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Abstract 

 

Ultra-stable nano-manipulation of mechanically-variable system: 

optical forces and beyond 

 

Hui Dong, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Zheng Wang 

 

Optical force and acoustic force have been intensively investigated over the past 

several decades in the applications ranging from the optical/acoustic trapping, high-

resolution biomedical imaging, sensing technology, signal processing to acoustic 

levitation, ultrasonic calibration, etc.  

I started from the calculation of the optical force including both radiation pressure 

and electrostriction force in stimulated Brillouin scattering using finite-element method. 

Then I investigated the sufficient condition of creating conservative optical force field, 

which is hard to realize as the optical force generally contains inevitable rotational 

component in a multi-port system. To verify the conclusion, this condition has been 

subsequently applied to three scenarios, realizing auto-alignment of millimeter-scale 

photonic crystal slabs, simultaneously trapping and orientating nano-particles, and self-

aligned topological photonic crystal. To overcome the material loss which breaks the 

conservativeness of the optical force, a compensating method using the gain media to 

recover the conservative optical force field is presented and verified by the vorticity ratio 

derived from Helmholtz-Hodge decomposition (HHD).  



 viii 

As an analog to the optical radiation pressure but generally millions larger in 

magnitude, the acoustic radiation pressure calculation using the response theory is also 

proposed, which perfectly agrees with the traditional Reynold stress tensor integration and, 

more importantly, reveals the sufficient condition of conservative acoustic force.  

The contributions of this work are significant in four aspects in the area of 

numerical device simulation and parallel scientific computing: first of all, it paves the 

fundamental way to ultra-stable trapping by providing correct ways of numerically 

calculating optical/acoustic forces, which are corroborated by response theory developed 

in this work; secondly, the complete temporal coupled-mode theory unveils all spectral 

response of waveguide-resonator systems; thirdly, the parallel algorithm of HHD applied 

to periodic structure provides reliable metric to evaluate stability of trapping; finally, the 

newly developed weak-form formulation of topological photonic crystal with loss/gain 

helps design of novel photonic devices. 



Table of Contents

Acknowledgments v

Abstract vii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Full vectorial calculation of the optical force . . . . . . . 2

1.2.2 Sufficient condition of conservative optical/acoustic force 3

1.2.3 Response theory of acoustic force . . . . . . . . . . . . . 4

1.3 Contributed work . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Full vectorial calculation of SBS gain in nano-scale sus-
pended silicon waveguide . . . . . . . . . . . . . . . . . 4

1.3.2 Conservative optical force in stacking photonic crystal slabs 5

1.3.3 Trapping and orientating nano-particles in one-way waveg-
uide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Self-aligned topological photonic crystal . . . . . . . . . 7

1.3.5 Compensating loss in one-way waveguide . . . . . . . . 7

1.3.6 Auto-alignment of phononic crystal using acoustic force 8

1.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Self-aligned topological photonic crystal with frequency
modulation . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Two-dimensional acoustic trap . . . . . . . . . . . . . . 9

ix



Chapter 2. General framework of stimulated Brillouin scatter-
ing gain coefficient calculation in nano-scale sys-
tems 10

2.1 Stimulated Brillouin scattering in nano-scale systems . . . . . 10

2.2 Calculating the SBS gain via overlap integral . . . . . . . . . . 12

2.2.1 General SBS gain induced by optical force . . . . . . . . 12

2.2.2 SBS gain of each elastic eigen-mode . . . . . . . . . . . 13

2.3 Radiation pressure on discontinuous boundaries . . . . . . . . 16

2.3.1 General MST in homogeneous material . . . . . . . . . 16

2.3.2 Decomposition of MST on discontinuous boundaries . . 17

2.4 Electrostrictive force in bulk and on boundaries . . . . . . . . 19

2.5 SBS gain coefficient in suspended silicon waveguide system . . 21

2.5.1 Optical and elastic eigen-modes in suspended rectangular
silicon waveguide . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Intra-modal coupling versus Inter-modal coupling . . . . 23

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3. Self-alignment of millimeter-scale photonic crystal
slabs with sub-nanometer resolution 30

3.1 Automatic self-alignment technologies using optical forces . . . 30

3.1.1 Brief overview of optical manipulation techniques . . . . 31

3.1.2 The advantage of conservative optical force . . . . . . . 31

3.1.3 Organization of this chapter . . . . . . . . . . . . . . . . 33

3.2 Conservative optical force established in stacked photonic crys-
tal slabs system . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 One-port system guaranteeing conservative optical forces 35

3.2.2 Port number in various stacking photonic crystal slabs
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Inevitable non-conservative optical force in multi-port sys-
tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Tailoring conservative optical force field established in
one-port system . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Quantification of conservativeness of optical force via Helmholtz-
Hodge decomposition . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Introduction to Helmholtz-Hodge decomposition . . . . 55

x



3.3.2 Helmholtz-Hodge decomposition using Green’s function
method . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Uniqueness of Helmholtz-Hodge decomposition of peri-
odic vector field . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Error convergence of Helmholtz-Hodge decomposition . 59

3.4 Computation Concerns . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Conclusion Remarks . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4. Novel optical trapping in topological photonic inte-
grated system 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Simultaneously trapping and orientation of asymmetric particle
in unidirectional waveguide-resonator system . . . . . . . . . . 69

4.2.1 Conservative optical force in unidirectional waveguide-
resonator system . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Trapping the particle . . . . . . . . . . . . . . . . . . . 74

4.2.3 Orientating the particle . . . . . . . . . . . . . . . . . . 75

4.2.4 Tuning the resolution of the optical trap . . . . . . . . . 78

4.3 Vorticity residual in one-port and two-port system . . . . . . . 80

4.4 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 5. Compensating material loss in topological one-way
waveguide 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Compensating the material lossy using active medium . . . . . 87

5.2.1 Weak-form formula for topological waveguide . . . . . . 90

5.2.2 Complex dispersion relation of lossy one-way waveguide
with loss compensation . . . . . . . . . . . . . . . . . . 91

5.3 Recovering force conservativenss using active media . . . . . . 93

5.3.1 Choosing active medium for the operating frequency . . 95

5.3.2 Reduction of vorticity ratio with appropriate active medium 97

5.4 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



Chapter 6. Self-aligned topological photonic crystals 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Mode profiles in topological photonic crystal with honeycomb
lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 K-group rods and K’-group rods in row-by-row fabrica-
tion procedures . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Edge-mode profiles of boundary rods of K-group and K’-
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.3 Self-assembled bulk-mode profile . . . . . . . . . . . . . 106

6.3 RTOF based on phase response as a function of floquet wave
vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Spatial phase response derived from floquet wave vector 110

6.3.2 Optical force exerted by edge topological modes . . . . . 118

6.3.3 Optical force exerted by “perfect” bulk modes . . . . . . 119

6.4 Force potential as a function of operating frequencies for bulk
modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . 125

Chapter 7. Acoustic trapping of phononic crystal slabs 127

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Response theory of acoustic force – RTAF . . . . . . . . . . . 128

7.2.1 Reynold stress tensor: traditional way of calculating the
acoustic radiation pressure . . . . . . . . . . . . . . . . 129

7.2.2 Agreement between RTAF and Reynold stress tensor . . 130

7.3 Conservative acoustic force in single-port system . . . . . . . . 133

7.3.1 Phase response predicted by temporal coupled mode theory137

7.3.2 System characterization using temporal coupled mode the-
ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.3 Realization of 1D acoustic trapping along the longer side
of phononic crystal unit cell . . . . . . . . . . . . . . . . 139

7.4 Computation Concerns . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Conclusion Remarks . . . . . . . . . . . . . . . . . . . . . . . . 143

Appendices 145

xii



Appendix A. General stress tensor expressions in COMSOL 146

A.1 General Maxwell Stress Tensor in COMSOL . . . . . . . . . . 146

A.2 General Reynold Stress Tensor in COMSOL . . . . . . . . . . 148

Appendix B. Time reversal symmetry 150

Appendix C. Upper limit of truncation error in
periodic Helmholtz-Hodge decomposition 153

Appendix D. Weak-form formula for electromagnetic fields 156

D.1 Weak form for E-field . . . . . . . . . . . . . . . . . . . . . . . 156

D.2 Weak form for H-field . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix E. MATLAB codes for HHD 160

E.1 Sequential program . . . . . . . . . . . . . . . . . . . . . . . . 160

E.2 Parallel program . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Appendix F. Parallel HHD in C++ using OpenMP and MPI 168

F.1 Head File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

F.2 Class File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

F.3 Main File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 189

Vita 202

xiii



List of Figures

2.1 Typical SBS process in guided-wave system. (a) Energy level of
the stimulated Brillouin scattering process, where ωp, ωs, and
Ω are angular frequencies of pump photon, Stokes photon, and
phonon. (b) Phase matching condition of forward SBS process,
and (c) Phase matching condition of backward SBS process,
where kp, ks, and K are wave number of pump wave, Stokes
wave, and acoustic wave. . . . . . . . . . . . . . . . . . . . . . 12

2.2 The guided optical and elastic modes of a silicon rectangular
waveguide. Optical frequency is in unit of 2πc/a, while elastic

frequency is in unit of 2πVL/a. VL =
√
E/ρ = 8.54 × 103m/s

is the velocity of longitudinal elastic waves in bulk silicon. (a)
Dispersion relation of optical modes Ey11 and Ez11. (b) Disper-
sion relation of elastic modes which have even symmetry with
respect to both y = 0 and z = 0 planes. E-modes (black lines)
are the eigen-modes of the actual silicon waveguide, with silicon-
air interfaces treated as free boundaries. For comparison, the
dispersion relations of purely longitudinal modes (designated as
P-modes, blue cuves) and purely transverse modes (designated
as P-modes, red curves) are included. They are constrained re-
spectively with x-only displacement, and y-z-only movements.
At q = 0, E-modes manifest as either P-modes or S-modes. (c)
The displacement profiles of mode E1 through E5 at q = 0,
with the peak deformation shown. The color represents y-
displacement (uy) for S-like E modes and x-displacement(ux)
for P-like E modes. Blue, white, and red correspond to nega-
tive, zero, and positive values respectively. Mode E1 experience
a DC longitudinal offset at Ω = 0. . . . . . . . . . . . . . . . . 24

xiv



2.3 Optical force distributions and the resultant gain coefficients
of the Forward SBS. In panels (a) and (b), the width of the
waveguide is a = 315nm, and the incident optical waves have
ω = 0.203(2πc/a), and k = 0.75(π/a). The elastic waves are
generated at q = 0. (a) The force distribution of electrostric-
tion body force density, electrostriction surface pressure, and
radiation pressure respectively. All three types of optical forces
are transverse. (b) Calculated FSBS gains of the elastic modes,
assuming mechanical Q = 1000. Blue, red, and green bars rep-
resent FSBS gains under three conditions: electrostriction-only,
radiation-pressure-only, and the combined effects. Only the S-
like E modes have non-zero gains. (c) The scaling relation of
FSBS gains as the device dimension a is varied from 0.25µm to
2.5µm. Solid and dotted curves correspond to the gain coeffi-
cients for mode E2 and E5 respectively. . . . . . . . . . . . . . 25

2.4 Optical force distributions and the resultant gain coefficients
of the Backward SBS. In panels (a) and (b), the width of the
waveguide is a = 315nm, and the incident optical waves have
ω = 0.203(2πc/a), and k = 0.75(π/a). The elastic waves
are generated at q = 1.5(π/a). (a) The force distribution of
electrostriction body force density, electrostriction surface pres-
sure, and radiation pressure respectively. Electrostriction have
both longitudinal and transverse components. Radiation pres-
sure are purely transverse. (b) Calculated BSBS gains of the
elastic modes, assuming mechanical Q = 1000. Blue, red,
and green bars represent FSBS gains under three conditions:
electrostriction-only, radiation-pressure-only, and the combined
effects.(c) The scaling relation of BSBS gains related to mode E1
as a is varied from 0.25µm to 2.5µm. Gain coefficients predicted
by conventional fiber BSBS theory are shown as the solid black
curve. The dotted black curve represents the electrostriction-
only BSBS gain of mode P1. Black circles represent the largest
electrostriction-only BSBS gain coefficient among all E-modes
for a given a. (d) BSBS spectra near the anti-crossing between
mode E4 and E5 around q = 1.66(π/a). The mechanical quality
factor Q is assumed to be 100. The red lines represent the total
BSBS gain. The blue and green lines represent contributions
from mode E4 and E5. . . . . . . . . . . . . . . . . . . . . . . 26

xv



2.5 Optical force distributions, relavant elastic modes, and the re-
sultant gain coefficients of inter-modal FSBS between Ey11 (pump)
and Ez11 (Stokes). The width of the waveguide is set to be
a = 315nm. The incident optical waves have ω = 0.203(2πc/a),
with the pump-wave propagation constant at kp = 0.750(π/a),
and the Stokes-wave propagation constant at ks = 0.665(π/a).
The elastic waves are generated at q = 0.085(π/a). (a) The force
distribution of electrostriction body force density, electrostric-
tion surface pressure, and radiation pressure respectively. The
longitudinal forces (not shown here) are negligible, in com-
parison to the transverse forces. All optical forces are anti-
symmetric with respect to plane y = 0 and plane z = 0, ex-
citing elastic modes with the matching symmetry (designated
as O-modes). (b) Calculated inter-modal SBS gains, assuming
mechanical Q = 1000. The insets illustrate the displacement
profiles of mode O1 through O5 at q = 0.085(π/a), at peak
deformation. ”Jet” colormap is used to shown the amplitude
of total displacement. Blue and red correspond to zero and
maximum respectively. . . . . . . . . . . . . . . . . . . . . . . 28

3.1 (a)Schematics of two photonic crystal slabs (a dielectric one
shown in yellow and a metallic one shown in grey) to be self-
aligned optically in the xy-plane. The incident light is a plane
wave from the top along z-direction, and travels through a po-
larizing reflector (shown in blue).(b) Calculated optical force (x-
component) on the upper photonic crystal slab and (c) the nega-
tive phase response of the reflection, as a function of its displace-
ment along x direction as shown in the inset. Y-displacement
is set to be 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Polarization rotation happening in stacking photonic crystal
slabs at resonances. (a)The top and bottom slabs (inset) are
both made of silicon with εr = 12.25, and with identical thick-
ness of 0.55a and air holes with radius of 0.1a, where a is
the lattice constant. The incident plane wave has polariza-
tion along x-direction, and the sum of reflection and transmis-
sion polarized along x-direction is calculated in finite-element
method when x-displacement = 0.11a and y-displacement =
0.17a, which is less than 1 when polarization rotation happens
as a result of coupling between resonant modes and propagating
modes.(b) perfect agreement between finite-element calculation
and 4-port coupled-mode theory in computing transmission co-
efficient along x-polarization. . . . . . . . . . . . . . . . . . . . 42

xvi



3.3 Calculated phase spectra of the reflected light at three lateral
offsets: (0a, 0a) (blue), (0.5a,-0.7a) (green), and (0.25a, -0.35a)
(red). Insets show the relative positions of the two photonic
crystal slabs. Results from first-principle finite-element calcu-
lations (dots) are fitted to the coupled-mode theory (curves). . 49

3.4 Calculated displacement-dependent resonance frequency, decay
rate and phase response (optical potential) (a-d) Resonant fre-
quency ω and decay rate γ for Mode A and B as a function of the
x-y displacement of the upper photonic crystal slab. The fre-
quency contour of frequency of 0.3762(c/a) is plotted in yellow
in (a) with corresponding decay rates in yellow in (b). The cyan
frequency contour in (a) corresponds to frequency of 0.3781(c/a)
with the corresponding decay rates in cyan as well in (b). The
frequency contour of 0.3807(c/a) is plotted in cyan in (c) with
corresponding decay rates plotted in cyan in (d). (e) (g) Cor-
responding phase response of the reflection for frequencies of
0.3762 (c/a), 0.3781(c/a), and 0.3807(c/a). . . . . . . . . . . . 51

3.5 Decomposed curl-free potential Φ and divergence-free poten-
tial Ψ for conservative optical force and non-conservative opti-
cal force, and error convergence plot with respect to resolution
m on longer side [0, b] and truncation period N , respectively.
(a)-(b) Decomposed potentials for conservative optical force in
one-port system, and the divergence-free potential is almost flat
when plotted in the same scale as non-conservative optical force
in system without polarizer. (c)-(d) Decomposed potentials for
non-conservative optical force with truncation period=20, and
the vortex is obvious on divergence-free potential; (e) Error con-
vergence with respect to number of grids on longer side in log-
log scale. Due to existence of relatively large truncation error,
both errors stop decreasing at the magnitude of truncation er-
ror. (f) Error convergence with respect to truncation period in
log-log scale with resolution m=3000. Obviously, the error of
conservative case linearly decrease with increasing truncation
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



4.1 Trapping and orientating an L-shaped particle using resonator-
enhanced conservative optical force in a single-port system. The
single-port condition is realized by the single-mode one-way
waveguide which is formed between the metal wall and the mag-
netized (+z) YIG photonic crystals (light blue). The light is
coupled from the one-way waveguide to the square metal-box
resonator (inset) through a small gap opened on the domain
wall. The side length of the resonator is chosen to be 1.16a to
ensure the resonant frequency always falls into the band gap
of magneto-optical photonic crystal wherever L-shaped particle
moves and orients. The rotation angle is defined as the angle
between longer side of L-shaped particle and y-axis anticlock-
wise (inset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Trajectories of 10 trials of releasing L-shaped particle at 10 dif-
ferent initial locations at x = (0.1a, 0.3a, 0.5a, 0.7a, 0.9a) and
y = (0.1a, 0.9a) (the orientation of particle is always kept at
0o). The L-shaped particle has a permittivity of 6.25, and a
longer side of 0.0667a and a shorter side of 0.0333a. Four snap-
shots of particle locations (black dots) at t = 0ms, t = 0.1ms,
t = 0.5ms, and t = 3ms are shown in (a) (d) (the dynamic
viscosity is set to be 10−6Pa · s). The color scale of the trajec-
tories denotes the magnitude of particle velocities. In all trials,
the particle is always stably trapped to the same position. . . 75

4.3 Variable optical potential bottom locations for different rotation
angles at the frequency of 0.5838(c/a). (a) Color representation
of twelve optical potentials at rotational angles equally spaced
from 0o to 330o, which indicates that particle with different ro-
tational angles will be ultimately trapped to different locations.
(b) Projection of optical force potential minima on xy-plane
for twelve rotational angles. The arrows denotes the rotational
angle increases clockwise. (c) (d) projection of optical force
potential minima on x- and y-planes, respectively. . . . . . . . 77

xviii
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5.1 Lossy topological photonic crystal (blue rods) with shells made
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6.12 Eigenfrequencies versus floquet wave vectors and displacements
for boundary rods of Group K. (a). Eigenfrequencies versus (kx,
xdisp) when y-displacement=0.039a, the isofrequency contours
of 0.4086(c/a), 0.4088(c/a), and 0.4089(c/a) are highlighted as
red curves which is proportional to the optical force potential.
(b) Eigenfrequencies versus (kx ,ydisp) when x-displacement=−0.076a,
and the isofrequency contours of 0.4083(c/a), 0.4084(c/a), and
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contour of 0.4080(c/a) is highlighted by red curves. The top
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origins when the light propagates to −x-direction. (d) Eigen-
frequency versus (kx, ydisp) when x-displacement=0, and the
isofrequency=0.4080(c/a) is highlighted by the yellow curves.
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highlighted as red curves which is proportional to the optical
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7.1 Agreement between the Reynold stress tensor and the response
theory of acoustic force for 1D movement. The incident acoustic
wave only consists of pressure wave and exerts on the bottom
Nylon substrate, and therefore a single-port system is created.
Because of the interference between the incident acoustic wave
and the reflected acoustic wave, periodic acoustic intensity pat-
tern is formed along the Nylon substrate and part of the acous-
tic power penetrates into the top movable Nylon slab. The top
Nylon slab can freely slide on the oil membrane (assume no fric-
tion), and thus is trapped to highest acoustic intensity regions
by acoustic gradient force. . . . . . . . . . . . . . . . . . . . . 131

