
Copyright

by

Christopher John Rossbach

2009

The Dissertation Committee for Christopher John Rossbach

certifies that this is the approved version of the following dissertation:

Hardware Transactional Memory: A Systems

Perspective

Committee:

Emmett Witchel, Supervisor

Michael Dahlin

Doug Burger

Yale Patt

Mark Hill

Hardware Transactional Memory: A Systems

Perspective

by

Christopher John Rossbach, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2009

To Suzannne, who will undoubtedly find this a delightful read...

Acknowledgments

My gratitude to the Operating Systems and Architecture group at UT cannot be

overstated: research of this kind can only be conducted when there is a synergy of

great minds working together. In particular, thanks to Hany Ramadan, Don Porter

and Owen Hofmann for bringing their great minds to that synergy. My advisor

Emmett Witchel deserves acknowledgement for a great many more things than will

fit on this page. In light of that, and in keeping with the spirit of “less-is-more”, I’ll

leave it at this: thank you, Emmett.

Christopher John Rossbach

The University of Texas at Austin

August 2009

v

Hardware Transactional Memory: A Systems

Perspective

Publication No.

Christopher John Rossbach, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Emmett Witchel

The increasing ubiquity of chip multiprocessor machines has made the need

for accessible approaches to parallel programming all the more urgent. The current

state of the art, based on threads and locks, requires the programmer to use mu-

tual exclusion to protect shared resources, enforce invariants, and maintain consis-

tency constraints. Despite decades of research effort, this approach remains fraught

with difficulty. Lock-based programming is complex and error-prone, largely due

to well-known problems such as deadlock, priority inversion, and poor composabil-

ity. Tradeoffs between performance and complexity for locks remain unnattractive.

Coarse-grain locking is simple but introduces artificial sharing, needless serializa-

vi

tion, and yields poor performance. Fine-grain locking can address these issues, but

at a significant cost in complexity and maintainability.

Transactional memory has emerged as a technology with the potential to

address this need for better parallel programming tools. Transactions provide the

abstraction of isolated, atomic execution of critical sections. The programmer spec-

ifies regions of code which access shared data, and the system is responsiblefor

executing that code in a way that is isolated and atomic. The programmer need not

reason about locks and threads. Transactional memory removes many of the pit-

falls of locking: transactions are livelock- and deadlock-free and may be composed

freely. Hardware transactional memory, which is the focus of this thesis, provides

an efficient implementation of the TM abstraction.

This thesis explores several key aspects of supporting hardware transactional

memory (HTM): operating systems support and integration, architectural, design,

and implementation considerations, and programmer-transparent techniques to im-

prove HTM performance in the presence of contention. Using and supporting HTM

in an OS requires innovation in both the OS and the architecture, but enables prac-

tical approaches and solutions to some long-standing OS problems. Innovations

in transactional cache coherence protocols enable HTM support in the presence of

multi-level cache hierarchies, rich HTM semantics such as suspend/resume and mul-

tiple transactions per thread context, and can provide the building blocks for sup-

port of flexible contention management policies without the need to trap to software

handlers. We demonstrate a programmer-transparent hardware technique for using

dependences between transactions to commit conflicting transactions, and suggest

techniques to allow conflicting transactions to avoid performance-sapping restarts

without using heuristics such as backoff. Both mechanisms yield better performance

for workloads that have significant write-sharing.

Finally, in the context of the MetaTM HTM model, this thesis contributes a

vii

high-fidelity cross-design comparison of representative proposals from the literature:

the result is a comprehensive exploration of the HTM design space that compares

the behavior of models of MetaTM [70,75], LogTM [58,94], and Sun’s Rock [22].

viii

Contents

Acknowledgments v

Abstract vi

List of Tables xiv

List of Figures xvi

Chapter 1 Introduction 1

1.1 Operating Systems and HTM . 3

1.2 Avoiding and managing contention 5

1.2.1 Dependence Aware HTM . 6

1.2.2 Notifying transactions and transaction annotation 7

1.3 HTM design space . 8

1.4 A note on the relation of this thesis to published work, and contribu-

tions of others . 9

Chapter 2 Background 11

2.1 Locks . 12

2.2 Transactions . 14

2.3 TM Implementation . 15

2.4 Hardware Transactional Memory . 16

ix

2.4.1 Version management in hardware 16

2.4.2 Conflict detection in hardware 17

2.4.3 Contention management in hardware 19

2.4.4 Virtualization . 20

Chapter 3 TxLinux and MetaTM 21

3.1 MetaTM . 21

3.1.1 Contention management, Backoff policies, and stall-on-conflict 24

3.2 TxLinux . 26

3.2.1 Cooperation between locks and transactions 27

3.2.2 Using cxspinlocks in TxLinux 28

3.3 Evaluation . 32

3.3.1 Experimental setup . 33

3.3.2 Synchronization performance 34

3.3.3 Concurrency in TxLinux . 38

3.3.4 Cxspinlock performance and use 40

3.3.5 Contention management using OS priority 42

3.3.6 Transaction-aware scheduling 44

3.4 Conclusion . 46

Chapter 4 Dependence Aware Transactional Memory 48

4.1 Introduction . 48

4.2 Increasing concurrency with DATM 50

4.2.1 Shared counter example . 50

4.2.2 Accepting more interleavings 52

4.2.3 Comparison with other conflict resolution strategies 53

4.3 Dependence-aware model . 54

4.3.1 Dependence types . 54

x

4.3.2 Multiple dependences . 55

4.3.3 Cyclic dependences . 56

4.3.4 Disabling dependence tracking: no-dep mode 57

4.3.5 Exceptions and inconsistent data 57

4.3.6 Cascading aborts . 58

4.4 Hardware design . 59

4.4.1 Transaction status word . 60

4.4.2 FRMSI coherence protocol 61

4.4.3 DATM ordering requirements 64

4.4.4 Performance optimization . 69

4.5 DATM Evaluation . 72

4.5.1 Prototype model . 72

4.5.2 Experimental results . 74

4.5.3 Hardware constraints . 76

4.5.4 Contention management . 77

4.5.5 Correctness of FRMSI . 78

4.6 Conclusion . 81

Chapter 5 Avoiding and managing contention with TagTM 82

5.1 Introduction . 82

5.2 Transaction Annotation . 84

5.2.1 Limitations of software conflict handlers 85

5.2.2 TagTM: Implementing CM with annotation 87

5.3 Avoiding conflicts with Notifying Transactions 88

5.4 Design . 90

5.4.1 XMESI . 90

5.4.2 Micro-architecture and ISA extensions 93

5.4.3 Transaction Annotation . 95

xi

5.4.4 Implementing notifying transactions using XMESI 96

5.5 Evaluation . 98

5.5.1 Evaluating notifying transactions 98

5.5.2 Notifying transactions vs Stall-on-conflict 108

5.5.3 Evaluating Transaction Annotation 109

5.6 XMESI implementation details . 112

5.6.1 Reducing latency for newly committed data 113

5.6.2 Interaction with Pause/Resume 114

5.6.3 Overflow and Prefetch . 115

5.6.4 Detailed Implementation and State Space 117

5.6.5 Support for notification in L2 caches 121

5.7 Verifying Correctness . 126

5.7.1 Random stress testing . 126

5.7.2 Inclusion and sibling invariant checking 128

5.7.3 Comparison with a known (assumed correct) MESI implemen-

tation . 131

5.7.4 Use of asserts . 131

5.8 Conclusion . 131

Chapter 6 HTM Design comparisons 133

6.1 Methodology . 133

6.1.1 HTM models . 134

6.2 Workload characterization . 137

6.3 Single thread overhead . 140

6.4 Comparing concurrent execution . 142

6.4.1 LogTM . 146

6.4.2 Cache-based designs . 150

6.4.3 Overflow and Contention . 153

xii

6.4.4 Rock+ . 155

6.4.5 Design sensitivity to organization 157

6.4.6 Memory Bandwidth . 158

6.5 Conclusion . 162

Chapter 7 Related work 164

Chapter 8 Conclusion 170

Bibliography 172

Vita 187

xiii

List of Tables

3.1 Instruction set extensions in MetaTM. 22

3.2 MetaTM contention management policies. 25

3.3 The cxspinlock API implementation. 29

3.4 OS subsystems modified in TxLinux-SS. 36

3.5 Benchmarks used to evaluate TxLinux. 37

3.6 Spinlock performance in Linux and TxLinux-SS. 39

3.7 Characterization of cxspinlock usage in TxLinux. 43

4.1 DATM dependence types . 54

4.2 Legal inclusion and sibling (local/remote) state pairs for FRMSI. . 79

5.1 Interconnect-side state transitions in XMESI 92

5.2 XMESI state encoding . 93

5.3 ISA support for TagTM . 95

5.4 Simulation parameters for TagTM evaluation 99

5.5 Statistics for notifying transactions on 16 cpu machines 104

5.6 Statistics for notifying transactions on 32 cpu machines 106

5.7 Comparing software conflict handlers and transaction annotation . . 110

5.8 Non-blocking state transitions in XMESI 114

5.9 Actions triggered by a cpu in XMESI 118

xiv

5.10 Detailed XMESI state space . 119

5.11 Interconnect-side actions in XMESI 120

5.12 State transitions for blocks in M, S, or I states 121

5.13 State transitions for blocks in TS and TMU states 122

5.14 State transitions for blocks in the TMM and TQ* states 123

5.15 Bus side controller responses for matched snoops 124

5.16 Bus side controller responses for transient states 125

5.17 XMESI invariants . 129

6.1 Simulation parameters and benchmarks for the HTM comparison study136

6.2 HTM comparison benchmark characterization. 137

6.3 Performance for STAMP benchmarks on 32 cpus 147

6.4 Performance for STAMP benchmarks on 16 cpus 148

6.5 Performance for TxLinux benchmarks. 151

6.6 Rock+ performance statistics . 156

6.7 Bandwidth consumption metrics for 16 cpus 160

6.8 Bandwidth consumption metrics for 32 cpus 161

xv

List of Figures

3.1 Comparison of locks, bare transactions, and cxspinlocks 30

3.2 TxLinux benchmark characterization. 35

3.3 Synchronization overhead in Linux, and TxLinux-SS. 38

3.4 Histogram of maximum concurrency in TxLixux-CX. 40

3.5 I/O restart distribution in TxLixux-CX. 41

3.6 Transactional priority inversion in TxLinux. 43

3.7 Ratio of transaction restart to execution time in TxLinux. 44

3.8 Pipeline micro-benchmark performance in TxLinux. 45

4.1 DATM shared counter example. 51

4.2 Execution interleavings for two simple transactions. 51

4.3 Reducing latency for conflicts in DATM. 53

4.4 DATM architecture overview . 58

4.5 FRMSI cache coherence protocol state machine. 59

4.6 DATM methodology: simulation parameters 72

4.7 Workloads used in DATM evaluation 73

4.8 Relative execution time and restarts in DATM 74

4.9 Transaction characterization of benchmarks in DATM and MetaTM 75

4.10 Dependence-related statistics for DATM benchmarks 75

4.11 Relative execution time for DATM hardware variations 77

xvi

4.12 Contention management policy performance in DATM 78

5.1 State diagram for the XMESI protocol 91

5.2 TagTM microarchitectural features 94

5.3 Pseudo-code using notifying transactions for synchronization 96

5.4 notifying transactions throughput . 100

5.5 Restart reduction for notifying transactions 102

5.6 Notifying transactions performance 102

5.7 Peak and average bandwidth consumed by transactions in TagTM . 107

5.8 Comparing MetaTM, TagTM, and stall-on-conflict 108

5.9 The XMESI protocol . 116

6.1 Descriptions of HTM design models evaluated 134

6.2 Read/Write set characterization for comparison benchmarks 138

6.3 Read/Write CDF characterization 139

6.4 Single-thread overhead . 141

6.5 Speedup over 1 cpu lock-based implementations on CMP machines . 142

6.6 Speedup over 1 cpu lock-based implementations on SMP machines . 143

6.7 Speedup over same cpu-count lock-based implementations 145

6.8 Design points comparison using STAMP 152

6.9 Speedup over 1 cpu for Rock+ . 155

6.10 Speedup of CMP over SMP . 157

6.11 Peak bandwidth on 16 cpu SMP machines 159

xvii

Chapter 1

Introduction

For the past few decades, the value-proposition of the computer hardware industry

has depended on Moore’s Law [57] feature size and clock frequency scaling in sub-

sequent generations of processor chips has historically guaranteed that subsequent

generations of software would run faster, with minimal (if any) additional program-

mer effort. The industry has reached a point where traditional rates of performance

improvement due to scaling clock speed and techniques to exploit instruction-level-

parallelism can no longer be expected. Consequently, current trends in architecture

reflect a change of focus: hardware manufacturers have shifted their efforts from

scaling clock speed and mechanisms to exploit instruction-level-parallelism, toward

scaling the number of cores on a chip. Chip multiprocessors are increasingly ubiqui-

tous. A side effect of this change is that improving performance on new generations

of hardware requires programmers to take advantage of the parallelism made avail-

able by multiple processing contexts. Programmers will be required to develop

parallel code, and assume far more responsibility for performance than has been the

norm during the previous era of dramatic scaling due to ILP. Accessible approaches

to parallel programming are urgently needed.

The current state of the art in achieving concurrency using parallel pro-

1

gramming relies heavily on threads and locks. Multiple sequential flows of control

(threads) execute at the same time coordinating access to shared resources using

locks to guarantee mutually exclusive access to critical sections. Despite decades

of research, parallel programming using threads and locks remains quite difficult,

even for experienced programmers. Locks complicate the lives of programmers in

a number of well-known ways, for example, deadlocks, convoys, and priority inver-

sion. Locks compose poorly and require complex ordering disciplines when multiple

locks must be coordinated. The performance-complexity trade-off associated with

locks remains a Hobson’s choice: coarse-grain locking is simple to reason about but

sacrifices concurrent performance. Fine-grain locking may enable high performance,

but it makes code more complex and harder to maintain because it is dependent

on invariants that can be difficult to express or enforce. Transactional memory has

been the focus of much recent research attention because it is free of many of pitfalls

of locks, and because optimistic implementation techniques can allow transactional

memory to provide the performance of fine-grain locking with the code complexity

of coarse-grain locking.

Transactional memory can greatly simplify parallel programming [76]. A

programmer demarcates critical sections that may access shared data as transac-

tions, which are sequences of memory operations that either execute completely

(commit) or have no effect (abort). The system is responsible for ensuring that

transactions execute atomically (either completely, or not at all), and in isolation,

meaning that a transaction cannot see the effects of other active transactions, and

it’s own operations are not visible in the system until it commits. While transactions

provide the abstraction of completely serial execution of critical sections, the sys-

tem actually executes them optimistically, allowing multiple transactions to proceed

concurrently, as long as atomicity and isolation are not violated. The programmer

benefits because the system provides atomicity: reasoning about partial failures in

2

critical sections is no longer necessary. Because transactions can be composed, and

do not suffer from deadlock, programmers can freely compose thread-safe libraries

based on transactions.

Hardware transactional memory (HTM) provides an efficient hardware im-

plementation of the TM abstraction. Implementation techniques vary [?,2,5,7,9,10,

12,13,15,18,19,22,36,39,45,46,48,58,68,70,71,85,94,96], but in general approaches

rely on simple extensions to to the ISA, as well as modifications to upper-level

caches, and coherence protocols to provide the basic mechanisms required in a TM

system: version management, and conflict detection. At a high level, HTM systems

operate by speculating that critical section will complete without conflicting mem-

ory operations–the HTM will fail and retry speculative executions if cache coherence

traffic indicate that read-write or write-write sharing occurs at run-time.

This thesis takes a systems-level perspective on the design, use, and manage-

ment of hardware transactional memory. It explores the architectural and software

support required to allow an operating system to use HTM for synchronization, as

well as requirements for an OS to support user programs that use HTM. The the-

sis proposes mechanisms that can improve performance of HTMs under contention,

contributing both programmer-transparent techniques, as well as techniques that

allow software and hardware to collaborate to avoid contention before it occurs, and

manage it well when it does occur. We consider the design space for HTM imple-

mentation as a whole, and contribute a comprehensive cross-design comparison for

HTM proposals in the literature.

1.1 Operating Systems and HTM

Operating systems can benefit from using transactional memory, because TM pro-

vides a simpler programming model than locks. Operating systems rely on lock

ordering disciplines to avoid deadlock: these disciplines become complex over time

3

and are difficult for programmers to master. Transactions, by contrast, require no

ordering disciplines. Because many applications spend a significant fraction of their

runtime in the kernel (by making system calls, e.g., to read and write files), an-

other benefit of TM in the OS is that increased concurrency due to optimism in OS

synchronization can translate to increased performance for user programs without

having to modify or recompile them.

Management and support of HTM in an operating system requires innova-

tion both in the architecture and the operating system. Transactions cannot simply

replace or eliminate locks in an operating system for two main reasons. The first is

that many kernel critical sections perform I/O, actually changing the state of devices

like the disk or network card. I/O is a problem for transactional memory because

TM systems assume that if a conflict occurs, one transaction can be aborted, rolled

back to its start, and re-executed. However, when the OS performs I/O it actually

changes the state of a device (e.g., by writing data to the network). Most devices

cannot revert to a previous state once a write operation completes, so a transaction

that performs I/O cannot be rolled back and re-executed. The second reason is that

some kernel critical sections are highly contended and currently locks are more effi-

cient than transactions for highly contended critical sections. Under contention, the

optimism of transactions is unwarranted and the rollbacks and backoff performed by

the transactional memory system can significantly reduce performance. Operating

systems will need to be able to use locks in some contexts, even in the presence of

HTM support.

The cxspinlock (cooperative transactional spinlock), a contribution of this

thesis, is a synchronization primitive that addresses the problem of I/O in trans-

actions, allowing locks and transactions to work together to protect the same data

while maintaining both of their advantages. Previous HTM proposals require every

execution of a critical section to be protected by either a lock or a transaction, while

4

cxspinlocks allow a critical section or a data structure accessed from different crit-

ical sections to sometimes be protected by a lock and sometimes by a transaction.

Cxspinlocks dynamically and automatically choose between locks and transactions.

Cxspinlocks attempt to execute critical sections as transactions by default, but when

the processor detects an I/O attempt, the transaction is rolled back, and the cxspin-

lock will ensure that the thread re-executes the critical section exclusively, blocking

other transactional and non-transactional threads. Additionally, cxspinlocks provide

a convenient API for converting lock-based code to use transactions.

HTM enables a solution to the long-standing problem of priority inversion

due to locks. Priority inversion occurs when a high priority thread waits for a

lock held by a low priority thread. We demonstrate the modifications necessary in

the TxLinux scheduler and the transactional memory hardware to nearly eliminate

priority inversion. Moreover, the OS can improve its scheduling algorithms to help

manage high contention by leveraging a thread’s transaction history to calculate the

thread’s dynamic priority or deschedule conflicting threads.

1.2 Avoiding and managing contention

The TM research community has long held that conflicts are rare in transactional

memory workloads: the suggestion is tenuous at best given the paucity of HTM

implementations and real transactional memory workloads. There is evidence that

contention may not be rare in TM workloads. For example, Shriraman et al. find

that as many as 90% of transactions conflict in some STAMP [54] benchmarks and

up to 70% conflict in STMBench7 [28]. Work with TxLinux [70] showed that even

OS synchronization, typified by very small critical sections (hundreds of instruc-

tions), can show moderate contention rates (10-20%) and occasional pathologically

high contention [75]. Assuming that contention is rare makes points in the design

space that improve uncontended performance at the expense of contended perfor-

5

mance artificially attractive. If the promise of TM is simpler programming, HTM

implementations must perform well in the common case, but must degrade grace-

fully when sharing occurs. To this end, this thesis propose mechanisms that improve

HTM performance under contention transparently, as well as mechanisms that allow

programmers to avoid contention and manage it better when it actually does arise.

1.2.1 Dependence Aware HTM

Most transactional memory systems detect conflicts between two transactions and

respond by forcing one of the transactions to restart or block. By restarting or

blocking on conflict, TM implementations provide a level of concurrency that is

equivalent to that of two-phase locking [27], becuase any data read or written by

one transaction has an implicit lock on it that conflicts with any attempt to write

the same data. Using conflict serializability as the system’s safety property increases

concurrency relative to using two-phase locking.

Dependence aware transactional memory (DATM) is a transactional mem-

ory implementation technique that ensures conflict serializability. DATM manages

conflicts by commuting them to dependences that constrain commit order, and

when possible, forwards speculative data values between uncommitted transactions.

While previous HTM proposals cannot commit any conflicting transactions 1, even

if the schedule yields a correct result, dependence-awareness allows conflicting trans-

actions that are conflict-serializable to commit safely. This ability minimizes wasted

work in the form of restarts, increases throughput, and translates to better uti-

lization of parallel hardware than current TM systems. Dependence-awareness is

safe—transactions have the same consistency guarantees, and still provide the same

abstraction of atomic and isolated execution that conventional TM designs provide.

Dependence awareness provides is most beneficial for workloads that have
1Except potentially by stalling accesses, a mechanism called stall-on-conflict [58]

6

write-shared data (hotspots). Previously proposed mechanisms that improve TM

performance for write-shared data (e.g. open nesting, open nesting [60, 64], early

release [88], boosting [34], etc.) complicate the programming model and are touted

as the purview of expert programmers. Dependence-awareness, by contrast, is trans-

parent to the programmer. Transparency is particularly important because many

common data structures, like shared counters and linked lists, have write-shared

data that cause performance problems in conventional TM systems.

This thesis contributes a hardware design for Dependence Aware Transac-

tional memory [71], providing a programmer-transparent mechanism to improve TM

performance under high contention.

1.2.2 Notifying transactions and transaction annotation

If HTM must degrade gracefully under contention, they must not only avoid need-

less restarts, but must support mechanisms that help minimize performance lost

to conflicts that cannot be resolved by any other way than restarting. Contention

management and backoff policies are the de facto state of the art for handling con-

flicts between transactions. A contention manager is an abstraction responsible

for deciding which transaction(s) must restart when a conflict occurs, and backoff

policies govern when a transaction that has lost a conflict should retry. Both of

these mechanisms have a first-order impact on performance, and both mechanisms

are fundamentally heuristic. Since a decision must always be made about how to

handle a conflict, contention management is a critical component of an HTM im-

plementation: HTM must support contention management decisions that are both

flexible and fast. The same does not necessarily hold for backoff. While it has been

shown that backoff can reduce contention, and that exponential backoff in particular

can avoid livelock [84], backoff can itself lead to performance pathologies [75]. HTM

should support techniques that help software avoid contention by eliminating the

7

need to use heuristic approaches such as backoff to handle retry after conflicts.

This thesis presents TagTM, a new HTM design that makes flexible con-

tention management efficient in an HTM, and supports mechanisms to help soft-

ware avoid conflicts. The techniques TagTM uses to improve performance under

contention are applicable to any HTM design that relies on caches for version man-

agement and coherence for conflict detection. TagTM relies on notifying transac-

tions, a mechanism for handling repeated transactional conflicts more effectively

than backoff. A novel technique called transaction annotation helps TagTM pro-

vide user-defined contention management policies by allowing software to tag trans-

actions with metadata that can be used by a hardware contention manager. TagTM

uses a new transaction-aware coherence protocol called XMESI that extends trans-

actional coherence to support powerful mechanisms such as transaction annotation

and notifying transactions. To evaluate TagTM, we implement and evaluate several

representative designs from the literature, including MetaTM [70, 75], LogTM [58],

and Sun’s Rock [22], and provide a comprehensive cross-design comparison.

1.3 HTM design space

The HTM design space is densely populated with proposals [?, 5, 7, 9, 10, 12, 13, 18,

19,22,36,39,48,58,68,70,71,85,94,96] that address the general structure of TM sup-

port, exploring different different microarchitectural implementations, mechanisms

for version management and conflict detection, contention management policies,

and virtualization techniques. Yet despite many studies which subject particular

dimensions of the design space to rigorous scrutiny, it remains difficult to compare

different designs directly. Published results often rely on specialized assumptions

or environments, reflect different simulation and simulated platforms, and often use

different benchmarks as well.

This thesis explores the implementation details of HTM that have an impor-

8

tant impact on the performance and programmability of the HTM system. Imple-

mentation techniques based on coherence and upper level caches are an attractive

focus because implementing HTM using coherence is incremental over existing coher-

ence mechanisms, making them a likely candidate for actual silicon implementation.

The goal of this section of the thesis is to consider outstanding implementation

details associated with transactional coherence protocols as well as to address the

problem of comparability for different HTM designs. Microarchitectural parameters,

such as memory hierarchy depth, semantics of prefetch instructions, and limited

memory bandwidth, as well as architectural choices, such as support for suspending

transactions, strong isolation, and multiple active transactions per thread, can have

a first order impact on performance. This thesis introduces a new transactional

coherence protocol called XMESI that is robust to these architectural parameters,

and extends the MetaTM HTM model [70] to support high fidelity models of many

representative candidates from the literature. The resulting contribution is a cross-

product design-level comparison over MetaTM, DATM [71], LogTM [58], Rock [22],

and FlexTM [86,87].

1.4 A note on the relation of this thesis to published

work, and contributions of others

Two chapters of this thesis are significantly related to my previously published pa-

pers: “TxLinux: Using and Managing Hardware Transactional Memory in an Op-

erating System” [75], and “Dependence Aware Transactional Memory for Increased

Concurrency” [71]. Chapters 3 and 4 both draw from, and expand on the ideas

expressed in those papers: I consider these mechanisms in much greater detail in

this thesis than is practical in a conference format. The remaining chapters in this

thesis represent work that is unpublished in other venues at the time of this writing.

9

Because research of this scale requires a synergy of minds, I have retained

the use of the first-person plural perspective in this thesis. However, to avoid the

risk of hiding the contributions of others behind this gesture, I will make the con-

tributions of others explicit. Development of the first version of MetaTM, and the

original conversion of Linux into TxLinux (see chapter 3) was the collective work

of myself, Hany Ramadan, Owen Hofmann, and Don Porter. While work and in-

novation in integration of the Linux scheduler to use transactional memory was a

solo effort, cxspinlocks are the result of the collective efforts of that same group.

The dependence-aware model of transactions owes a debt to Hany Ramadan, who

developed a software-based implementation and a proof of it’s safety in [72]; however

the hardware design, implementation, and evaluation of DATM described in chap-

ter 4 are entirely my own work. TagTM (chapter 5) and the cross-product design

comparison (chapter 6) are also the results of solo research effort.

The rest of this thesis is organized as follows. Chapter 3 considers the prob-

lem of operating system support and use of hardware transactional memory. Chap-

ter 4 explores a hardware design for dependence-aware transactional memory and

chapter 5 considers techiniques for handling contention. Chapter 5 explores mi-

croarchitectural details for HTM implementation, and chapter 6 presents a detailed

cross-product design comparison for representative HTM proposals. Chapter 7 re-

views related work, and chapter 8 concludes.

10

Chapter 2

Background

The problem of how to write concurrent programs remains an active area of research,

with diverse approaches tailored to diverse platforms and environments. This the-

sis is concerned with concurrent programming in a shared-memory model, where

multiple threads of control execute concurrently, sharing data and communicating

through memory in a single address space. In this model, the need to synchronize

accesses to shared resources arises, because different threads may read and write

data over which program-specific consistency constraints must be maintained. For

example, a program may insert an element into a linked list by setting the next

pointer of the element before the insertion point to point to the new element, and

subsequently set the next pointer of the inserted element to point the element after

the insertion point. Reads and writes to different cells in memory must occur to

complete this update (different next pointer locations), and in the presence of con-

currency, failure to synchronize or coordinate these operations can cause a program

to yield incorrect results. In the example above, if a second thread traverses the

list by reading next pointers at a time that occurs logically between the first and

second update, the second thread can follow a meaningless pointer or fail to see the

remainder of the list after the insertion point. Synchronization primitives provide a

11

tool for programmers to express the need for and enforce consistency in the presence

of sharing.

Transactional memory is a synchronization primitive and a programming

abstraction that addresses this need.

2.1 Locks

The state of the art in concurrent programming to-date has relied on mutual exclu-

sion in general, and on locks in particular to synchronize multiple sequential flows of

control. When using locks, a programmer defines critical sections, or regions of code

over which consistency constraints must be maintained. Mutual exclusion ensures

that only one individual thread of control can execute the critical section at a given

time. Locks can be used to enforce mutual exclusion by requiring that a thread

must hold the lock in order to access the critical section: if the lock is unavailable

(indicating the presence of another thread in the critical section), that thread must

wait. Variations on this basic approach to synchronization and coordination are

myriad. For example, reader/writer locks [53] allow many readers or a single writer

into a critical section, semaphores [24] enforce an upper bound on the number of

threads allowed in a critical section, barriers [51] require that many threads all reach

a known point in the code path before any individual thread can proceed, and so on.

The ecosystem of primitives that fundamentally rely on locks and mutual exclusion

is rich and diverse, including spinlocks, mutexes/semaphores, condition variables

and monitors, read-copy-update (RCU) [50], sequence locks, and so on.

Because locks can guarantee mutually exclusive access to shared resources,

they are an effective tool for enforcing consistency. However, programming using

threads and locks remains quite difficult, even for experienced programmers. First

and foremost, locks do not express the needs of the programmer (consistency) di-

rectly. Programmers need consistent operations on shared data: mutual exclusion

12

is a technique, but is not the high level goal. Moreover, while consistency may be

maintained by mutually exclusive access to shared resources, it is often too conser-

vative because locks are pessimistic. All threads are forced to serialize even if the

conditions under which inconsistency may arise are rare. For example, if access to

a hash table is protected by a single lock, threads that require access to disjoint

buckets in the table are forced to serialize despite the fact that no inconsistency can

arise from allowing those threads to proceed concurrently. In general, the use of

a single lock to protect complex data (called coarse locking) leads to unattractive

performance tradeoffs. In the example of the hash table, needless serialization can

be addressed by using per-bucket locks (an example of fine-grain locking). However,

the increase in complexity and the number of locks gives rise to a yet another set of

difficult problems. Threads may need to hold multiple locks, and failure to acquire

them in a globally consistent order can result in deadlock (a cycle in the waits-for

graph). Lock ordering disciplines, which address this problem, can be difficult to

express and maintain. The problem is compounded when programs may use library

code that may acquire locks whose presence is transparent to the programmer. Be-

cause the programmer cannot use lock ordering to avoid deadlock on locks that she

has no access to, locks compose poorly, and the obvious solution of exposing such

locks compromises modularity. Locks can cause performance pathologies in systems

when they are highly contended and become bottlenecks. Locks can cause priority

inversion (when a higher priority thread must wait for a lower priority thread holding

a lock it needs) and convoys (when a single thread holds a lock that many threads

need). Collectively, these issues are a daunting obstacle, rendering the development

of parallel programs a specialty, the domain of “expert programmers.”

13

2.2 Transactions

Like locks, Transactional Memory addresses synchronization needs, and relies on

the same thread-based model of concurrent execution. However, while locks provide

mutual exclusion, transactional memory provides the abstraction of atomic, isolated

execution of critical sections. A programmer demarcates critical sections that may

access shared data as transactions: all memory operations within the critical section

either execute completely (commit) or have no effect (abort). The system is respon-

sible for ensuring that transactions execute atomically (either completely, or not at

all), and in isolation. A critical section is said to execute with isolation if updates

made by other concurrent transactions are not visible to it, and no other transac-

tion can see partial results from it’s execution. Ultimately, transactions provide the

abstraction of completely serial execution of critical sections, without requiring that

serialization be the mechanism used to implement it. Locks and transactions are

very different abstractions in this regard: the TM abstraction can be implemented

with locks or other mechanisms. This decoupling of abstraction from implemen-

tation yields many attractive properties of TM. Most TM systems implement the

abstraction optimistically, allowing multiple transactions to proceed concurrently,

as long as atomicity and isolation are not violated. As a result, programs need not

necessarily trade simplicity against scalability and coarsely synchronized programs

can still achieve good performance.

Memory transactions are free of deadlock and livelock, and may be com-

posed safely as a result: programmers can freely develop concurrent programs using

thread-safe libraries based on transactions. Because the system provides atomicity,

the programmer need no longer reason about partial failures. The fact that imple-

mentations rely on optimistic concurrency allows coarser-grain critical sections to

scale much like fine-grain critical sections, as long as read-write conflicts are rare.

We consider implementations that attempt to relax this caveat in chapters 4 and 5.

14

2.3 TM Implementation

In order to provide the abstraction of atomic isolated execution optimistically, TM

systems must detect events that violate these properties, and must be able to take

action that restores the system to a consistent state (one that is free of any ef-

fects of these violations). To this end, TM systems must implement some form

of version management and conflict detection. TM systems require version man-

agement so that active transactions can buffer updates until commit, and so that

memory can be returned to a known-consistent state in the event of conflicts or fail-

ures. These requirements fundamentally imply that the system must be able to keep

track of both speculatively written versions of data and globally committed versions.

Transactional memory systems must detect conflicts to ensure that executions that

violate consistency can be avoided. Transactional memory systems detect conflicts

by observing the sets of reads and writes made by individual transactions (called

read-write or RW-sets). In general if a memory cell is present in the write set of on

transaction and in the read or write set of another, those two transactions have a

conflict, and the system has detected an execution that could lead to inconsistent

results.

In the taxonomy of Moore et al. [58], both version management and con-

flict detection can be either eager or lazy. In eager version management, updates

are made in place with the result that successful commits require minimal addi-

tional work from the system, but failed transactions have the additional overhead

of requiring the system to undo those updates explicitly. Conversely, lazy version

management buffers updates, and publishes them on commit, making successful

transactions potentially more expensive, and failures less so. In eager conflict de-

tection, the system checks for intersections of RW-sets on each operation, while lazy

conflict detection requires the system to compare RW-sets only at commit time.

Performance tradeoffs exist for conflict detection as well, and are largely workload-

15

dependent. Chapter 4 explores dependence awareness to manage conflicts, resulting

in a system that manages versions and detects conflicts in ways that do not fit the

lazy/eager taxonomy outlined in [58].

TM systems must also provide (either explicitly or implicitly) some form of

contention management. When transactions conflict, the system can either abort

some number of conflicting transactions and restore to a known-consistent state, or

can wait in hopes that the conflict will be resolved in a way that does not require

any transactions to abort.

2.4 Hardware Transactional Memory

The transactional memory abstraction can be implemented in hardware [?,5,9,12,13,

18,22,36,39,48,58,68,70,85,94], software [2,6,15,23,31,35,72,81] or as a hybrid [7,19,

45,46,55,71,87]. Because the focus of this thesis is hardware transactional memory

(HTM), the following sections explore techniques for implementation of the aspects

discussed above in hardware, and detailed discussion of software techniques is elided.

A thorough discussion of software techniques is available in [42].

2.4.1 Version management in hardware

Version management approaches in HTM typically rely on either modifications to

caches [9, 29,36,70,71] and store buffers [22,29], or logging [12,58,94].

In the cache-based approach, speculative versions of data written in transac-

tions are effectively buffered in upper level caches, and globally committed versions

are maintained in lower level caches or main memory. On a commit, speculative

versions are made non-speculative with coherence or permissions state changes [9,

71,85], flash clearing of the bits that indicate a version is speculative [36], or global

broadcast of written data [29]. On an abort, any speculative updates can be dis-

carded by invalidating the corresponding cache lines. In the log-based approach,

16

speculative updates are made in-place (in cachable virtual memory) and old ver-

sions of memory cells are written by the hardware to a thread-private undo log. On

commit, logs are discarded by resetting a log pointer, and on abort, the system must

walk the log to restore speculatively written data to their previous values.

Log-based and cache-based designs work with different sets of tradeoffs. The

log-based approach requires (potentially) two writes for every speculative write in-

troducing a higher fixed overhead on transactional execution, but has the benefit of

avoiding artificial limits on transaction sizes that are introduced by cache geome-

try. A cache-based approach requires relatively less hardware and may have lower

common-case latency because log operations are not required. However, if a specula-

tive line is evicted from the cache that is buffering updates for the HTM, the system

must either abort the transaction, or provide another versioning mechanism to back

up these evicted data (this is the overflow or virtualization problem). Providing the

abstraction of unbounded transactions in a cache-based design [5,9,18,19,29,68,91]

requires either significant hardware and software complexity, or relies on inevitability

mechanisms that can ultimately serialize transactions. Failure of an HTM to pro-

vide unbounded transactions admits simpler designs (called “best-effort” HTMs)

but yields a programming model that requires the programmer to provide fall-back

mechanisms to handle cases when the HTM exhausts hardware resources [22,39] and

in-so-doing potentially compromises the accessible programming model TM claims

as it’s raison d’être.

2.4.2 Conflict detection in hardware

A transactional conflict occurs when the write-set of one transaction intersects with

the union of the read-set and write-set of another transaction. The read(write)-set

is defined as the set of addresses read(written) by a transaction. Such a conflict

compromises the isolation of the transaction, so only one transaction may proceed.

17

This safety property is called conflict serializability, and it is the most efficient

method for a transactional system to provide provable isolation [27].

Conflict detection in HTM is typically implemented by some variation on the

theme of observing coherence traffic with interconnect-side controllers: by compar-

ing observed reads and writes against local read-write sets, the system can accurately

know when a violation of the system’s safety property has occurred. Read-write sets

can be represented at local nodes either as signatures [16, 55, 82, 86, 95] (hardware

bloom filters [8]) or in permissions caches [10] or by presence of a cached line with

transactional bits [29,36,58] or in a transactional coherence state [70,71,87]. Using

signatures for conflict detection has the advantages that conflicts can be detected

at arbitrary granularity (as opposed to cache-line or data-word granularity), and

that the size of read-write sets in not bound to cache geometry. The most salient

disadvantages of signatures stem from the fact that they can saturate and generate

false positives as a result. The potential for read-write set representation to saturate

complicates HTM design decisions. Signatures must be sized (in bits) to balance

hardware cost against the cost in performance of falsely detected conflicts, and that

balance is typically workload-dependent. Like cache-based version management,

cache-based representation of read-write sets must contend with cache evictions.

