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Coupled systems are ubiquitous in modern engineering and science.

Such systems can encompass fluid dynamics, structural mechanics, chemi-

cal species transport and electrostatic effects among other components, all

of which can be coupled in many different ways. In addition, such models are

usually multiscale, making their numerical simulation challenging, and neces-

sitating the use of adaptive modeling techniques. The multiscale, multiphysics

models of electrosomotic flow (EOF) constitute a particularly challenging cou-

pled flow system. A special feature of such models is that the coupling between

the electric physics and hydrodynamics is via the boundary.

Numerical simulations of coupled systems are typically targeted to-

wards specific Quantities of Interest (QoIs). Adjoint-based approaches offer

the possibility of QoI targeted adaptive mesh refinement and efficient param-

eter sensitivity analysis. The formulation of appropriate adjoint problems for

vii



EOF models is particularly challenging, due to the coupling of physics via the

boundary as opposed to the interior of the domain. The well-posedness of the

adjoint problem for such models is also non-trivial. One contribution of this

dissertation is the derivation of an appropriate adjoint problem for slip EOF

models, and the development of penalty-based, adjoint-consistent variational

formulations of these models. We demonstrate the use of these formulations in

the simulation of EOF flows in straight and T-shaped microchannels, in con-

junction with goal-oriented mesh refinement and adjoint sensitivity analysis.

Complex computational models may exhibit uncertain behavior due to

various reasons, ranging from uncertainty in experimentally measured model

parameters to imperfections in device geometry. The last decade has seen a

growing interest in the field of Uncertainty Quantification (UQ), which seeks

to determine the effect of input uncertainties on the system QoIs. Monte Carlo

methods remain a popular computational approach for UQ due to their ease

of use and “embarassingly parallel” nature. However, a major drawback of

such methods is their slow convergence rate.

The second contribution of this work is the introduction of a new Monte

Carlo method which utilizes local sensitivity information to build accurate

surrogate models. This new method, called the Local Sensitivity Derivative

Enhanced Monte Carlo (LSDEMC) method can converge at a faster rate than

plain Monte Carlo, especially for problems with a low to moderate number

of uncertain parameters. Adjoint-based sensitivity analysis methods enable

the computation of sensitivity derivatives at virtually no extra cost after the

viii



forward solve. Thus, the LSDEMC method, in conjuction with adjoint sensi-

tivity derivative techniques can offer a robust and efficient alternative for UQ

of complex systems.

The efficiency of Monte Carlo methods can be further enhanced by

using stratified sampling schemes such as Latin Hypercube Sampling (LHS).

However, the non-incremental nature of Latin Hypercube Sampling has been

identified as one of the main obstacles in its application to certain classes of

complex physical systems. Current incremental LHS strategies restrict the

user to at least doubling the size of an existing LHS set to retain the conver-

gence properties of Latin Hypercube Sampling. The third contribution of this

research is the development of a new Hierachical Latin Hypercube Sampling

algorithm, that creates designs which can be used to perform LHS studies

in a more flexibly incremental setting, taking a step towards adaptive LHS

methods.
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Chapter 1

Introduction

1.1 Background

The second half of the twentieth century saw enormous strides in the de-

velopment of high-performance computing and its deployment in the modeling

and simulation of a variety of problems in science and engineering. Beginning

with the use of standalone codes for structural mechanics, fluid mechanics and

other applications, sophisticated computational models are now being used to

simulate coupled systems containing multiple scales and physics. As the com-

plexity of computer models and simulations has increased, there has also been

a growing interest in the reliability of their predictions [47, 35]. The quantifi-

cation of uncertainty inherent in complex physical phenomena and numerical

models has thus gained increasing importance in computational science and

engineering [42].

Alongside the development of the microcomputer and other miniatur-

ized computational devices, there has been a concurrent effort towards de-

veloping micro- and nano-scale technologies and devices for various applica-

tions [93, 53]. This has led to an increased interest in the physics of small scale

phenomena, including fluid flow at micro- and nano-scales [104]. Such flows
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and the devices that utilize them are increasingly prevalent in science and

commercial enterprises [93, 53]. Examples include bioassays consisting of mi-

crofluidic networks designed for patterned drug delivery [60] and microfluidic

fuel cells [24]. Such microfluidic devices operate over various length scales and

are best described using multiphysics modeling that involves hydrodynamics,

electroosmosis, and chemical species transport models.

On account of their coupled, multiscale nature, the development of ac-

curate, efficient and reliable computational simulators of microfluidic devices

is challenging and resource intensive. Significant research efforts have been

devoted in the past decade towards the development of better numerical meth-

ods for simulating microfluidics models and quantifying the uncertainty seen

in such flows and related devices. In this work, we make further contributions

to the development of efficient and reliable numerical methods for microflu-

idics models and to the analysis of solution sensitivity to various model and

numerical parameters.

1.2 Motivation

Numerical simulations of complex engineering systems are typically tar-

geted towards the calculation of specific Quantities of Interest (QoIs) associ-

ated with the systems. Accurate estimation of local QoIs can be achieved

using goal-oriented error estimation and adaptive techniques based on the use

of adjoint methods [80, 68, 13, 37]. Adjoint methods can also be used to im-

prove the computational performance of parameter sensitivity analyses [50],
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especially for systems with a large number of parameters. The application of

adjoint methods to coupled flow systems and uncertainty quantification is still

an open and active area of study. To our best knowledge, no advances in the

application of adjoint-based techniques to microfluidics applications, particu-

larly those involving ‘slip’ boundary coupling, have yet been published in the

literature. For related UQ problems, the low convergence rate of the Monte

Carlo method is an important obstacle in its application to complex models

such as those encountered in microfluidics.

Therefore, two problems will be addressed in this dissertation:

1. The formulation of an appropriate adjoint problem for coupled electroos-

motic flows, which will enable goal-oriented mesh refinement and adjoint

sensitivity analysis for such flows.

2. The development of a Monte Carlo method that utilizes adjoint sensitiv-

ity derivatives to improve on the convergence properties of plain Monte

Carlo.

We propose a modified variational formulation of the slip electroosmotic

flow model of microfluidics. Using such a formulation, the adjoint problem can

be computed and used in adaptive mesh refinement and parameter sensitivity

analysis. Then, building on the work of Cao et al. [19], and the ability to

compute sensitivity derivatives efficiently using adjoint techniques, a new Lo-

cal Sensitivity Derivative Enhanced Monte Carlo method shall be introduced.

This method can improve the convergence rate of the Monte Carlo method,

3



especially for problems with a moderate number of random parameters. These

twin contributions can help develop accurate and robust computational models

for coupled flow systems and related uncertainty quantification problems.

1.3 Literature Review

The last decade has seen a growth in the modeling and numerical sim-

ulation of microfluidic systems. Ren et al. [86] simulated microfluidic injection

processes of chemical species. Zhang et al. [108] presented simulations of elec-

troosmotic flow in microchannels of various shapes. Craven et al. [28] explored

the implications of the widely used Helmholtz Smoluchowski (HS) slip velocity

boundary condition using detailed numerical simulations. Beskok and Hahm

studied species entrapment using microfluidic devices through numerical simu-

lation [46]. Zimmerman et al. [110] proposed a new simulation based approach

for identifying non-Newtonian fluids, using detailed parameter sensitivity and

statistical analyses.

Efforts have also been made towards devising adaptive methods for mi-

crofluidics problems. Prachittham et al. [78] presented a space-time adaptive

finite element method applied to an electroosmotic flow using large aspect ra-

tio elements. Choi and Paraschivoiu presented a goal-oriented adaptive finite

element strategy for microfluidics using the bound method [26, 25]. However,

their work did not consider adjoint techniques for the coupled electrostatic and

hydrodynamic problem and did not use the slip boundary coupling condition.

On the other hand, van Brummelen et al. [101] and Estep et al. [38] have
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shown the importance of the treatment of boundary flux coupling for the use

of adjoint-based techniques.

On the UQ front, Debusschere et al. [29] have analyzed the uncertainties

arising in a reacting microchannel flow. Further work on UQ for a broader

range of microfluidic systems was presented by Knio et al. [57]. Computational

algoritms for UQ cluster around two broad areas: the polynomial chaos and

other stochastic expansion based methods that express the stochastic process

as a series expansion [106, 7, 2, 3], and the sampling based approaches arising

from the Monte Carlo method [47, 51]. Although stochastic expansion methods

can deliver fast convergence rates, they have the drawbacks of being intrusive

to implement [103] and of requiring a high degree of regularity in the stochastic

space [65] and are inefficient for high-dimensional problems [106, 103]. Monte

Carlo methods on the other hand, are straightforward to implement, non-

intrusive, converge at a dimension independent rate, and are “embarassingly

parallel”. However, they converge at a slow rate of N
− 1

2
s , where Ns is the

number of samples in a Monte Carlo study [71].

Various strategies have been proposed and used for improving conver-

gence properties of the Monte Carlo method. These include modified sampling

techniques such as Latin Hypercube Sampling (LHS) [95] and Hammersley

sampling [1]. LHS retains the N
− 1

2
s rate of convergence of Simple Random

Sampling (SRS) [95], but can substantially improve the constant of conver-

gence [72]. However, the non-incremental nature of Latin Hypercube Sam-

pling has been identified as one of the main obstacles in its application to
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certain classes of complex physical systems [47]. Some approaches have been

proposed for overcoming the non-incremental nature of LHS. Robinson [88]

proposed an iterative quasi-Monte Carlo method based on the Halton low

discrepancy sequence. Pleming and Manteufel presented a “replicated Latin

Hypercube Sampling” [77], which increases the number of samples by a user-

specified base size but does not retain the Latin hypercube structure for the

enlarged design. In current implementations of an Incremental LHS (ILHS)

method, one is restricted to at least doubling the size of an existing LHS set

to retain the design properties of Latin Hypercube Sampling [90, 1]. Sur-

rogate based approaches such as the Sensitivity Derivative Enhanced Monte

Carlo have also been introduced by Cao et al. [18]. Like LHS, these techniques

improve the constant of convergence for the Monte Carlo method [19]. The

SDEMC method has been used for UQ in fluid mechanics [81] and structural

mechanics [51].

1.4 Research Contributions

The new research contributions from this work include:

1. Analysis and application of adjoint-based techniques to widely used mi-

crofluidics models.

2. Implementation and verification of adjoint-based refinement and sensitiv-

ity analysis in the object oriented C++ Finite Element library libMesh.

3. Development of accelerated Monte Carlo techniques to improve the accu-
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racy and efficiency of uncertainty quantification using adjoint sensitivity

derivatives.

4. Application of above ideas for the numerical simulation of microfluidic

devices and uncertainty quantification for a model Poisson problem.

5. Development of an incremental Latin Hypercube Sampling algorithm to

allow efficient use of LHS in large-scale UQ problems.

6. Analysis of the error arising in the evaluation of QoIs due to the use

of boundary penalty techniques and the development of improved QoI

recovery techniques that reduce such errors.

1.5 Outline

Chapter 2 describes the modeling and simulation of microfluidic de-

vices. We then move on to the derivation and variational formulation of the

adjoint problem for coupled microfluidics in Chapter 3. Chapter 4 describes

the use of adjoints in error estimation and sensitivity analysis. It also includes

details on the implementation and verfication of adjoint-based techniques in

the software library libMesh [56]. In chapter 5, we illustrate the use of these

adjoint capabilities in the numerical simulation of microfluidic flow. In Chap-

ter 6, we discuss the evaluation of the boundary flux using a penalty method

and the implications for the corresponding adjoint problem. Chapters 7 and 8

describe our UQ work, the new Local Sensitivity Derivative Enhanced Monte
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Carlo method and the Hierarchical Incremental Latin Hypercube Sampling

method.
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Chapter 2

Microfluidics: Multiscale, Multiphysics Flow

at the Micron Level

2.1 Introduction

Microfluidics is the branch of fluid mechanics concerned with the un-

derstanding, modeling, and control of flows that occur on the micron scale,

where the characteristic length (L) is of the order 10−6 m. Several changes in

flow physics are observed as we approach the micro- and nano-scales. Many

of these are driven by the change in the ratio of the surface area of the flow to

its volume,

p(A)

p(V )
∝ L2

L3
∝ 1

L
≈ O(106) (2.1)

where p(A) are the forces associated with the surface of the flow, e.g. surface

tension, near wall electrostatic forces, wall friction, whereas p(V ) are the forces

associated with the bulk volume of the flow, e.g. inertia, pressure gradients,

and gravity. The large surface to volume ratio raises the prospect of precise

control over mass and heat transfer, chemical reactions, and separation pro-

cesses by enabling novel techiques of flow propulsion and control. Prominent

among these are microflows driven by electric fields. Such flows may be driven

through phenomena known as electroosmosis, electrophoresis, or both. Some
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examples of devices that use electric effects to drive flows are cross-channel

micro-chips used in various lab-on-a-chip applications [86], micromixers that

enhance mixing through the use of electrokinetic instabilities [23] and drug

delivery devices [99].

Figure 2.1: A lab on a chip device [45].

Electroosmotic devices utilize the properties of the electric double layer

(or the Debye layer, see Figure 2.2) that develops between the fluid and the

channel wall. Under the effect of an electric field applied tangential to the

channel wall, the charged particles of the double layer experience an electric

force, and start motion in the direction of the field. Viscous forces within

the fluid then drive the bulk fluid in the direction of the electric field. On

the other hand, electrophoresis drives fluid motion through the effect of an

electric field on a charged species present in the bulk flow. Electrophoresis is

often used to separate certain species from a bulk fluid or other species, for

example polymer separation in gels [93]. In this exposition, we will focus on
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electroosmotic flows (EOF).

Figure 2.2: Structure of Electric Double Layer (EDL) near the fluid-channel
wall interface [58].

2.2 The Physics of an Electroosmotically Driven Flow

As pointed out above, microflows are characterized by the dominance

of surface forces over bulk forces and inertia. Interfacial effects near the fluid-

channel wall then affect the bulk flow. Since the length scales of microflows

are very small, the ratio of the mean free path length (λ) to the character-

istic length (L) can be large. However, liquid microflows are still within the

continuum regime on account of their small mean free path length, and hence

low Knudsen numbers ( λ
L

) at ambient pressures. Thus, the incompressible

Navier-Stokes equations describe the fluid motion in an Eulerian framework,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u + f (2.2a)

∇ · u = 0 (2.2b)
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where u and p are the flow velocity and pressure, respectively, f is the body

force and Re is the flow Reynolds number. The dimensionless Reynolds number

governs the flow regime,

Re =
ρUL

µ
(2.3)

where ρ is the fluid density, µ is the fluid viscosity, U is a characteristic velocity,

and L a characteristic length.

The Reynolds number is small, of the order O(10−6) for microflows on

account of the small characterstic length. Hence microflows are well described

by the Stokes equations, the zero Reynolds number limit of the Navier Stokes

equations. If we further assume steady-state flow, the time derivative terms

drop out and we get the stationary Stokes equations,

−µ∆u +∇p = f (2.4a)

∇ · u = 0 (2.4b)

Flows at the microscales are thus dictated by the viscous effects and forces

such as electroosmosis and electrophoresis. In addition, the flow may depend

on wall shear forces such as surface tension; however those effects will not be

considered in this work. Instead, we shall focus our attention on the body

force term f for an electroosmotically driven flow. As mentioned above, in

such flows an electric double layer develops near the channel wall with an

associated charge distribution ρe. It is created by a combination of chemical

and thermal effects. Thus, its structure depends on the chemical properties of

the fluid and the channel wall surface. This structure is quantatively described
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by the Poisson-Boltzmann equation [62],

−∆Ψ = K2sinh(Ψ) (2.5)

where Ψ is the non-dimensional electric potential associated with the channel

wall and K is a non-dimensional constant, called the Debye-Huckel parameter.

The Debye-Huckel parameter depends on the dielectric properties of

the fluid and some physical constants. It can be calculated as,

K = κL (2.6a)

κ =

√
2z2

ve
2NAn∞
εkbT

(2.6b)

where the parameter 1
κ
, known as the Debye length, is that length scale where

the electrostatic interactions between the fluid and the channel wall are sig-

nificant. The terms in the numerator of Eq. (2.6b) are the ion valence zv,

electron charge e, Avogadro’s Number NA, and bulk concentration of ions n∞.

The terms in the denominator of Eq. (2.6b) are the permittivity (or dielectric

constant) ε, Boltzmann constant kb, and temperature T . The Debye-Huckel

parameter is the ratio of the bulk fluid and interfacial length scales, and will

vary according to the geometry of the channel, the chemical and electric prop-

erties of the fluid, and the temperature T . It determines the multiscale nature

of the flow. As an example, its value for polystyrene was computed using data

from [76] to give, K ≈ 40. Thus, for polystyrene, the electrostatic interactions

take place over a length that is 40 times smaller than the channel height. Con-

sequently, the grid for numerical simulations needs to be much finer near the

wall than in the center of the channel [28].
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Once Eq. (2.5) has been solved for the electric potential in the electric

double layer, the charge distribution can then be recovered from the potential

using the expression [62],

ρe = nzve = −2n∞sinh(Ψ)zve (2.7)

If a tangential electric field E is now applied, an electric potential φ will be

generated in the entire channel. The fluid then experiences a net body force,

f = ρeE = −ρe∇φ (2.8)

This body force can drive an electroosmotic flow even in the absence of any ap-

plied pressure gradients. A variety of microfluidic devices use such phenomena

for fluid motion [108, 86, 46, 110].

2.3 Modeling

To illustrate and further understand the properties of the electroos-

motic flow and the electric double layer, consider a rectangular open domain

Ω ⊂ Rd, with d = 2, and boundary ∂Ω. The boundary ∂Ω is composed of

the channel wall Γw and its inlet/outlet Γio, such that ∂Ω= Γw ∪ Γio. For

simplicity, we consider a single species flow through the channel. We consider

flows generated purely by electroosmosis, with no pressure driven components.

Studying the model in this simple setting will help us understand the essential

features of the physical model. Also, many microfluidic devices are simply as-

sembled as a collection of straight channels, for examples cross and T-channels

[110, 86].
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Based on the discussion in section 2.2, a steady-state EOF in a straight

rectangular channel can be modeled with the following set of equations,

−∆Ψ = K2 sinh(Ψ) in Ω (2.9a)

ρe = −2zven0sinh(Ψ) in Ω (2.9b)

−∇ · (σc∇φ) = 0 in Ω (2.9c)

−µ∆u +∇p = −ρe∇φ in Ω (2.9d)

∇ · u = 0 in Ω (2.9e)

The model parameters that the flow field depends on include the Debye-Huckel

parameter K, the conductivity of the fluid σc, and the fluid viscosity µ. We

also have the associated boundary conditions,

Ψ = Ψ0 on Γw (2.10a)

n · ∇Ψ = 0 on Γio (2.10b)

n · (σc∇φ) = 0 on Γw (2.10c)

φ = φio on Γio (2.10d)

u = 0 on Γw (2.10e)

u · t = 0 on Γio (2.10f)

n · (σ · n) = 0 on Γio (2.10g)

where n is the unit outward normal vector to the boundary of the domain, t

is a unit tangential vector along ∂Ω, and σ is the stress tensor:

σ = −pI + µ(∇u +∇Tu) (2.11)
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The no-slip condition is applied at the channel walls for the flow velocity. Note

that the last two boundary conditions imply that the velocity is normal to Γio

and that the pressure vanishes on Γio (this is in the case of planar boundaries,

see [10]), i.e.

p = 0 on Γio (2.12)

Input data Ψ0 represents what is called the wall zeta potential [62], while φio

represents the external potential(s) applied at the inlet and outlet of the chan-

nel. Eqs. (2.9) and (2.10) describe the complete or fine-scale EOF model. They

form a challenging set of coupled multiscale system of equations. Such sys-

tems are computationally expensive to solve, especially in the case of complex

geometries [28].

For a straight rectangular channel in a medium of constant conductivity,

one can obtain analytic expressions for the flow field variables under certain

assumptions [33]. The following expression describes the flow velocity of an

electroosmotic flow in a straight channel in the absence of pressure gradients,

ue = −ExΨ0

µ

(
1− cosh(κy)

cosh(κh)

)
(2.13)

where y is the distance from the centerline of the channel and h = L
2
, the half

height of the channel. The velocity ue is called the Helmholtz-Smoluchowski

(HS) velocity. It is the flow velocity tangential to the wall induced by the

applied electric field. The Helmholtz-Smoluchowski velocity reaches its free

stream value very quickly away from the channel wall for large values of the

parameter κh, which occur when the Debye layer length
(

1
κ

)
is very small.
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Figure 2.3: EOF velocity profile given by Eq. (2.13) for various values of the
parameter κh. The velocity has been normalized as −ue/ExΨ0

µ
. Note the steep

rise in ue for large values of κh.

To reduce the complexity and computational cost associated with the

fine-scale model, the Helmholtz-Smoluchowski (HS) velocity approximation is

introduced in the model. The approximation states that the body-force term

in the Stokes equations (2.9d) can be replaced by an effective ‘slip velocity’ on

the boundary given by,

uwall =
εΨ0

µ
E = λE (2.14)

where we have introduced the new parameter λ = εΨ0/µ. The validity of

this approximation has been verified through both experiments and numerical

simulations [46].

Using the Helmholtz-Smoluchowski approximation, the slip model of
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EOF can be stated as,

−∇ · (σc∇φ) = 0 in Ω (2.15a)

−µ∆u +∇p = 0 in Ω (2.15b)

∇ · u = 0 in Ω (2.15c)

The boundary conditions are,

n · (σc∇φ) = 0 on Γw (2.16a)

φ = φio on Γio (2.16b)

u + λ∇φ = 0 on Γw (2.16c)

u · t = 0 on Γio (2.16d)

n · (σ · n) = 0 on Γio (2.16e)

We see that the slip model spares one from solving the Poisson-Boltzmann

equation, whose solution exhibits a thin layer near the wall. As a remark, the

slip boundary approximation model given by Eqs. (2.15) and (2.16) is widely

used throughout the microfluidics research and development community for

modeling and simulation [53]. The model is even included in the commercial

Finite Element software package COMSOL Multiphysics [110].

2.4 The Slip Boundary Condition and its Implications

We now pay close attention to the coupling condition u = −λ∇φ. This

single constraint actually contains two conditions, one for each component of

the velocity. The tangential component of the velocity is proportional to the
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tangential gradient of the potential, and the normal component of the velocity

is proportional to the normal gradient of the potential.

From the derivation of Eq. (2.13), we recall that physically only the

tangential coupling can be justified. In Eq. (2.16c), the no-flux boundary

Neumann boundary condition on the potential (see Eq. (2.16a)) automatically

enforces a no-penetration boundary condition on the velocity. Thus, expressing

the coupling condition as in Eq. (2.16c) is convenient from a notational and

implementation standpoint. However, using numerical experiments and some

theory, we shall show that coupling the normal component in this manner

may lead to ill-posed adjoint problems. Hence, we decouple one of the velocity

components from the potential as follows, u · t + λ∂tφ = 0

u · n + λ∂nφ = 0
⇒

u · t + λ∂tφ = 0

u · n = 0
(2.17)

Note that this new coupling is equivalent to the one given by Eq. (2.16c).

In chapter 3, we derive the weak formulation for Eq. (2.15) using the

modified coupling given by Eq. (2.17). After developing the appropriate for-

mulation for the forward problem, we obtain the variational statement for the

corresponding adjoint problem. Again, we pay close attention to the coupling

in the adjoint problem. We then present numerical simulations of EOF in

chapter 5.
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Chapter 3

The Adjoint Problem for Coupled

Electroosmotic Flow

3.1 Introduction

In the previous chapter, we introduced a class of models for microflu-

idic devices that encompass various physics and length scales. We then dis-

cussed a new boundary condition called the slip condition that couples the

two physics in an EOF flow problem. We will now develop variational or

‘weak’ formulations of such slip EOF models, paying particular attention to

the boundary coupling condition and the related issues of regularity and well-

posedness. The coupling condition will be incorporated into the weak form by

using lift and penalty techniques in sections 3.2 and 3.3. This will allow us

to develop the weak formulation for the adjoint problem. The consistency of

the adjoint problem obtained using these two different techniques will then be

shown in section 3.3.3. Finally, in section 3.4 we will discuss the imposition

of the coupling boundary condition using penalty techniques and associated

well-posedness issues.
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3.2 Variational formulation of the slip BC EOF model

3.2.1 Variational formulation of primal problem

We derive here the weak formulation of the equations (2.15) and (2.16).

The potential φ satisfies,

−∇ · (σc∇φ) = 0 in Ω (3.1a)

φ = φio on Γio (3.1b)

σc∂nφ = 0 on Γw (3.1c)

We assume that the data φio are constant on the inlet and outlet. This as-

sumption is usually well justified in applications but can also be easily relaxed.

It is a convenient assumption to make in order to simplify some derivations

later on. We now introduce the spaces of admissible trial and test functions:

Z = H1(Ω) (3.2a)

Zφio = {ϕ ∈ Z; ϕ = φio on Γio} (3.2b)

Z0 = {ϕ ∈ Z; ϕ = 0 on Γio} (3.2c)

Also, let the conductivity σc lie in the space of positive functions that are also

bounded below on Ω,

C+(Ω) = {f ∈ C(Ω); f ≥ fmin > 0, fmin ∈ R+} (3.3)

The weak formulation of Eq. (3.1) reads:

Given σc ∈ C+(Ω) and φio ∈ R, find φ ∈ Zφio such that∫
Ω

σc∇φ · ∇ψ dx = 0, ∀ψ ∈ Z0 (3.4)
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Alternatively, one may introduce a lift function φio ∈ Zφio such that φ = ϕ+φio

and ϕ ∈ Z0. In this case, the weak form of the problem can be recast as:

Given σc ∈ C+(Ω) and φio ∈ R, find ϕ ∈ Z0 such that∫
Ω

σc∇ϕ · ∇ψ dx = −
∫

Ω

σc∇φio · ∇ψ dx, ∀ψ ∈ Z0 (3.5)

We now consider the non-dimensionalized stationary Stokes equation with slip

boundaries,

−∆u +∇p = 0 in Ω (3.6a)

−∇ · u = 0 in Ω (3.6b)

u · t + λ∂tφ = 0 on Γw (3.6c)

u · n = 0 on Γw (3.6d)

u · t = 0 on Γio (3.6e)

n · (σ · n) = 0 on Γio (3.6f)

We look for the velocity and pressure fields in the function spaces,

X =
[
H1(Ω)

]2
(3.7a)

Xφ =
{
u ∈ X; u · t = −λ∂tφ,u · n = 0 on Γw, u · t = 0 on Γio

}
(3.7b)

X0 =
{
u ∈ X; u = 0 on Γw, u · t = 0 on Γio

}
(3.7c)

M =
{
p ∈ L2(Ω);

∫
Ω
p dx = 0

}
(3.7d)

It should be pointed out that the construction of the function space Xφ with

the specified trace might pose technical difficulties, depending on the regularity
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of the boundary ∂Ω and the subdivisions Γw and Γio. However, to emphasize

the main points related to the coupling of the two physics and the resulting

adjoint, we will assume that the boundary ∂Ω has sufficient regularity to enable

the construction of Xφ. The weak formulation of the flow problem is:

Given φ ∈ H1(Ω), find (u, p) ∈ Xφ ×M such that∫
Ω

[
∇u · ∇v − p∇ · v − q∇ · u

]
dx = 0 ∀(v, q) ∈ X0 ×M

(3.8)

Introducing the lift function ul(φ) ∈ Xφ, we may write u = w + ul(φ), where

w ∈ X0, and reformulate Eq. (3.8) as:

Given φ ∈ H1(Ω), find (w, p) ∈ X0 ×M such that∫
Ω

[
∇w · ∇v − p∇ · v − q∇ ·w

]
dx

= −
∫

Ω

[
∇ul(φ) · ∇v − q∇ · ul(φ)

]
dx ∀(v, q) ∈ X0 ×M

(3.9)

Combining Eq. (3.5) and Eq. (3.9) together, we get the coupled variational

statement:

Given σc ∈ C+(Ω) and φio ∈ R, find (ϕ,w, p) ∈ Z0 ×X0 ×M such that∫
Ω

σc∇ϕ · ∇ψ dx+

∫
Ω

[
∇[w + ul(ϕ)] · ∇v − p∇ · v − q∇ · [w + ul(ϕ)]

]
dx

= −
∫

Ω

σc∇φio · ∇ψ dx−
∫

Ω

[
∇ul(φio) · ∇v − q∇ · ul(φio)

]
dx

∀(ψ,v, q) ∈ Z0 ×X0 ×M (3.10)

where we emphasize that the lift velocity integrals associated with the Stokes

equation depend on the solution ϕ and should be kept on the left-hand side of

the equation. We can recast the bilinear form above in more compact notation
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as,

Given σc ∈ C+(Ω) and φio ∈ R, find U ∈ Z0 ×X0 ×M s.t.