7.2 Agreement between the Reynold stress tensor and the response
theory of acoustic force for 2D movement. The incident pressure
wave hits the wall of the cylindrical cup made of Nylon and the
elastic energy is transferred to the water inside the cup and
applies acoustic radiation pressure on the small Nylon particle
in the water. The radius of the Nylon cup is 500nm, the longer
side of the elliptical particle is 30.9nm, and the shorter side of
the elliptical particle is 19.1nm. . . . . . . . . . . . . . . . . . 132

7.3 Structure of single-port acoustic system in which conservative
acoustic force exerting on the top phononic crystal can be cre-
ated. The width and length of one unit cell is a and 1.6a,
respectively, to separate two resonances far away enough from
each other to simplify the data processing steps. The thickness
of both slabs is kept as 0.2a, and the distance between two slabs
is 0.26a. The height and diameter of the pillars on both slabs
are 0.2a. The plane acoustic pressure wave is incident from
the top and is then completely reflected from the bottom sound
hard wall. The phase difference between the incident wave and
the reflected wave Φr is measured for every displacement of the
upper phononic crystal slab. . . . . . . . . . . . . . . . . . . . 134

7.4 Acoustic force barrier formed along y-axis at the operating fre-
quency of 0.1768(c/a). (a) the phase response as the upper
phononic crystal is moving from −0.5b to 0.5b along y-axis
where b = 1.6a, as shown in the embedded illustration. This
phase response is proportional to the actual acoustic force po-
tential according to RTAF. (b) the acoustic force calculated us-
ing RTAF (curve) from the phase response has a perfect agree-
ment with the first-principle calculation of the acoustic force
using RST (dots). Note that the normalized acoustic force is
on the scale of mN per Watt, which is much larger than the
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this operating frequency is not on resonance. . . . . . . . . . . 136
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7.5 Fitting the temporal coupled mode theory (curves) to the first-
principle FEM simulation (dots). The blue curve corresponds
to displacements of (0.5a, 0), the green curve corresponds to
displacements of (0.5a, 0.5b), and the orange curve corresponds
to displacements of (0, 0.5b). In all three cases, the phase re-
sponse predicted by the temporal coupled mode theory have
perfect agreement with those from FEM simulations. Differ-
ent displacements of the upper phononic crystal slab will cause
the resonant frequencies to change. Moreover, the dependence
of the resonant frequency along y-direction is larger than that
along x-direction. . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.6 Resonant frequency maps and decay rate maps with respect
to the displacements of the upper phononic crystal slab in xy-
plane. (a) resonant frequency map of the red resonance with
respect to the displacements in xy-plane. (b) decay rate maps
of the red resonance with respect to the displacements in xy-
plane. (c) resonant frequency map of the blue resonance with
respect to the displacements in xy-plane. (d) decay rate maps
of the blue resonance with respect to the displacements in xy-
plane. Both red resonant frequency and blue resonant frequency
are not sensitive to x-displacement compared with their de-
pendence on y-displacement. Similarly, decay rates are more
dependent on y-displacement than x-displacement. Since the
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frequency map, it is much easier to create 1D acoustic barrier
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7.7 1D acoustic potential barrier as well as acoustic force calculated
based on resonant frequency map and decay rate map derived
from the temporal coupled mode theory. (a) intersection be-
tween the isofrequency plane of 0.1766(c/a) and the resonant
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C.1 Linear dependence of truncation error on truncation period in
log-log scale. (a) Conservative periodic vector field with both
ux and uy are −1 in [−1, 0] and 1 in [0, 1] ; (b) f(n) which is
convolution between curl of Greens Function and the periodic
vector field in the nth period vanishes at infinity, and it blurs
at large n due to limitation of precision of numeric data type of
machine; (c) Truncation error ET presents a linear dependence
on truncation period N in log-log scale. . . . . . . . . . . . . . 154
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Chapter 1

Introduction

1.1 Background

Mechanically variable systems are ubiquitous in the real world includ-

ing anything as big as ocean-going freighter or as small as atomic nucleus can

be called mechanically variable system if only some components in it have

some degree of freedom to move or rotate. Precisely and stably controlling the

movement and orientation of these components ensure the normal operations

of these multi-scale mechanically variable systems. Among all the controlling

methods which have to apply certain form of force, optical force and acous-

tic force provide a non-touch manipulation of mechanically variable system

ranging from nanometer scale to millimeter scale which are commons used in

the applications such as atomic cooling [2, 13, 31], molecular and cell biology

[85, 89], colloidal science [21, 41, 64, 71, 75], integrated photonics [35, 53, 55, 65],

novel signal processing [14, 59, 82], and optical/atomic force imaging [37, 94].

The first part of completed projects have investigated the role of the

optical forces, both in bulk and on discontinuous boundaries, in stimulated

Brillouin scattering (SBS), and the sufficient conditions guaranteening the

conservativeness of the optical force, which can be applied in realizing slow
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light, SBS-based signal processing, automatic optical alignment, and parti-

cle manipulation. To compensate the material loss which breaks the force

conservativeness, a method of coating gain media surrounding the pillars of

topological photonic crystal is demonstrated to recover the conservative op-

tical force, which is significant in real-world application as material loss is

inevitable in true experiments.

The achievement in the optical force research paves the road for the

second half of my work on acoustic force. Acoustic force is generally several

orders of magnitude larger than the optical force for a given amount of power

and thus easier to be implemented in real experiments. The response the-

ory of calculating acoustic force, which perfectly agrees with the conventional

Reynold stress tensor method, is as well developed, based on which the system

realizing auto-alignment of phononic crystal slab is constructed and capable

of generating acoustic force on the order of N/W .

1.2 Motivation

1.2.1 Full vectorial calculation of the optical force

Although most nonlinear optical effects have been observed in nano-

scale silicon photonic devices, the stimulated Brillouin scattering has entirely

eluded observation in such devices over a decade. The stimulated Brillouin

scattering gain coefficient in nano-scale silicon waveguide should be signifi-

cant because of large refractive index contrast and small waveguide modal

area. Despite of strong optical confinement in nano-scale silicon waveguide,
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the elastic modes are not well confined in traditional silicon-on-insulator (SOI)

waveguide in which the small mismatch of acoustic impedance between sili-

con and insulator substrate results in large acoustic mode leakage. Since the

silicon-air boundary provides excellent acoustic mode confinement, the SBS

effect is significantly enhanced in suspended silicon nano-scale waveguide. Un-

like micro-scale photonic devices, the strong photon-boundary interaction in

nano-scale waveguide has a significant impact on the photon-phonon coupling

and the elastic wave displacements at the silicon-air boundaries also give rise

to the non-linear polarization currents which contribute largely to the overall

SBS gain coefficient.

1.2.2 Sufficient condition of conservative optical/acoustic force

Conservative optical force provides the possibility of realizing abso-

lutely stable optical trapping which can be used for automatic self-alignment

and stable particle orientation. Traditional optical trapping is restricted to

particles with feature size much smaller than the wavelength so that dipole

approximation can be assumed and the generally non-conservative scattering

force is negligibly small. As the size of photonic devices increases to mil-

limeter scale, the dipole approximation no longer holds and the significant

scattering force will deteriorate the trapping performance. However, the op-

tical self-alignment of photonic crystal slabs on millimeter scale enables the

precise stacking fabrication of 3D photonic crystal devices providing complete

photonic crystal bandgap and immune to unintended structural interruption,
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which cannot be realized if the non-conservative component of optical force

is not eliminated. To this end, the general condition warranting conservative

optical force is explored and the non-conservative component of optical force

is carefully eliminated in the proposed alignment system.

1.2.3 Response theory of acoustic force

Since the magnitude of radiation pressure is inversely proportional to

the wave speed, the acoustic radiation pressure is expected to be several orders

higher than its counterpart of optical radiation pressure. During the design

and modeling of an acoustic system, the correct calculation of acoustic radia-

tion pressure is of the most importance. Here I show the agreement between

the force calculation via traditional Reynold stress tensor using first-principle

computation in finite-element method and response theory of acoustic force

(RTAF) using the phase response and displacement information of movable

part. The significant improvement on the magnitude of acoustic radiation

pressure over the optical radiation pressure is as well demonstrated in a com-

plicated double-layer phononic crystal slab system, which indicates a promising

way to realize the acoustic auto-alignment in the future.

1.3 Contributed work

1.3.1 Full vectorial calculation of SBS gain in nano-scale suspended
silicon waveguide

We have developed a general framework to calculate the SBS gain co-

efficient in optical waveguide through the overlap integral between optical and
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elastic eigen-modes. The optical forces originating from both radiation pres-

sure and electrostrictive force are computed based on the full-vectorial electric

field of optical eigenmodes, and each component of the displacement fields

including P-wave (displacement is longitudinal to propagation direction) and

S-wave (displacement is transverse to propagation direction) is evaluated in

elastic eigen-mode. We show that both radiation pressure and electrostric-

tive force contribute significantly as the cross-section of the optical waveguide

shrinks to sub-wavelength scale. Through the analysis of spatial distribution

of each component of the optical forces, we show that the spatial symmetry

of the optical forces dictates the selection rules of exciting well-coupled elas-

tic modes. By applying this full-vectorial method to rectangular suspended

waveguide, we demonstrate how the optical force field is coupled with each

elastic mode for a range of scaling from 0.25µm to 25µm for forward SBS

(FSBS) and backward SBS (BSBS) by locating and specifying the correspond-

ing wave vector, k. We further apply this method to investigate the intra- and

inter- modal SBS processes, and reveal that the coupling between different op-

tical modes is necessary to excite elastic modes with all possible symmetries.

The part of work is reported in Chapter 2.

1.3.2 Conservative optical force in stacking photonic crystal slabs

We have deduced the sufficient condition for constructing conserva-

tive optical force field based on the response theory of optical force (RTOF)

along with system response characterized by the temporal coupled-mode the-
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ory (CMT). The conservativeness of the optical force which is calculated using

RTOF can be predicted through the port number of the optical system re-

gardless of the size of the device manipulated. Unlike optical force calculation

using ray-optics approximation (λ� a) or dipole approximation (λ� a), we

use the optical force formula developed in Chapter 2 using full vectorial elec-

tric field distribution from numerical simulation, which has perfect agreement

with RTOF as well as Maxwell stress tensor formula. To illustrate the suffi-

cient condition for conservative optical force, we construct a single-port system

comprising of a photonic crystal slab with a perfect mirror at the bottom and

a lossless polarizer on the top, in which conservative optical force field is estab-

lished. We further corroborate the conservativeness of the constructed optical

force field in single-port system via unique Helmholtz-Hodge decomposition.

For photonic crystal slab system, we also reveal the fact that non-conservative

component always co-exists with non-trivial optical force once the port number

is larger than 1. This part of work is reported in Chapter 3.

1.3.3 Trapping and orientating nano-particles in one-way waveg-
uide

The work aims at extending the application of conservative optical

force to other single-port systems in which the nano-particles, bacteria or virus

can be trapped and orientated for observation and selection. The single-port

system can be established using lossless single-mode one-way waveguide, and

the optical force magnitude can be enhanced by optical resonators adjacent to

the one-way waveguide. The uniqueness of this trapping schemework is that
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the conservative optical force realized by the unidirectional optical waveguide

can control another degree of freedom, the rotation of the particle, in addition

to translational motion. The part of work is reported in Chapter 4.

1.3.4 Self-aligned topological photonic crystal

In the last section, the topological photonic crystal is indispensable to

realize one-way optical waveguide by which the manipulation of nano-particles

can become true. However, the perfect arrangement of pillar array in topo-

logical photonic crystal is required to realize the above-mentioned goal, as the

disorder of topological photonic crystal will introduce structural loss which

is caused by the leakage of one-way waveguide mode into bulk of topological

photonic crystal. Here I show by combining the optical forces generated from

the waveguide mode and certain bulk mode, the topological photonic crys-

tal can be self-aligned under the optical force, which is highly desired in the

fabrication process of topological photonic crystals.

1.3.5 Compensating loss in one-way waveguide

To overcome the performance deterioration caused by loss in one-way

waveguide in real experiment, the complex band structure of lossy one-way

waveguide is studied using weak-form formula in finite-element method. By

reducing the imaginary part of complex wave vector, the weak-form simulation

can reduce the simulation time than by using the conventional frequency-

domain simulation. We will propose easy-to-implement method to compensate
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loss in one-way waveguide, and will investigate the effect of the gain medium

on conservativeness of the optical force.

1.3.6 Auto-alignment of phononic crystal using acoustic force

The acoustic force is approximately 6 orders of magnitude larger than

the optical force given the same amount of input power in the simplest scenario

from momentum conservation, i.e. F = 2P/v, and thus acoustical trapping

attracts more attention because it is much easier to be implemented in the real

experiments. The correct calculation of the acoustic force based on Reynold

stress tensor acting on compressible particle of arbitrary shape is first intro-

duced by Bruus in 2012. This result is further corroborated by the response

theory of acoustic force similar to RTOF but providing more straightforward

while deeper insight into characteristics of the acoustic force, which is of great

significance in constructing purely conservative acoustic force field in acousti-

cal alignment system.

1.4 Future work

1.4.1 Self-aligned topological photonic crystal with frequency mod-
ulation

When the topological photonic crystal is perfectly aligned, the bands of

bulk modes are bi-directional with the wave vector along one direction traps

the photonic crystal pillar while the wave vector along the opposite direc-

tion expels the photonic crystal pillar. To overcome the difficulty, frequency

modulation may be required to suppress the bands corresponding to the un-
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desirable wave vectors, and thus the self-aligned topological photonic crystal

can be finally realized.

1.4.2 Two-dimensional acoustic trap

Unlike the electromagnetic waves, the resonance and decay rates of

acoustic pressure wave is not sensitive to displacements of phononic crystal

along the direction of shorter period, and therefore, two-dimensional acous-

tic trap is more difficult to construct compared with one-dimensional acous-

tic barrier. An additional layer of phononic crystal slab is possibly needed

to create two-dimensional acoustic trap to align large-scale phononic crystal.

Constructing a round acoustic trap to manipulate an elastic particle is easier

than controlling a phononic crystal, in which an elastic substrate with acoustic

resonator of snowflake shape is all one needs where the branches of the acoustic

resonator help both incorporating more acoustic power and constructing the

acoustic resonance.
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Chapter 2

General framework of stimulated Brillouin

scattering gain coefficient calculation in

nano-scale systems

2.1 Stimulated Brillouin scattering in nano-scale sys-
tems

1 Stimulated Brillouin Scattering (SBS) is a third-order nonlinear pro-

cess in which two optical modes are coupled through an elastic mode[1, 7].

In a waveguide system, the time-varying optical force at the beating fre-

quency of pump and Stokes wave is coupled with the elastic mode at the

phase-matching wavevector and excites the modes of mechanical vibration

(phonons) of the waveguide which in turn scatters the light between pump

wave and Stokes wave. Since its discovery, SBS has been widely studied, yield-

ing a wide variety of applications in efficient phonon generation [12, 15], optical

frequency conversion[30, 32, 47], optical isolators[29, 50, 92], signal processing

techniques[77, 95],slow light[44, 46, 48, 72, 73], and novel laser source[24, 28].

The versatility of stimulated Brillouin scattering applications stems from our

1This work is partially based on “W. Qiu, P.T. Rakich, H. Shin, H. Dong, M. Soljačić,
and Z. Wang, Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a
general framework of selection rules and calculating SBS gain, Optics Express, 2013”. I
contributed to optical force calculations in COMSOL and SBS gain calculation.
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understanding and capability of manipulating this powerful form of photon-

phonon coupling in a wide range of waveguide systems.

Conventional treatments of SBS, which have been proven remarkably

accurate at microscales[1, 7], view Brillouin coupling as arising from the in-

trinsic material nonlinearities and do not count for radiation pressures and

boundary-induced nonlinearities. However, these conventional treatments fail

to predict SBS coupling within nano-scale silicon waveguides, as the radia-

tion pressures arising from strong interaction of light with the boundaries of

such waveguides are radically enhanced by nanoscale modal confinement and

introduce radiation pressure mediated nonlinearity independent of the intrin-

sic material nonlinearity[51, 57, 58, 62, 69, 79]. Furthermore, boundary-induced

nonlinearities induced by elastic wave displacements at discontinous bound-

aries of silicon waveguides give rise to nonlinear polarization currents which

significantly contribute to the overall SBS coupling[62].

In this chapter, a general framework of calculating SBS gain coefficient

via the overlap integral of optical forces and elastic eigen-modes is presented,

with emphasis on how to calculate radiation pressure on discontinuous bound-

aries of high-index contrast silicon waveguide and electrostrictive force both

in bulk and on boundaries. This part of work has been reported in Ref.[56]

as well as extended applications in slow light[83] and novel signal processing

technologies[60].

11



Figure 2.1: Typical SBS process in guided-wave system. (a) Energy level of
the stimulated Brillouin scattering process, where ωp, ωs, and Ω are angular
frequencies of pump photon, Stokes photon, and phonon. (b) Phase match-
ing condition of forward SBS process, and (c) Phase matching condition of
backward SBS process, where kp, ks, and K are wave number of pump wave,
Stokes wave, and acoustic wave.

2.2 Calculating the SBS gain via overlap integral

2.2.1 General SBS gain induced by optical force

In a typical SBS process happening in a silicon waveguide along x-

direction, the high-energy pump wave Epe
i(kpx−ωpt) interferes with the red-

shifted Stokes wave Ese
i(ksx−ωst) to generate an acoustic phonon at the beating

frequency of Ω, and vice versa. This process is illustrated in Fig 2.1. The

energy conservation and phase matching condition require that Ω = ωp −

ωs (Fig 2.1a) and K = k p − k s(Fig 2.1b,c). Since the cross-section of this

silicon strip waveguide is on nano-scale, the translational invariance limits the

pump wave and Stokes wave on the single x-axis. Therefore, depending on the

directions of launching waves, SBS can be categorized into forward SBS (Fig

2.1b) in which two codirectionally propagating light waves are coupled through
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standing-wave phonons and backward SBS (Fig 2.1c) in which two counter-

propagating light waves are coupled through traveling-wave phonons. The

photon-phonon coupling is generally characterized by parametric conversion

with the canonical relation[1, 7]

dPs/dx = GB · PpPs − αsPs (2.1)

Here, Pp and Ps are the guided power of pump wave and Stokes wave, and

GB is the stimulated SBS modal gain coefficient. Note that the first term on

RHS of Eq 2.1 is related to Stokes photon generation rate, which is equal to

phonon generation rate, by a factor of 1/~ωs, the SBS gain can be calculated

through particle flux conservation [62]

GB =
1

2

ωs
Ω

1

PpPs
Re
〈
f Ω,

du

dt

〉
(2.2)

where f Ω is a generally defined total optical force distribution at the beating

frequency of Ω and u is the total elastic deformation induced by f Ω. The

bracket 〈A,B〉 denotes the time-averaged product of A and B (here only

real part is reserved with coefficient of 1/2 introduced) which is subsequently

integrated over the cross-section of the waveguide to give the total power

generated by the optical forces.