Without a fall-back mechanism, eviction of a transactional line causes it to dis-

appear from the read-write set 1 Additionally, because cache coherence protocols

function at cache line granularity, use of caches to represent read-write sets makes

the cache line size the only natural granularity of memory blocks on which to detect

conflicts. Supporting byte or word granularity requires more bits of meta-data in the

cache; handling sub-line granularity conflicts in a system that fundamentally man-

ages versions at line granularity involves non-obvious corner cases and non-trivial

additional hardware.
1The “Sticky M@P” mechanism in LogTM [58], for example, can help address this problem for

a directory-based implementation.

18

Conflicts can be transactional or asymmetric. An asymmetric conflict is

one in which a non-transactional memory reference conflicts with a transaction’s

read-write set. Support for detection of asymmetric conflicts is known as strong

isolation [42] or strong atomicity [11]. Any of the hardware-based representations of

read-write sets discussed in this section naturally support detection of asymmetric

conflicts, with the exception of TCC [29], which posits that all memory traffic is

transactional, which eliminates the possibility of asymmetry.

2.4.3 Contention management in hardware

The hardware/software logic that determines which of a set of conflicting transac-

tions may proceed is called the contention manager. Due to performance constraints,

some level of contention management may happen in hardware, but most designs ac-

commodate implementation of higher level policies in software. The losing thread(s)

in a conflict will discard all of its(their) buffered changes and restart execution at the

xbegin instruction. Approach to contention management may be complicated by

asymmetric conflicts (see above), and complex conflicts, where an operation causes

a conflict that involves more than two transactions (e.g. a write to a location that

has been read by many readers).

When transactions conflict the HTM system must handle the conflict by

ensuring that the results of the transactions involved are serializable. Traditional

approaches involve either aborting some number of transactions, or stalling in hopes

that the conflict will resolve (for example, by using a stall-on-conflict [58] policy).

Chapter 4 examines other alternatives, but with the exception of DATM [71,72], TM

designs rely on either aborting or stalling. When aborting some number of trans-

actions is the strategy for handling conflicts, a contention manager is responsible

for implementing a policy that promotes good performance. Research has clearly

demonstrated the need for flexible policy in contention management [75,83], imple-

19

mentation in hardware requires tradeoffs. Simple policies (for example, requester-

stalls [58] and requester-wins [22]) are simple to implement in hardware but can have

pathologically poor performance [13]. More complex policies that rely on transac-

tion meta data must either trap to software to run contention management handler

functions [12,48,85,87] or imply implementation of specialized and potentially com-

plex algorithms directly in hardware [70]. Both approaches have drawbacks. The

software approach gives rise to subtle race conditions between handler functions

and concurrent transactions on remote nodes. Hardware implementation violates

the time-honored principle of separating policy from mechanism, and does so at the

expense of additional hardware complexity in sensitive structures such as L1 caches

and coherence controllers. Chapter 5 proposes an approach to this dilemma that

provides the flexibility of software preserving hardware simplicity.

2.4.4 Virtualization

Providing the abstraction of unbounded transactions is paramount to the TM vi-

sion of accessible parallel programming. Dealing with transactions that overflow the

hardware state is called virtualizing transactions. While some designs directly ac-

commodate large transactions [12,58,94] virtualization also also comprises the prob-

lems of handling OS events such as interrupts, context switches, and re-mapping of

memory pages that may be transparent to the user programming. There are many

techniques for virtualization in the recent literature, including using direct hardware

support [5,68], OS page-based data structures [18,19], backup software transactional

memory system [21,41,80], or relying on inevitability mechanisms such as allowing

only one overflowed transaction [9, 29] or ordering techniques to allow concurrent

software and hardware transactions [39].

20

Chapter 3

TxLinux and MetaTM

This chapter presents MetaTM [69, 70] and TxLinux [75, 77] a hardware software

co-design for operating system support and use of hardware transactional memory.

3.1 MetaTM

MetaTM is a parameterized hardware transactional memory model capable of emu-

lating many HTM design points, and which provides architectural features necessary

to support TxLinux. The architectural interface for MetaTM is listed in Table 3.1.

Starting and committing transactions rely on xbegin and xend instructions, while

xrestart provides an explicit mechanism for retrying a transaction. The xcas

instruction provides a compare and swap instruction that resolves contended opera-

tions using the transactional subsystem. The xtest instruction tests a value against

an argument; if the test succeeds, the reference is included in the current transac-

tion, and conversely, if the test fails, the system behaves as if the location were not

read in the context of a transaction. The xcas and xtest instruction are critical

building blocks for synchronization primitives that allow cooperation between locks

and transactions (see section 3.2.1). The xquery tqc instruction takes an address

21

as input and returns true if the address was recently involved in a transactional

conflict (see section 5.4 for more).

To facilitate interrupt handling in TxLinux, MetaTM supports multiple ac-

tive transactions for a single thread of control [48, 69]. A thread can suspend a

current transaction using xpush and restore it using xpop (see Table 3.1). The

ability to save and restore transactions in LIFO order allows interrupt handlers in

TxLinux to use transactions [70]. An interrupt handler executes an xpush to sus-

pend any current running transaction, leaving the handler free to use transactions

Primitive Definition
xbegin(*) Begin a transaction. If the transaction does not suc-

ceed, the return code indicates the reason for the abort
(e.g. conflict, I/O). Subsequent chapters explore pa-
rameterizing this instruction with meta-data (see chap-
ter 5)

xend Commit a transaction.
xrestart Restart a transaction
xgettxid Get the current transaction identifier, which is 0 if there

is no currently active transaction.
xpush Save transaction state and suspend current transaction.

Used on receiving an interrupt.
xpop Restore xpushed transaction state and continue. Used

on an interrupt return.
xtest(addr) If the value of the variable equals the argument, enter

the variable into the transaction read-set (if a transac-
tion exists) and return true. Otherwise, return false.

xcas(addr, cv, nv) A compare and swap instruction that subjects non-
transactional threads to contention manager policy. If
the value at the address parameter matches the com-
pared value parameter (cv), set it to the new value (nv).
Return success or failure.

xquery tqc(addr) An instruction that takes an address as input, and re-
turns true if the address is on a cache line that was
recently involved in a conflict.

Table 3.1: Instruction set extensions in MetaTM.

22

itself.

MetaTM relies on a transaction status word or TXSW to communicate

information to the current thread about its transactional state [10,68]. In MetaTM,

the transaction status word is returned as a result of xbegin, and it’s value can

indicate whether this is the first execution of a transaction or the transaction has

restarted. If the transaction has restarted, the status word indicates the reason

for the restart, such as restart due to a conflict, manual restart from the xrestart

instruction, or restart because some form of I/O or overflow of hardware resources

occurred during the transaction. Threads that execute an xrestart may also set

user-defined codes to communicate more detailed information about the reason for

the restart when the transaction resumes.

MetaTM supports only flat nesting of transactions. If software begins a new

transaction when one is currently active, the new transaction is said to nest within

the outer transaction. Flat nesting means that the inner transaction is subsumed

within the outer transaction (as opposed to closed nesting, in which an abort of

the inner transaction does not necessarily cause the abort of the outer, and open

nesting, in which the inner transaction may commit or abort independently of the

outer). Because most transactions in TxLinux are short, averaging 51 instructions

(449 cycles) [70], the benefit of closed-nested transactions [62,63] is small. Moreover,

in the context of an OS, most of the benefit of nesting mechanisms can be achieved

without complex nesting hardware. Cxspinlocks (Section 3.2.1) and the xpush

and xpop instructions provide most of the functionality, e.g. handling I/O, that is

supported in other systems by open-nested transactions or other forms of suspending

transactional context [15, 59, 96]. MetaTM keeps a count of the current nest depth

in the transaction status word (TXSW).

23

3.1.1 Contention management, Backoff policies, and stall-on-conflict

When a conflict occurs between two transactions, one transaction must pause or

restart, potentially after having already invested considerable work since starting.

Contention management is intended to reduce contention in order to improve per-

formance by reducing work lost to restarts. The MetaTM model supports the con-

tention management strategies proposed by Scherer and Scott [83], adapted to an

HTM framework, as well as additional policies SizeMatters [70] and Dependence-

Aware [71]. SizeMatters favors the transaction that has the larger number of unique

bytes read or written in its transaction working set, reverting to timestamp on a tie,

or after a thresholded number of restarts, making it free of livelock and deadlock.

Dependence-Aware contention management (see section 4) restarts the transaction

whose demise minimizes the impact on the global dependence graph, likewise re-

verting to timestamp after a threshold of restarts to ensure livelock and deadlock

freedom [67]. The policies are summarized in Table 3.2.

When a conflict occurs between transactions, and one has been selected to

restart, the decision for when the restart occurs can impact performance. In partic-

ular, if there is a high probability that an immediate restart will simply repeat the

original conflict and cause another restart, it would be prudent to wait for the other

transaction to complete. In an HTM system, where detection of conflicts requires

coherence traffic, repeated wasted retries can affect system-wide performance by

consuming interconnect bandwidth that does not contribute ultimately to forward

progress. In the absence of an explicit notification mechanism, the decision for how

long to wait before retrying is heuristic. The MetaTM model supports using different

backoff strategies, enabling the tailoring of policy to different workloads. Previous

work has focused on exponential backoff strategies [83, 84]. The following list sum-

marizes the backoff policies supported by MetaTM. Chapter 5 proposes mechanisms

that ameliorate the need for heuristic approaches to the timing of transaction retries.

24

Policy Definition

Polite Backoff up to an empirical threshold, 10 in our case. See sec-
tion 3.1.1.

Karma Abort transaction that has done the least work. Work is esti-
mated with the number of operations to unique addresses within
a transactional context. Karma updates a priority counter for
each transactional reference, and does not reset the counter on
restarts.

Eruption Karma variant, with priority boosting. Conflict winner’s priority
is added to the loser, who has a higher priority for future conflicts.

Kindergarten Transactions are willing to defer to each other once, but no more.
If no transactions in a conflict are willing to defer, resorts to the
timestamp policy.

Timestamp Oldest transaction wins. Timestamp is not refreshed on
restart [67].

Polka Polite backoff strategy combined with Karma priority accumu-
lation. The number of references to the transaction working set
approximates priority, which is the same as the Karma policy.
The backoff strategy does not have to be exponential, and the
backoff seed (normally random) is the delta between the approx-
imated priorities. With eager conflict detection, at least one of
the operations involved in a conflict arbitration must be a write;
consequently the policy defaults to a “writes-always-win” policy,
unless both conflicting operations are writes.

SizeMatters Largest transaction size (unique bytes read or written) wins.
Size is reset on restart. After an empirical threshold number
of restarts, it reverts to timestamp, to avoid livelock.

Dependence Aware Transaction whose restart will minimize impact on the depen-
dence graph of active transactions is selected (see chapter 4).

Table 3.2: Contention management policies implemented in MetaTM. Because hardware transac-
tions do not block in our model (they can execute, restart, or stall, but cannot wait on a queue),
certain features require adaptation.

• Exponential – Choose a random wait time from a range that expands

exponentially upon each subsequent retry.

• Linear – Linear Backoff is implemented by choosing a random seed between

1 and 10. The seed is multiplied by the number of times the conflicting trans-

action has backed off to determine the number of cycles that the conflicting

transaction should wait before a restart.

• Random – Random backoff is implemented by choosing a number of cycles

at random to wait before restarting. The maximum value is 1000.

25

• None – Retry as soon as possible.

An HTM system need not necessarily respond to detected conflicts by abort-

ing: the system can attempt to stall the requesting transaction until the conflict

resolves (called stall-on-conflict), or can attempt to choose and enforce a post-facto

commit order for the conflicting transactions that preserves correctness in the pres-

ence of the conflict (called dependence-awareness [71]). Both mechanisms introduce

the need for some deadlock detection or avoidance mechanisms [58,72], and both can

reduce the rate of transaction restarts for workloads with contention. The degree to

which reducing restarts translates to improved performance is workload-dependent.

MetaTM supports both stall-on-conflict, and dependence awareness.

3.2 TxLinux

TxLinux is a transactional variant of Linux that uses transactional memory to re-

place various forms of polling synchronization such as spinlocks, seqlocks, and read-

copy-update (RCU). Initial work with MetaTM and TxLinux involved a profile-

guided conversion of the most highly contended locks in some subsystems to use

transactions. The complete list of subsystems converted in the initial effort is shown

in Table 3.4. The effort was highly labor intensive, primarily because Linux performs

I/O with spinlocks held. I/O cannot be performed in transactions (due to the output

commit problem [25]), and the nesting relationships among locks cannot always be

determined statically, so while the first version of TxLinux supported transactions

in 9 subsystems, it was clear that the approach of rote conversion of locks to bare

transactions in an operating systems was flawed. Transactions cannot eliminate

locks in an OS: some cooperation between these synchronization mechanisms is a

fundamental requirement.

26

3.2.1 Cooperation between locks and transactions

In order to allow both transactions and conventional locks in the operating system,

TxLinux supports a synchronization API that affords their integration: cxspinlocks,

or cooperative transactional spinlocks. Cxspinlocks allow different executions of a

single critical section to be synchronized with either locks or transactions. This

freedom enables the increased concurrency enabled by the optimism of transactions

when possible, but enforces the safety of locks when necessary. Locking may be used

for I/O, for protection of data structures read by hardware (e.g., page tables), or for

high-contention access paths to particular data structures (where the performance

of transactions might suffer from excessive restarts). The cxspinlock API also pro-

vides a simple upgrade path to let the kernel use transactions in place of existing

synchronization. Because cxspinlocks transition transparently between transactions

and mutual exclusion according to the dynamic needs of the system, programmers

need not invest the painstaking effort in differentiating critical sections that may

perform I/O that was required in the initial conversion of TxLinux. The second

version of TxLinux, using cxspinlocks, required less than 1/10th of the development

effort than the original.

Cxspinlocks rely on the ability to retry transactions that perform I/O dy-

namically, using mutual exclusion rather than speculation on the retry attempt,

some need for lock variables is re-introduced. However, cxspinlocks are necessary

for the kernel only and they allow the user programming model to remain simple.

Users do not need them because they cannot directly access I/O devices (in Linux

and most operating systems, users perform I/O by calling the OS). Blocking direct

user access to devices is a common OS design decision that allows the OS to safely

multiplex devices among non-cooperative user programs. Sophisticated user pro-

grams that may have some need for coexistence between transactions and locks can

use cxspinlocks, but it is not required.

27

Using conventional Linux spinlocks within transactions is possible and will

maintain mutual exclusion. However, conventional spinlocks reduce the concurrency

of transactions and lacks fairness. Conventional spinlocks prevent multiple trans-

actional threads from executing a critical region concurrently. All transactional

threads in a critical region must read the spinlock memory location to obtain the

lock and must write it to obtain the lock and release it. Write sharing of the lock

variable among transactional and non-transactional threads will cause transactional

and/or asymmetric conflicts, thereby preventing concurrent execution, even if con-

current execution of the “real work” in the critical section is safe (due to asymmetric

conflict [70], or strong isolation [42]). Moreover, conventional spinlocks do not help

with the I/O problem. A transactional thread that acquires a spinlock can restart,

therefore it cannot perform I/O.

The progress of transactional threads can be unfairly throttled by non-

transactional threads using spinlocks. In MetaTM conflicts between transactional

and non-transactional threads (asymmetric conflicts) are always resolved in favor of

the non-transactional thread. To provide isolation, HTM systems guarantee either

that non-transactional threads always win asymmetric conflicts (like MetaTM), or

transactional threads always win asymmetric conflicts (like LogTM [58]). With ei-

ther convention, traditional spinlocks will cause unfairness between transactional

and non-transactional threads.

3.2.2 Using cxspinlocks in TxLinux

TxLinux replaces all spinlocks with cxspinlocks. Cxspinlocks allow a single critical

region to be safely protected by either a lock or a transaction. A non-transactional

thread can perform I/O inside a protected critical section without concern for un-

doing operations on a restart. Many transactional threads can simultaneously enter

critical sections protecting the same shared data, improving performance. Simple

28

cx optimistic cx exclusive cx end

void
cx optimistic (l o ck){

s t a t u s = xbegin ;
i f (s t a t u s==NEED EXCL){
xend ;
i f (xgettxid)
xrestart (NEED EXCL) ;

e l s e
cx exclusive (l o ck) ;

r e turn ; }
whi le (! xtest (lock , 1)) ;
}

void
cx exclusive (l o ck){

whi le (1) {
whi le (∗ l o ck != 1) ;
i f (xcas (lock , 1 , 0))
break ;

}
}

void
cx end (l o ck){

i f (xgettxid)
xend ;

e l s e
∗ l o ck = 1 ;

}

Table 3.3: The cxspinlock API and implementation. The cx optimistic function attempts to
execute a critical section by starting a transaction, using xtest to spin until the lock is free. If
the critical section attempts I/O, the hardware will retry the transaction, returning the NEED EXCL

flag from the xbegin instruction. This will result in a call to the cx exclusive function, which
waits until the lock is free, and acquires the lock using the xcas instruction to atomically compare
and swap the lock variable, and which invokes the contention manager to arbitrate any conflicts on
the lock. The cx end function exits a critical section, either by ending the current transaction, or
releasing the lock.

return codes in MetaTM allow the choice between locks and transactions to be made

dynamically, simplifying programmer reasoning. Cxspinlocks ensure a set of behav-

iors that allow both transactional and non-transactional code to correctly use the

same critical section while maintaining fairness and high concurrency:

• Because cxspinlocks test lock variables with the xtest instruction, multiple

transactional threads may enter a single critical section without conflicting on

the lock variable. A non-transactional thread will exclude both transactional

and other non-transactional threads from entering the critical section because

it will update the variable to indicate that the lock is held.

• Transactional threads poll the cxspinlock using the xtest instruction, which

allows a thread to check the value of a lock variable without entering the lock

variable into the transaction’s read set. This enables the transaction to avoid

restarting when the lock is released (another thread writes the lock variable).

This is especially important for acquiring nested cxspinlocks where the thread

29

void
dno t i f y pa r en t (

dent ry t ∗dentry ,
ulong evt) {

dent ry t ∗ p ;
spin lock(&dentry−>d lock) ;
p = dentry−>d parent ;
dget (p) ;
spin unlock(&dentry−>d lock) ;
i n o d e d i r n o t i f y (p−>d inode ,

evt) ;
spin lock(&dcache lock) ;
i f (!(−−p−>d count)) {
spin lock(&p−>d lock) ;
dent ry iput (p) ;
d f r e e (p) ;
spin unlock(&p−>d lock) ;
}
spin unlock(&dcache lock) ;
}

void
dno t i f y pa r en t (

dent ry t ∗dentry ,
ulong evt) {

dent ry t ∗ p ;
xbegin ;
p = dentry−>d parent ;
dget (p) ;
i n o d e d i r n o t i f y (

p−>d inode ,
evt) ;

i f (!(−−p−>d count)){
dent ry iput (p) ;
d f r e e (p) ;

}
xend ;
}

void
dno t i f y pa r en t (dent ry t ∗dentry ,

ulong evt) {
dent ry t ∗ p ;
cx optimistic(&dentry−>d lock) ;
p = dentry−>d parent ;
dget (p) ;
cx end(&dentry−>d lock) ;
i n o d e d i r n o t i f y (p−>d inode ,

evt) ;
cx optimistic(&dcache lock) ;
i f (!(−−p−>d count)){

cx optimistic(&p−>d lock) ;
dent ry iput (p) ;
d f r e e (p) ;
cx end(&p−>d lock) ;

}
cx end(&dcache lock) ;
}

Figure 3.1: Three adapted versions of the Linux file system dparent notify() function, which
handles update of a parent directory when a file is accessed, updated, or deleted. The leftmost
version uses locks, the middle version uses bare transactions and corresponds to the code in Tx-
Linux-SS, and the rightmost version uses cxspinlocks, corresponding to TxLixux-CX. Note that the
dentry iput function can do I/O.

will have done transactional work before the attempted acquire.

• Non-transactional threads acquire the cxspinlock using an instruction (xcas).

Transactional conflicts involving xcas are arbitrated by the transactional con-

tention manager. This preserves fairness between locks and transactions be-

cause the contention manager can implement many kinds of policies favoring

transactional threads, non-transactional threads, readers, writers, etc. Non-

transactional threads attempting to enter a critical section (with cx exclusive)

are subject to the same policy decisions as transactional ones, giving the con-

tention manager the power to force a non-transactional thread to wait for a

transactional one.

Figure 3.3 shows the cxspinlock API and implementation. Cxspinlocks are

acquired using two functions: cx exclusive and cx optimistic. Both functions

take a lock address as an argument. cx optimistic is a drop-in replacement for

spinlocks and is safe for almost all locking done in the Linux kernel (the exceptions

are a few low-level page table locks and locks whose ownership is passed between

30

threads, such as that protecting the run queue). cx optimistic optimistically at-

tempts to protect a critical section using transactions. If a code path within the

critical section protected by cx optimistic requires mutual exclusion, then the

transaction restarts and acquires the lock exclusively. The code in figure 3.1, which

can fail due to I/O with bare transactions, functions with cxspinlocks, taking ad-

vantage of optimism with transactions when the dentry iput function does no I/O,

and retrying with with exclusive access when it does.

Control paths that will always require mutual exclusion (e.g., those that

always perform I/O) can be optimized with cx exclusive. Other paths that access

the same data structure may execute transactionally using cx optimistic. Allowing

different critical regions to synchronize with a mix of cx optimistic and cx ex-

clusive assures the maximum concurrency while maintaining safety.

TxLinux Scheduling

MetaTM allows the OS to communicate its scheduling priorities to the hardware

conflict manger, so the hardware does not subvert OS scheduling priorities or policy.

Locks can invert OS scheduling priority, resulting in a higher-priority thread waiting

for a lower-priority thread. Some OSes, (e.g. Solaris [49, 78]), support priority

inheritance to address this issue. Priority inheritance guarantees an upper bound

on the impact of inversion, but is complicated, and cannot completely eliminate

the problem. In contrast, the contention manager of an HTM system can nearly

eradicate priority inversion. If the contention manager resolves conflicts in favor of

the thread with higher OS scheduling priority, then transactions will not experience

priority inversion.

To eliminate priority and policy inversion, MetaTM provides an interface

for the OS to communicate scheduling priority and policy to the hardware con-

tention manager [58,69] MetaTM implements a contention management policy called

31

os prio, which prefers the transaction with the greatest scheduling value to the OS,

defaulting to other policies when a tie occurs in the priority value. The policy is

able to eliminate virtually all inversion in TxLinux.

The presence of HTM provides opportunity for the OS scheduler to use pro-

cess transaction state to mitigate the effects of high contention. TxLinux supports

a modified scheduler that takes into account the existence of any currently active

transactions, number of recent restarts, cycles spent backing off, and the size of

the transaction read and write set, when making scheduling decisions, relying on

the MetaTM transaction status word [68] to determine the status of the current

transaction (none, active, stalled, overflowed). Using this information, the sched-

uler dynamically adjusts priority or deschedules processes likely to cause repeated

restarts, improving throughput for workloads with high contention.

3.3 Evaluation

This section presents detailed measurements of TxLinux. The experiments show

that the performance of transactions is generally good for 16 and 32 CPUs (in

an SMP organization), though a performance pathology is introduced in one case.

Even at 32 cores, the kernel spends less than 12% of its time synchronizing, so the

opportunity to improve performance with synchronization primitives is limited at

this scale. Using cxspinlocks to add transactions to the kernel removes the primary

reasons to eschew transactions in the kernel—the engineering effort to add them

and their incompatibility with I/O.

Priority inversion is a common occurrence in the Linux kernel the selected

benchmarks, and TxLinux’s ability to nearly eliminate it is an encouraging result

for transactional programming. Allowing the scheduler to use transaction state

information has little ability to affect performance for the workloads studied, al-

though scheduler effort can be profitably directed toward avoiding transactional

32

performance pathologies.

3.3.1 Experimental setup

TxLinux is based on Linux 2.6.16, and MetaTM is implemented as a hardware

module in the Simics [47] 3.0.31 machine simulator. The architecture is x86, with

16 and 32 processors. The model assumes 1 instruction per cycle and in-order cores.

Simics only allows a constant IPC, and 1 is a reasonable choice for a moderate

superscalar implementation. Level 1 caches are both 16 KB with 4-way associativity,

64-byte cache lines, 1-cycle cache hit and a 16-cycle cache miss penalty. The L1 data

caches contain both transactional and non-transactional data. Second level caches

are 4 MB, 8-way associative, with 64-byte cache lines and a 200 cycle miss penalty

to main memory. Cache coherence is maintained with a MESI snooping protocol,

and the main memory is a single shared 1GB. This configuration is typical for an

SMP, and reasonably approximates a CMP.

The disk device models PCI bandwidth limitations, DMA data transfer, and

has a fixed 5.5ms access latency. Simics models the timing for a tigon3 gigabit

network interface card that supports DMA data transfer, with an Ethernet link

that has a fixed 0.1ms latency. All of the runs are scripted, with no user interaction.

MetaTM uses word-granularity conflict detection, exponential backoff on con-

flict, and the SizeMatters contention management policy [70]. Simics uses execution-

based simulation, which allows the choices made by the OS and hardware (e.g.,

scheduling decisions and contention management) to feed back into the simulation

and change thread orderings and application behaviors. This provides more realistic

modeling.

Multi-threaded workloads tend to have variable performance, in the sense

that a small change to the thread schedule can introduce noticeable jitter into ex-

ecution time. To compensate for this variability, cache miss timings are pseudo-

33

randomly perturbed to allow data to be sampled from the space of reasonable thread

interleavings using the statistical approach of Alameldeen and Wood [4] to produce

confidence intervals from the perturbed runs.

The TxLinux workloads are described in Table 4.7, and figure 3.2 character-

izes them in terms of user, system, I/O wait, and idle time. The benchmarks are

large applications that exercise the kernel in realistic scenarios. Some of them fix

the amount of work, usually at 32 threads, and some scale the amount of work with

the processor count. The benchmarks do not execute any transactions at user-level:

all transactions occur in the kernel. Since the kernel is using HTM, experiments

measure the behavior of the kernel being exercised by the workloads. The bench-

mark bonnie++ is run with a zero latency disk because its performance with disk

latency is highly dependent on block layout. Removing the disk delay allows our

analysis to focus on the CPU portion of the workload, independent from the file

system layout.

TxLinux was converted to use transactions using two methods. The first

conversion (called the subsystem (SS) kernel, or TxLinux-SS) was done by hand,

converting the spinlocks in subsystems shown in Table 3.4 to use transactions. The

second (called the cxspinlocks (CX) kernel, or TxLixux-CX) converted nearly all

spinlocks to use cx optimistic. For both conversions, all sequence locks are con-

verted to use transactions, and some reader/writer spinlocks are converted.

3.3.2 Synchronization performance

The time wasted due to synchronization as a percentage of kernel execution time

was measured for Linux and TxLinux-SS. In Linux, synchronization time is wasted

spinning on locks. In TxLinux time is wasted spinning on locks as well as restart-

ing transactions (including time spent backing off before restart). Figure 3.3 shows

that both Linux and TxLinux spend from 1–14% of their execution time synchro-

34

Figure 3.2: User, system, I/O wait, and idle time for all benchmarks for 16 and 32 CPUs, charac-
terized using unmodified Linux.

nizing. For a 16 CPU configuration, TxLinux-SS wastes an average of 57% less time

synchronizing than Linux does, and for 32 CPUs it wastes 1% more. Most of this

time savings is attributable to removing the cache misses for the lock variable itself.

These experiments did not measure time spent spinning on seqlocks, which biases

the results in favor of Linux.

The data shows that as the number of CPUs increase, time wasted synchro-

nizing also increases. While HTM generally reduces the time wasted to synchro-

nization, it more than doubles the time lost for bonnie++. This loss of performance

is due primarily (90%) to transactions that restart, back-off, but continue failing.

Since bonnie++ does substantial creation and deletion of small files in a single direc-

tory, the resulting contention in file system code paths results in pathological restart

behavior in the function dput, which decrements the link count of the directory and

manipulates a few lists in which the directory entry appears. The fast-changing

35

slab allocator Kernel memory allocator with extensive use of
fine-grained locking.

dentry cache Locks protecting the directory entry cache,
accessed on pathname lookup and file
create/delete.

RCU Transactions used in place of spinlocks in the
Read-Copy-Update implementation

struct Protects private, shared, and nonlinear
address space mappings within an address space

(i mmap lock).
zoned page Physical memory zone descriptor and active/
frame allocator inactive lists synchronized with transactions.

Includes ZONE HIGHMEM locks.
timekeeping Sequence lock protecting the xtime variable
architecture
memory Lock protecting a list that contains all process

descriptors list process memory descriptors
(mmlist lock)

VFS file objects Protects accesses to lists of open files.
(files lock)

noncontiguous protects a doubly linked list of physically non-
memory areas contiguous memory areas. (vmlist lock)

Table 3.4: Subsystems from the Linux 2.6.16 kernel altered to use transactions instead of locks
(TxLinux-SS). Subsystem names correspond directly to index entries in Bovet and Cesati [14].

link-count effectively starves a few transactions. Using back-off before restart as

a technique to handle such high contention may be insufficient for complex sys-

tems: the transaction system may need to queue transactions that consistently do

not complete. The remaining 10% of the performance loss is attributable to large

transactions, which cause overflow of the transactional memory state from the L1

cache and incur virtualization costs for conflict detection and version management

of the overflowed data. There are many proposals to virtualize transactions that

grow too large for hardware resources, and this data indicates the importance of

such schemes. However, both of these issues in bonnie++ could be addressed in

TxLinux by using cx exclusive to protect the critical region in dput that creates

the transaction that has difficulty completing.

The Simics hardware module implementing the transactional subsystem is

36

bonnie++ Simulates file system bottleneck activity on Squid
and INN servers stressing create/stat/unlink. 32
instances of: bonnie++ -d /var/local -n 1
Run with 0ms of disk delay.

configure Run several parallel instances of the configure script
for a large software package, one for each processor.

find Run 32 instances of the find command, each in a
different directory, searching files from the Linux
2.6.16 kernel for a text string that is not found. Each
directory is 4.6–5.0MB and contains 333–751 files
and 144–254 directories.

MAB File system benchmark simulating a software devel-
opment workload. [65] Runs one instance per
processor of the Modified Andrew Benchmark,
without the compile phase.

pmake Runs make -j 2 * number of procs to compile 27
source files totaling 6,031 lines of code from the
libFLAC 1.1.2 source tree in parallel.

dpunish A locally developed micro-benchmark to stress
synchronization in VFS directory entry cache.
Parallel lookups and renames across multiple,
memory-based file systems.

Table 3.5: Benchmarks used to evaluate TxLinux.

also used to measure the number of times a spinlock was acquired, the number of

cycles spent acquiring it, and the number of times a process had to spin before

acquiring a lock. Spinlocks are “test and test&set” locks, so iterations of the inner

(test) and outer (test&set) loops are counted separately.

Table 3.6 presents details on the locking behavior of Linux and TxLinux,

showing that TxLinux reduces lock contention more than it eliminates calls to lock-

ing routines. It eliminates 37% of calls to lock routines, 34% of the test loops and

50% of the test&set loops. Reducing the number of test&set operations is important

because these operations use the coherence hardware, reducing system throughput.

TxLinux lowers lock contention by converting some heavily contended locks to use

cxspinlocks that allow multiple transactional threads into a critical region concur-

rently. Another interesting trend in Linux is that from 16 to 32 CPUs the number of

37

Figure 3.3: Time lost due to restarted transactions and acquiring spin locks in 16 and 32 CPU
experiments. For each benchmark, the first bar represents Linux and the second represents the
subsystem kernel TxLinux-SS. Time for TxLinux-SS is broken down into spinlock acquires and
restarted transactions, whereas synchronization time for Linux is only for spinlock acquires.

lock acquires does not increase substantially, but the amount of spinning increases

about 3×. This suggests that while the amount of time spent in synchronization for

32 CPU configurations is tolerable, lock-based synchronization overhead will be an

impediment to large system scalability.

3.3.3 Concurrency in TxLinux

In order to measure the degree of concurrency provided by transactions compared

to locking, each transactional thread upon entering a critical section records the

number of other transactional threads in that critical section. Figure 3.4 shows a

histogram of the maximum concurrency for the critical sections used in many of the

benchmarks on 32 CPUs with the cxspinlock kernel. 67% of the 284 critical regions

have more than a single thread executing at once, indicating that even Linux’s highly

tuned critical regions can benefit from being executed in parallel. The critical region

38

Linux TxLinux
Acq TS T Acq TS T

bonnie++ 16 12,478 132 340,523 28% 20% 68%

config 16 16,087 62 49,432 31% 56% 33%

dpunish 16 9,626 35 18,406 51% 66% 32%

32 10,514 102 153,699 49% 39% 6%

find 16 2,912 72 34,553 39% 42% 14%

32 2,758 183 111,629 40% 52% 21%

mab 16 15,451 101 45,167 51% 81% 55%

32 15,871 146 96,370 50% 71% 39%

pmake 16 764 9 8,981 30% 38% 24%

32 1,004 24 35,341 25% 48% 18%

Table 3.6: Spinlock performance for unmodified Linux vs. the subsystem kernel TxLinux-SS.
Acq represents the number of times the spinlock (a test and test&set lock) is acquired. T (test)
represents the number of times a processor spins on a cached lock value, while TS (test&set)
represents the outer loop where the lock code performs a cache coherent locked decrement. Linux
measurements are in the thousands. TxLinux-SS measurements are the percent reduction from
Linux. For example, for 16 CPU pmake,Linux performs 9,000 locked decrements in the outer loops
of spinlock acquisition, while TxLinux-SS performs about 5,500 resulting in a 38% reduction. 32
CPU data for bonnie++ and config were not available.

that has 32 threads in it at once is the sequence lock that reads the kernel tick counter

in the frequently executed function do gettimeofday. In Linux, this critical region

is guarded by a sequence lock, so it may also contain many concurrent threads.

In TxLinux, however, it is not necessary to reason about the type of accesses to

protected data, while seqlocks require a programmer to distinguish between read-

locking and write-locking. With transactions and cxspinlocks, a single primitive

adds concurrency for critical regions with many readers.

Linux 2.6.16 is optimized to minimize lock contention. Moreover, most trans-

actions executed by TxLinux are critical sections converted from locks. As a result,

the average concurrency in critical regions is low, and the amount of time spent

in critical regions is small compared to the total kernel execution time. If aver-

age transaction sizes grow to reflect TM’s ability to achieve high concurrency with

coarser-grained critical sections, the average and maximum concurrency will in-

crease.

39

95

78

41

18
10 8

3
8 6

2 4 1 1 1 1 2 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 1
0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

o

f
cr

it
ic

al
 s

e
ct

io
n

s

Maximum concurrency (in # of threads)

Maximum Concurrency across critical sections

Figure 3.4: Distribution of maximum concurrency across TxLixux-CX critical sections for the
config, find, mab and pmake benchmarks on 32 processors.

3.3.4 Cxspinlock performance and use

One of the main advantages of traditional spinlocks is their low overhead for locking

and unlocking. When acquiring an uncontended lock, the body of the spin lock

function executes only 3 instructions, including 2 memory references. When acquir-

ing a spinlock that is already locked, only 9 instructions are executed in addition to

the time spent waiting. Unlocking a spinlock is usually inlined, requiring just one

instruction.

Acquiring a cxspinlock involves more complicated logic than a normal spin-

lock, introducing some overhead in the number of instructions executed. Calling

cx optimistic to begin a transaction for an uncontended critical section requires

21 instructions and 9 memory references. Using cx exclusive to enter an uncon-

tended critical section from a non-transactional thread requires 21 instructions and

40

6

1 2
0

2 1 0 1 1

26

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

o

f
cr

it
ic

al
 s

e
ct

io
n

s

Executions restarted for I/O (%)

I/O restarts in transactional critical sections

Figure 3.5: Distribution across TxLixux-CX critical sections of the percentage of executions that
require restarts for I/O, measured with the config, find, mab and pmake benchmarks with 16 and
32 processors.

8 memory references. In both cases, all references except one are to stack variables.

The x86 optimizes accesses to stack variables, and stack addresses are highly likely

to be cache-resident, so these references contribute minimal additional latency.

In practice, the performance of cxspinlocks is very near that of traditional

spinlocks. Averaging across all benchmarks, the introduction of cxspinlocks results

in kernel time slowdowns of 3.1% and 2.8% for 16 and 32 CPUs respectively. By

contrast, the subsystem conversion of Linux to TxLinux does not use cxspinlocks:

for 16 CPUs, the subsystem kernel has a 2.0% slowdown on average (excluding

bonnie++, whose pathologies were discussing in section 3.3.2 this becomes a 0.9%

speedup), and on 32 CPUs it garners a 2.0% speedup. In all cases the change in

performance is within the confidence interval of the measurement.