A(U,V) = F (V) ∀ V ∈ Z0 ×X0 ×M (3.11)

where U = (ϕ,w, p) and V = (ψ,v, q), and A(U,V) and F (V) are the left-

and right-hand sides of Eq. (3.10) respectively.

We have thus incorporated the coupling condition within our bilinear

form and can now proceed to derive the adjoint problem.

3.2.2 Adjoint problem

Now, given the primal weak form (3.11), we have the corresponding

weak form for the adjoint problem associated with the Quantity of Interest

(QoI) Q : Z0 ×X0 ×M → R

Given σc ∈ C+(Ω) find U∗ ∈ Z0 ×X0 ×M s.t.

A(V,U∗) = Q(V) ∀ V ∈ Z0 ×X0 ×M (3.12)

where U∗ = (ϕ∗,w∗, p∗) is the adjoint solution and Q(U) is a linear functional

that prescribes a QoI. The full weak form for the adjoint problem reads,∫
Ω

σ∇ψ · ∇ϕ∗ dx

+

∫
Ω

(∇v · ∇w∗ − q ∇ ·w∗ − p∗ ∇ · v) dx

+

∫
Ω

(∇ul(ψ) · ∇w∗ −∇ · ul(ψ) p∗) dx

= Q(V) ∀ (ψ,v, q) ∈ Z0 ×X0 ×M (3.13)
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Following Eq. (3.7b) the term ul(ψ) is defined as,

ul(ψ) ∈
{
v ∈ [H1(Ω)]2,v = (−λ∂tψ, 0) on Γw,v · t = 0 on Γio

}
(3.14)

We introduce the adjoint stress tensor for a Newtonian fluid (with unit pa-

rameters),

σ∗ = −p∗I + (∇u∗ +∇Tu∗) (3.15)

Now integrating by parts ‘backwards’ we obtain,∫
Ω

−∇ · (σc∇ϕ∗) ψ dx+

∫
∂Ω

σc∂nϕ
∗ ψ ds

+

∫
Ω

−∇ · σ∗ ·
(
v + ul(ψ)

)
+

∫
∂Ω

[
v + ul(ψ)

]
· (σ∗ · n) ds

+

∫
Ω

− q ∇ ·w∗ dx = Q(V ) (3.16)

The second boundary term in the formulation of the adjoint problem becomes∫
∂Ω

[
v + ul(ψ)

]
· (σ∗ · n) ds

=

∫
Γw

[
v + ul(ψ)

]
· (σ∗ · n) ds+

∫
Γio

[
v + ul(ψ)

]
· (σ∗ · n) ds

=

∫
Γw

(
n ·
[
v + ul(ψ)

])︸ ︷︷ ︸
0

(
n · (σ∗ · n)

)
+
(
t ·
[
v + ul(ψ)

])︸ ︷︷ ︸
−λ∂tψ

(
t · (σ∗ · n)

)
ds

+

∫
Γio

(
n ·
[
v + ul(ψ)

]) (
n · (σ∗ · n)

)
+
(
t ·
[
v + ul(ψ)

])︸ ︷︷ ︸
0

(
t · (σ∗ · n)

)
ds

=

∫
Γw

[
∇Γw ·

(
t · (σ∗ · n)

)
t
]
ψ ds+

∫
Γio

(
n ·
[
v + ul(ψ)

]) (
n · (σ∗ · n)

)
ds

(3.17)

where we have used integration by parts for the tangential derivative term

along Γw [30],∫
Γw

− (λt · ∇ψ)(t · z) ds =

∫
Γw

[
∇Γw ·

(
λt · z

)
t
]
ψ ds (3.18)
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with ∇Γw · v denoting the surface divergence of vector v. We replace these

terms in the adjoint formulation and represent Q(U) as follows,∫
Ω

k(x) u ·α dx+

∫
∂Ω

ks(s) u · n ds (3.19)

where k(x) ∈ L2(Ω), ks(s) ∈ L2(∂Ω), α ∈ R2. Eq. (3.17) can now be written

as,∫
Ω

ψ
[
−∇ · (σc∇ϕ∗)

]
dx+

∫
Γw

ψ
[
n · (σc∇ϕ∗) +∇Γw ·

((
λt · (σ∗ · n)

)
t
)]
ds

+

∫
Ω

−
[
v + uw(ψ)

]
·
(
∇ · σ∗ − k(x)α

)
+

∫
Γio

(
n ·
[
v + uw(ψ)

]) (
n · (σ∗ · n− ks(s))

)
ds

+

∫
Ω

−q
[
∇ ·w∗

]
dx = 0 ∀(ψ,v, q) ∈ Z0 ×X0 ×M (3.20)

The strong form of the adjoint system then reads:

−∇ · (σc∇ϕ∗) = 0 in Ω (3.21a)

−∆w∗ +∇p∗ = kα in Ω (3.21b)

−∇ ·w∗ = 0 in Ω (3.21c)

with three boundary conditions defined on Γio:

ϕ∗ = 0 on Γio (3.22a)

w∗ · t = 0 on Γio (3.22b)

n · (σ∗ · n) = ks on Γio (3.22c)
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and three boundary conditions on Γw:

n · (σc∇ϕ∗) +∇Γw ·
((
λt · (σ∗ · n)

)
t
)

= 0 on Γw (3.23a)

w∗ = 0 on Γw (3.23b)

We readily observe that the adjoint Stokes problem can be solved first, inde-

pendently of the adjoint potential problem, but that the latter does depend on

the former through the Neumann coupling condition given by Eq. (3.23a). We

also note that this coupling condition involves the tangential derivatives of the

adjoint stress tensor on the boundary. The imposition of such a boundary con-

dition can be extremely challenging, mainly due to the regularity requirements

for the corresponding spaces in the interior and the difficulty of constructing

appropriate Finite Element spaces. Therefore, we seek to impose the coupling

constraint weakly and reduce the regularity requirements on the spaces con-

taining the solution and the adjoint. As we shall see in the next sections, the

penalty method is a natural method for weak enforcement of the coupling. In

addition, the penalty formulation gives us an adjoint consistent with the one

obtained using the lift technique.

3.3 Penalty formulation of the slip BC EOF model

3.3.1 Penalty formulation of the primal problem

The penalty method was introduced as an easy and robust approach for

applying Dirichlet boundary conditions. Babuška [5] presented one of the first

rigorous analyses of the technique. Further analysis was presented by Utku
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and Carey [100] and the method was shown to be an effective alternative for

applying boundary conditions. We consider here the penalty method for pre-

scribing boundary conditions in the coupled flow system given by Eq. (2.15).

The variational formulation given by Eq. (3.10) with equivalent penalty bound-

ary conditions can be given as:

Given σc ∈ C+(Ω) and φio ∈ R, find (φε,uε, pε) ∈ Z ×X ×M such that∫
Ω

σc∇φε · ∇ψ dx+
1

ε

∫
Γio

φε ψ ds+

∫
Ω

[
∇uε · ∇v − pε∇ · v − q∇ · uε

]
dx

+
1

ε

∫
Γw

(uε · n) (v · n) ds+
1

ε

∫
Γw

(uε · t) (v · t) ds+
1

ε

∫
Γio

(uε · t) (v · t) ds

+
1

ε

∫
Γw

(∂tφε) (v · t) ds =
1

ε

∫
Γio

φio ψ ds ∀(ψ,v, q) ∈ Z ×X ×M

(3.24)

where ε > 0. We now verify that the weak form given by Eq. (3.24) is indeed

consistent and converges to the BVP given by Eq. (3.1) and Eq. (3.6) in

the limit as the penalty parameter ε tends to zero. Integrating Eq. (3.24)

backwards by parts, we obtain,∫
Ω

−∇ · (σc∇φε)ψ dx+

∫
Γw

σc∂nφε ψ ds+

∫
Γio

(
σc∂nφε +

1

ε
(φε − φio)

)
ψ ds

+

∫
Ω

(
(−∆uε +∇pε) · v − q∇ · uε

)
ds

+

∫
Γw

(
n · (σε · n) +

1

ε
(uε · n)

)
(v · n) ds

+

∫
Γw

(
t · (σε · n) +

1

ε
(∂tφε + uε · t)

)
(v · t) ds+

∫
Γio

(n · (σε · n)) (v · n) ds

+

∫
Γio

(
t · (σε · n) +

1

ε
(uε · t)

)
v · t ds = 0

(3.25)
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The equivalent strong form for finite non-zero ε is,

−∇ · (σc∇φε) = 0 in Ω (3.26a)

−∆uε +∇pε = 0 in Ω (3.26b)

∇ · uε = 0 in Ω (3.26c)

with three boundary conditions defined on Γio:

σc∂nφε +
1

ε
(φε − φio) = 0 on Γio (3.27a)

n · (σε · n) = 0 on Γio (3.27b)

t · (σε · n) +
1

ε
(uε · t) = 0 on Γio (3.27c)

and three boundary conditions on Γw:

σc∂nφε = 0 on Γw (3.28a)

n · (σε · n) +
1

ε
(uε · n) = 0 on Γw (3.28b)

t · (σε · n) +
1

ε
(λ∂tφε + uε · t) = 0 on Γw (3.28c)

One observes that the penalty method has the effect of replacing the true

Dirichlet boundary conditions with a mixed Dirichlet-Neumann condition,

which approximates the true Dirichlet conditions. However, upon taking the

limit ε→ 0 one formally recovers the original problems given by Eq. (3.1) and

Eq. (3.6).
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3.3.2 Adjoint problem associated with the penalty formulation

The weak form of the adjoint problem associated with problem Eq. (3.24)

reads,

Find (φ∗ε ,u
∗
ε , p
∗
ε) ∈ Z ×X ×M such that∫

Ω

σc∇φ∗ε · ∇ψ dx+
1

ε

∫
Γio

φ∗ε ψ ds +
1

ε

∫
Γw

λ∂tψε (u∗ε · t) ds

+
1

ε

∫
Γw

(u∗ε · n) (v · n) ds+
1

ε

∫
Γw

(u∗ε · t) (v · t) ds+
1

ε

∫
Γio

(u∗ε · t) (v · t) ds

+

∫
Ω

(∇u∗ε · ∇v − p∗ε ∇ · v − q∇ · u∗ε) dx

=

∫
Ω

k(x) v ·α dx+

∫
∂Ω

ks(s) v · n ds ∀(ψ,v, q) ∈ Z ×X ×M (3.29)

Using integration by parts for the term involving the tangential derivative

along Γw [30], i.e.∫
Γw

λ∂tψε (u∗ε · t) ds = −
∫

Γw

∇Γw ·
(
(λu∗ε · t)t

)
ψε ds (3.30)

and upon integrating by parts the higher-order terms and combining integrals

with same test functions, one obtains:∫
Ω

(
−∇ · (σc∇φ∗ε)

)
ψ dx+

∫
Γw

(
σc∂nφ

∗
ε −

1

ε
∇Γw ·

(
(λu∗ε · t)t

))
ψ ds

+

∫
Γio

(
σc∂nφ

∗
ε +

1

ε
φ∗ε

)
ψ ds

+

∫
Ω

(
−∆u∗ε +∇p∗ε − k(x)α

)
· v dx+

∫
Ω

(
−∇ · u∗ε

)
q dx

+

∫
Γw

(
n · (σε · n) +

1

ε
(u∗ε · n)

)
(v · n) ds

+

∫
Γw

(
t · (σε · n) +

1

ε
(u∗ε · t)

)
(v · t) ds
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+

∫
Γio

(
n · (σε · n)− ks(s)

)
(v · n) ds

+

∫
Γio

(
t · (σε · n) +

1

ε
(u∗ε · t)

)
(v · t) ds = 0

∀(ψ,v, q) ∈ Z ×X ×M (3.31)

The equivalent strong form for finite non-zero ε is,

−∆u∗ε +∇p∗ε = kα in Ω (3.32a)

−∇ · u∗ε = 0 in Ω (3.32b)

−∇ · (σc∇φ∗ε) = 0 in Ω (3.32c)

with the three boundary conditions on Γio:

n · (σ∗ε · n) = ks on Γio (3.33a)

t · (σ∗ε · n) +
1

ε
(u∗ε · t) = 0 on Γio (3.33b)

σc∂nφ
∗
ε +

1

ε
φ∗ε = 0 on Γio (3.33c)

and the three boundary conditions on Γw:

n · (σ∗ε · n) +
1

ε
(u∗ε · n) = 0 on Γw (3.34a)

t · (σ∗ε · n) +
1

ε
(u∗ε · t) = 0 on Γw (3.34b)

σc∂nφ
∗
ε −

1

ε
∇Γw ·

(
(λu∗ε · t)t

)
= 0 on Γw (3.34c)

In the next section, we show that above problem is consistent with the previ-

ous formulation of the adjoint problem, in the sense that we recover the ad-

joint corresponding to the strong problem given by Eq. (3.21), Eq. (3.22), and

Eq. (3.23) as ε tends to zero.
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3.3.3 Consistency of the adjoint penalty problem

The main issue is to ensure that the adjoint solution u∗ε to the adjoint

problem obtained from the penalized formulation does in fact converge to

the adjoint solution u∗ obtained from the primal formulation as the penalty

parameter ε tends to zero, as illustrated in Figure 3.1. In this case, one has to

show that the resulting boundary conditions associated with the penalized and

non-penalized formulations of the adjoint problems are consistent. Recall that

A(u, v)
ε−→ Aε(uε, v)

↓ ↓
A(v, u∗)

?⇐= Aε(v, u
∗
ε)

Figure 3.1: Consistency of the adjoint problems associated with the original
and penalty formulations. The question here is whether the adjoint problem
obtained from the penalty formulation converges to the adjoint problem de-
rived from the original formulation in the limit when the penalty parameter ε
tends to zero.

the non-penalized adjoint solution (φ∗,u∗) for the problem of interest satisfies

the following boundary conditions

φ∗ = 0 on Γio (3.35a)

n · (σ∗ · n) = k on Γio (3.35b)

u∗ · t = 0 on Γio (3.35c)

u∗ = 0 on Γw (3.35d)

σc∂nφ
∗
ε +∇Γw ·

(
λt · (σ∗ · n)t

)
= 0 on Γw (3.35e)
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while the penalized adjoint solution (φ∗ε ,u
∗
ε) satisfies,

σc∂nφ
∗
ε +

1

ε
φ∗ = 0 on Γio (3.36a)

n · (σ∗ε · n) = k on Γio (3.36b)

t · (σ∗ε · n) +
1

ε
(u∗ε · t) = 0 on Γio (3.36c)

t · (σ∗ε · n) +
1

ε
(u∗ε · t) = 0 on Γw (3.36d)

n · (σ∗ε · n) +
1

ε
(u∗ε · n) = 0 on Γw (3.36e)

σc∂nφ
∗
ε −

1

ε
∇Γw ·

(
(λu∗ε · t)t

)
= 0 on Γw (3.36f)

To formally interpret Eq. (3.36f), we can substitute Eq. (3.36d) into Eq. (3.36f)

as follows,

t · (σ∗ε · n) +
1

ε
(u∗ε · t) = 0 ⇒ λ

ε
(u∗ε · t) = −λt · (σ∗ε · n)

σc∂nφ
∗
ε = ∇Γw ·

((
λu∗ε · t
ε

)
t

)
⇒ σc∂nφ

∗
ε = −∇Γw · (λt · (σ∗ε · n)t) (3.37)

We can derive the following boundary conditions for the adjoint potential,

σc∂nφ
∗
ε +∇Γw ·

(
λt · (σ∗ε · n)t

)
= 0 on Γw (3.38a)

φ∗ε + ε σc∂nφ
∗
ε = 0 on Γio (3.38b)

These boundary conditions are consistent with the non-penalized forms in the

limit ε → 0. Equation (3.36d) corresponds to a penalty representation of the

tangential boundary flux. Further discussion of this representation will be

presented in chapter 6. We thus see that the penalized formulation of the

electroosmotic flow problem is adjoint-consistent.
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3.4 The Slip Boundary Condition and Well-Posedness

In the last two sections, we have studied a special slip boundary con-

dition that may not have the regularity one can usually assume for Dirichlet

data. We have also seen that the construction of an adjoint problem for such a

problem can pose challenges. Adjoint methods usually assume that the bound-

ary condition is given data and as such they do not enter the picture for the

adjoint problem. For the models under consideration in this work however,

estimating the error due to the coupling is critical, since such errors can be

large [37, 22]. Also, without incorporating the coupling condition in the ad-

joint, adjoint sensitivity analysis cannot include the sensitivity of quantities

in the fluid physics to parameters in the electrostatic physics.

These considerations necessitate the inclusion of the boundary coupling

condition in the variational form, where it can naturally enter the adjoint prob-

lem and the regularity requirements on it can be reduced. In Finite Element

analysis, many strategies exist for the weak imposition of boundary conditions:

Lagrange multiplier methods, the Nitsche method, and penalty methods. A

survey of such methods, their benefits, and limitations is given in a review

article by Babuška et al. [6]. As we have seen in sections 3.3 and 3.3.3, penalty

methods can offer a natural methodology to achieve our goals. We now seek

to put that choice on a firmer theoretical ground. In the next section, we will

discuss a natural projection operation that offers the possibility of smoothing

irregular data. We will point out why the natural operation is not well-posed

and cannot be a projection. Then, in section 3.4.2 we will discuss how the op-
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eration can be made well-posed by introducing a penalty term. We will then

extend these ideas to operations on the boundary and show how the penalty

method can be seen as a projection operation that regularizes ill-posed bound-

ary data.

Finally, in section 3.4.3 we will be able to show the well-posedness of a

modified version of the slip model, and show why modifying the original slip

boundary condition in section 2.4 is essential if we want to obtain a well-posed

adjoint problem.

3.4.1 Smoothing Interior Data

Consider a function g ∈ L2(Ω). Suppose now that we need to smooth

this data and use its projection in H1(Ω) ⊂ L2(Ω) as data for another problem.

A natural projection operator πΩ : L2(Ω)→ H1(Ω), πΩ(g) = u may be defined

as,

Find u ∈ H1(Ω) s.t.

∫
Ω

u v dx =

∫
Ω

g v dx ∀v ∈ H1(Ω) (3.39)

Unfortunately, this mapping is not well-posed. Recall that projections can

only be made to complete subspaces of L2(Ω) and that the H1(Ω) subspace

is not complete with respect to the L2 norm. However, one can make this

operation well-posed by introducing a regularization,

Given ε > 0, find u ∈ H1(Ω) s.t.

ε

∫
Ω

∇uε · ∇v dx+

∫
Ω

uε v dx =

∫
Ω

g v dx ∀v ∈ H1(Ω) (3.40)
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This operation is well-posed, it is in fact the weak form for an elliptic PDE

when complemented with boundary conditions. Note that this operation is

not a true projection: uε will not be the best approximation to g in H1(Ω),

but for small values of ε, we anticipate uε to be close to the true projection.

The stability of this operation depends on the parameter ε and reflects a choice

between stability and projection accuracy. Eq. (3.40) thus offers us a method

of smoothing data that lacks regularity. We now discuss a similar operation

on the boundary and show that it is equivalent to the penalty method for

imposing boundary conditions.

3.4.2 Smoothing Boundary Data

Consider a function g ∈ H−
1
2 (∂Ω). Suppose now that one needs to

smooth this data and use its projection in H
1
2 (∂Ω) ⊂ H−

1
2 (Ω) as data for

another problem. For reasons similar to those discussed in the previous section,

the natural mapping, π∂Ω : H−
1
2 (Ω)→ H

1
2 (∂Ω), π∂Ω(g) = u defined as,

Find u ∈ H
1
2 (∂Ω) s.t.

∫
∂Ω

u v ds =

∫
∂Ω

g v ds ∀ v ∈ H
1
2 (∂Ω) (3.41)

is ill-posed. However, consider the modified mapping: Given ε > 0, find uε ∈

H
1
2 (∂Ω) such that,

ε

∫
∂Ω

∂nuε v ds+

∫
∂Ω

uε v ds =

∫
∂Ω

g v ds ∀ v ∈ H
1
2 (∂Ω)

The solution uε would approximate an H
1
2 (∂Ω) projection of the Dirichlet

data g. The question now is whether this operation is well-posed. If we
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denote the extension of u into Ω as û, we can write Eq. (3.42) as,∫
Ω

−ε ∆û v ds+

∫
Ω

ε ∇û · ∇v dx+

∫
∂Ω

u v ds

=

∫
∂Ω

g v ds = F2(v) ∀ v ∈ H
1
2 (∂Ω) (3.42)

Note that û is not unique. However, if we require that it satisfy the constraint

−∆û = f in the interior, where f ∈ L2(Ω), then û is indeed unique. We can

thus write û as u. The weak form given by Eq. (3.42) thus becomes,

Find u ∈ H
1
2 (∂Ω) s.t.

∫
Ω

ε ∇u · ∇v dx+

∫
∂Ω

u v ds

=

∫
∂Ω

g v ds+

∫
Ω

ε f v ds ∀ v ∈ H
1
2 (∂Ω) (3.43)

The question now is whether this operation is well-posed, and Theorem 3.4.1

confirms that this is indeed the case.

Theorem 3.4.1. The bilinear form, B : H
1
2 (∂Ω)×H 1

2 (∂Ω)→ R given by

B(u, v) =

∫
Ω

ε ∇uε · ∇v dx+

∫
∂Ω

uε v ds (3.44)

where Ω ⊂ R2 has a Lipschitz boundary, and ε > 0, is bounded and coercive.

Proof. First we show boundedness,

B(u, v) = ε

∫
Ω

∇uε · ∇v dx+

∫
∂Ω

uε v ds

≤ ε|uε|H1(Ω) |v|H1(Ω) + ‖uε‖L2(∂Ω) ‖v‖L2(∂Ω)

≤ ε|uε|H1(Ω) |v|H1(Ω) + ‖uε‖H1(Ω) ‖v‖H1(Ω)

≤ (1 + ε)‖uε‖H1(Ω) ‖v‖H1(Ω)
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≤ C1(1 + ε)‖uε‖H 1
2 (∂Ω)

‖v‖
H

1
2 (∂Ω)

(Corollary B.53, Pg. 488 [36])

(3.45)

Now for the coercivity,

B(u, u) = ε|uε|2H1(Ω) + ‖uε‖2
L2(∂Ω) (3.46)

Again, corollary B.53, page 488 from [36] states that if 1 ≤ p <∞ and 1
p
+ 1

p′
=

1, there exists a constant c such that, ∀ u ∈ W
1

p
′ ,p(∂Ω), one can find an

extension u ∈ W 1,p(Ω) which satisfies,

‖uε‖W 1,p(Ω) ≤ c ‖uε‖
W

1

p
′ ,p

(∂Ω)
(3.47)

If we denote the measure of ∂Ω by µ(∂Ω) and choose p = 1, p
′

= ∞, we have,

‖uε‖W 1,1(Ω) ≤ c ‖uε‖W 0,1(∂Ω) = c ‖uε‖L1(∂Ω) ≤ c
√
µ(∂Ω) ‖uε‖L2(∂Ω) (3.48)

By Corollary B.43, page 486 in [36], W 1,1(Ω) ⊂ L2(Ω) continuously,

‖uε‖L2(Ω) ≤ C2 ‖uε‖W 1,1(Ω) (3.49)

Therefore we have,

‖uε‖L2(Ω) ≤ c C2

√
µ(∂Ω) ‖uε‖L2(∂Ω) (3.50)

And Eq. (3.46) can now be written as,

B(u,u) ≥ ε|uε|2H1(Ω) +
1

(c
√
µ(∂Ω))

‖uε‖2
L2(Ω)

≥ min

(
ε,

1

(C2

√
µ(∂Ω))

)
‖uε‖2

H1(Ω)

≥ 1

C3

min

(
ε,

1

(C2

√
µ(∂Ω))

)
‖uε‖2

H
1
2 (∂Ω)

(Theorem B.52, Pg. 488 [36])
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We identify Eq. (3.43) with the weak formulation of a Poisson problem

with boundary conditions g enforced using the penalty method. Therefore, the

penalty ‘regularizes’ the forward problem with irregular data via this smooth-

ing operation. The solution we obtain by solving Eq. (3.43) will thus satisfy a

regularized constraint.

3.4.3 Well-Posedness of the Penalty Formulation

In the previous section, we discussed how a weak enforcement of an

irregular boundary condition corresponds to a smoothing operation. Based on

that discussion, we now derive some theoretical results for the penalty formu-

lation of the microfluidics problem. In all the statements below we assume

that the domain Ω is Lipschitz and the conductivity σc ∈ C+(Ω).

Analysis for a decoupled version of the microfludics model

Theorem 3.4.2. The variational problems

Given φio ∈ R, find φε ∈ Z such that

Bφ(φε, ψ) =

∫
Ω

σc∇φε · ∇ψ dx+
1

ε

∫
Γio

φε ψ ds =
1

ε

∫
Γio

φio ψ ds

= Fφ(ψ) ∀ψ ∈ Z (3.51)

and

Given φε, find (uε, pε) ∈ X ×M such that

Bu(uε,v)−Bp(v, pε)−Bp(u, q) =

∫
Ω

∇uε · ∇v dx+
1

ε

∫
Γw

(uε · n) (v · n) ds
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+
1

ε

∫
Γw

(uε · t) (v · t) ds+
1

ε

∫
Γio

(uε · t) (v · t) ds

−
∫

Ω

pε∇ · v dx−
∫

Ω

q∇ · uε dx =
1

ε

∫
Γw

λ(s) (−∂tφε) (v · t) ds

= Fu((v, q)) ∀(v, q) ∈ X ×M (3.52)

where λ(s) is a smooth function that is zero on Γio, ε > 0, and the function

spaces Z, X and M are as specified in Eq. (3.2a) and Eq. (3.7), are well-posed

and the solution Uε = (φε,uε, pε) is unique and bounded.

Proof. The bilinear form Bφ(φε, ψ) is clearly bounded and coercive. The right-

hand side Fφ(ψ) is also clearly bounded. Thus, by the Lax-Milgram theorem

the variational problem Eq. (3.51) is well-posed and has a unique and bounded

solution.

The bilinear forms Bu(uε,v) and Bp(v, pε) are bounded and satisfy an

inf-sup property [36]. The right-hand side Fu((v, q)) is also bounded since,

Fu((v, q)) =
1

ε

∫
Γw

λ(s) (−∂tφε) (v · t) ds

=
1

ε

∫
∂Ω

λ(s) (−∂tφε) (v · t) ds

≤ 1

ε
‖λ(s)‖∞ ‖φε‖H− 1

2 (∂Ω)
‖v‖

H
1
2 (∂Ω)

The weak tangential derivative on the boundary is well defined for all functions

in H1(Ω). This can be seen by an application of the curl theorem [91]. Thus

Fu ∈ X∗ and the problem Eq. (3.52) is well-posed.

We have a similar theorem and proof for the corresponding adjoint

problem.
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Theorem 3.4.3. The variational problems,

Given k, ks and α as in Eq. (3.19) find (u∗ε , p
∗
ε) ∈ X ×M such that

B∗u(v,u∗ε)−B∗p(qε,u
∗
ε)−B∗p(p

∗
ε ,v) =

∫
Ω

∇u∗ε · ∇v +
1

ε

∫
Γw

(u∗ε · n) (v · n) ds

+
1

ε

∫
Γw

(u∗ε · t) (v · t) ds+
1

ε

∫
Γio

(u∗ε · t) (v · t) ds

−
∫

Ω

p∗ε ∇ · v dx−
∫

Ω

q∇ · u∗ε dx =

∫
Ω

k(x)α · v dx+

∫
Γio

ks(s) v · n ds

= F∗u((v, q)) ∀(v, q) ∈ X ×M (3.53)

and

Given u∗ε , find φε ∈ Zsuch that

B∗φ(ψ, φ∗ε) =

∫
Ω

σc∇φ∗ε · ∇ψ dx+
1

ε

∫
Γio

φ∗ε ψ ds = −1

ε

∫
Γw

λ(s) ∂tψε (u∗ε · t) ds

= F∗φ(ψ) ∀ψ ∈ Z (3.54)

where λ(s) is a smooth function that is zero on Γio, ε > 0 and the function

spaces Z, X and M are as specified in Eq. (3.2a) and Eq. (3.7), are well-posed

and the solution U∗ε = (φ∗ε ,u
∗
ε , p
∗
ε) is unique and bounded.

