Models 

    Zone 1  Zone 2  Zone 3  Zone 4 

Contiguity contiguous contiguous 
non-

contiguous 
non-

contiguous 
Distance between zones (in miles) 0.86 1.05 2.42 5.58 

Variables 
Direct 

Elasticity Cross Elasticity with respect to different zones 
Zonal land-use structure      
Land-use mix -0.1306 0.0136 0.0129 0.0097 0.0088 
Zonal size and density      
Log # households in zone  6.0902 -0.6351 -0.5998 -0.4534 -0.4102 
Zonal ethnic composition measure      
Fraction of Caucasian population interacted with 

Caucasian dummy variable 
1.2634 -0.1318 -0.1244 -0.0941 -0.0851 

Zonal demographics and housing cost      
Absolute difference between zonal median income 

and household income ($ x 10-3) 
-0.1866 0.0195 0.0184 0.0139 0.0126 

Absolute difference between zonal average 
household size and household size 

-0.2462 0.0257 0.0242 0.0183 0.0166 

Average of median housing value -0.7100 0.0740 0.0699 0.0529 0.0478 

Zonal activity opportunity variables      
Number of physically active recreation centers 

such as fitness centers, sports centers, dance and 
yoga studios 

0.2346 -0.0245 -0.0231 -0.0175 -0.0158 

Zonal transportation network measures      
Highway density (mileage per square mile) -0.0546 0.0057 0.0054 0.0041 0.0037 

Household level commute variables      
Total commute time (by auto) of all commuters in 

the household (min.) 
-0.1111 0.0116 0.0109 0.0083 0.0075 

Number of commuters in the household with home 
and work zones served by transit within 30 min 

0.5044 -0.0526 -0.0497 -0.0376 -0.0340 