To justify the increased complexity of cxspinlocks, there must exist criti-

cal regions in the Linux kernel that require exclusion along some but not all code

paths. Figure 3.5 shows how often I/O is performed in critical regions protected

by cx optimistic, restricted to those critical regions that contain I/O along at

41

least one code path. Several critical regions perform I/O along a small percentage

of dynamic code paths, and so may benefit from cx optimistic. The majority,

however, perform I/O all or nearly all of the time. These critical regions should

be optimized by replacing cx optimistic with cx exclusive. Even in these cases

cxspinlocks enable additional concurrency, as there are locks shared between critical

regions that always perform I/O and critical regions that never perform I/O (e.g.

the coarse lock protecting the ide subsystem is sometimes used to protect device

access and is sometimes used to protect simple data structures). Critical regions

that do not perform I/O may execute concurrently, even when they share data with

critical regions that will always require mutual exclusion.

Table 3.7 shows the amount of time wasted when restarting transactions for

I/O. In the current implementation of cxspinlocks, an I/O operation can cause a

number of transaction restarts equal to the nesting depth when the I/O operation

was executed. However, the average nesting depth when executing I/O (shown in

the Table) operations is low, with no I/O nested at more than 3 levels. The config

and MAB workloads perform a lot of I/O, and hence lose the most time to I/O

restarts. The time wasted restarting for I/O in TxLinux is mostly time spent idle

in Linux, because the I/O restart happens right before suspending the last runnable

process (all other processes are blocked on I/O). The runtime of Linux and TxLinux

on these workloads is nearly identical.

3.3.5 Contention management using OS priority

Figure 3.6 shows how frequently transactional priority inversion occurs in TxLinux.

In this case, priority inversion means that the default SizeMatters contention man-

agement policy [70] favors the process with the lower OS scheduling priority (results

for timestamp are similar). Most benchmarks show that a significant percentage of

transactional conflicts result in a priority inversion, with the average 9.5% across all

42

I/O Origin (SS) Origin (CX)
Nest Waste sys intr sys intr

config 16 1.42 32.3% 46.3% 53.7% 49.6% 50.4%
32 1.36 36.3% 45.9% 54.0% 49.8% 50.2%

find 16 1.51 0.3% 74.8% 25.2% 68.6% 31.4%
32 1.39 2.8% 79.5% 20.5% 67.8% 32.2%

mab 16 1.36 13.7% 73.4% 26.6% 63.6% 36.4%
32 1.30 31.2% 73.2% 26.8% 63.8% 36.2%

pmake 16 1.51 0.3% 51.5% 48.4% 21.3% 78.7%
32 1.50 0.3% 48.6% 51.2% 15.1% 84.9%

Table 3.7: Cxspinlock usage in TxLinux. Nest is the average nesting depth when I/O operations are
executed in transactions. Waste is the total time wasted due to restarting for I/O as a percentage of
kernel execution time. Sys/intr shows the percentage of all transactions that originated in system
calls and interrupts, respectively. Data is given for both the subsystem and cxspinlocks kernel.

kernel and CPU configurations we tested. While priority inversion tends to decrease

with larger numbers of processors, the trend is not strict. The pmake and bonnie++

benchmarks show an increase with higher processor count for the TxLinux-default

(the unmodified Linux scheduler) and TxLinux-sched (the transaction-aware mod-

ified scheduler) kernels respectively. The number and distribution of transactional

conflicts is chaotic, so changing the number of processors can change the conflict

behavior. Policy inversion, where a non-real-time thread can be favored in a conflict

Figure 3.6: Percentage of transaction restarts decided in favor of a transaction started by the
processor with lower process priority, resulting in “transactional” priority inversion. Results shown
are for all benchmarks, for 16 and 32 processors, TxLinux-SS .

43

Figure 3.7: Restart cycles as a percentage of total execution time for TxLinux-default (SS) with 16
and 32 cpus. The percentage of restart cycles gives a theoretical upper bound on the performance
benefit achievable by a scheduling policy that attempts to minimize restart waste.

over a real-time thread, is much rarer: it occurs only in mab and dpunish bench-

marks at rates of 0.01% and 0.02% respectively. The os prio contention management

policy eliminates both priority inversion and policy inversion entirely in our bench-

marks, at a cost in performance that is under 2.5% for TxLinux-default and under

1% for TxLinux-sched.

The frequency with which näıve contention management violates OS schedul-

ing priority argues strongly for a mechanism that lets the OS participate in con-

tention management, e.g., by communicating hints to the hardware.

3.3.6 Transaction-aware scheduling

The goal of transaction-aware scheduling (TxLinux-sched) is to take advantage of

the availability of transaction state information from the hardware to increase per-

formance, primarily by making scheduling decisions that attempt to decrease lost

work due to restarts. Figure 3.7 shows cycles spent restarting contending trans-

actions as a percentage of total execution time for all benchmarks using TxLinux-

default (unmodified scheduler) and TxLinux-sched kernel configurations. For most

benchmarks, the opportunity to improve performance by eliminating restarts is lim-

44

Figure 3.8: Relative execution time for the pipeline micro-benchmark for TxLinux-sched , TxLinux-
default with 4, 8, and 16 cpus.

ited: on average, if savvy scheduling were to eliminate all wasted restart cycles,

the overall performance gain for 16 and 32 cpus would be <1% (averaged across

all benchmarks), a statistically insignificant margin, given the confidence intervals

shown in simulation. Empirically, TxLinux-sched execution time is within 1.5% of

TxLinux-default for all benchmarks, providing neither a consistent benefit, nor a

consistent detriment to performance.

The TxLinux-sched policy attempts to deschedule threads that are under sig-

nificant contention, as indicated by the restart and backoff profile for the thread. As

a result, the ability of the policy to have a significant positive effect relies heavily on

both the presence of significant contention and the availability of threads at a simi-

lar priority that are able to make progress when scheduled in place of descheduled

threads. While a scheduling policy that reduces restarts may have minimal impact

where contention is low on average, as it is in our benchmarks, it can have a more

significant impact in situations where contention is high, reacting to contention to

ameliorate extreme conditions in ways that are not possible with traditional locks.

A micro-benchmark called pipeline was used to test this hypothesis. The

pipeline benchmark, simulates a multi-threaded application that has significantly

45

longer transactions and higher contention than the critical regions in TxLinux. It

consists of multiple threads (4× the number of processors) each working through

a set of 8 phases: the memory references made by the threads are mostly distinct

to the phase. If all threads are working in the same phase, contention is very

high, and it is unlikely that more than one thread at a time can make progress,

while execution can generally be overlapped safely for threads in different phases.

Figure 3.8 shows normalized execution time for this micro-benchmark, for the Tx-

Linux-default and TxLinux-sched configurations. The TxLinux-sched scheduler is

able to improve performance by 8% and 6% for 4 and 8 cpus respectively, while

the benefit under 16 cpus is too close to the confidence intervals to be significant.

The total number of restarts and total restart cycles wasted are reduced by 20.3%

and 21.5% respectively on average, showing that transaction aware scheduling can

potentially help manage contention related pathologies, while having no negative

performance impact under low contention.

3.4 Conclusion

TxLinux is the first operating system to use HTM as a synchronization primitive,

and represents innovation for HTM-aware scheduling and cooperation between locks

and transactions. TxLinux demonstrates that HTM can provide comparable perfor-

mance to locks, and can simplify code while coexisting with other synchronization

primitives in a modern OS. The cxspinlock primitive enables a solution to the long-

standing problem of I/O in transactions, and the API eases conversion from locking

primitives to transactions significantly. Introduction of transactions as a synchro-

nization primitive in the OS reduces time wasted synchronizing on average, but can

cause pathologies that do not occur with traditional locks under very high contention

or when critical sections are sufficiently large for the overhead of HTM virtualization

to become significant. HTM aware scheduling eliminates priority inversion for all the

46

workloads we investigate, and enables better management of very high contention

in ways that are not possible with traditional locks.

47

Chapter 4

Dependence Aware

Transactional Memory

4.1 Introduction

Transactional memory provides the abstraction of atomic, isolated execution of crit-

ical regions. A transactional conflict occurs when one transaction writes data that is

read or written by another transaction. When the ordering of all conflicting memory

accesses is identical to a serial execution order of all transactions, the execution is

called conflict-serializable [27].

Transactional memory systems are typically implemented using optimistic

techniques: the system speculates that critical sections are safe to execute con-

currently as transactions, and detects conflicts between concurrent transactions by

observing the memory addresses read and written. When two transactions access

the same memory cell and at least one of those accesses is a write, the system

assumes that a non-serializable schedule has occurred. Because a non-serializable

schedule may yield incorrect results the system must take some action to handle the

conflict.

48

TM systems typically respond to conflicts between transactions by forcing

one or more of the involved transactions to restart or block, which yields a level

of concurrency that is equivalent to that of two-phase locking [27]. In two-phase

locking ownership of resources needed for a task is acquired in a single phase (where

the number of resources held is increasing) and released in a single phase. The

technique is attractive because following the discipline yields a system of that is

free of deadlock. Note that the term two-phase locking refers to the order in which

ownership of objects is acquired and released, and locks need not be the mechanism

through which the notion of ownership is expressed. TM systems express ownership

of objects by including them in read-write sets, acquiring addresses by reading and

writing locations which are added to a read-write set. Any data read or written by

one transaction has an implicit lock on it that conflicts with any attempt to write

the same data. Addresses never leave a read-write set until abort or commit, at

which point they are released atomically. Hence, transactional execution of a critical

section has separate growing and shrinking phases for ownership of resources, which

is precisely the conditions required for two-phase locking. Hence, despite the fact

that TM systems need not use locks explicitly, Even TM implementations both eager

and lazy systems [?, 58] only provide concurrency equivalent to two-phase locking.

Two-phase locking is conservative, and does not admit all conflict-serializable

schedules. The goal of DATM is to use conflict serializability as the system’s safety

property, increasing concurrency relative to using two-phase locking.

Dependence-awareness is TM implementation technique that ensures conflict

serializability. Dependence-aware transactional memory (DATM) manages conflicts

by making transactions aware of data dependences and enforcing consistent com-

mit orderings, and in some cases, by forwarding data values between uncommitted

transactions. Dependence-awareness can allow transactions that encounter conflict-

ing transactions that encounter transactional conflicts to commit safely if they are

49

conflict-serializable. Because the system minimizes needless aborts, it increases con-

currency and allows software to make better use of parallel hardware than current

TM systems. Dependence-awareness is safe—transactions remain atomic and iso-

lated in the same way as current TM systems.

Dependence-awareness is most profitable for workloads that have significant

write-sharing. Write-sharing is problematic for TM in general because it can intro-

duce the overhead of multiple restarts on critical sections that ultimately need to

be serialized. Other approaches to this problem [32,34,40,60,64,88,89,96]. involve

mechanisms that complicate the programming model and require the attention of

skilled programmers to be safe and effective. Dependence-awareness, by contrast,

is completely transparent to the programmer. Handling write-sharing transparently

is paramount: many common data structures, like shared counters and linked lists

write-share data that cause performance problems in conventional TM systems,

suggesting that relegating the task of getting good write sharing performance to

“expert programmers” is untenable. Because dependence-awareness admits concur-

rency where current designs cannot, it provides good system performance without

burdening programmers with exotic new programming issues.

4.2 Increasing concurrency with DATM

The dependence-aware model creates and tracks dependences between transactions

that access the same datum, possibly allowing data to be forwarded speculatively

from one transaction to another. Dependences let DATM commit transactions that

a conventional TM would restart or block, making better use of concurrent resources.

4.2.1 Shared counter example

Data dependences are represented using standard notation; for example, W→R

means a memory cell was written by one transaction and then the same cell was

50

(a) both transactions commit (b) circular dependence

Figure 4.1: Two transactions increment the same counter, illustrating (a) a successful commit using
dependences with data forwarding, and (b) an abort due to circular dependences.

Figure 4.2: Three execution interleavings of two simple transactions. Time flows down. All memory
references are to the same shared counter. DATM can accept interleavings (a) and (c), indicated
by the presence of the end tx instruction.

subsequently read by a different transaction. Dependences are subscripted with

transaction numbers to indicate which transactions are involved. While the generic

term “memory cell” indicates that the granularity of the datum is not intrinsic to

the model, in this chapter a “memory cell” is a cache line unless otherwise stated.

Consider the shared counter shown in Figure 4.1(a). Assume that two differ-

ent threads on two different processors (P0 and P1) execute this code in two different

transactions (T0 and T1). The executions overlap in time as shown in the figure,

with time flowing down. If the counter value starts at 0, the figure shows T0 for-

warding its counter value (1) to T1. DATM establishes a W0→R1 dependence for

the counter, and ensures that T1 commits after T0. The transactions are allowed to

proceed concurrently even though they both write the same memory location. The

counter’s final value is two, which corresponds to the serialization order T0, T1.

51

The interleaving in Figure 4.1(a) is conflict-serializable, but would not be

allowed by the two-phase locking style of conflict detection done by current TM

systems. In most current TM systems, after T0 reads and writes the counter, any

subsequent access to the counter by T1 is considered a conflict, either forcing T1 to

block or one transaction to abort.

The interleaving in Figure 4.1(b) is not conflict-serializable, so both transac-

tions cannot successfully commit. Here, T0 writes the counter after it is read by T1,

creating a R1→W0 dependence, which constrains T0 to commit after T1. However,

when T1 writes the counter, it creates a W0→W1 dependence, which constrains T1

to commit after T0. The dependence graph contains a cycle, and if both transac-

tions were to commit, the counter would have the wrong value. DATM handles this

potential conflict by detecting the cycle—T0 is dependent on T1 and T1 is dependent

on T0. It aborts one of the transactions to break the cycle.

4.2.2 Accepting more interleavings

Figure 4.2 shows three different interleavings (called schedules in the database lit-

erature) for the memory references of transactions that increment a shared counter.

Interleavings (a) and (c) are conflict serializable. In (a), T0 can be serialized be-

fore T1, and in (c), T1 can be serialized before T0. Interleaving (b) is not conflict

serializable. DATM accepts interleavings (a) and (c), while conventional TM imple-

mentations do not.

Of course, accepting more interleavings does not by itself imply that DATM

will outperform conventional approaches, since many other factors impact actual

performance. However, by accepting more interleavings DATM increases the likeli-

hood that parallel resources are utilized when transactions execute concurrently—

instead of conflicting, concurrent transactions can coordinate and both commit.

52

Figure 4.3: Two transactions that conflict while incrementing a shared counter. The bottom
pair shows the dependence-aware implementation, while others are conventional HTM techniques.
Assume that transaction T1 always commits first.

4.2.3 Comparison with other conflict resolution strategies

Figure 4.3 compares how DATM and existing systems execute a pair of transactions

that conflict on a single shared datum. DATM creates a dependence from T1 to

T2. Neither T1 nor T2 is forced to block or restart. DATM commits T2 earlier

than the other conflict resolution strategies because it can accept memory access

interleavings that require the other systems to block or restart.

Figure 4.3 shows eager conflict detection (done at the time of the memory

reference) [58] and lazy conflict detection (done at commit time) [?]. Eager conflict

detection with restart causes T2 to restart on the conflict, and T2 conflicts again.

Eager conflict detection with stall-on-conflict causes T2 to stall until T1 commits.

Finally, with lazy conflict detection, T2 must restart when it tries to commit. Ex-

ecution interleavings that cause stalls or restarts with current conflict resolution

53

Dependence Forward Restart
W0→W1 No If in cycle
R0→W1 No If in cycle
W0→R1 Yes If in cycle, and T1 must if either: a) T0

does. b) T0 overwrites forwarded data
with new value.

Table 4.1: Summary of dependence types and their properties.

strategies are committed safely by DATM.

4.3 Dependence-aware model

This section presents the dependence-aware model, describing how the system main-

tains dependences and how those dependences affect transactions. The dependence

aware model admits all conflict serializable schedules.

4.3.1 Dependence types

Table 4.1 shows a summary of dependence types and their properties. The notation

W→R denotes a read after write (RAW) dependence—one transaction reads a cache

line that was written by another transaction. Dependences are subscripted with

transaction numbers, so that W0→R1 means a write from transaction T0 was read

by transaction T1. All dependences restrict commit order. If there is a XA→XB

dependence, then transaction A must commit before B.

The system tracks all dependences at the level of cache lines creating new

dependences between transactions in response to memory accesses at runtime. The

ordering of transactions depends on their dynamic behavior. The “Yes” in the

Forward column for W→R dependences means the system forwards the data in

the cache line when the dependence is created. The system records that the cache

line has been forwarded.

For a W0→R1 dependence, we call T0 the source transaction and T1 the

54

destination, or the dependent. The destination transaction must restart if the source

restarts, because the destination has read data forwarded by the source. To maintain

serializability, a dependent transaction can read a value from a source transaction

only if that value will be the final value of the cache line for the source transaction.

So the destination transaction must restart if the source transaction overwrites the

data it forwarded. Table 4.1 lists the cases when restarts are necessary.

Dependences are created per cache line on first access to the cell. Subsequent

accesses to the same object do not affect dependence structure For example, if

T0 writes a cache line that T1 then writes, and then T1 reads the cache line the

resultant dependence is formed on the basis of the initial write and is W0→W1.

When a transaction commits or aborts, all of its dependences disappear. The next

section discusses how dependences between transactions form when they both access

multiple memory cells.

4.3.2 Multiple dependences

Multiple dependences arise when two transactions conflict on more than one cache

line. Each cache line on which two transactions conflict creates a separate depen-

dence. To manage multiple dependences between two transactions, the model has

the restrictive dependence rule: The relationship between transactions is governed

by the most restrictive dependence in each direction. W→R is more restrictive than

W→W and R→W dependences, and the latter two are not ordered relative to each

other.

If a transaction is the source for a R→W dependence, and later it writes and

forwards a different cache line to the same destination transaction (thereby creating

a W→R dependence), the transactions are constrained by the more restrictive W→R

dependence. Both dependences are still tracked in the model.

If more than two transactions concurrently access the same cache line, then

55

the first two will create a dependence as described above. The third transaction

will create its dependence with the most recent writer of the cache line. The latest

writer provides the most up to date version of the cache line. Conceptually, the

dependences among transactions form a transaction dependence graph with a di-

rected link between two transactions if there is a dependence between them on any

memory cell.

4.3.3 Cyclic dependences

All dependences restrict commit order: a transaction must wait at commit time for

any transaction that it depends on to commit. If cycles arise in the transaction

dependence graph, the cyclic chain of dependences may cause deadlock. Depen-

dences arise from reads and writes of memory cells, so a cycle indicates that the

transactions have interleaved in a way that is not conflict serializable.

While there are several ways to handle cycles, our model avoids them. If a

memory access would cause a cycle in the dependence graph, the system restarts at

least one transaction in the cycle. The system does not allow cycles to form.

Another way to avoid cycles is to allow dependences only from older transac-

tions to younger transactions. Timestamp-ordered dependences go in a single direc-

tion only, so they cannot form cycles. However, timestamp-ordered dependences do

restrict concurrency more than a policy that allows dependences between any two

transactions.

Contention management is important for dependence-aware transactions,

just as it is for conventional TM systems [70, 83]. When the system detects a cycle

in the dependence graph, it must restart at least one transaction in the cycle to

break it. The contention management task is to preserve as much concurrent work

as possible, such as by restarting transactions that do not have dependents.

56

4.3.4 Disabling dependence tracking: no-dep mode

One attractive property of dependence-aware transactions is that they co-exist with

other conflict resolution strategies for ensuring safety. Restarting a transaction

in no-dep mode disables dependence tracking for a particular transaction. Sec-

tions 4.3.5 and 4.3.6 explain uses of the no-dep mode.

4.3.5 Exceptions and inconsistent data

Because the model forwards data between transactions, it is possible that a trans-

action can read invalid data, which in turn can lead to exceptions or infinite loops.

Inconsistent state seen by destination transactions are eventually made consistent

at the completion of the source transactions. The writes that bring the source trans-

actions into a consistent state cause a restart of the destination due to overwrites

of forwarded data. The restart of the destination eliminates infinite loops that are

not part of the application’s serial behavior.

A transaction that has read inconsistent data can throw an exception before

subsequent execution of the source transaction causes the destination to restart.

The hardware informs the OS through the transaction status register if the currently

running transaction has read forwarded data. The OS exception handlers suppress

these exceptions and, according to its policy, can restart a transaction in no-dep

mode to avoid further spurious exceptions. Section 3.3 quantifies the small number

of times transactions execute in no-dep mode for our prototype.

Program asserts must also be made dependence-aware. Assert failures in

transactions that have read forwarded data can be restarted or the failure is delayed

until the source transaction commits.

57

Figure 4.4: DATM architecture overview. DATM-specific state and structures are highlighted with
dark lines.

4.3.6 Cascading aborts

Cascaded aborts occur when one transaction’s abort causes other transactions to

abort. For example, a cascaded abort happens when a source transaction forwards

a value to a destination transaction and the source aborts—the destination must

abort as well. In DATM, cascaded aborts arise only from W→R dependences, where

the source aborts or overwrites forwarded data. This data sharing pattern, with one

transaction updating a variable multiple times while other transactions read it, is not

conflict serializable. Any safe transactional system will serialize such transactions,

either by stalling or aborting. Section 3.3 quantifies the small effect of cascaded

aborts on the performance of our prototype.

58

Figure 4.5: State diagram for the FRMSI cache coherence protocol. Standard transitions between
MSI are omitted for clarity. Transitions out of I are omitted as they are the same as those out of S.

4.4 Hardware design

This section discusses the hardware design for dependence-aware transactional mem-

ory. Key elements in the design are shown in Figure 5.2. The design must imple-

ment commit ordering, version management, W→R data forwarding, restart when

forwarded data is overwritten (called a forward restart), and cyclic dependence pre-

vention. To understand how these pieces interrelate, we first describe solving them

with a minimum of new hardware. We then refine the design to improve performance

while still keeping hardware state and hardware complexity low (Section 4.4.4). The

design described here relies on broadcast coherence.

DATM can be implemented with a novel cache coherence protocol called

FRMSI (Forward Receive MSI: pronounced like pharmacy), along with either an

an ordered vector of transaction IDs maintained at each cache, or a timestamp table.

59

The cache coherence protocol supports version management, helps order write backs

of committed state, and handles data forwarding and forward restarts. DATM relies

on global ordering for transaction commits and write backs of data modified in com-

mitted transactions, as well as for prevention of deadlocks and cycle dependences.

Support for such ordering decisions can be implemented either using timestamps

generated at transaction begin for contention management [67], or using an ordered

vector of transaction IDs. The FRMSI protocol relies on the augmentation of cache

lines with a transaction identifier [48,70], shown as TXID in Figure 5.2.

An important design principle in DATM is that while dependences enable

concurrency not currently accessible in TM designs, dependences are not a require-

ment for transactions to proceed. If any hardware resources or structures in the

DATM design reach a limit, dependences for that transaction are dynamically dis-

abled by restarting in a force-no-dependence mode (Section 4.3.4) that resembles a

current TM design. DATM is a best effort design, and contains no explicit overflow

(sometimes called virtualization) strategy for when transactional state overflows

hardware buffers—it can use any of the many current proposals [10,18,19,68,86].

4.4.1 Transaction status word

DATM adds two bits to the transaction status word, a register that holds the current

state of the running transaction. One bit is a no-dependence bit (shown as ND in

Figure 5.2), which indicates that the current transaction has not entered into any

dependences. Transactions that have no dependences can be created and can commit

without support from dependence-aware mechanisms: an explicit bit makes this

check efficient. Decoupling dependence- and non-dependence-aware transactions

ensures that regardless of the state of the dependence-aware hardware, transactions

in the system can still commit, and forward progress can always be made.

DATM also adds a force-no-dependence bit (Frc-ND), which disallows the

60

current transaction from entering transactional dependences. This state allows

DATM to fall back into a traditional eager conflict-management HTM mode [58].

4.4.2 FRMSI coherence protocol

DATM is implemented with support from the FRMSI cache coherence protocol,

which extends the MESI protocol, and has 11 stable states. The state diagram is

shown in Figure 4.5. The E state is omitted for simplicity; it can be added as an

optimization, but is not necessary. We could reduce the number of states if we use

signatures [16] to track forwarded and received bytes. First we review the mechanics

of the protocol and then show how the protocol achieves the goals of DATM.

Version management in DATM is complicated by data forwarding, which

results in the ability of multiple caches to modify the same cache line. FRMSI

contains states for forwarding and receiving data, allowing this kind of data sharing.

The TM and TS states are entered by lines in M or S that are read during a

transaction. These lines can transition back to M or S when a transaction commits

or aborts, because they are not modified during the transaction.

All TM* states (shaded) and TR (transaction received) states transition to

invalid if the transaction aborts. All TM* states (note that TM* does not include

TM) indicate a line is written during a transaction. These writes are buffered in

the cache, but are discarded if the transaction is not successful, by a transition to

I. A TR line must revert to I on abort because it contains speculative data received

from an active transaction.

TMR and TR are states for cache lines that receive forwarded data, while

TMF and TMRF are states for cache lines that have forwarded their data. These

states are explained in detail in Section 4.4.2. Commit of lines that are modified in

a transaction is the subject of the next Section.

61

Committing

All TM* states (shaded) transition to CTM (committing transactional modified) on

a commit. The CTM state is much like the M state in that it indicates a line that has

been modified with respect to main memory and requires writeback. However, a line

in CTM state must obey the ordering restrictions associated with the transaction

that wrote the line. To understand the need for a CTM state, consider that FRMSI

allows lines to exist in TM* states in multiple caches, but cannot allow lines to exist

in the M state in multiple caches. This could be addressed without an additional

state if, on completing a transaction, all lines in TM* state were to atomically write

back to memory, stalling the transaction commit until all write backs complete and

transitioning those lines to state I. Such a solution is unattractive because waiting

for write backs increases the latency of transactional commit, which must be fast

for TM to provide good performance [70].

Instead, the CTM state allows write backs to take place after transaction

commit while still preserving ordering with respect to other transactions in the sys-

tem. Transaction commit causes all updates made by a transaction to linearize [37]

to that commit point. Consider a line that is written by transaction A, and then

forwarded to B which also updates it. A is constrained to commit before B. If

commit includes all write backs, then after both transactions commit, B’s line is in

memory and in its cache in state M, which is correct. With delayed write back for

transactionally modified state, the lines enter CTM, where A’s line is constrained

to never overwrite B’s. Any access to the line gets B’s version, which is the latest

one. The CTM state uses the order vector to order accesses and write backs to

committed data, as explained in Section 4.4.3.

62

Forwarding and receiving

One of the chief goals of FRMSI is to enable cache line forwarding among transac-

tions. When a cache controller sees a transactional bus read (TGETS) for a line

that it has in state TMM or TMR (the line has been locally modified in a trans-

action), then it responds with the line and the identifier of the transaction that

wrote the line, and moves the state into TMF or TMRF. The receiving cache can

be transitioning from I or S into TR, the transactional received state.

Forwarded lines (states TMF and TMRF) publicize writes, in effect using

an update protocol by sending a TXOVW message on the bus to indicate that

previously forwarded speculative values are now stale. Any cache that has the line

in a received state must abort its transaction if it sees a write to the line, because

speculative data it received has been overwritten. The transaction only aborts in

TMRF if the overwrite is from an earlier transaction where ordering is defined

in Section 4.4.3. We later describe additions to the protocol, which reduce the

granularity of detecting the overwriting of forwarded data (Section 4.4.4).

Suspending transactions

DATM allows suspended transactions [70, 96], and it allows transactions with de-

pendences to suspend and resume. Cache lines store the transaction ID to enable

suspend and resume [70]. However, any attempt to create a dependence with a

suspended transaction will fail and the operation will be handled as a transactional

conflict, requiring the restart of one of the transactions involved.

Processor identifiers are insufficient for dependence management and cycle

detection when transactions can suspend. For example, to support 3 inactive trans-

actions per processor, the transaction identifiers have 2 bits more than the number

of bits in the processor identifier.

63

FRMSI transient states

For a bus-based design that doesn’t use a split transaction bus, FRMSI introduces

19 transient states. In general, transient states are required in this protocol when

forwarding occurs (forward pending states), when overwrites of previously forwarded

data require a TXOVW broadcast, and on transitions from non transactional (MSI)

states to transactional (T*) states, since many of these transitions must be globally

visible. However, the number of transient states does not grow polynomially with

the number of stable states for a number of reasons:

• DATM is a best-effort mechanism: eviction of lines in any transactional state

results in an abort of the transaction. As a consequence, any lines held in

speculative modified states can transition straight to invalid (I), and do not

require write-back pending states.

• Lines held in any received state (T*R*) are isolated: modifications made to

them locally require no permissions upgrades.

• Transitions from transactional states to non-transactional states require no

transient states since they reflect a local commit or abort. Note that the

commit or abort event itself requires global visibility and therefore broadcast,

but this is a per-transaction event, not a per-cache-line event.

Also note that use of hardware signatures to represent forward and recieve

states could eliminate 5 states from this protocol.

4.4.3 DATM ordering requirements

DATM provides conflict serializability by ordering dependent transactions with re-

spect to each other, and by linearizing their updates to transaction commits. We

first present the ordering requirements of DATM and then discuss two implementa-

tion strategies: an order vector and a timestamp table.

These are DATM’s ordering requirements.

64

1. Dependent transactions must commit in order.

2. Transactions that form dependences by receiving forwarded speculative data

must become dependent on the most recent writer of that data.

3. Cyclic dependences must be detected in advance, and avoided by restarting

one or more transactions.

4. Dependences are transitive: when transactions abort, dependence ordering

must be preserved for transactions that remain active.

5. Caches with the same line in CTM state must write back the lines in the order

dictated by their commit order, and subsequent requests for the line must be

serviced from the last cache to commit.

The succeeding text has numbers in bold parenthesis to indicate how the design

enforces the given requirement (e.g., (1) marks the explanation of how dependent

transactions commit in order).

The order vector

A DATM implementation can support ordering by maintaining an order vector

of transaction IDs in each cache. Each cache that contains a transaction with

dependences maintains a copy of the order vector, and all copies have identical

data. Each entry in the list has a transaction identifier, a valid bit and an active

bit. The active entries in the vector topologically sort the dependence graph of the

currently active transactions. The order vector provides the serialization order for

active transactions and for writebacks of committed transactions whose results are

still cache resident.

The vector reflects the superset of all dependences between transactions.

Dependences are created when a cache snoops a memory access on the bus that

is responded to by a cache rather than memory (using a mechanism analogous the

shared response to GETS request for a line in S or E in MESI). New dependences are

65

appended to the list, after all valid transaction identifiers. If transaction A forwards

a cache line to transaction B, then A,B is appended to the list (with the rightmost

position being the newest transaction). Each cache must see these dependences in

the same order if the vector is to be identical at every cache. In our bus-based

design, the bus ensures all dependences are seen in the same order: FRMSI would

require extra messages to be extended to support a directory protocol.

Timestamp ordering

Timestamp-ordered dependences are implemented with a timestamp table. Each

cache that contains a transaction with dependences (active, or with pending write

backs) maintains a copy of the timestamp table, and all copies have identical data.

Each entry in the table has a transaction ID, a timestamp, a valid bit and an active

bit.

Using timestamps is similar to using the order vector, any difference are noted

below in the discussion of the order vector. The main simplification of timestamp

ordering is that dependences only go from older to newer transactions, so cyclic

dependences cannot arise (3).

Meeting ordering requirements

A transaction can only commit if it is the first (leftmost) active transaction in the

order vector (1). Being first ensures that this transaction does not depend on

any others. When using timestamps, it can only commit if it is has the smallest

timestamp in the timestamp table (1).

If a transaction receives a cache line, its ID gets appended (on the right) to

the order vector. The receiver uses the order vector to determine the last dependent

transaction that provides the data for that line (2). Suppose A has forwarded a line

to B. If C reads that line, then C should receive the line from B, not A. If both A

66

and B attempt to forward the line to C, the order vector is used to determine that

B’s data should be received and A’s should be discarded. Using the received cache

line from the transaction with the highest timestamp also creates a dependence with

the latest writer (2).

When a new dependence is added, the hardware checks if the transaction ID

already appears in the vector of an active entry to the left of the current transaction.

If it does, there is a cycle in the dependence graph and some transaction in the graph

must be restarted (3). The order vector thus provides a simple mechanism to detect

cyclic dependences. Cyclic dependences cannot form when using timestamps (3).

When a transaction aborts, it must publish this event to the coherence pro-

tocol by placing the xABT message on the bus along with its transaction ID. An

abort message notifies other processors to turn off active and valid bits for that

transaction ID in the order vector, while leaving its predecessors and successors in

place (4). Therefore, if a dependence chain of transactions A → B → C arises, B

can abort without affecting A or C (provided the dependences are not forwarding

dependences) C remains serialized behind A. The xABT message is not needed

with timestamps, but an aborted transaction maintains its timestamp and hence its

place in the serialization order (4).

Commit must also be made visible to the coherence protocol, placing the

xCMT message on the bus along with its transaction ID. The commit message

notifies other processors to turn off the active flag but leave the valid bit. This way,

the commit can retain its position in the order vector to order write backs for lines

moving to the CTM state. This is explained in the next Section, and is handled

identically when using timestamps.

67

Write backs

Position in the order vector is used both to order the commit of active transactions

and to order writebacks for lines modified in committed transactions. Entries in

the order vector for committed transactions with pending writebacks are valid but

not active. Transactions remain valid in the order vector until all lines from the

transaction have exited the CTM state. The ordering remains valid until all of the

data updated during the transaction leaves the CTM state. A cache can detect when

it has written back the last CTM line for a given transaction ID and at that point

it sends a message to make the ID invalid in the order vector. Detection can be

implemented using simple logic on the state bits, or if the CTM state were recoded

as a single bit, as a wired OR.

Note that non-dependent transactions that include the TM and TS states

can execute and commit while lines are in the CTM state. If the processor accesses

any line in a CTM state, the line is written back and then the processor processes

the operation as if the line were in M.

All cache lines in CTM are marked with their transaction identifier (TXID),

and the serialization order is determined by looking up the TXID in the order vector

or timestamp table (5). The order vector or the timestamp table enforce a single,

global order for write backs in addition to active transactions.

Write backs are ordered and can be squashed. Assume A forwards a line to

B, B overwrites the line, and then both transactions commit. If A sees B write back

the line that A forwarded, A can transition the line from CTM to I without writing

back. B’s version is serialized after A.

The situation is similar for bus reads. If another processor issues a bus read

for the line that both A and B have in CTM, then both transactions can respond to

the request, write back the value, and transition the line to state S. If B responds

first and A observes B’s response, then A can squash its own response and transition

68

the line to I.

Timestamps are used to order write backs in the same way the order vector

is used (5).

Capacity of the order vector or timestamp table

Any transaction that needs a dependence can claim the newest index after the last

valid index. Once claimed, the index serializes the transaction after any that has

results that might be written back. Making the order vector large will minimize

the probability that the vector will fill. The order vector can be large because it is

not communicated and it is mostly consulted during a cache miss, when its access

latency can be overlapped with data fetch.

No matter how long the order vector is, it can fill because with pathological

line replacement, lines can remain in the CTM state indefinitely. A new transaction

cannot get a dependence if the order vector is full or if it has the same identifier as

a valid entry in the order vector. In these cases, transactions simply restart with

the force-no-dependence flag and the computation continues.

When the order vector fills, the last entry must write back its CTM lines.

Each cache can monitor if it has a transaction that occupies the last entry and

initiate write backs for the lines that transaction has in the CTM state.

The timestamp table can also fill, which would also require a cache to write

back lines in the CTM state in order to free an entry in the table.

4.4.4 Performance optimization

This section describes additions to the basic protocol to optimize performance.

These changes allow the hardware to manage dependences at the word level while

keeping writeback and most cache coherence operations at the cache-line level.

It also prevents short transactions from convoying behind unrelated long-running

69

transactions.

As a motivating example, consider a line that starts with its data equal to

all zeroes and that is not present in any cache. Transaction A writes word 0 with

value A and transaction B writes word 1 with value B. The write from transaction

A causes the line to enter A’s cache in the TMM state. B’s write of word 1 results

in a bus read for the cache line that is forwarded from A’s cache. A’s cache moves

the line into TMF and B’s has it in TMR (not TR because it wrote the word after

receiving the line).

In the cache-line-based design, if A writes word 2, it generates a bus write that

causes transaction B to abort, due to a circular dependence WA→RB and WB→RA.

However, there is no circular dependence at the word granularity because B does

not read the word A writes. Eliminating these false cycles will improve DATM’s

performance.

Per-word accessed bits for received states

We augment the cache with per word access bits (labeled A in Figure 5.2). On

receiving a line (TR, TMR or TMRF), the processor resets accessed bits, one per

word in the line. Every time the processor reads or writes a word, it sets the access

bit for the word. The access bits play an important role in interpreting bus writes

to forwarded lines. Such writes either cause restarts, update the value of the word,

or are ignored.

The rules for dealing with overwrites to forwarded lines enforce the obvious

causality: previous transactions cannot overwrite data the current transaction has

read or written, but a future transaction may. When the processor sees a bus write

for a line that it has received, it compares the order vector entry of the transaction

writing to the bus with the transaction identifier of the line. If the bus write index

is earlier and the access bit is clear, the word is updated (a previous transaction is

70

updating a word untouched by the current transaction). If it is later, the word is

not updated (the word belongs to a transaction that is serialized after this one). If

the access bit is set and the index is earlier, the transaction aborts (forward restart).

Otherwise, the transaction ignores the message (a future transaction will change the

same word this transaction changed).

Publishing writes to the bus for forwarded lines make these states act like an

update protocol. All receivers have the same value as earlier transactions for words

the receivers do not touch. This value agreement allows cache lines to be written

back without lost updates. In the above example, if A writes word 2 and that write

is not propagated to B, then the line that B commits will have a zero for word 2,

not an A, which is a lost update.