Remark 3.4.1. As mentioned before an application of the curl theorem shows

that the weak tangential derivative on the boundary is well defined for func-

tions in H1(Ω) [91]. However, the weak normal derivative is only well defined

for [91],

H1
∆(Ω) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} (3.55)

For the microfluidics model, the primal potential does indeed lie in H1
∆(Ω)

and hence coupling the normal component weakly in the forward problem can
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be justified. However, we only require that the potential lie in H1(Ω) and

correspondingly choose H1(Ω) as the test space. If we were to couple both the

tangential and normal components of the potential gradient to the velocity,

the weak form of the adjoint problem for the potential φ∗ε would then read,

Given u∗ε ∈ H1(Ω), find φ∗ε ∈ Z such that

B∗φ(ψ, φ∗ε) =

∫
Ω

σc∇φ∗ε · ∇ψ dx+
1

ε

∫
Γio

φ∗ε ψ ds

= −1

ε

∫
Γw

λ(s) ∂tψ (u∗ε · t) ds− 1

ε

∫
Γw

λ(s) ∂nψ (u∗ε · n) ds

= F∗φ(ψ) ∀ψ ∈ H1(Ω) (3.56)

Since the weak normal derivative is well defined only for ψ ∈ H1
∆(Ω), the right-

hand side of the adjoint problem is not bounded. Hence, once cannot couple

the normal component of the adjoint potential to the adjoint velocity without

requiring that the primal solution lie in the space H1
∆(Ω) and testing with the

corresponding test functions. See also remark 6.3.3.
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Chapter 4

Implementation of Adjoint Techniques in

libMesh

4.1 Introduction

In this chapter, we will discuss the theory underlying the use of adjoint

methods in adaptive mesh refinement and sensitivity analysis. An inexpensive

and easy method to compute adjoint-based error indicators will be derived.

Adjoint sensitivity analysis will also be discussed and the relevant theory will

be developed. We shall then discuss the implementation of these adjoint-based

methods in the C++ Finite Element library libMesh. The software architecture

and class structure used to enable such adjoint functionality will be described.

We will conclude the chapter with verification studies for the new adjoint

methods in libMesh.

4.2 Adjoint Residual based Error Indicators

Adjoint-based methods for adaptive refinement and error estimation are

being increasingly used in Finite Element analysis [44, 79, 13]. Adjoint-based

methods for goal-oriented error estimation can be viewed as an extension of the

concepts of Green’s functions [39]. Such methods can be generalized to many
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types of applications, including coupled systems analysis [22, 59], multiscale

systems analysis [11, 37], boundary QoIs [105], and non-linear problems [79,

39]. The Adjoint Residual Error Indicator implemented in libMesh provides

a robust, inexpensive, and easily computable error indicator to guide adaptive

mesh refinement. We begin with the statement and proof of a theorem that

underlies the Adjoint Residual Error Indicator.

Theorem 4.2.1. Consider the variational problem,

Given R : U × V → R, find u ∈ U s.t. R(u; v) = 0 ∀ v ∈ V (4.1)

where U and V are Hilbert spaces. The adjoint solution z satisfies,

Given Q : U → R, find z ∈ V s.t.
∂R

∂u
(u; v, z) =

∂Q

∂u
(u; v) ∀ v ∈ V (4.2)

where ∂
∂u

is the Fréchet derivative w.r.t. u. Let uh and zh denote the discrete

approximations to u and z in the subspaces Uh and Vh, obtained by solving,

R(uh, vh) = 0 ∀ vh ∈ Vh (4.3)

∂R

∂u
(uh; vh, zh) =

∂Q

∂u
(uh; vh) ∀ vh ∈ Vh (4.4)

Further, let UB be a neighbourhood of u s.t. both Q and R are bounded there

with bounded derivatives Qu and Ru. Then, we have the following estimate,

Q(u)−Q(uh) = Ru(uh; z − zh)(u− uh) +RQ −RR (4.5)

where,

lim
‖u−uh‖→0

‖RQ‖
‖u− uh‖

= 0 and lim
‖u−uh‖→0

‖RR‖
‖u− uh‖

= 0. (4.6)
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Proof. Since uh → u, we have,

∃ h̄ > 0, s.t. ∀h < h̄, uh ∈ UB (4.7)

Now, by the definition of the Fréchet derivative,

Q(u)−Q(uh) = Qu(uh)(u− uh) +RQ (4.8)

By definition of the adjoint we have,

Qu(uh)(u− uh) = Ru(uh; z)(u− uh) (4.9)

Substituting in Eq. (4.8), we obtain,

Q(u)−Q(uh) = Ru(uh; z)(u− uh) +RQ (4.10)

Again by definition of the Fréchet derivative, we have,

R(u, z)− R(uh, z) = Ru(uh; z)(u− uh) +RR (4.11)

Substituting Eq. (4.11) in Eq. (4.10) and using Galerkin orthogonality we

obtain,

Q(u)−Q(uh) = R(u, z)− R(uh, z) +RQ −RR (4.12a)

= R(u, z − zh)− R(uh, z − zh) +RQ −RR

= Ru(uh; z − zh)(u− uh) +RQ −RR (4.12b)

which completes the proof.
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If one neglects the higher order terms, a computable error indicator

can be obtained using either Eq. (4.12a) or Eq. (4.12b). If we were to use

Eq. (4.12a), then we would need to compute the adjoint on an enriched space,

and use R(uh, z − zh) to form our error estimate. Eq. (4.12b) can also be

used to obtain a computable error indicator for adaptive mesh refinement as

follows,

|Q(u)−Q(uh)| ≤ |Ru(uh, z − zh)(u− uh)|+ H.O.T.

≤
Nel∑
i=1

‖Ru‖i‖z − zh‖i‖u− uh‖i + H.O.T. (4.13)

Thus, we can compute an element-wise error indicator of the form,

ẽK = (Error bound for primal)× (Error bound for adjoint) (4.14)

In libMesh, this method is called the Adjoint Residual Error Indicator. Exist-

ing error indicators such as the uniform error estimator [31] or the flux-jump

error estimator [54] can give us estimates for the errors in both the primal and

adjoint solutions. Patch-recovery methods [109], which bound the interpola-

tion error, can also be used as error indicators. The existing error indicator

infrastructure in libMesh already contains implementations for the uniform,

flux-jump and patch-recovery indicators. In section 4.4.3, we will show how

this infrastructure was leveraged to implement the Adjoint Residual Error In-

dicator. Section 4.4 discusses the verification of this new indicator in libMesh.

46



4.2.1 Multiphysics Problems

Eq. (4.13) needs to be generalized for use in multivariable and multi-

physics problems. For example, consider the residual for a Stokes flow problem

in two-dimensions, with homogenous boundary conditions,

R((u, p), (v, q)) =

∫
Ω

∇u · ∇v dx−
∫

Ω

∇ · u q dx−
∫

Ω

∇ · v p dx (4.15)

Given Q(u), using Eq. (4.12b) we have the following representation for the

error in Q(uh),

Q(u)−Q(uh) =

∫
Ω

∇(u− uh) · ∇(u∗ − u∗h) dx

−
∫

Ω

∇ · (u− uh) (p∗ − p∗h) dx−
∫

Ω

∇ · (u∗ − u∗h) (p− ph) dx

≤ |e(u1)|H1(Ω)|e(u∗1)|H1(Ω) + |e(u2)|H1(Ω)|e(u∗2)|H1(Ω)

+ ‖e(u1,1)‖L2(Ω)‖e(p∗)‖L2(Ω) + ‖e(u2,2)‖L2(Ω)‖e(p∗)‖L2(Ω)

+ ‖e(u∗1,1)‖L2(Ω)‖e(p)‖L2(Ω) + ‖e(u∗2,2)‖L2(Ω)‖e(p)‖L2(Ω) (4.16)

where e(u1) denotes the error in the first component of u, e(u1,1) denotes

the error in the first derivative of the first component of u and so on. To

compute an estimate of this form while maintaining the physics-independent

nature of libMesh, we express the estimate in Eq. (4.16) as a matrix-weighted

inner-product,

Q(u)−Q(uh) ≤
[
e(u1)
e(u2)

]T [
1 0
0 1

] [
e(u∗1)
e(u∗2)

]

+

e(u1,1)
e(u2,2)
e(p)

T 0 0 1
0 0 1
1 1 0

e(u∗1,1)
e(u∗2,2)
e(p∗)


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=


e(u1)
e(u2)
e(u1,1)
e(u2,2)
e(p)


T 

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 1 1 0



e(u∗1)
e(u∗2)
e(u∗1,1)
e(u∗2,2)
e(p∗)

 (4.17)

Thus, for the multivariable case, if the residual R(u, v) can be split into the

contributions from each variable as
∑

j R
j(u, v), we can generalize Eq. (4.13)

in the following manner,

|Q(u)−Q(uh)| ≤ |Ru(uh, z − zh)(u− uh)|

= |
∑
j

Rj
u(uh, z − zh)(u− uh)|

= |
Nel∑
n=1

∑
j

Rj
u(uh, z − zh)(u− uh)|

≤
Nel∑
n=1

‖zj − zjh‖Mij ‖ui − uih‖ (4.18)

where Mij is a matrix of weights. In the libMesh implementation of the

Adjoint Residual Error Indicator, the user supplies the weight matrices and

an estimate of the form given by Eq. (4.18) is computed for every element by

the library.

4.2.2 Nonlinear Problems

One can further consider the case of nonlinear problems, where the

weight matrix described in the previous section will no longer contain constants

but functions. As an example, consider the residual for a combined Stokes and
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convection-diffusion problem,

R((u, p, C), (v, q,H)) =

∫
Ω

∇u · ∇v dx−
∫

Ω

∇ · u q dx−
∫

Ω

∇ · v p dx

+

∫
Ω

u · ∇C H dx+
1

Pe

∫
Ω

∇C · ∇H dx (4.19)

where C is the species concentration and Pe is the Péclet number. Upon

linearizing about an approximate solution (uh, ph, Ch), and computing the ad-

joint solution (u∗h, p
∗
h, C

∗
h) one can obtain an expression for the QoI error along

the lines of Eq. (4.12b). We focus our attention on the nonlinear term arising

due to the product of the velocity and concentration gradient. The first part

of the error contribution due to this term is given by,∫
Ω

uh · ∇(C − Ch) (C∗ − C∗h) dx =

Nel∑
i=1

∫
Ki

uh · ∇(C − Ch) (C∗ − C∗h) dx

=

Nel∑
i=1

∫
Ki

((u1)h (C1 − (C1)h) (C∗ − C∗h) + (u2)h (C2 − (C2)h) (C∗ − C∗h)) dx

=

Nel∑
i=1

∫
Ki

(e((u1)hC1) e(C∗) + e((u2)hC2) e(C∗)) dx

≤
Nel∑
i=1

‖e((u1)hC1)‖L2(Ki)‖e(C∗)‖L2(Ki) + ‖(u2)hC2‖L2(Ki)‖e(C∗)‖L2(Ki)

(4.20)

where Ci is the derivative of the scalar variable C in the ith direction. One

can think about the error term ‖e((u1)hC1)‖L2(Ki) as the error in the variable

C1 in a weighted L2 norm, with weight given by (u1)h. It is not difficult to

incorporate this interpretation in the Patch-recovery Error Estimator. We

simply scale the computed error variable by the appropriate weight at all the
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relevant quadrature points. A new weighted patch recovery error estimator

function was added to the library to allow the computation of such a weighted

error estimate.

To implement this functionality in libMesh without changing the physics

independent nature of the library, an abstract base class FEMFunctionBase was

added to the library. This class has a single virtual function. The user simply

needs to derive a new class from FEMFunctionBase and overload the virtual

function with a local function. The local function has to return the appropriate

functionals of the finite element solution. The user can then obtain pointers

to objects that access these local functions and pass them to the new weighted

patch recovery error estimator function. This function will then compute the

weighted error indicators.

4.3 Adjoint-based Parameter Sensitivity Analysis

Adjoint-based methods can be used for parameter sensitivity analy-

sis. In comparison to other techniques such as finite difference analysis or

forward QoI sensitivity analysis, adjoint methods are especially efficient when

the number of parameters exceeds the number of QoIs [50]. We will now derive

an expression for the sensitivity of a QoI, Q : U → R w.r.t. a parameter p, in

terms of the adjoint problem corresponding to Q. The sensitivity to p at the

point p0 is given by,

Q′ =
dQ

dp

∣∣∣∣
p=p0

(4.21)
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Taking the derivative of the residual R w.r.t. to p, we obtain,

R(u(p), v; p) ≡ 0 ∀ v ∈ V (4.22a)

dR

dp
= 0 (4.22b)

∂R

∂p
+
∂R

∂u

∂u

∂p
= 0 (4.22c)

The adjoint problem satisfies,

∂R

∂u
(u, z(u, p); p0) =

∂Q

∂u
(u; p0) (4.23)

We can now derive an expression for Q′ in terms of z,

Q′ =
∂Q

∂p
+
∂Q

∂u

∂u

∂p
(4.24a)

=
∂Q

∂p
+
∂R

∂u

∂u

∂p
(4.24b)

=
∂Q

∂p
− ∂R

∂p
(u, z(u, p0)) (4.24c)

Thus only one adjoint problem has to be solved to get sensitivities of a partic-

ular QoI to many parameters. Since the adjoint problem is linear, the compu-

tational expense of this method mainly involves the cost of a linear solve (per

QoI) and a matrix-vector inner product (per parameter). We will now prove

a theorem that establishes sufficient conditions for the discrete approximation

to the senstivity to converge to the true sensitivity.

Theorem 4.3.1. Consider the variational problem,

Given p ∈ R, R : U × V × R→ R, find u ∈ U s.t. R(u(p), v; p) = 0 ∀ v ∈ V
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where U and V are Hilbert spaces. The adjoint solution z then satisfies,

Given Q : U → R, find z ∈ V s.t.
∂R

∂u
(u(p); v, z(p)) =

∂Q

∂u
(u(p); v) ∀ v ∈ V

Let Q′ denote the sensitivity of Q to p. Further, let uh and zh denote the

discrete approximations to u and z in the subspaces Uh and Vh, obtained by

solving,

R(uh(p), vh; p) = 0 ∀ vh ∈ Vh (4.25)

∂R

∂u
(uh(p); vh, zh) =

∂Q

∂u
(uh(p); vh) ∀ vh ∈ Vh (4.26)

Denote by Qh and Rh the evaluation of Q and R using uh. Let Q′h correspond

to the approximation of Q′ using the discrete solution uh. Further, let UB be

a neighborhood of u s.t. both Qh and Rh are bounded with bounded derivatives

w.r.t. u. Then, if the discrete solution uh and the adjoint zh converge to the

continuous solutions u and z, the discrete sensitivity Q′h converges to Q′.

Proof. From Eq. (4.24), we have,

Q′ = Qp − Rp(u, z(u, p)) (4.27)

On subtracting the discrete sensitivity, we obtain,

Q′ −Q′h = Qp(u; p)−Qp(uh; p) + Rp(uh, z(u, p))− Rp(u, z(u, p))

+ Rp(uh, zh(uh, p))− Rp(uh, z(u, p))

= Qp(u; p)−Qp(uh; p) + Rp(uh, z(u, p))

− Rp(u, z(u, p))− Rp(uh, z − zh; p) (4.28)
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Since uh → u, we have,

∃ h̄ > 0, s.t. ∀h < h̄, uh ∈ UB (4.29)

Now by the generalized mean-value theorem we have,

|Qp(u; p)−Qp(uh; p)| ≤ sup
u∈UB
‖Qpu(u; p)‖‖u− uh‖U (4.30)

|Rp(uh, z(u, p))− Rp(u, z(u, p))| ≤ sup
u∈UB
‖Rpu(u, z)‖‖u− uh‖U (4.31)

Thus we have,

Q′ −Q′h ≤
(

sup
u∈UB
‖Qpu(u; p)‖+ sup

u∈UB
‖Rpu(u, v)‖

)
‖u− uh‖U

+ |Rp(uh, z − zh; p)| (4.32)

We see that the discrete sensitivity approaches the true sensitivity as uh and

zh approach u and z, respectively.

4.4 Implementation of adjoint-based methods in libMesh

4.4.1 libMesh: a Parallel C++ Finite Element software library

The libMesh open-source software library has been developed to facili-

tate the parallel simulation of multiscale, multiphysics applications using adap-

tive mesh refinement and coarsening strategies [56]. An array of linear solvers

is available through linear solver packages like PETSc [8] and Trilinos [48]. Var-

ious continuous and discontinuous Finite Element families can be used, such

as Lagrange, Clough-Tocher [96], or Discontinuous Galerkin elements. The
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library supports unstructured, structured, and hybrid grids in two or three

dimensions. Adaptive mesh refinement and coarsening strategies can be im-

plemented using a variety of error indicators. These include the uniform [31],

flux-jump (or Kelly) [54], patch-recovery [109] and Laplacian jump [96] error

indicators. Adaptive mesh redistribution techniques are also included [15, 41].

Adaptive time-stepping schemes can be utilized for time-dependent problems

[74]. Support for visualization using TecPlot, GMV, and Paraview is available.

Support for subdomain restricted variables has also been added, allowing the

library to be used conveniently for multiphysics problems. In the course of the

present work, adjoint methods for adaptive mesh refinement and sensitivity

analysis methods [97] were added to libMesh.

4.4.2 Software Requirements and Design

Inexpensive, physics independent implementation of the adjoint tech-

niques discussed in sections 4.2 and 4.3 requires that our implementation have

the ability to,

1. Compute an approximation to the adjoint solution given the user-specified

variational form for the primal problem, and the right-hand sides asso-

ciated with the QoIs. Ideally, the user should not have to specify the

weak form for the adjoint problem.

2. Use existing error indicators like flux-jump and patch-recovery to com-

pute error bounds for both the primal and adjoint problems. See Eq. (4.18).
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3. Flag and refine/coarsen elements.

4. Compute Finite Difference perturbations in the QoI Q(u), and the resid-

ual R(u, z(u, p)), by automatically varying the parameter values.

The new AdjointResidualErrorEstimator class and adjoint solve,

adjoint qoi parameter sensitivity functions in libMesh accomplish all of

the above goals, while maintaining the object-oriented, physics-independent

philosophy of libMesh [97].

For adjoint-consistent formulations of the forward problem, the discrete

adjoint can be computed simply by solving the transpose of the already assem-

bled stiffness matrix. The user simply has to specify the right-hand side cor-

responding to the derivative of the QoI, in the element qoi derivative and

side qoi derivative functions. Then on calling the function adjoint solve

library will then compute the corresponding adjoint solution. After this so-

lution has been computed, adjoint-based error indicators can be computed

by calling the adjoint residual error estimator function. For sensitiv-

ity analysis, the user has to specify the QoI functionals in element qoi and

side qoi. Once the adjoint has been computed, the sensitivities can then be

computed by calling adjoint qoi parameter sensitivity. Figure 4.1 shows

a schematic of the implementation, with the new functions added to libMesh

highlighted in bold. These functions are members of the library and indepen-

dent of the user’s own application code, thus enabling their easy use on a wide

range of problems. The development of Application Programming Interfaces
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      A(U,V)
The continuous 
primal problem

        A(i, j)
User specified
discrete weak form
for A(U, V)

       A(V, Z)
The continuous
adjoint problem

     A(j, i)
The discrete
adjoint problem

Take
adjoint
(integration by 
parts)

Take
transpose
(adjoint_solve)

+
                     dQ(i)
User specified rhs: QoI derivative
(side/element_qoi_derivative)

Compute adjoint Z
(adjoint_solve)

Use Z for 
error indicators
(adjoint_residual_error_estimator)

Use Z for
sensitivity
(adjoint_qoi_parameter_sensitivity)

Discretize

Discretize

                     Q(i)
User specified QoI functional
         (side/element_qoi)

Figure 4.1: A schematic showing the use of adjoint-based methods in libMesh.
Note that the user only needs to specify the discrete weak form for the primal,
the right-hand side for the adjoint problem and the QoI functional, all other
functionality is accessed within the library.

(APIs) for these new methods and their verification was carried out during

the course of this research.

4.4.2.1 Preconditioner Reuse

Solving the discrete forward problem involves the solution of the linear

system,

Ku = f
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Due to the design of our software, for an adjoint-consistent formulation, the

discrete adjoint problem involves solving,

KT z = q

The forward problem is typically solved using a preconditioned Krylov sub-

space method. This creates an opportunity for more efficient solution of the

discrete adjoint problem. One can reuse the preconditioner and the Krylov

subspace used for solving the discrete forward problem. As an example, con-

sider solving the forward problem using LU preconditioning, we then have

u = K−1f = U−1L−1f

and

z = (KT )−1q = (UTLT )−1q = (LT )−1(UT )−1q = (L−1)T (U−1)T q

Thus, once we solve the forward problem, the solution of the adjoint problem

can be obtained with a matrix tranposition operation (which is free if the

right data structures are used) and two matrix-vector multiplications. The

adjoint problem can thus be solved at virtually no extra cost. In general,

preconditioner reuse can lead to significant savings in computational costs.

The reuse option has been provided in libMesh and users can avail of it by

passing a preconditioner reuse flag in the adjoint solve function.

4.4.2.2 Patch Reuse

Eq. (4.14) requires that we compute error estimates for the forward

and adjoint solutions. In libMesh, the uniform, flux-jump or patch-recovery
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error estimators can be used to compute these estimates. While the uniform

error estimator is quite accurate, it is rather expensive. On the other hand,

while the flux-jump error estimator is quite inexpensive, it is not very reliable,

especially for systems in which the dominant mode of transport is not diffusion.

In our experiments, the patch-recovery error estimator emerged as a relatively

inexpensive and reliable error estimator.

The patch-recovery error estimator recovers a higher-order approxima-

tion of the numerical solution (or its derivatives) in a given element; this is done

by using data from a patch of elements in the neighborhood of the element.

An approximation of the error is then obtained by computing the difference

between the original and recovered solutions (or derivatives). Details are given

in a paper by Zienkiewicz and Zhu [109].

It was observed that in some cases, the construction of patches around

elements was relatively expensive. For elliptic problems, the same patch can

be used for multiple elements without affecting the accuracy of the estimator

significantly [21]. Therefore, the library provides a patch reuse flag that can be

set by the user as per his or her requirements. Reusing patches reduces costs

but results in less accurate error estimates, while not reusing them increases

costs but also provides better error estimates. The default option is for patches

to be reused. This can lead to mesh refinement patterns that are not very

regular in appearance. Despite this, the convergence performance of the error

indicators with patch reuse enabled was indistinguishable with reuse disabled

in all our test problems.
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The next section will present verification studies for the new adjoint

methods.

4.4.3 Verification of adjoint-based Error Indicators

The goal of code verification is to ensure that the computer implemen-

tation of an algorithm matches its true operations exactly [87, 66]. Of course,

complete verification of complex algorithms such as the ones discussed in the

earlier sections is extremely difficult. Therefore, we verified the methods and

the software on representative test cases. Using such model cases, we were able

to excercise most of the code added to the libMesh library and ensure that the

software worked as expected for a range of inputs. Both QoI-based adaptive

mesh refinement and adjoint-based parameter sensitivity software were veri-

fied. Several important technical issues were revealed in the numerical studies

conducted during the course of this research. They were subsequently resolved

through modifications to the code.

The model problem used for verification was a Poisson equation,

−∇ · (α∇u) = f in Ω (4.33a)

u = g on ∂Ω (4.33b)

on the domain Ω = (0,1) × (0,1), where we chose u to be the manufactured

solution, u(x, y;α) = 4(1− e−αx1 − (1− e−α)x1)(x2)(1− x2) and α to be 100.

We calculated the corresponding f through differentiation. This manufactured

solution exhibits multiscale spatial behavior due to a boundary layer near the
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left vertical boundary, see Figure 4.2. It provided an exact analytic solution

for comparison purposes and has been used extensively for verification pur-

poses [75].

In the numerical simulations, the manufactured solution values on the

boundary were specified as Dirichlet data for the associated computational

problem. The boundary conditions evaluate to zero. Figure 4.2 shows a con-

tour plot of the manufactured solution. Note the strong gradients in the

boundary layer near the left boundary. The QoI chosen for the verification

of the adjoint-based refinement methods was an integral of the solution over

a subdomain,

Q(u(x1, x2;α)) =

∫ 0.75

0.5

∫ 0.75

0.5

u(x1, x2) dx1 dx2 (4.34)

The exact value of this QoI was 2.1484375 × 10−2, and this was obtained using

the symbolic toolkit in MATLAB.

To test the adjoint capability, the approximate problem was solved

using the h-adaptive mesh refinement capability of libMesh, beginning from

an initial coarse uniform mesh. First-order quad Lagrange elements were used

for the simulations. Boundary conditions were set using the penalty method,

and a value of 10−8 was given to the penalty parameter ε. The variational

form used to solve Eq. (4.33) in libMesh was,

Given α ∈ R, find uε ∈ H1(Ω) such that∫
Ω

α∇uε · ∇v dx+
1

ε

∫
∂Ω

uε v ds =

∫
∂Ω

f v dx ∀ v ∈ H1(Ω)
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Q(u)

Figure 4.2: The manufactured solution u(x, y;α) of the model problem with
α = 100. Note the boundary layer on the left-hand side. The QoI region
corresponding to Eq. (4.34) is also shown.

The problem was solved recursively with adaptive mesh refinement using al-

gorithm 1. The solution process was terminated on either reaching a target

number of elements in the FE grid or a maximum number of adaptive steps.

These parameters were chosen to be 100,000 and 20 for the experiments done

in this study.

Figure 4.3 shows an adaptively refined mesh, after 12 refinement steps.

The mesh has been superimposed on a color plot of the numerically computed

solution of the adjoint problem. This mesh was obtained by using the Adjoint

Residual method, where the primal and dual estimates were obtained using the

patch-recovery estimators. We see extensive mesh refinement in the boundary

layer where most of the error in the primal solution originates. We also see

refinement near the subdomain associated with the QoI. This is driven by the
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Algorithm 1 Compute a Finite Element Solution to Eq. (4.33) using an
adaptive meshing strategy targeted at the QoI given by Eq. (4.34). Stop
on either reaching a mesh size limit nelemtarget or maximum number of steps
(nsteps max).

1: Start step counter nstep
2: Compute the Finite Element Solution (uhε ) to the problem using a uniform

mesh (Mstart) of resolution hstart
3: Compute an a-posteriori error indicator (ẽh) for the QoI based on the

adjoint residual error indicator and flag elements to be refined
4: if nelem ≥ nelemtarget OR nstep > nsteps max then
5: Go to step 11
6: else
7: Refine the top 10 % of the flagged elements to obtain an adaptive mesh

Madaptive

8: Increment nstep by 1
9: Repeat steps 2, 3 and 4 using the adapted mesh Madaptive

10: end if
11: Output the results

error in the adjoint solution, which is the highest in the region near the QoI

subdomain.

Log-log convergence plots for uniform and adaptive mesh refinement

strategies are shown in Figure 4.4. The absolute error in the QoI is plotted

against the number of degrees of freedom (dofs). Initially, the flux-jump error

indicator performs comparably to the adjoint residual error indicator. This is

because the dominant error in the computation is due to the sharp boundary

layer. However, the flux-jump indicator is unable to detect the error contri-

bution from the QoI location. Hence, once the error due to the QoI location

becomes dominant, the flux-jump based refinement curve stagnates until the

elements in the QoI location get refined (around step number 16). However,
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Figure 4.3: The adaptive mesh and numerically computed solution to the
adjoint of the problem Eq. (4.33) with the right-hand side corresponding to
the QoI given by Eq. (4.34).

as seen in Figure 4.3, the adjoint residual indicator identifies the error arising

from the QoI location and refines in that region. Therefore, the adjoint-based

adaptive refinement curve shows a consistent reduction in error till we hit

the region where the error levels off. This leveling of the error occurs in the

O (10−6) region, which is to be expected since the penalty parameter used to

set the boundary conditions was 10−8. The error due to the penalty method is

at least O
(
ε|α
∫
∂Ω
∂nuε|

)
, see Chapter 6 for more details on the penalty error.

Since first order elements have been used, the expected convergence rate

for the QoI is 2 [36]. The rate obtained for the uniform refinement curve was

≈ 3. It is not clear why this higher rate was obtained. In general, one expects

the convergence plot for an adaptive method to show very rapid decrease in

the preasymptotic region and then become parallel to the plot for the uniform
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Figure 4.4: Convergence plot for the QoI given by Eq. (4.34), obtained by solv-
ing Eq. (4.35) using uniform refinements, flux-jump and adjoint-based adaptive
refinement strategies. Stagnation in error reduction is seen for the flux-jump
curve from the 8th to 12th steps. In contrast, consistent error reduction is
achieved by the adjoint-based refinement strategy.

method in the asymptotic region. The adjoint residual based adaptive curve

converges at a rate of nearly 4 initially; it then enters a region of slower

convergence, before converging at a rate of ≈ 6 till it hits the leveling off

region.