2.2.2 SBS gain of each elastic eigen-mode

Unlike the frequency response method of calculating SBS gain presented

in last section which can only give the total SBS gain via the aggregated opti-

cal force field and displacement field [62], the eigen-mode method is developed
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in this section to investigate disparate contributions to SBS gain from each

orthogonal elastic eigen-mode. Under the excitation of optical force f Ω, the

total displacement response u can be mathematically decomposed into a lin-

ear combination of elastic modes which coefficients can be derived from the

orthgonality of these elastic modes. In the case of only two presenting opti-

cal fields, pump wave and Stokes wave, the optical force f Ωe
−iΩt drives the

elastic deformation response ue−iΩt oscillating at the same frequency which is

governed by the equation of motion without elastic loss [66]

−ρΩ2ui =
∂

∂xj
cijkl

∂ul
∂xk

+ f i (2.3)

where ρ is the mass density and cijkl is the elastic tensor with important

symmetric properties (cijkl = cjikl, cijkl = cijlk, and cijkl = cklij). With these

symmetric properties of cijkl, the operator ∂
∂xj
cijkl

∂
∂xk

on the RHS of Eq 2.3

is proven to be Hermitian [54] to guarantee the orthogonality the mth order

eigen-mode ume
−iΩmt with respect to all other eigen-modes〈

um, ρun
〉

= δmn
〈
um, ρum

〉
(2.4)

Whenever an external force f i exists, a set of elastic eigen-modes are excited

to give a linear combination of total displacement u = Σmbmum, Eq 2.3 can

be rewritten as

−ρΩ2
∑
m

bmum = −
∑
m

ρΩ2
mbmum + f i (2.5)

Using the orthogonality in Eq 2.4, the coefficient bm can be calculated as

bm =

〈
um, f

〉〈
um, ρum

〉 1

Ω2
m − Ω2

(2.6)
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When elastic loss presents, the first-order effect of loss is considered and can

be characterized by changing real-valued Ωm to a complex value Ωm − iΓm/2.

Assuming the quality factor Qm = Ωm/ΓM is well above 1 (1000 is used in

numerical simulations and experimental results show it can exceed 1000 [11,

22]) and Ω ≈ Ωm, the coefficient bm is given by

bm =

〈
um, f

〉〈
um, ρum

〉 1

ΩmΓm

Γm/2

Ωm − Ω− iΓm/2
(2.7)

Knowing the coefficient of each eigen-mode um, the total SBS gain

coefficient in Eq 2.2 can be calculated as the linear sum of all SBS gain of each

order elastic mode. With the assumption of u oscillating at frequency Ω, Eq

2.2 can be retrieved as

GB =
1

2

ωs
PpPs

Im
〈
f Ω,u

〉
=

1

2

ωs
PpPs

∑
m

Im(bm)
〈
f Ω,um

〉
=

1

2

ωs
PpPs

∑
m

〈um, f Ω〉
〈um, ρum〉ΩmΓm

(Γm/2)2

(Ωm − Ω)2 + (Γm/2)2

〈
f Ω,um

〉
=
∑
m

ωsQm|
〈
f Ω,um

〉
|2

2PpPsΩ2
m〈um, ρum〉

(Γm/2)2

(Ωm − Ω)2 + (Γm/2)2

(2.8)

It is obvious that each elastic mode has a SBS gain of Lorentzian shape with

a peak value of (ωsQm|
〈
f Ω,um

〉
|2)/(2PpPsΩ

2
m〈um, ρum〉). Since the only as-

sumption about the optical force f Ω is that it operates at the beating fre-

quency Ω, this peak value is suitable for arbitrary shape of cross-section of

a waveguide. In the numerical finite-element method for any geometry, one

can calculate the mode profiles of pump wave and Stokes wave for a given
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frequency ωp,s (∼ 1550nm) as well as their wavevector kp,s. The displacement

distribution um of each elastic eigen-mode at the phase matching condition

q = kp − ks (setup as Floquet periodic boundary condition) can be subse-

quently calculated. Moreover, Eq 2.8 indicates an easy way to separate effects

coming from different optical force components, as the overlap integral 〈f Ω,u〉

is a linear sum of all optical forces. The only remaining problem is how to find

the correct total optical force f Ω.

2.3 Radiation pressure on discontinuous boundaries

2.3.1 General MST in homogeneous material

The radiation pressure contribution to the total optical force f Ω can

be directly derived from the well-known 3 × 3 Maxwell Stress Tensor (MST)

T, i.e. f RPΩ = ∇ · T under steady state, where the MST is defined as

T =

 T11, T12, T13

T21, T22, T23

T31, T32, T33

 .
Each entry of the electric and magnetic components of MST is given by [20]{

TEij = EiDj − 1
2
δijE ·D

TMij = BiHj − 1
2
δijB ·H

i, j = 1, 2, 3 (2.9)

Here δij is the Kronecker delta function. Eq 2.9 is quite general and suitable

to find the radiation pressure at the interface of even anisotropic materials.

Besides the default MST expressions in COMSOL, one can use the expressions

in Appendix A to find the radiation pressure right on the interface of two dis-

tinct materials. In isotropic material, radiation pressure is proven to localize at
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discontinuous interface of hybrid homogeneous material system where the gra-

dient of relative permittivity εr is non-zero (the magnetic component of MST

is zero for dielectric material, i.e. relative permeability µr = 1 everywehre)

[19, 27, 40]. The electric component of instantaneous MST is

TEij (t) = εoεr[Ei(t)Ej(t)−
1

2
δij|E(t)|2] i, j = 1, 2, 3 (2.10)

where εr is a scalar rather than a 3× 3 anisotropic matrix.

2.3.2 Decomposition of MST on discontinuous boundaries

However, MST fails to provide insight of how material discontinuity is

responsible for generating radiation pressure by noting that E is not contin-

uous at the interface, and therefore the field is decomposed into tangential

electric field E t and normal displacement field Dn as they are continuous

across the interface to reveal the effect of material discontinuity. The sur-

face pressure FRP is related to force density distribution f RPΩ using Gauss’s

theorem �
V

(
∇ · T

)
dV =

�
s

(
Tn
)
· ds =

�
s

FRP · ds (2.11)

where n is the surface normal vector and FRP ∆
= Tn. Knowing each entry in

MST given by Eq 2.10, the surface pressure FRP can be calculated via matrix

multiplication

FRP = εoεr[(E(t) · n)E(t)− 1

2
|E (t)|2n] (2.12)

At the interface of two homogeneous materials, the electric field is decomposed

into tangential electric component and normal electric component, i.e. E(t) =
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En(t)n+Et(t)t. Insert this decomposed form of electric field into Eq 2.12 and

get

FRP = εoεr
[
En(t)[En(t)n + Et(t)t]− 1

2
|En(t)n + Et(t)t|2n

]
= Dn(t)Et(t)t +

1

2
[(εoεr)

−1Dn(t)2 − εoεrEt(t)2]n
(2.13)

The radiation pressure turns out to be the difference of the surface pressure on

two sides of the interface, and combining the boundary conditions ( εoεr1E1n =

εoεr2E2n = Dn and E1t = E2t = Et) we can find the total surface pressure is

FRP
t =

1

2

[
ε−1
o Dn(t)2(ε−1

r2 − ε−1
r1 )− εoEt(t)2(εr2 − εr1)

]
n (2.14)

Note that the tangential component of surface pressure cancels out across the

interface, and thus the total radiation pressure is purely perpendicular to the

interface. In the studied FSBS process, the total electric field [Epe
i(kpx−ωpt) +

Ese
i(ksx−ωst)] + c.c. is inserted into Eq 2.14 and only terms of frequency Ω are

reserved to derive the amplitude of time-harmonic radiation pressure of the

form FRP
t ei(qx−Ωt) as

FRP
t =

1

2

[
ε−1
o DpnD

∗
sn(ε−1

r2 − ε−1
r1 )− εoEptE∗st(εr2 − εr1)

]
n (2.15)

The radiation pressure is obviously normal to the interface, pointing from high-

index region to low-index region. In axially translationally invariant waveg-

uide, the radiation pressure is always real and transverse.

In BSBS, the total electric field of counter-propagating waves becomes

[Epe
i(kpx−ωpt) + Ese

i(ks(−x)−ωst)] + c.c., and therefore the radiation pressure

18



changes accordingly as

FRP
t =

1

2

[
ε−1
o DpnDsn(ε−1

r2 − ε−1
r1 )− εoEptEst(εr2 − εr1)

]
n (2.16)

It is worthy to mention that in a homogeneous material the divergence

of MST generates zero body force as we can see from Eq 2.15 and Eq 2.16

which are related to body force through Guass’s theorem. Therefore, the radi-

ation pressure only exists and is normal to the interface of two homogeneous

materials, pointing from high-index medium to low-index medium.

2.4 Electrostrictive force in bulk and on boundaries

Electrostrictive forces are calculated from the electrostriction tensor S,

which is similar to MST, a 3× 3 matrix with each entry given by

σij = −1

2
εon

4pijklEk(t)El(t) i, j, k, l = 1, 2, 3 (2.17)

where n is the refractive index of the homogeneous materials, and pijkl is

the photoelastic tensor [67]. In a FSBS process happening in a guided-wave

system, the electric field components Ek,l in Eq 2.17 is replaced by the total

codirectionally propagating waves (Epe
i(kpx−ωpt) + Ese

i(ksx−ωst))/2 + c.c., and

only the components with the frequency of Ω are reserved

σij = −1

4
εon

4pijkl(EpkE
∗
sl + EplE

∗
sk) i, j, k, l = 1, 2, 3 (2.18)

As the most commonly used material in integrated optics either have cubic

crystalline lattice (silicon) or are isotropic (silica glass) and commercial waveg-

uide systems are fabricated to be aligned with the principle axis of the medium,
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we assume the crystal structure of the material is symmetric with respece to

place of x = 0, y = 0, and z = 0. Therefore, if pijkl has odd number of certain

component, it is zero. In Voigt notation, Eq 2.18 can be explicitly written as
σ11

σ22

σ33

σ23

σ13

σ12

 = −1

2
εon

4


p11 p12 p13

p12 p22 p23

p13 p23 p33

p44

p55

p66




Ep1E

∗
s1

Ep2E
∗
s2

Ep3E
∗
s3

Ep2E
∗
s3 + Ep3E

∗
s2

Ep1E
∗
s3 + Ep3E

∗
s1

Ep1E
∗
s2 + Ep2E

∗
s1


(2.19)

For BSBS in which one wave is launched from the opposite direction, the

counter-propagating waves generate electrostrictive tensor as
σ11

σ22

σ33

σ23

σ13

σ12

 = −1

2
εon

4


p11 p12 p13

p12 p22 p23

p13 p23 p33

p44

p55

p66




Ep1Es1
Ep2Es2
Ep3Es3

Ep2Es3 + Ep3Es2
Ep1Es3 + Ep3Es1
Ep1Es2 + Ep2Es1


(2.20)

In a hybrid system consisting of various homogeneous materials, elec-

triostrictive force can exist inside each medium, giving rise to body force, and

at the interface, generating electrostrictive pressure. The electrostrictive body

force is given by the negative divergence of the electrostrictive tensor, i.e.

f ESΩ = −∇·S. Similar to MST, the electrostrictive pressure on the interface of

material 1 and material 2 is given by FES = (S1− S2)n, with each component

givein by FES
i = (σ1ij − σ2ij)nj (Einstein notation with respect to j is used

here).
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2.5 SBS gain coefficient in suspended silicon waveguide
system

In this section, we apply the general framework to study the intra-

modal and inter-modal SBS process of a silicon waveguide suspended in air

(Fig. 2.2b insert). Intra-modal process is concerned with the configuration

where the pump and the Stokes waves are launched into the same spatial opti-

cal mode of the waveguide, and both FSBS and BSBS are investigated. Inter-

modal process includes the pump and the Stokes wave with distinct spatial

optical mode of the waveguide, which essentially doubles the degree of freedom

of tailoring optical force distribution. And silicon waveguides are of particular

interest, because it can be fabricated on standard SOI platforms. In addition,

a suspended silicon waveguide provides tight optical confinement through its

large refractive index and nearly perfect elastic confinement through a dra-

matic impedance mismatch with air. Moreover, since radiation pressure is

proportional to the difference of dielectric constants across waveguide bound-

aries and electrostriction force is quadratic over refractive index, both kinds of

optical forces are significantly enhanced in high index contrast structures such

as silicon waveguides. Here, we consider a silicon waveguide with a rectangular

cross-section of a by 0.9a to distinguish two orthogonal optical modes. For sili-

con, we use refractive index n = 3.5, Young’s modulus E = 170×109 Pa, Pois-

son’s ratio ν = 0.28, and density ρ = 2329kg/m2. In addition, we assume that

the [100], [010], and [001] symmetry direction of this crystalline silicon coincide

with the x, y, and z axis respectively. Under this orientation, the photo-elastic
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tensor pijkl in the contracted notation is [p11, p12, p44] = [−0.09, 0.017,−0.051]

[25]. The structure has two symmetry planes y = 0 and z = 0. Both optical

modes and elastic modes are either symmetric or anti-symmetric with respect

to these planes.

2.5.1 Optical and elastic eigen-modes in suspended rectangular sil-
icon waveguide

The advantage of eigen-mode method to calculate SBS gain is that we

can separate the contributions from different optical and elastic eigenmodes

and intuitively predict the SBS gain via spatial symmetry of optical force

field and displacement distribution of each eigenmode. We characterize two

fundamental orthogonal optical modes as Ey11 and Ez11 where Ey11 mode has

even Ey component and odd Ez component with respect to y = 0 and z = 0

planes and Ez11 has the orthogonal polarization. Their dispersion relations are

plotted in Fig. 2.2(a) in blue and red, respectively. Throughout the numerical

experiment, we assume pump wavelength at 1.55µm and the unit of angular

frequency is normalized by length scale a. Since Ω/ω ≈ VL/c ≈ 10−4, pump

wave and Stokes wave approximately correspond to the same spatial optical

mode, and thus we use Ey11 mode as electric field spatial distribution for

both waves. Therefore, induced optical force in intra-modal coupling is always

symmetry with respect to y = 0 and z = 0 plane, and thus only elastic eigen-

modes with the same symmetry will gain maximum power from optical mode

and be excited. The elastic eigen-modes are computed in eigensolver as well,

and shown in Fig. 2.2(b) where blue dash curves are calculated by forcing
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uy = uz = 0 and red dash curves are derived by prescribing ux = 0. The

P-wave is defined as only having deformation along longitudinal axis (x-axis)

and S-wave is defined as having deformation along transverse axis (y- and z-

axis). When acoustic wave vector q = 0, either P-modes or S-modes can be

excited, whereas at nonzero q hybridized acoustic modes denoted by E with

displacements along all directions can be excited.

2.5.2 Intra-modal coupling versus Inter-modal coupling

In this section, the numerical experiment results of calculating SBS

gain for intra-modal photon-phonon coupling (including FSBS and BSBS) and

inter-model coupling (only FSBS) are presented.

Due to zero longitudinal optical force in FSBS, only S-like elastic modes

can be excited in this scenario. We choose a = 315nm which presents the

largest SBS gain within the range of a from 250nm to 2.5µm, and the angular

frequency of 0.203(2πa/c) which fits 1550nm wavelength. From Fig. 2.3, both

electrostriction force and radiation pressure are even with respect to y-axis and

z-axis, and has no longitudinal component because dq/dx = iq = 0. Knowing

that either P-wave or S-wave can be excited at q = 0, the longitudinal P-wave

won’t be excited, leaving non-zero SBS gain for E2, E3, and E5 modes. Fig.

2.3(c) indicates that after a = 315nm , the radiation pressure induced SBS

gain drops several orders (4 6) of magnitudes more quickly than electrostric-

tion induced SBS gain, which agrees with conventional SBS theory that only

electrostriction force plays significant role in micro-scale devices.
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Figure 2.2: The guided optical and elastic modes of a silicon rectangular waveg-
uide. Optical frequency is in unit of 2πc/a, while elastic frequency is in unit
of 2πVL/a. VL =

√
E/ρ = 8.54× 103m/s is the velocity of longitudinal elastic

waves in bulk silicon. (a) Dispersion relation of optical modes Ey11 and Ez11.
(b) Dispersion relation of elastic modes which have even symmetry with respect
to both y = 0 and z = 0 planes. E-modes (black lines) are the eigen-modes of
the actual silicon waveguide, with silicon-air interfaces treated as free bound-
aries. For comparison, the dispersion relations of purely longitudinal modes
(designated as P-modes, blue cuves) and purely transverse modes (designated
as P-modes, red curves) are included. They are constrained respectively with
x-only displacement, and y-z-only movements. At q = 0, E-modes manifest
as either P-modes or S-modes. (c) The displacement profiles of mode E1
through E5 at q = 0, with the peak deformation shown. The color represents
y-displacement (uy) for S-like E modes and x-displacement(ux) for P-like E
modes. Blue, white, and red correspond to negative, zero, and positive values
respectively. Mode E1 experience a DC longitudinal offset at Ω = 0.
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Figure 2.3: Optical force distributions and the resultant gain coefficients
of the Forward SBS. In panels (a) and (b), the width of the waveguide is
a = 315nm, and the incident optical waves have ω = 0.203(2πc/a), and
k = 0.75(π/a). The elastic waves are generated at q = 0. (a) The force distri-
bution of electrostriction body force density, electrostriction surface pressure,
and radiation pressure respectively. All three types of optical forces are trans-
verse. (b) Calculated FSBS gains of the elastic modes, assuming mechanical
Q = 1000. Blue, red, and green bars represent FSBS gains under three condi-
tions: electrostriction-only, radiation-pressure-only, and the combined effects.
Only the S-like E modes have non-zero gains. (c) The scaling relation of FSBS
gains as the device dimension a is varied from 0.25µm to 2.5µm. Solid and
dotted curves correspond to the gain coefficients for mode E2 and E5 respec-
tively.
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Figure 2.4: Optical force distributions and the resultant gain coefficients of the
Backward SBS. In panels (a) and (b), the width of the waveguide is a = 315nm,
and the incident optical waves have ω = 0.203(2πc/a), and k = 0.75(π/a). The
elastic waves are generated at q = 1.5(π/a). (a) The force distribution of elec-
trostriction body force density, electrostriction surface pressure, and radiation
pressure respectively. Electrostriction have both longitudinal and transverse
components. Radiation pressure are purely transverse. (b) Calculated BSBS
gains of the elastic modes, assuming mechanical Q = 1000. Blue, red, and
green bars represent FSBS gains under three conditions: electrostriction-only,
radiation-pressure-only, and the combined effects.(c) The scaling relation of
BSBS gains related to mode E1 as a is varied from 0.25µm to 2.5µm. Gain
coefficients predicted by conventional fiber BSBS theory are shown as the solid
black curve. The dotted black curve represents the electrostriction-only BSBS
gain of mode P1. Black circles represent the largest electrostriction-only BSBS
gain coefficient among all E-modes for a given a. (d) BSBS spectra near the
anti-crossing between mode E4 and E5 around q = 1.66(π/a). The mechanical
quality factor Q is assumed to be 100. The red lines represent the total BSBS
gain. The blue and green lines represent contributions from mode E4 and E5.
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Unlike FSBS, the acoustic wave vector in BSBS in not zero, which re-

sults in non-zero longitudinal component in electrostriction force, which will

excite P-wave elastic eigenmodes as well. In Fig. 2.4, panels (a) and (b) both

remain a = 315nm and ω = 0.203(2πc/a). The only difference from FSBS is

that elastic modes are calculated at q = 2k. The longitudinal elastic modes E1

and E4 are both excited. As a increases its size, the initially excited fundamen-

tal P1 mode will intersect with other hybridized elastic mode as indicated from

the elastic mode band diagram. The hybridized mode which happens to have

similar shape with P1 mode would gain power from fundamental P1 mode and

then be excited. The maximum SBS gain among all E-modes for each a are

plotted as circles in Fig. 2.4(c). Fig. 2.4 (d) presents the effect of intersection

of different hybridized mode (E4 and E5) in band diagram. As the acoustic

wave vector q is shifted across the intersection point, the portion of excited E4

mode and E5 mode depends on the tiny tuning of acoustic wave vector, and

thus gives different overall SBS gain contributed from electrostriction.