Predecessor transaction set

The main problem with having a single ordered vector for all transactions in the sys-

tem is that short transactions may have to wait for long transactions. For instance,

if transaction A forwards data to B, and then transaction Y forwards data to Z, the

order vector will read A,B,Y,Z. If Y and Z are very fast and A and B are slow, then

throughput will suffer, as Y and Z must be at the head of the order vector in order

to commit (condition (1) above).

We add a set of predecessor transactions to each processor (depicted as Pred-

Set in Figure 5.2), to prevent transactions having to wait for unrelated transactions.

A transaction can commit when its predecessor set is empty, it does not need to be

at the head of the order vector. The transaction builds the predecessor set with the

identifiers of any transaction from which it receives data. The set requires a maxi-

mum of only P entries, where P is the number of processors. An active transaction

must restart if it wants to commit but has a suspended predecessor. The set can

be smaller than P and, if it fills, the transaction restarts in force-no-dependence

71

Configuration
Processor Pentium-4-like x86 instruction set, 1 GHz, 1 IPC
L1 Each core has separate data and instruction caches. 32 KB capac-

ities, with 8-way associativity, 64-byte cache lines, lru-replacement
policy, 1-cycle cache hit.

L2 4 MB capacity, 8-way associative, with 64-byte cache lines, 16-cycle
access time.

Memory 1GB capacity, 350 cycle access time.
MetaTM Timestamp contention management, linear backoff policy, word

granularity conflict detection.

Figure 4.6: Architectural parameters of simulated machines.

mode. Timestamp-ordered dependences benefit in the same way from the predeces-

sor transaction set.

4.5 DATM Evaluation

This section provides details of the DATM simulation model, benchmarks and ex-

perimental results.

4.5.1 Prototype model

We implement a dependence-aware HTM model by modifying a publicly available

HTM simulator (MetaTM [70]). The model is implemented as a module in the

Simics 3.0.27 machine simulator [47]. The core architectural parameters are shown

in Figure 4.6. We evaluate the model with a 16-way SMP configuration (except for

TxLinux benchmarks, where an 8-way SMP is used). Each processor has a private

L2, and the L1 data caches contain both transactional and non-transactional data.

We modify the MetaTM cache coherence protocol, which is based on a MESI

snooping protocol, to support transactional dependences using FRMSI. The latency

of forwarding data between processors is conservatively modeled as a write back and

a read from memory. Bus arbitration and bandwidth constraints are not modeled.

The L2 cache also requires transactional state so that transactional state is visible

72

Name Description
bayes From STAMP [55], learns the structure of a Bayesian network, “-

v32 -r384 -n2 -p20 -s1”
config, pmake These benchmarks report transactions created in TxLinux, a

Linux-variant operating system with several subsystems converted
to use transactions for synchronization, instead of spin-locks
[70,75]. The workload involves several user-mode applications (con-
figure, make) which are running on the transactional OS.

counter, counter-tt A micro-benchmark where threads increment a single shared
counter. counter-tt adds think-time, to simulate longer transac-
tions.

genome From STAMP, a gene-sequencing bioinformatics application, “-g
1024 -s16 -n 4000000”

kmeans From STAMP, implements a K-means clustering algorithm, “-m40
-n40 -t0.05 -i random-n65536-d32-c16.txt”

labyrinth From STAMP, models an engineering program which performs
path-routing in a maze, “-i random-x48-y48-z3-n48.txt”

list A micro-benchmark which manipulates a linked-list. On a traver-
sal, a thread may search for a random node (60%), insert a node
(20%) or delete a node (20%). The number of nodes is 8192, node
traversals per thread is 512, and the number of threads is set to
four times the processor count.

ssca2 From STAMP, a scientific application with different kernels oper-
ating on a multi-graph, “ -s13 -i1.0 -u1.0 -l3 -p3”

vacation From STAMP, models a multi-user database, “-t 20000 -n 10”

Figure 4.7: Workloads used in DATM evaluation. TxLinux and list are kernel-mode transactions,
while the other benchmarks run in user-mode. All benchmarks use a number of threads equal to
the number of processors, unless noted otherwise.

to the coherence protocol (how to support transactional variants of MESI in the

presence of multi-level private hierarchies is an open research question, and previous

proposals would also be forced to make similar tradeoffs [87].)

The workloads are described in Table 4.7. They include a transactional

operating system, several STAMP [55] benchmarks, and two micro-benchmarks to

focus on specific data structures.

73

Figure 4.8: Relative execution time and restarts per transaction in DATM, normalized to MetaTM.
Lower is better.

4.5.2 Experimental results

Figure 4.9 shows the basic runtime characteristics of the workloads on both MetaTM

and DATM. Figure 4.8 shows graphically how DATM, normalized to MetaTM, re-

duces the execution time and number of restarts. The results show that, in almost

all cases, DATM improves or does not harm the performance of realistic work-

loads. DATM increases concurrency by reducing the average number of restarts per

transaction and average backoff cycles per transactions. Reducing restarts does not

necessarily improve performance, but it does when the reduction is an indicator of

increased concurrency.

In particular, the bayes and vacation STAMP workloads show a dramatic

reduction in restarts, and a 39% improvement in execution time. The remaining

STAMP benchmarks have little contention, so DATM does not change their perfor-

mance. For instance, while DATM reduces ssca2 restarts by two orders of magnitude,

it has only 0.1 restart per transaction on average under MetaTM.

Performance for the TxLinux workloads (pmake, config) is mostly flat be-

cause they spend a small amount of time executing transactions [70]. DATM re-

duces restarts substantially, but these restarts are not a performance problem. The

counter micro-benchmark (especially with think-time) is able to dramatically benefit

74

benchmark exec tx avg rst/tx pct rst avg bkcyc/tx

bayes 0.008 0.006 762 13.9 0.8 9.38 5.45 27,284 760

config(8p) 3.543 3.537 4698136 0.1 0.1 1.91 1.86 1 0.5

counter 0.095 0.071 160000 9.4 4.0 59.59 76.83 519 119

counter-tt 3.067 0.189 16000 1056.3 0.1 99.99 0.39 264,061 0.1

genome 0.212 0.212 352376 0.1 0.1 0.21 0.15 1 0.1

kmeans 0.301 0.295 436986 1.1 0.1 11.11 6.33 58 1

labyrinth 0.066 0.065 128 88.5 27.8 36.77 29.74 140,086 41,521

list(8p) 0.386 0.355 78586 0.2 0.1 10.89 5.32 2 0.2

pmake(8p) 0.260 0.253 251844 0.2 0.1 3.93 3.80 5 3

ssca2 0.008 0.008 47304 0.1 0.001 0.15 0.10 28 0.1

vacation 0.030 0.025 20000 8.0 0.9 36.71 29.93 1,123 40

Figure 4.9: Basic transactional characteristics of benchmarks running on on DATM and MetaTM.
In cases where two numbers are present, MetaTM is the leftmost number, while DATM is the
rightmost number. The “exec” metric is execution time in seconds (user time for STAMP and
micro-benchmarks, and kernel time for TxLinux benchmarks), and the “tx” metric is the total
number of transactions. The “avg rst/tx” metric is the average number of restarts per transaction,
and the “pct rst” metric is the percentage of transactions that restart at least once. The “avg
bkcyc/tx” metric is the average number of cycles spent backing off before restart per transaction.
All data is for 16 CPUs, except TxLinux benchmarks config and pmake, which were run using 8
CPUs.

WR dep RW dep fwd casc cplx no-dep incns b-cast
rst abt conf mode read write

bayes 3.8% 8.5% 0.4% 0% 7.0% 1 3 1

config (8p) 0.3% 0.2% 19.7% 2.3% 0.3% 2 1 10,132

counter 90.0% 80.7% 0% 0% 90.8% 0 0 0

counter-tt 99.9% 0.3% 0% 100.0% 99.9% 0 0 0

genome 0.1% 0.1% 0% 14.2% 0.1% 0 1 104

kmeans 8.9% 6.0% 0% 3.1% 7.0% 0 0 40,723

labyrinth 32.0% 32.0% 0% 0.1% 39.0% 6 1 4

list 14.3% 3.8% 3.3% 0.2% 0% 3 0 86

pmake (8p) 0.5% 0.5% 12.9% 6.5% 0.6% 0 10 10,009

ssca2 0.1% 0.1% 0% 0% 0.1% 0 0 0

vacation 35.2% 7.9% 0.4% 3.5% 44.7% 6 34 143

Figure 4.10: Basic dependence-related statistics. The first two columns show the percentage of
transactions that were involved in a dependence of that type (W→W dependences formed between
less than 0.2% of transactions for all workloads). The next three show the percentage of restarts
that were due to forward restarts, cascading aborts, or complex conflicts. The next two columns
provide an actual count of transactions that entered no-dep mode and experienced inconsistent
reads. The last column shows the total broadcast writes for the workload.

from dependences, with up to an order of magnitude improvement in performance.

DATM effectively forwards the counter values between uncommitted transactions.

Dependence-related statistics are shown in Figure 4.10. Benchmarks that

75

spend significant time in transactions commonly form dependences. For vacation,

35% of transactions form a forwarding dependence (W→R), and for labyrinth 32%

of transactions form R→W dependences. The formation of dependences increases

concurrency, reduces restarts and often improves performance.

DATM greatly reduces restarts relative to MetaTM, and the remaining restarts

are classified in Figure 4.10. Restarts due to transactions overwriting forwarded data

(forward restarts are rare (less than 1%) in the STAMP programs. They are a high

percentage of aborts in TxLinux, but that is mostly due to there being few aborts in

TxLinux. Cascaded aborts are generally responsible for single-digit percentages of

restarts, which is low considering that about 40% of conflicts in both vacation and

labyrinth involve more than two transactions (complex conflicts). While counter-tt

has 100% cascaded aborts, the abort rate is 0.39% (from Figure 4.9). All of these

aborts involve more than two transactions.

Finally, the number of inconsistent reads and transitions into no-dep mode

are very low. While these mechanisms are necessary for correct operation, they are

rarely needed. Also, the number of broadcast writes is less than 1/1000-th of one

percent of transactional writes for all benchmarks. While broadcasting writes is

necessary to preserve the ability to write back entire cache lines, it does not create

excessive interconnect traffic.

4.5.3 Hardware constraints

Figure 4.11 shows the performance impact of various hardware constraints: cache

line granularity, the ordering vector, and timestamp-ordered dependences (shown

for bayes and vacation). By comparison to word-granularity implementations, man-

aging dependences at cache line granularity reduces performance. Word-granularity

requires extra state bits in the cache, but does not significantly increase bus traffic

due to broadcast writes.

76

Figure 4.11: Relative execution time for various DATM hardware designs. DATM-clg uses cache-
line granularity to manage dependences, DATM-ov constrains dependences according to the order
vector, and DATM-ts constrains dependences with timestamp-ordered dependences. All relative
execution times are normalized to MetaTM. Lower is better.

False cycles in the order vector reduce the performance of DATM. The aver-

age length of the order vector during transactions in bayes and vacation is approx-

imately 6 (sampled at every dependence-causing memory operation) with maxima

very close to the number of CPUs. Using timestamps to order dependences also

reduces performance, but not as much as the order vector (e.g., bayes speedup goes

from 39% to 14%).

4.5.4 Contention management

An attempt to create a dependence that would result in a cycle will cause DATM to

invoke a contention management policy to resolve the conflict. DATM uses a novel

dependence-aware contention management policy, which minimizes cascaded aborts

by restarting the transaction with the fewest dependent transactions, resorting to

timestamp when the number of dependents are equal. Figure 4.12 shows relative exe-

cution times for bayes and vacation using eruption, polka, and the dependence-aware

77

Figure 4.12: Impact of contention management policies in the presence of DATM. Performance is
normalized to the MetaTM performance.

contention management policies. It outperforms non-dependence-aware contention

managers (including timestamp, which is not shown).

4.5.5 Correctness of FRMSI

The case that the FRMSI protocol is correct relies on random stress testing, per-

operation invariant-testing, rigorous use of asserts in the simulation modeling code.

The techniques are described in much greater detail in section 5.7, where they are

applied to another transactional protocol (XMESI), so this section provides only

an overview.

FRMSI stress testing

An approach similar to that described by Wood et. al [93] was used to stress-test

FRMSI. The CPU and interconnect-side cache controllers are exercised in simula-

tion by selecting randomly from among a randomly chosen set of operations. All

simulated CPUs run a program that continually, based on a psuedo-random number,

starts, ends, pauses, and resumes transactions, along with generating random reads

and writes. The program supports a mode in which transactions and pause/resume

pairs are guaranteed to be well formed, and one in which they are not. All simulated

modules which generate timing information (store buffers, all levels of cache, bus

78

local state legal remote states legal higher-level states
I * I
S I, S, TS I, S
M I I, S, M
TR I, T*, CTM I, TR, S
TS I, T*TM, S, CTM I, TS, S
CTM I, CTM, T* CTM
TM I, T*TS, CTM I, S, TS, TR, TM*
TMM I, T*, CTM I, S, TS, TR, TM*
TMR I, T*, CTM I, S, TS, TR, TM*
TMF I, T*, CTM I, S, TMF
TMRF I, T*, CTM I, S, TMRF

Table 4.2: Legal inclusion and sibling (local/remote) state pairs for FRMSI.

and main memory) randomly perturb stall times for operations across a wide range

of cycle times to increase the stress on the simulated model.

FRMSI Invariant checking

While the stress test program runs, the simulator module implementing FRMSI

caches runs in a mode that performs invariant checking after every memory opera-

tion or coherence event, as well as after instructions that affect the state of active

transactions (xbegin, xend, xpush, xpop). The invariants checked include inclusion

(traditional MSI inclusion as well as inclusion for T* states), along with invariants

that describe legal sharing states across different tiers in the memory heirarchy (e.g.

only one M or TMM copy, multiple TM* copies must all be TMF, TMR, or

TMRF, and so on). Table 4.2 shows legal inclusion pairs and legal states for a

block with same address cached in a sibling cache respectively.

Note that the inclusion properties do admit some combinations that are safe,

but should not arise in practice. For example, it is safe for a copy of a cache line

to be TMR in an L2 cache and in TR in an L1 cache because it must be in TMF

or TMRF elsewhere. Either the remote copy is committed (making the local L2

79

the holder of the globally committed value), or aborts or overwrites (resulting in

invalidation of both local copies). Both the TR and TMR copies require any local

transactions to await the commit or abort of remote copies in the event that the

local transaction occurs. However, while this combination is safe, it should not

occur in practice because the L2 should only move to TMR in response to a local

read, which would also move the the L1 to TMR. Note also, that unlike XMESI,

TMESI, and other transaction aware protocols [58], FRMSI cannot run with MESI

as a protocol for lower-level caches in a memory hierarchy.

In general, because FRMSI relies on the order vector (or timestamp-based

ordering) to enforce a global order on versions for cached lines, any pair of speculative

(T*) states is legal. For example, a line may be cached in TS on CPU0 and in TMM

on CPU1 as long as a R0 →W1 dependence exists between transactions on those

processors. The salient exception is the TS, TM pair which cannot occur because

TM can only be entered from M. If the *→TS transition occurred logically before

the *→TM transition, no M copy could exist, and writes on CPU1 would transition

straight to TMM. Conversely, if the *→TM transition occurred logically earlier,

no S copy could exist, and reads on CPU0 would move to TR rather than TS.

Comparison with an (assumed) correct MESI implementation

In the absence of transactional memory operations, FRMSI should behave exactly

the same as MSI. By adding an E state to FRMSI, it was possible to perform

the same cycle-wise comparison against teh Simics g-cache implemenation that is

described later in section 5.7.3. The FRMSI implementation (with added E state)

yields identical traces to g-cache up to 100,000,000 memory operations, after which

the simulation terminates.

80

Use of asserts

The FRMSI transaction versioning C++ code relies on 51 asserts, and the cache

model relies on 24 asserts during all simulations to check the correctness of state

transitions and version management. Any simulation for which a failure occurs will

cause the simulation to fail.

FRMSI stress-testings results

Bugs recently exposed in FRMSI by stress testing:

• A corner case for invalidations when a memory operation crossed a cache line

boundary. When this case occurs, the cache needs fetch two lines, which it

was correctly doing–however, the implementation of coherence traffic requires

explicit “sends” to go to all the snooping caches, and the second send was

using the wrong address, with a resulting invariant violation.

4.6 Conclusion

Dependence-aware transactions increase throughput by enabling concurrent exe-

cution of transactions that would otherwise conflict due to updating shared data

structures. This paper presents the design, and a prototype implementation of

the first dependence-aware hardware transactional memory system. Experimental

results from our prototype confirms the potential performance benefits of depend-

ence-aware transactional memory as compared to traditional HTM implementations.

DATM eliminates the need for programmers to resort to esoteric programming pat-

terns or to extend the TM programming model. This performance improvement is

achieved through mechanisms that are completely transparent to the programmer.

81

Chapter 5

Avoiding and managing

contention with TagTM

5.1 Introduction

The field of HTM research has become a diverse ecosystem of different designs and

proposals [?, 2, 5, 7, 9, 10, 12, 13, 15, 18, 19, 22, 36, 39, 45, 46, 48, 58, 68, 70, 71, 85, 94,

96]. Despite this diversity, proposals to date have shared a unifying assumption

that conflicts between transactions will be rare 1. As a result, HTM designs favor

tradeoffs that improve conflict-free performance at the expense of performance under

contention. However, the ongoing lack of realistic TM workloads, combined with

TM’s envisaged role as a tool for the “average” programmer suggest this assumption

may be tenuous.

This chapter argues that such an assumption endangers the success of TM

because it admits designs that handle contention poorly. There is considerable evi-

dence that contention is not necessarily rare. For example, Shriraman et al. find that

as many as 90% of transactions conflict in some STAMP [54] benchmarks and up
1With notable exceptions [71,84]

82

to 70% conflict in STMBench7 [28]. Work with TxLinux [70] showed that even OS

synchronization, typified by very small critical sections (hundreds of instructions),

can show moderate contention rates (10-20%) and occasional pathologically high

contention [75]. In light of this, we that argue HTM implementations must perform

well not only under low contention, but must degrade gracefully under contention.

When conflicts do occur, HTM must manage them well by making contention man-

agement decisions quickly, and by supporting flexible policy so that decisions pro-

mote good performance. Additionally, HTMs should support techniques that help

software avoid contention by eliminating the need to use heuristic approaches such

as backoff to decide when conflicting transactions should retry. While it has been

shown that backoff can reduce contention, and that exponential backoff in particular

can avoid livelock [84], backoff can itself lead to performance pathologies [75] and is

fundamentally heuristic.

This chapter presents TagTM, an HTM design that makes flexible contention

management efficient in an HTM, and supports mechanisms to help software avoid

conflicts before they occur. The techniques TagTM uses to improve performance

under contention are applicable to any HTM design that relies on caches for ver-

sion management and coherence for conflict detection. TagTM comprises two novel

mechanisms to improve performance under contention: notifying transactions, and

transaction annotation. Notifying transactions handle repeated transactional con-

flicts more effectively than backoff by making precise rather than heuristic decisions

about when to retry. Transaction annotation helps TagTM provide user-defined

contention management policies by allowing software to tag transactions with meta

data that can be used by a simple hardware contention manager. Intelligent selection

of meta data allows software and hardware to work in concert to implement flexi-

ble contention management policies without trapping to software or baking policy

implementations into silicon. TagTM uses a transaction-aware coherence protocol

83

called XMESI that extends transactional coherence to support powerful mecha-

nisms such as transaction annotation and notifying transactions.

The rest of this chapter is organized as follows. Section 5.2 explores flex-

ible hardware-based contention management, while section 5.3 explores TagTM’s

techniques for contention avoidance. Section 5.4 presents a coherence protocol and

microarchitecture to support these features, which are evaluated alongside a cross-

section of designs in section 5.5.

5.2 Transaction Annotation

A dynamic conflict occurs when two or more transactions access the same memory

cell, and at least on of the accesses is a write. A conflict indicates that a non-

serializable schedule has occurred: at least one of the transactions involved must

abort and retry to preserve correctness. A contention manager (CM) is an abstrac-

tion that implements a policy or policies that decide which of the transactions must

restart. The efficacy of CM policies is workload-dependent, and policies can have a

first-order impact on performance [83]; as a result, support for flexible policy is a re-

quirement for TM. HTMs can support contention management in software [48,86] or

in hardware [22,58], and conventional wisdom has it that this flexibility must come

at some complexity cost. Software implementations are arbitrarily flexible but re-

quire support from the hardware to trap to software handlers and communicate CM

decisions back to the microarchitecture. Hardware implementations can be much

simpler and lack flexibility, or must introduce even more complexity by implement-

ing algorithms directly in silicon. Previously explored policies simple enough to be

reasonable candidates for hardware implementation are likely to be inadequate. For

example, the requester-wins [22,58] requires almost no additional hardware over the

baseline HTM support, but is prone to livelock [13].

TagTM shows that flexibility and simplicity need not be at odds in this

84

domain. TagTM provides the flexibility of software-based contention management,

and does so without trapping to software, relying on only minimal hardware assists.

As a result, TagTM reduces both hardware complexity and latency for contention

management decisions.

5.2.1 Limitations of software conflict handlers

Contention management implementation for HTM is complicated by the tension be-

tween a need for user control over CM policy, and the fact that the mechanisms used

to implement HTM abstraction are microarchitectural (e.g. caches, coherence pro-

tocols), and as such are typically not software-visible. Trapping to software handlers

to implement CM introduces a number of design obstacles. It begs the question of

where the handler should run: is the CM centralized or decentralized? If the CM

is decentralized, which node runs the handler? Conflicts are detected at the co-

herence fabric by observing memory operations: if a contention manager is to have

the freedom to decide in favor of either the requesting node or the detecting node,

such conflicts must be resolved before the memory operation can complete. This

requirement in turn implies that the results of software handlers run in interrupt

context (and potentially involving user-kernel mode crossings) be available to co-

herence controllers, complicating coherence implementation, potentially introducing

NACKs in the protocol, along with additional transient states.

The rationale behind software-based CM is that software knows its needs

better than hardware, and can therefore implement better policy. In practice, this

means that policies take into account dynamic state such as application data, and

transaction meta data such as transaction age or the sizes of read-write sets [70,84]

to inform CM decisions. When transactions are supported using microarchitectural

features such as caches and coherence, making such meta data visible to software

requires additional support. In particular, making state available on the node where

85

a conflict handler runs is a serious challenge: while it is easy to posit hardware assists

that expose simple meta data through registers or ISA extensions, such hardware

does not solve the problem of how such information is to become available at remote

nodes. For example, the Polka CM policy [83] relies on restart histories and read-

write set sizes. The node that detects the conflict in an HTM implementation can

infer these data from microarchitectural state for the transaction running on that

node, but cannot get this information for remote transactions without some interface

for collecting this data and some mechanism to communicate with other nodes.

Additionally, some desirable policies may be very difficult to implement in

software because they rely on access to application or OS data structures to arbi-

trate conflicts. This in turn requires synchronization, further complicated by the

fact that conflict handlers run in interrupt context (which is a poor fit for many

synchronization primitives). The os-prio [75] policy, which eliminates OS scheduler

priority inversion by preferring the transaction whose thread has higher OS priority

illustrates this problem well. Collecting priority values for conflicting transactions

requires accessing oft-contended scheduler data structures. In the Linux kernel, col-

lecting OS priority for all transactions involved in a conflict requires calling a func-

tion (find task by pid) that requires the caller to hold a lock (tasklist lock).

The tasklist lock cannot not be taken in interrupt context without risk of dead-

lock. Using transactions rather than locks to synchronize conflict handlers does not

solve the issue and gives rise to the need to support nested conflict handling.

Finally, subtle race conditions arise in handler-based CM. A handler may

execute concurrently with a transaction that is involved in the conflict being arbi-

trated. By the time a handler completes, conflicting transactions may have commit-

ted; more conflicting transactions can begin on remote processors. Finally, a CM

handler needs some mechanism by which to communicate results. Communication

through memory introduces the need for more synchronization. Interprocessor inter-

86

rupts (IPIs) seem a likely candidate for communicating decisions between processor

nodes, but it is common for spinlock-protected critical sections (e.g. in the Linux

kernel) to mask interrupts, making IPIs a non-starter in some environments. It is

worth observing that such race conditions are a challenge even for HTM designs

that do not rely on cache-based version management. For example, TokenTM [12]

attempts to decouple coherence from HTM implementation entirely by managing

TM permissions using Tokens, which are written to a software-visible log in cachable

virtual memory. While this does make transaction meta data effectively visible to

software handlers, it does not solve the problem of how to coordinate decisions

among local and remote transactions, and requires some form of synchronization to

allow concurrent execution of local transactions and remote conflict handlers which

may need to infer meta data from the logs.

5.2.2 TagTM: Implementing CM with annotation

We take the position that contention management decisions must be decentralized

to avoid bottlenecks, and they must be flexible and under the control of software

to avoid pathologies and livelock. However, for reasons detailed above, the policies

themselves should not be run as software handlers. Transaction annotation, is a

novel mechanism that allows software to tag transactions with data that can be

used by a skeletal hardware-based contention manager. In transaction annotation,

software controls policy by selecting tag values that encode the relative importance

of individual transactions under some arbitration policy. Contention management

decisions are made by the hardware based on the tag values selected, a decision

that can be made in hardware at the node where conflicts are detected, and indeed

by coherence controllers. TagTM implements transaction annotation with minor

hardware assists (detailed in section 5.4), by including an additional register per

node, extending cache-lines and augmenting coherence messages with payloads that

87

include tag values. By allowing software to annotate transactions with tags to

inform CM policies, TagTM provides the policy enable by software-based CM, but

eliminates the complexity required to support handlers and allows CM decisions to

made very quickly.

5.3 Avoiding conflicts with Notifying Transactions

TagTM uses a novel mechanism called notifying transactions to eliminate the need

for contention-avoiding heuristics such as exponential backoff. Notifying trans-

actions use the coherence fabric to communicate in much the same way TTAS

(test-and-test-and-set) spinlocks [52] leverage coherence to reduce memory pres-

sure caused by contended test-and-set locks. TTAS spinlocks effectively use the

coherence fabric as a notification system: once a lock is held on a particular proces-

sor, any processors spinning on the lock variable can spin by repeatedly reading a

shared copy of the lock’s cache line without causing any additional traffic below the

L1 cache. When a remote lock holder writes the lock variable to release it, it must

request an exclusive copy: the subsequent GETX invalidates any shared copies of

the line, and has the side-effect that waiters on the lock need not communicate with

memory or execute coherence-visible CAS instructions repeatedly until exactly the

moment the contended lock becomes available.

Currently, hardware transactions enjoy no analogous mechanism: if a trans-

action retries because of a conflict, no similar coherence traffic pattern exists to

that allow aborted nodes to infer when a retry is likely to succeed or fail. This is a

significant source of potential performance loss under contention. Traditionally, this

problem is addressed with backoff policies, which can be effective [70, 84] but are

fundamentally heuristic. A policy that is too aggressive puts pressure on the mem-

ory system, while a less aggressive policy can introduce needless serialization. Both

cases result in lost performance. Moreover, because failed transactions must inval-

88

idate written cache lines, transaction retries incur cache misses and must interact

with memory to rebuild read-write sets. The result is that contention in hardware

transactional memory can have a much more severe impact in terms of pressure on

memory bandwidth than highly contended locks.

Notifying transactions address this problem by leveraging modest extensions

to transactional cache coherence protocols, which allows software to rely on support

from the HTM hardware to make informed decisions. Notifying transactions retry

after a conflict only when the retry is likely to be succeed, and need not initiate

requests to memory while waiting to retry.

In TagTM, Notifying transactions are implemented with simple hardware

support for remembering recent conflicts. For a transaction that wins a conflict, the

hardware marks conflicting cache lines with a bit indicating a conflict has occurred.

On commit or abort, coherence uses this bit to make coherence state transitions on

those lines globally visible. For a transaction that loses a conflict, conflicting lines

transition to a coherence state that indicates the lost conflict–this state behaves

very much like a normal invalid state, with two exceptions. First, the ISA can query

whether a given address is cached locally in that state, yielding a good indication

of whether it was recently involved in a conflict. Second, lines in this state will

transition to I in response to messages observed by the interconnect-side controller

that match that line. Because a remote conflicter takes globally visible state tran-

sitions for conflicted lines on commit or abort, the resulting local transition acts as

a notification that it is likely safe to retry a previously conflicted transaction.

Software examines a return code from the instruction the xbegin instruction

(transaction begin) that indicates the reason for the abort , and provides the address

of the conflicting memory location if a conflict caused the abort. Using an ISA ex-

tension (xquery tqc) to query whether a conflicting cache line is still in a state that

indicates a recent conflict, software can spin after a conflict until the conflicting line

89

takes a state transition triggered by the commit or abort of the remote conflicting

transaction, as shown in the code in figure 5.4.4. In this way, transactions can avoid

heuristic approaches like backoff to determine when to retry, and can dramatically

reduce pressure on memory when critical sections or data shared in transactions

are highly contended. Reduced memory pressure can translate directly to improved

performance in a bandwidth-constrained environment.

5.4 Design

The TagTM design relies on simple extension to microarchitecture, an additional

ISA instruction, and a new cache coherence protocols called XMESI.

5.4.1 XMESI

The XMESI protocol augments cache lines and transactional messages with software-

visible state called TxTAG, which is the fundamental building block TagTM relies

on to make contention management decisions locally at cache controllers. Five sta-

ble states are added over the traditional MESI states: three support tracking of

read-write sets and buffering of speculative writes, while two support inference that

lines have been recently involved in transactional conflicts. It should be noted that

at least two of the first three states are required in any HTM design that uses

caches for version management and conflict detection. Figure 5.1 depicts the state

transition diagram for stable states in XMESI; table 5.2 shows state encoding for,

and table 5.1 details actions taken in XMESI to handle local commits, aborts, and

conflicts detected locally and remotely.

The standard M, E (not shown in figure 5.1 but included in the protocol),

S, and I states behave as they would in a normal MESI protocol. The TS state

represents transactionally read cache lines, while TMU and TMM states represent

lines previously in M subsequently read and modified in a transaction respectively.

90

Figure 5.1: The XMESI protocol. State transitions for standard MSI states are elided for clarity.
The TMU state indicates a line that was previously in M, and has been read but not written
in a transaction. The value is dirty with respect to main memory, but is the current globally
committed value. The TMM state indicates a line that has been written in a transaction, and is
therefore both speculative and modified with respect to main memory. The TS states represent a
non-dirty line (E or S) lines that have been read in a transaction. The TQM state is represents
a line that was read or written in a local transaction, and conflicted with a remote writer, while
TQS indicates a conflict with a remote reader. All edges labeled cpuTxR, cpuTxW indicate
memory operations from the processor and are parameterized with a transaction identifier (TXID)
and TxTAG. Edges labeled with xCMT indicate a transaction commit event. Edges labeled
xLCNF(r) and xLCNF(w) indicate a remote conflict response to a locally initiated read or write
respectively, and indicate that the local transaction has lost arbitration and must abort. Edges
labeled SxWINV and SxRINV indicate transitions triggered by the commit or abort of a remote
transaction that conflicted with the local one.

The TMM and TS states or their analogues are necessary in any cache-based HTM

versioning implementation and the TMU state is an optimization analogous to the

TM state described by Shriraman et al. [87]. Taken collectively, the TS, TMU,

and TMM do not have semantics that differ significantly from previously proposed

designs [71,87].

The TQS and TQM states indicate lines cached that were referenced in a

transaction that lost a conflict with a another remote transaction: TQS indicates

that the remote transaction was a reader of the cached memory location, while

91

msg/act TMM, TMU TS TQM TQS

GETX asym. conf:T*→I asym. conf:T*→I TQM→I TQS→I

GETS asym. conf:T*→I – – –

TxGETX Win:T*→T*xLCNF Win:T*→T*+xLCNF – –
Lose:T*→TQM Lose:T*→TQM

TxGETS Win:T*→T*+xLCNF – – –
Lose:T*→TQS

SxRINV X X TQM→I –

SxWINV X X TQM→I TQS→I

xLCNF(R) T*→TQS T*→TQS

xLCNF(W) T*→TQM T*→TQM

xCMT(xC set) T*→M/SxWINV TS→S/SxRINV X X

xABT(xC set) TMU: TMU→M/SxWINV TS→S/SxRINV X X
TMM: TMM→I/SxWINV

Table 5.1: XMESI state transition triggered by bus/interconnect-side memory traffic, local commit
or aborts, and remotely detected conflicts. Remote commits and aborts are made visible with
compulsory SxWINV and SxRINV messages for conflicted TM* and TS lines respectively.

TQM indicates that the remote transaction was a writer. The states are used to

support an ISA extension called xquery tqc (described in section 5.4.2, and shown

in table 5.3) that returns a 1 or 0 indicating whether the given address was recently

involved in a transactional conflict; an assessment that is well approximated by

whether or not the address is cached locally in TQ*. In all other respects, TQ*

states behave like MESI invalid states: reads and writes to TQ* lines are cache

misses. A simpler design could condense the TQ* states into a single state at some

cost in precision in making retry decisions.

The XMESI protocol supports transactional versions of GETX and GETS

(get exclusive and get shared) requests called TxGETX and TxGETS [87]; XMESI

parameterizes these requests with both a transaction identifier TXID, and a small

software supplied meta data value called TxTAG a value set as part of the xbegin

instruction. Conflicts are always arbitrated at the node where they are detected,

usually in reaction to snooped memory traffic (however, conflicts can occur between

multiple local transactions as well). XMESI also supports reply messages that in-

form a requesting transaction that the request caused a conflict, and the contention

92

state m v c
M 1 1 0 0
E 1 0 1 0
S 0 1 0 0
I 0 0 0 0
TMM 1 0 0 0
TMU 1 1 1 0
TS 0 1 1 0
TQM 1 0 1 1
TQS 0 0 1 1

Table 5.2: XMESI state encoding.

management policy invoked to handle the conflict decided that the requester would

lose the conflict. To this end, the “lost conflict” messages xLCNF(r) and xL-

CNF(w) indicate that the winning transaction was a reader or a writer of the

conflicting address respectively. Nodes receiving LCNF messages must abort the

current transaction, and transition any locally cached copies of the conflicted line

to TQS in response to xLCNF(r) and TQM in response to xLCNF(w).

When contention management decides in favor of a transaction, XMESI

marks the cache lines involved with a single bit (xC) that indicates the line was in-

volved in a conflict. When the winning transaction subsequently commits or aborts,

cache lines with this bit set require that hint invalidations messages, called SxRINV

(for lines in bf TS) and SxWINV (for lines in TMU or TMM) be sent as part

of the commit or abort. Remotely cached lines in TQS or TQM state respond to

these messages by moving to the invalid state, with the side effect that xquery tqc

instructions executed for those lines will no longer return 1.

5.4.2 Micro-architecture and ISA extensions

Additions to microarchitecture and ISA necessary to TagTM are shown in figure 5.2

and table 5.3. ISA support includes the compulsory instructions to begin, end, retry,

or check for the existence of a transaction, as well as a new instruction, xquery tqc,

93

Figure 5.2: Microarchitectural features required to support TagTM. In addition to a transaction
identifier TXID, L1 cache lines are augmented to include a TxTAG field and a single xC bit
which, when set, indicates that the line being cached was involved in a transactional conflict that
the local transaction won. The processor core is extended to include a TxTAG register as well.
The additions shown in gray (XCB) is a transaction control block [48]: comprised of registers that
make meta data about transactions visible to software. The xclcount indicates the number of lines
in T* states (a heuristic for transaction size), the xrstcnt stores the number of times the current
transaction has restarted.

which returns and indication of whether a given address was recently referenced in a

local transaction that lost a conflict by checking whether the line is cached in TQ*.

Processor nodes are extended to include a TxTAG register, set by the xbe-

gin instruction, along with transaction status word TXSW. L1 data cache lines

are extended to support a transaction identifier (TXID) [48, 70]); we additionally

include the software-visible TxTAG field, and an xC bit. The TXID and TxTAG

fields set by hardware to match the value in the TXSW and TxTAG processor

registers when a cache line is referenced in a current transaction. The xC bit is set

by hardware in reaction to conflicting memory traffic seen by the cache controller.

If the line is involved in a transactional conflict, and the local transaction is selected

as the winner, the xC bit is set.

Note that support for TQ* states in an SMP-like organization requires minor

changes to lower level caches to ensure that coherence events for lines an upper

level cache holds in TQ* are visible to that cache. This can be accomplished by

allocating a single bit on cache lines in lower level caches that indicates that a line

in I in a lower level cache was recently involved in a transactional conflict. This

allows interconnect-side controllers to continue to observe and propagate coherence

traffic for such lines, but note that lower level caches are free to treat the line as

94

Primitive Definition

xbegin Instruction to begin a transaction. Accepts a parameter TxTAG al-
lowing software to label transactions with data that can be used by
contention management algorithms. Returns a code indicating the rea-
son for retry and updates a status register to hold the address of the
conflicting memory location in the event of a conflict.

xend Instruction to commit a transaction.

xrestart Instruction to restart a transaction

xgettxid Instruction to get the current transaction identifier, which is 0 if there
is no currently active transaction.

xquery tqc Instruction to query whether an address was involved in a recent trans-
actional conflict. Implemented as a query for whether the given line is
cached locally in TQM or TQS state.

Table 5.3: ISA support for TagTM.

invalid in all respects, including reallocating the line to cache a different block of

memory. When this occurs the lower level cache must (conservatively) invalidate

copies in upper level caches.