4.4.4 Verification of adjoint-based Sensitivity Analysis

Next, we verified the adjoint parameter sensitivity analysis software.

The model problem was still given by Eq. (4.33). However, a different QoI

was used,

Q(u) = −
∫

Ω

α∇w · ∇u dx (4.35)
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where the weight function w(x1, x2) was given by,

w(x1, x2) = x1 × (1− x1)× (1− x2) (4.36)

This QoI was sensitive to the parameter α and excercised both components of

the adjoint sensitivity analysis; the partial derivative of the QoI functional, and

the partial derivative of the adjoint-weighted residual. The exact sensitivity of

the QoI was obtained using the symbolic toolkit in Matlab. It was computed

to be,

Q′ =
dQ

dα

∣∣∣∣
α=100

= −1

3
(4.37)

Numerical experiments were conducted to determine sensitivity of the QoI to

the parameter α. A setup identical to the one used for the verification of the

adjoint residual error indicator was used. However, second-order Lagrange

elements were used instead of first-order elements.

Convergence plots of the absolute error in the sensitivity versus the

number of dofs are shown in Figure 4.5. The results illustrate two points,

1. The ability of adjoint sensitivity analysis method in libMesh to accu-

rately compute sensitivities.

2. The improved convergence of the parameter sensitivity due to the use of

QoI targeted mesh refinement.

There was no extra cost associated with the computation of the adjoint

for mesh refinement, since the adjoint was already computed for the sensitivity
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Figure 4.5: Convergence plot for the sensitivity of the QoI given by Eq. (4.35),
to the parameter α. The weights in the Adjoint Residual Error Indicator are
computed using the patch-recovery estimator.

analysis. We were easily able to combine adjoint-based sensitivity calculation

with adjoint-based refinement for the corresponding QoI. This provides both

the higher efficiency of the adjoint sensitivity method and the improved accu-

racy due to the adaptive mesh refinement.

We observe that the leveling of the error occurs at around O (10−4.5),

which we suspect is due to the use of the penalty method to set boundary con-

ditions. This is still rather surprising, considering that the penalty parameter

was 10−8 and shall be explored more in chapter 6.
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4.5 Conclusions

Adjoint-based methods offer significant savings in computational cost

for both estimating target QoIs and their parameter sensitivities. In this

chapter, we presented the theory that underlies the use of adjoints for mesh

refinement and sensitivity analysis. The adjoint methods were implemented

and verified in the C++ Finite Element library libMesh, where they are now

available for general use by the scientific computing community. In the next

chapter, we shall apply these methods to the numerical analysis of microfluidic

systems such as those discussed in chapter 3. Then, in chapter 7 we shall

introduce a Monte Carlo method that uses the adjoint sensitivity derivatives

to expedite UQ.
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Chapter 5

Numerical Simulation of Electroosmotic Flow

using libMesh

5.1 Introduction

We now consider the application of the new EOF formulation on spe-

cific microfluidic examples. First, we simulate a flow in a straight microchan-

nel driven purely by electrosmosis. The objective here is to highlight the

convergence and stability properties of the adjoint solution. We then show-

case an adjoint-based adaptive strategy for mesh refinement on a T-shaped

microchannel flow and adjoint-based parameter sensitivity analyses. We dis-

cuss the improvement of the convergence rates with respect to quantities of

interest and their sensitivities when using adjoint-based techniques. Simula-

tions are performed using the adjoint capabilities added to the libMesh Finite

Element library [56]. For both applications, second-order Lagrange elements

are employed for the potential and velocity approximations. Linear Lagrange

elements are selected to approximate the pressure field in order to satisfy

the inf-sup condition. Initial meshes in all the experiments dealing with the

straight and T-channel domains consist of structured meshes of bi-quadratic

quadrilateral elements. Numerical errors to generate the convergence plots are

estimated in this work using so-called overkilled reference solutions of the two
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problems. These are obtained on a uniform mesh of 428,676 degrees of freedom

for the straight channel problem, and a combined adaptive-uniform mesh with

288,160 degrees of freedom for the T-channel problems. Numerical solutions

are calculated using an ILU preconditioned GMRES iterative method for both

problems. The linear algebra library PETSc [8] is accessed through libMesh

to obtain these solutions.

5.2 Electroosmotic flow in a straight channel

Numerical experiments are performed here in the case of an electroos-

motic flow in a straight channel. The channel has unit width and the length is

five times the width. Since the objective of these simulations is to illustrate the

numerical properties of the adjoint solution obtained by using the formulation

given by Eq. (3.24), we set arbitrary values of the model parameters rather

than choosing values representative of an actual flow. The fluid viscosity µ,

electroosmotic slip parameter κ, and fluid density ρ are all taken to be unity.

Constant potentials φi = 8 and φo = 0 are prescribed at the inlet Γin and outlet

Γout boundaries, respectively. The electric conductivity of the fluid is chosen

as σc = 1 + x (note that this particular form of the conductivity is chosen for

no other reason than better illustrate the properties of the computed adjoint).

The quantity of interest is defined here in terms of the bounded linear

functional:

Q(U) =

∫
Ω

u ·α dx (5.1)

where α = (1, 1), k(x) = 1, ∀x ∈ Ω. Such a bounded functional ensures that
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any oscillations observed in the numerical results solely arise from the defini-

tion of the bilinear form in the adjoint problem. We consider the formulation

of the adjoint problem as given in Eq. (3.29). After computing the forward

solution using the numerical set-up as above, we obtain the adjoint potential

φ∗ε as seen in Figure 5.1. It was numerically verified that the adjoint potential

and velocities were all in H1(Ω). We also studied the convergence rates for

the approximate primal and adjoint potentials and x-component of the veloc-

ity. Recall that the potential and velocity fields are both approximated using

second-order Lagrange elements so that one would expect first-order conver-

gence rates with respect to the number of degrees of freedom in the H1-norm.

However, one observes from Figure 5.2 that the primal velocity and the adjoint

potential converge at a slower than optimal rate while the primal potential and

adjoint velocity converge at the optimal rate. We speculate that this is due to

the tangential ‘slip’ coupling given by Eq. (2.17) for the forward problem and

the Neumann conditions given by Eq. (3.38a) for the adjoint problem. Essen-

tially, we can say that the forward Stokes problem and the adjoint potential

problem have non-smooth and non-accurate data, leading to higher errors in

the computation of their solutions.

Remark 5.2.1. Consequences of coupling both normal and tangential

components: Coupling both the normal and tangential components of the

velocity to the potential may lead to an ill-posed adjoint problem. On directly

enforcing the constraint given by Eq. (2.16c) on the wall boundary rather than

splitting the two velocity components as in Eq. (2.17), one observes spurious

70



oscillations in the numerical adjoint potential field φ∗ε , as shown in Figure 5.3.

Note that these are visible only when adapted meshes are considered. However,

this does not exclude the possibility that oscillations may appear on uniform

grids in the case of other QoIs. One clearly observes in Figure 5.3(a) the

presence of closed contour lines along the top and bottom wall boundaries.

This result is confirmed in Figure 5.3(b), which shows the solution φ∗ε along

the top boundary. For further analysis and discussion see section 3.4.3 in

chapter 3.

5.3 Electrosmotic flow in a T-channel

Crossing T- and H-channels are commonly utilized in microfluidics.

Applications typically involve mixing of two chemical species [86], purifica-

tion [93], or fluid identification [110]. However, numerical modeling of electros-

motic flows with slip boundary conditions in such geometrical configurations

poses distinctive challenges due to the presence of corner singularities [28].

One immediate consequence is the observation of reduced convergence rates

in the approximation of the global solution. A possible remedy is to use adap-

tive finite element methods to help restore the optimal convergence properties

of such singular problems [31]. Likewise, adaptive methods can also improve

the convergence behavior of the adjoint solution and potentially restore the

optimal rates that one may expect when estimating linear QoIs.

We consider below a T-channel geometry. The two upper ends of the

T-channel, Γi,l and Γi,r, correspond to the left and right inlets, respectively, at
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Table 5.1: Values of the input parameters for the T-channel flow.

Parameter Symbol Value

Conductivity σc 1.0

Inlet potentials φi 8.0

Outlet potential φo 0.0

Fluid viscosity µ 1.0

Slip parameter λ 1.0

which a high potential φi is prescribed, while the bottom end of the channel

Γo, the flow outlet, is set to the ground potential φo = 0. The flow is assumed

here to be purely electrically driven, in which case Dirichlet pressure boundary

conditions p = 0 are considered at the inlet and outlet boundaries. The

flow parameters used for the numerical experiments are provided in Table 5.1.

In the numerical experiments below, we consider the following quantity of

interest:

Q(U) =

∫
Γo

u · n ds (5.2)

i.e. ks(x) = 1, ∀x ∈ Γo. We also estimate the sensitivity of the QoI with respect

to the parameters φi, φo, and λ, evaluated in terms of the first derivatives

dQ/dφi, dQ/dφo and dQ/dλ. We used ten adaptive refinement steps followed

by two uniform refinements (a total of 288,160 dofs) to calculate the reference

values of these quantities. These values are reported in Table 5.2 and were

used as exact values to compute numerical errors. The adaptive strategy for

mesh refinement with respect to the QoI is described in algorithm 2, which

has been implemented in libMesh. We show in Figure 5.4 the horizontal
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Table 5.2: Estimated reference values of QoI and of its sensitivity to φi, φo,
and λ.

Q(U) dQ/dφi dQ/dφo dQ/dλ

1.0205649 0.1275705 -0.0637853 1.0203276

and vertical components of the primal velocity u. We note that the vertical

component of the velocity, shown in Figure 5.4(b), is close to zero near the

inlets, but then undergoes a stiff acceleration around the corners. Likewise,

we observe in Figure 5.4(a) the rapid deceleration of the horizontal velocity

near the corners. This clearly induces a singular behavior of the solution at

the two corners. Note also that the solution is symmetric about the centerline

of the vertical channel, as expected, given that the inlet potentials at stations

Γi,r and Γi,l are equal.

Next, we show the adjoint solutions computed using the adaptive proce-

dure described in algorithm 2. The vertical velocity, displayed in Figure 5.5(a),

exhibits a parabolic profile that reaches the maximum value along the center-

line of the vertical channel and vanishes on its boundaries. Therefore, the

presence of corners is solely responsible for the singular behavior in the ve-

locity field. The adjoint potential solution is shown in Figure 5.5(b). The

potential is of course singular at the corners due to the geometrical disconti-

nuity and to the fact that the coupling boundary condition, although almost

zero everywhere along the boundaries, becomes non-zero near the corners since

∇Γw ·
(
λt ·(σ∗ε · n)t

)
may not be zero there. This should imply extensive refine-

ment near the corners, as confirmed by the adapted mesh shown in Figure 5.6.
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Algorithm 2 Compute the finite element solution to Eq. (3.24) that either
reaches a prescribed mesh size hmin or is obtained after a given number of
adaptive steps nmax using an adaptive meshing strategy based on the dual
approach with respect to the QoI Eq. (5.2).

1: Start step counter nstep

2: Compute the finite element solution uh to the problem using a uniform
mesh Mstart of resolution helem = hstart

3: Compute an a posteriori error indicator ẽh for the QoI based on an adjoint
residual based error indicator and flag elements to be refined

4: if helem ≤ hmin OR nstep > nmax then
5: Go to step 11
6: else
7: Refine the top 30 percent of the flagged elements to obtain an adaptive

mesh Madaptive

8: Increment nstep by 1
9: Repeat steps 2, 3, and 4 using the adapted mesh Madaptive

10: end if
11: Postprocess results.

We also used an adjoint method to compute parameter sensitivities for

the given QoI to the parameters φi, φo and λ. The advantage of using an

adjoint method for sensitivity analysis is that the sensitivity to all three pa-

rameters could be found with a single adjoint solve. This is considerably more

efficient than using a finite difference or a forward sensitivity method. In ad-

dition, we can also combine the adjoint-based mesh refinement and sensitivity

analysis for further improvements in the convergence of the sensitivities.

Convergence plots are shown in Figure 5.7. In particular, the rela-

tive error in the quantity of interest estimated using uniform refinement and

adjoint-based adaptive refinement is shown in Figure 5.7(a) against the total

number of degrees of freedom (dofs). Relative errors in the estimated sensi-
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tivities of the QoI with respect to parameters are displayed in Figure 5.7(b).

We note that the adaptive refinement strategy offers much improved error re-

duction than uniform refinement for both the estimation of the quantity of

interest and its sensitivity derivatives.

In fact, on account of the geometric corner singularities present in the

problem, we obtain an inferior convergence rate on using uniform refinement.

However, with the adaptive method we obtain a rate of 1.5 (vs DoFs) for the

QoI, which can be said to be semi-optimal. We had observed earlier that there

is a loss of one convergence order for the forward velocity and adjoint potential

for the straight channel problem where there are no corner singularities. We

recall that with second-order Lagrange Finite Elements this would result in a

convergence rate of 1.5 (N1 ×N 1
2 ) for a linear QoI.

5.4 Conclusions

In chapter 3, we had presented an analysis of an electroosmotic flow

model with slip boundary conditions and its adjoint. The slip boundary con-

ditions require the evaluation of potential derivatives on the boundary, which

increases the regularity requirements on the potential. We emphasize that a

naive enforcement of the standard slip boundary condition leads to an ill-posed

adjoint problem (see section 3.4.3 in chapter 3). A well-posed adjoint problem

can be obtained by modifying the slip boundary condition (u + λ∇φ = 0),

i.e. specifying the normal velocity at the wall independently of the potential

(u · n = 0,u · t + λ∇φ · t = 0). We further proposed a penalty formulation of
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the forward problem that does not require any extra regularity for the poten-

tial, and leads to a well-posed, consistent adjoint formulation as well.

Then in chapter 4, we discussed the theory behind the use of adjoints in

mesh refinement and sensitivity analysis and their implementation in the C++

Finite Element library libMesh. The penalty boundary conditions lead to a

weak enforcement of the boundary coupling, allowing us to easily compute the

adjoint problem using the adjoint capabilities of libMesh. The adjoint resid-

ual error estimator was derived, which was successfully used in this chapter

for goal-oriented adaptive mesh refinement. The adjoint sensitivity method

discussed in chapter 4 was also used to compute the sensitivities of the QoI.

We presented numerical experiments for a simple straight channel mi-

croflow and a more challenging T-channel flow. The convergence results for

the straight channel problem indicate that the primal velocity and the adjoint

potential converge at sub-optimal rates due to the nature of the coupling be-

tween the potential and the velocity. For the T-channel, we presented QoI

computation and QoI adjoint sensitivity results for a practical engineering

QoI. We observed a loss of convergence order due to the singularities in the

T-channel geometry, and substantial improvements in the rate on using an

adjoint-based adaptive method. However, the fully optimal convergence rate

for the QoI could not be achieved, possibly due to the convergence properties

of the adjoint potential.
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(a) Dual potential φ∗ε computed with the penalty formulation.

(b) Cutline of computed dual potential φ∗ε along the bot-
tom boundary.

Figure 5.1: Solutions to the adjoint problem obtained using the penalty for-
mulation given by Eq. (3.29).
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(a)

(b)

Figure 5.2: Convergence plot for the relative errors in the numerical primal
and adjoint potentials and x-component of the primal and adjoint velocity
with respect to the H1-norm. Note the slower rate of convergence for the
velocity in the forward problem and the potential in the dual problem.
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Figure 5.3: The solutions to the adjoint problems obtained using a naive
penalty formulation.
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(a) x-component u1 of velocity u.
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Figure 5.4: Contour plot of the primal solution obtained using the penalty
formulation. The corner singularities are clearly visible due to the clustering
of countour lines near them. The solution appears smooth away from the
corners.
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cal channel indicating that the primal solution
needs to be accurate in that region.
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Figure 5.5: Contour plot of the y-component of the adjoint velocity u∗ and of
the adjoint potential φ∗.

81



x

y

­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5

3

3.5

4

4.5

5

5.5

6

6.5

Figure 5.6: Adaptive mesh obtained using adjoint-based error estimates. Note
that the elements get refined almost exclusively near the corners due to the
singularities in the primal velocity and adjoint potential.

(a) Convergence plots for the relative error
in QoI Eq. (5.2) using uniform and adjoint-
based refinements.

(b) Convergence plots for the relative errors
in the sensitivities of the QoI Eq. (5.2) using
uniform and adjoint-based refinements.

Figure 5.7: Convergence plots for the approximation of the quantity of interest
and its sensitivity to the parameters φi, φo, and λ.
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Chapter 6

Penalty Recovery of the Normal Boundary

Flux

6.1 Introduction

In chapter 3 we used the penalty method for applying a coupling bound-

ary condition, and obtaining a well-posed adjoint problem. We saw that the

penalty method implicitly defines a flux which is related to the actual bound-

ary flux. In this chapter, we develop those ideas further and focus our attention

on the implication of using a penalty method for enforcing Dirichlet boundary

conditions while computing quantities of interest evaluated on the boundary.

We are specifically interested in QoIs defined in terms of the normal flux. In

this context, we first define an affine functional of the penalized solution called

the ‘penalty flux’, and relate it to the actual flux for the non-penalized prob-

lem. We also analyze the effect of introducing the penalty by expressing the

penalty flux in a power series about the actual flux. This series expansion

leads naturally to an improved normal flux estimator, that takes into account

the error introduced due to the penalty.

Although Lagrange multiplier techniques and Nitsche’s method can of-

fer better accuracy [6], the penalty method still finds widespread application
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due to its simplicity and ease of implementation [67, 69, 5, 100, 61]. Some for-

mulations of the Discontinuous Galerkin methods also employ penalty meth-

ods [4]. The penalty method has also been applied lately to solve elliptic

problems in complicated domains [63]. There has also been recent work on

asymptotic expansions for penalty methods used for PDE constrained opti-

mization [14]. Babuška [5], Kikuchi and Oden [55, 70], Utku and Carey [100],

have previously analyzed penalty methods. However, their work was mainly

concerned with the behavior of the penalized solution in global norms such as

the H1- or L2-norms, not in terms of specific QoIs such as the normal flux.

As mentioned earlier, QoI error estimation and sensitivity analysis nat-

urally lend themselves to adjoint-based techniques [68, 13]. Since normal fluxes

are often important QoIs from an engineering perspective, they have received

particular interest in this context [105]. Adjoint problems associated with nor-

mal flux QoIs are therefore analyzed here. In particular, we emphasize that

using a naive representation of the normal flux leads to an ill-posed adjoint

problem. We also show that the penalty flux leads to an adjoint problem con-

sistent with the modified adjoint problem derived by Giles et al. for weighted

normal fluxes [43].

This chapter is organized as follows. In Section 6.2, we introduce our

model problem and give some background on the penalty method. We also

introduce the so-called ‘penalty’ flux and relate it to the true normal flux. In

Section 6.3, we present the analysis for the error in the normal flux, focusing

on the errors due to the use of the penalty method. We also discuss the
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adjoint problem associated with the penalty flux, and use it to analyze the

discretization error in the computation of the normal flux. In Section 6.4,

we present numerical experiments that illustrate findings from our theoretical

results. Finally, we give some concluding remarks from this work in Section 6.5.

6.2 The Penalty Method and the Normal Boundary
Flux

6.2.1 Model Problem

Consider a model Poisson problem defined on an bounded, open subset

Ω of Rd, d = 2, 3, with a Lipschitz boundary ∂Ω,

−∆u0 = f in Ω (6.1a)

u0 = g on ∂Ω (6.1b)

where the forcing function f ∈ L2(Ω), and boundary conditions g ∈ H 1
2 (∂Ω).

We look for a variational solution of Eq. (6.1) in the function space,

H1
g (Ω) = {u ∈ H1(Ω), u = g on ∂Ω} (6.2)

By the principle of Dirichlet [27], the solution of the BVP given by Eq. (6.1)

is the unique minimizer, min
u∈H1

g (Ω)
J(u), of the convex functional,

J(u) =
1

2

∫
Ω

∇u · ∇u dx−
∫

Ω

fu dx (6.3)

The choice of function space means that the boundary condition u = g is

automatically defined, and the weak formulation of Eq. (6.1) then reads,

Given f ∈ L2(Ω), find u0 ∈ H1
g (Ω) such that
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∫
Ω

∇u0 · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω) (6.4)

By the trace theorem we have that u0 ∈ H
1
2 (∂Ω) and ∂nu0 ∈ H−

1
2 (∂Ω). We

choose a weight function w such that w ∈ H
1
2 (∂Ω), and define the solution

flux as the QoI. The weight function makes the QoI well defined, and restricts

the evaluation of the flux to the relevant portion on the boundary ∂Ω.

Definition 6.2.1. Let u0 be the solution of the variational problem given by

Eq. (6.4), and let w ∈ H1(Ω). The solution flux Q(u0) is a linear functional

H1(Ω)→ R given by,

Q(u0) =

∫
∂Ω

∂nu0w ds (6.5)

This QoI is important from an engineering perspective. For example, in

heat conduction problems, the flux represents the heat transfer through a wall.

In electrostatics, the normal flux is the electric flux across the wall. In flow

simulations, the normal components of the lift and drag acting on an immersed

body, are boundary momentum fluxes. Thus, solution accuracy near and on

the boundary of the computational domain is particularly important.

6.2.2 The Penalty Method

Various strategies have been used to impose the Dirichlet boundary

conditions u0 = g in Finite Element simulations. When these conditions are

imposed using a penalty method, we add a penalty term to the convex func-

tional given by Eq. (6.3) and seek its minimizer in H1(Ω). The model problem
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given by Eq. (6.1) is thus solved approximately by finding min
uε∈H1(Ω)

Jε(uε), where

Jε(uε) =
1

2

∫
Ω

∇uε · ∇uε dx−
∫

Ω

fuε dx+
ε−1

2

∫
∂Ω

(uε − g)2 ds (6.6)

with parameter ε � 1. The corresponding weak formulation is given by,

Given f ∈ L2(Ω), find uε ∈ H1(Ω) such that∫
Ω

∇uε · ∇v dx−
∫

Ω

f v dx+
1

ε

∫
∂Ω

(uε − g) v ds = 0 ∀ v ∈ H1(Ω) (6.7)

The penalty method replaces the true Dirichlet boundary condition with an

approximate Robin boundary condition that is easier to enforce,

uε + ε(∂nuε) = g on ∂Ω (6.8)

Therefore the penalty method affects solution accuracy, especially on and near

the boundary. It is critical that we understand the error introduced in the

simulation due to the use of a penalty method, especially for QoIs like those

given by Eq. (6.5), which are evaluated on the boundary. If the penalty method

is used, a naive approximation to the solution flux defined by Eq. (6.5) is given

by,

Q(uε) =

∫
∂Ω

∂nuεw ds (6.9)

Using such a naive approximation can lead to inferior convergence behaviour

in comparison with more sophisticated techniques of computing the flux [20].

Writing the flux in this form also leads to an ill-posed adjoint problem (see

Remark 6.3.3).
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Earlier analyses by Babuška [5], Utku and Carey [100] have analyzed

the penalty method results in global norms such as the H1- or the L2-norms.

They pay special attention to the relationship between the mesh size h and

the penalty parameter ε. However, very often in practice, and especially in

adaptive mesh simulations, the penalty parameters is set to be a small, fixed

value. This results in an error of order O
(
ε|
∫
∂Ω
∂nu ds|

)
in the H1(Ω) norm

due to the presence of the penalty term, i.e. if we were decreasing h to reduce

discretization error, we would see the H1(Ω) error plateau at this level, re-

gardless of how small h is. As illustrated through both theory and numerical

experiments in the following sections, the penalty error for the normal flux

QoI can be much larger than O
(
ε|
∫
∂Ω
∂nu ds|

)
.

6.2.3 Equivalence of Penalty and Solution Flux

We now give the definition of the penalty flux and relate it to the

solution flux. This relationship can be seen simply as a special case of a

well known property of the penalty method [16, 63], however we give a short,

complete proof here.

Definition 6.2.2. Let uε be obtained by finding the minimizer of penalized

functional Eq. (6.6). Also, let w ∈ H1(Ω). The penalty flux is defined as the

affine functional H1(Ω)→ R,

Qε(uε) =

∫
∂Ω

g − uε
ε

w ds (6.10)

Note that the penalty flux functional is linear if the boundary data g
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are zero on the entire boundary. We now give the lemma that relates the

solution flux and the penalty flux. We only consider a Poisson boundary value

problem here. The extension to more general linear BVPs is intuitive.

Lemma 6.2.1. Let u0 be the solution to (6.4) and let uε be the solution to (6.7),

with ε > 0. Given w ∈ H1(Ω), the following relationship holds:

lim
ε→0

Qε(uε) = Q(u0)

Proof. We subtract the solution flux (6.5) from both sides of Eq. (6.7), and

use the divergence theorem,

Qε(uε)−Q(u0) =
1

ε

∫
∂Ω

(g − uε)w ds−
∫
∂Ω

∂nu0 w ds

=

∫
Ω

f w dx−
∫

Ω

∇uε · ∇w dx−
∫
∂Ω

∂nu0 w ds

=

∫
Ω

f w dx−
∫

Ω

∇uε · ∇w dx−
∫

Ω

f w dx+

∫
Ω

∇u0 · ∇w dx

=

∫
Ω

∇(u0 − uε) · ∇w dx

By the Cauchy-Schwarz inequality we then have,

|Qε(uε)−Q(u0)| ≤ |u0 − uε|H1(Ω) |w|H1(Ω) (6.11)

Babuška [5] has shown that ‖u0 − uε‖H1(Ω) → 0, as ε→ 0. Hence proved.

6.3 Error Analysis

We will now develop the error analysis for the approximation of the

solution flux given by Eq. (6.5) by a Finite Element method that used the
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penalty method to apply boundary conditions. This entails solving the discrete

variational formulation of Eq. (6.7),

Find uhε ∈ Uh, s.t.∫
Ω

∇uhε · ∇v dx+
1

ε

∫
∂Ω

uhε v ds =

∫
Ω

f v ds+
1

ε

∫
∂Ω

g v ds ∀v ∈ Uh (6.12)

where Uh ⊂ H1(Ω) is the approximation space. There are various sources of

error in such a computation, however, we shall focus on the discretization error

and the penalty error. Either of these errors might be dominant, depending on

the mesh size parameter h and the penalty parameter ε. We shall first focus

solely on the error due to the penalty method. Our analysis will lead to an

improved estimator for the solution flux QoI, which will reduce the penalty

error by an order of magnitude. Then, in section 6.3.2 we will analyze the

combined discretization and penalty error for this improved estimator.