Since both electrostriction force and radiation pressure in FSBS and

BSBS are even with respect to y-axis and z-axis due to similar overlap pump

and Stokes electric fields, the possible way to excite elastic modes with all

possible symmetries is to use inter-mode SBS coupling. We choose two optical

modes with wave vector k = 0.750(π/a) and k = 0.665(π/a) which presents

orthogonal field polarization, and as a result uneven force distribution is gen-

erated as shown in Fig. 2.5 (a). In this case, the first and second hybridized

elastic modes at q = 0.085(π/a) with rotational and breathing motion respec-
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Figure 2.5: Optical force distributions, relavant elastic modes, and the re-
sultant gain coefficients of inter-modal FSBS between Ey11 (pump) and Ez11

(Stokes). The width of the waveguide is set to be a = 315nm. The inci-
dent optical waves have ω = 0.203(2πc/a), with the pump-wave propagation
constant at kp = 0.750(π/a), and the Stokes-wave propagation constant at
ks = 0.665(π/a). The elastic waves are generated at q = 0.085(π/a). (a) The
force distribution of electrostriction body force density, electrostriction sur-
face pressure, and radiation pressure respectively. The longitudinal forces (not
shown here) are negligible, in comparison to the transverse forces. All optical
forces are anti-symmetric with respect to plane y = 0 and plane z = 0, excit-
ing elastic modes with the matching symmetry (designated as O-modes). (b)
Calculated inter-modal SBS gains, assuming mechanical Q = 1000. The insets
illustrate the displacement profiles of mode O1 through O5 at q = 0.085(π/a),
at peak deformation. ”Jet” colormap is used to shown the amplitude of total
displacement. Blue and red correspond to zero and maximum respectively.
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tively have good shape matching of optical force field, and therefore are hugely

enhanced, compared with SBS gain derived in Fig. 2.4.

2.6 Concluding remarks

In this chapter, the optical forces in the bulk and on the boundaries

are investigated and comprehensively give the SBS gain in nano-scale system.

Unlike traditional treatment of this second-order nonlinearity in micro-scale

system, the radiation pressure on the boundaries is taken into account, pre-

dicting a huge enhancement of SBS gain in nano-scale system. In the next

chapter, it will be shown that radiation pressure also plays a significant role of

manipulating objects ranging from nano-scale to even millimeter scale, which

is promising in applications ranging from atom cooling, particle trapping, to

automatic alignment in stacking fabrication.
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Chapter 3

Self-alignment of millimeter-scale photonic

crystal slabs with sub-nanometer resolution

3.1 Automatic self-alignment technologies using optical
forces

1 In this chapter, another branch of application of radiation force is

investigated to find the general condition to construct an optical force field

to align millimeter-scale photonic crystal (PC) slabs with sub-nanometer res-

olution. A purely conservative optical force field constructed from guided

resonances confined within PC slabs is an indispensable prerequisite for stable

alignment. Using the response theory of optical force (RTOF) and temporal

coupled-mode theory (CMT), we show that a single-port system warrants es-

tablishing optical force potential well and furthermore significantly enhances

the force strength at the potential edges. The conclusions provide much more

straightforward insights into non-conservative nature of optical force and sim-

ple methods to adjust trapping position and resolution.

1This work is partially based on “H. Dong and Z. Wang, All-optical near-field self-
alignment in sub-nanoscale induced by Fano-resonance, APS March Meeting 2015, San An-
tonio, TX”.
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3.1.1 Brief overview of optical manipulation techniques

Optical forces have been widely used for non-touch manipulation of

atoms and nano-structures in fields ranging from atomic physics [2, 31], molec-

ular and cell biology [85, 89], colloidal science [21, 41, 64, 71, 75] to integrated

photonics [35, 53, 65]. However, these optical trapping technologies are lim-

ited to manipulating single or multiple particles on the top surface of optical

cavities or waveguides, and also vulnerable to vibration and rotation induced

by natural non-conservative component of optical forces, which are simply ne-

glected as either it is relatively small compared with conservative component

or it does not play a significant role in the applications. Here we present an

ideal self-alignment system combining sub-nanometer resolution, millimeter-

scale working range, and stability together, which is of particular useful dur-

ing 3D assembly of PC slabs with artificial patterns on them. Such precise

millimeter-scale 3D alignment enables strong and nearly-ideal spatial confine-

ment of light due to existing photonic bandgaps of PC slabs, as well as reduces

scattering loss induced by unintended disorders like structural misalignment.

The stability of this 3D alignment requires a tunable potential well generated

by a variable conservative optical force field depending on frequency, which

will be revealed later.

3.1.2 The advantage of conservative optical force

The foremost advantage of optical forces is the sub-nanometer resolu-

tion of alignment in certain nanostructures with ultra-high Q-factor [10, 76, 90].
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With the aid of ultra-high Q-factor, the optical force field can be rapidly and

sensitively reconfigured by tuning the frequency of the incident illumination

field. However, to realize sub-nanometer resolution using optical forces, one

must be careful to eliminate any tiny vibration or rotation induced by the

non-conservative component of the optical force field. These non-conservative

components can be scattering forces widely seen in optical tweezers [63, 64, 88],

and guided wave systems [52], which tend to increase the kinetic energy of the

trapping object and subsequently drive them out of the potential well. This is

particularly evident in the cases of anchoring particles where one must limit

the particle size and its index contrast to obtain a nearly conservative op-

tical force field (also known as gradient force [4]), and cooling atoms where

standing-wave optical field is used to generate conservative force under dipole

approximation [13]. Thanks to their small sizes, in both scenarios, one can

apply dipole approximation and further assume the perturbation to the opti-

cal fields induced by the trapping target is negligible. Consequently, the 3D

optical potential constructed in both cases is proportional to the field intensity

distribution. However, the non-conservative component of the optical forces

will become more significant as the structure size increases and index contrast

gets higher, because the dipole approximation no long holds as the optical field

distribution is greatly disturbed by the moving object, and thereby introducing

more non-conservative forces [61, 84].

With the help of optical alignment with absolute stability, scaling up

the size of the trapping target beyond the tightly focused Gaussian beams
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which are limited by a usable volume of λ3, as well as maintaining the sub-

nanometer resolution, has significant technological applications. For instance,

optically aligning a membrane with periodic sub-wavelength patterns (pho-

tonic crystal slab or meta-surfaces) on top of a periodic substrate enables

layer-by-layer stacking fabrication of large-scale 3D photonic crystals [43, 70]

and metamaterials with nanometer precision. Compared with the existing

interference lithography [38] and self-assembly techniques [26], such layer-by-

layer optical self-alignment is much more flexible as it allows assembly of dis-

parate layers, provided that the in-plane periodicity (periodic pattern in the

layer) is preserved. As a contrast, traditional self-alignment techniques require

that the target structure to be periodic out of plane as well. This flexibility is

crucial for future applications in silicon interconnects and flexible photonics.

3.1.3 Organization of this chapter

In this chapter, I present how a purely conservative optical force po-

tential can be established even if incident plane wave has no intensity gradient

along either axial (out-of-plane) or transversal (in-plane) directions. Unlike

previous work where the conservativeness of near-field radiation pressure has

been rarely explored, we reveal the underlying physics beneath the general

non-conservative nature of radiation pressure, which helps to identify a uni-

versal criteria of constructing a conservative force field and self-aligning sys-

tem. Within such system, the optical force is not merely the gradient of the

intensity of near-field distribution, but also absolutely conservative.
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We start with showing that the optical force in a lossless one-port sys-

tem is guaranteed to be conservative, from a comprehensive analysis based

on the response theory of optical force and the temporal coupled-mode theory

(CMT). A real example of constructing such a system is given in Sec.3.2.1. The

theoretical analysis is then further corroborated with finite-element numerical

modeling using the Maxwell stress tensor (see appendix A) and radiation pres-

sure on boundaries (see Chapter 2). Especially, the precise CMT capturing all

the features of stacking PC slabs scheme is given in Sec.3.2.2, providing com-

plete insight of indispensability of each component in the constructed system.

Simply extending this analysis to two-port system, we illustrate the necessity of

restricting the system output to a single port in order to construct conservative

force field (Sec. 3.2.3). The spatial resolution of the conservative optical force

field can be refined to sub-nanometer scale by choosing ultra high-Q resonance

under the guidance of coupled-mode theory, and the position of optical force

well bottom can be as well determined based on the spatial dependence of reso-

nant frequency and decay rates (Sec.3.2.4). Finally, the conservativeness of the

optical force field is verified with numerical Helmholtz-Hodge decomposition,

which is done on TACC supercomputer (https://www.tacc.utexas.edu/)

(Sec.3.3).
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3.2 Conservative optical force established in stacked pho-
tonic crystal slabs system

A conservative force field F, by definition, is irrotational or curl-free,

i.e. ∇ × F = 0, in contrast to a non-conservative force which has a non-

zero curl component. By translating this general mathematical conservation

condition to an alternative expression of conservative optical force in terms of

physical properties of the incident optical field, it becomes more enlightening

for us to design a desired optical alignment system. A good example is that

under the paraxial limit for a particle small enough for dipole approximation,

the curl of the optical force is proportional to the cross product between the

intensity gradient and the phase gradient of the incident optical beam, i.e.

∇I × ∇φ[42]. A straightforward conservative condition can be derived right

away as these two gradients must be parallel to each other. Unfortunately,

the paraxial approximation in integrated photonic system is generally broken,

especially for guided modes in a waveguide with high index contrast. Optical

resonances also significantly alter the near field from that of illumination field,

even in a very simple structure [84], which requires us to examine integrated

photonic systems closely and understand the unique physical constraints from

curl-free conditions for conservative optical force.

3.2.1 One-port system guaranteeing conservative optical forces

In this section, we rely on the response theory of optical force (RTOF)

[61] to deduce the general conservative condition of optical force field, taking
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the advantage of the fact that many integrated photonic system can be de-

scribed as n-port framework with well-defined and readily-measured optical

input/output ports. For simplicity, we first neglect the absorption and scat-

tering loss, and begin with an n-port lossless system. RTOF implies that the

optical force F on the moving target is directly related to the change in the

phase of the scattered ports as a function of the displacement r,

F(r) = − 1

ω

n∑
i=1

Pi(r)∇rφi(r) (3.1)

Here ω is the angular frequency of the incident optical beam; Pi and φi are the

outgoing optical power and phase response at the ith port, both driven by the

scattering matrix of the system and the incident waves. The phase gradient

∇rφi is calculated with respect to the movement of the movable object. Having

taken into account that the curl of gradient of a scalar field vanishes, we derive

the curl of the optical force F as

∇r × F(r) = − 1

ω

∑
i

(∇rPi)× (∇rφi) (3.2)

The above outcome implies that, (A)if the sum of the curl products at all the

output ports of the system adds up to zero for the entire range of interest

of displacement r, the optical forces are conservative. Multi-port systems are

quite general as most networks have transmission port as well as reflection port.

Polarization rotation enhanced at the resonance introduces even more output

ports, making it practically impossible to maintain the sum of cross products

to be zero. (B)Another special case having the power gradient parallel to the

phase gradient at all output ports or forcing the optical power at every output
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port to be constant no matter how the target moves is generally unrealizable in

mechanically variable system. (C)Making the phase gradient to be zero, on the

other hand, is trivial because no optical force is generated at all according to

Eq.3.1 (we will later in Sec.3.2.3 prove that zero optical force is generated even

when difference of phase gradients is constant in 2-port system). (D)The last

and only peculiar scenario in which curl of the optical force is zero, regardless

the complexity of the near-field distribution across the movable object, is a

lossless system with a single output port, i.e. the output power is constant

and equal to the incident optical power. The optical force, however, is not zero

and proportional to the gradient of the scalar phase field, F = −(Pin/ω)∇φ.

To illustrate conservative optical force in lossless single-port system, we

consider the optical forces exerting on the dielectric photonic crystal slab (Fig.

3.1(a)) moving in XY-plane, with the goal of aligning these two photonic crys-

tal slabs automatically with sub-nanometer scale resolution. The dielectric PC

slab on the top, made of a rectangular lattice of air holes in silicon (ε = 12.25),

is supported by a metallic PC slab made of an identical lattice of rods atop

the metallic substrate. The dimension of the unit cell is deliberately chosen to

be 1a× 1.4a rectangle (a being the lattice constant along the X-direction), to

break the degeneracy of the guided resonance, and its importance will become

apparent later in this chapter (Sec.3.2.4). The air holes in the upper slab are

blind holes, with a radius of 0.1a and a depth of 0.4125a, to ensure the upper

slab is always supported by the metallic rod array beneath, irrespective of the

displacement. The metallic PC slab is made of rods with a radius of 0.1a and a
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Figure 3.1: (a)Schematics of two photonic crystal slabs (a dielectric one shown
in yellow and a metallic one shown in grey) to be self-aligned optically in the
xy-plane. The incident light is a plane wave from the top along z-direction, and
travels through a polarizing reflector (shown in blue).(b) Calculated optical
force (x-component) on the upper photonic crystal slab and (c) the negative
phase response of the reflection, as a function of its displacement along x
direction as shown in the inset. Y-displacement is set to be 0
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height of 0.275a. To save computational power, the perfect electric conductor

(PEC) is used to simulate the metallic surface with no loss and complete re-

flection. In practical experiment, 3D photonic crystals [42, 80] with complete

band gap, or omnidirectional reflector [86] can replace the metallic substrate

without affecting the conclusion. Since the structure is illuminated by a plane

wave polarized along x-direction, a polarizing reflector colored in blue is used

to prevent the light polarized along y-direction from leaking above [5, 16, 49],

as polarization rotation induced by non-centrosymmetric PC slab stack will

open another port to this system.

The calculated optical force on the upper PC slab (Fig. 3.1b) in the

abovementioned one-port system shows very localized one-dimensional poten-

tial wells (Fig. 3.1c) along x-direction (y-displacement = 0), which are also

periodic and can be used to confine the PC slab on top. The optical forces

are calculated using the response theory, which agrees perfectly with the first-

principle calculation using either the Maxwell stress tensor (MST) or Kevin

force formalism (see Chapter 2). Not only does the response theory simplify

the force computation in that it only requires the phase of the outgoing wave

(the reflected wave in Fig. 3.1a), i.e. F = −(1/2ω)A
√
εo/µo|E|2∇φ , where

A is the cross-section area of one unit cell, φ is the phase of the reflected

wave, but also provides more straightforward design insight with the aid of

temporal coupled mode theory when extracting the phase response. In this

one-dimensional case where y-displacement is fixed at zero, the negative phase

spectrum is proportional to the scalar potential established by the optical
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force. The supported PC slab can be trapped in the potential centering at

x = 0 or 0.5a , and the potential width can be narrowed by tuning the oper-

ating frequency. This approach further benefits from the high cavity Q-factor

which is important in optical positioning with ultra-high spatial resolution of

manipulation. Note that since the accuracy of CMT improves with higher cav-

ity Q factor, excellent agreement between RTOF and MST in Fig 3.1b, which

is deliberately chosen as a low-Q case with relatively wider force peaks, con-

vinces us to rely on CMT to predict and design the force potential in remaining

regions with higher Q factor.

3.2.2 Port number in various stacking photonic crystal slabs sys-
tems

In this section, I will present the temporal CMT for the most com-

mon structure of two stacking photonic crystal slabs which presents reflection,

transmission, polarization conversion, and multiple fano-resonances simulta-

neously. Temporal CMT is particularly accurate for high-Q coupled waveguide

or guided resonance systems so as to eliminate the necessity of finite-element

simulation, and more importantly, provides more intuitive insight of force field

shape. The most comprehensive temporal CMT presented in this section pro-

vides a thorough insight and a clear answer to why the lossless reflective sub-

strate and polarizer in our proposed schematic are indispensable. The complete

understanding of stacking photonic crystal slabs also helps to determine the

sufficient conditions of realizing total reflection. Since the resonant frequency

of high-Q guided resonance in stacking photonic crystal slabs is a function
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of relative displacement of these two slabs, it has a potential application in

tunable optical filter.

For two stacking slabs without holes on them, the polarization rotation

does not exist in this kind of structure if the dielectric medium is isotropic.

The transfer equation without micro-resonator can be written as
Sx1−
Sy1−
Sx2−
Sy2−

 =


rd 0
0 rd

td 0
0 td

td 0
0 td

rd 0
0 rd




Sx1+

Sy1+

Sx2+

Sy2+

 (3.3)

where subscripts 1 and 2 in Eq. 3.3 correspond to physically existent waveg-

uides 1 and 2, respectively, which can be alternatively interpreted as free spaces

above and below the stack. S− denotes outgoing propagation modes and S+

stands for incoming propagation modes. Two polarizations are presented by

x and y, meaning x-polarization and y-polarization. rd and td in Eq. 3.3 are

complex values which should take Fabry-Perot background into account to

make sure energy conserves, i.e. C†C = I where C is the 4× 4 transfer matrix

[23]. The slow-varying Fabry-Perot background reflection and transmission

coefficients depend on effective permittivity and effective thickness of stacking

layers which are determined by medium property and structure.

Cavity modes excited in micro-resonators, which can be drilled peri-

odic hole array on each slab, can be coupled into any ports regardless their

polarization. In Fig. 3.2(a), the stacking photonic crystal slabs is illumi-

nated by a plane wave polarized along x-direction. At a frequency far away

from the resonant modes, the sum of reflection and transmission measured
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Figure 3.2: Polarization rotation happening in stacking photonic crystal slabs
at resonances. (a)The top and bottom slabs (inset) are both made of silicon
with εr = 12.25, and with identical thickness of 0.55a and air holes with radius
of 0.1a, where a is the lattice constant. The incident plane wave has polar-
ization along x-direction, and the sum of reflection and transmission polarized
along x-direction is calculated in finite-element method when x-displacement
= 0.11a and y-displacement = 0.17a, which is less than 1 when polariza-
tion rotation happens as a result of coupling between resonant modes and
propagating modes.(b) perfect agreement between finite-element calculation
and 4-port coupled-mode theory in computing transmission coefficient along
x-polarization.
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on x-polarization is 1 because two polarizations cannot talk to each other

through resonant modes. On resonances, the cavity modes are coupled into

waveguides polarized along both x-direction and y-direction, resulting in power

leakage into y-polarization. Suppose there are two resonant modes, the dy-

namic response equation describing the interaction between localized modes

and propagation modes can be written as

d
dt

[
A
B

]
=

[
jωA 0

0 jωB

] [
A
B

]
− Γ

[
A
B

]
+ KT


Sx1+

Sy1+

Sx2+

Sy2+


Sx1−
Sy1−
Sx2−
Sy2−

 =


rd 0
0 rd

td 0
0 td

td 0
0 td

rd 0
0 rd




Sx1+

Sy1+

Sx2+

Sy2+

+ D

[
A
B

] (3.4)

where A and B are localized mode amplitudes with corresponding resonant

frequencies ωA and ωB. The 2 × 2 decay matrix Γ has complex off-diagonal

elements if two cavity modes do not decay completely in phase or out of

phase into waveguides 1 and 2. This situation is quite general as the mirror

symmetry along z-direction is broken when these two photonic crystal slabs

are mismatched. K is the waveguide-to-resonator transfer matrix which is

only determined by material properties and structural geometry. Similarly,

another resonator-to-waveguide transfer matrix D depicts the progress of how

localized modes are coupled into external waveguides.