5.4.3 Transaction Annotation

TagTM orchestrates the mechanisms described in the previous section to render

contention management decisions locally at cache controllers at the time conflicts

are detected. All memory traffic is labeled with both TXIDs and the TxTAG

values (extending message payloads), and contention management is implemented

by preferring the greater of the two TxTAG values, defaulting to preferring the

greater TXID in the event of a tie.

This mechanism enables dynamic selection of policy in TagTM. Because soft-

ware selects TxTAG values when using the xbegin instruction, these values can

be chosen in such a way as to ensure that CM decisions are made according to the

desired policy. For example, the os prio policy [75] can be implemented by using

the value of the Linux effective prio function as the TxTAG value. The po-

lite [83] policy can be implemented by parameterize xbegin with a restart counter.

The transaction annotation is sufficient to support controller-based implementation

95

of most policies described in the literature.

Contention management algorithms built using this mechanism are safe be-

cause the TXIDs and CPU identifier guarantee a total order. Software is responsible

for ensuring that policies are livelock free, although this is not a significant burden

in this context: any policy that avoids choosing a new TxTAG value on restart is

guaranteed to be livelock-free.

5.4.4 Implementing notifying transactions using XMESI

n o t i f y i n g t x (i n t l a b e l) {
t x r e t r y :

i f (CONFLICT(xbegin (l a b e l))){
xend () ;
i n t ∗ v = c o n f l i c t a d d r (TXSW) ;
whi l e (xquery tqc (v)) ;
goto t x r e t r y ;

}
// work on data s t r u c t u r e
xend () ;

}

Figure 5.3: Pseudo-code using notifying trans-
actions for a critical section. If a conflict is de-
tected, software ends the transaction, collects the
address of the conflicting line and spins until the
xquery tqc instruction returns false, which will
occur when the cache line for that address is no
longer cached in TQM or TQS state.

TagTM supports notifying transactions

with XMESI support as follows. The

xC bit controls whether state transi-

tions on a cache line must be glob-

ally visible on commit or abort, and

additional coherence states TQM and

TQS indicate whether a cached line

was referenced in a transaction that

lost a conflict with a remote transac-

tion: TQM indicates that the remote

transaction was a writer of the line in-

volved, while TQS indicates the re-

mote transaction was a reader. The

query tqc instruction allows software to interrogate the L1 data cache, and de-

termine whether a given address is cached locally in TQM or TQS2 When a local

transaction loses a conflict, the cache line for the conflicting address transitions to

the appropriate TQ* state. Wen the transaction restarts, the xbegin instruction

will indicate that a conflict occurred, and the address of the contended memory
2A single TQ state could represent both TQS and TQM, with an associated loss of precision

associated with predictions on when to retry.

96

location is available in the TXSW register. Software then uses this address and the

xquery tqc instruction to spin until the conflicting line is no longer cached locally in

TQ*. When the remote (winning) transaction commits or aborts, it’s cached copies

of conflicting lines will have the xC bit set, allowing it to force a globally visible tran-

sition for that line: for lines cached in TMM or TMU states, a SxWINV message

is sent, while lines in TS result in a SxRINV. Differentiating between readers and

writers when making this state transition enables receivers of the message to wait

until actually read-write and write-write conflicts resolve. Using s single message in

this case would preserve correctness, but make it possible for read-sharing between

non-conflicting transactions to cause false positives for transactions waiting for a

remote conflicter to commit or abort.

Note that the TQ* states behave like I state in all other respects. Reads

and writes to the line (transactional or non-transactional) require a fresh copy of the

line from memory, and the line is not invalidated by remote reads or writes. Other

potentially unrelated events such as associativity evictions can cause a transition

out of a TQ* state that might induce software to retry before the remote conflicter

completes as well. Because the mechanism is fundamentally used as a hint for when

retries may be profitable, correctness is not preserved for these scenarios. Because

TagTM is a “best-effort” design, if an annotated line is evicted, the transaction will

be forced to restart and annotations will be dropped.

It should also be noted that because software dictates policy for when to spin

for remote conflicters, the hardware can still function as an HTM with traditional

traditional retry-on-conflict semantics. The presence of these mechanisms is does

not constitute a requirement for software to use them.

97

5.5 Evaluation

To evaluate TagTM, MetaTM [70,75] was extended to implement XMESI, notify-

ing transactions, and transaction annotation. TagTM runs in the Simics machine

simulator [47] (all experiments were run with version 3.0.31). The xquery tqc

instruction is implemented as a new machine instruction (rather than a magic in-

struction) and the XMESI protocol in implemented as a separate Simics module.

We simulated both CMP and SMP organizations using 16 and 32 cpus, and ran

the TxLinux kernel benchmarks [70] as well as a subset of the STAMP benchmark

suite [54]. Machine parameters and benchmark command lines are detailed in ta-

ble 5.4. TagTM and MetaTM are both “best effort” designs, which means that

the burden of handling transactions that fail because of associativity or capacity

evictions of cache lines in T* states falls on software. TagTM and MetaTM both

handle this case by extending cxspinlocks [75] to handle overflow of HTM resources

in exactly the same way I/O is handled: by rolling back the transaction and ar-

bitrating acquisition of a lock through the contention manager. The approach is

similar to that used in [39,56,66,67,75]. The STAMP benchmarks were modified to

use a single global cxspinlock to allow reexecution of overflowed transactions under

mutual exclusion.

5.5.1 Evaluating notifying transactions

To evaluate notifying transactions, we compare raw performance, restart rates, and

bandwidth consumption of TagTM using notifying transactions vs. MetaTM’s de-

fault configuration on 16 and 32 cpu CMP and SMP machines. MetaTM uses a

linear backoff policy, and implements contention management policies within the

simulator, making this a comparison which will highlight behaviors induced by no-

tifying transactions.

Because many of the STAMP benchmarks have critical sections that cause

98

Configuration

Processor Pentium-4-like x86 instruction set, 3 GHz, 1 IPC

Store buffer 32 entries, 1 cycle access

L1 separate i+d, 32 KB, 4-way, 64-byte line, lru replacement, 3-cycle access

L2 unified 4 MB 8-way, 64-byte line, 12-cycle access

Memory 1GB capacity, 200 cycle access time, 12GB/sec bandwidth

Memory Hierarchy SMP: Each core has a private L2. CMP: all cores share a single L2.

TM parameters Timestamp contention management, linear backoff policy, cache line
granularity conflict detection.

Overflow strategy transactional lock elision

Benchmark Description

config, pmake, mab These benchmarks report transactions created in TxLinux (see 3) a
Linux-variant operating system which relies on transactions rather than
spinlocks for most polling synchronization [70,75]. transactions for syn-
chronization, instead of spin-locks The workloads involve user-mode ap-
plications (configure, make, modified andrew benchmark) which are run-
ning on the transactional OS.

bayes learns the structure of a Bayesian network “-v32 -r4096 -n5 -p30 -s1 -i2
-e4 -t CPUs”

genome a gene-sequencing bioinformatics application, “-g16384 -s32 -n4194304
-t CPUs”

intruder signature-based intrusion detection system “-a10 -l32 -n65216 -s1 -t
CPUs”

kmeans implements a K-means clustering algorithm, “ -m40 -n40 -t0.0009 -i
random-n65536-d32-c16.txt -p CPUs”

vacation models a multi-user database, “-c CPUs -n4 -q60 -r1048576 -u90 -
t1048576”

Table 5.4: The upper table represents architectural parameters of simulated machines. TM pa-
rameters were held constant across all HTM designs. The lower table shows workloads used in
evaluation. TxLinux and list are kernel-mode transactions, while the other benchmarks run in
user-mode. All benchmarks use a number of threads equal to the number of processors, unless
noted otherwise.

overflow in an L1-based HTM, the cost of rolling back and serializing with a single

global lock can become a dominant cost for executing those benchmarks. To min-

imize noise in the data stemming from this effect, we modified the simulation to

continue executing transactions in the presence of overflow: in simulation, version

management is handled separately from memory hierarchy timing, making it possi-

ble to implement a mode that provides unbounded transactions with bounded cache

size. Because latency for cache misses taken on transactional lines that have over-

flowed in this mode will still effect overall execution latency, it is impossible to com-

99

Figure 5.4: Notifying transactions throughput increase over MetaTM for all configurations.

pletely normalize out the effects of overflow: however, since MetaTM and TagTM

use the same cache geometry, such effects should impact both designs equally.

It should also be noted that using this technique to remove overflow as dom-

inant factor has the side effect of ensuring that critical sections waiting for notifi-

cation using the xquery tqc instruction will never retry too early due to eviction

or reallocation of lines in TQ* state–retry will occur only when a remote conflicter

actually commits or aborts, or when coherence traffic for which an abort can be

inferred occur. Consequently, for workloads that have significant overflow rates,

this methodology will tend to inflate the potential benefit notification can bring:

however, it is arguable that “best effort” HTM is a poor fit in general for such

workloads. For workloads that have minimal overflow, such as intruder, these data

represent a realistic picture of the potential benefit of notification.

All benchmarks in this study run on top of TxLinux, and the behavior of the

OS is modeled: TxLinux also uses transactions for it’s own synchronization, (often

executing many more transactions than the workload itself). TxLinux executes a

significant fraction of it’s transactions in interrupt context: the side-effect is that

some interplay between kernel mode and user mode transactions can take place:

100

typically in the form of overflows caused in user mode transactions by associativ-

ity evictions of T* lines for user transactions occurring during interrupt handlers.

While the effect is observable in the form of higher overflow numbers for user-mode

benchmarks that have higher system time, we do not evaluate the impact of this

interplay in detail.

We evaluate both speedup and increase in transaction throughput for all

benchmark. In general, the later is the more appropriate metric because many

benchmarks can have variable numbers of transactions during the life of the pro-

gram. The TxLinux benchmarks execute a large fraction of their transactions in in-

terrupt context, and variability is unavoidable in this case. The bayes and kmeans

benchmarks from STAMP also show considerable variability because the number

of transactions executed by these workloads is non-deterministic. In cases where

benchmarks have consistent numbers of transactions, throughput and speedup are

essentially the same information, whereas benchmarks that show variable transac-

tion numbers introduce noise into the speedup numbers because of the difficulty

attaining samples whose execution time can be meaningfully compared.

Tables 5.5 and 5.6 show statistics for experiments for benchmarks running

on 16 cpu and 32 cpu CMP and SMP machine models, with bandwidth to main

memory limited to 12GB/sec to model a reasonable modern machine, and 1.5GB/sec

to model a bandwidth-constrained environment. Figure 5.4 shows the percentage

increase in throughput (transactions/second), and figure 5.6 shows the raw speedup

of TagTM over MetaTM. In general, the data show that notifying transactions

can improve performance by reducing the costs of repeated restarts in most cases,

and can occasionally harm performance as well. The geometric mean speedup is

between 1.05× and 1.18× for the bandwidth constrained machines, and between 1×

and 1.16× for machines with more reasonable memory bandwidth budgets.

Figure 5.5 shows the fraction of restarts eliminated by TagTM relative to

101

Figure 5.5: Fraction of restarts in MetaTM eliminated in TagTM by notifying transactions for 16
and 32 cpus, CMP and SMP organizations, with memory bandwidth limited to 1.5GB/sec and
12GB/sec.

Figure 5.6: Notifying transactions speedup for all machine configurations.

MetaTM. Notification dramatically reduces restart rates for all but a handful of

cases, showing that the mechanism is very effective at delivering on its promise of

helping software to avoid contention. For many benchmarks such as bayes and

intruder, notification eliminates the vast majority of restarts. However, two sam-

ples contradict the trend: kmeans and bayes both show increased restart rates on

102

the 16 cpu SMP with 12GB/s memory bandwidth. Both of these benchmarks show

high variability in both transaction count and transaction size: in these cases the

increase in transaction restart rate shows a change in the profile of transactions

being executed in the benchmark, rather than the inability of TagTM to help man-

age contention. These data points represent runs of the benchmark that differed

by more than 10% in the number of transactions, and for bayes, a concomitant

variation over 10% in the average read-write set size. The degree to which avoiding

contention translates to improvements in performance varies with level contention

and the percentage of time workloads spend in transactions. Intruder, which spends

approximately 30% of its execution time in transactions and has 30-50% conflict

rates can see a dramatic change from reduced restarts, while removing 100% of

the restarts from mab, which has 1% restart rate, and spends very little time in

transactions will have a neglible effect.

Notification is a mechanism that impacts workloads most in the presence of

contention. Benchmarks that have significant rates of transaction restarts due to

conflict, such as intruder and vacation stand to benefit the most. The intruder

benchmark is characterized by many small transactions and high contention, which

is precise the type of workload that notification should be able help. 30% to 50%

of transactions restart in intruder and higher core counts correlate with much

higher contention. Intruder benefits significantly from notifying transactions, show-

ing speedups between 1.2× and 1.4× for all machines, and deriving the biggest

speedups for bandwidth constrained machines, where spinning on a cache line in

TQ* allows it to reduce pressure on the memory system. Throughput increases

19% to 28% on machines with a 1.5GB/sec bandwidth limit, and from 13% to

25% for machines with a 12GB/sec limit. Similarly, vacation has restart rates

in the 30% range: TagTM increases transaction throughput for vacation on all

bandwidth-constrained machines, with a high watermark of 17% on 32 cpu SMP.

103

bnc bw htm exec pctrst bkcyc/nftx ovpct

bayes 12 metatm 0.024 0.029 11 15 56210/– 60081/– 27 25

(∼1534) tagtm 0.060 0.056 14 12 –/229 –/184 28 26

1.5 metatm 0.056 0.048 11 16 190198/– 103267/– 27 28

tagtm 0.027 0.045 9 10 –/108 –/149 24 24

config 12 metatm 0.547 0.611 1 1 2/– 6/– 0 0

(∼4682761) tagtm 0.530 0.607 1 1 –/11830 –/20942 0 0

1.5 metatm 3.298 3.689 1 2 2/– 18/– 0 0

tagtm 3.291 3.686 1 2 –/6862 –/29389 0 0

genome 12 metatm 0.339 0.348 0 1 1/– 1/– 33 33

(1180046) tagtm 0.339 0.350 0 1 –/4755 –/5482 33 33

1.5 metatm 0.748 0.785 0 0 1/– 4/– 33 33

tagtm 0.752 0.785 0 0 –/1759 –/3748 33 33

intruder 12 metatm 0.246 0.460 30 50 220/– 383/– 7 12

(1587020) tagtm 0.214 0.364 29 51 –/381527 –/671216 7 6

1.5 metatm 1.073 2.428 30 50 953/– 1727/– 12 10

tagtm 0.862 1.840 29 50 –/323182 –/655812 9 7

kmeans 12 metatm 1.464 1.557 17 7 22/– 23/– 0 0

(∼5232896) tagtm 1.649 1.901 18 7 –/565494 –/174279 0 0

1.5 metatm 2.320 2.961 13 15 617/– 610/– 0 0

tagtm 2.352 3.068 13 15 –/423853 –/483219 0 0

mab 12 metatm 0.231 0.350 1 1 5/– 4/– 0 0

(∼4133451) tagtm 0.223 0.349 1 1 –/12707 –/26118 0 0

1.5 metatm 1.361 2.111 1 2 9/– 9/– 0 0

tagtm 1.339 2.114 1 2 –/7779 –/40540 0 0

pmake 12 metatm 0.021 0.020 2 3 2/– 26/– 0 0

(∼193473) tagtm 0.021 0.022 2 3 –/1186 –/1566 0 0

1.5 metatm 0.105 0.112 3 4 8/– 71/– 0 0

tagtm 0.104 0.111 3 4 –/1115 –/3644 0 0

vacation 12 metatm 0.444 0.494 34 34 98/– 97/– 26 25

(1048576) tagtm 0.448 0.476 34 35 –/321611 –/321917 24 24

1.5 metatm 2.098 2.415 28 29 317/– 255/– 31 23

tagtm 2.080 2.217 27 30 –/152905 –/206988 23 29

Table 5.5: Statistics for Notifying transactions, 16 cpu CMP and SMP. Data columns have two
entries per cell: the leftmost figure corresponds to a 16 cpu CMP machine, while the rightmost figure
is for a 16 cpu SMP machine. The table shows the benchmark in the bnc column with the number
of transactions in parenthesis. (Some benchmarks have variability in the number transactions,
indicated by the use of “ ”). The bw column indicates the upper bound on memory bandwidth
used in the experiment, in GB/sec. The exec column is the user time for STAMP benchmarks
and kernel time for TxLinux benchmarks. The pctrst and bkcyc columns are the percentage of
transactions that restarted at least once. The bkcyc/nftx column indicates the average backoff
cycles per transaction (blue) and the number of transactions that used notification at least once
(magenta): because TagTM does not use backoff, the two numbers are mutually exclusive. The
ov columns shows the percentage of transactions that overflow the transaction support in the L1
cache.

104

The vacation benchmark also has large transactions, which lead to high rates of

overflow (in the 25%-30% range). If these experiments were to actually abort over-

flowed transactions (rolling back and grabbing a lock is the overflow strategy in both

MetaTM and TagTM), the benefits of notification would be masked by the detri-

mental performance impact of having to serialize nearly a third of the transactions

in the benchmark.

The bayes benchmark implements an algorithm for learning Bayesian net-

works where probability distributions and conditional dependences among them are

learned from observed data using a hill-climbing strategy: the running time depends

on the order in which edges are added to a graph, with the result that the same

inputs can generate not only highly variable running times, but highly variable num-

bers of transactions. The kmeans benchmark, a K-means clustering algorithm, also

can generate different clusters under different execution interleavings, resulting in

variability both in run-time and numbers of transactions. However, kmeans does

have significant contention and no overflow. While the speedup numbers appear to

show a loss in performance for kmeans this is a case where runs that have speedup

less than 1 execute as much as 30% more transactions. The transaction through-

put, on the other hand, shows that kmeans benefits significantly from notification on

bandwidth-constrained machines, and has no significant loss on the 12GB/sec band-

width machines. This correlates with higher contention: restart rates for kmeans

ranged from 13% to 25% on the bandwidth constrained machines, and 7% to 18%

restarts otherwise.

Benchmarks with medium to no contention such as genome, and the TxLinux

kernel benchmarks config, and mab see (not surprisingly) very little impact on

performance. pmake has the highest contention rate (2-5% restart rate) and de-

rives some benefit from notification, particularly on SMP 32 cpu machines where

throughput is increased 12% and 23% for 1.5GB/sec and 12GB/sec bandwidth lim-

105

bnc bw htm exec pctrst bkcyc/nftx ovpct

bayes 12 metatm 0.022 0.015 11 17 105531/– 45716/– 24 22

(∼1394) tagtm 0.021 0.013 10 14 –/118 –/194 25 25

1.5 metatm 0.024 0.021 16 17 266178/– 152482/– 23 24

tagtm 0.025 0.029 12 15 –/147 –/210 25 25

config 12 metatm 0.403 0.448 1 2 4/– 11/– 0 0

(∼5117933) tagtm 0.411 0.445 1 2 –/19873 –/28541 0 0

1.5 metatm 2.503 2.971 2 2 5/– 11/– 0 0

tagtm 2.443 2.950 2 2 –/12515 –/42083 0 0

genome 12 metatm 0.206 0.224 1 1 2/– 5/– 25 21

(1180046) tagtm 0.208 0.222 1 1 –/6456 –/9131 21 25

1.5 metatm 0.708 0.836 0 1 10/– 31/– 27 27

tagtm 0.707 0.807 0 1 –/3018 –/7296 25 25

intruder 12 metatm 0.341 0.853 37 52 822/– 2015/– 2 1

(1587036) tagtm 0.255 0.671 37 53 –/488817 –/720629 2 2

1.5 metatm 1.486 5.059 38 50 1382/– 566/– 1 2

tagtm 1.056 3.702 38 50 –/441259 –/667803 1 2

kmeans 12 metatm 0.731 0.986 17 11 24/– 52/– 0 0

(∼5517946) tagtm 0.855 0.856 17 11 –/545345 –/287980 0 0

1.5 metatm 2.364 5.113 25 45 694/– 302/– 0 0

tagtm 2.200 3.662 23 43 –/980215 –/1792793 0 0

mab 12 metatm 0.141 0.216 1 1 6/– 5/– 0 0

(∼4298303) tagtm 0.139 0.217 1 1 –/26761 –/31185 0 0

1.5 metatm 0.871 1.264 2 2 7/– 8/– 0 0

tagtm 0.867 1.260 2 2 –/42836 –/47014 0 0

pmake 12 metatm 0.016 0.016 2 3 6/– 115/– 0 0

(∼235108) tagtm 0.015 0.013 2 3 –/1323 –/2427 0 0

1.5 metatm 0.080 0.120 2 5 5/– 451/– 0 0

tagtm 0.083 0.103 2 5 –/1604 –/6407 0 0

vacation 12 metatm 0.439 0.551 48 49 247/– 293/– 24 25

(1048576) tagtm 0.435 0.500 47 48 –/376678 –/401434 24 24

1.5 metatm 2.202 2.910 42 44 1423/– 872/– 29 27

tagtm 2.148 2.424 39 44 –/189500 –/302816 25 23

Table 5.6: Statistics for Notifying transactions, 32 cpus CMP and SMP. Data columns have two
entries per cell: the leftmost figure corresponds to a 32 cpu CMP machine, while the rightmost figure
is for a 32 cpu SMP machine. The table shows the benchmark in the bnc column with the number
of transactions in parenthesis. (Some benchmarks have variability in the number transactions,
indicated by the use of “ ”). The bw column indicates the upper bound on memory bandwidth
used in the experiment, in GB/sec. The exec column is the user time for STAMP benchmarks
and kernel time for TxLinux benchmarks. The pctrst and bkcyc columns are the percentage of
transactions that restarted at least once. The bkcyc/nftx column indicates the average backoff
cycles per transaction (blue) and the number of transactions that used notification at least once
(magenta): because TagTM does not use backoff, the two numbers are mutually exclusive. The
ov columns shows the percentage of transactions that overflow the transaction support in the L1
cache.

106

Figure 5.7: Time series profiles of peak or average transaction-related bandwidth usage of repre-
sentative benchmarks on a simulated 16 CPU SMP machine. Regions where bandwidth usage is
high and notifying transactions demonstrate significant bandwidth savings are circled. For many
benchmarks, savings are insignificant when bandwidth usage is low but increase significantly when
usage goes up. Units are in GB/sec bandwidth is not artificially limited.

its respectively. However, pmake is also the only benchmark in which TagTM has a

significant negative impact on performance. In no other case does notifying transac-

tions have a significant negative impact on performance: in general, the mechanism

helps when contention is high, and does not perturb the system otherwise.

Bandwidth consumption in notifying transactions

Notifying transactions can affect performance through channels other than work

wasted due to transaction restarts. Because notifying transactions selectively stall

transactions and reduce the number of restarts, notifying transactions can reduce

bandwidth pressure on the memory system. Figure 5.7 compares bandwidth con-

sumed by transactional memory operations for TagTM and MetaTM. Particularly

when bandwidth consumption is high, notifying transactions can show a significant

reduction in peak bandwidth usage. Circled regions in the figure indicate periods

of high bandwidth usage where peak bandwidth is significantly reduced in TagTM

107

Figure 5.8: MetaTM vs TagTM vs Stall on conflict, 32 cpu SMP, 12GB/sec.

relative to MetaTM. In the config benchmark, for example, a normal MetaTM run

peaks 52% higher during the first circled peak than the notifying run, while intruder

sees a 14% delta.

5.5.2 Notifying transactions vs Stall-on-conflict

Stall-on-conflict [58], in which the HTM subsystem stalls a requesting memory oper-

ation in response to a detected conflict, rather than invoking the contention manager,

is very similar in spirit to notifying transactions. Notifying transactions are sim-

ilar to stall-on-conflict [58] in that the mechanism allows a conflicting transaction

to wait in hopes that a conflict will resolve. However there are some fundamental

differences. Stall-on-conflict leaves conflicting transactions in progress, increasing

the probability that additional conflicts can arise for other cache lines held in the

read-write set of the stalled transaction. Stall-on-conflict introduces the need for

deadlock detection/avoidance, and brings up thorny policy issues around asymmet-

ric conflict. Most importantly, stall-on-conflict is not software-visible, and it causes

transactions to stall in the coherence layer: decisions to wait or retry can be better

made by software. Notifying transactions give software flexibility to decide how

to handle contention, which hardware-based backoff and stall-on-conflict policies

108

cannot provide.

Despite these differences, we evaluate the performance of TagTM relative

to MetaTM and MetaTM using stall-on-conflict mode, to understand any tradeoffs

on performance. Figure 5.8 shows execution (user) time in seconds for kmeans and

vacation (chosen because they have non-trivial contention). While stall-on-conflict

improves MetaTM performance on these benchmarks, TagTM outperforms both

variants of MetaTM, primarily because notification allows the losing transaction

to release its transactional resources while it waits, reducing conflict rates further.

Moreover, use of notification leaves the decision about when to wait in the hands of

the programmer rather than in the coherence fabric.

5.5.3 Evaluating Transaction Annotation

We evaluate transaction annotation against software contention management by

extending the MetaTM framework and TxLinux to support trapping into the OS

(TxLinux) to run contention management algorithms in software. Implementing

contention management in software required solving several of the race conditions

discussed in section 5.2.1. Processors must save state for active transactions at the

time of a conflict, until it is requested by a software handler to make a contention

management decision. Conflicting transactions on remote processors are not stalled

while software handlers run, so the handler must ensure that if a transaction com-

mits while the handler executes, the local transaction is restarted regardless of the

contention management decision.

Asymmetric conflicts are always resolved in favor of a non-transactional

thread, and so do not invoke software handlers. While asymmetric conflict does not

occur in the user-mode benchmarks from STAMP, asymmetric conflict does occur in

TxLinux. Software handlers in TxLinux execute in a separate non-transactional in-

terrupt context, and rely on asymmetric conflicts to restart transactions by reading

109

rst-pct rst/tx res-pct speedup
bayes 16.7 55.9 91.5 0.54

genome 0.7 0.1 67.4 0.97

kmeans 19.3 1.1 0.1 0.99

pmake 2.9 0.2 16.6 1.0

Table 5.7: Comparing SW handlers and transaction annotation. The rst-pct shows the percentage
of transactions that restart, the rst/tx column is the number of restarts per transaction. The
res-pct column is the percentage of transactions that restarted at least once, for which a software
handler was able to successfully resolve a conflict. The speedup column is the throughput of
the SW hander-based implementation over TagTMusing transaction annotation. All experiments
shown use a 16 cpu CMP.

a memory location known to have been written by the transaction (written explic-

itly after the xbegin instruction) Strong isolation is then used to resolve the race

conditions between a remote conflicter and a local software handler. Once a conflict

handler has reached a decision, if that decision is in favor of the local transaction,

the remote transaction must be aborted. Reading the location written by the re-

mote conflict just after it’s xbegin instruction outside a transaction ensures that if

the remote conflicter is still active, the asymmetric conflict will cause it to abort,

enforcing the local contention management decision. Conversely, if the memory read

returns the updated value written by the remote transaction, then the transaction

has already committed (if it were active, isolation would ensure the previous value

were returned), and the contention management decision must be reversed (the local

transaction aborts).

In addition to asymmetric conflicts, other cases exist where software handlers

cannot be invoked. Because of the significant complexity in software and hardware

support for reentrant conflict handlers, software conflict handlers are not invoked

for processors already running a conflict handler. Conflict handlers are not invoked

for specialized transactional CAS instructions (xcas, xtest), used for fairness when

eliding locks in the kernel. Unless contention management policy is duplicated in

both hardware and software (requiring similar mechanisms to transaction annotation

even in systems with software contention management), these situations must fall

110

back to a policy such as requester-wins, which is susceptible to livelock.

To isolate the effects of the decision to use or not use software handlers, we

change some of the restrictions from section 5.5.1. Transactional lock elision is used

to handle overflows, and we do not allow software to use notifying transactions so

that conflicts are not ameliorated by other mechanisms. Additionally, this com-

parison takes place with unconstrained memory bandwidth. When a transactional

conflict cannot be resolved in software, it is resolved by the simulator using the

timestamp policy.

Table 5.7 shows statistics for benchmarks run with software handlers and

run with TagTM using transaction annotation. Note that both user and kernel

benchmarks run contention management algorithms in kernel mode in our imple-

mentation. Actual performance deltas are depend on the conflict rate and the

ability of TagTM to actually resolve the conflict using software handlers. For the

genome benchmark, 67% of restarting transactions were successfully handled using

SW contention handlers, but the low conflict rate (less than 1%) ameliorates the

performance impact, resulting in a slowdown of only 3%. The pmake benchmark

follows the same pattern. In contrast, bayes conflicts can be resolved with software

handlers over 90% of the time: in combination with a significant conflict rate (20%

of transactions restart, and most restart many times), the result is a performance

penalty of over 46%. The kmeans benchmark is characterized by a high conflict

rate and many many short transactions: in this case the vast majority of conflicts

occur when a conflict is already being handled by the detecting CPU, with the

result that the vast majority of conflicts cannot be resolved with handlers. This

implementation of software handlers defaults to hardware contention management

when this occurs, so kmeans sees no significant performance delta, but makes little

use of software contention management. In cases where software handlers impact

performance, the source of the performance delta is increased time spent handling

111

contention. The total restarts and total number of cycles spent backing of (using

linear backoff policy) grow dramatically when software contention management is

used, primarily because conflicting transactions remain active longer, increasing the

window of opportunity for other conflicts to occur.

Table 5.7 also shows the percentage of time a restart could not be resolved

by a software handler either because the conflict was asymmetric, the conflict was

caused by a transactional atomic instruction, or handling the conflict in software

would require the handler to be re-entrant. Note that the kernel pmake is the only

context in which the former two can occur. In the STAMP benchmarks bayes,

genome, and kmeans, conflicts can only be unresolvable for the latter reason. The

vast majority of conflicts cannot be handled by software and must fall back on

a less flexible mechanism. If the requirements for HTM are flexible contention

management, flexible policy will have to be available at the hardware level so that

frequent fall-backs do not result in a de facto inflexible system, begging the question

of why a system builder would include software contention management in the first

place.

Finally, it is worth observing that this implementation of software contention

management handlers relies on support for strong isolation from the HTM, and in

particular on the policy that non-transactional operations win in any asymmetric

conflicts. Other HTMs which use different policies for asymmetry (e.g. LogTM [58]

stalls non-transactional operations on asymmetric conflict) would have to rely on a

different and likely much more expensive mechanism for handling race conditions

between remote transactions and local contention handlers.

5.6 XMESI implementation details

This section explores implementation details of the XMESI protocol used to sup-

port TagTM. As detailed in the previous sections, XMESI is the substrate from

112

which support for local flexible hardware-based contention management and noti-

fying transactions can be composed. The protocol supports features that are useful

in any cache-based HTM, which are explored here. The section concludes with a

detailed enumeration of the state space and design for an XMESI implementation

for a split-transaction bus, and details techniques used to establish the correctness

of the XMESI implementation used to simulate TagTM.

5.6.1 Reducing latency for newly committed data

Transactional access to non-transactionally modified, exclusive cache lines intro-

duces a source of latency in a transactional protocol that is absent from traditional

protocols such as MESI. When a line is cached in M, it is the only copy of the

committed value in the system. If this value is read, and subsequently written in a

transaction, a writeback must occur because the cache line is about to be used for

speculation, and failure to write the globally committed value back before speculat-

ing will result in lost updates. In the common, uncontended case where a processor

is running transactions, but working only on data that is cache resident, repeated

transactional updates, cause the line to cycle between the M and TMM state,

effectively requiring a writeback for each successful transaction that would not be

required in the absence of speculation. These additional write backs can cause

significant latency.

XMESI addresses the performance costs associated with repeated write-

backs of newly-committed transactional writes by allowing some state transitions

that require communication with lower cache levels to occur without blocking. At

the same time, we allow the lowest level to elide communication for these misses

altogether. This translates to requiring non-blocking lower level caches, or buffer-

ing of memory operations between levels for operations that cause certain types of

transactional transitions.

The transitions for which XMESI can implement non-blocking transitions

113

TS TMU TMM
S

√

M
√ √

Table 5.8: State transitions that can occur without blocking in higher level caches and which
can elide traffic in caches at lower hierarchy levels, assuming that the transition does not cause a
transactional conflict.

at higher cache levels and elide traffic on misses at the lowest level are detailed in

table 5.8.

5.6.2 Interaction with Pause/Resume

Many HTM proposals include mechanisms to suspend and resume the current trans-

action to allow software to execute some operations outside the transactional con-

text. Suspend primitives are a fundamental building block for open nesting [60,62],

escape actions [59, 96], and can facilitate interrupt handling in OSes that synchro-

nize using HTM [70]. Consequently, most HTM designs support some form of sus-

pend/resume. In MetaTM, the xpush and xpop instructions are a form of suspend

and resume (requiring transactions to suspend and resume in LIFO order), special-

ized to the problem of allowing interrupt handlers in TxLinux. If a cache-based HTM

provides support such as this for starting new transactions while another hardware

transaction is paused, the possibility for read-sharing between transactions on the

same CPU arises, along with the concommitant problem of how to encode member-

ship in multiple read sets for such lines. The problem of transactions read-sharing

a cache line on the same core can also arise if the cores support SMT [92]–the prob-

lem is not unique to systems that support suspend/resume. Support for multiple

transactions for each thread context and conflict detection through caching intro-

duces the problem of sharing the same processor. This problem will not occur in a

signature-based design [94].

Addressing same-CPU sharing requires some mechanism to map a single

114

cache line to multiple transactions. The most obvious approach augments the line

with multiple TXID fields, which is similar to mechanisms proposed to handle closed

nesting [48, 59]. This method is unattractive because it involves increasing the size

of every cache line in all levels of the hierarchy to handle a rare corner case. A

more attractive solution involves enhancing set associativity logic to handle this case

explicitly: if a second transaction reads a line that is already cached and marked

with another transaction ID, we allocate a second line in the same set to cache the

line. The result is that the same data is cached twice in the set. This solution is

similar to the mechanism proposed in [48] to handle nested transactions (which may

require multiple speculative versions). In the worst case, this solution can cause

overflows for other transactions, potentially necessitating restarts. But since the

mechanism is only needed for transient conditions, it should not become a barrier

to forward progress, and subsequent retries can succeed without overflow.

5.6.3 Overflow and Prefetch

XMESI provides support to communicate overflow types to the CPU, which sets

bits in the TXSW (transactional status word). As a result, software can distinguish

between structural and transient overflows. XMESI also supports communication

of conflict type (asymmetric or transactional) as well as information about whether

remote conflicting transactions are suspended, or stalled for conflicts. This enables

a local CPU to avoid stalling for doomed transactions. Bus requests serving prefetch

instructions are labeled in XMESI instructions, which enables any controller that

is caching the line in a state that would cause its local transaction to abort to

raise a line similar to the shared line in MESI. This label allows the initiating

controller to avoid changing local state for that line, effectively resulting in a silent

(but harmless) failure of the prefetch instruction, and allowing remote transactions

to avoid restarts. Controllers seeing a bus read labeled as a prefetch for any line

cached in a transactional state (T*) nack the request, allowing the remote CPU to

115

q-states

tx-states

M

S

I

TMU

TS

TMM

cpuTxR_h, cpuTxW_h,xqcnf

cpuTxR_h, cpuR_h, xqcnf

cpuR_h, cpuTxR_h, xqcnf

TQ*

cpuQCNF

PEND_WB_S

PEND_TUPGR

PEND_TGETX

PEND_TGETS

PEND_UPGR

PEND_GETX

PEND_GETS

PEND_WB_TMM

PEND_WB_TGETX

PEND_WB_TS

PEND_WB_S

PEND_WB_M

WAIT_M

WAIT_TS

PEND_WB_SxRINV

WAIT_TMM

WAIT_S

WAIT_TMU

cpuR_m

cpuTxR_m

cpuW_m

cpuTxW_m

xqcnf

cpuR_m

cpuR_h, xqncf

cpuTxR_m cpuTxR_h

cpuW_m

cpuW_h

cpuTxW_m

cpuR_m

xqcnf, cpuR_h, cpuW_h

cpuTxW_m

cpuR_h

cpuW_m

cpuTxR_m

cpuTxW_h

cpuR_m

cpuTxR_m

cpuW_m

cpuTxW_m

cpuTxW_h

PEND_WB_TS

PEND_WB_M

PEND_WB_TMM

cpuTxW_h

cpuW_m

cpuTxR_m

cpuR_m

cpuW_cnf, xabt, xcmt

xabt/xcmt

cpuTxR_m

cpuR_m

cpuTxR_cnf_n

cpuW_m

cpuTxW_m

cpuR_m

cpuTxR_m

cpuW_m

cpuTxW_m

Bus-avail

Bus-avail

Bus-avail

WAIT_M
Bus-avail

Bus-avail

Bus-avail

Bus-avail

Bus-avail

Bus-avail

Bus-avail

data

data

data

data

data

xLCNF

xLCNF

xLCNF

Figure 5.9: The XMESI protocol. Controllers at different levels of the hierarchy run slightly
different variations on the protocol. States in the box labeled “lowest level”, along with M, S , and
I represent the state space for caches at the lowest level of the memory hierarchy (just above main
memory). States in the box labeled “upper levels” are the state space for caches at all other levels.
The TMU state indicates a line that was previously in M, and has been read but not written in a
transaction. The value is dirty with respect to main memory, but is the current globally committed
value. The TMM state indicates a line that has been written in a transaction, and is therefore both
speculative and modified with respect to main memory. The TQS and TQM states are states that
indicate a line was recently involved in a conflict–these states have the same semantics as I for all
purposes except interaction with the xquery tqc instruction (see section 5.4.2). All edges labeled
cpuTxR, cpuTxW indicate memory operations from the processor and are parameterized with
a transaction identifier (TXID) and TxTAG. Edges labeled with xCMT indicate a transaction
commit event. Edges labeled xLCNF(r) and xLCNF(w) indicate a remote conflict response
to a locally initiated read or write respectively, and indicate that the local transaction has lost
arbitration and must abort. Edges labeled SxWINV and SxRINV indicate transitions triggered
by the commit or abort of a remote transaction that conflicted with the local one.

commute the prefetch to a no-op.