6.3.1 Error Analysis for the Penalty Flux

Lemma 1 gives an asymptotic relationship between the penalty flux

and the solution flux. We can gain further insight into the behavior of the

penalty flux by expanding it in a series around the solution flux in terms

of ε. Bonnans and Silva have considered asymptotic expansions for penalty

methods used in PDE constrained optimization [14], however they did not

consider expansions for QoIs error control or reduction. The following theorem

provides the necessary result for the normal flux QoI and will allow us to reduce

the penalty error in the calculation of the QoI.
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Theorem 6.3.1. Let Ω, u0, g, uε, and ε be as defined in Lemma 6.2.1. Further

assume that for any w ∈ H1(Ω), the functional
∫
∂Ω
uε w ds is thrice differen-

tiable with respect to ε in the open interval (0, ε) and continuous on the closed

interval [0, ε]. Then we have,

Qε(uε)−Q(u0) =

(∫
Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w

)
ε+ O

(
ε2
)

(6.13)

Proof. We first derive a series expansion for the functional G(uε) =
∫
∂Ω

(uε −

g) w ds about ε = 0;

G(uε) = G(uε)|ε=0 +
dG

dε

∣∣∣∣
ε=0

ε+
1

2

d2G

dε2

∣∣∣∣
ε=0

ε2 + O
(
ε3
)

(6.14)

We will now evaluate G(uε)|ε=0, dG
dε

∣∣
ε=0

and d2G
dε2

∣∣
ε=0

. By the trace theorem,∫
∂Ω

(uε−g) w ds ≤ ‖uε−g‖L2(∂Ω)‖w‖L2(∂Ω) ≤ C‖uε−u0‖H1(Ω)‖w‖H1(Ω) (6.15)

where C is some constant that depends on the domain Ω. It follows that

G(uε)|ε=0 = 0. By definition of G(uε), we have

dG

dε

∣∣∣∣
ε=0

=

∫
∂Ω

duε
dε

∣∣∣∣
ε=0

w ds

Now, recall from (6.7), taking v = w, that∫
Ω

∇uε · ∇w dx+
1

ε

∫
∂Ω

uεw ds =

∫
Ω

f w ds+
1

ε

∫
∂Ω

g w ds

Differentiating this expression w.r.t. ε we obtain,∫
Ω

∇
(
duε
dε

)
· ∇w dx+

1

ε

∫
∂Ω

duε
dε

w ds− 1

ε2

∫
∂Ω

uεw ds = − 1

ε2

∫
∂Ω

g w ds (6.16)
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Rearranging and multiplying throughout by ε,

ε

∫
Ω

∇
(
duε
dε

)
· ∇w dx =

∫
∂Ω

uε − g
ε

w ds−
∫
∂Ω

duε
dε

w ds (6.17)

Now taking the limit as ε→ 0 and using Lemma 6.2.1, we have,

dG(uε)

dε

∣∣∣∣
ε=0

= lim
ε→0

∫
∂Ω

uε − g
ε

w ds = −
∫
∂Ω

∂nu0 w ds

We now find the second derivative of B(uε),

d2G(uε)

dε2

∣∣∣∣
ε=0

=

∫
∂Ω

d2uε
dε2

∣∣∣∣
ε=0

w ds

Differentiating Eq. (6.17) and then using it in the resulting expression, we get,

∫
Ω

∇
(
duε
dε

)
· ∇w dx+ ε

∫
Ω

∇
(
d2uε
dε2

)
· ∇w dx

= − 1

ε2

∫
∂Ω

(uε − g) w ds+
1

ε

∫
∂Ω

duε
dε

w ds−
∫
∂Ω

d2uε
dε2

w ds

=
1

ε

[∫
∂Ω

duε
dε

w ds−
∫
∂Ω

uε − g
ε

w ds

]
−
∫
∂Ω

d2uε
dε2

w ds

= −
∫

Ω

∇
(
duε
dε

)
· ∇w dx−

∫
∂Ω

d2uε
dε2

w ds

Thus we have,∫
∂Ω

d2uε
dε2

w ds = −2

∫
Ω

∇
(
duε
dε

)
· ∇w dx− ε

∫
Ω

∇
(
d2uε
dε2

)
· ∇w dx

At ε = 0,

d2G(uε)

dε2

∣∣∣∣
ε=0

= −2

∫
Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx
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Since d3G(uε)
dε3

=
∫
∂Ω

d3uε
dε3

w ds is finite due to our hypotheses, we can apply

Taylor’s theorem and obtain a series expansion for G(uε),

G(uε) =
1

1!

(
−
∫
∂Ω

∂nu0w ds

)
ε− 2

2!

(∫
Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w

)
ε2

+
1

3!

(∫
∂Ω

d3uε
dε3

∣∣∣∣
ε=εL

w ds

)
ε3

Finally, on dividing through by ε, we get a series for the penalty flux,

−
∫
∂Ω

uε − g
ε

w ds =

∫
∂Ω

∂nu0 w ds+

(∫
Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

Hence proved.

Definition 6.3.1. Let the hypotheses of Theorem 6.3.1 hold. We define the

penalty sensitivity improved flux estimator as,

Q̂ε(uε) =

∫
Ω

f w −∇w · ∇uε dx−
(∫

Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε (6.19)

Note that we have used the penalized weak form (6.7) to replace the

boundary integral in the result of Theorem 6.3.1 with an interior integral.

This improved estimator has O (ε2) error due to the penalty, in comparison

to the usual estimator which will have O (ε) error. Note that if the derivative(∫
Ω
∇
(
duε
dε

∣∣
ε=0

)
· ∇w dx

)
is large, then O (ε) can be significant, even for small

values of ε. Thus the improvement offered by the more accurate O (ε2) esti-

mator can be substantial. We will illustrate these points via our numerical

experiments in Section 6.4.

Remark 6.3.1. We have assumed a substantial degree of regularity for the

penalty approximation with respect to the penalty parameter in the hypothesis
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for Theorem 6.3.1. We believe that this Theorem can be shown to hold with

weaker hypotheses.

Remark 6.3.2. We would like to mention here that Dwight [34] has presented

an analysis that uses senstivity derivatives with respect to artifical dissipation

parameters. He used these derivatives to derive error indicators for the error

introduced by some stabilization schemes. We believe that similar expansion

based error analysis for the stabilized methods can lead to estimators that

remove some of the error introduced by the stabilization.

6.3.1.1 Illustrative one-dimensional example

We can use a simple 1-D problem to illustrate the fact that the magni-

tude of the first order term in Eq. (6.19) can be large relative to the usual error

encountered due to the penalty method. Consider a 1-D Poisson problem on

the domain Γ = (0, 1) given by,

−u′′ = f on Γ (6.20a)

u(0) = 0 (6.20b)

u(1) = 1 (6.20c)

where f ∈ L2(Γ). Let F (x) be the anti-derivative of f(x),

F (x) =

∫
−f(x) dx

and let G(x) be the anti-derivative of F (x),

G(x) =

∫ (∫
−f(x) dx

)
dx
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The exact solution to Eq. (6.20) is given by,

u(x) = G(x) + Ax+B (6.21)

where A and B are constants. Let our QoI be the solution flux at x = 1,

Q(u) = u′(1) (6.22)

If we enforce the boundary conditions using a penalty method, we obtain the

following weak formulation,

Given f ∈ L2(Γ), find uε ∈ H1(Ω) such that
1∫

0

u′ε v
′ dx+

1

ε
uε(0) v(0) +

1

ε
uε(1) v(1) =

1

ε
v(1) ∀ v ∈ H1(Ω) (6.23)

The penalty method replaces the Dirichlet boundary conditions in Eq. (6.20)

with Robin boundary conditions. Thus the penalized version of the 1-D system

reads as,

−u′′ε = f (6.24a)

uε(0) + εu′ε(0) = 0 (6.24b)

uε(1) + εu′ε(1) = 1 (6.24c)

The exact solution to this penalized problem is given by,

uε(x) = G(x) + Aεx+Bε (6.25)

The constants A, B, Aε and Bε can be related as follows,

Aε = A+ ε (F (0)− F (1)) (6.26a)
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Bε = B − ε (A+ F (0)) + ε2 (F (1)− F (0)) (6.26b)

Since we have exact solutions for both the true and penalized problems, we

can easily obtain the penalty error Qε(uε)−Q(u),

Qε(uε)−Q(u) = −uε(1)− 1

ε
− u′(1)

=
1−Bε − Aε − F (1)

ε
− u′(1)

=
1−Bε − Aε − F (1)

ε
− (A+ F (1))

= A+ F (1)− ε (F (1)− F (0))− (A+ F (1))

= ε (F (0)− F (1)) (6.27)

We can better understand the penalty error if we choose a specific f and

evaluate F (0) and F (1). We chose f as,

f(x) = β2 e
β(1−x)

1− eβ

This function has a very large value near the boundary x = 0, but then quickly

decays away from this boundary. On evaluating F (0) and F (1) for this choice

of f , we obtain,

ε (F (0)− F (1)) = εβ

In contrast, the usual error due to the penalty method is given by,

εu′(1) = ε(A+ F (1)) = εA− ε β

1− eβ

For this choice of f , the constant A evaluates to zero. Therefore, for large

β, εu′(1) approaches zero, however the penalty error is εβ due to the higher
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order terms. Thus we see that the penalty error can be much larger than just

εu′(1). It is also seen that the source of the first order penalty error arises

from the behaviour of the forcing function in the interior of the domain. If the

forcing function has a sharp layer even away from the boundary of interest,

the penalty error can be very large. We will further illustrate this point using

numerical experiments for a 2-D Poisson in Section 6.4.

6.3.2 Total Error and the Adjoint Problem for Boundary Flux QoIs

In the previous section, we analyzed the error introduced in the com-

putation of the normal flux due to the use of the penalty method. In actual

simulations, we also have other sources of error, such as discretization er-

rors. Adjoint-based methods and adaptive mesh refinement are established

techniques of estimating such errors and reducing them. However, challenges

remain in the application of adjoint methods to certain classes of problems.

It has been shown that boundary coupling necessitates careful analysis of the

adjoint problem [101, 40]. It is also well known that if the QoI is defined

on the boundary, and especially if it is the flux of a solution variable on the

boundary, there are special considerations involved in formulating the adjoint

problem [43, 105]. Giles et al. [43] derived and analyzed the adjoint problem

for the model Poisson system given by Eq. (6.1). They derived the following

adjoint problem for the flux QoI corresponding to an interior representation
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of Eq. (6.5),

−∆z = 0 in Ω (6.28a)

z = w on ∂Ω (6.28b)

where z denotes the adjoint solution. Computing this adjoint allows the cal-

culation of accurate error estimates for the flux. In our analysis of the penalty

flux in the previous section, we saw that it represented a convergent approx-

imation to the true flux. Therefore, we propose another adjoint problem for

the flux which uses the penalty flux (6.10) to specify the right hand side,

Find zε ∈ H1(Ω), s.t.∫
Ω

∇v · ∇zε dx+
1

ε

∫
∂Ω

v zε ds =
1

ε

∫
∂Ω

v w ds ∀v ∈ H1(Ω) (6.29)

The strong form corresponding to this variational formulation is,

−∆zε = 0 in Ω (6.30a)

zε + ε(∂nzε) = w on ∂Ω (6.30b)

We see that in the limit ε → 0 we obtain an adjoint problem consistent with

Eq. (6.28a). We will now use the adjoint problem given by Eq. (6.29) to

analyze the discretization error of the improved estimator given by Eq. (6.19),

in combination the result of Theorem 6.3.1 to analyze the penalty error.

Remark 6.3.3. If we simply consider the adjoint variational formulation with

the naive boundary flux given by Eq. (6.9) forming the right hand side, we

obtain,

Find zε ∈ H1(Ω), s.t.
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∫
Ω

∇v · ∇zε dx+
1

ε

∫
∂Ω

v zε ds =

∫
∂Ω

∂nv w(x1, x2) ds ∀v ∈ H1(Ω) (6.31)

The variational problem given by Eq. (6.31) is ill-posed, because the test func-

tion v /∈ H1
∆(Ω), where,

H1
∆(Ω) = {v ∈ H1(Ω) : ∆v ∈ L2(Ω)} (6.32)

making the right-hand side unbounded [91]. See also Remark 3.4.1.

Theorem 6.3.2. Let the hypotheses of Theorem 6.3.1 hold, and let uhε be the

solution of Eq. (6.12). We then have the following error estimate,

Q̂ε(u
h
ε )−Q(u0)

= −Rε(u
h
ε ; zε) +

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

(6.33)

where,

Rε(u
h
ε ; zε) =

∫
Ω

f zε dx+
1

ε

∫
∂Ω

g zε ds−
∫

Ω

∇zε · ∇uhε dx−
1

ε

∫
∂Ω

uhε zε ds

ehε = uε − uhε

Proof. By definition,

Q̂ε(u
h
ε )−Q(u0)

=

∫
Ω

f w −∇w · ∇uhε dx−
(∫

Ω

∇
(
duhε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε−

∫
∂Ω

∂nu0w ds

Adding and subtracting
∫

Ω
∇w · ∇uε dx and

(∫
Ω
∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε, we

get,

Q̂ε(u
h
ε )−Q(u0)
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=

∫
Ω

f w −∇w · ∇(uhε − uε) dx−
∫

Ω

∇w · ∇uε dx

−
(∫

Ω

∇
(
duhε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+

(∫
Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε

−
(∫

Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε−

∫
∂Ω

∂nu0w ds

Rearranging terms to obtain the non-discretized, improved flux estimator given

by Eq. (6.19),

Q̂ε(u
h
ε )−Q(u0)

= −
∫

Ω

∇w · ∇(uhε − uε) dx+

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε

+

∫
Ω

f w −∇w · ∇uε dx−
(∫

Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε−

∫
∂Ω

∂nu0w ds

The terms on the last line are O (ε2) due to the result of Theorem 6.3.1. Now

adding and subtracting
∫

Ω
f w dx, we get,

Q̂ε(u
h
ε )−Q(u0) =

∫
Ω

f w −∇w · ∇uhε dx−
(∫

Ω

f w −∇w · ∇uε dx
)

+

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

=

∫
∂Ω

uhε − g
ε

w ds−
∫
∂Ω

uε − g
ε

w ds+

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

=
1

ε

∫
∂Ω

uhε w ds−
1

ε

∫
∂Ω

uεw ds+

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

Finally, using the discrete version of the penalized adjoint problem given by

Eq. (6.29) and the primal problem Eq. (6.12) we have,

Q̂ε(u
h
ε )−Q(u0) =

∫
Ω

∇uhε · ∇zε dx+
1

ε

∫
∂Ω

uhε zε ds
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−
∫

Ω

f zε dx−
1

ε

∫
∂Ω

g zε ds+

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

= −Rε(u
h
ε ; zε) +

(∫
Ω

∇
(
dehε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

Hence proved.

Remark 6.3.4. The non-improved solution flux estimator is given by,

Q̃(uε) =

∫
Ω

f w −∇w · ∇uhε dx (6.34)

If a similar analysis is carried out for this estimator we obtain the following

expression for the error,

Q̃(uhε )−Q(u0) = −Rε(u
h
ε ; zε) +

(∫
Ω

∇
(
duε
dε

∣∣∣∣
ε=0

)
· ∇w dx

)
ε+ O

(
ε2
)

Note that the error for this estimator depends on the derivative of the penalty

solution uε itself rather than the discretization error in the solution uε − uhε .

Thus, in the non-improved estimator it is asymptotically dominated by the(∫
Ω
∇
(
duε
dε

∣∣
ε=0

)
· ∇w dx

)
ε term, whereas the error in the improved estimator

is asymptotically dominated by the Rε(u
h
ε ; zε) term.

Remark 6.3.5. In practical use of the improved estimator, the penalty deriva-

tive is evaluated at the value of the penalty parameter used in the simulation,

rather than at ε = 0. This introduces another source of error, however it can

be shown that this error is O (ε2).
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6.4 Numerical Experiments

In this section, we present numerical experiments to illustrate the use

of the improved flux estimator and adjoint based mesh adaptation in the com-

putation of the solution flux. We consider here the same two dimensional

Poisson PDE that we used as a benchmark problem for code verification in

Section 4.4,

−∇ · (α∇u) = f in Ω (6.35a)

u = g on ∂Ω (6.35b)

where Ω = (0,1)× (0,1) and α ∈ R. In the following experiments, the value of α

was set to be 100. The same manufactured solution, u(x, y;α) = 4(1−e−αx1−

(1−e−α)x1)(x2)(1−x2) was used to derive f . The value of the boundary data

evaluated to g = 0. This solution has a sharp layer near the left horizontal

boundary, see Figure 6.5(a). The QoI to be estimated was given by,

Q(u(x1, x2;α)) = −
∫
∂Ω

α ∂nuw(x1, x2) ds (6.36)

where the weight function w(x1, x2) was given by,

w(x1, x2) = x1 × (1− x1)× (1− x2) (6.37)

This weight function has a parabolic profile on the bottom horizontal boundary

and vanishes on the remaining boundaries. The exact value for the QoI was

-33.2941333333, which was obtained using the symbolic toolkit in Matlab. The

numerical simulations were done using libMesh, and we utilized the adjoint
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capabilities that were described in chapter 4. Second-order Lagrange basis

functions defined on quad elements were used for the approximation. The

penalty parameter was given various values between 10−5 and 10−10.

6.4.1 Comparison of the improved and naive flux estimators

We solved the model problem given by Eq. (6.35) using a penalty

method. Our objective was to compare the non-improved flux estimator with

the improved estimator. Our results illustrate the importance of reducing the

penalty error by using derivative information. In these experiments, only uni-

form mesh refinement was used. For each value of the penalty parameter ε, we

started with a coarse grid of 289 dofs and refined uniformly till we reach about

a million dofs. At each refinement step, the QoI was computed and the error

was obtained. We first show the results for the non-improved flux estimator.

These results are plotted on a log-log regression plot showing the absolute error

vs the number of dofs, see Figure 6.1 for three values of the penalty parameter:

10−6, 10−8, and 10−10. We see that all three plots initially show a decrease in

the error but later plateau at about 10−1, 10−3, and 10−5. These numbers are

all about 105 away from the penalty parameter values themselves, suggesting

that the first derivative term in Eq. (6.19) is O (105).

To confirm this, another set of experiments were performed. The objec-

tive of these experiments was to obtain a log-log convergence plot of only the

penalty error in computing the QoI versus the penalty parameter ε. Eq. (6.19)

suggested that this plot would be linear with unit slope, and that the intercept
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Figure 6.1: Log-log convergence plots for the boundary flux QoI computed
using Eq. (6.34). Note that all the curves plateau about 5 orders of magnitude
above the value of the penalty parameter they correspond to.

of such a plot would give us an estimate of the first derivative term. To en-

sure that the error from the Finite Element approximation was very small and

that we were left mainly with the penalty error, a very fine mesh with about

a million dofs was used for the computations. The penalty parameter was

then progressively decreased from 10−5 to 10−10, and the error between the

computed flux and true flux was calculated for each parameter value. Figure

6.2 shows the log-log plot of the penalty error versus penalty parameter. We

observe a linear relationship between the log of the penalty error and the log

of the penalty parameter. The slope and intercept of the linear curve were also

obtained by regression. The slope was 1.0006 and the intercept was 5.1204.

Thus, we see that it is indeed the linear term in Eq. (6.19) that dominates

the penalty error and confirm that the derivative term
(∫

Ω
∇
(
duε
dε

)
· ∇w

∣∣
ε=0

)
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Figure 6.2: Log-log plot of the approximate error due to the use of the penalty
versus the value of the penalty parameter. The intercept of this curve gives
us an estimate of the magnitude of the first derivative term in Eq. (6.19).

is indeed of the order O (105).

We now move on to the results using the improved estimator. Since we

cannot calculate derivatives at ε = 0, we simply compute the first derivative

improvement at ε = ε0, where ε0 is the value of the penalty parameter used for

the simulation. We thus use a slightly modified improved flux estimator given

by,

Qε(u
h
ε ) =

∫
Ω

f w − α∇w · ∇uhε dx+

(∫
Ω

∇

(
duhε
dε

∣∣∣∣
ε0=ε

)
· ∇w dx

)
ε0 (6.38)

The approximate derivative
(∫

Ω
∇
(
duhε
dε

∣∣
ε=ε0

)
· ∇w dx

)
was computed using

the adjoint sensitivity derivative method described in Section 4.3. Figure 6.3

shows the convergence plots one obtains on using this gradient enhanced esti-

mator. We observed improved error reduction in comparison to Figure 6.1 and
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see that the convergence plots plateau near the expected regions (ε |α
∫
∂Ω
∂nu0 ds|)

for the ε = 10−6 and ε = 10−8 curves. However, we see no improvement in the

plateau region for the ε = 10−10 curve. The reason for this is that the sensitiv-

ity derivative calculations for this parameter value were affected by roundoff

error. For numerical stability, we actually obtained the sensitivity derivative

to the QoI in our code using the following expression,

dQ

dε
=

dQ

d1
ε︸︷︷︸

Computed by sensitivity derivative function

×− 1

ε2
(6.39)

If the actual derivative is O (105), then the code had to compute a quantity

of O (ε2 × 105). If ε = 10−10, then the quantity to be computed was O (10−15)

which is near the limit of machine precision. Thus, the derivative calculations

for this value of the penalty were inaccurate. However, if ε = 10−8, then the

quantity to be computed was O (10−11), which was within machine precision.

6.4.2 Adaptive mesh refinement using adjoint techniques

In this section, we present numerical experiments that illustrate the

use of adjoint-based goal-oriented mesh adaptation in the calculation of the

solution flux. Theorem 6.3.2 states that the error in computing the solution

flux using the improved flux is dominated by R(uhε ; zε). This residual cannot

be computed since we do not have the exact penalized adjoint zε. Computing

zε on a finer subspace to enable approximation of R(uhε ; zε) can be prohibitively

expensive for use in adaptive mesh refinement. Therefore in our adaptive mesh

refinement studies, adjoint error indicators were computed using an equal order
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Figure 6.3: Log-log convergence plots for the boundary flux QoI com-
puted using Eq. (6.19). The curves for ε = 10−6 and 10−8 plateau around
O
(
ε|
∫
∂Ω
α∂nuε ds|

)
. However, the curve for the ε = 10−10 still plateaus around

10−5 due to round-off error issues in computing the sensitivity derivative at
that value of ε.

Adjoint Residual method that we introduced and described in Section 4.2.

The same adjoint solution was also used to compute the sensitivity derivative

needed for the improved flux estimator.

The approximate adjoint solution was computed using the consistent

adjoint formulation given by Eq. (6.29). For comparison purposes, a flux-jump

error estimator [54] was also used for guiding adaptive refinement in a different

experiment for the same problem. For all the simulations, the improved flux

estimator was used, and the penalty parameter ε was fixed to be 10−8, so that

the errors are expected to plateau around 10−6. Convergence plots are shown

in Figure 6.4.
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Figure 6.4: Convergence plots for the evaluation of Eq. (6.19) using various
refinement strategies. The penalty was set to be 10−8. Both the Kelly and
Adjoint Error Indicators outperform uniform refinement. However, the Kelly
estimator does not refine in the region near the QoI and hence plateaus around
10−5. On the other hand, the Adjoint Error Indicator curve plateaus around
the region where the uniform curve does.

As expected, the curves obtained from adaptive refinement converge

faster than the one from uniform refinement. The uniform and adjoint-based

adaptive curves plateau around the 10−6, but the flux-jump adaptive curve

plateaus around 10−5. This can be understood by observing Figure 6.5 which

shows the adaptive meshes obtained from the flux-jump indicator and the

adjoint residual indicator. We see that both the flux-jump and adjoint-based

indicators refine extensively near the boundary layer present in the primal

problem. This is why the two indicators perform at about the same level

till the 10−5 level is reached in Figure 6.4. However, the adjoint-based error

indicator detects the additional error for this specific QoI arising from the
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(a) The adaptive mesh obtained on us-
ing the Kelly Error Indicator superim-
posed on a plot of the primal solution.
The mesh refinement is concentrated
entirely in the boundary layer on the
left.

(b) The adaptive mesh obtained on us-
ing the Adjoint Error Indicator super-
imposed on a plot of the dual solution.
There is mesh refinement around the
boundary layer as well as the QoI re-
gion near the bottom.

Figure 6.5: A comparison of the adaptive meshes obtained using the Kelly and
Adjoint Residual Error Estimators. The refinement near the QoI region in the
mesh for the Adjoint Residual Error Estimator allows it to eliminate an extra
order of error as compared to the Kelly Error Estimator. See Figure 6.4.

bottom boundary and other parts of the domain, and accordingly refines there

as seen in Figure 6.5(b). This allows the error to decrease further to the 10−6

level. On the other hand, the flux-jump indicator keeps refining the boundary

layer and is unable to reduce the larger error contributions from other parts of

the domain. Therefore, the error plateaus at the 10−5 mark for the flux-jump

indicator.
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6.5 Conclusions

We have presented an analysis of the boundary flux QoI in the context

of the penalty method. We have shown that an appropriate flux for analysis is

a ‘penalty flux’ defined by Eq. (6.10). Further, we derived a series expansion for

the penalty flux in terms of the penalty parameter and showed that the penalty

method can contribute a large error to the calculation of a boundary flux QoI.

We then presented numerical experiments for a model Poisson problem that

confirmed our theoretical results. We also showed how the accuracy of the

penalty flux can be improved by the use of a higher order term based on the

derivative of the QoI with respect to the penalty parameter.

An analysis of the adjoint problem for the flux QoI was also presented.

We showed that the penalty flux leads to an adjoint problem that is well-posed,

provides the correct error representation for the QoI, and is consistent with

the corresponding adjoint problem derived in the existing literature. Finally,

we illustrated the use of this adjoint problem in calculating error indicators

for mesh refinement, and that such adjoint-based mesh refinement is superior

to the ‘flux-jump’ error indicator for the boundary flux QoI.

In conclusion, one can say that if computing the flux through the

boundary is an important part of the calculation, then care must be taken

whenever the penalty method is used. Derivatives of the QoI to the penalty

parameter should be computed, monitored and, if possible, be used to improve

the accuracy of the QoI calculation.
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Chapter 7

Local Sensitivity Derivative Enhanced Monte

Carlo Methods

7.1 Introduction

The rapid development of high performance computing over the past

five decades, along with the supporting progress in algorithmic research and

software engineering has resulted in the extensive use of mathematical model-

ing and numerical simulation in science and engineering. The last decade has

seen an increased interest in the reliability and quantification of the uncer-

tainty inherent in the use of such complex mathematical models. The broad

area of ‘uncertainty quantification’ (UQ) has come to be identified with de-

velopment of the appropriate models that address such uncertainties, and the

computational algorithms needed to address such problems.

A variety of numerical techniques have been used for UQ problems.

Stochastic expansion techniques such as polynomial chaos methods [107, 106]

and stochastic collocation [106, 7, 2, 3] have gained popularity due to their

fast convergence rates for certain classes of problems. However, expansion

based methods suffer from the “curse of dimensionality”, and can be ineffi-

cient for high dimensional problems [107, 106, 103]. Also, such tecnhiques can
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be intrusive to implement, especially for multiphysics codes and legacy codes

[107, 103]. Expansion based techniques also require a high level of continuity

in the stochastic space, otherwise they can suffer from degraded convergence

rates [65]. Sampling based techniques such as the Monte Carlo method have

also been applied to UQ problems. Such techniques are attractive for high di-

mensional problems, since their convergence rate is independent of dimension.

They are also easily parallelizable given their “embarrasingly parallel” nature.

The major drawback of Monte Carlo methods is their slow convergence

rate. Such methods converge with an asymptotic rate of N
− 1

2
s , where Ns is

the number of samples in a Monte Carlo study [71]. In this chapter, we will

introduce a new Monte Carlo technique called Local Sensitivity Derivative En-

hanced Monte Carlo (LSDEMC), which can offer improvements in the conver-

gence rate in comparison to the plain Monte Carlo method. This new technique

relies on the ability to construct more accurate surrogates using local sensi-

tivity derivatives. Such sensitivity derivatives can be expensive to compute,

especially for complex applications such as those described in chapter 2. How-

ever, the adjoint sensitivity derivative methods discussed in chapter 4 provide

an inexpensive method to obtain such derivatives, even for large dimensional

systems.

This chapter is organized as follows, the first section briefly discusses the

Sensitivity Derivative Enhanced Monte Carlo (SDEMC) method introduced by

Cao, Hussaini, and Zang [18]. The next section introduces the new LSDEMC

method. We then analyze the LSDEMC method in section 7.4 and provide
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some theoretical results. In section 7.5, we present numerical experiments

that illustrate the performance of the LSDEMC method for a model Poisson

problem and a microchannel problem. We then provide some conclusions and

directions for future work.

7.2 Sensitivity Derivative Enhanced Monte Carlo

The senstivity derivative enhanced Monte Carlo (SDEMC) method was

introduced by Cao, Hussaini, and Zang [18] as an improvement over the tra-

ditional Simple Random Sampling method. Consider a probability space (Ω,

F, P ), where Ω is the sample space, F is the sigma algebra of events and P

is a probability measure. Define a random variable ξ: Ω → R with finite

expectation µξ. Let S denote the set Rd×Ω. Let u ∈ V (S) where V (S) = {v :

S→ R}, be a function over both the physical and stochastic spaces. Also, let

Q(u(x; ξ); ξ) be a functional Q: V ×Ω→ R, and Q
′
(u) be the derivative of Q

w.r.t. ξ. We have the following Taylor series approximation for Q(u) around

the mean µξ.

Q1(u; ξ) = Q(u;µξ) +Q
′
(u;µξ)(ξ − µξ) (7.1)

Let {ξl}Nssl=1 and {ξi}Nsi=1 be i.i.d. samples from Ω, where Ns is the number of

true samples and Nss is the number of surrogate samples. Using the Tay-

lor expansion as a surrogate one can use the following sensitivity derivative

enhanced estimator to find the mean of the random variable Q(u; ξ),

µSDEMC =
1

Nss

Nss∑
l=1

Q1(u; ξl) +
1

Ns

Ns∑
i=1

(Q(u; ξi)−Q1(u; ξi)) (7.2)
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There are Nss inexpensive evaluations of the surrogate given by Eq. (7.1)

and Ns expensive evaluations of the actual functional Q. Cao, Hussaini, and

others show in [19] that the variance of such an estimator is lower than that

of a simple sample average, if the functional Q is at least twice differentiable.