The coupling matrices K and D are essential to explain the phenomenon

of polarization rotation caused by coupling between cavity modes and waveg-

uide modes, in addition to regular reflection and transmission. To capture all
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the possible coupling features in most complicated stacking photonic crystal

slabs system, the coupling matrix D is expressed using 8 sets of unique decay

rates and coupling phases as

D =


√

2γxA1e
iθxA1

√
2γxB1e

iθxB1√
2γyA1e

iθyA1

√
2γyB1e

iθyB1√
2γxA2e

iθxA2

√
2γxB2e

iθxB2√
2γyA2e

iθyA2

√
2γyB2e

iθyB2

 (3.5)

Based on the time reversal symmetry (see Appendix B), we can derive K = D

and CD∗ = −D. The latter can be expanded as
rd 0
0 rd

td 0
0 td

td 0
0 td

rd 0
0 rd



√

2γxA1e
−iθxA1

√
2γxB1e

−iθxB1√
2γyA1e

−iθyA1

√
2γyB1e

−iθyB1√
2γxA2e

−iθxA2

√
2γxB2e

−iθxB2√
2γyA2e

−iθyA2

√
2γyB2e

−iθyB2



= −


√

2γxA1e
iθxA1

√
2γxB1e

iθxB1√
2γyA1e

iθyA1

√
2γyB1e

iθyB1√
2γxA2e

iθxA2

√
2γxB2e

iθxB2√
2γyA2e

iθyA2

√
2γyB2e

iθyB2


(3.6)

Noting that only half of these 8 equations are independent as they can be

divided into 4 equivalent sets of equations having the same solution with the

form as
√

2γ2e
iθ2 =

r2d−t
2
d

td

√
2γ1e

−iθ1 + rd
td

√
2γ1e

iθ1 , the coupling matrix D can

be expressed only in terms of decay rates of mode A as

D =


√

2γxA1e
iθxA1

√
2γxB1e

iθxB1√
2γyA1e

iθyA1

√
2γyB1e

iθyB1

r2d−t
2
d

td

√
2γxA1e

−iθxA1 + rd
td

√
2γxA1e

iθxA1
r2d−t

2
d

td

√
2γxB1e

−iθxB1 + rd
td

√
2γxB1e

iθxB1

r2d−t
2
d

td

√
2γyA1e

−iθyA1 + rd
td

√
2γyA1e

iθyA1
r2d−t

2
d

td

√
2γyB1e

−iθyB1 + rd
td

√
2γyB1e

iθyB1


(3.7)

Replacing K in the first equation of Eq. 3.4 by D and assuming harmonic
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cavity modes, the transfer matrix S is found to be

S = C + D

[([
j (ω − ωA) 0

0 j (ω − ωB)

]
+ Γ

)−1

DT

]
(3.8)

where the decay rate matrix Γ is related to the coupling matrix D via con-

clusion from energy conservation law, i.e. D†D = 2Γ († stands for complex

conjugate).

To summarize, the stack of two photonic crsytal slabs is a 4-port system

indicated by coupled-mode theory, which agrees perfectly with finite-element

calculation as shown in Fig. 3.2(b). The transmission port can be easily elimi-

nated by a complete reflective mirror from the bottom. The polarization rota-

tion does not occur if the structure presents an in-plane centro-symmetry [81],

but it will not generate any optical force if only translational motion happens,

which is not suitable for self-alignment. The other possibility of removing po-

larization rotation while generating conservative optical force simultaneously

is to use a lossless polarizer as we proposed in Fig. 3.1.

3.2.3 Inevitable non-conservative optical force in multi-port system

To show the necessity of the single-port operation, i.e. with the use

of the metal rods substrate and the polarizer on the top, we reveal the non-

conservativeness of optical force in multi-port system. Multi-port system is

quite general in reality as most photonic crystal slabs fabricated on transpar-

ent SOI or GaAs wafers are multi-port system, because the in-plane central-

asymmetry of dislocated slabs causes polarization rotation and the dislocation
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of stacking PC slabs causes the cavity modes to scatter with different decay

rates upwards and downwards[81].

The conservative nature of optical force can be broken, i.e. non-zero

conservative force field cannot be established otherwise it must contain non-

conservative component, if we only remove the polarizer above as it opens an-

other port for y-polarization. To simplify the analysis of the counter-example,

we assume the resonant cavity only has a single mode A. The corresponding

temporal coupled-mode theory for this 2-port single-mode system is revised to

be 
dA
dt

= −iωAA− γAA + KT

[
S1+

S2+

]
[
S1−
S2−

]
= eiφC

[
S1+

S2+

]
+ DA

(3.9)

The matrix C is an identity matrix due to total reflection. The 2× 1 vertical

vector D represents the coupling coefficients from cavity mode to the outgoing

waveguide modes. The subscripts of 1 and 2 correspond to 2 ports denoting

orthogonal polarizations. Suppose only port 1 is excited, the normalized field

intensities at port 1 and port 2 are derived as{
I11 = (ω−ωo)2+(γ1−γ2)2

(ω−ωo)2+(γ1+γ2)2

I21 = 4γ1γ2
(ω−ωo)2+(γ1+γ2)2

= 1− I11

(3.10)

The corresponding phase responses at port1 and port2 are computed as{
tan(Φ11) = − 2γ1(ω−ωo)

(ω−ωo)2+(γ21−γ22)

tan(Φ21) = ω−ωo

γ1+γ2

(3.11)

One can verify that the energy is conservative from Eq. 3.10, and thus the

curl of the optical force based on RTOF is found to be

∇× F = −Pin
ω
∇I11 ×∇(Φ11 − Φ21) (3.12)
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Due to polarization rotation, the outgoing wave intensity I11 is not constant

because the ratio of energy dissipated into each polarization changes with the

geometry. Therefore, from Eq. 3.12 we draw the conclusion that the gradient

of I11 has to be parallel with the gradient of Φ11 − Φ21 to ensure conservative

optical force, which is generally not satisfied in most systems. To take a step

further to check whether Φ11 − Φ21 can always be constant for any frequency,

we calculate the tangent of Φ11 − Φ21 to be

tan(Φ11 − Φ21) =
ω − ωo
γ1 − γ2

(3.13)

It is obvious that if and only if γ1 = γ2, one can deduce Φ11−Φ21 = π/2. How-

ever, due to the out-of-plane asymmetry of PC slab stacking configuration, the

decay rates along two polarizations are different. Moreover, the same require-

ment results in tan (Φ11) = 1/tan (Φ21) based on Eq. 3.11, which indicates

that Φ11 + Φ21 = π/2. Since the continuously transited phase responses are

actually fixed (instant π phase transition is prohibited), no optical force can

be generated in such a system. Therefore, even in this simplest 2-port system,

the optical force field is generally non-conservative, which is not suitable to

precisely and stably align photonic crystal layers. However, non-conservative

nature of optical force in a multi-port system is promising to build optical

micro-motors.
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3.2.4 Tailoring conservative optical force field established in one-
port system

Knowing that only single-port system is suitable for automatic align-

ment with ultra-high spatial resolution as well as absolute stability, we use

the CMT to analyze the spatial dependence of resonant frequency f(x, y) and

decay rate γ(x, y) based on which the desired optical force potential can be

shaped. In the first step, the exact values of resonant frequencies and decay

rates are extracted from the least-squared fitting with the reflection spectra,

which are from first-principle finite-element simulation results, over the entire

2D displacement of the upper PC slab. After the parameter maps of CMT

framework have been determined, we then tailor the desired force potential

simply by tuning the frequency.

The structure shown in Fig. 3.1a supports a number of guided reso-

nances at normal incidence denoted by A and B and one port coupled with

two external modes S± (+ denotes incoming propagation mode and − denotes

outgoing propagation mode). At a frequency far away from the resonances

of the cavity, amplitude of the outgoing wave S− only experiences a constant

phase delay with respect to the incoming wave, i.e. S− = eiφoS+ . The phase

φo is real-valued in a lossless system. Near the resonant frequencies of the

optical cavity, the cavity mode is excited and the corresponding coupled-mode

equation is [74]
d
dt

[
A
B

]
= −i

[
ωA 0
0 ωB

] [
A
B

]
−
[
γA γo
γ∗o γB

] [
A
B

]
+ KTS+

S− = eiφ0S+ +
[√

2γAe
iθA
√

2γBe
iθB
] [ A

B

] (3.14)
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Figure 3.3: Calculated phase spectra of the reflected light at three lateral
offsets: (0a, 0a) (blue), (0.5a,-0.7a) (green), and (0.25a, -0.35a) (red). Insets
show the relative positions of the two photonic crystal slabs. Results from
first-principle finite-element calculations (dots) are fitted to the coupled-mode
theory (curves).

where ωA,B are resonant angular frequencies of the two cavity modes respec-

tively indicated by subscripts, A and B are complex-valued localized cavity

modes including the phase information, γA and γB are real-valued decay rates

of these two cavity modes respectively, γoD is related to γA and γB by energy

conservation law, and the 1 × 2 complex coupling matrix K represents the

amount of incident wave coupled into cavity.

Through time-reversal symmetry and energy conservation, the reflec-

tion coefficient of this single-port multi-mode system has an all-pass response
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with unitary amplitude

S =
S−
S+

= eiφ0
(

1 +
2iγA (ω − ωB) + 2iγB (ω − ωA)

− (ω − ωA) (ω − ωB)− iγA (ω − ωB)− iγB (ω − ωA)

)
(3.15)

Obviously, the phase of reflection coefficient S only depends on the resonant

frequencies ωA,B and decay rates γA,B which vary with the movement of the

top photonic crystal slab. Generally, increasing 2π phase transition of reflec-

tivity occurs around the resonances (Fig.3.3). Note that the phase spectra are

inversed in Fig.3.3 so that phase maps presented later are directly proportional

to optical force potential to provide straightforward view in the remaining part

of this article. As the resonant frequency, a strong function of the displace-

ment of the top photonic crystal slab, varies around the fixed frequency of

illumination, the 2π phase transition subsequently happens in real space of

displacement (Fig 3.1c). In contrast, the operating frequency away from the

resonant frequency lacks any pronounced potential barriers or wells. More

specifically, around the lower resonance in Fig. 3.3, the lower bound of red

curve and upper bound of blue curve give a good illustration of defining the

range of operating frequency from 0.3759(c/a) to 0.3786(c/a). Throughout

the process, ωA,B and γA,B are accurately fitted by making phase spectra with

perfect agreement with finite-element simulations.

The offset between the two slabs has a drastic impact on the resonant

frequency and decay rate, which can be fitted from the FEM calculation of

reflectivity at a few frequencies over the entire unit cell (Fig. 3.4, thereby al-

lowing us to interpolate and extrapolate the phase response over a wide range
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Figure 3.4: Calculated displacement-dependent resonance frequency, decay
rate and phase response (optical potential) (a-d) Resonant frequency ω and
decay rate γ for Mode A and B as a function of the x-y displacement of the
upper photonic crystal slab. The frequency contour of frequency of 0.3762(c/a)
is plotted in yellow in (a) with corresponding decay rates in yellow in (b). The
cyan frequency contour in (a) corresponds to frequency of 0.3781(c/a) with
the corresponding decay rates in cyan as well in (b). The frequency contour
of 0.3807(c/a) is plotted in cyan in (c) with corresponding decay rates plotted
in cyan in (d). (e) (g) Corresponding phase response of the reflection for
frequencies of 0.3762 (c/a), 0.3781(c/a), and 0.3807(c/a).

51



of frequencies and spatial displacements. For instances, two frequency contours

of 0.3762(c/a) and 0.3781(c/a) are plotted in yellow and cyan respectively in

Fig. 3.4a and another higher frequency contour for 0.3807(c/a) is plotted in

cyan in Fig. 3.4c. These frequency contours coincide with the edge shapes of

phase maps of corresponding frequencies as shown in Fig. 3.4e-g which are ac-

tually proportional to the optical force potential (note that the phase maps are

already inversed). This is crucial for constructing desired force potential with

ideal shape at desired location that expels or traps the movable object. The

potential mesas in Fig. 3.4e prevents the movable photonic crystal slab from

entering the top platform regions. Perfect alignment without misplacement

of top photonic crystal slab with substrate can be achieved by constructing a

potential well right in the center as shown in Fig. 3.4f. At the same frequency,

total misplacement of 0.5a can be realized as well. Trapping the photonic

crystal slab to another position besides 0 or 0.5a is also realizable by utilizing

higher resonance as shown in Fig. 3.4g. One can further increase the frequency

to reach even higher resonances to construct desired force potential, which are

not show here.

To construct potential wells or plateaus, we simply choose frequency

contours which encircle resonant frequency peaks or basins on Fig. 3.4a, c.

Cyan frequency contours of illumination frequency illustrate how to build po-

tential wells clearly. As the frequency of illumination is lower than all the

resonant frequencies inside the contour, at those displacements the operating

frequency is lower than the resonance and therefore 2π upward phase jump
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has not happened yet, which can be obviously seen in Fig. 3.3. As a result,

the phases at positions within the cyan contours are 2π lower than those at

positions elsewhere.The alignment resolution is determined by the sharpness

of potential well edges which is proportional to the decay rates at that po-

sition, i.e. ∆r = 2γ/∇rω . The decay rates on the potential edges for an

operating frequency can be found on the surfaces of decay rate maps along the

pathway of projection of iso-frequency contour on the xy-plane. In Fig. 3.4b

and Fig. 3.4d, the winding curves of decay rates are shown in the same color

of corresponding iso-frequency contour. It is evident that the decay rates on

cyan curves corresponding to frequency of 0.3781(c/a) are lower than those on

yellow curves corresponding to frequency of 0.3762(c/a) in Fig. 3.4a, and thus

the alignment resolution is also improved via increasing operation frequency.

When the movable object is trapped to perfect position, in which the phase

map is similar to that in Fig. 3.4f, the alignment resolution achieved can be

as small as 7× 10−4a , which is efficient for sub-nanoscale auto-alignment for

photonic crystal slabs with lattice constant up to 1.4µm. Additionally, the

sharp edges of potential produces strong optical force to align the PC slab at

moderate input power.

The use of rectangular unit cell here is intentional to simplify the de-

sign of force potential landscape, as it separates two high-Q cavity modes

far away from each other in frequency domain, and therefore only one set of

resonant frequency map and decay rate map is needed for predicting force

potential at the frequency of interest. As seen in Fig. 3.3, the well-spaced
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low-frequency resonance and high-frequency resonance never exchange their

positions in spectrum thanks to the 1.4× 1 rectangular unit cell. As the con-

tour line for a specific frequency only appears on either ωA map in Fig. 3.4a

or ωB map in Fig. 3.4c, one does not need to refer to both resonant frequency

maps simultaneously when designing the desired force potential.

3.3 Quantification of conservativeness of optical force
via Helmholtz-Hodge decomposition

The perfectly conservative force field predicted in theory does not exist

because of the parasitic unintended ports either from loss or depolarization.

However, the non-conservative component of the force field can be suppressed

to levels orders of magnitude smaller than that of the conservative compo-

nent. It is therefore important to develop techniques that can decompose

an arbitrary force field, and quantitatively compare the levels of conservative

and non-conservative components. This comparison also provides a numerical

proof to the prediction from the response theory that single-port system gener-

ates conservative forces, up to the numerical error from spatial discretization.

To this end, we apply Helmholtz-Hodge decomposition (HHD) which has been

well developed for computational fluid dynamics[87].

In this section, I present an easy-to-implement HHD to decompose

periodic optical force field into scalar optical force potential and scalar optical

force stream, from which we can judge the conservativeness of optical force

through appropriate figure of merit and extract the phase gradient singularities
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when optical vortex exists.

3.3.1 Introduction to Helmholtz-Hodge decomposition

Any vector field which is well defined (second-order integral exists)

within fixed domain and fulfills certain boundary conditions (various valid

boundary conditions will be discussed later) can be uniquely decomposed into

curl-free component (irrortational) component, divergence-free (solenoidal)

component, and the remaining harmonic term by Helmholtz-Hodge decom-

position as

u = u‖ + u⊥ + h = ∇φ+∇× ψ + h (3.16)

where u‖ and u⊥ denote curl-free and divergence-free components respectively,

and the remaining harmonic component is represented by h. The curl-free part

can be interpreted as the sink or source of energy flow, while the divergence-

free part carries circulating energy.

Various numerical methods of HHD with or without mesh have been

proposed in the past decade. For example, Least-square Finite-element Method

(LS-FEM) which only works for triangular mesh was proposed in 2003 [Polth-

ier et.al.] and soon later applied to rectangular lattice by Guo et. al. However,

a regularization weight has to be introduced to derive unique solution because

the rank of N × N stiffness matrix is N − 1 and these methods are only

suitable for so-called normal-parallel (N-P) boundary condition, i.e. curl-free

component is normal to boundary and divergence-free component is parallel

to boundary. Curl-free and divergence-free wavelets method can be applied
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to periodic vector field, but this algorithm is hard to be parallelized as it is

based on iteration method. In this section, I propose to use Greens Function

Method to decompose periodic vector field, which can be applied to arbitrary

mesh and ideal for parallelization on supercomputer. HHD based on Greens

Function Method was first proposed by Li [34] to segment aperiodic discrete

vector field to aid computer vision. Here we extend this method to periodic

case under what condition we demonstrate the uniqueness of HHD and per-

form critical error analysis, from which the conservativeness of optical force

field can be judged.

3.3.2 Helmholtz-Hodge decomposition using Green’s function method

According to [34] the curl-free potential can be expressed as discrete

convolution between the gradient of Greens function and the original vector

field

φ (ri) =
∑
j

[∇G (ri − rj) · u (rj)] (3.17)

where ri is the location where the curl-free potential is calculated and rj is

scanning all locations in the space, and u(rj) is the original vector at the

location rj. Similarly but not identically, the divergence-free potential can be

derived from

ψ (ri) =
∑
j

[∇×G (ri − rj) · u (rj)] (3.18)

where G is the Greens Function and particularly in 2-dimension it is defined

as

G (ri − rj) = − 1

2π
ln (|ri − rj|) (3.19)
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The harmonic component does not exist in periodic force field as will be dis-

cussed in uniqueness theorem in the next section. Even though Li et al only

deals with aperiodic boundary condition, it is straightforward to extend Eq.

3.17) to periodic boundary condition where the decomposition is unique as we

demonstrated before

φ (ri) =
∞∑

m,n=−∞

∑
jm,n

∇G
(
ri − rjm,n

)
· u
(
rjm,n

) (3.20)

where m and n denote mth and nth period along two perpendicular directions

and they can go to infinity only in ideal case. rjm,n is the recurring location of

rj0,0 in the mth and nth period. The calculation of potentials at each position

can be parallelized perfectly as it does not depend on potentials elsewhere.