116

5.6.4 Detailed Implementation and State Space

This section examines coherence state machine details for a split-transaction bus

implementation of XMESI. Figure 5.9 shows the XMESI state machine including

transient states. Table 5.9 details the list of actions the cpu can take, broken down

and renamed according to whether the reference is transactional or not, and accord-

ing to whether the cache line involved is present (in any coherence state), whether

the transaction id on the cache line matches the current transaction id of the pro-

cessor, and whether the xC bit is set on that line, indicating the lines involvement

in a recent conflict (in the R/W set of the winning transaction). Note that the

CPU is capable only affecting coherence state only by reading and writing (either in

the context of a transaction or not), or executing the xend, xretry, or xquery tqc

instructions. The transactional atomic instructions xcas and xtest appear to the

cache as transactional reads and writes. For convenience in representing the coher-

ence state machine in tabular form, we take a cross-product of these actions and

relevant affecting state. For example, a read generated by the cpu appears in the

table as cpuR m and cpuR h according to whether the line is already present

in some valid state; cpuR cnf indicates a cpu read to a line that has a non-zero

transaction id, indicating a potential asymmetric read.

Table 5.11 lists actions that may be taken on the bus. Note the absence

of an upgrade request type. Upgrades (S → M transitions) are handled using the

GETX request (get exclusive). When the requesting cpu requests an exclusive copy,

it snoops it’s own contents–if a local copy in S state is present, it asserts the shared

line, inhibiting a response from memory, preventing an unnecessary response. This

technique is safe because the presence of a local S copy indicates that no modified

copies can exist elsewhere, and the globally committed version of the data is already

present [20].

Like many MESI implementations, XMESI relies on three wired-OR sig-

117

name R/W tx h m xC description

cpuR m R local read miss

cpuR m R × local read miss

cpuR m n R × local read miss (notify)

cpuR m n R × × local read miss (notify)

cpuR cnf R × local asymmetric read conflict

cpuR cnf n R × × local asymmetric read conflict (notify)

cpuR h R × × local read hit

cpuTxR m R × local transactional read miss

cpuTxR m R × × local transactional read miss

cpuTxR m n R × × local transactional read miss (notify)

cpuTxR m n R × × × local transactional read miss (notify)

cpuTxR cnf R × × local transactional read conflict

cpuTxR cnf n R × × × local transactional read conflict (notify)

cpuTxR h R × × × local transactional read hit

cpuW m W local write miss

cpuW m W × local write miss

cpuW m n W × local write miss (notify)

cpuW m n W × × local write miss (notify)

cpuW cnf W × local asymmetric write conflict

cpuW cnf n W × × local asymmetric write conflict

cpuW h W × × local write hit

cpuTxW m W × local transactional write miss

cpuTxW m W × × local transactional write miss

cpuTxW m n W × × local transactional write miss (notify)

cpuTxW m n W × × × local transactional write miss (notify)

cpuTxW cnf W × × local transactional write conflict

cpuTxW cnf n W × × × local transactional write conflict (notify)

cpuTxW h W × × × local transactional write hit

xabt xretry × local programmer initiated abort

xcmt xend × local commit transaction

xqcnf xquery × query cache line state == TQM or TQS

Table 5.9: Actions triggered by the cpu that can affect cache line states. R stands for read and W
stands for write. The tx column indicates whether the given read or write was executed while cpu
has an active transaction. The h column indicates whether the line requested is in cache or not
(hit/miss). The m column indicates whether the TXID field on the cache line matches the TXID
field in the local cpu’s TXSW (transaction status word). Note that TXID values of zero indicate
non transactional actions, so, for example, if the m column is blank for a non-transactional read,
this indicates the line is cached in some transactional state, which indicates an asymmetric conflict.
The xC column indicates whether the xC bit on the cache line is set, indicating that the line was
involved in a transactional conflict, and the transaction running on the local cpu won that conflict.

118

state T description

I S Invalid

S S Shared

M S Modified

TS S Shared, read in a transaction

TMU S Modified, read in a transaction

TMM S Exclusive, written in a transaction

TQS S Invalid, lost conflict to remote read

TQM S Invalid, lost conflict to remote write

PEND GETS T wait(bus), share request

PEND GETS SxINV T wait(bus), share request, notify

PEND GETX T wait(bus), exclusive request

PEND GETX SxINV T wait(bus), exclusive request, notify

PEND UPGR T wait(bus), S → T

PEND TGETS T wait(bus), tx share request

PEND TGETS SxINV T wait(bus), tx share request, notify

PEND TGETX T wait(bus), tx exclusive request

PEND TGETX SxINV T wait(bus), tx exclusive request, notify

PEND TUPGR T wait(bus), tx upgrade, TS → TMM

PEND TUPGR SxINV T wait(bus), tx exclusive request, notify

PEND WB S T wait(bus), writeback share request

PEND WB S SxINV T wait(bus), writeback share request, notify

PEND WB M T wait(bus), writeback exclusive request

PEND WB M SxINV T wait(bus), writeback exclusive request, notify

PEND WB TS T wait(bus), writeback tx share request

PEND WB TS SxINV T wait(bus), writeback tx share request, notify

PEND WB TGETX T wait(bus), writeback tx exclusive request

PEND WB TGETX SxINV T wait(bus), writeback tx exclusive request,notify

PEND WB TMM T wait(bus), writeback TMU → TMM

PEND WB TMM SxINV T wait(bus), writeback TMU → TMM, notify

PEND WB SxRINV T wait(bus), read conflict resolved

PEND WB SxWINV T wait(bus), write conflict resolved

PEND WB SxWINV TMM T wait(bus), write conflict resolved , next TMM

PEND LCNF TS T wait(bus), lost conflict reply, next state TS

PEND LCNF TMU T wait(bus), lost conflict reply, next state TMU

PEND LCNF TMM T wait(bus), lost conflict reply, next state TMU

WAIT S T wait(shared copy)

WAIT M T wait(exclusive copy)

WAIT TS T wait(shared copy)/tx permissions

WAIT TMU T wait(exclusive copy)/tx permissions

WAIT TMM T wait(exclusive copy)/tx permissions

Table 5.10: The XMESI state space. The T column indicates whether a state is Stable or
Transient.

119

msg tx description

gets request for shared copy

gets sxinv request for shared copy, piggyback notify

getx request for exclusive copy

getx sxinv request for exclusive copy, piggyback notify

data memory responds with requested cache line

data xC memory responds with requested cache line, a tx conflict occurred

tgets × request for tx shared copy

tgets sxinv × request for tx shared copy, piggyback notify

tgetx × request for tx exclusive copy

tgetx sxinv × request for tx exclusive copy, piggyback notify

wb writeback of exclusive copy

wb WINV writeback of exclusive copy, xC was set

xLCNF(R) × lost conflict response (CM has ruled against reading requester)

xLCNF(W) × lost conflict response (CM has ruled against writing requester)

SxRINV × notification that remote conflicting reader has aborted/committed

SxWINV × notification that remote conflicting writeer has aborted/committed

Table 5.11: Actions triggered by messages observed on the interconnect by the bus-side controller.

nals to coordinate snooping and memory responses to requests. The share line is

asserted by any controller caching a line in S and the modify line is asserted by a

controller whose cache contains an M copy. XMESI relies on a snoop-valid line

to indicate that all caches have produced snoop results. Additionally, XMESI re-

lies on sxrinv and sxwinv lines to piggyback notifications on other messages. For

instance, the wb sxrinv message type indicates a writeback occurring for a line

that may be cached in TQS in one or more caches. Over and above the traditional

GETS (get shared) and GETX (get exclusive) requests, XMESI uses TGETS

and TGETX to indicate transactional variants of gets. The bus is augmented with

TXID and TxTAG lines as well to parameterize each request. In general, where

bus requests in MESI are (command,address) pairs, bus requests in XMESI become

(command, address, txid, txcookie) tuples.The xLCNF and Sx*INV request are

(cmd,address,txid) tuples that communicate a lost conflict (similar to a nack) and a

notification that a remote conflicter has committed, respectively. Note that in gen-

eral, each command type needs a Sx*INV variant because any action that causes

a local cache eviction can cause a line with a valid TXID and it’s xC bit to be

120

state action next resp comments

I cpuR m PEND GETS wait(bus) read miss

cpuTxR m PEND TGETS wait(bus) txnl read miss

cpuW m PEND GETX wait(bus) write miss

cpuTxW m PEND TGETX wait(bus) txnl read miss

xqcnf I return 0

S cpuR m PEND GETS wait(bus) assoc eviction

cpuR h S read hit

cpuTxR m PEND TGETS wait(bus) tx read miss, assoc evict

cpuTxR h TS tx read hit

cpuW m WAIT M wait(bus) write miss, assoc evict

cpuW h PEND UPGR upgrade to M

cpuTxW m PEND TGETX wait(bus) tx write miss, assoc evict

xqcnf S xquery tqc returns 0

M cpuR m PEND WB S wait(bus) assoc evict, writeback

cpuR h M read hit

cpuTxR m PEND WB TGETX wait(bus) assoc evict, writeback

cpuTxR h TMU tx read hit

cpuW m PEND WB M wait(bus) write miss, assoc evict

cpuW h M write hit

cpuTxW m PEND WB TGETX wait(bus) tx write miss, assoc evict

cpuTxW h PEND WB TMM wait(bus) tx write hit, writeback

xqcnf M xquery tqc returns 0

Table 5.12: State transitions for blocks in M, S, or I state. The next column indicates the next
coherence state for the line, the resp column indicates any message that needs to be sent as part
of the transition. In the interest of compact representation, only state-action pairs for which a
transition must occur are shown.

evicted. This is an overflow that will cause the transaction to abort, and the xC bit

indicates that a remote transaction may be awaiting notification for relevant state

changes on that line.

Table 5.10 shows the comprehensive state space for split-transaction bus-

based XMESI, including both stable and transient states. Tables 5.12, 5.13,

and 5.14 show state transitions for cache lines in response to cpu-side events, while

tables 5.16 and 5.15 summarize responses to interconnect-side events.

5.6.5 Support for notification in L2 caches

Support for TQ* states in an SMP-like organization requires minor changes to lower

level caches to ensure that coherence events for lines an upper level cache holds in

121

state action next action N O cmnts

TS cpuR m PEND GETS wait(bus) × evict

cpuR m n PEND GETS SxINV wait(bus) × × evict

cpuR cnf TS asym R-R

cpuR cnf n TS asym R-R

cpuR h TS asym R-R

cpuTxR m PEND TGETS wait(bus) × evict

cpuTxR m n PEND TGETS SxINV wait(bus) × × evict

cpuTxR cnf TS R-R conf

cpuTxR cnf n TS R-R conf

cpuTxR h TS tx R hit

cpuW m PEND GETX wait(bus) × evict

cpuW m n PEND GETX SxINV wait(bus) × × evict

cpuW cnf PEND GETX wait(bus) asym conf

cpuW cnf n PEND GETX SxINV wait(bus) × asym conf

cpuTxW m PEND TGETX wait(bus) × evict

cpuTxW m n PEND TGETX SxINV wait(bus) × × evict

cpuTxW cnf n/a local conf

cpuTxW cnf n n/a × local conf

cpuTxW h PEND TUPGR tx upgr

xabt S * abort

xcmt S * commit

xqcnf TS return 0

TMU cpuR m PEND WB S wait(bus) × evict, wb

cpuR m n PEND WB S SxINV wait(bus) × × evict, wb

cpuR cnf TMU asym R-R

cpuR cnf n TMU asym R-R

cpuR h TMU R hit

cpuTxR m PEND WB TS wait(bus) × evict, wb

cpuTxR m n PEND WB TS SxINV wait(bus) × × evict, wb

cpuTxR cnf TMU R-R conf

cpuTxR cnf n TMU R-R conf

cpuTxR h TMU tx R hit

cpuW m PEND WB M wait(bus) × evict, wb

cpuW m n PEND WB M SxINV wait(bus) × × evict, wb

cpuW cnf M asym conf

cpuW cnf n M × asym conf

cpuTxW m PEND WB TMM wait(bus) × evict, wb

cpuTxW m n PEND WB TMM SxINV wait(bus) × × evict, wb

cpuTxW cnf n/a local conf

cpuTxW cnf n n/a × local conf

cpuTxW h PEND WB TMM wait(bus)

xabt M abort

xcmt M commit

xqcnf TMU return 0

Table 5.13: State transitions for blocks in the TS and TMU state. Note that associativity evictions
for lines in these states constitute overflow, so the TXOV signal must be raised (O column). The
next column is the next coherence state for the line, the resp column indicates any necessary
response for the transition. The N column indicates whether the transition requires notification.

122

state action next action N O comments

TMM cpuR m PEND GETS wait(bus) × evict

cpuR m n PEND GETS SxINV wait(bus) × × evict

cpuR cnf PEND GETS wait(bus) asym R-W

cpuR cnf n PEND GETS SxINV wait(bus) × asym R-W

cpuTxR m PEND TGETS wait(bus) × evict

cpuTxR m n PEND TGETS SxINV wait(bus) × × evict

cpuTxR cnf PEND LCNF TMM wait(bus) local wins

cpuTxR cnf I local loses

cpuTxR cnf n PEND SwRINV wait(bus) × local loses

cpuTxR h TMM tx R hit

cpuW m PEND GETX wait(bus) × evict

cpuW m n PEND GETX SxINV wait(bus) × × evict

cpuW cnf M asym conf

cpuW cnf n PEND SxWINV wait(bus) × asym conf

cpuTxW m PEND TGETX wait(bus) × evict

cpuTxW m n PEND TGETX SxINV wait(bus) × × evict

cpuTxW cnf TMM local conf

cpuTxW cnf n PEND SxWINV TMM wait(bus) × local conf

cpuTxW h TMM tx W hit

xabt I abort

xcmt M commit

xqcnf TMM return 0

TQ* cpuR m PEND GETS wait(bus)

cpuTxR m PEND TGETS wait(bus) tx R miss

cpuW m PEND GETX wait(bus) write miss

cpuTxW m PEND TGETX wait(bus) tx R miss

xqcnf I return 1

Table 5.14: State transitions for blocks in the TMM and TQ* states. The next column indicates
the next coherence state for the line, the msg column indicates any message that needs to be sent
as part of the transition. The N column indicates whether the transition requires any additional
SxRINV or SxWINV messages to remote conflicters that a relevant event has occurred. Note
that like other T* states, TMM requires the TXOV signal to be raised on overflows (associativity
evictions for lines marked transactional), indicated by the O column. Note that TQS and TQM
indicate a line that was involved in a remote transactional conflict where the conflicting transaction
was a reader, and a writer respectively. The two are condensed into a single table because the states
share the same semantics with respect to cpu-side actions, and differ only in response to bus-side
actions.

123

state msg next response s m xC cmnts

S gets S ×
getx I

tgets S ×
tgetx I

M gets WAIT WB S wb ×
getx WAIT WB I wb ×
tgets WAIT WB S wb ×
tgetx WAIT WB I wb ×

TS gets TS ×
getx S abort asym. conf

tgets TS × read-read conf

tgetx TS xLCNF × × W-R, local win

tgetx TQS W-R, local abt

TMU gets WAIT WB TS wb × asymmetric R-R

getx WAIT WB S wb × asymmetric R-W

tgets WAIT WB TS wb × R-R conf–wb

tgetx WAIT WB TQM wb × W-R, local abt

tgetx TMU xLCNF × W-R, local win

TMM gets I asymmetry, abt

getx I asymmetry, abt

tgets TMM xLCNF × R-W, local win

tgets TQS R-W, local abt

tgetx TMM xLCNF × W-R, local win

tgetx TQM W-R, local abt

TQS getx I conflicter dead

tgetx I new conflict

wb I conflicter dead

wb WINV I conflicter dead

SxRINV I notified!

TQM gets I conservative

getx I conflicter dead

tgets I conservative

tgetx I conservative

wb I conflicter dead

wb WINV I conflicter dead

xLCNF(R) I conservative

xLCNF(W) I conservative

SxRINV I notified!

SxWINV I notified!

Table 5.15: Bus side controller responses to messages snooped that match a line cached in any
valid state, or TQ*. Lines are shown only for request-state pairs that require some response from
the controller that snoops that bus request. The s column indicates whether the share line should
be asserted. The m column indicates whether the modify line should be asserted. xC indicates
whether the xC bit on the local cache line should be set on this transition. In the comments column,
transitions from TQ* states marked “conservative” represent situations where the event may or
may not indicate that a remote conflicting transaction has committed or aborted. Transitioning to
I on these events may cause cpus spinning with the xquery tqc instruction to retry transactions
sooner than ideal, but avoids the risk of allowing spinning cpus to miss relevant notifications and
spin too long.

124

state event next action xC

PEND GETS bus avail WAIT S gets on bus

PEND GETS SxINV bus avail WAIT S gets+SxRINV

PEND GETX bus avail WAIT M getx on bus

PEND GETX SxINV bus avail WAIT M getx+SxWINV

PEND TGETS bus avail WAIT TS tgets on bus

PEND TGETS SxINV bus avail WAIT TS tgets+SxRINV

PEND TGETX bus avail WAIT TMM tgetx on bus

PEND TGETX SxINV bus avail WAIT TMM tgetx+SxWINV

PEND WB S bus avail PEND GETS wb on bus

PEND WB S SxINV bus avail PEND GETS wb+SxRINV

PEND WB M bus avail PEND GETX wb on bus

PEND WB M SxINV bus avail PEND GETX wb+SxWINV

PEND WB TS bus avail PEND TGETS wb on bus

PEND WB TS SxINV bus avail PEND TGETS wb+SxWINV

PEND WB TMM bus avail PEND TGETX wb on bus

PEND WB TMM SxINV bus avail PEND TGETX wb+SxWINV

PEND WB TGETX bus avail PEND TGETX wb on bus

PEND UPGR bus avail M GETX, share

PEND TUPGR bus avail TMM TGETX, share

PEND SxRINV bus avail I SxRINV

PEND SxWINV bus avail I SxWINV

PEND SxWINV TMM bus avail TMM SxWINV

PEND LCNF TS bus avail TS xLCNF on bus ×
PEND LCNF TMU bus avail TMU xLCNF on bus ×
PEND LCNF TMM bus avail TMM xLCNF on bus ×
WAIT S data S

WAIT S data xC S

WAIT M data M

WAIT M data xC M

WAIT TS data TS

WAIT TS data xC TS ×
WAIT TMU data TMU

WAIT TMU data xC TMU ×
WAIT TMM data M

WAIT TMM data xC M

Table 5.16: Bus side controller responses to messages snooped that match a line cached in transient
states.

125

TQ* are visible to that cache. This can be accomplished by allocating a single bit

on cache lines in lower level caches that indicates that a line in I in a lower level

cache was recently involved in a transactional conflict. This allows interconnect-

side controllers to continue to observe and propagate coherence traffic for such lines,

but note that lower level caches are free to treat the line as invalid in all respects,

including reallocating the line to cache a different block of memory. When this

occurs the lower level cache must (conservatively) invalidate copies in upper level

caches. However, even if lower level caches do not augment the state MESI state

space beyond the additional transient states needed to communicate contention

management results, support for the XMESI augmented set of bus commands

must be present: the bus must be capable of being driven with (command, address,

txid, TxTAG) tuples rather than simple (command, address) pairs traditionally

associated with bus implementations.

5.7 Verifying Correctness

5.7.1 Random stress testing

To verify that the correctness of XMESI, an approach similar to that described by

Wood et. al [93] was used. In the aforementioned approach, CPU and interconnect-

side cache controllers are exercised in simulation by a virtual CPU that selects

randomly from among a predefined set of operations whose results are known; the

simulation runs choosing operations randomly and checking results until either an

error condition is detected, or the user stops the simulation. In the limit where the

simulation runs, all possible test cases for the controllers are covered by the test.

The presence of transactions complicates this approach because transactions

can conflict. Memory operations may cause speculative execution on the CPU to

roll back, introducing the possibility that a write is squashed or a read has no

meaningful result. The presence of suspend primitives such as xpush and xpop makes

126

it possible for transactions to be aborted while the are suspended, introducing the

possibility that an xpop operation may result in a retry. Because transactions may

nest, xbegin and xend can result in more than one correct result as well: xbegin

can cause a transition from “no active transactions” or “an active transaction”, or

can simply flat nest resulting in no change in the active transaction state. An xend

operation on a nested transaction may result in no active transactions or the current

transaction can still be active. In light of this, our approach to random testing does

not select randomly from among predefined operations with known results, but

rather generates operations randomly. All simulated CPUs run a program that

continually, based on a pseudo-random number selects from among the following in

a tight loop:

• Start a transaction. No upper bound is set on the nesting depth. Note that

MetaTM supports flat nesting only. (Probability 4%).

• If there is a current transaction, suspend it using xpush. Do not xpush if there

is already a suspended transaction. (Probability 1%).

• If there is a current transaction, end it. (Probability 4%)

• if there is an xpushed transaction, resume it using xpop. Do not xpop if no

xpushed transactions exist. (Probability 2%).

• Load a random address (within a specified buffer range that is much larger

than L1 cache). Note that whether the load is transactional depends on what

other operations have executed before this one. (Probability 70%)

• store a random value to an address selected by the same method as above.

Transactional semantics for the operation are determined as above. (Proba-

bility 20%)

127

The stress testing framework supports two modes: one in which all transac-

tions are well formed (xbegin/xend and xpush/xpop are always paired correctly),

and one in which transactions are not constrained to be well formed. Note that in

the latter mode, because transactions are started, ended, suspended, and resumed

arbitrarily, conflicts can be asymmetric, between transaction on the local CPU and

between a transaction on this CPU and a remote one. Transactions generated using

this method are short. However, we are primarily interested in state transitions in

the cache.

To increase stress on the coherence implementation, timing modules in the

simulation are additionally enhanced to randomly perturb stall times associated

with traffic in the memory hierarchy. To this end, the bus model is enhanced with

a mode that effectively randomizes the access time to main memory, and each level

of cache is similarly enhanced to randomize the access time for interrogating and

writing to caches, as well as timings for coherence traffic. The result is increased

likelihood of covering all interleavings.

5.7.2 Inclusion and sibling invariant checking

To further increase confidence in the correctness of the implementation, the simula-

tor module implementing XMESI caches was enhanced to include a modes which

do inclusion and invariant checking after every simulated operations which interacts

with the memory hierarchy (memory operations, coherence events, and instructions

that manipulate the state of active transactions on the cpu such as xbegin and

xpush.

When inclusion checking mode is on, all caches check the inclusion prop-

erty with all caches below it in the memory hierarchy. The inclusion property for

XMESI involves some minor extension of the MESI inclusion property. Like MESI

inclusion, XMESI requires that any line cached in a higher level cache must also

be cached in all lower level caches in that tier of the hierarchy. Also like MESI

128

local state legal sibling states legal higher-level states

I I, TS, S, TE, E, TMM, TMU, M I

TQS I, TS, S, TE, E, TMM, TMU, M I, TQS

TQM I, TS, S, TE, E, TMM, TMU, M I, TQM

TS I, TS, S, TQM, TQS I, TS

S I, TS, S, TQM, TQS I, TS, S

TE I, TQM, TSQ I, TS, TE

E I, TQM, TSQ I, TS, S, TE, E

TMU I, TQM, TSQ I, TS, S, TE, E, TMM, TMU, M

TMM I, TQM, TSQ I, TS, S, TE, E, TMM, TMU, M

M I, TQM, TSQ I, TS, S, TE, E, TMM, TMU, M

Table 5.17: Legal inclusion pairs and pairs of XMESI states for sibling caches in a memory hiearchy.
Note that the inclusion properties do admit some combinations that are safe, but should not arise
in practice. Asymmetry introduces some intersting cases as well. Consider that if a transaction is
suspended using xpush, and a line in TMU is conflicted with an asymmetric local read, the read
will hit in L1 at the same time as the transaction aborts. The next state in L1 should be S, while
it is safe to leave the L2 in TMU until the transaction resumes with xpop and discards its read set,
returning the L2 state to S.

inclusion, XMESI inclusion requires that cached copies in lower level caches be

copies whose permissions are of equal or greater strength. While MESI inclusion

respects the total order M, E, S, I, XMESI inclusion uses the partial order: ((M,

TMM, TMU), (E, TE), S, TS), (TQM, TQS), I. The legal inclusion state pairs for

XMESI are shown in table 5.17.

While inclusion checking looks for XMESI invariant violations for caches

in the same tier of the hierarchy, sibling invariant checking looks for XMESI

invariant violations across caches at the same level of the hierarchy. The XMESI

sibling invariants include the familiar MESI invariants (e.g. only M copy exists in

any tier of the hierarchy), but is extended to handle transaction semantics as well.

Table 5.17 shows the legal states for a block with same address cached in a sibling

cache.

When inclusion and sibling invariant checking are turned on in simulation,

inclusion and invariants are checked after every operation. Needless to say, this can

be quite computationally expensive, so the cache simulation module uses a mark-

dirty strategy to reduce overhead for lines that have not changed since the last check.

129

When a cache line is touched as part of an operation, it is marked dirty and added

to a dirty list. This allows post operation inclusion and invariant checking to work

only on lines that have changed since the last invariant check.

These tools, in combination with random stress testing described in sec-

tion 5.7.1 exposed a great many problems (many 10s) in the cache implementation

and necessitated approximately 2-person months of debugging.

Bugs recently exposed by stress testing:

• A corner case in the implementation of the share line (which caches assert

when they snoop a gets on the bus for a line cached locally, allowing the

requester to distinguish the next state between E and S). The corner case

failed to assert the share line for lines in M observing a remote read. After

the write-back, the cache holding the M copy will move to S, but failure to

assert the share line allows the requester to move to E introducing multiple

exclusive copies and violating an invariant. For various reasons the corner case

bug occurred only in a CMP configuration.

• For some types of coherence traffic, it is useful for the cache module (in the sim-

ulator) to infer it’s position in the hierarchy, which it did using some assump-

tions about connections to higher level caches and simulated CPUs. When

a transactional store buffer was introduced for work discussed in chapter 6,

those assumptions were violated, and in certain cache organizations this could

lead to incorrect inference, and ultimately, to invariant violations.

• An incorrect timing penalty computed for snooping. A corner case existed

where the cost of broadcasting to multiple caches (which can occur in parallel)

was being summed (rather than taking the max). This bug would not have

affected any results because we assess penalties only for actions in reaction

to snoops that require the bus (e.g. write-backs), and the snoop itself is

130

0, yielding the same result for sum and max operations over all snoopers.

However, randomizing penalties exposed the incorrect math in the code.

5.7.3 Comparison with a known (assumed correct) MESI imple-
mentation

In the absence of transactional memory operations, XMESI should behave ex-

actly the same as MESI. To verify that implementation of the MESI subset of

the XMESI state machine, We ran the same workload (Linux 2.6.16 boot) using

the same cache organizations built with both the XMESI cache module and the

simics [47] g-cache module, which supports a MESI implementation Weassume to

be correct. Both implementations were modified to dump cache state in the same

format after every memory operation, yielding traces that could be compared using

the diff utility. This approach also exposed many of bugs in the XMESI cache

implementation. After several weeks of debugging effort, the XMESI implementa-

tion yields identical traces to g-cache up to 100,000,000 memory operations, after

which we terminate the simulation.

5.7.4 Use of asserts

The XMESI cache and transaction versioning C++ code have, collectively 108

asserts related to checking the correctness of state transitions and version manage-

ment, including 50 dedicated to the cache model and 58 dedicated to transactional

state management and version management

5.8 Conclusion

This chapter has proposed TagTM, and explored mechanisms that avoid and manage

contention among transactions in an HTM. Notifying transactions can significantly

improve performance under contention, and can reduce pressure on memory band-

width for transactions that must restart. The chapter examined implementation

131

details for supporting flexible contention management policies in an HTM, positing

transaction annotation as a mechanism that allows contention management decisions

to be rendered locally at nodes where conflicts are detected. Transaction annota-

tion eliminates the the design complexities incurred by software conflict handlers

suggested in previous designs. The bulk of the mechanisms rely on an underlying

transactional coherence protocol, called XMESI. This chapter also explored details

of XMESI implementation, including a split-transaction bus implementation, and

examined the interaction of coherence and high level HTM features such as pause

and resume. XMESI offers a mechanism to allow software defined contention man-

agement policies to be made locally at cache controllers, and provides the basic

substrate for support of notifying transactions.

132

Chapter 6

HTM Design comparisons

Despite a tremendous investment of research effort and the proliferation of designs

for hardware transactional memory [?,5,9,12,18,19,22,36,39,48,58,68,70,71,85,94],

comparing the merits of different HTM design points in an empirical setting remains

problematic. This is largely because designs have been evaluated under specialized

assumptions on diverse simulation platforms, and because evaluating the behav-

ior of an implementation has relied on performance comparisons against locks or

against variants of the same design, rather than against representatives of distant

points in the design space. The goal of this chapter is to address this difficulty by

bringing diverse designs together in one simulation platform, allowing their behavior

to be examined side by side. We provide an evaluation and comparison of differ-

ent TM-aware coherence protocols and HTM designs from the literature including

MetaTM [70,75], LogTM [58], and Sun’s Rock [22].

6.1 Methodology

All work in this comparison is based on the MetaTM 2.0 framework [70, 75], which

runs in the Simics machine simulator [47] (all experiments were run with version

3.0.31). The XMESI protocol is implemented in a separate Simics module. We

simulated both CMP and SMP organizations using 16 and 32 cpus, and ran both the

133

Name coh C-D V-M OV
MetaTM XMESI eager, L1 cache eager, L1 cache SLE
Lazy XMESI(*) lazy, L1 cache eager, L1 cache SLE
xRock MESI eager eager, store buffer SLE
TagTM XMESI(**) eager eager, L1 cache SLE
xLogTM MESI eager, perfect signa-

tures
eager, logging N/A

Figure 6.1: Descriptions of the HTM design models evaluated. An overflow strategy of SLE means
speculative lock elision: if a transaction overflows the transaction is rolled back and a lock is
acquired instead using mechanisms to revert to exclusion described in [75]. While Lazy, TagTM,
and MetaTM all use XMESI, only TagTM actually uses support for notifying transactions.

TxLinux kernel benchmarks from MetaTM [70], as well as a subset of the STAMP

benchmark suite [54]. The machine parameters and command lines are detailed in

table 6.1.

6.1.1 HTM models

The approach in this study relies on implementing different design models by making

different modifications to the MetaTM HTM platform [70]. MetaTM was modified

to support different version management mechanisms (logging, store-buffer, and L1

caches), and different coherence protocols (XMESI, TMESI [87], and MESI). With

the exception of designs that rely on logging for version management, all models con-

sidered are “best-effort” designs with no explicit mechanism for handling failure due

to overflowing transactional hardware. For these designs, we modify cxspinlocks

to take a strategy similar to speculative lock elision [66]. If a transaction overflows

in a best-effort design, the system rolls back and takes a lock whose acquisition is

arbitrated by the contention manager. We modified TxLinux cxspinlocks to retry

with a lock on overflow, and modified the STAMP benchmarks [54] to use a single

global cxspinlock to handle overflow cases. We implemented a locking version of

the STAMP benchmarks as well, making it possible to compare all designs against

locks. Note also that many kernel transactions conditionally perform I/O, requiring

all HTM models to support cxspinlocks (see chapter 3). For all HTM models, when

134

transactions are executed in the kernel, the transaction must abort and re-execute

with mutual exclusion if I/O occurs. While use of logging avoids the need for an

elision-based approach to overflow, it does not avoid the need for elision in the pres-

ence of I/O. To handle these cases we enhance all designs considered to support

the xcas and xtest instructions required for cxspinlocks. Table 6.1 summarizes the

HTM models considered in this chapter.

The baseline model in this study, MetaTM, is an XMESI-based design. The

design is similar to TagTM in that the model takes advantage of the transaction

annotation features supported by XMESI to avoid trapping to software to handle

contention, but does not rely on notifying transactions for notification. We also

include TagTM in the study.

To simulate behavior of a log-based implementation such as LogTM [58]

(eager versioning, eager conflict detection) or TokenTM [12], MetaTM is modified

to log writes to a per-thread undo log, and TxLinux was modified to coordinate

setup and management of log areas when new threads are created. Aborts costs are

modeled by actually walking the log and replacing old values in hardware, incurring

the full memory latency of the walk, and stalling the local processor until the abort

completes; this approach neglects latency for instructions for variations of the design

that walk the log in software. The implementation models LogTM-SE [94] with

perfect signatures: the simulation uses unmodified MESI for cache coherence, and

conflicts are detected in the simulator. Additionally, conflict resolution is performed

in the simulator, so no cost for contention management handlers is modeled. Because

this model incurs no overhead for contention management (unlike other models in

this study) and has no false conflicts, this models best case performance for a log-

based design. This model, called xLogTM, relies on a store buffer to help tolerate

log write latency, as described in [58].

To simulate the behavior of Sun’s Rock, MetaTM was augmented with a

135

Configuration
Processor Pentium-4-like x86 instruction set, 3 GHz, 1 IPC
Store buffer 32 entries, 1 cycle access
L1 separate i+d, 32 KB, 4-way, 64-byte line, lru replacement, 3-cycle

access
L2 unified 4 MB 8-way, 64-byte line, 12-cycle access
Memory 1GB capacity, 200 cycle access time.
Memory Hierarchy SMP: Each core has a private L2. CMP: all cores share a single

L2.
TM parameters Timestamp contention management, linear backoff policy, cache

line granularity conflict detection.
Benchmark Description
config, pmake, mab These benchmarks report transactions created in TxLinux, a

Linux-variant operating system with several subsystems con-
verted to use transactions for synchronization, instead of spin-
locks [70, 75]. The workload involves several user-mode applica-
tions (configure, make, modified andrew benchmark) which are
running on the transactional OS.

bayes learns the structure of a Bayesian network “-v32 -r4096 -n5 -p30
-s1 -i2 -e4 -t CPUs”

genome a gene-sequencing bioinformatics application, “-g16384 -s32 -
n4194304 -t CPUs”

intruder signature-based intrusion detection system “-a10 -l32 -n65216 -s1
-t CPUs”

kmeans implements a K-means clustering algorithm, “ -m40 -n40 -t0.0009
-i random-n65536-d32-c16.txt -p CPUs”

vacation models a multi-user database, “-c CPUs -n4 -q60 -r1048576 -u90
-t1048576”

yada Delaunay mesh refinement “-a20 -i ttimeu10000.2”

Table 6.1: The upper table represents architectural parameters of simulated machines. The TM
parameters were held constant across all HTM designs. The lower table shows workloads used
in evaluation. TxLinux and list are kernel-mode transactions, while the other benchmarks run in
user-mode. All benchmarks use a number of threads equal to the number of processors, unless
noted otherwise.

transactional store buffer. The default size is 32 entries, but we also experiment

with different buffer sizes as well as an unbounded mode, enabling us to gauge the

potential profitability of dedicating more resources to speculative writes. This model

is called xRock. The xRock model aborts the current transaction if the store buffer

fills, lines read in a transaction are evicted from an L1 cache, or if a TLB miss occurs,

as described in [22]. Rock’s TM support is subject to a number of other exotic abort

136

bnc tx variable tx-len contention

bayes 1600 yes long 10%

genome 919,276 no medium 1-2%

kmeans 5400000 yes short 10-20%

intruder 1587019 no medium 40-50%

vacation 1048576 no medium 30-50%

yada 63616 yes long 45-50%

config 4500000 yes short 1-3%

mab 4200000 yes short 0-1%

pmake 190000 yes short 3%

Table 6.2: HTM comparison benchmark characterization.

conditions such as function calls and other “difficult instructions”, which this model

does not attempt to emulate, making xRock an optimistic characterization of Rock’s

performance.

The Lazy model is a lazy-lazy system similar to TCC [29], without TCC’s

requirement that all memory traffic be transactional. We modified MetaTM to

support a lazy conflict detection mode. Version management is still handled by the

L1 cache. 1 Support for lazy conflict detection required some minor modifications

to XMESI, allowing it to take note of conflicts but elide state transitions for them,

and allowing it to violate the XMESI invariant against having multiple outstanding

copies in TMM state.

6.2 Workload characterization

Table 6.2 provides an overview of transactional workload characteristics, and Fig-

ures 6.2 and 6.3 summarize read and write set sizes for the workloads examined in

this study. Read-write set histograms were captured on a simulated 16 cpu CMP

machine using the MetaTM HTM model running with idealized (unbounded) space
1The notion that buffering writes in an L1 cache constitutes eager or lazy version management

is a matter of semantic taste. Writes are buffered in an L1 cache, and must be published on commit
through a coherence state transition: from this perspective, this is lazy version management. On
the other hand, writes are performed on the cache lines that will become the globally committed if
the transaction succeeds, which is fundamentally eager.