Thus, SDEMC offers a more accurate estimate of the mean with very little

additional cost. The SDEMC method has already been used for UQ in fluid

mechanics [81] and structural mechanics [51].

7.3 Local Sensitivity Derivative Enhanced Monte Carlo

SDEMC offers more accuracy than plain Monte Carlo by allowing us to

replace the expensive response function evaluations with inexpensive surrogate

evaluations without adding bias. A natural question is whether an even bet-

ter surrogate can be constructed using sensitivity derivative information from

more points than just the mean. Indeed, the cheap derivative information

that adjoint-based techniques can provide raise the prospect of using deriva-

tive information at every sample point to build surrogates. However, before we

describe the details of such an estimator, we will need some preliminaries on

Voronoi diagrams and Taylor series, which play a critical role in the LSDEMC

method.

Voronoi Diagrams Voronoi diagrams are a decomposition of any

n-dimensional space into subsets. These subsets have the property that there

exists a point within each of them (which we call the Voronoi center), such
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that the distance between any point in the subset and the Voronoi center is

less than that between that point and any other Voronoi center. These subsets

are then called Voronoi cells. Figure 7.1 shows such a nearest point Voronoi

diagram in two dimensions. Such Voronoi decompositions have wide ranging

Figure 7.1: A Voronoi diagram in 2 dimensions.

applications. We now give the formal definition of a Voronoi diagram,

Definition 1. Let X be a nonempty set endowed with a distance metric dist.

Let I be a set of indices and (Pi)i∈I be a collection of points in X. Consider

the subsets (Ri)i∈I , where each Ri is associated with a unique Pi and
⋃
i∈I
Ri =

X. The Ri’s constitute a Voronoi decomposition of X if,

Ri = {x ∈ X | dist(x, Pi) ≤ dist(x, Pj) ∀ j 6= i} (7.3)
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One method of constructing Voronoi diagrams in Rn is via projections

of a related convex hull in Rn+1 [17]. This relationship between convex hulls

and Voronoi diagrams can potentially play an important part in the theoretical

analysis of LSDEMC methods (see section 7.4.2). Voronoi diagrams play an

important role in the construction of LSDEMC surrogates, as we shall see

next.

Surrogate Construction In definition 1 let X be the domain Ω of the

probability space (Ω, F, P ) and dist be the standard Euclidean distance. Also

let (Pi)i∈I be an ensemble of randomly drawn samples (called true samples)

{ξi}Nsi=1 from Ω. Then each Voronoi cell Ri in {Ri}Nsi=1 is associated with a

sample point from a Monte Carlo process. Now consider another set of ran-

domly drawn samples from Ω, {ξl}Nssl=1 where Nss ≥ Ns. Suppose some ξl ∈ Ri.

We construct an approximation to the Quantity of Interest Q at the surrogate

points ξl using a Taylor series about the Voronoi centre of Ri (i.e. the nearest

true sample point ξi),

Q1(u; ξl) = Q(u; ξi) +Q
′
(u; ξi)(ξl − ξi) (7.4)

Thus for local surrogate points within a Voronoi cell we construct a local sur-

rogate using solution and derivative information from the associated Voronoi

center. Such a local surrogate approximation can be constructed for every

surrogate point by locating it in a particular Voronoi cell.
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LSDEMC estimator for the mean In general, directly using the surrogate

mean,

µ̂ =
1

Nss

Nss∑
l=1

Q1(ξl) (7.5)

as an estimator for the expectation of Q gives us a biased estimator. The bias

error becomes larger as the number of dimensions increases. To remove this

bias, we split our original ensemble of samples {ξi}Nsi=1 into NR disjoint subsets,

each of size of Ns
NR

.

{ξi}Nsi=1 =

NR⋃
r=1

{ξr,j}
Ns/NR
j=1 (7.6)

Each subset {ξr,j}
Ns/NR
j=1 has the same distribution as the original set of samples

and is called a representation. Now, for each surrogate point ξl we will have NR

surrogates, each associated with one representation. We can form a surrogate

model with each representation,

Qr,1(u; ξl) = Q(u; ξr,j(r,l)) +Q
′
(u; ξr,j(r,l))(ξl − ξr,j(r,l)) (7.7)

Here, ξr,j(r,l) is the Voronoi center nearest to ξl in the Voronoi diagram gener-

ated by the rth representation. Also, for any r let,

{ξc,r}
Ns− Ns

NR
c=1 = {ξi}Nsi=1 \ {ξr,j}

Ns/NR
j=1 (7.8)

This is the complement set of the samples in the rth representation. We

propose the following estimator for the expected value of Q,

µLSDEMC =
1

NR

NR∑
r=1

 1

Nss

Nss∑
l=1

Qr,1(ξl) +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(Q(ξc)−Qr,1(ξc))


(7.9)
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In other words, we construct a surrogate function with each representation

and get an approximate average using the surrogate points. We then use the

points in the complement set to correct the bias. Then we average over all

the representations. In the next section, we analyze the estimator given by

Eq. (7.9). We will show that this estimator is unbiased and that under certain

conditions, it will always converge faster than plain Monte Carlo.

7.3.1 Computational Complexity

Unlike plain Monte Carlo, the construction of the LSDEMC surrogate

involves operations other than evaluations of the response function. A brute-

force distance test of all Voronoi centers to find the Voronoi cell containing

each surrogate sample is an O (Ns) operation, doing so for all Nss surrogate

samples would make the total complexity O (NsNss). Despite the superior con-

vergence properties of LSDEMC, this cost could make it an inefficient method

for statistical analysis of algebraic response functions.

However, numerical modeling of large-scale engineering systems, typi-

cally involves the inversion of very large matrices. Thus each response function

evaluation has a cost of O
(
Nγ
dofs

)
. Here, Ndofs is the so called degree of free-

dom (dof) count, i.e. the rank of the matrix to be inverted to numerically solve

the system, while γ is the rate at which the cost of inverting the matrix scales

with the dof count. This rate depends on the matrix conditioning and on the

type of linear solver used to invert the matrix. Values of γ typically range

from one, in cases amenable to the multigrid method [32], to approximately
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two, with the more robust and widely used Generalized Minimum Residual

Method (GMRES) [89].

Even with brute-force Voronoi sorting, LSDEMC can be a efficient

method for uncertainty quantification of large-scale systems where

O (NsNss) ≤ O
(
NsN

γ
dofs

)
⇒ Nss ≤ Nγ

dofs (7.10)

The degree of freedom count even for a simple two dimensional partial dif-

ferential equation (PDE) model ranges in the tens of thousands. For large

scale systems such as those used to model high speed aerodynamics, climate

modeling, nuclear reactor modeling and other multiphysics systems, the de-

gree of freedom count can be in the billions. When LSDEMC is used for such

systems, the response function evaluations and the the surrogate associations

can be done in parallel. Recall that although the surrogate evaluations need

response function evaluation and response function derivative information, the

association of surrogate points with sample points only requires the location

of these points in stochastic space.

7.4 Analysis of the LSDEMC method

7.4.1 Unbiasedness

Lemma 7.4.1. Consider a probability space (Ω, F, P ) and define a random

variable ξ: Ω → R. Let S denote the set Rd × Ω and let u ∈ V (S) where

V (S) = {v : S → R}, be a function over physical and stochastic space. Also,

let Q(u(x; ξ); ξ) be a functional Q: V × Ω→ R, such that Q is differentiable,
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and E(Q) =
∫
ξ
Q(u(x; ξ); ξ)dP (ξ) is finite. Let {ξi}Nsi=1 and {ξl}Nssl=1 be i.i.d.

samples drawn from Ω. Let {ξr,j}
Ns
NR
j=1, {ξc,r}Nsc=1, and Qr,1(u; ξl) be as defined

as in Eqs. (7.6), (7.8), and (7.7), respectively. Then the estimator for E(Q)

given by (7.9) is unbiased.

Proof. The proof is straightforward. We have to find,

E

 1

NR

NR∑
r=1

 1

Nss

Nss∑
l=1

Qr,1(ξl) +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(Q(ξc)−Qr,1(ξc))




Using the linearity of the expectation operator, we obtain,

=
1

NR

NR∑
r=1

E

 1

Nss

Nss∑
l=1

Qr,1(ξl) +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(Q(ξc)−Qr,1(ξc))


=

1

NR

NR∑
r=1

(
1

Nss

Nss∑
l=1

E(Qr,1(ξl)) ...

... +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(E(Q(ξc))− E(Qr,1(ξc)))

)

=
1

NR

NR∑
r=1

(
1

Nss

(NssE(Qr,1)) +
1

Ns − Ns
NR

(
Ns −

Ns

NR

(E(Q)− E(Qr,1))

))

=
1

NR

NR∑
r=1

�����E(Qr,1) + E(Q)−�����E(Qr,1)

= E(Q) (7.11)

Hence proved.
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7.4.2 The Asymptotic Distribution for LSDEMC

General Taylor Series Expansions Before we derive the asymptotic dis-

tribution for the LSDEMC estimator we state the following generalization of

Taylor’s theorem [12] for the multi-variable case.

Theorem 7.4.2. Let f : Rn → R be a k times continuously differentiable

function in the closed ball B. Introduce the multi-index notation, |α| = α1 +

α2 + ... + αn, α! = α1!α2!...αn!, xα = xα1
1 x

α2
2 ...x

αn
n , Dαf(x) = ∂|α|f

∂x
α1
1 ∂x

α2
2 ...∂xαnn

,

where α, αi ∈ N and x ∈ B. Let a ∈ B. We then have the following Taylor

series of order k for f around a,

f(x) =
k∑
|α|=0

Dαf(a)

α!
(x− a)α +

∑
|α|=k

hα(x)(x− a)α

where lim
x→a

hα(x) = 0 (7.12)

We will derive the asymptotic distribution for the LSDEMC estimator

by comparing it with the unbiased estimator given by,

µ̃ =
Nss∑
l=1

Q(ξl) (7.13)

where ξl are as in Lemma 7.4.1. First we consider the error in any evalution

of the surrogate function,

Qr,1(ξl)−Q(ξl) = −(Q(ξl)−Qr,1(ξl))

= −
∑
|α|=1

hα(ξl)(ξl − ξr,j(r,l))
α Using Theorem 7.4.2, Eq. (7.7) (7.14)
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where hα(ξl) is as defined in Theorem 7.4.2. Therefore the difference between

the biased estimator given by Eq. (7.5) and the unbiased estimator given by

Eq. (7.13) is,

1

Nss

Nss∑
l=1

Qr,1(ξl)−
1

Nss

Nss∑
j=1

Q(ξl) =
1

Nss

Nss∑
j=1

−
∑
|α|=1

hα(ξl)(ξl−ξr,j(r,l))
α (7.15)

We can now get an expression for the error if the LSDEMC estimator given

by Eq. (7.9) is used. Subtracting the estimator given by Eq. (7.13) from the

LSDEMC estimator we get,

1

NR

NR∑
r=1

 1

Nss

Nss∑
l=1

Qr,1(ξl) +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(Q(ξc)−Qr,1(ξc))


− 1

Nss

Nss∑
j=1

Q(ξl)

=
1

NR

NR∑
r=1

(
1

Nss

Nss∑
l=1

Qr,1(ξl)−
1

Nss

Nss∑
j=1

Q(ξl) ...

... +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(Q(ξc)−Qr,1(ξc))

)
(7.16)

Using Eq. (7.15), we see that the above expression is equal to,

1

NR

NR∑
r=1

(
1

Nss

Nss∑
l=1

−∑
|α|=1

hα(ξl)(ξl − ξr,l(r))
α

 ....

... +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

∑
|α|=1

hα(ξc)(ξc − ξr,c(r))
α

]
(7.17)

122



The error in the LSDEMC estimator is given by,

1

NR

NR∑
r=1

 1

Nss

Nss∑
l=1

Qr,1(ξl) +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

(Q(ξc)−Qr,1(ξc))

− E(Q)

(7.18)

Using Eqs. (7.16) and (7.17), we see that Eq. (7.18) can be written as the sum

of two error components,

1

Nss

Nss∑
j=1

Q(ξl)− E(Q)

+
1

NR

NR∑
i=1

[
1

Nss

Nss∑
l=1

−
∑
|α|=1

(
hα(ξl)(ξl − ξr,l(r))

α
)
...

... +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

∑
|α|=1

(
hα(ξc)(ξc − ξr,c(r))

α
)]

(7.19)

If Q is integrable, the first error component in Eq. (7.18) goes to zero as we

increase the number of surrogate samples Nss, in accordance with the Strong

Law of Large Numbers. If Q also has finite variance V (Q), then by the Central

Limit Theorem,

1

Nss

Nss∑
j=1

Q(ξl)− E(Q)
d→N

(
0,
V (Q)

Nss

)
(7.20)

The second component of the error is harder to analyze. Complete analysis

of this part of the error will require some new results in stochastic geometry.

These results are related to the moments of the asymptotic width of Voronoi

cells in random point processes. Such an analysis is beyond the scope of this

dissertation. Instead, we will prove a lemma which will show that, under
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certain conditions, the asymptotic distribution of the second error component

has a variance that is lower than that for the plain Monte Carlo method.

Lemma 7.4.3. Let the hypotheses of Lemma 7.4.1 hold. Also, let the random

variables
∑
|α|=1

hα(ξ)(ξ−ξr,i)
α have finite expectation (Êr,i) and variance (V̂r,i).

Assume that Ns and NR are increased such that Ns
NR

= C, where C ∈ N is a

finite constant. Then we have,

1

NR

NR∑
r=1

[
1

Nss

Nss∑
l=1

−∑
|α|=1

hα(ξl)(ξl − ξr,l(r))
α

 ...

... +
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

∑
|α|=1

hα(ξc)(ξc − ξr,c(r))
α

]

d→N

(
0,

1

NssNR

1

NR

NR∑
r=1

[
1

Nss

Nss∑
l=1

V̂r,l

]
...

... +
1

Ns(NR − 1)

1

NR

NR∑
r=1

 1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

V̂r,c

) (7.21)

Proof. We can rewrite Eq. (7.18) using summation of the surrogate and com-

plement samples over the Voronoi cells (Ri)i∈I , weighted by the fraction of

surrogate and complement samples in each cell:

1

NR

NR∑
r=1

(
−

Ns
NR∑
i=1

N i
ss∑

j=1

∑
|α|=1

hα(ξj)(ξj − ξr,i)
α

N i
ss

N i
ss

Nss

...

... +

Ns
NR∑
i=1

N i
c∑

m=1

∑
|α|=1

hα(ξm)(ξm − ξr,i)
α

N i
c

N i
c

Ns − Ns
NR

)
(7.22)
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We can now consider the asymptotic behaviour of the local sums in each

Voronoi cell,
N i
ss∑

j=1

∑
|α|=1

hα(ξj)(ξj−ξr,i)α

N i
ss

and
N i
c∑

m=1

∑
|α|=1

hα(ξm)(ξm−ξr,i)α

N i
c

. The local sur-

rogate samples N i
ss and complement set samples N i

c are i.i.d. Since the random

variables
∑
|α|=1

hα(ξ)(ξ−ξr,i)
α have finite expectation (Êr,i) and variance (V̂r,i),

by the Central Limit Theorem we have,

N i
ss∑

j=1

∑
|α|=1

hα(ξj)(ξj − ξr,i)
α

N i
ss

d→N

(
Êr,i,

V̂r,i
N i
ss

)
(7.23a)

N i
c∑

m=1

∑
|α|=1

hα(ξm)(ξm − ξr,i)
α

N i
c

d→N

(
Êr,i,

V̂r,i
N i
c

)
(7.23b)

Using Eqs. (7.23a) and (7.23b) in Eq. (7.22), we obtain,

1

NR

NR∑
r=1

−
Ns
NR∑
i=1

N

(
Êr,i,

V̂r,i
N i
ss

)
N i
ss

Nss

+

Ns
NR∑
i=1

N

(
Êr,i,

V̂r,i
N i
c

)
N i
m

Ns − Ns
NR


=

1

NR

NR∑
r=1

[ Ns
NR∑
i=1

N

(
−Êr,i

N i
ss

Nss

,
V̂r,i
N i
ss

(
N i
ss

Nss

)2
)
...

... +

Ns
NR∑
i=1

N

Êr,i N i
m

Ns − Ns
NR

,
V̂r,i
N i
c

(
N i
m

Ns − Ns
NR

)2
]

=
1

NR

NR∑
r=1

[
N


Ns
NR∑
i=1

−Êr,i
N i
ss

Nss

,

Ns
NR∑
i=1

V̂r,i
N2
ss

N i
ss

 ...

... +N


Ns
NR∑
i=1

Êr,i
N i
m

Ns − Ns
NR

,

Ns
NR∑
i=1

V̂r,i(
Ns − Ns

NR

)2N
i
m

]

=
1

NR

NR∑
r=1

[
N

(
−

Nss∑
l=1

Êr,l
Nss

,
1

Nss

Nss∑
l=1

V̂r,l
Nss

)
...

125



... +N

Ns− Ns
NR∑

c=1

Êr,c

Ns − Ns
NR

,
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

V̂r,c

Ns − Ns
NR

]

=
1

NR

NR∑
r=1

N

(
−

Nss∑
l=1

Êr,l
Nss

+

Ns− Ns
NR∑

c=1

Êr,c

Ns − Ns
NR

, ...

...
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

V̂r,c

Ns − Ns
NR

+
1

Nss

Nss∑
l=1

V̂r,l
Nss

)
(7.24)

Since the LSDEMC estimator is unbiased (Lemma 7.4.1), the mean of the

normal distribution in Eq. (7.24) converges to zero. Therefore, Eq. (7.24)

converges to,

d→ 1

NR

NR∑
i=1

N

0,
1

Ns − Ns
NR

Ns− Ns
NR∑

c=1

V̂r,c(
Ns − Ns

NR

) +
1

Nss

Nss∑
l=1

V̂r,l
Nss


= N

(
0,

1

Ns(NR − 1)

 1

NR

NR∑
i=1

Ns− Ns
NR∑

c=1

V̂r,c(
Ns − Ns

NR

)
 ...

... +
1

NssNR

(
1

NR

NR∑
i=1

Nss∑
l=1

V̂r,l
Nss

))
(7.25)

Hence proved.

We see that in the case of holding the ratio of true samples to rep-

resentations constant
(
NS
NR

= C
)

, the asymptotic variance of the LSDEMC

estimator is given by,

V (Q)

Nss

+
1

Ns(NR − 1)

 1

NR

NR∑
i=1

Ns− Ns
NR∑

c=1

V̂r,c(
Ns − Ns

NR

)

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+
1

NssNR

(
1

NR

NR∑
i=1

Nss∑
l=1

V̂r,l
Nss

)
(7.26)

Since we can make Nss very large, we can neglect the contribution of the

terms having Nss in the denominator. The error is therefore dominated by

1
Ns(NR−1)

 1
NR

NR∑
i=1

Ns− Ns
NR∑

c=1

V̂r,c(
Ns− Ns

NR

)
. The error thus depends on the true num-

ber of samples Ns, the number of representations NR, and an averaged variance

of the random variable
∑
|α|=1

hα(ξ)(ξ − ξr,i)
α.

Although the restriction
(
NS
NR

= C
)

was necessary to prove Lemma 7.4.3,

we anticipate that a similar result will hold even if we let NR be fixed. In-

deed, this restriction has not been seen as necessary during our numerical

experiments, where we have obtained good results with the number of repre-

sentations being fixed. Therefore, if we assume that the LSDEMC error is still

dominated by a term of the form 1
Ns(NR−1)

 1
NR

NR∑
i=1

Ns− Ns
NR∑

c=1

V̂r,c(
Ns− Ns

NR

)
, we can

attempt further analysis of the error. In this case, since NR is fixed, the asymp-

totic structure of the Voronoi diagrams corresponding to each representation

will be the same in distribution. We can thus drop the dependance of V̂r,c

on r and the averaging over all representations, leading us to the expression

1
Ns(NR−1)

Ns− Ns
NR∑

c=1

V̂c(
Ns− Ns

NR

) .

The term

Ns− Ns
NR∑

c=1

V̂c(
Ns− Ns

NR

) is the average variance of
∑
|α|=1

hα(ξ)(ξ− ξi)
α

over all Voronoi cells for a Voronoi diagram with Ns − Ns
NR

generating points.

We anticipate that a Central Limit Theorem for such a weighted moment of
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Voronoi cell diameters generated by a random point process should hold. Cen-

tral Limit Theorems for the diameter of convex hulls of points generated via

normal [102], uniform [102], and Poisson [84] point processes in Rd have been

recently derived and presented in the stochastic geometry literature. The deep

connection between convex hulls and Voronoi diagrams [17] that we mentioned

earlier indicates that similar Central Limit Theorems may apply to the diam-

eters of Voronoi cells. Personal communication with experts in the field of

stochastic geometry [85] indicate that such results should be within reach us-

ing the Efron-Stein jackknife inequality [9] and Stein’s method [94]. However,

they are beyond the scope of this dissertation.

It is conjectured that for a uniform point process the Voronoi diameter

will converge to zero as 1

(Ns)
2
d−1

[85]. Similar results should hold for other point

processes. Therefore, it can be conjectured that the asymptotic error for the

LSDEMC estimator approaches zero as 1

N
1
2+

f(d)
d

s

where d is the dimension of

the stochastic space and lim
d→∞

f(d)
d

= 0. Thus, the LSDEMC estimator will

always converge faster than plain Monte Carlo, however the magnitude of im-

provement over plain Monte Carlo will diminish as the number of stochastic

dimensions increases. We now move on to numerical experiments that illus-

trate the improvements made possible by the use of LSDEMC.

7.5 Numerical Experiments

Two sets of numerical experiments were performed to compare the per-

formance of LSDEMC with plain MC. The two experiments were as follows:
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1. The calculation of the mean for an exponential response function having

1, 8, and 32 random arguments, all of which were distributed normally.

The exact mean for such a problem can be evaluated analytically, and

was used to prepare convergence plots.

2. The calculation of the mean for a QoI in a model Poisson problem with

two random parameters, both distributed normally. For this problem,

we were able to compute a ‘true’ mean with the help of analytic results

and the dblquad function of Matlab.

In all experiments, samples were generated using Simple Random Sampling

and one hundred trials were performed at each sample size. Since we had the

exact answer for the first two sets of experiments, we could obtain convergence

rates using plots and linear regression. The last experiment also illustrates the

importance of adjoint-based techniques in Finite Element analysis, both for

error control (so the FE error does not pollute the calculation of the mean)

and adjoint sensitivity analysis (to obtain cheap sensitivity derivatives for LS-

DEMC to be computationally feasible).

7.5.1 Multiparameter Exponential Response Function

For the first test case, we consider the exponential response function,

Q(ξ) = e

d∑
i=1

ξi
(7.27)

and normally-distributed input parameters

ξi ≡ N

(
µinput
d

,
σ2
input

d

)
(7.28)
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Q(ξ) is then distributed lognormally; error convergence plots which follow are

based on the analytic expressions for its mean and standard deviation. We

chose values of 1 and 0.1 for the parameters µinput and σinput. To evaluate

the performance of the algorithm with increasing number of dimensions, we

did experiments with dimension d as 1, 8, and 32. For each dimensional size,

the number of true samples were increased from 32 to 512, with a factor of 2

increment at each step, while the number of representations NR was chosen to

be 2. The number of surrogate samples Nss at each step was the square of the

number of true samples N2
s .

Figure 7.2 shows the log-log convergence plots for the one, eight and

thirty-two dimensional cases. We observe that the LSDEMC method comfort-

ably outperforms plain MC, converging at a faster rate. Regression analysis

gave a convergence rate around 0.5 for the plain MC method for all three exper-

iments, while the rate for LSDEMC decreased from 1.04 in the one-dimensional

case to 0.82 in the thirty-two dimensional case. Table 7.1 below summarizes

the results from the three experiments. We see that LSDEMC maintains a su-

perior rate and convergence performance in comparison to plain MC even for

moderately high dimensional problems. However, as we conjectured earlier,

the improvement in the convergence rate decreases as we increase the number

of dimensions.
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Figure 7.2: Comparison of MC and LSDEMC methods for computing the mean
of the response function given by Eq. (7.27) with 1, 8, and 32 dimensional
versions of the distribution given by Eq. (7.28). The input mean was 1 and
standard deviation 0.1.

Table 7.1: Rates of convergence for MC and LSDEMC simulations for the
calculation of the mean of a response function given by Eq. (7.27) with distri-
bution given by Eq. (7.28)

d MC LSDEMC
1 0.55 1.04
8 0.5 0.91
32 0.5 0.82

7.5.2 Model Poisson Problem

We now turn our attention to a model PDE test case. We use the

Poisson problem given by Eq. (4.33) as our model PDE. However, we change

the definition of the PDE slightly to make the problem dependent on two
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parameters. Accordingly, we choose our manufactured solution to be,

u(x1, x2;α1, α2) = α2(4(1− e−α1x1 − (1− e−α1)x1)(x2)(1− x2)) (7.29)

As before, our model Poisson problem is given by,

− α1∆u = f (7.30)

where the forcing function is now obtained by differentiating the manufactured

solution given by Eq. (7.29). The QoI was given by Eq. (4.35). The parameters

α1 and α2 were both distributed as truncated normal random variables, with

parameters given by,

α1 ∈ [50, 150], µα1 = 100, σα1 = 10 (7.31)

α2 ∈ [0.5, 1.5], µα2 = 1, σα2 = 0.1 (7.32)

For this two-dimensional (in stochastic space) problem, the mean of the QoI

functional could be computed to a high precision using numerical quadrature.

Using the dblquad function of Matlab, the ‘true’ mean was computed to be

-32.66663.

Approximations to the mean were calculated using the plain MC and

LSDEMC method in combination with an adjoint-based adaptive FE strategy.

Second-order Lagrange basis functions on quadrilateral elements were used

for the FE solution. An adjoint residual based adaptive FE strategy was

used to obtain adaptive grids tailored to reduce the error in the QoI. Adjoint

sensitivity analysis was used to obtain the sensitivities of the QoI to each
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parameter at all sample points efficiently. More details about these strategies

can be found in sections 4.4.3 and 4.4.4 of chapter 4. The MC samples were

generated using the Sandia National Labs stochastic toolkit Dakota [1], which

was coupled to libMesh. The parallel processing abilities of Dakota were used

to perform the independent MC evaluations in parallel. The LSDEMC analysis

was performed in Matlab by processing the output data containing the QoI

values and derivatives obtained from Dakota.

Starting with 40 true samples, the number of samples was increased to

320 samples by doubling the number of samples at each step. One hundred

trials were performed at each step, and the average absolute error was com-

puted for both the MC and LSDEMC strategies. These errors were plotted

against the number of samples in a log-log plot as shown in Figure 7.3. We

see that LSDEMC delivers better convergence performance than plain MC.

The rate of convergence for the plain MC method was 0.52, while LSDEMC

converged at a rate of 1.005. This seems better than the rates observed with

the algebraic response function. We speculate that this superior rate has been

obtained because the random parameters in this experiment have truncated

normal distributions, which have compact support. The standard normal dis-

tributions used for the exponential response function do not have compact

support, which could lead to Voronoi cells with larger diameters.

Since we had analytic expressions for the QoI and its sensitivity deriva-

tives, we could monitor the FE error at each sample point. The maximum FE

errors for Q, dQ
dα1

and dQ
dα2

over the entire simulation process were 6.67e-5, 3.0e-6
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Figure 7.3: Comparison of MC and LSDEMC methods for computing the
mean of the QoI given by Eq. (4.35). There were two random parameters
whose distributions were given by Eq. (7.31).

and 6.19e-5, indicating that the adjoint-based methods gave us good meshes

and accurate sensitivity derivatives. Thus, in conjunction with adjoint-based

mesh refinement and sensitivity analysis, the Local Sensitivity Derivative En-

hanced Monte Carlo method can be a fast and accurate method for UQ.

7.6 Conclusion

A new Monte Carlo algorithm for numerical integration has been de-

veloped and presented. The new method, called Local Sensitivity Deriva-

tive Enhanced Monte Carlo (LSDEMC) utilizes local senstivity information

to build surrogates for inexpensive integration. Voronoi decompositions of the

stochastic space centred on true sample points are used for surrogate evalua-

tion, ensuring asymptotic accuracy. It has also been shown that the LSDEMC
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estimator is unbiased. The superior convergence of the LSDEMC method

in comparison to plain Monte Carlo methods has also been shown through

theoretical analysis, under the assumption of a constant sample number to

representation number ratio. Numerical experiments using an exponential re-

sponse function and a model Poisson problem were conducted to compare the

LSDEMC and plain MC method. The results of these experiments indicate

that the LSDEMC method converges at a faster rate than plain MC, and that

the improvement in the rate diminishes with increasing dimension.