Since u(rjm,n) are periodic, we can extract the vector field in the primary

period (denoted by 0th period) to rewrite Eq. 3.20 as

φ (ri) =
∑∣∣∣rx

j0

∣∣∣≤a
2
,|ryj0 |≤ b

2

〈
u
(
rj0,0

)
·

∇


G
[
ri −

[
rj0,0 − (Ma,Nb)

]]
+ . . .+G

[
ri −

[
rj0,0 − (a, b)

]]
+G

(
ri − rj0,0

)
+

G
[
ri −

[
rj0,0 + (a, b)

]]
+ . . .+G

[
ri −

[
rj0,0 + (Ma,Nb)

]]

〉
(3.21)

where a and b are the lattice constants of 2D photonic crystal slab, M and N

are the numbers of single-sided truncation period. Similarly, the divergence-

free component can be obtained from the spatial convolution between the curl

of the Green’s function and the force field, over the entire space. Such a folded

Greens function allows us to simply increase the value of M and N to reduce

the truncation error and realize more than 80dB of numerical dynamic range.
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3.3.3 Uniqueness of Helmholtz-Hodge decomposition of periodic
vector field

Given any arbitrary force field, it turns out to be conservative provided

that no divergence-free component exists after HHD, if and only if the de-

composition is unique. However, the harmonic term h can also be expressed

as the gradient of a scalar potential as ∇β where β satisfies the Laplacian

equation ∇2β, and thus h can be either included into curl-free component or

divergence-free component without contributing any redundant qualities to the

original field provided that ∇×(∇β) = 0 and ∇·(∇β) = 0. Since the solution

to the Laplacian equation is not trivial, the uniqueness of Helmholtz-Hodge

decomposition is not a necessary condition for all boundary conditions.

In contrast to HHD within a limited domain where appropriate bound-

ary conditions must be presumed to find the harmonic function as a solution to

the Laplacian equation, periodic boundary condition in actuality forces HHD

to process the infinite domain. From another point of view, the harmonic term

only depends on the vector flow outside the observed domain and there is no

“outside” region if boundary is periodic. The solution to the Laplacian equa-

tion is either the minimal energy (constant Laplacian potential ∇β = Cmin

(e.g. Φ = x+ y) producing zero vector field) or surface relaxation state fulfill-

ing mean value theory (e.g. Φl = x2 − y2) without local maxima or minima.

Obviously, the surface relaxation state does not satisfy the periodic boundary

condition, and thus no harmonic term contains in periodic force field.

The orthogonality of decomposed curl-free component and divergence-
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free component, as a result of zero harmonic term, is the sufficient condition

of unique Helmholtz-Hodge decomposition, which is defined as zero overlap

integral within a given volume

∫
V

u‖ · u⊥dV = 0 (3.22)

Eq. 3.22 can be interpreted as neither curl-free component nor divergence-free

component contain harmonic term. Since ∇ · u⊥ = 0 and u‖ = ∇φ due to

Gauss Theorem Eq. 3.22 can be rewritten as

∫
∂V
φu⊥ · ndS = ∫

∂V
φ
∂β

∂n
dS = 0 (3.23)

where ∂V is the boundary of volume V and n is the unit vector normal to the

boundary. Even though u⊥ ·n is not trivial when ψ varies along the boundary,

the integral adds up to zero under periodic boundary condition, which agrees

with constant minimal energy β as we analyzed before. Therefore, the opti-

cal force field on periodic photonic crystal slab can be uniquely decomposed

without worrying about the harmonic term.

3.3.4 Error convergence of Helmholtz-Hodge decomposition

Error analysis is essential to determine the appropriate figure of merit

to examine the conservativeness of the optical force. For periodic optical force

field, the linear dependence of error on the truncation period in log-log scale,

rather than the dependence of error on resolution, can effectively indicate the

conservativeness of optical force, because truncation error dominates among

all types of errors. For conservative force without divergence-free component,
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the error is estimated through Frobenius norm of decomposed divergence-free

component normalized by total force as

E = ‖u⊥‖F/‖u‖F (3.24)

where the Frobenius norm of a 2D discrete vector field is defined as

‖u‖F =

√√√√ m∑
i=1

n∑
j=1

(
u2
x,ij + u2

y,ij

)
(3.25)

For conservative force field, Eq. 5.3 must approach to zero as resolution of

discrete force field becomes higher or truncation period increases. In non-

conservative case, Eq. 5.3 should converge to certain level well beyond zero as

‖u⊥‖F 6= 0.

There are three types of errors in discrete HHD coming from the scaling

factor in discrete Greens Function at singularity, the discretization of vector

field, and the truncation of periodic force field. The scaling factor is deliber-

ately introduced to avoid infinity at singularity so that the Greens Function is

defined as

G (r) = − 1

2π
ln

(√
|r|2 + δ

)
(3.26)

Even though the minimum error can be achieved by sweeping the scaling

factor δ, the value of δ minimizing the error also depends on the resolution,

truncation period and the characteristic of vector field. Therefore, we keep

using a reasonably small δ = 4.8329 × 10−9 throughout this section for both

conservative force and non-conservative force even when the resolution and

truncation period are modified.
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The second type of error comes from the discretization of a smooth

vector field and thus is called discretization error. If decomposed properly, the

numerator of Eq. 5.3 is estimated to be below C(a/m)p where C is a constant

related to the vector field itself, a is the lattice constant in periodic field, m is

the number of grids along one side, and p represents the rate of convergence [6].

In log-log scale, the error clearly shows a linear dependence on the resolution

as

logE = −p · logm+ p · log a+ logC (3.27)

However, when other types of errors exist, the linear dependence will be bent

and converge to the magnitude of total error at higher resolution, and therefore

it is not suitable to judge the conservativeness of the vector field based on this

figure of merit.

The third type of numerical error called truncation error is as well

unavoidable as the vector field has to be truncated at finite number of periods

in programs. Similar to discretization error in Eq. 3.27, truncation error also

has an upper bound for a given truncated period number M and N in Eq.

3.21, which is equivalent to state that the sum of Greens Function converges

to certain value and it does as M and N go to infinity. It is straightforward to

write out the truncation error in terms of solenoidal potential for conservative

vector field as

ET =
ψ − ψ̃
ψ

=

∑∞
n=N

[∑
jn
∇×G (ri − rjn) · u (rjn)

]
∑∞

n=−∞

[∑
jn
∇×G (ri − rjn) · u (rjn)

] (3.28)
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where Ψ is the decomposed divergence-free potential truncated at and one can

define the truncation error for curl-free vector field similarly. Like discretiza-

tion error, the truncation error, in conservative case, also presents a linear

dependence on single-sided truncation period M and N in log− log scale (See

Appendix C).

Applying discrete HHD to numerically decompose optical force fields,

we can reconstruct quite distinguishable divergence-free potentials as shown in

Fig. 3.5(b) and (d) for one-port system and two-port system respectively. The

vector potential Ψ((r)) for the one-port conservative system (Fig. 3.5c) van-

ishes, while Ψ((r)) oscillates between large positive and negative values in the

two-port non-conservative system (Fig. 3.5d). Here, peaks of positive Ψ((r))

indicates that the upper PC slab is driven to rotate clockwise, while trough of

negative Ψ((r)) indicates counter-clockwise rotation. The error convergence

with respect to resolution m which is the number of grids along the longer

side from 0 to b in log-log scale is plotted in Fig.3.5 (e) when the number

of truncation period is set to be 20. Even though the error of conservative

case is more than 3 orders lower than non-conservative case, we cannot judge

the conservativeness of the optical force field as we do not know whether the

redundancy is from divergence-free potential or other types of numerical er-

ror. Since at N = 20 truncation error overwhelms discretization error, we can

clearly observe the linear dependence of error with respect to truncation period

in conservative case from Fig. 3.5(f) when plotted in log-log scale. Around

N = 1000 , a minima is achieved after which the numerical error caused by
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Figure 3.5: Decomposed curl-free potential Φ and divergence-free potential
Ψ for conservative optical force and non-conservative optical force, and error
convergence plot with respect to resolution m on longer side [0, b] and trun-
cation period N , respectively. (a)-(b) Decomposed potentials for conservative
optical force in one-port system, and the divergence-free potential is almost
flat when plotted in the same scale as non-conservative optical force in system
without polarizer. (c)-(d) Decomposed potentials for non-conservative optical
force with truncation period=20, and the vortex is obvious on divergence-free
potential; (e) Error convergence with respect to number of grids on longer
side in log-log scale. Due to existence of relatively large truncation error,
both errors stop decreasing at the magnitude of truncation error. (f) Error
convergence with respect to truncation period in log-log scale with resolution
m=3000. Obviously, the error of conservative case linearly decrease with in-
creasing truncation period.
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machine precision limit will deteriorate the decomposition results.

The overall non-conservativeness level for a given force field can be

further described by the rotational ratio, defined as the Frobenius norm of the

rotational component divided by that of the total force, ‖∇ × ψ(r)‖F/‖F(r)‖F .

Only when the value of N (M=N in program) in Eq. 3.21 is sufficiently

large to make the truncation error negligibly small, the rotational ratio for

a conservative force field reduces to the discretization error. However, the

rotational ratio for a non-conservative force field converges to the non-zero

divergence-free component which is several orders of magnitude larger than

both truncation error and discretization error, and thus does not depend on

the value of N as shown in Fig. 3.5f. Therefore, directly based on the original

force field, HHD demonstrates the conservativeness of optical force in one-port

system which has already been analytically proved by RTOF. Moreover, due

to tiny rotational component of optical force which is several orders smaller

than irrotational counterpart in system without polarizer above, the above

movable photonic crystal slab can still be trapped by conservative component

of optical force but exhibits weak vibrations.

3.4 Computation Concerns

Generally speaking, 3D finite-element-method numerical simulation re-

quires large RAM (usually≥ 32GB) and long time to derive the inverse matrix.

Given current computing power (CPUs: Xeon E5-1650 and Xeon E3-1245),

a distributed computation system is required to accelerate the computation
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time. The distributed computation infrastructure is built on 4 servers con-

nected with high-speed optical network. Since the parallel mechanism is re-

alized using message-passing principle, there is no specific requirements on

operating system or hardware (I do use different CPUs) on each server. The

master node keeps sending query message to all the worker nodes, and once

the simulation on some worker node is done the simulation results start to

transfer to master node from the worker node. To minimize the necessary

message passing through the network, only variables and results are transmit-

ted. Therefore, each worker node has COMSOL server running and simulation

scripts are broadcast at the very beginning of the whole simulation.

On the other side, we use Helmholtz-Hodge decomposition to demon-

strate the optical force conservativeness numerically because as more and more

constraints are added to the system such as polarization rotation, polarizer,

multiple resonances, and unequal decay rates it becomes extremely difficult

to analytically prove the conservativeness of the optical force. Even though

this problem is provable, the proof time will be quite long given current CPU

specifications. However, numerical demonstration also requires a lot of compu-

tation powers because the results shown in Fig. 3.5 has force field resolution of

3000× 2143 (corresponding to 1.4× 1 aspect ratio of unit cell) and maximum

single-sided truncation period of 1000, which is equivalent to operate on matri-

ces with dimension of 6000000×4286000. Decomposition of such hugh matrix

sequentially requires an extremely large RAM and quite long computation

time. Therefore, I developed C++ codes to perform Helmholtz-Hodge decom-
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position on Lonestar supercomputer of Texas Advanced Computing Center

(TACC) using OpenMP library and MPI environment. The parallel MAT-

LAB program for Helmholtz-Hodge decomposition is also developed to run on

a multicore processor. One can compare and confirm the equality of these two

programs by experimenting on a smaller vector field. Both codes are given in

Appendix and free to use under GNU license.

3.5 Conclusion Remarks

The stack of two photonic crystal slabs is the essential part of realizing

various applications such as self-alignment, completely reflective mirror, and

optical filter. However, the temporal coupled-mode theory for the simplest

two slab stack has not been reported up to date, which helps to understand

the transmission behavior of such structure thoroughly. Combined with a

perfect mirror substrate, the stack of photonic crystal slabs has a potential

application in tunable optical filter as the resonant frequency depends on the

relative position of the two slabs and photonic crystal slabs generally possess

ultra-high Q-factor.

The presenting divergence-free potential in the absence of polarizer is

extremely weak, account for up to 0.6% of the total power when the Q-factor

is 6× 108. On the simulation side, the mesh and structure are both carefully

optimized. During the data processing, the phase response is primarily fitted

via least-squared curve fitting techniques, after which the least significant bits

of resonant frequencies and decay rates into x− and y− polarizations are
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further fined-tuned from the reflection coefficient spectra.
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Chapter 4

Novel optical trapping in topological photonic

integrated system

4.1 Introduction

One-way waveguide by breaking time reversal symmetry offers a rev-

olutionary control of light flow direction and thus blazes a trail for a broad

range of unprecedented applications on manipulating Micro-/Nano-structures

and micro-fluid, which are extremely desired in Biology, Integrated Photonics,

Cold Ions, and Microfluidic Devices. In this section we elaborate on the un-

derlying mechanism of conservative optical force and related optical potential

in uniform one-way waveguide, as well as present an example of controlling

both the position and orientation of an asymmetric particle simultaneously

benefitting from the force conservation.
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4.2 Simultaneously trapping and orientation of asym-
metric particle in unidirectional waveguide-resonator
system

4.2.1 Conservative optical force in unidirectional waveguide-resonator
system

In this chapter, we introduce a novel way to simultaneously trap and

orientate an asymmetric dielectric particle in a hollow metal-box optical cav-

ity coupled with a one-way waveguide mode (Fig. 4.1). A purely conser-

vative optical gradient force field whose curl is zero, i.e. ∇ × F = 0, is

constructed in the optical cavity to stably trap the particle to the optical

intensity maxima. Although well-established Maxwell stress tensor (MST)

and the Kelvin force give the macroscopic forms of calculating the optical

force, they require the distributions of the electromagnetic field and dielec-

tric constant which are complicated to derive the conservative optical force

condition in the resonator-waveguide structure. Having been applied to many

integrated photonic systems which can be described as an n-port system, the

response theory of optical force (RTOF) is used here to relate the conserva-

tive optical force condition to a new set of physical quantities at the lumped

ports [84]. In generality, a regular resonator-waveguide structure is a multi-

port system in that most optical waveguides have backscattered propagation

and multiple spatial modes. Neglecting the absorption and scattering loss, in

RTOF scheme the optical force on a movable particle in a multi-port resonator-

waveguide system is computed based on the power and the changes in phase

response of the scattered waves as a function of the particle displacement r
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Figure 4.1: Trapping and orientating an L-shaped particle using resonator-
enhanced conservative optical force in a single-port system. The single-port
condition is realized by the single-mode one-way waveguide which is formed
between the metal wall and the magnetized (+z) YIG photonic crystals (light
blue). The light is coupled from the one-way waveguide to the square metal-
box resonator (inset) through a small gap opened on the domain wall. The side
length of the resonator is chosen to be 1.16a to ensure the resonant frequency
always falls into the band gap of magneto-optical photonic crystal wherever L-
shaped particle moves and orients. The rotation angle is defined as the angle
between longer side of L-shaped particle and y-axis anticlockwise (inset).
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at all the output ports, i.e. F(r) = 1/ω · Σi[Pi(r)∇rφi(r)], where ω is the

angular frequency of the optical illumination, Pi and φi are the power and

phase response of the scattered wave at the ith port, respectively. Noting that

the gradient of the phase response is curl-free, the curl of the optical force F

becomes ∇r×F(r) = 1/ω ·Σi[∇rPi(r)×∇rφi(r)]. To establish a conservative

optical force field in the hollow metal box (inset of Fig. 4.1), the sum of the

cross products ∇rPi(r) × ∇rφi(r) at all the output ports of the system has

to add up to zero in the entire range of interest of the displacement r. The

output power and the gradient of phase response at each port of a tunable

optical trapping system where the strength and direction of the optical forces

constantly change with the particle displacement r are non-zero according to

RTOF. More specifically in a multi-port system, the output power at each

port varies with the particle displacement, resulting in non-zero gradient of

output power. It is practically impossible to maintain a zero sum of cross

products ∇rPi(r)×∇rφi(r) in a tunable multi-port system, and even unreal-

izable to make the gradient of output power parallel to the gradient of phase

response at every lumped port. One special case producing the conservative

optical gradient force, regardless how complex a system would be, is a one-

port system in which the zero gradient of constant output power equal to the

input power Pin makes the curl of the optical force vanished and therefore

the conservative optical force only arises from the gradient of phase response,

i.e. F(r) = (Pin/ω)∇rφ(r). In an effective optical trapping system where

the restoring optical force is the negative gradient of the scalar potential U
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(F = −∇U), the phase response is proportional to the shape of optical trap.

Considering the schematic of an asymmetric dielectric particle inside a hollow

metal box, the rotation of the particle will alternate the spatial distribution

of dielectric constant and thus modify the phase response by modulating the

effective optical length. Consequently, the variable optical trap orientates the

particle along the direction which maximizes the phase delay at the output

port.

For concreteness, to construct a conservative optical force field to simul-

taneously trap and orientate an L-shaped particle (inset of Fig. 4.1), we build

a special one-port resonator-waveguide system, unlike most waveguides having

reflection scattered back from the coupled optical resonator, immune to scat-

tering from any structure disorder in the waveguide. The essential part of this

one-port system is a single-mode one-way photonic crystal waveguide which

prevents mode conversion and back-scattering propagation (Fig. 4.1). The

photonic crystal is made of magneto yttrium-ion-garnet (YIG) pillars which

under 1600 Gauss +z magnetic field at 4.28 GHz has relative permeability

tensor as

µ =

 14 12.4i 0
−12.4i 14 0

0 0 i

µo (4.1)

The opposite off-diagonal elements in permeability arise because of gy-

rotropy of magneto material and result in non-zero Chern number by breaking

the time-reversal symmetry. The number of chiral edge states (CESs) is equal

to the sum of the Chern numbers of all the bulk bands under the band gap
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of magneto-optical photonic crystal opened by the applied +z magnetic field.

Therefore, the unidirectional propagation of the optical mode along the edge

of the magneto-optical photonic crystal is topologically protected and there-

fore immune to any disorder in the geometry. The radii of the YIG pillars

are 0.0978a (a = 40mm being the lattice constant). To confine the one-way

waveguide to be operated in the single-mode regime, the width of the waveg-

uide (inset of Fig.4.1, defined as the distance from the metal cladding to the

edge of the nearest row of magneto-optical photonic crystal) is 0.65a which is

narrow enough to support only one spatial mode. Since this one-way waveg-

uide is robust to any scattering structural disorder, a square optical resonator

(hollow metal box) can be coupled to the waveguide through a small slot on

the metal cladding without introducing additional reflection port. The side

length of the square resonator is 1.16a to make the resonant frequency of the

fundamental cavity mode always fall into the band gap of the magneto-optical

photonic crystal wherever the L-shaped particle locates or orients. When the

one-way mode is excited and coupled with the optical resonator, the resonance-

enhanced optical force traps the particle to the destination where the overlap

between dielectric constant and optical intensity achieves its maximum.The

L-shaped particle (relative permittivity εr = 6.25) for demonstration possesses

a length of 0.1a along its longer side and 0.0667a along its shorter side, both

have identical width of 0.0333a. The rotational angle θ of the particle (inset

of Fig. 4.1) is defined as the angle between the longer side of the particle

and +y axis anticlockwise. The rotation of the asymmetric particle modifies
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the overlap between dielectric constant distribution and optical intensity pro-

file, which subsequently modulates the effective optical length between input

and output ports and phase delay. The optical trap which is proportional to

the spatial phase response distribution shifts its potential bottom accordingly.