137

b
a
y
e
s

g
e
n
o
m

e

in
tr

u
d
e
r

k
m

e
a
n
s

v
a
c
a
ti

o
n

y
a
d
a

c
o
n
fi
g

m
a
b

p
m

a
k
e

≤32 R 19.2 2.5 62.6 25.0 - 51.1 5.4 4.2 2.4
W 19.6 2.2 33.3 25.0 - 41.0 18.1 32.5 38.1

≤64 R 11.5 0.1 4.1 - - 25.7 64.1 66.3 57.1
W 11.5 1.7 33.3 - 0.1 10.1 69.1 55.3 45.3

≤128 R 13.2 60.1 0.6 - - 4.2 24.8 23.8 32.7
W 15.7 95.7 0.5 - 5.8 30.6 7.0 5.6 6.5

≤256 R 12.0 3.5 14.3 - 5.9 0.9 4.6 4.3 5.8
W 12.5 0.3 32.6 75.0 88.2 0.2 4.9 5.4 7.4

≤512 R 22.9 1.0 17.3 75.0 59.9 0.6 0.8 1.3 1.9
W 4.3 0.1 0.2 - 5.9 2.3 0.7 1.2 2.6

≤1024 R 6.3 0.8 1.1 - 32.8 1.8 - - 0.1
W 11.7 - - - - 1.2 - - 0.1

≤2048 R 5.9 30.4 - - 1.5 10.8 0.1 - -
W 7.1 - - - - 0.3 0.1 - 0

≤4096 R 5.5 0.5 - - - 4.8 - - -
W 5.9 - - - - 14.0 - - -

≤8192 R 2.2 0.6 - - - - 0.2 - -
W 1.6 - - - - 0.3 - - -

≤16384 R 0.7 0.3 - - - - - - -
W 5.4 - - - - - 0.1 - -

≤32768 R 0.7 0.3 - - - - - - -
W 1.6 - - - - - - - -

≤65536 R - - - - - - - - -
W 2.9 - - - - - - - -

Figure 6.2: Read/Write set characterizations for benchmarks evaluated in this study, captured
using MetaTM on a 16 cpu CMP. Sizes are in bytes.

for conflict detection and version management. Minor variations should be expected

for TxLinux kernel benchmarks, which execute many transactions in interrupt han-

dlers, and the STAMP benchmarks kmeans and bayes, which are written to execute

a variable number of transactions. Each cell in the table indicates the percentage

of transactions for which the read or write set falls into the size bin for that row.

Read/write sizes are in bytes. The graphs depict the cumulative distribution func-

tion (CDF) for read set and write set sizes per benchmark respectively. RW-set sizes

are particularly useful for understanding the behavior of the “best-effort” models,

as these HTMs must abort and serialize transactions whose RW-set sizes exceed the

hardware resources dedicated to the TM subsystem.

138

Figure 6.3: Read/Write set size CDFs for benchmarks evaluated in this study, captured using
MetaTM on a 16 cpu CMP. Sizes are in bytes.

To understand the performance characteristics of the various HTM designs,

we consider scalability (measured as speedup over sequential), the single-thread over-

head introduced by each design, and the comparative performance of each design

on each workload given the same cpu budget. Figures 6.5 and 6.6 show speedup

over sequential execution (1-cpu w/locks) for all benchmarks on CMP and SMP

respectively. Figure 6.7 shows speedup per benchmark, HTM design and memory

139

organization over a lock-based implementation with the same CPU count and mem-

ory organization. Figure 6.4 shows single thread overhead for each HTM design on

a representative subset of benchmarks. The performance of each design is largely

determined by how much work is wasted restarting failed transactions either because

of contention, exhausted hardware resources, I/O, or exceptions. Tables 6.4, 6.3,

and 6.5 give the raw execution time along with statistical characterization of restart

behavior for all benchmarks. Data are shown for 16 cpu and 32 cpu CMP and SMP

machines, for all the basic HTM designs in the study, as well as locks, respectively.

6.3 Single thread overhead

Single thread overhead for HTM designs is measured by allowing the HTM to execute

critical sections transactionally despite the lack of parallel threads with which to

conflict. As a result, “best-effort” designs (Rock, LazyTM, MetaTM, and TagTM)

have a non-zero abort rate due to transactions that overflow and retry. This effect

is particularly visible on benchmarks with large transactions such as genome, where

overflows are common and cause transactions to suffer a 20% loss with respect to

locks. Benchmarks with minimal aborts due to overflow cannot, in general, contend

on a single cpu, bringing performance for best-effort designs much closer to that of

locks.

Kernel benchmarks such as pmake have non-zero abort rates due both to I/O

(which necessitates restarts), and to the possibility of same-cpu conflicts introduced

by the use of transactions in interrupt handlers. For this reason, single-thread

overheads for all designs are high in kernel benchmarks, ranging from 14 to 34%.

Rock and LogTM are the designs most challenged by kernel benchmarks. Rock must

contend with both TLB miss restarts and I/O restarts, while LogTM’s additional

overhead for log-walks on aborts makes similar restart rates more expensive.

The single-thread overhead of LogTM in user benchmarks is notable as well.

140

Figure 6.4: Single thread overhead (execution time on 1 cpu relative to 1 cpu locks) for HTM
designs.

To put LogTM’s overhead in perspective, consider intruder, which has minimal

overflow rates for cache-based HTMs. The lack of contention on a uniprocessor,

combined with the ability to commit transactions in cache allows the best-effort

HTMs to have negligible overhead (1-2%) with respect to locks. In contrast, LogTM

shows a 24% slowdown with respect to locks, despite encountering only 1 restarting

transaction (caused by a context switch). Intruder spends 67% of it’s execution

time in transactions, and the additional cost of log writes put additional pressure

on the L1 cache, because LogTM’s log is in cachable virtual memory, creating a

source of cache pressure not present in other designs. A similar effect is visible

in yada, which has no restarts whatsoever, but spends 99.98% of it’s execution in

transactions. Yada’s relatively larger write-sets (ranging from 32 bytes to 8KB)

introduce significant additional overhead, and the L1 cache miss rate triples (from

0.4% for locks to 1.2% for LogTM). The result is a 44% performance loss on a

single cpu. However, the cache-based designs introduce similar overhead for yada

by requiring re-execution of critical sections that fail due to overflow. An interesting

exception in this field is Rock, which runs only 2.9% slower than locks. 100% of

transactions fail due to TLB misses in this case, and these failures occur very early

141

Figure 6.5: Speedup over 1 cpu locking for 1, 16, and 32 cpu CMP designs for all HTM models and
locks.

in the transactions allowing Rock to introduce considerably less latency for failed

speculation than the the other HTMs.

6.4 Comparing concurrent execution

The data for multiple CPU execution reveal that while some benchmarks have fun-

damentally poor scalability, the performance characteristics for benchmarks with-

out such limitations differ dramatically across designs, and to a lesser degree across

memory organizations. Performance tends to be determined by contention and/or

overheads that derive from a design’s affinity for the transaction sizes that charac-

terize a workload. The tradeoff between the overheads associated with supporting

142

Figure 6.6: Speedup over 1 cpu locking for 1, 16, and 32 cpu SMP designs for all HTM models and
locks.

large or unbounded transactions, and the performance penalties associated with

eliding such support are very much in evidence.

Sources of scalability limitation fall roughly into three categories, in rough

order of significance: overflow, contention, and fixed overheads for supporting the

TM abstraction. Rock introduces the least overhead for TM support, dedicating

only 32 store-buffer entries for speculative writes, and making no effort to support

transactions that survive exceptions (or function calls). The cache-based HTMs

(Lazy, MetaTM, and TagTM) rely on L1 versioning, incurring additional latency

for speculation and additional cache misses associated with lost conflicts or publish-

ing committed data. In contrast to Rock, the cache-based designs can support a

143

much larger (but still limited) range of transaction sizes, effectively trading modest

additional overhead for larger transaction support. LogTM has the largest common

case overhead because it relies on (cachable) main memory for versioning. This

design decision results in additional latency for writing to log areas and log-walking

on abort, but affords workloads unbounded transaction sizes. Because the “best-

effort” HTM designs must rollback and revert to mutual exclusion when hardware

resources are exhausted, the ability of the HTM to provide good scalability for a

workload is largely determined by transaction sizes and the ability of the HTM to

support transactions that survive TLB misses and function calls.

Rock

Rock is crippled by aborts from TLB misses. In the STAMP benchmarks, Rock’s

restart rates are generally in the 50% to 100% range (with the exception of kmeans,

which has a restart rate around 10%). For the vast majority of the benchmarks,

TLB misses are responsible for close to 100% of restarts. Combined with the use of

a single global lock to handle fall-back for failed transactions, the result is that Rock

cannot leverage 16 or 32 cpus to outperform the single-cpu execution for vacation

and yada, and does not scale beyond 2× speedup for intruder, bayes, and genome.

The kmeans benchmark is the only user-mode benchmark in this study that is a good

fit for Rock: kmeans has relatively milder contention and small transactions, allowing

it to scale well on Rock. Because Rock’s overhead for successful transactions is low

compared to other HTM designs, it competes with the other “best effort” designs

and outperforms LogTM for 32 cpu CMP and SMP machines running kmeans.

Rock is a much better fit for the TxLinux kernel benchmarks than for the

the STAMP benchmarks. TxLinux transactions are (with very few exceptions) con-

verted spinlock critical sections from Linux 2.6.16, resulting in small transactions

(100s of instructions) and low conflict rates (1% to 5%). While the STAMP bench-

marks handle overflow with a single global cxspinlock, overflows in TxLinux can

144

Figure 6.7: Speedup over over a lock-based implementation using the same number of cpus on the
same memory organization.

default to the cxspinlocks derived from the original locking code. As a result, over-

flowed transactions in the kernel benchmarks serialize with much lower frequency;

overflows rarely result in lock-based re-executions that contend for the same lock.

Rock experiences much rarer overflow-based restart (less than 1%) and competes

with other best-effort designs (beating cache-based designs for 32 cpu pmake and

145

consistently outperforms LogTM for all kernel benchmarks. However, TLB misses

still result in a 10% increase in restart rate over other HTM designs for these

benchmarks. Section 6.4.4 explores a “Rock+” model with larger store-buffers and

support for transactions that survive TLB misses.

6.4.1 LogTM

The LogTM design represents the opposite end of the spectrum from Rock, in that it

trades higher fixed overheads for TM support in exchange for supporting unbounded

transactions. For the STAMP benchmarks that execute a significant number of large

transactions, LogTM outperforms all other designs by multiple integer factors. For

example, genome transactions are large enough to cause 100% in the cache-based

designs and Rock, but has very low contention (1% conflict-based restart rate). In

this case, LogTM achieves near perfect scalability (15× on 16 cpus and 27-28× on

32 cpus), while none of the best-effort HTMs surpass a 2× speedup. The vacation

benchmark represents a more nuanced scenario: The 1-15% overflow-based restart

rate for the Lazy, MetaTM, and TagTM designs combined with a high baseline of

contention (40% on 16 cpus and 55% on 32) limit the cache-based designs to a

ceiling of 4× speedup for both 16 and 32 cpu machines. LogTM is not forced to

serialize to support overflows, and achieves 9× for 16 cpu machines and nearly 16×

speedup on 32 cpu machines. LogTM’s more expensive conflict handling does limit

its performance relative to the best-effort designs, and this effect is visible in cases

where overflow is rare or non-existent. An increase in the rate of aborts causes the

high cost of log-walking on abort to contribute significantly to execution time. For

example, intruder has small transactions and high contention: MetaTM, Lazy, and

TagTM outperform LogTM by as much as 50% for this workload.

On TxLinux kernel benchmarks, LogTM performs on average worse than the

best-effort designs. TxLinux has both rare conflict and rare overflow. As a result,

LogTM performance is impacted somewhat less dramatically by abort overhead, and

146

bnc design exec rstpct rst/tx conf | ov | tlb

intruder locks 0.668 0.895

lazy 0.151 0.301 49 51 3 9 100 | 0.3 | - 100 | 0.2 | -
metatm 0.153 0.395 52 48 7 28 100 | 0.2 | - 100 | 0.1 | -
tagtm 0.144 0.297 53 50 9 55 100 | 0.2 | - 100 | 0 | -
rock 0.681 1.110 91 59 2 1 0 | 0 | 100 3 | 0 | 97

xlogtm 0.257 0.413 42 46 2 12 100 100

vacation locks 4.101 4.201

lazy 1.182 1.368 67 65 5 5 94 | 6 | - 95 | 5 | -
metatm 0.871 1.168 88 88 17 17 99 | 1 | - 99 | 1 | -
tagtm 0.851 1.108 88 88 17 17 99 | 1 | - 99 | 1 | -
rock 4.311 4.542 100 100 1.0 1.0 0 | 0 | 100 0 | 0 | 100

xlogtm 0.307 0.315 56 55 2 2 100 100

genome locks 2.615 2.811

lazy 2.190 2.982 19 20 0.2 0.2 0.4 | 100 | - 4 | 96 | -
metatm 2.654 2.955 23 25 0.2 0.3 2 | 98 | - 2 | 98 | -
tagtm 2.719 3.265 24 27 0.2 0.3 2 | 98 | - 2 | 98 | -
rock 4.413 4.633 100 99 1.0 1.0 0 | 0 | 100 0 | 0 | 100

xlogtm 0.171 0.178 1 1 0 0 100 100

yada locks 0.411 0.433

lazy 0.384 0.411 48 49 6 9 97 | 3 | - 98 | 2 | -
metatm 0.381 0.407 47 49 167 236 100 | 0 | - 100 | 0 | -
tagtm 0.383 0.398 48 48 639 804 100 | 0 | - 100 | 0 | -
rock 0.419 0.485 97 68 1 0.8 0 | 0 | 100 0 | 0 | 100

xlogtm 0.081 0.086 13 16 5 5 100 100

kmeans locks 0.858 0.860

lazy 0.852 1.014 16 11 0.2 0.1 100 | 0 | - 100 | 0 | -
metatm 1.009 0.942 20 12 1 1 100 | 0 | - 100 | 0 | -
tagtm 0.717 0.997 20 12 3 0.9 100 | 0 | - 100 | 0 | -
rock 0.820 0.897 9 11 0.4 1 95 | 0 | 5 98 | 0 | 2

xlogtm 0.828 0.945 7 14 0.4 1.0 100 100

bayes locks 0.279 0.426

lazy 0.373 0.317 79 71 5 3 62 | 0.2 | - 61 | 0.3 | -
metatm 0.173 0.307 79 71 5 3 65 | 0.2 | - 53 | 0.4 | -
tagtm 0.158 0.291 79 71 3 2 42 | 0.3 | - 42 | 0.5 | -
rock 0.373 0.317 79 71 9 3 80 | 0.1 | 20 53 | 0.4 | 46

xlogtm 0.012 0.019 10 11 6 8 100 100

Table 6.3: Performance and characterization of STAMP benchmarks 32 cpu CMP and SMP. In each
column, the leftmost figure corresponds to a machine with a CMP hierarchy, and the rightmost
column indicates an SMP. User is the user time in seconds. Restarts indicates the total number of
restarts occurring during the benchmark. The tlbm rst and ovrst figures indicate the number of
transactions that restarted due to TLB misses and overflows respectively.

more dramatically by it’s higher fixed overhead for successful transactions. However,

in the kernel benchmarks, use of cxspinlocks introduces I/O as another source of

restart.

147

bnc design exec rstpct rst/tx conf | ov | tlb

intruder locks 0.665 0.846

lazy 0.180 0.385 43 53 2 4 98 | 2 | - 98 | 2 | -
metatm 0.237 0.431 53 52 9 20 99 | 0.9 | - 100 | 0.4 | -
tagtm 0.241 0.375 54 53 26 63 100 | 0.3 | - 100 | 0.1 | -
rock 0.677 1.019 92 57 1 0.7 0 | 0 | 100 0 | 0 | 100

xlogtm 0.269 0.395 32 45 1 5 100 100

vacation locks 4.278 4.382

lazy 1.071 1.147 55 53 2 2 86 | 14 | - 87 | 13 | -
metatm 1.180 1.124 75 75 7 7 96 | 4 | - 97 | 3 | -
tagtm 1.102 1.223 74 75 9 9 97 | 3 | - 97 | 3 | -
rock 4.267 4.515 100 100 1 1.0 0 | 0 | 100 0 | 0 | 100

xlogtm 0.484 0.490 38 37 0.9 0.8 100 100

genome locks 2.683 2.779

lazy 3.945 4.130 33 33 0.3 0.3 0 | 100 | - 0 | 100 | -
metatm 3.941 4.113 33 33 0.3 0.3 0.5 | 99 | - 0.3 | 100 | -
tagtm 3.997 4.111 33 33 0.3 0.3 0.3 | 100 | - 0.2 | 100 | -
rock 4.457 4.606 100 99 1.0 1.0 0 | 0 | 100 0 | 0 | 100

xlogtm 0.325 0.330 0.6 0.6 0 0 100 100

yada locks 0.409 0.431

lazy 0.403 0.416 47 48 3 4 94 | 6 | - 95 | 5 | -
metatm 0.402 0.421 47 48 94 122 100 | 0.2 | - 100 | 0.1 | -
tagtm 0.389 0.399 47 47 2399 3044 100 | 0 | - 100 | 0 | -
rock 0.420 0.484 98 67 1 0.7 0 | 0 | 100 0 | 0 | 100

xlogtm 0.111 0.114 12 13 5 5 100 100

kmeans locks 1.574 2.781

lazy 1.649 1.704 16 7 0.2 0 100 | 0 | - 100 | 0 | -
metatm 1.623 1.699 19 7 1 0.5 100 | 0 | - 100 | 0 | -
tagtm 1.513 1.669 20 7 3 0.5 100 | 0 | - 100 | 0 | -
rock 1.931 1.991 8 6 0.3 0.5 95 | 0 | 5 97 | 0 | 3

xlogtm 1.605 1.762 6 8 0.4 0.5 100 100

bayes locks 0.424 0.409

lazy 0.354 0.230 89 80 3 1 49 | 0.1 | - 7 | 0.5 | -
metatm 0.344 0.220 89 80 3 1 49 | 0.1 | - 7 | 0.5 | -
tagtm 0.324 0.210 89 80 3 1 49 | 0.1 | - 7 | 0.5 | -
rock 0.424 0.250 89 80 3 1 49 | 0.1 | 51 7 | 0.5 | 92

xlogtm 0.033 0.049 7 10 13 17 100 100

Table 6.4: Performance and characterization of STAMP benchmarks 16 cpu CMP and SMP. In each
column, the leftmost figure corresponds to a machine with a CMP hierarchy, and the rightmost
column indicates an SMP. User is the user time in seconds. Restarts indicates the total number of
restarts occurring during the benchmark. The tlbm rst and ovrst figures indicate the number of
transactions that restarted due to TLB misses and overflows respectively.

Because LogTM transactions are being used in this case to support cxspinlocks–

LogTM transactions must abort for I/O as well as contention. The best effort HTMs

out-perform LogTM by speedup margins that range from 10% (config) to 60%

148

(pmake, 32 cpu SMP). It also worth noting that none of the HTM designs out-

perform locks on the TxLinux kernel benchmarks. Because OS critical sections are

small and optimized to avoid contention the real argument for HTM in the Linux 2.6

kernel revolves not around minimal-effort scalability improvement, but around code

simplification. From this perspective, better performance from best effort designs

does not necessarily make the case that LogTM is a poor fit for kernel transactions.

The LogTM model also experiences some pathologies executing the mab

benchmark: while it is generally within 10% of the performance of the other HTM

models for kernel benchmarks, xLogTM has 5× slowdown for 32 cpu SMP and

10× slowdown for 16 cpu CMP on mab. In both cases contention is the culprit. In

the 16 cpu case, only 60,796 transactions restart, but they restart repeatedly for a

cumulative 913,275 total restarts. The vma adjust function is called when a pro-

cess’ address space must be modified either for instance when expanding the area

mapped by a vma, or when calling mprotect. Restarts for transactions started in

vma adjust account for over 24 million wasted cycles alone. Another culprit is the

do notify parent function, which wastes over 18 million cycles due to I/O restarts

that occur in nested transactions. Repeated restarts in LogTM are expensive due

both to the additional cost of rolling back changes from the log, but because of grow-

ing backoff times: a very few transactions restart enough times that their backoff

times between subsequent attempts (using an exponential backoff policy) become

very large, exceeding 200,000 cycles and in one case exceeding 40,000,000 cycles.

The result is severely limited forward progress and pathological performance. The

critical sections involved in the 32 cpu case are similar. LogTM could likely benefit

significantly in these cases from using notifying transactions.

Because any realizable implementation of LogTM-SE will use hardware sig-

natures that can saturate, these empirical data underestimate the impact of false

conflicts for LogTM running transactions that overflow. The approximations are

149

likely reasonable on the assumption that a log-based implementation would more

likely resemble TokenTM [12] than LogTM-SE [94]. TokenTM presents an alterna-

tive log-based design relying on per cache-line token meta data for all of physical

memory. The technique allows a log-based implementation to get within 8% of the

performance of perfect signatures in the worst case on genome. In the absence of

some mechanism such as TokenTM to ameliorate the affects of saturation, false con-

flicts that result from limited signature size can have a significant impact: delaunay

(removed from the current version of STAMP) slows down by a factor of 9× with

realizable signatures. Yen et al. characterize the performance impact of limited sig-

nature size in greater detail [95], and show that even with significant improvements

in signature-representation techniques, limited signature size eventually throttles

performance for benchmarks with large transactions. For example, the difference

between 1k and 2k signature bits results in a 2× performance delta on labyrinth,

and bayes requires 16-32k bit signatures to achieve scalable performance.

6.4.2 Cache-based designs

The Lazy, MetaTM, and TagTM designs represent a different set of tradeoffs in the

design space from Rock or LogTM. By using caches for version management, these

designs incur higher overhead than Rock, but still encounter hard upper bounds

on transactions sizes stemming from associativity and capacity evictions of trans-

actional from L1 caches. Since all three designs use the same cache geometries, the

primary differences between the models is different approaches to contention. The

Lazy model detect conflicts at commit time while TagTM and MetaTM both de-

tect conflicts early. Lazy conflict detection can benefit some workloads by avoiding

restarts for conflicts that may resolve by commit time, but can harm performance

for some workloads by increasing the latency from the time a conflict occurs to the

time it is resolved. TagTM and MetaTM both use the XMESI protocol, and so

differ in this study only by TagTM’s use of notifying transactions, allowing TagTM

150

P bnc design exec rstpct rst/tx conf | ov | tlb

32 pmake locks 0.005 0.006

lazy 0.006 0.017 3 4 0.2 1 100 | 0 | - 100 | 0 | -
metatm 0.006 0.007 3 3 0.4 0.4 100 | 0 | - 100 | 0 | -
tagtm 0.006 0.007 3 2 0.2 0 100 | 0 | - 100 | 0.1 | -
rock 0.005 0.007 17 16 0.2 0.6 28 | 0.5 | 71 74 | 0.2 | 26

xlogtm 0.008 0.010 3 3 0.2 0.9 100 100

mab locks 0.072 0.107

lazy 0.126 0.121 22 1 0.2 0 100 | 0.1 | - 99 | 0.6 | -
metatm 0.119 0.120 22 1 0.2 0 100 | 0.1 | - 99 | 0.6 | -
tagtm 0.106 0.109 22 1 0.2 0 100 | 0.1 | - 99 | 0.6 | -
rock 0.116 0.119 15 1 0.2 0 10 | 0.1 | 90 0 | 0.6 | 99

xlogtm 0.103 0.495 2 1 0 0.2 100 100

config locks 0.134 0.152

lazy 0.160 0.169 1 2 0 0 100 | 0 | - 100 | 0 | -
metatm 0.157 0.169 1 2 0 0 100 | 0 | - 100 | 0 | -
tagtm 0.153 0.169 1 2 0 0 100 | 0 | - 100 | 0 | -
rock 0.163 0.174 12 10 0.2 0.2 1 | 0.7 | 98 26 | 0.6 | 73

xlogtm 0.195 0.219 3 3 0.2 0.2 100 100

16 pmake locks 0.010 0.011

lazy 0.012 0.018 3 3 0.3 0.4 100 | 0 | - 100 | 0 | -
metatm 0.012 0.013 3 3 0.2 0.3 100 | 0.1 | - 100 | 0 | -
tagtm 0.011 0.011 3 3 0.1 0 100 | 0.3 | - 100 | 0.2 | -
rock 0.011 0.011 21 21 0.3 0.3 33 | 0.5 | 67 27 | 0.5 | 73

xlogtm 0.015 0.014 3 3 0.3 0.4 100 100

mab locks 0.122 0.180

lazy 0.166 0.209 1 1 0 0 99 | 1.0 | - 99 | 1 | -
metatm 0.155 0.205 1 1 0 0 99 | 1.0 | - 100 | 0.3 | -
tagtm 0.145 0.195 1 1 0 0 99 | 1.0 | - 99 | 1 | -
rock 0.165 0.407 16 16 0.2 0.2 0 | 0.1 | 100 0 | 0.1 | 100

xlogtm 1.749 0.240 2 1 0.3 0 100 100

config locks 0.245 0.264

lazy 0.281 0.293 1 1 0 0 95 | 5 | - 97 | 3 | -
metatm 0.279 0.283 1 1 0 0 95 | 5 | - 97 | 3 | -
tagtm 0.269 0.273 1 1 0 0 95 | 5 | - 97 | 3 | -
rock 0.291 0.307 11 11 0.1 0.2 0 | 0.8 | 99 0 | 0.7 | 99

xlogtm 0.340 0.340 2 2 0 0.1 100 100

Table 6.5: Performance and characterization of TxLinux benchmarks on CMP and SMP machines.
In each column, the leftmost figure corresponds to a machine with a CMP hierarchy, and the
rightmost column indicates an SMP. User is the user time in seconds. Restarts indicates the total
number of restarts occurring during the benchmark. The tlbm rst and ovrst figures indicate the
number of transactions that restarted due to TLB misses and overflows respectively.

to avoid the use of backoff heuristics. This study does not model memory bandwidth

constraints. Since notifying transactions has the most benefit for high contention

benchmarks under constrained bandwidth, it’s benefits are less pronounced, but

151

Figure 6.8: Runtime for a selection of STAMP benchmarks across several design points, including
idealized overflow handling. Lower is better in all cases except for kmeans, where data are shown as
throughput in transactions per second because kmeans has a variable number of transactions from
run to run. All data are for 16 cpu CMP machines.

tangible in this environment.

Like Rock, the cache-based designs take profound performance losses when

overflow is common. For genome, none of the cache-based designs scale past 2×.

For benchmarks with less common overflow and higher contention, such as intruder

and kmeans, all three designs outperform LogTM, which has much higher latency

for aborted transactions. The different approaches to contention are visible here as

well: TagTM is the best performer for intruder and kmeans for 3 of the 4 simulated

machines.

152

6.4.3 Overflow and Contention

Because overflow has a first order impact in the benchmarks in this study, the HTM

models were evaluated under ideal overflow conditions. While the approach does

allow transactional lines to be evicted from L1 caches, (incurring normal latency for

the specified cache geometry), transactions were not forced to restart on overflow.

Note that in this section, the “rock+” model allows transactions that survive ex-

ceptions, but does not model an unbounded transactional store buffer (larger store

buffers for Rock are considered in section 6.4.4). Figure 6.8 shows raw execution time

for a subset of the stamp benchmarks, including variations on the models that ide-

alize overflow by providing unbounded space for speculative writes and unbounded

tracking of read/write sets.

The data show that for benchmarks with large transactions, the ability to

handle overflow gracefully is the determinant for performance: where overflow is not

a significant cost, the ability to handle contention gracefully becomes the fundamen-

tal differentiator. For example, genome has transaction restart rates of 30% for the

cache-based designs and 0.6% for the xLogTM model, indicating that about 1/3 of

the transactions in genome cause overflow, but contention is quite rare. Figure 6.8’s

graph for genome shows that this results in pathologically poor performance (near

serial) for the cache-based designs. However, the idealized versions of those designs

(lazy-idealov, metatm-idealov, and tagtm-idealov) show no significant performance

differences from each-other and show a performance win over the xLogTM design

only because the xLogTM model does not idealize the cost of log-writes and log-

walks on aborts.

In contrast, vacation has restart rates just under 40% for xLogTM and

ranging from 55-75% for the cache-based HTMs, indicating that vacation has

both significant rates of overflow and significant contention. For vacation, the

Rock model shows the poorest performance because 100% of transactions restart

153

for TLB misses. The rock+ model however, has faster run-times than the cache-

based model, outperforming MetaTM by 18%. This delta represents the higher

cost of attempting transactions that are doomed to overflow with larger buffers.

The cache-based designs can execute much further into transactions that eventually

overflow, while Rock and Rock+ will overflow and fail much sooner. The longer pe-

riod of speculation before overflow incurs (on average) higher latency for overflowing

transactions, and translates to poorer performance. The idealized cache-based de-

signs outperform xLogTM primarily because of xLogTM’s overhead for unbounded

transactions. These designs also show significant differences from each-other that

derive from strategies for handling contention. The idealized TagTM model uses no-

tifying transactions, which affords 13%, and 9% performance gains over the idealized

LazyTM and MetaTM models, respectively.

The intruder benchmark has restart rates in the range of 30-45% for

xLogTM and 40-55% for the cache-based designs: intruder has high contention,

but transactions seldom overflow (less that 1% of restarts are due to overflow). The

Rock model performs worst here, with the vast majority of restarts (92%) being

caused by TLB misses: removing this restriction allows the Rock+ model to per-

form best among the designs that do not idealize overflow, outperforming TagTM,

MetaTM, and xLogTM by 14%, 7%, and 30% respectively. Overflow is rare enough

in intruder that contention management is a significant performance differentia-

tor both the idealized and non-idealized cache-based designs. TagTM outperforms

LazyTM and MetaTM by 6-7%, while the idealized TagTM, outperforms MetaTM

by 4% and LazyTM by 8%.

The kmeans graph in figure 6.8 illustrates a similar situation to that in

intruder. Because kmeans executes a variable number of transactions, and has

significant variance in run-time as a result, data shown are throughput in trans-

actions per second. kmeans has both minimal contention (5-8%) and very small

154

Figure 6.9: Speedup over 1 cpu locks for the Rock+ HTM model, with different store buffer sizes.
The original Rock model (rock-32), TagTM, and LogTM speedup are depicted as well for reference.

transactions– no overflows occur in either Rock or the cache based designs. In this

case performance is determined primarily by overhead for common case uncontended

transactions. xLogTM has the highest such overhead, while Rock has the least: as

a result both Rock and Rock+ outperform xLogTM by 2%. The TagTM model

performs best among the cache-based designs, but because contention is minimal,

contention management effects are likewise minimal.

6.4.4 Rock+

Previous sections demonstrated that the TM support in Rock has limitations that

are crippling for the workloads examined in this study. In particular, the use of

a 32-slot store queue to buffer speculative writes puts a severe limit on the size of

transaction read-write sets; for many workloads, such as genome a significant fraction

of transactions overflow a 32-slot store queue, with the result that the transaction

must roll back and acquire a lock. The design decision to abort on exceptions such

as TLB-misses has an even more profound effect: many benchmarks take a large

number of TLB-misses in transactions (such as vacation, which takes a TLB-miss

in every transaction). In the STAMP benchmarks, where rolling back on overflow

or exceptions results in the acquisition of the single global lock, the result can be

155

exec rstpct rst/tx bkcyc/tx txcyc ovrst/tx

config rock-32 0.30 11.1 3 482 444269 5190 (0.8)

rock+-32 0.29 1.2 1 511 428471 5476 (5.4)

rock+-64 0.29 1.3 1 512 446576 4989 (4.8)

rock+-128 0.30 1.2 1 511 452589 4936 (5.1)

rock+-256 0.29 1.2 1 512 438544 238 (0.2)

rock+-512 0.29 1.2 1 512 440053 227 (0.2)

intruder rock-32 0.6770 92.1 125.5 37 915 4 (0.0)

rock+-32 0.2122 54.4 872.8 827 6581 123625 (0.9)

rock+-64 0.1755 49.1 555.4 434 5637 72387 (0.8)

rock+-128 0.1777 49.5 579.7 466 5698 74185 (0.8)

rock+-256 0.1902 51.5 675.5 575 6041 92466 (0.9)

rock+-512 0.1908 51.8 680.3 574 6054 93134 (0.9)

kmeans rock-32 1.9302 8.2 32.7 8 671 1 (0.0)

rock+-32 1.5869 5.9 30.6 8 671 0 (0.0)

rock+-64 1.6371 5.9 30.4 8 670 1 (0.0)

rock+-128 1.7169 6.0 30.9 8 671 0 (0.0)

rock+-256 1.7162 6.0 31.1 8 670 1 (0.0)

rock+-512 1.6910 6.0 30.9 8 671 0 (0.0)

pmake rock-32 0.02 20.9 11 583 34405 300 (0.5)

rock+-32 0.02 3.5 16 655 34462 376 (0.8)

rock+-64 0.02 3.1 8 608 33957 48 (0.2)

rock+-128 0.02 3.3 15 651 33627 27 (0.1)

rock+-256 0.02 2.6 3 588 33660 19 (0.1)

rock+-512 0.01 3.0 5 607 33629 25 (0.1)

Table 6.6: Statistics for the xRock+ HTM model running on a 3GHz 16 core CMP. The tx column
is the number of transactions executed by the benchmark, exec is execution time (system time for
TxLinux, user time for STAMP), rstpct is the percentage of transactions that restart. The rst/tx
column shows the average number of restarts per transaction; bkcyc/tx shows the average number
of backoff cycles per transaction, while txcyc is the average number of cycles in the transaction and
ovrst/tx is the average number of overflow restarts per transaction (shown with the percentage of
overflowed transactions in parentheses).

near complete serialization of the benchmark.

To evaluate the potential profitability of removing some of these restrictions,

some “Rock+” HTM models were evaluated. The Rock+ models do not abort on dif-

ficult instructions or exceptions, and use larger store queues ranging from 64 to 512

slots to increase the upper bound on transactional write set sizes. Table 6.6 shows

statistics for variations on Rock+, while Figure 6.9 shows speedup of the different

models over sequential execution (1 cpu/locks). Figure 6.9 also provides speedup

data for the original Rock model as well as TagTM and LogTM for reference. The

156

Figure 6.10: Speedup of CMP machines over SMP machines, per benchmark, per HTM design.

data show that the greatest potential gain for Rock is avoiding aborts on excep-

tions. The Rock+-32 model shows performance that is comparable to TagTM and

LogTM for all but the pmake benchmark, and even outperforms them for intruder.

Increasing store buffer size beyond 32 slots is does not always yield a substantial

increase in scalability. The benchmarks not shown yield similar results, with the

caveat that none of the Rock+ models were able to make a significant improvement

on genome, whose transaction sizes consistently cause overflow in L1 caches, making

a larger store buffer a moot point.

6.4.5 Design sensitivity to organization

Figure 6.10 shows the speedup of CMP machines over SMP machines, per benchmark

and HTM design. The choice of CMP versus SMP organization reveals that for many

benchmarks, HTM designs are not particularly sensitive to cache organization. For

workloads that do not have inherent scalability limitations (due to sharing), 32cpu

machines show (an expected, if understated) performance improvement over 16cpu

machines, and performance on CMP machines tends to be slightly better than that

for SMP machines. Improved performance for CMP machines is largely due to the

fact that working sets fit in the 4MB L2 cache. However, the presence of contention

157

does cause all designs to perform significantly worse on SMP than on CMP machines.

High contention results from significant write sharing of data, which on an SMP

machine will cause additional coherence traffic and L2 misses that will not occur in

a CMP where the L2 cache is shared. As a result higher contention benchmarks such

as intruder show a performance improvement in a CMP organization: the effect

is more pronounce in the cache based designs, where failed transactions must also

invalidate speculatively written lines, introducing even more latency for subsequent

cache misses.

6.4.6 Memory Bandwidth

Tables 6.7 and 6.8 show measured ideal bandwidth consumption for all benchmarks

on 16 and 32 cpu machines respectively. The harmonic means across all benchmarks

are provided as well. Figure 6.11 depicts time-series data for the peak bandwidth

per 20,000 cycle epoch: the plots rely on a moving average over 5 points (100,000

cycles). The data show that for while bandwidth needs can vary significantly from

workload to workload, and across designs, average bandwidth needs are modest,

showing that these benchmarks make good use of caches to reduce pressure on main

memory. where contention is minimal, all approaches have similar average band-

width consumption. For example, genome has low restart rates due to contention:

on 16 cpus the average bandwidth consumption ranges from 0.2 to 0.3 GB/sec for

CMP machines and from 0.4 to 0.7 GB/sec for SMP machines. Similar trends are

observable for pmake. The presence of contention introduces wider variability in

both peak and average bandwidth across designs due to the different approaches

the designs use to handle contended transactions.