An important consideration for further analysis of the LSDEMC method

is the general case where the ratio of the number of true samples to the num-

ber of representations is not held constant. The numerical results demonstrate

that results similar to those derived for the constant ratio case should hold.

Knowing the asymptotic distribution for LSDEMC can give us better variance

estimates for the LSDEMC estimator and quantify the dependence of the rate

of convergence on dimension size. Another critical component needed for LS-

DEMC analysis is a Central Limit Theorem for weighted moments of Voronoi

cells generated by random point processes. The derivation of such results is

beyond the scope of this dissertation and has been left for future work.
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Chapter 8

Hierarchical Incremental Latin Hypercube

Sampling

8.1 Introduction

The Monte Carlo method is a widely used statistical integration tech-

nique [52]. The simplicity and robustness of Monte Carlo algorithms together

with the dimension independent nature of error reduction for such algorithms

make them very suitable for the analysis of complex systems with a large

number of input parameters. The advent of parallel computing has further in-

creased the attractiveness of such algorithms [73], given their “embarassingly

parallel” nature. Plain Monte Carlo methods converge with an asymptotic

rate of N
− 1

2
s , where Ns is the number of samples in a Monte Carlo study [71].

This slow rate of convergence is one of the main limitations of the Monte Carlo

method, inhibiting its use in some computationally intensive applications.

Various strategies have been proposed and used for improving conver-

gence properties of the Monte Carlo method. These include modified sampling

techniques such as Latin Hypercube Sampling (LHS) [95] and Hammersley

sampling [1]. Latin Hypercube Sampling has found widespread acceptance

and application. For general response functions, LHS retains the N
− 1

2
s rate of
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convergence of Simple Random Sampling (SRS) [95], but LHS can substan-

tially improve the constant of convergence [72]. Latin Hypercube Sampling

implementations are used extensively in Uncertainty Quantification [47].

Due to the large computational cost of simulating modern engineering

systems, it is desirable to obtain an accurate statistical quantity of interest

using a minimal number of Monte Carlo samples. The ability to add Monte

Carlo samples incrementally is an important tool here: by allowing the user

to add samples to an existing Monte Carlo sample set, error tolerances can

be satisfied using tight a posteriori bounds with lower overall computational

work. With Simple Random Sampling adding samples is natural, because

each is independent of all preceding samples. However, the standard Latin

Hypercube Sampling sample set construction begins with a fixed set size as

input.

The non-incremental nature of Latin Hypercube Sampling has been

identified as one of the main obstacles in its application to certain classes of

complex physical systems [47]. In current implementations of an Incremen-

tal LHS (ILHS) method, one is restricted to at least doubling the size of an

existing LHS set to retain the convergence properties of Latin Hypercube Sam-

pling [90, 1]. This restriction can result in expensively over-solving a problem

if the existing sampling results in answers that are close to meeting the desired

error tolerance. An alternative Latin Hypercube Sampling algorithm is devel-

oped here, which allows the user to perform LHS studies in a more flexibly

incremental setting.
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The following sections detail the proposed algorithm, associated theory

and numerical results. Section 8.2 describes an algorithm to construct a “Hi-

erarchical Latin Hypercube Sampling” (HLHS) set, which is an LHS set that

can be partitioned into HLHS subsets. In Section 8.3 we describe the use of

HLHS sets in “Hierarchical Incremental Latin Hypercube Sampling” (HILHS)

based Monte Carlo integration. Theoretical results concerning the variance

of response function means computed using such algorithms are also stated

in this section. Representative numerical experiments are then described in

section 8.4 and their results are discussed in detail. Conclusions from the

experiments, further work and future applications associated with the HLHS

algorithms are discussed in Section 8.5. Section 8.6 contains proofs for the

theoretical results stated in section 8.3.

8.2 Hierarchical Latin Hypercube Sample Generation

In this section, we first describe the basic ideas of Latin Hypercube

Sampling and give a brief overview of techniques used to generate LHS sets.

We then describe a method for generating a special kind of LHS set, a “Hier-

archical Latin Hypercube Sample” sequence. In addition to being an LHS set,

a HLHS sequence has a property of self-similarity, i.e. each HLHS sequence of

even cardinality can be subdivided into two contiguous HLHS subsequences,

which themselves may be subdivided and so on. We also discuss a correlation-

reduction technique that can construct such a set while reducing correlations

between independent parameters and provide better coverage of the sample
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space.

8.2.1 Latin Hypercube Sampling

The Latin Hypercube Sampling method seeks to improve coverage of a

sample space by stratifying such a space in each parameter into subsets having

equal probability. Latin Hypercube Sampling stratifies all input dimensions

simultaneously and reduces sampling error by providing a more representa-

tive sample ensemble. Latin Hypercube Sampling was introduced by McKay

et al. [64], and relevant theory and error estimates were given by Stein and

Owen [95, 71]. Like standard Monte Carlo, the output of an LHS method is

also a random variable, whose variance typically converges with a rate dictated

by a Central Limit Theorem of the form

Vµ̂Q ≤
C

Np
s

(8.1)

where Vµ̂Q is the variance of the approximate statistical Quantity of Interest

(SQoI), Ns is the number of samples in the set, and p is the associated rate of

convergence. For purely additive response functions, i.e. response functions of

the form

Q(ξ) =
∑
i

Qi(ξi) (8.2)

we have p = 2, while in general p = 1. The constant of convergence C is

dependent on the SQoI being evaluated, but is typically smaller for Latin

Hypercube Sampling than Simple Random Sampling, leading to much faster

convergence [95, 71].
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Latin Hypercube Sample Set Generation Following Owen [71], consider

a set of Ns samples in a space of Nξ parameters. Then the LHS set Dij is of

the form,

Dij = F−1
j

(πij − Uij)
Ns

(8.3)

where each sequence {π1j, π2j, ...πNsj} denotes a random permutation of

{1, 2, ..., Ns}, each Uij is an independent variable with a uniform distribution

U [0, 1], each Fj is the probability distribution function of input parameter j,

and F−1
j (u) = inf(y|Fj(y) ≥ u). Equation (8.3) can be used to generate LHS

sets and perform computational experiments. Such a capability is present in

statistical software like MATLAB and DAKOTA. Note that the generation of such

LHS sets is typically done in serial, as all stratification occurs simultaneously

on the same parent set.

8.2.2 Hierarchical Latin Hypercube Sampling

A Hierarchical Latin Hypercube Sample (HLHS) set is a union of self-

similar Latin Hypercube sets. Figure 8.1 illustrates the design and construc-

tion of a small HLHS set. We observe that the top box contains an LHS set

with 8 samples coming from equally stratified subspaces. However, instead

of constructing the HLHS sequence by simultaneously stratifying the entire

space into 82 subspaces as suggested by Eq. (8.3), it is combined from the

two smaller 4 sample LHS sets in the second row. These sets are recursively

combined from pairs of HLHS sets with 2 samples each. Constructed in such

a manner, the top LHS set can be viewed as the concatenation of two subsets
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Figure 8.1: An illustration of HLHS set construction. Each box in the figure
contains an HLHS set. The top box contains an eight sample HLHS set, the
two mid level boxes each contain a four sample HLHS set, and the four bottom
row boxes each have a two sample HLHS set.

which themselves are LHS sets, and who each are also concatenations of LHS

sets. Such nested LHS sets have wide utility [82, 83].

Definition 2. A binary HLHS sequence is either a singleton sequence {ξ1}, or

a sequence {ξi}
2N
i=1 of ξi ∈ RK , such that the two subsequences {ξi}

N
i=1 and

{ξi}
2N
i=N+1 are themselves binary HLHS sequences.

We can construct a full HLHS sequence recursively, using Algorithm 3

to generate the permutation matrix π and then using these permutations in

Eq. (8.3) to generate the sample values.

The utility of an HLHS sequence in practice will depend on how many

levels exist in the hierarchy. Nl levels of binary HLHS subsequences will exist

if and only if Ns is divisible by 2Nl . In the extreme case where Ns is prime,

Algorithm 3 reduces to generation of a plain LHS set. This algorithm can
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Algorithm 3 Generate a simple HLHS permutation πij with Ns samples in
Nξ parameters

1: if Ns
2
∈ Z then

2: Generate two HLHS permutations, π(1) and π(2), each of length Ns/2 in
Nξ parameters

3: Generate a discrete random matrix C of size (Ns/2 × Nξ), such that
each independent identically distributed Cij = 0 with probability .5 and
Cij = 1 with probability 0.5. Note that the random matrix C is indexed
by the permutation π(1).

4: π(1) ← 2π(1) − 1 + C
5: π(2) ← 2π(2) − C
6: π ←

[
π(1)π(2)

]
(matrix concatenation)

7: else
8: Generate an LHS permutation π of length Ns in Nξ parameters
9: end if

10: return π

obviously be generalized to generate hierarchic subsequences for any divisor of

Ns, not merely Ns
2Nl

; however the remainder of the discussion will be restricted

to a binary hierarchy.

Algorithm 3 will recurse up to log2(Ns) levels deep; each level involves

O (NξNs) operations. Like the generation of a plain LHS set, the complexity

is O (NξNs log2(Ns)). Because of its recursive nature and its dependence on

element-wise matrix operations, Algorithm 3 is trivial to parallelize.

8.2.3 Correlation-Reduced HLHS Set Generation

Even in the construction of standard LHS sets in multi-parameter

spaces, improved convergence constants can often be found by using heuris-

tics to reduce any spurious correlations between different sampled parame-
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ters [72, 49]. These spurious correlations may also be avoided using a modified

algorithm for HLHS set generation. First define a composite inter-parameter

covariance function on a permutation matrix π as:

R(π) ≡
Nξ∑
ξi=1

Nξ∑
ξj=ξi+1

(Cov(π·ξi , π·ξj))
2 (8.4)

where Cov denotes the covariance of two vectors. Reducing this function

will also reduce the root-mean-squared correlation of the parameter matrix.

HLHS set construction with control of inter-parameter correlations is then ac-

complished using Algorithm 4. The additional correlation-reduction step here

is a descent walk in the space of all possible orientations of the permutation

matrix. Before merging the two sub-permutations, we attempt “flipping” one

of them in each parameter direction, and continue to flip until we find a local

minimum of the covariance of the merged permutation. Because this optimiza-

tion is applied at each merge step, in a many-level hierarchy it can be quite

effective.

8.3 Hierarchical Incremental Latin Hypercube Sampling

The HLHS sequences described in the previous section enable a new,

finer-grained variety of incremental sampling. Because HLHS sequences are

concatenations of HLHS subsequences, one can add samples from a larger

HLHS sequence to an initial HLHS subsequence and eventually obtain the

larger HLHS sequence. This enables the development of an automatic incre-
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Algorithm 4 Generate a reduced-correlation HLHS permutation πij with Ns

samples in Nξ parameters

1: if Ns/2 ∈ Z then
2: Generate two HLHS permutations, π(1) and π(2), each of length Ns/2 in

Nξ parameters
3: Generate a discrete random matrix C of size (Ns/2 × Nξ), such that

each independent identically distributed Cij = 0 with probability .5 and
Cij = 1 with probability 0.5. Note that the random matrix C is indexed
by the permutation π(1).

4: f ← 1
5: while f <= Nξ do
6: π ←

[
π(1)π(2)

]
(matrix concatenation)

7: π(2b) ← (Ns/2 + 1)1− π(2)

8: π(b) ←
[
π(1)π(2b)

]
9: if R(π(b)) < R(π) then

10: π(2) ← π(2b)

11: f ← 1
12: else
13: f ← f + 1
14: end if
15: end while
16: π(1) ← 2π(1) − 1 + C
17: π(2) ← 2π(2) − C
18: π ←

[
π(1)π(2)

]
(matrix concatenation)

19: else
20: Generate an LHS permutation π of length Ns in Nξ parameters
21: end if
22: return π

mental Monte Carlo method that has LHS-like performance at specific sample

sizes on a convergence plot yet also provides performance close to an LHS

method when adding moderate increments to those sample sizes.

To illustrate the benefits of such a technique, consider a specific LHS

simulation to estimate the mean of a response function S to an error tolerance
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of ε. If, after Ns samples the error is 1.1 ε, then current ILHS techniques would

require doubling the number of samples and thus doubling the computational

work to obtain lower error. However, with the incremental technique discussed

in this section the user can add Ns
4

samples to the existing Ns samples and

double check that the error tolerance is met. It likely will be, in which case the

simulation can be terminated, saving three eighths of the work as compared to

the original ILHS method. If it is not, the user can keep adding incremental

sample sets, but still be guaranteed LHS like performance in between Ns and

2 Ns samples. We now describe this technique in a generalized manner and

develop the associated theory.

8.3.1 HILHS Basics

Figure 8.2 shows a Hierarchical Latin Hypercube Sampling sequence

XNl,0 of size Ns with Nl levels. At any level i, XNl,0 can be constructed by

concatenating HLHS subsequences Xi,j, each of size Ns
2Nl−i

, where j ranges from

0 to 2Nl−i − 1. Denote the Monte Carlo estimated SQoI of Q using Xi,j as

µ(S(Xi,j)). The following properties hold:

1. ∀ j, {Xi,2j,Xi,2j+1} = Xi+1,j

2. ∀ i, j, Xi,j is a Latin Hypercube Sample set

3. Cov(µ(S(Xi,j1)), µ(S(Xk,l1))) = Cov(µ(S(Xi,j2)), µ(S(Xk,l2)))

∀ k, jn, ln such that i ≤ k < Nl, 2i−kjn ≤ ln < 2i−k(jn + 1)
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The third property is the result of symmetry, due to construction algorithms

in which there is no special ordering of HLHS subsequences within the same

HLHS supersequence. For an HLHS sequence constructed this way, the co-

variance with any subsequence depends only on the levels of each.

X5,0

X4,0

X3,3

X2,7

X3,2

X4,1

X2,6

i = 5, 25 samples each

i = 4, 24 samples each

i = 3, 23 samples each

i = 2, 22 samples each

Figure 8.2: A tree diagram of nested HLHS sequences. Each sequence is
denoted by Xij, where i is the level in the tree to which the set belongs and
j ∈ 0...25−i − 1 is an index. Shown are parts of the top 4 levels of a 5 level 32
sample design.

A Monte Carlo sample set of any size between Ns
2

and Ns can be ob-

tained by combining sequences of appropriate sizes from Figure 8.2. As an

illustrative example, consider an HLHS set X0,0 of size Ns = 210 = 1024 sam-

ples. To identify the largest possible HLHS subsequences from which a 704-

element set for Monte Carlo sampling can be constructed, write the decimal

704 in binary,

(704)10 = (1011000000)2 (8.5)
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and note that the 9th, 7th, and 6th bits are 1 - in this case we want to combine

latin hypercubes of sizes 29 (level 9), 27 (level 7) and 26 (level 6). One such

combination is {X9,0,X7,4,X6,10}, the first 704 elements of X10,0. In fact, given

the element ordering in our HLHS construction algorithms, any maximal com-

bination of subsequences can be obtained by simply taking the desired number

of elements from the head of the supersequence. This maximality property re-

mains true even when the number of elements is extended. For example, if

the above subset is extended from 704 to 768 elements, merely taking the next

54 elements from X10,0 results in the combination {X9,0,X8,2}. Hierarchical

Incremental LHS simulation (HILHS) then becomes straightforward, as out-

lined in Algorithm 5. Choice of initial sample set size N depends on a priori

Algorithm 5 Estimate the SQoI S of a QoI Q to an error tolerance (ε) using
HILHS simulation

1: Choose an initial sample set size N
2: Initial error estimate e(i,N) ←∞
3: Generate an HLHS sequence X(i) with Ni ≥ N samples
4: while ei,N > ε do
5: Evaluate Q for the first N samples
6: Use the first N samples from X(i) to estimate the SQoI S(i,N) and asso-

ciated error e(i,N)

7: if e(i,N) > ε then
8: Choose sample set growth rate α
9: N ← αN (rounding up)

10: if N > 2 Ni then
11: Ni+1 ← 2 Ni

12: Extend X(i) to an HLHS set X(i+1) with Ni+1 samples
13: i← i+ 1
14: end if
15: end if
16: end while
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error estimates. Choice of growth rate α depends on the relative error excess

e(i,N)/ε and on the expected convergence rate. Choosing N or α too large

risks over-solving the problem; choosing too small limits parallelizability by

prescribing steps where too few samples are added simultaneously.

8.3.2 The Asymptotic Distribution for HILHS

We now present theoretical results for HILHS. In particular, we give

results for the variance in HILHS simulations. The proofs of these results

follow the techniques used by Stein [95] and Qian [82], and are given in the

appendix.

Covariance Estimates We first introduce the notion of sister samples.

Definition 3. Consider an HLHS set Xn,0 with 2n total samples. Consider its

constituent 2-sample LHS sets at the base level, X1,j, where 0 ≤ j < 2n−1.

Two different samples both in the same X1,j are called level 1 sisters; i.e. the

level of sisterhood s(2j − 1, 2j) = 1. Next consider the 4-sample sets X2,k,

where 0 ≤ k < 2n−2, each formed by the union of two base LHS sets. Any

pair of samples in X2,k which are not level 1 sisters are called level 2 sisters;

e.g. s(4k − 3, 4k − 1) = 2. This proceeds analogously for higher levels, up to

the highest level, wherein every sample in Xn,0 is at least a level n sister with

every other sample.

As a concrete example, in an HLHS with 23 total samples, we will have

pairs of level three, level two, and level one sisters. The covariances between

sisters (and their response function evaluations) of any level are symmetric.

148



One possible such permutation of HLHS bins is,

[[[8 3]1 [6 1]1]2 [[2 7]1 [5 4]1]2]3

The numbers in the brackets represent the level of sisterhood of samples con-

tained in those bins. Note that samples in bins 8 and 3 are sisters only of level

1, bins 8 and 6 only of level 2 and bins 8 and 2 only of level 3. In the case

above, we will have 3 kinds of covariances.

We can derive the following estimate of the covariance of response func-

tion evaluations at two sister samples,

Lemma 8.3.1. Consider K independent uniformly distributed random vari-

ables Ξ = {Ξk}Kk=1. Consider an HLHS sample set with 2n samples, {{ξki }Kk=1}2n

i=1.

Let ξi be the ith complete sample with K components and ξki be the kth com-

ponent of that sample. Let S be the response function of interest, S : RK → R.

If E(S2) <∞, then the following estimate for the covariance between response

function evaluations for sisters of level m ∈ Zn holds.

Cov(S(ξ1), S(ξ2n−l+1)) = −
K∑
k=1

2m−1∑
j=1

(∫ 2j−1
2m

2j−2
2m

gk(ξ1) dξ1 −
∫ 2j

2m

2j−1
2m

gk(ξ1) dξ1

)2

+ O

(
K(K − 1)

22m−2

)
(8.6)

where,

gk =

∫
S(Ξ) dF−k (8.7)

is the ‘effect’ of the kth random variable.
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The proof is included in section 8.6.

The Distribution for HILHS We seek to show that the variance of

the SQoI,

µHILHS =

∑2n

i=1 S(ξi)

2n
(8.8)

is less than the corresponding variance for µSRS. First, we have the following

theorem, which governs the behavior of the covariance terms arising in the

variance expansion for HILHS.

Theorem 8.3.2. Consider K uniformly distributed random variables Ξ =

{Ξk}Kk=1. Consider an HLHS sample set with 2n samples, {{ξki }Kk=1}2n

i=1. Let ξi

be the ith complete sample with K components where ξki is the kth component

of that sample. Let S be the response function of interest, S : RK → R.

Assume further that S is bounded from above and/or from below in its domain

[0, 1]K. m ∈ Zn. If E(S2) <∞, then ∀ K ∈ N, the following property for the

covariance between response function evaluations for sisters of level holds,

Cov(S(ξ1), S(ξ2n−l+1)) ≤ 0 (8.9)

The proof is included in section 8.6. With this theorem, we immediately

have the following result,

Corollary 8.3.3. With notations as in Lemma 8.3.1, if E(S2) <∞, then,

V (µHILHS) ≤ V (S(Ξ))

2n
(8.10)
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Note that this result is true regardless of whether one is in the asymp-

totic region or not. The extension to general distributions is straightforward,

one simply replaces S(ξ) with S(F−1(Y)) where the Y are uniformly dis-

tributed [95].

8.4 Numerical Results

Numerical experiments were performed to assess the performance of the

proposed HILHS strategy and compare it with other modern Latin Hypercube

sampling algorithms. Two representative response functions were used for the

tests shown here, each with sixteen I.I.D. parameters. An exponential response

function represents the continuous response function case, and a rounded sum

function tests the discrete response function case. The standard deviations

of the input parameters were varied to assess the impact of increasing data

spread on the performance of the proposed algorithm.

Because a MC sample solution is a random variable, so is the error

in such a solution. For unbiased statistics where a Central Limit Theorem

applies [71], the error will asymptotically resemble a normal distribution with

mean zero and converging variance. Scalar interpretations of this error, such as

confidence limit widths, expected absolute value of the error, etc. will typically

be proportional to the standard deviation of the random error; e.g. O
(
N−1/2

)
in most cases and O (N−1) in the additive LHS case. Therefore, from here

on, we consider only the expected value of the absolute error. All the figures

included in this section show convergence plots for the expected absolute error

151



in the output means and standard deviations.

The first set of plots show the convergence of the output mean for the

following Monte Carlo methods,

1. The HILHS simulation method described in algorithm 5 without any

correlation reduction.

2. The standard LHS algorithm included in MATLAB

3. The standard SRS algorithm included in MATLAB

The second set of plots show the convergence of the output mean and standard

deviation for the following Monte Carlo methods,

1. The correlation-reduced HILHS simulation method described in algo-

rithm 5 with the correlation reduction applied as in algorithm 4.

2. The standard LHS algorithm

3. The correlation-reduced LHS algorithm used in the DAKOTA [1] statisti-

cal analysis package. The correlation reduction there is based on the

approach of Iman and Conover [49].

In each HILHS simulation, a special case of algorithm 5 was used, with a fixed

number of samples being added on each incremental step for each simulation.

With all six algorithms, to apply the Central Limit Theorem and deduce

convergence rates from the numerical studies, several hundred Monte Carlo
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trials were conducted for each numerical experiment. The expected absolute

value of the estimator error was calculated by averaging over all trials, and

the error convergence graphs in this section plot this error versus sample set

size on a log-log scale.

8.4.1 Multiparameter Exponential Response Function

For the first test case, we considered the exponential response function

Q(ξ) = e
∑16
i=1 ξi (8.11)

and normally-distributed input parameters

ξi ≡ N (µinput, σinput) (8.12)

Q(ξ) is then distributed lognormally; error convergence plots which follow are

based on the analytic expressions for its mean and standard deviation.

We first show comparisons of the non-correlation reduced HILHS algo-

rithm with the standard LHS generator in MATLAB and SRS. Figure 8.3 shows

convergence plots obtained for the calculations of the mean of the response

function given by Eq. (8.11) when the input distributions are given by

ξi ≡ N (1, 1) (8.13)

Five hundred Monte Carlo trials were done with each strategy to obtain error

plots. We first discuss the plot in Figure 8.3(a), where only a single dimensional

response function was used, i.e. i = 1. For this case, we expect that the
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convergence rate of the two LHS methods will be higher than that for SRS [72].

We observe that this is indeed the case and both HILHS and LHS converge

at a higher rate than SRS. We also observe that HILHS and SRS have very

similar convergence plots, i.e. for this single dimensional benchmark case the

performance of HILHS is similar to that of LHS. We next observe the plot

in Figure 8.3(b), which is for a 16-dimensional case, i.e. i = 16. We see that

the rate of convergence for HILHS, LHS, and SRS are about the same, with

both HILHS and LHS converging faster due to better constants. We also

observe that HILHS and LHS perform almost identically as they did for the

single dimensional case. Figure 8.3(c) then shows the same convergence plots

for the 64 dimensional case. Again, we see that HILHS and LHS decrease

error at about the same rate and with better constants than SRS. We thus

observe that HILHS and LHS offer the same improved error reduction over

SRS, with HILHS having the added benefit of the user being able to add

points incrementally.

We now move on to comparisons of a correlation reduced version of

HILHS with the correlation reduced ILHS method present in DAKOTA and reg-

ular LHS. Figure 8.4 shows convergence plots obtained for the mean and stan-

dard deviation for the response function given by Eq. (8.11) when the input

distributions are given by

ξi ≡ N (1, 0.5) (8.14)

Five hundred Monte Carlo trials were done with each strategy to obtain error

plots. We see that all three strategies perform virtually identically in the initial
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(b) 16 dimensional case
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(c) 64 dimesional case

Figure 8.3: Comparison of HILHS, standard LHS and SRS methods for com-
puting the mean of the response function given by Eq. (8.11) with 1, 16 and 64
dimensional versions of the distribution given by Eq. (8.13). The input mean
was 1 and standard deviation 1.

preasymptotic region of the plots, but the standard LHS and HILHS curves

branch off and enter the asymptotic regime with inferior constants than that

for DAKOTA’s ILHS method. For HILHS, the constant is only slightly inferior

to that for the ILHS method. In the standard deviation convergence plots,

the HILHS and ILHS methods perform virtually identically, both doing better

than the standard LHS method.
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(b) Convergence of the standard de-
viation

Figure 8.4: Comparison of HILHS, standard LHS and ILHS methods for com-
puting the mean and standard deviation of the 16 parameter response function
in Eq. 8.11. The input mean was 1 and standard deviation 0.5

Next, the input standard deviation is increased, correspondingly in-

creasing the difficulty of the problem,

ξi ≡ N (1, 1) (8.15)

In Figure 8.5, the HILHS and ILHS strategies perform virtually identically

for these input parameters, both outperforming standard LHS. For the stan-

dard deviation convergence, all three strategies perform nearly identically.

Convergence rates and constants are collected in Table 8.1, obtained from

log-log linear least-squares fits for all three strategies for both numerical ex-

periments.

The following observations follow from Figures 8.4(a), 8.5(a) and Ta-

ble 8.1.

1. For the σinput = 0.5 case, ILHS narrowly outperforms HILHS. Both ILHS
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Figure 8.5: Comparison of HILHS, standard LHS and ILHS methods for com-
puting the mean and standard deviation of the 16 parameter response function
in Eq. 8.11. The input mean was 1 and standard deviation 1.

Table 8.1: Rates and Constants of convergence for LHS simulations for re-
sponse function Eq. (8.11) using input parameters given by Eq. (8.14) and
Eq. (8.15)

LHS HILHS ILHS
σinput Rate Constant Rate Constant Rate Constant
0.5 0.5577 0.6674 0.5918 0.3720 0.5937 0.3027
1.0 0.5321 0.5613 0.5395 0.3969 0.5344 0.3278

and HILHS outperform plain LHS sampling by a significant margin. The

correlation reduction improves the constant of convergence for HILHS

and ILHS results.

2. For the σinput = 1 case, all three methods give similar rates of conver-

gence. The ILHS and HILHS methods give a very similar constant,

whereas plain LHS results in a substantially larger constant.
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These results indicate that the proposed HILHS correlation-reduction strategy

and the correlation-reduced ILHS strategy used in DAKOTA performed virtually

identically for a truly non-additive nonlinear function. It should be noted

that most engineering applications for uncertainty quantification and response

functions used in other areas of science tend to be non-additive and highly

nonlinear. The results for the exponential response function indicate that

the HILHS method can perform at least as well as the existing correlation

reduced LHS methods in the literature. However, the advantage of HILHS over

previous ILHS strategies is its truly incremental nature, which is emphasized

in the next set of experiments.

Figure 8.6 shows convergence plots for the same experimental setup as

Figure 8.5, but this time with the incremental HILHS points shown, i.e. points

in between the true LHS steps for the HILHS strategy. We observe that the

incremental steps consistently decrease the error for both the mean and the

standard deviation in the asymptotic range. Also, the incremental steps allow

the termination of an incremental Monte Carlo algorithm before the ILHS and

standard LHS strategies would allow.

For example, consider the last five points on the blue HILHS conver-

gence curve and last two points on the purple ILHS curve. If the desired error

tolerance was in between the errors at the last two points on the ILHS curve,

then a simulation using the ILHS strategy could only be terminated at 4096

samples. But, with the HILHS strategy, the error tolerance could be reached

with 3574, 3072 or 2560 samples, a 10%-40% savings in computational time
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Figure 8.6: Comparison of HILHS and ILHS methods for computing the mean
and standard deviation of the 16 parameter response function in Eq. 8.11. The
input mean was 1 and standard deviation 1.