Therefore, particle orienting along different directions will be trapped to dif-

ferent locations, and conversely particle locating at different positions will be

orientated along different directions by the conservative optical force.

4.2.2 Trapping the particle

To illustrate the effectiveness of trapping a particle within the optical

resonator in this single-port system, we recorded the trajectories of particle

motion of ten independent trials in which the particle is always trapped to

the same position. In these ten trials, the particle is released at the grids of

x = (0.1a, 0.3a, 0.5a, 0.7a, 0.9a) and y = (0.1a, 0.9a) as shown in Fig. 4.2a,

and the rotational angle θ is kept at 0o. The optical force field is numerically

computed from the Maxwell stress tensor using the finite-element method at

the frequency of 0.5838c/a. The trajectories (Fig. 4.2) of the particle motion

are calculated in the particle tracing model where the color is proportional to

the particle velocity. The black points in Fig. 4.2b d presents the positions of

the particle moving along the trajectories at the times of 0.1ms, 0.5ms, and

3ms. The dynamic viscosity is set to be 10−6Pa · s, so that the particle slowly

loses it kinetic energy and is stably trapped to the same location (Fig. 4.2d)

after 3ms in all these ten trials.
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Figure 4.2: Trajectories of 10 trials of releasing L-shaped particle at 10 different
initial locations at x = (0.1a, 0.3a, 0.5a, 0.7a, 0.9a) and y = (0.1a, 0.9a) (the
orientation of particle is always kept at 0o). The L-shaped particle has a
permittivity of 6.25, and a longer side of 0.0667a and a shorter side of 0.0333a.
Four snapshots of particle locations (black dots) at t = 0ms, t = 0.1ms,
t = 0.5ms, and t = 3ms are shown in (a) (d) (the dynamic viscosity is set
to be 10−6Pa · s). The color scale of the trajectories denotes the magnitude
of particle velocities. In all trials, the particle is always stably trapped to the
same position.

4.2.3 Orientating the particle

Since rotation of asymmetric particle will change the spatial distribu-

tion of dielectric constant, the bottom of optical force potential depends on

the orientation of L-shaped particle, which provides us the capability of con-

trolling another degree of freedom. To explore at what position and along

what orientation the particle will be trapped, we reconstruct the optical force

potentials based on the optical force fields numerically calculated in finite-

element method using Helmholtz-Hodge decomposition for twelve rotational

angles equally spaced between 0o and 330o (Fig. 4.3a). Beyonds trapping the

particle to the maximum intensity point by the resonantor-enhanced optical

force, the orientation of an asymmetic particle can be also precisely and sta-

bly controlled by the conservative optical force in such one-port system. The
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trapping desinations of particle orientating along various directions are plot-

ted in xy-plane as shown in Fig. 4.3b (green curve), and the projections of

the optical force potential bottom on xθ- and yθ-planes are plotted in Fig.

4.3c and Fig. 4.3d, respectively.It is obvious that the optical force potential

bottom is a strong function of particle orientation, and vice versa. The purely

conservative gradient force in such one-port system, on one hand, traps the

particle to the maximum intensity point without rotating it, and on the other

hand, orientates the particle along a fixed direction if the particle is pined

at certain location. In this section, we provide an efficient and convincible

method to simultaneously trap and orientate a non-centrosymmetric particle

simply by tuning the frequency in a one-way single-port system. Such one-

port system is realized by attaching an optical resonator to a topologically

protected one-way waveguide which exhibits strong robustness to large impu-

rities, and thus allows simultaneous operations on a chain of various optical

cavities in which non-centrosymmetric particles can have their own location

and orientation without cross-talking to each other. Stable trapping and ori-

entating particles can be only realized in a conservative optical force field,

which is strictly demonstrated by using RTOF whose results are validated by

Lorentz force density as well as MST. Our novel way allows manipulating an

additional degree of freedom to orientate the particles, which has never been

realized, and will provide more effective controlling of live cells and virus in

Biology.
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Figure 4.3: Variable optical potential bottom locations for different rotation
angles at the frequency of 0.5838(c/a). (a) Color representation of twelve op-
tical potentials at rotational angles equally spaced from 0o to 330o, which in-
dicates that particle with different rotational angles will be ultimately trapped
to different locations. (b) Projection of optical force potential minima on xy-
plane for twelve rotational angles. The arrows denotes the rotational angle
increases clockwise. (c) (d) projection of optical force potential minima on
x- and y-planes, respectively.
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4.2.4 Tuning the resolution of the optical trap

The landscape of the optical trap, which is proportional to the spatial

phase response profile, can be deduced from the temporal coupled-mode the-

ory (CMT) which reveals the frequency-dependence of phase response at the

lumped port. The resonator-waveguide system shown in Fig. 4.1 has a funda-

mental cavity mode in the hollow metal box denoted by A and a single output

port denoted by S- propagating to the right end. Off the resonance when the

cavity mode does not couple with the one-way mode, the system response is

simply a phase delay, S− = eiφoS+. When the operating frequency is near the

resonant frequency of the cavity mode A, the cavity mode is excited and the

coupled-mode equations are

dA
dt

= −iωoA− γoA+
√

2γoe
iθoS+

S− = eiφ0S+ +
√

2γoe
iθoA

(4.2)

where ω0 is the angular resonant frequency of cavity mode A, γ0 is the decay

rate, θ0 is the phase shift when cavity mode is coupled with one-way mode. The

complex-value transmission coefficient can be uniquely determined by CMT

using energy conservation law and time reversal symmetry

T (ω, r) =
S−
S+

=
−i [ω − ωo (r)]− γo (r)

−i [ω − ωo (r)] + γo (r)
(4.3)

The magnitude of the transmission coefficient is always unity, which is consis-

tent with reflection-free phenomena observed in numerical simulations. The

phase of the transmission coefficient, on the other hand, exhibits 2π phase tran-

sition across the resonance. The resonant frequency and decay rate are extrap-

olated by fitting the phase of transmission coefficient in Eq. 4.3 (CMT phase)
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to the phase spectra from numerical simulations (numerical phase) using least-

squared curve fitting. When the rotation angle θ = 0, the fitting results are

shown in Fig. 4.4 (a) for x-displacement of 0.55a and (b) for y-displacement

of 0.53a where the CMT phase (surfaces) perfectly agrees with the numerical

phases (light earth yellow curves). The advantage of Fig. 4.4(a), (b) is that it

reveals the frequency-dependence of phase response as well as the optical trap

potential shape. The black curves in Fig. 4.4(a) and (b) are cross sections

by cutting through the phase spectra at the operating frequency of0.5838c/a.

They correspond to two one-dimensional potential wells along x-displacement

of 0.53a and y-displacement of 0.55a, both with rounded and deep bottoms

which trap the particle to the potential bottom rapidly and firmly as shown in

the particle tracing results in Fig. 4.2. These two one-dimensional potential

wells pass through the lowest point of the two-dimensional optical trap, shown

as the dashed black lines on the proportional phase response in Fig. 4.4(d).

If the operating frequency is lower than 0.5838c/a, the optical trap potential

becomes shallower, and if the operating frequency is higher than 0.5838c/a,

the optical trap bottom becomes flat and the particle cannot be held at the

potential bottom tightly. An ideal optical trap can be formed at an operating

frequency near the lower bound of displacement-dependent resonant frequency

ω(r) (Fig. 4.4c) which can be derived by repeating the curve fitting proce-

dure for the whole particle displacement range. The optical forces calculated

from the gradient of displacement-dependent phase response (Fig. 4.4e, f, cor-

respond to the line cross sections of Fig. 4.4d in the same color) in RTOF

79



scheme agree with the well-established MST calculation in ab-initio numerical

simulations perfectly, which confirms our previous analysis on force conserva-

tiveness. Another point worthy to mention is that the optical force magnitude

is proportional to the slope of the phase variation in space (for examples, black

curves in Fig. 4.4a,b and phase landscape in Fig. 4.4d) which is determined

by the linewidth of 2π phase transitions of light earth yellow curves in Fig.

4.4a and b. The linewidth of the resonance in phase spectrum is characterized

by the decay rate γ0 in CMT scheme, and therefore slower decay of cavity

mode into the waveguide results in steeper slope of phase variation as well as

larger stiffness of restoring optical force. Replacing the one-way waveguide by

a general two-way waveguide will introduce a second port if the hollow metal

box and L-shaped particle are kept unchanged, and the additional reflection

port is coupled with the resonator and causes faster decay of cavity mode,

leading to deterioration of optical force stiffness.

4.3 Vorticity residual in one-port and two-port system

Beyond the force conservativeness analysis based on RTOF scheme, the

residual non-conservative component of the optical force fields can be numer-

ically quantified by applying the discrete Helmholtz-Hodge (HH) decompo-

sition to the simulated force fields directly. Any vector field F(r) vanishing

at boundaries can be uniquely decomposed into three parts by HH decom-

position, namely curl-free term, divergence-free term, and a harmonic term

F(r) = Fc(r) + Fnc(r) + h(r) = ∇Φ(r) + ∇ × ψ(r) + h(r) where the curl-
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Figure 4.4: Frequency-dependence of the conservative optical force field. (a)
Perfect agreement of negative phase response calculated through finite-element
method (earth yellow curves) and single-mode temporal coupled-mode theory
(curved surface) in the frequency range of (0.58c/a, 0.6c/a) and y-displacement
range of (0, 1.16a). The x-displacement is 0.4648a, and the corresponding
negative phase response at the frequency of 0.5838c/a is highlighted by the
red curve. (b) The negative phase response as a function of particle position
over the whole square metal-box resonator at the frequency of 0.5838c/a. The
red and blue lines indicate the vertical movements of particle moving along x =
0.4648a and x = 0.6285a, and purple and green lines indicate the horizontal
movements of particle along y = 0.4648a and y = 0.6558a. (c) (d) Perfect
agreement of optical forces calculated through RTOF (solid curves) and MST
(dots) as the particle moves along the paths plotted in the same color indicated
in (b). In RTOF calculation, the phase response in (b) is used to derive the
phase gradient.
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free conservative force Fc(r) is the gradient of a scalar potential Φ(r), the

divergence-free non-conservative force Fnc(r) is the curl of a scalar stream

Ψ(r) varying along z-direction, and h(r) is the harmonic term. To do the

comparison, we construct a two-port system by replacing the magneto-optical

waveguide by a regular two-way single-mode waveguide. The same L-shaped

particle with rotational angle θ = 0o is placed in the identical hollow metal

boxes of both systems, and moving on the discretized square grid whose res-

olution is defined as the number of mesh points along the side. The optical

force fields are evaluated by integrating MST surrounding the particle at the

frequency of 0.5838c/a. The optical force does not vanish when the particle

is near the slot on the metal interface between the cavity and the waveguide

because the optical power is flowing through the slot and exerts force on the

particle. This non-vanishing optical force near the boundary introduces a

non-conservative force in HH decomposition even in one-port system. How-

ever, the non-conservative force induced by the discretization of optical force

field should be reduced by finer resolution. We apply Greens function method

to the measured optical force fields from which the scalar potential is the spa-

tial convolution between gradient of the Greens function and the simulated

optical force and the scalar stream is the spatial convolution between the curl

of the Greens function and the simulated optical force. A scaling factor δ is

introduced to the Greens function G(∆r) = −1/2π · ln(|∆r|+ δ) to avoid the

singularity at the particle location (δr = 0). The scaling factor δ is chosen to

minimize the normalized Frobenius norm of curl-free component during every
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HH decomposition. The decomposed scalar potential and scalar stream of the

optical force field in one-port system and two-port system are shown in Fig.

4.5a,b. Since the radius of scalar potential at half depth in one-port system

is much smaller than that in two-port system, the stiffness of conservative

restoring optical force in one-port system is much larger than that in two-port

system, which provides stronger trapping capability when one-way waveguide

is used. As mentioned before, the stiffness of the optical trapping force is

reduced in the two-port system because the cavity mode is coupled with two

counter-propagating waveguide modes and decays faster than the one-port

system. The additional reflection port also produces non-conservative optical

force driving the L-shaped particle into rotational motion. Comparing the

scalar streams plotted in the same color scale as the corresponding scalar po-

tentials in Fig. 4.5a and Fig. 4.5b, the one-port system shows flat Ψ but

the two-port system has larger portion of gurgitation in the scalar stream.

This discrepancy can be better visualized by plotting the vorticity ratio with

respect to the optical force field resolution as shown in Fig. 4.5c, where the

vorticity ratio is defined as the normalized Frobenius norm of Fnc(r) over the

whole displacement range of the particle.

4.4 Conclusion remarks

In this chapter, I present a way to simultaneously trap and orientate a

nano-particle in non-touch manipulation. Even though people have realized to

use the single-beam gradient force trap to anchor a nano-particle in biomedical
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Figure 4.5: Discrete Helmholtz-Hodge decompositions (HHD) for single-
port system and two-port system. (a) Reconstructed curl-free potential and
divergence-free potential from HHD in single-port system. The rotational an-
gle of L-shaped particle is 0o and the frequency is 0.5838c/a. (b) reconstructed
curl-free potential and divergence-free potential from HHD in two-port system.
The two-port system is constructed by replaceing the one-way single-mode
waveguide by a regular two-way single-mode waveguide. To do the compari-
son with one-port system, the L-shaped particle has the same rotational angle
and the system is operated at the same frequency as well. Compared with one-
port case, the curl-free potential has worse confinement, and the divergence-
free potential is obviously larger than that in one-port system. (c) Vorticity
ratio calculated through normalized Frobenius norm after HHD for one-port
system and two-port system. In one-port system, the vorticity ration decreases
linearly with the increasing resolution in log-log scale until reaches the error
limit (the error comes from the non-zero optical forces on L-shaped particle
even when it touches the resonator walls). In two-port system, on the other
hand, the vorticity ration hardly drops with increasing resolution.
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application, the optical tweezer cannot precisely control the orientation of the

nano-particle because of non-conservative scattering force is inevitable in such

a system. Therefore, a method of stably orientating a nano-particle is highly

desirable in a broad range of applications in biomedical engineering, such as

molecularly targeted therapy and direction growth of nerve. Topological one-

way waveguide also has other applications. For example, the location of the

periodic optical force potential bottom in single-mode one-way waveguide is

a function of the permittivity of the photonic crystal rods, which provides a

promising way to realize the optical pulling force. However, the material loss

which is ubiquitous in magneto-optical photonic crytal will break the optical

force conservativeness. A simple remedial way of compensating the material

loss and thus recovering the optical force conservativeness will be presented in

the next chapter.
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Chapter 5

Compensating material loss in topological

one-way waveguide

5.1 Introduction

In Chapter 4, we have demonstrated a unidirectional waveguide-resonantor

system to simultaneously trap and orientate an asymmetric L-particle. Besides

constructing conservative optical force field, topological one-way waveguides

are also widely used in optical pulling force, optical sensing, and quantum

computing/simulations. However, various loss including dispersion loss, scat-

tering loss, and absorption loss will deteriorate the performance of the one-way

waveguide system. For example, in temporal coupled-mode theory, the loss

is generally treated as an additional port and therefore breaks the single-port

requirement for constructing conservative optical force field. Not only does the

loss attenuates the optical intensity as light is propagating along the waveg-

uide, which may decrease the optical force strength, but also the loss can

introduce rotational component of optical force and thus results in unstable

optical trapping. Furthermore, the material loss may harm the immunity of

the one-way waveguide to back scattering of guided waves. To make the per-

formance of one-way waveguide system in various applications robust to loss,

an applicable method of compensating the loss in such a system is highly
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desirable which will be addressed in this chapter.

5.2 Compensating the material lossy using active medium

The simplest way to compensate the material loss of the topological

photonic crystal is to add shells made of gain medium surrounding the original

magneto-optical photonic crystal rods. The structure is shown in Fig. 5.1

which is exactly the same as that in Fig. 4.1, except now the inner magneto

photonic crystal rods (light blue) are assumed to be lossy with permittivity

of 14.63 − 0.5i and active shells (dark orange) with thickness of 0.0196a and

permittivity of 1 + ε′′shell are coated outside the rods, where a is the lattice

constant and ε′′shell is the imaginary of the permittivity of the active shells.

The permeability matrix of the lossy magneto-optical photonic crystal is still

↔
µ =

 14 12.4i 0
−12.4i 14 0

0 0 i

µo (5.1)

to ensure the unidirectional light propagation to right. Without the active

shells, one can immediately find the decay of eletromagnetic field along the

propagation direction in the one-way waveguide as shown in Fig. 5.2. Note

that the power can only be absorbed when the light is transmitting at the

surfaces of the lossy magneto-optical rods. Therefore, the more the optical

power is trapped by the square optical resonator, the less the optical power is

absorbed by the lossy magneto-optical rods. The amount of trapped optical

power in the resonator depends on the displacements and orientation of the

L-particle because the resonant frequency depends on the movements of the
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Figure 5.1: Lossy topological photonic crystal (blue rods) with shells made of
gain medium (orange shells). The lattice constant a is 0.04, the radii of lossy
blue rods are 0.0978a, and the thickness of the orange shells is 0.0196a. The
complex permittivity of the topological photonic crystal is set to be 14.63−0.5i,
and the complex permittivity of the active shells is 1+ε′′shell where the suitable
value of ε′′shell will be studied. The L-particle in the optical resonator is shown
as well, which is kept identical to the that in Fig. 4.1.
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Figure 5.2: Decay of the optical power along propagation direction when the
magneto-optical photonic crystal is lossy. The structure is exactly the same
as the structure in Fig. 4.1 except the permittivity now is 14.63− 0.5i. Since
the resonant frequency of the square optical resonator depends on the location
and orientation of the L-particle, the amount of optical power trapped by the
optical resonator is varied by the L-particle. This will result in a fluctuation
in the output power on the right and thus break the optical force conserva-
tiveness as the gradient of the output optical power is not zero, according to
the conclusion of force conservativenss based on RTOF in Ch.3.

L-particle. As the result, the output power emitted to the right is not constant

any more, but changing with the movement of the L-particle. Since the spatial

gradient of a varying output power with respect to L-particle displacements

becomes non-zero, the conservativeness of the optical force is broken.

To compensate the loss of the optical power while it is propagating along

the waveguide, I add the active shells made of gain medium surrounding the

lossy magneto-optical rods. To check the effectiveness of the active shells, one

can examine whether the optical power, at the operating frequency, becomes

constant again across the whole waveguide by carefully tuning the permittivity
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of the active shells. However, this approach requires the complete structure to

simulate and the examination of constant optical power at each distance along

the waveguide for every frequency is hard to perform manually. Therefore, this

method is very time-consuming and computationally expensive. Alternatively,

I developed the weak-form formulation to find the complex wave vector, whose

imaginary part corresponds to the exponential decay of the optical power, for

frequencies within the band gap using only one single period (one unit cell

length along horizontal direction) of the magneto-optical photonic crystal.

5.2.1 Weak-form formula for topological waveguide

Developing the weak-form formula for topological waveguide used in

partial differential equation (PDE) model serves as the basis of numerical

modeling, from which the complex wave vector can be derived for certain

operating frequency. The imaginary part of the complex wave vector describes

the exponential power loss of the one-way waveguide, which is going to be

eliminated by choosing proper active shell properties.

To confirm the correctness of the work-form expression of the wave

equation in lossy topological waveguide with the active shells surrounding the

magneto-optical rods, the simulation results of the weak-form simulation are

corroborated by those using internal COMSOL eigensolver as shown in Fig.5.3.