The lowest overall bandwidth demands come from first from locks and second

from the xLogTM design. In the case of locks, the use of mutual exclusion to

protect shared resources reduces traffic for shared cache lines with respect to the

HTM designs: TM allows multiple threads to enter critical sections, with the result

158

Figure 6.11: Peak Bandwidth over 20,000 cycle epochs for 16 cpu SMP machines: each sampled
point is a moving average of the peak over the previous 5 epochs.

that coherence traffic for lines accessed in those critical regions can be generated by

more than the single cpu holding the lock. Moreover, both Linux and the locking

variant of STAMP used in this study use test-and-test-and-set spinlocks, which

minimizes coherence traffic for contended lock variables. HTM, with the exception

of TagTM, in general does not have similar mechanisms for minimizing traffic for

159

b
a
y
e
s

g
e
n
o
m

e

k
m

e
a
n
s

in
tr

u
d
e
r

v
a
c
a
ti

o
n

y
a
d
a

c
o
n
fi
g

m
a
b

p
m

a
k
e

h
a
rm

e
a
n

cmp locks avg 0.0 0.2 0.1 0.1 0.3 0.0 0.5 0.2 - 0.1

max 27.9 27.9 27.9 27.9 27.9 27.9 32.9 33.7 - 32.7

lazy avg - 0.3 0.4 0.4 0.6 0.1 - - 0.2 0.3

max - 40.8 27.9 27.9 27.9 27.9 - - 46.2 31.7

metatm avg - 0.3 0.4 0.3 0.6 0.1 - - 0.2 0.3

max - 39.9 27.9 27.9 27.9 27.9 - - 35.0 30.5

rock-32 avg 0.1 0.2 0.4 0.2 0.4 0.1 0.8 0.5 0.2 0.2

max 27.9 27.9 27.9 27.9 27.9 27.9 32.1 33.0 36.9 29.6

tagtm avg - 0.3 0.4 0.3 0.6 0.1 - 0.5 0.2 0.3

max - 40.0 27.9 27.9 27.9 27.9 - 35.4 32.4 30.8

xlogtm avg 0.0 0.3 0.2 0.1 0.4 0.1 0.6 0.1 0.1 0.1

max 28.4 28.4 28.4 28.4 28.4 28.4 43.0 28.4 28.4 29.5

smp locks avg 0.1 0.5 1.3 0.5 0.7 0.1 0.7 0.5 0.2 0.2

max 43.0 43.0 43.0 43.0 42.0 43.0 43.0 43.0 43.0 42.8

lazy avg - 0.5 0.6 0.8 0.7 - - - 0.3 0.5

max - 43.8 43.7 43.8 43.8 - - - 43.7 43.8

metatm avg - 0.5 0.6 0.8 0.7 0.2 - 0.7 0.3 0.4

max - 43.7 43.7 43.7 43.7 43.7 - 43.7 43.7 43.7

rock-32 avg 0.1 0.7 0.6 0.8 - 0.2 0.9 - 0.2 0.3

max 43.7 43.7 43.7 43.7 - 43.7 43.7 - 43.7 43.7

tagtm avg - 0.5 0.6 0.6 0.7 0.2 - - 0.2 0.4

max - 43.7 43.7 43.7 43.7 43.7 - - 43.7 43.7

xlogtm avg 0.1 0.4 0.5 0.5 0.5 0.2 - 0.5 0.2 0.2

max 43.0 43.0 43.0 43.0 43.0 43.0 - 43.0 43.0 43.0

Table 6.7: Bandwidth consumption metrics (average and peak) in GB/sec for locks, MetaTM,
xLogTM, and xRock, with 16 CPUs. A dash indicates an unavailable data point. The harmean
column is the harmonic mean across all benchmarks.

contended lines. Failed transactions invalidate speculatively written lines, and retry

until successful, so repeated failed retries can generate the same coherence traffic

repeatedly. The addition of the retry-on-overflow semantics of the “best-effort”

HTMs introduces additional retry scenarios, and subsequent lock acquisition that

must be coordinated with active transactions through the use of cxspinlocks.

While LogTM introduces extra writes for logging old values in transactions,

restarts are less expensive in terms of subsequent cache misses because speculative

lines need not be invalidated. Because the log resides in cachable virtual memory,

and is private, cache lines used for logging will only be evicted from caches due to

160

b
a
y
e
s

g
e
n
o
m

e

k
m

e
a
n
s

in
tr

u
d
e
r

v
a
c
a
ti

o
n

y
a
d
a

c
o
n
fi
g

m
a
b

p
m

a
k
e

h
a
rm

e
a
n

cmp locks avg 0.0 0.1 0.1 0.1 - 0.0 0.5 0.2 0.1 0.1

max 28.0 28.0 28.0 28.0 - 31.8 66.4 33.2 36.4 32.4

lazy avg - 0.3 0.4 0.5 0.7 0.1 - - 0.2 0.3

max - 79.7 28.9 39.8 28.2 37.4 - - 35.2 36.8

metatm avg - 0.3 0.4 0.4 - 0.1 - - 0.2 0.2

max - 80.5 28.2 34.3 - 28.6 - - 37.3 36.0

rock-32 avg 0.1 0.2 0.3 0.2 0.3 0.1 - 0.4 0.2 0.2

max 28.1 28.8 28.1 28.1 28.1 29.1 - 29.9 33.5 32.7

tagtm avg - 0.3 0.3 0.3 - 0.1 - - 0.2 0.2

max - 80.7 28.2 34.7 - 28.2 - - 39.2 36.3

xlogtm avg 0.0 0.2 0.1 0.1 0.4 0.1 0.6 0.3 0.1 0.1

max 29.8 30.3 30.3 29.8 29.8 30.3 46.1 29.8 29.8 31.2

smp locks avg 0.1 0.8 - 0.7 - 0.1 0.7 0.5 0.1 0.2

max 43.7 43.7 - 43.7 - 43.7 43.7 43.7 43.7 43.7

lazy avg - - 0.7 1.1 1.1 0.3 - - 0.3 0.5

max - - 44.6 44.6 44.6 44.6 - - 51.0 45.8

metatm avg - 0.6 0.6 1.1 0.9 0.2 - - 0.2 0.4

max - 79.7 44.6 44.6 44.5 44.6 - - 44.6 48.1

rock-32 avg 0.1 - 0.6 1.0 1.0 0.2 0.8 - 0.2 0.3

max 44.4 - 44.3 44.3 44.4 42.1 61.6 - 44.3 45.8

tagtm avg - 0.6 0.6 0.8 - 0.2 - - 0.2 0.4

max - 79.4 44.6 44.6 - 44.6 - - 44.6 48.9

xlogtm avg 0.1 0.3 0.5 0.7 0.5 0.1 - - 0.2 0.2

max 43.7 43.8 43.7 43.8 43.8 43.8 - - 43.8 50.0

Table 6.8: Bandwidth consumption metrics (average and peak) in GB/sec for locks, MetaTM,
xLogTM, and xRock, with 32 CPUs. A dash indicates an unavailable data point. The harmean
column is the harmonic mean across all benchmarks.

capacity, and never due to coherence traffic generated by sharing. While LogTM

does use more memory than the other designs to implement the TM abstraction, this

extra memory usage does not translate to increased memory bandwidth pressure.

The ability of TagTM to reduce bandwidth pressure under contention has

minimal impact on bandwidth consumption averaged across the whole benchmark,

but it is visible in the time series data in cases where sharing introduces spikes

in memory traffic. For instance, for intruder 16 cpu SMP, around 0.06 seconds

into the benchmark, a spike occurs for which TagTM, reduces memory traffic by 1

GB/sec with respect the Lazy HTM and by 0.5 GB/sec with respect to MetaTM.

161

However, it is interesting to note that xLogTM’s bandwidth needs in this phase are

even lower, due to not requiring invalidation of cache lines for failed transactions.

The fact that Rock must serialize transactions failed due to overflow in this phase

is evinced by the fact that the phase takes twice as long to execute and has a

bandwidth consumption profile similar to that of locks.

6.5 Conclusion

Ultimately, the data in this study reflect that even leaving cost and complexity con-

siderations aside, the attractiveness of a particular design is tightly coupled with the

envisioned workload. While xLogTM is clearly the most broadly applicable design,

yielding predictable and scalable performance for workloads with large transactions,

it also represents a point in the design space characterized by considerable invest-

ment of hardware mechanism: moreover, for programs that minimize sharing (a

desirable property for any scalable program), the xLogTM design incurs the highest

common case performance penalty, and would be an unlikely design point for fine-

grain synchronization such as might occur in a modern OS. Conversely, while Rock

represents a point in design space characterized by economy of hardware mechanism,

the economy severely impacts the usability. It is interesting to note however, that

this impact is much more a result of exception handling in transactions rather than

from store-buffer geometry: the fact that overflowing transactions overflow early in

Rock allows it to perform better than the heavier-weight cache-based designs for

some workloads (e.g. vacation). The cache-based designs represent an interesting

middle-ground: if a design goal of TM is to provide fine-grain performance with

coarse-grain complexity, the ability to support somewhat larger transactions is a

mandate.

It is also important to note that while the cache-based designs in this study

differ from each other in terms of support for mechanism that address contention,

162

similar mechanisms could be supported (to varying degree) in designs that are not-

cache based. LogTM in particular could benefit from both notifying transactions

and transaction annotation. Because Rock uses a store-buffer for writes, but still

uses L1 cache lines to represent membership in read-sets, these mechanisms could

be used, with some adaptation, in that context as well.

163

Chapter 7

Related work

Larus and Rajwar provide a thorough reference on TM research through the begin-

ning of summer 2006 [42]. Optimistic synchronization [33], motivated early HTM

designs [36]. Rajwar and Goodman explored transactional [66,67] execution of criti-

cal sections. Recent HTMs has focused on the architectural mechanisms that provide

transactional memory [?, 5, 9, 12, 13, 18, 22, 48, 58, 70, 85, 94], language-level support

for HTM [2, 15], and transactional resource virtualization [10, 19, 39, 68, 96] as well

as hybridization [7,45,46]. This thesis focuses on the tradeoffs introduced by mech-

anisms proposed for supporting HTM, and while MetaTM [70, 75] and DATM [71]

represent unique points in that space, the MetaTM infrastructure supports modes

that emulate important elements from most of these designs.

I/O in transactions. Proposals for I/O in transactions fall into three basic

camps: isolation escape hatches, delaying I/O until commit [29,30], or guaranteeing

commit for transactions that have performed I/O [?, 5, 10]. All of these strategies

have serious drawbacks.

Many HTM systems allow a transactional escape hatch known as an open

nested transaction [59, 61, 63]. An open nested transaction can read the partial re-

sults of the current transaction and any changes it makes, including I/O operations,

are not isolated. If the enclosing transaction restarts, the effect of the open-nested

164

transaction must be undone by code provided by the programmer: the resulting

programmer effort (writing and maintain compensating code) severely compromises

the utility of open-nested transactions. Efficient hardware implementations of open

nesting introduce correctness conditions that are subtle and easy to violate in com-

mon programming idioms [38], as well as restricting the transactional programming

model. Delaying I/O is not possible when the code performing the I/O depends

on its result, e.g., a device register read might return a status word that the OS

must interpret in order to finish the transaction. Guaranteeing that a transaction

will commit severely limits scheduler flexibility, and can, for long-running or highly

contended transactions, result in serial bottlenecks or deadlock. Non-transactional

threads on other processors which conflict the guaranteed thread will be forced to

retry or stall until the guaranteed thread commits its work. This will likely lead to

lost timer interrupts and deadlock in the kernel.

Scheduling. Carlstrom et al. [15] demonstrate a scheduler wherein the

scheduler thread in a Java VM listens for conflicts on behalf of a yielded thread.

The technique requires a dedicated core for the scheduler thread, which is very

wasteful in an OS, and does not scale as there is no bound on the size of transaction

sets amassed by the scheduler.

Zilles [96] explores modifications to the OS that allow micro-architectural

events to modify task state and raise exceptions to invoke the scheduler, providing

a mechanism for a thread involved in a transactional conflict to deschedule itself.

While the TxLinux scheduler attempts to deschedule threads involved in multiple

restarts, the mechanism is entirely under the control of of the OS, while the Zilles

techniques puts the scheduler directly at the mercy of the hardware.

Mainstream operating systems such as Microsoft Windows [79], Linux [14]

and Solaris [49] implement sophisticated priority-based pre-emptive schedulers, with

different classes of priorities, and a variety of scheduling techniques for each class.

165

Bilge et. al. [3] explore hardware support for priority inheritance using spinlocks.

The approach uses hardware to support priority inheritance which only provides an

upper bound on priority inversion, while this work takes advantage of transactional

hardware to avoid priority inversion before it occurs. The Linux RT patch [78]

supports priority inheritance to help mitigate the effects of priority inversion: the

Linux RT patch implementation converts spinlocks to mutexes, changing a busy-

waiting primitive to a blocking primitive, and relying on the scheduler to react to

inherited priority. By contrast, the os prio policy allows the contention manager

to nearly eliminate priority inversion without requiring the primitive to block or

involve the scheduler.

Write-shared data. One approach to the problem of write-shared data is

to make it the responsibility of the programmer not to write-share data in the first

place. Such systems usually provide at least some performance analysis tools [17]

to help programmers identify data hotspots, leaving them with these alternatives

that ultimately lead to some combination of greater programming effort, decreased

maintainability, reduced functionality, and more bugs. These costs are a significant

price to pay for higher concurrency. Large-scale SMPs have provided mechanisms

to help programmers deal with contented shared data. DASH [1] supported queue

locks, update-writes, deliver instructions, and Fetch&Op in the directory protocol.

Fetch&Op was found to be the most useful [44] and has received increased attention

since [43]. (e.g. by having a dedicated cache [43]).

TM programming model extensions. Several proposed extensions to the

TM programming model can be used to achieve higher performance, including priva-

tization [89], early release [88], escape actions [96], open and closed nesting [60,64],

Galois classes [40], transactional boosting [34] and abstract nested transactions [32].

Because these techniques all change the programming model, they increase program-

mer effort, making increased complexity the price for better performance. They dif-

166

fer in their degree of applicability and the difficulty of reasoning involved, as well as

the amount of additional compromises they force on their users. For example, using

escape actions to implement a counter requires the programmer to also write a com-

pensation block, which is a significant programmer burden. Moreover, semantics

may be weakened when using this approach (e.g. a counter implemented this way

is no longer monotonically increasing). In Galois and transactional boosting, the

programmer needs to provide inverse operations for the concurrent data structures,

which might be difficult (e.g., k-d tree), as well as define commutativity relationships

between the various operations.

Thread-level speculation Designs for thread-level speculation [26,74] are

similar to DATM in their support for multiple versions of speculative data. In the

TLS taxonomy, DATM merges its results with main memory lazily (via the CTM

cache state). However, state management in DATM is much simpler than TLS.

For example, of the five challenges to buffering state in TLS (including multiple

speculative tasks per processor and multiple versions of a variable in a processor),

DATM needs to deal with three of them (buffering and merging speculative state

and multiple versions of the same variable at different processors). Current TM

systems must deal with two of the challenges, buffering and merging speculative

state.

TLS must squash speculation on dependence violation, and current designs

tolerate some memory access conflicts. TLS tolerates a subset of the conflicts tol-

erated by DATM [74]. TLS systems must support a large number of speculative

tasks, e.g., using a 6-bit local identifier [74]. DATM allows 3 suspended transactions

using a 2-bit identifier, but suspended transactions cannot be the source or desti-

nation of a dependence in DATM. Suspended transactions in DATM are logically

independent, unlike TLS tasks.

MVCC. Dependence-aware TM shares some conceptual ground with multi-

167

version concurrency control (MVCC). The DATM implementation keeps track of

multiple versions of an object when it is being modified concurrently by many

transactions. MVCC (also called time-domain addressing [73]) also tracks multiple

versions of each object. The key difference is that DATM is designed to specifically

deal with hotspots, whereas hotspots are known to degrade performance of MVCC

database systems. The techniques used by DATM (transactions dependences and

forwarding data between transactions) are not found in MVCC systems. Moreover,

the lack of durability of memory transactions makes it easier to implement efficiently.

Unlike MVCC DATM is able to efficiently handle hotspots by forwarding data.

DATM and TM Serializability. Aydonat and Abdelrahman [6] have (si-

multaneously with us) identified that current transactional memory implementations

apply a stronger form of serializability than conflict serializability, thus reducing the

amount of useful concurrency in the system. They have a software system which

does not accept all conflict serializable schedules as DATM does. In particular, their

implementation would not allow concurrent updates to a shared counter.

TagTM. Notifying transactions are similar to stall-on-conflict [58] in that

the mechanism allows a conflicting transaction to wait in hopes that a conflict will re-

solve. However there are some fundamental differences. Stall-on-conflict leaves con-

flicting transactions in progress, increasing the probability that additional conflicts

can arise for other cache lines held in the read-write set of the stalled transaction.

Stall-on-conflict introduces the need for deadlock detection/avoidance, and brings up

thorny policy issues around asymmetric conflict. Most importantly, stall-on-conflict

is not software-visible, and it causes transactions to stall in the coherence layer: de-

cisions to wait or retry can be better made by software. Notifying transactions give

software flexibility to decide how to handle contention, which hardware-based back-

off and stall-on-conflict policies cannot provide. Notifying transactions share some

common properties with the Alert-On-Update mechanism described by Shriraman

168

et al. [86] in that it leverages coherence to notify conflicting or waiting threads of

important transactional events, and both mechanisms rely on specialized coherence

protocols. Alert-On-Update is a building block for STM implementation, and ef-

fectively works by detecting conflicts on cache-lines read in a speculative context.

Notifying transactions, by contrast, provides a way for a committing transaction to

notify a non-transactional thread that retrying a previously conflicting transaction

may be profitable; the intended use of notifying transactions is a hint to software

that is synchronizing with HTM.

The design comparison in Chapter 6 is related to area of TM virtualiza-

tion in that several designs may often revert to locks to support atomicity and

isolation for transactions that overflow hardware resources. Other approaches to

virtualization include falling back to TM at page granularity [18, 19], and handling

overflow directly with dedicated hardware [68, 91]. Other approaches restrict the

concurrency of overflowed transactions in order to virtualize overflow [10,29], which

are fundamentally mechanisms to make overflowed transactions “inevitable.” [90].

Retrying with a lock instead of a transaction requires some mechanisms for cooper-

ation between locks and transactions [75] to ensure fairness between transactional

and non-transactional critical sections. This approach is similar to speculative [66]

or transactional [67] execution of critical sections.

169

Chapter 8

Conclusion

TxLinux is the first operating system that uses HTM as a synchronization primi-

tive, and presents innovative techniques for HTM-aware scheduling and cooperation

between locks and transactions. TxLinux demonstrates that HTM provides compa-

rable performance to locks, and can simplify code while coexisting with other syn-

chronization primitives in a modern OS. The cxspinlock primitive enables a solution

to the long-standing problem of I/O in transactions, and the API eases conversion

from locking primitives to transactions significantly. Introduction of transactions as

a synchronization primitive in the OS reduces time wasted synchronizing on average,

but can cause pathologies that do not occur with traditional locks under very high

contention or when critical sections are sufficiently large for the overhead of HTM

virtualization to become significant. HTM aware scheduling eliminates priority in-

version for all the workloads we investigate, and enables better management of very

high contention in ways that are not possible with traditional locks. However, it is

unable to have a significant impact on the performance of workloads with normal

contention profiles.

Dependence-aware transactions increase throughput by enabling concurrent

execution of transactions that would otherwise conflict due to updating shared data

structures. This thesis presents the design, and a prototype implementation of

170

a dependence-aware hardware transactional memory system. Experimental results

confirm the potential performance benefits of dependence-aware transactional mem-

ory as compared to traditional HTM implementations. DATM enables performance

improvements that can be achieved through mechanisms that are completely trans-

parent to the programmer.

This thesis has also presented TagTM, and explored mechanisms that avoid

and manage contention among transactions in an HTM. We find that notifying

transactions can improve performance under contention, and can significantly reduce

pressure on memory bandwidth for transactions that must restart. We examine

implementation details for supporting flexible contention management policies in an

HTM, and suggest transaction annotation as a mechanism that allows contention

management decisions to be rendered locally at nodes where conflicts are detected;

transaction annotation eliminates the the design complexities incurred by software

conflict handlers suggested in previous designs. This paper has contributed a new

transactional coherence protocol called XMESI.

Finally, this thesis has contributed a detailed cross-product design compar-

ison for hardware transactional memory. The study reveals that designs have per-

formance characteristics that are tightly coupled with the envisioned workload. If

TM’s charter is fundamentally about ease-of-programming, designs that have nat-

ural support for unbounded transactions such as LogTM [58] or TokenTM [12] are

attractive; however, such designs trade common case performance and contended

performance for unbounded support, making these designs a less attractive fit for

contexts where critical sections are short such as an operating system, or where

contention may be common. The minimal TM support provided by Rock [22] rep-

resents the opposite end of this spectrum: a slightly enhanced Rock-like design can

provide very good common case performance for short and small critical sections,

but does not go far to deliver on TM’s promise of easy parallel programming, as it’s

171

failure modes are common and diverse enough to relegate the mechanism to use by

expert programmers. Cache-based designs fall squarely in the middle, representing

a point in the design space that supports larger transactions than Rock, and is easily

enhanced to support mechanisms that help programmers manage contention, but

can be slower in the common case than Rock-like designs for uncontended transac-

tions, and still require some awareness of cache geometry from programmers (albeit

at a noticably higher threshold on transaction size) if good performance is to be

achieved. The cache-based designs represent an interesting middle-ground: if a de-

sign goal of TM is to provide fine-grain performance with coarse-grain complexity,

the ability to support somewhat larger transactions is a mandate.

172

Bibliography

[1] The stanford dash multiprocessor. IEEE Computer, 25(3), 1992.

[2] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy,

Bratin Saha, and Tatiana Shpeisman. Compiler and runtime support for ef-

ficient software transactional memory. In PLDI ’06: Proceedings of the 2006

ACM SIGPLAN conference on Programming language design and implementa-

tion, pages 26–37, New York, NY, USA, 2006. ACM.

[3] Bilge E. S. Akgul, Vincent J. Mooney III, Henrik Thane, and Pramote

Kuacharoen. Hardware support for priority inheritance. rtss, 00:246, 2003.

[4] Alaa R. Alameldeen and David A. Wood. Variability in architectural simula-

tions of multi-threaded workloads. In HPCA ’03: Proceedings of the 9th In-

ternational Symposium on High-Performance Computer Architecture, page 7,

Washington, DC, USA, 2003. IEEE Computer Society.

[5] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded transactional memory. volume 26, pages 59–69, Los

Alamitos, CA, USA, 2006. IEEE Computer Society Press.

[6] U. Aydonat and T. Abdelrahman. Serializability of transactions in software

transactional memory. In TRANSACT, 2008.

173

[7] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory

protection to build a high-performance, strongly atomic hybrid transactional

memory. In Proceedings of the 35th Annual International Symposium on Com-

puter Architecture. June 2008.

[8] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13:422–426, 1970.

[9] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin.

Making the fast case common and the uncommon case simple in unbounded

transactional memory. SIGARCH Comput. Archit. News, 35(2):24–34, 2007.

[10] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin.

Making the fast case common and the uncommon case simple in unbounded

transactional memory. In ISCA ’07: Proceedings of the 34th annual interna-

tional symposium on Computer architecture, pages 24–34, New York, NY, USA,

2007. ACM.

[11] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Deconstruct-

ing transactions: The subtleties of atomicity. In Fourth Annual Workshop on

Duplicating, Deconstructing, and Debunking. Jun 2005.

[12] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A.

Wood. Tokentm: Efficient execution of large transactions with hardware trans-

actional memory. In Proceedings of the 35th Annual International Symposium

on Computer Architecture. Jun 2008.

[13] Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos, Mark D. Hill,

Michael M. Swift, and David A. Wood. Performance pathologies in hardware

transactional memory. In Proceedings of the 34th Annual International Sympo-

sium on Computer Architecture. Jun 2007.

174

[14] D. Bovet and M. Cesati. Understanding the Linux Kernel. OŔeilly Media, Inc.,

3rd edition, 2005.

[15] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,

Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The atomos trans-

actional programming language. In PLDI ’06: Proceedings of the 2006 ACM

SIGPLAN conference on Programming language design and implementation,

pages 1–13, New York, NY, USA, 2006. ACM.

[16] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambigua-

tion of speculative threads in multiprocessors. In ISCA ’06: Proceedings of the

33rd annual international symposium on Computer Architecture, pages 227–

238, Washington, DC, USA, 2006. IEEE Computer Society.

[17] Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, Jae-

Woong Chung, Lance Hammond, Christos Kozyrakis, and Kunle Olukotun.

Tape: a transactional application profiling environment. In ICS ’05: Pro-

ceedings of the 19th annual international conference on Supercomputing, pages

199–208, New York, NY, USA, 2005. ACM.

[18] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson,

Michael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin.

Unbounded page-based transactional memory. In ASPLOS-XII: Proceedings

of the 12th international conference on Architectural support for programming

languages and operating systems, pages 347–358, New York, NY, USA, 2006.

ACM.

[19] JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare, Hassan

Chafi, Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukotun. Tradeoffs

in transactional memory virtualization. In ASPLOS-XII: Proceedings of the

175

12th international conference on Architectural support for programming lan-

guages and operating systems, pages 371–381, New York, NY, USA, 2006. ACM.

[20] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture:

A Hardware/Software Approach (The Morgan Kaufmann Series in Computer

Architecture and Design). Morgan Kaufmann, August 1998.

[21] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir,

and Daniel Nussbaum. Hybrid transactional memory. In ASPLOS-XII: Pro-

ceedings of the 12th international conference on Architectural support for pro-

gramming languages and operating systems, pages 336–346, New York, NY,

USA, 2006. ACM.

[22] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with

a commercial hardware transactional memory implementation. pages 157–168,

2009.

[23] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC,

2006.

[24] Edsger W. Dijkstra. The structure of the “the”-multiprogramming system.

Commun. ACM, 11(5):341–346, 1968.

[25] E. Elnozahy, D. Johnson, and Y. Wang. A survey of rollback-recovery protocols

in message-passing systems, 1996.

[26] Maŕıa Jesús Garzarán, Milos Prvulovic, José Maŕıa Llabeŕıa, Vı́ctor Vi nals,

Lawrence Rauchwerger, and Josep Torrellas. Tradeoffs in buffering speculative

memory state for thread-level speculation in multiprocessors. ACM Trans.

Archit. Code Optim., 2(3):247–279, 2005.

[27] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

176

[28] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: a benchmark

for software transactional memory. In EuroSys ’07: Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 315–

324, New York, NY, USA, 2007. ACM.

[29] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,

Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and

Kunle Olukotun. Transactional memory coherence and consistency. In ISCA

’04: Proceedings of the 31st annual international symposium on Computer ar-

chitecture, page 102, Washington, DC, USA, 2004. IEEE Computer Society.

[30] Tim Harris. Exceptions and side-effects in atomic blocks. Sci. Comput. Pro-

gram., 58(3):325–343, 2005.

[31] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon Peyton-Jones. Com-

posable memory transactions. In PPoPP, Jun 2005.

[32] Tim Harris and Srdan Stipic. Abstract nested transactions. In Second ACM

SIGPLAN Workshop on Transactional Computing, 2007.

[33] Maurice Herlihy. Wait-free synchronization. volume 13, pages 124–149, New

York, NY, USA, 1991. ACM.

[34] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology

for highly-concurrent transactional objects. In PPoPP ’08: Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel pro-

gramming, pages 207–216, New York, NY, USA, 2008. ACM.

[35] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for

implementing software transactional memory. In SIGPLAN Not., volume 41,

pages 253–262, New York, NY, USA, 2006. ACM.

177

[36] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural

support for lock-free data structures. In Proceedings of the 20th Annual Inter-

national Symposium on Computer Architecture, pages 289–300, May 1993.

[37] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness con-

dition for concurrent objects. ACM Transactions on Programming Languages

and Systems, 12(3):463–492, Jul 1990.

[38] Owen S. Hofmann, Donald E. Porter, Christopher J. Rossbach, Hany E. Ra-

madan, and Emmett Witchel. Solving difficult HTM problems without difficult

hardware. In ACM TRANSACT Workshop, 2007.

[39] Owen S. Hofmann, Christopher J. Rossbach, and Emmett Witchel. Maximum

benefit from a minimal htm. pages 145–156, 2009.

[40] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,

Kavita Bala, and L. Paul Chew. Optimistic parallelism requires abstractions.

In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 211–222, New York, NY, USA,

2007. ACM.

[41] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and An-

thony Nguyen. Hybrid transactional memory. In PPoPP, 2006.

[42] Jim Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool, 2006.

[43] James Laudon and Daniel Lenoski. The sgi origin: a ccnuma highly scalable

server. volume 25, pages 241–251, New York, NY, USA, 1997. ACM.

[44] Daniel E. Lenoski and James P. Laudon. Retrospective: the dash prototype:

implementation and performance. In ISCA ’98: 25 years of the international

symposia on Computer architecture (selected papers), pages 80–82, New York,

NY, USA, 1998. ACM.

178

[45] Yossi Lev and Jan-Willem Maessen. Split hardware transactions: true nesting

of transactions using best-effort hardware transactional memory. In PPoPP

’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming, pages 197–206, New York, NY, USA, 2008.

ACM.

[46] Yossi Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased transactional mem-

ory. In Workshop on Transactional Computing (TRANSACT), 2007.

[47] P.S. Magnusson, M. Christianson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation

platform. In IEEE Computer vol.35 no.2, Feb 2002.

[48] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Has-

san Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics

for practical transactional memory. In ISCA ’06: Proceedings of the 33rd annual

international symposium on Computer Architecture, pages 53–65, Washington,

DC, USA, 2006. IEEE Computer Society.

[49] R. McDougall and J. Mauro. Solaris Internals. Prentice Hall, 2nd edition,

2006.

[50] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy

Update Techniques in Operating System Kernels. PhD thesis, 2004.

[51] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. ACM Transactions on Com-

puter Systems, 9(1):21–65, 1991.

[52] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,

9(1):21–65, 1991.

179

[53] John M. Mellor-Crummey and Michael L. Scott. Scalable reader-writer synchro-

nization for shared-memory multiprocessors. SIGPLAN Not., 26(7):106–113,

1991.

[54] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.

Stamp: Stanford transactional applications for multi-processing. In IISWC

’08: Proceedings of The IEEE International Symposium on Workload Charac-

terization, September 2008.

[55] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,

Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An

effective hybrid transactional memory system with strong isolation guarantees.

In ISCA ’07: Proceedings of the 34th annual international symposium on Com-

puter architecture, pages 69–80, New York, NY, USA, 2007. ACM.

[56] Mark Moir, Kevin Moore, and Dan Nussbaum. The adaptive transactional

memory test platform: a tool for experimenting with transactional code for

rock (poster). In SPAA ’08: Proceedings of the twentieth annual symposium

on Parallelism in algorithms and architectures, pages 362–362, New York, NY,

USA, 2008. ACM.

[57] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8), April 1965.

[58] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and

David A. Wood. Logtm: log-based transactional memory. In High-Performance

Computer Architecture, 2006. The Twelfth International Symposium on, pages

254–265, 2006.

180

[59] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D.

Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting nested

transactional memory in LogTM. In ASPLOS-XII. 2006.

[60] J. Eliot B. Moss. Nested transactions. MIT, 1985.

[61] J. Eliot B Moss, Nancy D. Griffeth, and Marc H. Graham. Abstraction in

recovery management. SIGMOD Rec., 15(2):72–83, 1986.

[62] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model

and architecture sketches. In In Science of Computer Programming, volume 63,

pages 186–201. Dec 2006.

[63] J. Eliot B. Moss and Tony Hosking. Nested transactional memory: Model and

preliminary architecture sketches. In SCOOL, 2005.

[64] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking,

Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman.

Open nesting in software transactional memory. In PPoPP ’07: Proceedings

of the 12th ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 68–78, New York, NY, USA, 2007. ACM.

[65] John K. Ousterhout. Why aren’t operating systems getting faster as fast as

hardware? In USENIX Summer, pages 247–256, 1990.

[66] R. Rajwar and J. Goodman. Speculative lock elision: Enabling highly concur-

rent multithreaded execution. In MICRO, 2001.

[67] R. Rajwar and J. Goodman. Transactional lock-free execution of lock-based

programs. In ASPLOS, October 2002.

[68] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional

memory. In ISCA ’05: Proceedings of the 32nd annual international symposium

181

on Computer Architecture, pages 494–505, Washington, DC, USA, 2005. IEEE

Computer Society.

[69] Hany Ramadan, Chris Rossbach, and Emmett Witchel. The Linux kernel: A

challenging workload for transactional memory. In Workshop on Transactional

Memory Workloads, June 2006.

[70] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hof-

mann, Aditya Bhandari, and Emmett Witchel. Metatm/txlinux: transactional

memory for an operating system. In ISCA ’07: Proceedings of the 34th annual

international symposium on Computer architecture, pages 92–103, New York,

NY, USA, 2007. ACM.

[71] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel.

Dependence-aware transactional memory for increased concurrency. In MICRO

’08: Proceedings of the 2008 41st IEEE/ACM International Symposium on Mi-

croarchitecture, pages 246–257, Washington, DC, USA, 2008. IEEE Computer

Society.

[72] Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett Witchel. Com-

mitting conflicting transactions in an stm. In PPoPP ’09: Proceedings of the

14th ACM SIGPLAN symposium on Principles and practice of parallel pro-

gramming, pages 163–172, New York, NY, USA, 2009. ACM.

[73] David P. Reed. Implementing atomic actions on decentralized data. page 163,

1979.

[74] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James Tuck,

and Josep Torrellas. Thread-level speculation on a cmp can be energy effi-

cient. In ICS ’05: Proceedings of the 19th annual international conference on

Supercomputing, pages 219–228, New York, NY, USA, 2005. ACM.

182

[75] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ra-

madan, Bhandari Aditya, and Emmett Witchel. Txlinux: using and managing

hardware transactional memory in an operating system. In SOSP ’07: Proceed-

ings of twenty-first ACM SIGOPS symposium on Operating systems principles,

pages 87–102, New York, NY, USA, 2007. ACM.

[76] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transac-

tional programming actually easier? In Proceedings of the Eigth Workshop on

Duplicating, Deconstructing, and Debunking, Jun 2009.

[77] Christopher J. Rossbach, Hany E. Ramadan, Owen S. Hofmann, Donald E.

Porter, Bhandari Aditya, and Emmett Witchel. Txlinux and metatm: transac-

tional memory and the operating system. Commun. ACM, 51(9):83–91, 2008.

[78] Steven Rostedt and Darren V. Hart. Internals of the rt patch. 2007.

[79] M. Russinovich and D. Solomon. Microsoft Windows Internals: Microsoft Win-

dows Server(TM) 2003, Windows XP, and Windows 2000. Microsoft Press, 4th

edition, 2004.

[80] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural sup-

port for software transactional memory. In MICRO 39: Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 185–

196, Washington, DC, USA, 2006. IEEE Computer Society.

[81] Bratin Saha, Ali reza Adl-tabatabai, Richard L. Hudson, Chi Cao Minh, and

Benjamin Hertzberg. Mcrt-stm: a high performance software transactional

memory system for a multi-core runtime. In In Proc. of the 11th ACM Symp. on

Principles and Practice of Parallel Programming, pages 187–197. ACM Press,

2006.

183

[82] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Im-

plementing signatures for transactional memory. In MICRO ’07: Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 123–133, Washington, DC, USA, 2007. IEEE Computer Society.

[83] William N. Scherer, III and Michael L. Scott. Advanced contention management

for dynamic software transactional memory. In PODC ’05: Proceedings of the

twenty-fourth annual ACM symposium on Principles of distributed computing,

pages 240–248, New York, NY, USA, 2005. ACM.

[84] Arrvindh Shriraman and Sandhya Dwarkadas. Refereeing conflicts in hardware

transactional memory. In International Conference on Supercomputing. Jun

2009.

[85] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible de-

coupled transactional memory support. In Proceedings of the 35th Annual In-

ternational Symposium on Computer Architecture. Jun 2008.

[86] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible de-

coupled transactional memory support. In ISCA ’08: Proceedings of the 35th

International Symposium on Computer Architecture, pages 139–150, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[87] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra J. Marathe,

Sandhya Dwarkadas, and Michael L. Scott. An integrated hardware-software

approach to flexible transactional memory. volume 35, pages 104–115, New

York, NY, USA, 2007. ACM.

[88] Travis Skare and Christos Kozyrakis. Early release: Friend or foe? In Workshop

on Transactional Workloads, 2006.

184

[89] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L.

Scott. Privatization techniques for software transactional memory. In PODC

’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of

distributed computing, pages 338–339, New York, NY, USA, 2007. ACM.

[90] Michael F. Spear, Maged M. Michael, and Michael L. Scott. Inevitability mech-

anisms for software transactional memory. In Proceedings of the Third ACM

SIGPLAN Workshop on Transactional Computing (TRANSACT), 2008.

[91] Michael M. Swift, Haris Volos, Neelam Goyal, Luke Yen, Mark D. Hill, and

David A Wood. Os support for virtualizing transactional memory. In TRANS-

ACT, 2008.

[92] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multi-

threading: Maximizing on-chip parallelism. In In 22nd Annual International

Symposium on Computer Architecture, pages 392–403, 1995.

[93] David A. Wood, Garth A. Gibson, and Randy H. Katz. Verifying a multipro-

cessor cache controller using random test generation. IEEE Design and Test of

Computers, pages 13–25, August 1990.

[94] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos,

Mark D. Hill, Michael M. Swift, and David A. Wood. Logtm-se: Decoupling

hardware transactional memory from caches. In HPCA ’07: Proceedings of

the 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, pages 261–272. IEEE Computer Society, Washington, DC, USA,

2007.

[95] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to

enhance signatures. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM

185

International Symposium on Microarchitecture, pages 234–245, Washington,

DC, USA, 2008. IEEE Computer Society.

[96] Craig Zilles and Lee Baugh. Extending hardware transactional memory. In

TRANSACT, Jun 2006.

186

Vita

Chris Rossbach was born in Dayton, Ohio in 1970, son of Dennis and Dianne Ross-

bach. He graduated from Stanford in 1992 with a B.S. in computer systems en-

gineering, and spent the next decade playing the guitar professionally in the San

Francisco Bay area. In 2005 he started the doctoral program in the Department of

Computer Sciences at the University of Texas at Austin.

Permanent Address: 308 W. Annie St

Austin, TX 78704

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

187