Numerical experiments were also conducted to compare the correla-

tion reduced HILHS and ILHS methods with Quasi Monte Carlo methods, in

particular sample generation using Sobol sequences [92]. In our experiments,

the Sobol sequences we generated using MATLAB’s sobolset function. Figure

8.7 shows the expected error for computing the mean of the response function

given by Eq. (8.11), where the input means and standard deviations were both

1. We see that the correlation reduced HILHS and ILHS methods outperform

the Sobol method. At lower sample counts, the Sobol method is bettered

by standard LHS, however it approaches LHS accuracy as the sample size is

increased.
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Figure 8.7: Comparison of HILHS, ILHS and Sobol methods for computing
the mean of the 16 parameter response function in Eq. 8.11. The input mean
was 1 and standard deviation 1.

8.4.2 Multiparameter Rounded Sum Response Function

For the second test case, we used the rounded sum response function

Q(ξ) = round(
16∑
i=1

ξi) (8.16)

and normally-distributed input parameters

ξi ≡ N (µinput, σinput) (8.17)

The normcdf function in MATLAB was used to obtain the means and standard

deviations of Q(ξ) to high accuracy through direct numerical integration of an

equivalent one-parameter benchmark problem. These values were then used

as “truth values” to construct the mean and standard deviation convergence

plots.

Just as with the exponential response function, we use this benchmark

to compare the new HILHS sample generation strategy with the standard
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LHS method and the correlation-reduced ILHS method. Figure 8.8 shows

convergence plots obtained by using the three strategies for computing the

mean and standard deviation for the response function in Eq. 8.16 when the

input distributions are given by,

ξi ≡ N (1, 0.5) (8.18)

Five hundred Monte Carlo trials were done with each strategy to obtain the

plots. All three strategies result in nearly identical convergence plots reflecting

the nonlinear and nonadditive nature of the response function. The standard

LHS method converges with a slightly inferior constant as compared to the

HILHS and ILHS methods.
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Figure 8.8: Comparison of HILHS, standard LHS and ILHS methods for com-
puting the mean and standard deviation of the 16 parameter response function
in Eq. (8.16). The input mean was 1 and standard deviation 0.5.

Next, we repeat the above procedure but use a different input standard
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deviation, as we did with the exponential response function.

ξi ≡ N (1, 1) (8.19)

The results are shown in Figure 8.9. Again, we observe virtually identical

plots for the three strategies. The standard deviation convergence plots show

that the HILHS and ILHS methods perform about the same while the LHS

strategy converges slower. Recovered convergence rates and constants for the
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Figure 8.9: Comparison of HILHS, standard LHS and ILHS methods for com-
puting the mean and standard deviation of the 16 parameter response function
in Eq. (8.16). The input mean was 1 and standard deviation 1.

discrete response function are summarized in Table 8.2. These results indicate

that the performance of the correlation reduced ILHS strategy in DAKOTA, the

HILHS strategy and the plain LHS method is roughly the same for the rounded

sum function. The correlation reduction appears to have no substantial effect

on the convergence results for this response function. However, the HILHS

strategy is again shown to be a competitive one for this response function.
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Table 8.2: Rates and Constants of convergence for LHS simulations for re-
sponse function Eq. (8.16) using input parameters given by Eq. (8.18) and
Eq. (8.19)

LHS HILHS ILHS
σinput Rate Constant Rate Constant Rate Constant
0.5 0.5216 0.2637 0.5471 0.3009 0.4863 0.2096
1.0 0.5250 0.2542 0.5005 0.2458 0.5042 0.2414

Moving on, Figure 8.10 shows convergence plots for the same exper-

imental setup as Figure 8.9, but this time with the incremental points, i.e.

points between true LHS steps shown for the HILHS strategy. Observe that

the incremental steps consistently decrease the error for both the mean and

the standard deviation in the asymptotic range. Again, the incremental steps

allow the termination of an incremental Monte Carlo algorithm before the

ILHS and standard LHS strategies would allow. For this response function,

the HILHS strategy essentially interpolates the ILHS points. The behavior of

the standard deviation convergence plot Figure 8.10(b) merits some discussion.

We see a change in the nature of the HILHS plot around the 512 sample mark,

with the error reduction per sample addition decreasing substantially and then

returning close to the pre 512 sample mark further along. It is unclear what

caused this behavior at this point. But we note that throughout this part of

the curve, the error is consistently reduced by the HILHS strategy and offers

similar benefits in computational costs as those seen for the mean, but with a

smaller magnitude.

163



10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

 

 
HILHS
ILHS

(a) Convergence of the mean

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

 

 
HILHS
ILHS

(b) Convergence of the standard de-
viation

Figure 8.10: Comparison of HILHS and ILHS methods for computing the mean
and standard deviation of the 16 parameter response function in Eq. (8.11).
The input mean and standard deviation were both 1.

8.5 Conclusions

We have presented a new Hierarchical Incremental Latin Hypercube

Sampling Monte Carlo method that allows the addition of an arbitrary num-

ber of sample points to an existing LHS sample set during a simulation. By

generating the Latin Hypercube Samples in a hierarchical, self-similar manner,

the addition of sample sets to an existing Latin Hypercube can be performed

with reliable expected error reduction. We have stated and proven relevant

theorems to show that the HILHS technique guarantees consistent error re-

duction and has a lower variance than random sampling. Relevant numerical

experiments and their results have been shown. The tests confirm that HILHS

provides performance on par with existing LHS schemes while maintaining

consistent error reduction on each incremental step. Thus, it appears that

the HILHS method is well-suited for application to various estimation prob-
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lems. Our continuing work is turning now to the application of HILHS in new

Monte Carlo integration techniques such as Local Sensitivity Derivative En-

hanced Monte Carlo (LSDEMC) [98] and Finite Element/Monte Carlo error

redistribution.

Stochastic analysis toolkits like DAKOTA can benefit from the addition

of such incremental Latin Hypercube Sampling methods, since they serve the

high performance, large scale computing community where this method can

result in substantial functionality and performance gains. The application of

such methods to large scale computational problems that result from Uncer-

tainty Quantification studies from hypersonic flows, coupled electroosmotic

flows and other engineering problems will be another focus of our continuing

work.

8.6 Proofs

Consider K independently distributed random variables Ξ = {Ξk}Kk=1.

Assume that their distributions are uniform and scaled to be between (0, 1).

Relaxing these assumptions to obtain results for the general case is straight-

forward [95]. Consider an HLHS sample set with 2n samples, {{ξki }Kk=1}2n

i=1.

From here on, we understand the notation ξi to mean the ith complete sample

with K components and ξki to mean the kth component of that sample. We

seek to show that the variance of the SQoI,

µHILHS =

∑2n

i=1 S(ξi)

2n
(8.20)
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is less than the corresponding variance for µSRS. Following Stein [95] and Qian

[82], the proof consists of three major steps:

1. Decompose the overall variance into variance and covariance terms

2. Compute the covariance terms:

(a) Obtain the discrete pdfs for choosing pairs of HILHS bins at each

level

(b) Use these to obtain continuous joint density functions of sister sam-

ples at each level

(c) Estimate the covariance for pairs of sisters of at each level

3. Using results from 2c in 1, estimate the overall variance

8.6.1 Variance Decomposition

Consider the variance of Eq. (8.20),

V (µHILHS) = V

(∑2n

i=1 S(ξi)

2n

)

=
V (S(Ξ))

2n
+

1

22n

2n∑
i=1

2n∑
j=1,j 6=i

Cov(S(ξi), S(ξj)) (8.21)

There are a total of 2n · (2n − 1) different covariance terms. Each ξi sample

generates 2n − 1 covariance terms total, one for each other ξj. Because of the

symmetry of HLHS construction, the terms for each ξi can be rearranged by

level, into groups of 2m−1 equivalent terms for the members ξj of each set of
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its level m sisters.
2n∑

j=1,j 6=i

Cov(S(ξi), S(ξj)) (8.22)

=
n∑

m=1

2m−1Cov(S(ξ1), S(ξ2m)) (8.23)

8.6.2 Proof of Lemma 8.3.1: Covariance Estimates for each level

By definition the covariance can be computed as,

Cov(X, Y ) ≡ E[XY ]− E[X]E[Y ] (8.24)

where X and Y are random variables. The covariance for a pair of sisters of

level m is given by,

Cov(S(ξ1), S(ξ2n−l+1)) = E[S(ξ1)S(ξ2n−l+1)]− E[S(ξ1)]E[S(ξ2n−l+1)] (8.25)

To compute this covariance, we need the joint density function of (ξ1, ξ2n−l+1).

We consider the single variable case and obtain the joint density for (ξ1, ξ2n−l+1).

pr(ξ1 = z1, ξ2n−l+1 = z2) = pr(ξ1, ξ2n−l+1) 0 ≤ z1, z2 ≤ 1 (8.26)

The generalization to arbitrary dimensions is straightforward.

We begin with definitions of convenient notation, for the “parents” of

a sample index or a bin index:

Definition 4. Given i ∈ Z2n , a sample index in an HLHS set Xn,k of size 2n,

the parent of i is P (i) ∈ Z2n−1 , a corresponding sample index with respect to

one of the HLHS subsets Xn−1,2k,Xn−1,2k+1, which is given by

P (i) = ((i− 1) mod n) + 1 (8.27)
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Parents of parents of sample indices, e.g. P 2(i) ≡ ((P (i)−1) mod (n/2))+

1, are defined naturally up to P n(i) = 1.

Definition 5. Given a bin index a ∈ Z2n , the parent of a, p(a) ∈ Z2n−1 , is

defined as

p(a) =

⌈
a

2

⌉
=

{
a
2

if a is even;
a+1

2
if a is odd.

We can further consider a parent p(p(a)) of p(a), and so on for any level

l ≤ n− 1,

pl(a) =

⌈
a

2l

⌉
(8.28)

A lower level of sisterhood corresponds to stricter conditions on common

parentage. The requirement that HLHS subsets also be valid LHS sets im-

plies that samples from the same HLHS subset cannot fall within the same bin

at the level of that subset.

Lemma 8.6.1. Consider two samples, from an HLHS permutation of size 2n,

with distinct indices i and j, whose values are located in HLHS bins π(i) = a

and π(j) = b. If the samples are sisters of level s(i, j) = m, then pl(a) 6=

pl(b) ∀ l ≤ n−m.

Discrete probability distribution functions for bin pairs

Theorem 8.6.2. Let πn denote an HLHS permutation of Z2n. Let i and j be
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distinct sisters of level m ≤ n; s(i, j) = m. Given bins a, b ∈ Z2n, we have

pr(πn(i) = a, πn(j) = b) =


0 if pn−m(a) = pn−m(b)

2−2n+1 if pn−m(a) 6= pn−m(b),

pn−m+1(a) = pn−m+1(b)

2−2n if pn−m+1(a) 6= pn−m+1(b)

(8.29)

Proof. In the m = n case, i and j come from different HILHS subsets of

size 2n−1. In the non-correlation-reduced algorithm, their parent bin positions

πn−1(P (i)) = p(a) and πn−1(P (j)) = p(b) in these subsets are independent.

The child bin probabilities pr(πn(i) = a) and pr(πn(j) = b) are determined by

parent bin positions and by either one or two entries (depending on whether

p(a) == p(b)) in the associated “coin flip” matrix.

pr(πn(i) = a, πn(j) = b) = (8.30)

pr(πn−1(P (i)) = p(a)) · pr(πn−1(P (j)) = p(b)) ·


1/4 if p(a) 6= p(b),

1/2 if p(a) = p(b), a 6= b,

0 if a = b

(8.31)

Each probability of the form pr(πn−1(P (i)) = p(a)) is simply 21−n, because

each of the 2n−1 possibilities for each parent bin is equally likely.

For the m < n cases, i and j belong to cardinality 2m HLHS subsets of

the 2n HLHS parent set, and coin flips from the subsequent n −m recursive

HLHS construction steps are independent.

pr(πn(i) = a, πn(j) = b : s(i, j) = m)

= pr(πn−m(Pm(i)) = pm(a), πn−m(Pm(j))
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= pm(b) : s(Pm(i), Pm(j)) = 0) · 1

22(n−m)
(8.32)

Combining these results gives the final formula.

Continuous Joint Density functions For convenience of notation,

indicator function δn(x1, x2) will express whether sample values x1 and x2 fall

in the same LHS bin of size 2−n, and γl(a, b) will express whether bin indices

a and b share the same level-l parent P l(a)
?
= P l(b):

δn(x1, x2) =

{
1 d2nx1e = d2nx2e
0 otherwise

(8.33)

γl(a, b) =

1

⌈
a
2l

⌉
=

⌈
b
2l

⌉
0 otherwise

(8.34)

Now we can write the continuous pdfs for level m sisters as

pr(ξ1,ξ2n−l+1) = pr(π(1) = d2nξ1e, π(2m) = d2nξ2n−l+1e) · (2n)2

=

(
1− γn−m+1(d2nξ1e, d2nξ2n−l+1e)

22n
+
γn−m+1(d2nξ1e, d2nξ2n−l+1e)

22n−1

)
· (1− γn−m(d2nξ1e, d2nξ2n−l+1e)) · (2n)2

=(1− γn−m+1(d2nξ1e, d2nξ2n−l+1e) + 2γn−m+1(d2nξ1e, d2nξ2n−l+1e))

· (1− γn−m(d2nξ1e, d2nξ2n−l+1e))

=(1 + γn−m+1(d2nξ1e, d2nξ2n−l+1e))(1− γn−m(d2nξ1e, d2nξ2n−l+1e))
(8.35)

We can further compute,

pr(ξ1, ξ2n−l+1)

= (1 + γn−m+1(d2nξ1e, d2nξ2n−l+1e))(1− γn−m(d2nξ1e, d2nξ2n−l+1e))
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= 1− γn−m(d2nξ1e, d2nξ2n−l+1e) + γn−m+1(d2nξ1e, d2nξ2n−l+1e) ...

... − γn−m+1(d2nξ1e, d2nξ2n−l+1e)γn−m(d2nξ1e, d2nξ2n−l+1e)

= 1− δm(ξ1, ξ2n−l+1) + δm−1(ξ1, ξ2n−l+1)− δm−1(ξ1, ξ2n−l+1)δm(ξ1, ξ2n−l+1)

= 1− δm(ξ1, ξ2n−l+1) + δm−1(ξ1, ξ2n−l+1)− δm(ξ1, ξ2n−l+1)

= 1 + δm−1(ξ1, ξ2n−l+1)− 2δm(ξ1, ξ2n−l+1) (8.36)

For the K variable case with no HLHS correlation reduction applied, we have,

pr(ξ1, ξ2n−l+1) =
K∏
k=1

(1 + δm−1(ξk1 , ξ
k
2m)− 2 δm(ξk1 , ξ

k
2m))

=
K∏
k=1

(1 + δkm−1 − 2 δkm) (8.37)

In the m = 1 case, we have just one HLHS set with two samples, hence

we simply obtain a regular LHS sample set. Also, in this case n = l = 1.

Therefore, Eq. (8.37) becomes,

pr(ξ1, ξ2) =
K∏
k=1

(1 + δk0 − 2 δk1) =
K∏
k=1

(2− 2 δk1) = 2K
K∏
k=1

(1− δk1)

This matches exactly the expression given by Stein for regular LHS design

with two samples [95].

Covariance Estimate for a single level

Cov(S(ξ1), S(ξ2n−l+1)) =

∫
S(ξ1) S(ξ2n−l+1)

K∏
k=1

(1 + δkm−1 − 2 δkm)

=

∫
S(ξ1) S(ξ2n−l+1)

(
1 +

K∑
k=1

(δkm−1 − 2 δkm)

)
+ O

(
K(K − 1)

22m−2

)
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= (E(S))2 +
K∑
k=1

∫
S(ξ1) S(ξ2n−l+1) δkm−1 − 2

K∑
k=1

∫
S(ξ1) S(ξ2n−l+1) δkm

+ O

(
K(K − 1)

22m−2

)
(8.38)

Now following [95] and using the notation in Eq. (8.6), we have∫
S(ξ1) S(ξ2n−l+1) δkm dξ1 dξ2n−l+1

=

∫
gk(ξ1) gk(ξ2) δkm dξ1 dξ2

=
2m∑
j=1

(∫ j
2m

j−1
2m

gk(ξ1) dξ1

)2

(8.39)

Substitution and simplification then leads to an estimate for the covariance,

Cov(S(ξ1), S(ξ2n−l+1)) = (E(S))2 +
K∑
k=1

∫
S(ξ1) S(ξ2n−l+1) δkm−1

− 2
K∑
k=1

∫
S(ξ1) S(ξ2n−l+1) δkm + O

(
K(K − 1)

22m−2

)
− (E(S))2

=
K∑
k=1

∫
S(ξ1) S(ξ2n−l+1) δkm−1 − 2

K∑
k=1

∫
S(ξ1) S(ξ2n−l+1) δkm

+ O

(
K(K − 1)

22m−2

)
=

K∑
k=1

2m−1∑
j=1

(∫ j

2m−1

j−1

2m−1

gk(ξ1) dξ1

)2

− 2
K∑
k=1

2m∑
j=1

(∫ j
2m

j−1
2m

gk(ξ1)

)2

... (8.40)

... + O

(
K(K − 1)

22m−2

)
=

K∑
k=1

2m−1∑
j=1

(∫ j

2m−1

j−1

2m−1

gk(ξ1) dξ1

)2

− 2
2m∑
j=1

(∫ j
2m

j−1
2m

gk(ξ1) dξ1

)2

+ O

(
K(K − 1)

22m−2

)
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=
K∑
k=1

2m−1∑
j=1

(∫ 2j−1
2m

2j−2
2m

gk(ξ1) dξ1 +

∫ 2j
2m

2j−1
2m

gk(ξ1) dξ1

)2

− 2

[(∫ 2j−1
2m

2j−2
2m

gk(ξ1) dξ1

)2

+

(∫ 2j
2m

2j−1
2m

gk(ξ1) dξ1)2

)2]
+ O

(
K(K − 1)

22m−2

)

= −
K∑
k=1

2m−1∑
j=1

(∫ 2j−1
2m

2j−2
2m

gk(ξ1) dξ1 −
∫ 2j

2m

2j−1
2m

gk(ξ1) dξ1

)2

+ O

(
K(K − 1)

22m−2

)
(8.41)

8.6.3 Proof of Theorem 8.3.2: Behavior of Covariance Terms

We now proceed to prove Theorem 8.3.2 using mathematical induction.

We start with the single variable case, i.e. K = 1. In this case the pdf for for

sisters of level m is given by,

pr(ξ1, ξ2n−l+1) = 1 + δ1
m−1(ξ1, ξ2n−l+1)− 2δ1

m(ξ1, ξ2n−l+1) (8.42)

The covariance is then given by,

Cov(S(ξ1), S(ξ2n−l+1))

=

∫
S(ξ1)S(ξ2n−l+1) (1 + δ1

m−1(ξ1, ξ2n−l+1)− 2δ1
m(ξ1, ξ2n−l+1))− (E(S))2

= (E(S))2 +

∫
S(ξ1)S(ξ2n−l+1)δ1

m−1 − 2

∫
S(ξ1)S(ξ2n−l+1)δ1

m − (E(S))2

= −
2m−1∑
j=1

(∫ 2j−1
2m

2j−2
2m

S(ξ) dξ −
∫ 2j

2m

2j−1
2m

S(ξ) dξ

)2

≤ 0 (Using Eq. (8.40)) (8.43)

Thus the result holds for K = 1.

Begin with the inductive assumption that the result is true for K = L.
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The pdf for sisters of level m is then given by,

pr(ξ1, ξ2n−l+1) =
L∏
k=1

(1 + δkm−1(ξk1 , ξ
k
2m)− 2δkm(ξk1 , ξ

k
2m)) (8.44)

This pdf can also be written as,

pr(ξ1, ξ2n−l+1) = 1 +RL(ξ1, ξ2n−l+1) (8.45)

whereRL(ξ1, ξ2n−l+1) are the remaining terms obtained on expanding the prod-

uct given by Eq. 8.44. With this notation the covariance for the K = L case

can be given as,

Cov(S(ξ1), S(ξ2n−l+1))

=

∫
S(ξ1)S(ξ2n−l+1) (1 +RL(ξ1, ξ2n−l+1))− (E(S))2

= (E(S))2 +

∫
S(ξ1)S(ξ2n−l+1)RL(ξ1, ξ2n−l+1)− (E(S))2

=

∫
S(ξ1)S(ξ2n−l+1)RL(ξ1, ξ2n−l+1) ≤ 0 by the inductive hypothesis

(8.46)

Then completing the induction requires proving the result for the case

K = L+ 1. The pdf for sisters of level m is,

pr(ξ1, ξ2n−l+1) =
L+1∏
k=1

(1 + δkm−1(ξk1 , ξ
k
2m)− 2δkm(ξk1 , ξ

k
2m))

= (1 + δL+1
m−1(ξL+1

1 , ξL+1
2m )− 2δL+1

m (ξL+1
1 , ξL+1

2m ))
L∏
k=1

(1 + δkm−1 − 2δkm)

= (1 +RL)(1 + δL+1
m−1 − 2δL+1

m ) (8.47)

And so the covariance for the K = L+ 1 case can be expressed as,

Cov(S(ξ1), S(ξ2n−l+1))
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=

∫
S(ξ1)S(ξ2n−l+1) (1 +RL)(1 + δL+1

m−1 − 2δL+1
m )− (E(S))2

=

∫
S(ξ1)S(ξ2n−l+1) (1 +RL)− (E(S))2︸ ︷︷ ︸

I1

+

∫
S(ξ1)S(ξ2n−l+1) (1 +RL) (δL+1

m−1 − 2δL+1
m )︸ ︷︷ ︸

I2

(8.48)

Integrating out the effect of the L + 1st random variable in the term I1 and

leaving it with g−(L+1)({ξk1}Lk=1) and g−(L+1)({ξk2m}Lk=1) casts it in the form of

the inductive hypothesis. Therefore I1 < 0.

These covariances are unaffected by adding or subtracting a constant

function to S. Thus if S is not uniformly positive or uniformly negative, we can

consider without loss of generality an equivalent one-signed response function

created by either subtracting the supremum from an S which is bounded from

above or adding the infimum to an S which is bounded from below. In these

cases S(ξ1)S(ξ2n−l+1) will be uniformly non-negative.

Considering I2, note that the function 1+RL is also non-negative. Also,

1 + RL ≤ 2L. Using the one-signedness of S and the boundedness of 1 + RL,

the complete integral I2 can be written as,∫ 1

0

∫ 1

0

[
L∏
k=1

∫ 1

0

∫ 1

0

S(ξL+1
1 , {ξk1}Lk=1})S(ξL+1

2m , {ξk2m}Lk=1)(1 +RL) dξk1dξ
k
2m

]
...

.... (δL+1
m−1 − 2δL+1

m ) dξL+1
2m dξL+1

1 (8.49)

Using the mean value theorem we have a non negative constant γ ≤ 2L such
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that,

I2 =

∫ 1

0

∫ 1

0

γ

[
L∏
k=1

∫ 1

0

∫ 1

0

S(ξL+1
1 , {ξk1}Lk=1})S(ξL+1

2m , {ξk2m}Lk=1) dξk1dξ
k
2m

]
...

.... (δL+1
m−1 − 2δL+1

m ) dξL+1
2m dξL+1

1

= γ

∫ 1

0

∫ 1

0

gL+1(ξL+1
1 ) gL+1(ξL+1

2m )(δL+1
m−1 − 2δL+1

m ) dξL+1
2m dξL+1

1︸ ︷︷ ︸
≤0 from the single variable (K = 1) case

(8.50)

Here, gL+1(ξL+1
1 ) and gL+1(ξL+1

2m ) are the remainders after integrating out the

effect of the first L random variables. Thus I1 + I2 ≤ 0 and the inductive

hypothesis is true for the case K = L + 1. By mathematical induction, the

theorem holds for all K.

8.6.4 Corollary 8.3.3 and Notes on the overall Variance

We can use the result of Theorem 8.3.2 in Eq. (8.21) and Eq. (8.22) to

obtain,

V (µHILHS) ≤ V (S(Ξ))

2n
(8.51)

Further, on substituting Eq. (8.40) in Eq. (8.21) and Eq. (8.22) we get,

V (µHILHS) =
V (S(Ξ))

2n
...

... +
1

22n

2n∑
i=1

n∑
m=1

2m−1

[ K∑
k=1

2m−1∑
j=1

−
(∫ 2j−1

2m

2j−2
2m

gk(ξ1) dξ1 −
∫ 2j

2m

2j−1
2m

gk(ξ1) dξ1

)2

...

... + O

(
K(K − 1)

22m−2

)]
=
V (S(Ξ))

2n
+

1

2n

n∑
m=1

2m−1

[ K∑
k=1

2m−1∑
j=1

−
(∫ 2j−1

2m

2j−2
2m

gk(ξ1) dξ1 −
∫ 2j

2m

2j−1
2m

gk(ξ1) dξ1

)2
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+ O

(
K(K − 1)

22m−2

)]
(8.52)

By Theorem 8.3.2 we know that all the covariance terms are non-positive. We

see that the covariance terms, if not zero, are atleast of order o( 1
2n

). If the

terms in the square brackets are of O
(

1
22m−2

)
, then the covariance terms will

be of order O
(

1
2n

)
.
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Chapter 9

Conclusions and Future Work

This dissertation has addressed two major problems. The first was the

analysis of electroosmotic flow (EOF) models that utlize the Helmholtz slip

boundary condition, especially in the context of the associated adjoint prob-

lem. A penalty based variational formulation of such models was developed.

It was shown that the adjoint problem for such a formulation is well-posed

and that this formulation is adjoint-consistent. Adjoint-based goal-oriented

mesh refinement and sensitivity analysis methods were added to the C++ Fi-

nite Element software library libMesh. These methods were then used for goal

oriented mesh refinement for relevant model problems and EOF in straight and

T-channel geometries. It was demonstrated that the adjoint methods can sub-

stantially improve QoI convergence and accelerate sensitivity analysis. It was

also shown that the sensitivity derivative can be useful in devising more accu-

rate estimators for the calculation of normal fluxes, when a penalty method is

used for enforcing boundary constraints.

The second problem addressed was the development of an accelerated

Monte Carlo method, called Local Sensitivity Derivative Enhanced Monte

Carlo (LSDEMC). The new method uses local derivative information to build
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surrogates for inexpensive Monte Carlo integration. In conjuction with adjoint

sensitivity analysis, LSDEMC can offer superior Monte Carlo convergence with

virtually no extra cost for the evaluation of sensitivity derivatives, especially for

Finite Element models with a large number of parameters. This new method

was used for UQ in a model Poisson problem, in conjuction with goal ori-

ented mesh refinement and adjoint sensitivity derivative evaluation. Finally,

a new Latin Hypercube Sampling method was introduced. The new method

constructs Latin Hypercube designs with a hierarchical tree based structure.

Such a construction enables the application of LHS integration in a less restric-

tive incremental setting than previous incremental LHS implementations. This

is especially important for the use of LHS based UQ in large scale engineering

systems, where its use can lead to substantial savings in overall computational

costs.

Various directions for future work present themselves. An important

question is the asymptotic distribution of LSDEMC based statistical estima-

tors, in the general case where the ratio of the number of true samples to the

number of representations is not held constant. Such an analysis can provide

us with better variance estimates for the LSDEMC estimator and quantify the

dependance of LSDEMC’s rate of convergence on dimension size. To complete

such an analysis, some theoretical developments will be needed in the field of

stochastic geometry, namely, a central limit theorem for weighted moments of

Voronoi cells generated by random point processes. For the HLHS designs,

additional correlation reduction techniques can be investigated for further im-
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provement in the method’s convergence properties.

While adjoint-based error analysis can help us improve convergence

and quantify the reliability of numerical simulations, more work is needed to

develop techniques for actual model validation, with the eventual goal that the

reliability of the model in representing reality itself be quantifiable. The slip

EOF models considered in this dissertation offer a rich set of possibilities in

this regard. In particular, the notion of model adaptivity, with the complete,

more expensive EOF model used in corner regions of a device geometry and the

inexpensive slip model used in the straight sections, presents a challenge for

adaptive modeling methods. Finally, it is hoped that the addition of extensive

adjoint analysis support to the libMesh library will enable the application of

such methods to a broad spectrum of problems in Finite Element analysis.
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