The detailed derivation of weak-form formula is done based on [17], and further

consideration of anisotropity of permeability and permittivity in topological

photonic crystal is included as shown in Appendix D. Here I used the weak-
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form formula for H-field as the permeability is not isotropic (RHS is to be put

in COMSOL)

v ·
{
−k

ε
× (k× u)− ik×

(
1
ε
∇× u

)
− i∇×

(
1
ε
k× u

)
+∇×

[
1
ε

(∇× u)
]
− µω2

c2
u

}
= − (k× v) · 1

ε
(k× u)− i (k× v) ·

(
1
ε
∇× u

)
−

i (∇× v) ·
(

1
ε
k× u

)
+ (∇× v) ·

(
1
ε
∇× u

)
− ω2

c2
v · ↔µu

(5.2)

where v is the test function, k is the wave vector (the eigenvalue to be solved),

ω is the angular frequency in the input, ε is the complex permittivity,
↔
µ is

the anisotropic permeability, and u is the electric field, which serves as the

dependent variable in the weak-form simulation.

5.2.2 Complex dispersion relation of lossy one-way waveguide with
loss compensation

The effectiveness of compensating the material loss of topological waveg-

uide can be examined by the imaginary part the complex wave vector derived

from the weak-form simulations for every operating frequency. To reduce the

amount of simulations, the frequency range of one-way waveguide mode is

first determined by the eigensolver simulating the lossless topological photonic

waveguide shown as the red dashed curve in Fig.5.4(a),(b), and (c), (the light

grey bands are either bulk bands or left-propagating modes at the bottom,

and we do not consider here). Then for each frequency on the red dashed

curve, the complex wave vector, whose real part is shown in blue in Fig.5.4

and imaginary part is shown in green in Fig.5.4, can be calculated from the

weak-form simulations.

Tuning the permittivity of active shell while keeping its thickness con-
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Figure 5.3: Correctness of weak-form simulation of lossy topological waveguide
with active shell verified by COMSOL native eigensolver. (a) the z-component
(out-of-plane component) of electric field, Ez, calculated by eigensolver at the
floquet k = 25rad/m, and the eigenfrequency is calculated as f = 4.5775 −
0.021662iGHz. (b) Ez profile calculated from weak-form simulation for f =
4.5775−0.021662iGHz, and the result of floquet wave vector is 25rad/m. The
identical field profile also verifies the correctness of the weak-form simulation.
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stant can compensate the absorbed optical power of the lossy magneto-optical

waveguide. In Fig.5.4(a), the imaginary part of the complex wave vector is

negative when the active shells are not turned on, i.e. active shell has no pos-

itive imaginary part. At this time, the optical power will decay at the ratio

of e−2k′′x along the waveguide (x-direction). The imaginary part of kx can be

reduced by increasing the imaginary part of the shell permittivity to 2.2105 as

shown in Fig.5.4(b) where k′′x is near to the zero for a wide frequency range.

However, further increasing the imaginary part of the shell permittivity will

make the imaginary part of kx to be positive which indicates the extra power

is gained at the output port. Like the power loss, the power gain is also a

function of the movement and orientation of the L-particle in the optical res-

onator, and thus breaks the optical force conservativeness. Therefore, we have

to carefully tune the shell permittivity to compensate the material loss so that

the conservativeness of the optical force can be recovered.

5.3 Recovering force conservativenss using active media

The strategy to recover the optical force conservativeness using active

shells includes two steps. First, we want to examine whether the optical power

becomes constant again along the optical waveguide. Second, we want to know

the most proper value of imaginary part of shell permittivity for a given oper-

ating frequency. To corroborate the recovery of the force conservativeness, the

vorticity ratio of the optical force at the same operating frequency is compared

for different values of imaginary part of the shell permittivity.
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Figure 5.4: Dependence of the real part of complex wave vector k′x and the
imaginary part of complex wave vector k′′x on the permittivity of the active
shell. The light grey bands are either bulk bands or left-propagating modes at
the bottom of the structure calculated from the COMSOL eigensolver. The
red dashed bands are the one-way waveguide modes calculated for the lossless
topological photonic crystal waveguide. (a) complex wave vector computed
by weak-form simulation within the frequency range of one-way waveguide
mode when shell permittivity has no gain, i.e. εshell = 1. k′x is the real part
of the wave vector shown in blue and k′′x is the imaginary part of the wave
vector shown in green. (b) the complex wave vector computed from weak-
form simulation for εshell = 1 + 2.2105i. In this case, the imaginary part of kx
is reduced to zero for a wide range of frequency. (c) the complex wave vector
computed from weak-form simulation for εshell = 1+3i at which the imaginary
part of kx becomes positive. The conservativeness of the optical force is broken
as well in this case because the power gained at the output port also depends
on the movement and orientation of L-particle in the optical resonator.
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5.3.1 Choosing active medium for the operating frequency

Since the imaginary part of wave vector k′′x is frequency dependent as

shown in Fig.5.4, each operating frequency has the best suitable active shell

permittivity to reduce k′′x to 0. This freq − ε′′shell relationship can be found

whenever k′′x = 0.

To find the freq − ε′′shell relationship when k′′x = 0, the first step is to

find the dispersion relation with respect to k′′x (Fig. 5.4 presents 3 examples)

by sweeping the imaginary part of shell permittivity ε′′shell from 0 to 3, shown

in Fig. 5.5(a). The cross-section between the curved surface as the dispersion

relation and the cutting plane when k′′x = 0 is the freq− ε′′shell relationship we

want to find as shown in Fig. 5.5(b). Even though at the frequency of 0.6(c/a)

the square optical resonator can trap more optical power, the optical force

potential bottom is flat, which is not suitable for trapping the L-particle for

a high resolution. Therefore, the operating frequency of 0.583(c/a) is chosen,

and the most suitable value of ε′′shell which reduces k′′x to zero can be read as

2.25.

Whether the optical power along the waveguide becomes constant again

can be checked by running the whole-structure simulation in a linear solver.

The norm of E-field along the waveguide for the permittivities of active shell

equal to 1 + 1.2i and 1 + 2.25i at the frequency of 0.583(c/a) is shown in

Fig. 5.6(a) and Fig. 5.6(b), respectively. Unlike the smaller imaginary part

of shell permittivity in which case the optical power still decays along the

waveguide, the value of shell permittivity equal to 1 + 2.25i makes the opti-
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Figure 5.5: freq−ε′′shell relationship when k′′x = 0. (a) the curved surface is the
dispersion relation of frequency with respect to the imaginary part of floquet
wave vector k′′x within the range of ε′′shell from 0 to 3. The cutting plane at
k′′x = 0 is shown in semi-transparent light gray. (b) the cross section between
the plane and curved surface in (a), which is the freq − ε′′shell relationship we
want to derive. At the frequency of 0.583(c/a) when the bottom of the optical
potential in the square resonator is a tip rather than flat corresponds to the
most proper imaginary part of shell permittivity equal to 2.25.
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Figure 5.6: Norm of E-field along the waveguide. (a) the permittivity of the
active shells is 1 + 1.2i and the operating frequency is 0.583(c/a). The optical
power decays along the waveguide because of small imaginary part of the
shell permittivity. (b) the permittivity of the active shells is 1 + 2.25i and
the operating frequency is still 0.583(c/a). The optical power keeps constant
along the optical waveguide.

cal power becomes constant again along the waveguide. I will then use this

value to construct the whole structure in linear solver to examine whether the

conservativeness of the optical force is recovered.

5.3.2 Reduction of vorticity ratio with appropriate active medium

The recovery of optical force conservativeness can be quantitatively

described by vorticity ratio which is defined as the ratio of Frobenius norm of
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rotational force and Frobenius norm of total force as

E = ‖u⊥‖F/‖u‖F (5.3)

where the Frobenius norm of a 2D discrete vector field is defined as

‖u‖F =

√√√√ m∑
i=1

n∑
j=1

(
u2
x,ij + u2

y,ij

)
(5.4)

The irrotational and rotation components of the total force can be decom-

posed by using Helmholtz-Hodge decomposition as explained in Ch. 3. The

total optical force exerted on the L-particle is calculated by using Maxwell

stress tensor integration for every displacement of L-particle from 0 to 1.16a

along both x-direction and y-direction, at the frequency of 0.583(c/a) when

the permittivity of the active shells is 1 + 1.2i and 1 + 2.25i, respectively.

The results of Helmholtz-Hodge decomposition are shown in Fig. 5.7.

By comparing Fig. 5.7(a) with Fig. 5.7 (c), the depth of the irrotational

potential when ε′′shell = 1.2 is only about half of that when ε′′shell = 2.25. Since

the rotational potential when ε′′shell = 1.2 is just a little deeper than that when

ε′′shell = 2.25 as shown in Fig. 5.7(b) and Fig. 5.7(d), the vorticity ratio when

ε′′shell = 2.25 is expected to be about half of that when ε′′shell = 1.2. This

conclusion is further corroborated by the values of vorticity ratio for different

ε′′shell as shown in Fig. 5.8. When ε′′shell is smaller than 1.7, most optical power is

absorbed before it reaches the optical resonator, and therefore the modulation

effect of L-particle movements on the output power is weak. As a result, the

vorticity ratio reduces slowly with increasing ε′′shell. After ε′′shell = 1.7, the
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Figure 5.7: Irrotational potential and rotation potential derived by using
Helmholtz-Hodge decomposition. (a) and (b) are irrotational potential Φ and
rotational potential Ψ for the case when the active shell permittivity is 1+1.2i
at the frequency of 0.583(c/a). (c) and (d) are irrotational potential Φ and ro-
tational potential Ψ for the case when the active shell permittivity is 1 + 2.25i
at the frequency of 0.583(c/a). The irrotational potential when ε′′shell = 2.25 is
one time deeper than that when ε′′shell = 1.2 by comparing (c) with (a), while
the rotational potential when ε′′shell = 2.25 is a bit shallower than that when
ε′′shell = 1.2. Therefore, the vorticity ratio when ε′′shell = 2.25 is expected to be
about half of that when ε′′shell = 1.2.
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Figure 5.8: Vorticity ratio for different values of ε′′shell. When ε′′shell < 1.7, most
optical power is absorbed before reaching the square optical resonator and
therefore the vorticity ratio changes slowly with ε′′shell. The vorticity ratio is
minimized when ε′′shell is around 2.25, and then increases as the gained power
at the output port breaks the force conservativeness again.
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vorticity ratio rapidly drops down and reaches its minimum around ε′′shell at

2.25. As ε′′shell continues increasing, the gained power which changes with L-

particle’s movements will break the force conservativenss again and increase

the vorticity ratio.

5.4 Conclusion remarks

In this chapter, I provided a straightforward way to compensate the

material loss of topological one-way waveguide by coating the lossy ferrite

rods with shells made of gain medium. The purpose is to maintain the con-

servativeness of the optical force in real world when material loss presents. As

seen in Fig. 5.8, the conservativeness of the optical force can be recovered by

the active shell coating and provides a promising future of optical trapping

using one-way waveguide. The other interesting fact I found but now showed

here is that, the material loss (εrods has imaginary part) does not break the

time-reversal symmetry but only attenuates the optical power of propagating

wave.
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Chapter 6

Self-aligned topological photonic crystals

6.1 Introduction

Self-aligned or self-assembled structures with tunable compositions and

structures have attracted wide attention of researchers in the past several

decades because the well-defined superstructures present special physical, chem-

ical, and mechanical characteristics. For example, the photonic crystals with

perfect aligned structure exhibit photonic band gap preventing the light prop-

agating through the bulk, which is essential in realizing topological one-way

edge mode. Since 1950s, various self-assembly methods have been proposed

for monodisperse polymer microspheres based on a broad range of phenomena

including electrostatic interaction[45, 91, 93], charge compensation effect[33],

bonding interaction[36], hydrophilic/hydrophobic effect[39], and capillary force.

However, all the proposed methods are based on self-assembly where the par-

ticles are either touch with each other (or near to each other enough) or sur-

rounded with fluid, which limits the tunable range of the superstructure. In

this chapter I show the rods of topological photonic crystal can be self-aligned

using conservative optical force generated by external input optical power.

Since the optical force is not generated from the interaction between the neigh-

boring rods of the topological photonic crystal, this method provides much
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large freedom on the lattice constant of the photonic crystal and therefore is

suitable for wider range of applications.

6.2 Mode profiles in topological photonic crystal with
honeycomb lattice

Unlike the magneto photonic crystal presented in Chapter 4 with square

lattice where the most optical intensity is outside the rods, in this chapter I

use the honeycomb lattice in order to search for modes which trap majority

of optical power inside the rods for both chiral edge modes and bulk mode,

based on the principle that the rods are trapped to the highest optical intensity

region. To construct single-port system where conservative optical force field

can be created, we still need to break the time-reversal symmetry to realize

one-way waveguide. To this end, gyromagnetic anisotropy is employed because

the ferrite rods for the TM polarization is commercially available [3]. Under

the DC magnetic field of 1884G along the axis of rods (z-axis in Fig. 6.1), the

ferrite has the magnetic permeability tensor as

µ =

 0.78484 −0.74363i 0
0.74363i 0.78484 0

0 0 1

µo (6.1)

The topological photonic crystal structure under study shown in Fig.6.1

has a lattice constant of a (a = 0.01m in the FEM simulation), and the radius

of photonic crystal rod is set to be 0.23a. Even though the chiral edge mode

propagates within the boundary ferrite rods, the metal wall is still necessary to

tune the highest optical power position along y-direction as well as to construct
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the “perfect” bulk mode to finalize the alignment of all the ferrite rods.

6.2.1 K-group rods and K’-group rods in row-by-row fabrication
procedures

Similar to most self-assembly methods, it is convenient to align the

magneto-optical photonic crystal by adding a new row of rods to the existing

bulk photonic crystal which is already perfectly aligned. The reflection-free

single-mode chiral edge mode ensures the conservativeness of optical force,

which is promising to automatically align the newly added row of rods. In hon-

eycomb lattice, the rods can be categorized into two groups, K-group (white

rods in Fig.6.1) and K’-group (gray rods in Fig. 6.1). Therefore, the opti-

cal force exerted on these two groups of rods through chiral edge states are

investigated separately.

6.2.2 Edge-mode profiles of boundary rods of K-group and K’-
group

The first step of this study is to derive the band diagrams for two cate-

gories of structures with boundary rods of K-group and K’-group by sweeping

the floquet wave vector along x-direction in an eigensolver using the finite-

element method. From the band diagrams, we can immediately determine the

operating frequency range and floquet kx range as shown in the left panels

of Fig. 6.2 and Fig. 6.3. The band gap of magneto-optical photonic crystal

opens the operating frequency range within which we can excite the chiral

edge modes as shown in the right panels of Fig. 6.2 and Fig. 6.3. The corre-
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Figure 6.1: Categorization of ferrite rods in honeycomb lattice. The catego-
rization is determined by the nearest row of rods to the further metal wall along
+y-direction. (a) ferrite rods of group K (shown as white rods) are adjacent to
the metal wall further along +y-direction; (b) ferrite rods of group K’ (shown
as gray rods) are adjacent to the metal wall further along +y-direction. The
definition of lattice constant a is also labeled in the corresponding top-view
illustrations in the bottom of corresponding devices.
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sponding operating frequency and floquet kx are labeled by red dashed lines

on the left half of the same figures. Since the group velocity of chiral edge

mode is proportional to the slop of band diagram, we are only looking at the

top right-propagating modes whose bands are non-decreasing with respect to

floquet wave vector. By examing the highest optical intensity region of these

mode profiles, we can make initial inference whether the rods can be aligned by

the optical force. As we can see from the mode profiles, the highest optical in-

tensity regions are superpositioned with the target locations of the top-row (or

boundary) ferrite rods in a perfectly aligned photonic crystal along x-direction,

and thus the chiral edge states are promising to align the boundary ferrite rods

along x-direction.

6.2.3 Self-assembled bulk-mode profile

As we shall discuss later, though the chiral edge states are capable of

aligning the boundary ferrite rods along x-direction by nature, the alignment

along y-direction is hard to realized by merely using the chiral edge states.

Therefore, we need to find the “perfect” bulk mode which has all the high-

est optical intensity regions coincident with the well-defined photonic crystal.

Fortunately, this ”perfect” bulk mode does exist in the higher order mode as

shown in Fig. 6.4. One thing worthy to be mentioned is that this kind of bulk

mode only appears around floquet kx = 2nπ/a, n = 1, 2, 3....
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Figure 6.2: Band diagram and mode profile of chiral edge state when K-group
rods are the nearest to the top metal wall. Left: band diagram when the
x-displacements of boundary rods and y-displacements of boundary rods are
both 0. The normalized electric field intensity distribution corresponding to
frequency of 0.2807(c/a) and floquet wave vector of 0.4774(2π/a) is plotted
on the right half of the figure. The dispersion relation of one-way chiral edge
mode depends on the displacements of the boundary rods.
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Figure 6.3: Band diagram and mode profile of chiral edge state when K’-
group rods are the nearest to the top metal wall. Left: band diagram when
the x-displacements of boundary rods and y-displacements of boundary rods
are both 0. The normalized electric field intensity distribution corresponding
to frequency of 0.2397(c/a) and floquet wave vector of 0.5226(2π/a) is plotted
on the right half of the figure. The dispersion relation of one-way chiral edge
mode also depends on the displacements of the boundary rods.
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Figure 6.4: Band diagram and mode profile of “perfect” bulk mode. Left: band
digram when the x-displacements of boundary rods and y-displacements of
boundary rods are both 0. The normalized electric field intensity distribution
corresponding to frequency of 0.4084(c/a) and floquet wave vector of 1(2π/a) is
plotted on the right half of the figure. The dispersion relation of this “perfect”
bulk mode also depends on the displacements of the boundary rods.
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6.3 RTOF based on phase response as a function of flo-
quet wave vector

Even though normalized electric field profiles are important as indica-

tors of locations of optical potential bottom, i.e. where the ferrite rods will be

trapped, the actual optical force field is highly desired to reveal the real-world

picture. However, the calculation of the optical force via Maxwell stress tensor

by using the formula in Appendix A is computationally expensive and hard

to reveal the optical potential shapes. The alternative way of calculating the

optical force is to use the response theory of optical force (RTOF) which is

previously shown in Eq. 3.1. Since in RTOF we need to extract the phase

response at the output port, which can be found as the product between flo-

quet wave vector and lattice constant, kx · a, in eigensolver simulating one

single unit cell. Therefore, we want to, for each operating frequency, relate

the optical force potential to the floquet wave vector defined in eigensolver via

numerical interpolation.

6.3.1 Spatial phase response derived from floquet wave vector

Since the band diagrams shown in Fig. 6.2 - Fig. 6.4 depend on the

displacements of boundary ferrite rods in magneto-optical photonic crystal,

the chiral edge bands and “perfect” bulk bands for the boundary magneto-

optical photonic crystal rods of Group K and Group K’ are calculated with

respect to every movement of the boundary rods. The dependence of the

dispersion relation on the displacements of boundary rods is demonstrated by
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4 combinations of (x,y)-displacements in each case as shown in Fig. 6.5 - Fig.

6.8. In Fig. 6.5, the chiral edge modes (also called waveguide bands) for 4

combinations of (x,y)-displacements, i.e. (0, 0.03a), (0.06a, 0.03a), (0, 0), and

(0.06a, 0), are plotted on the range of floquet kx from 0.8(π/a)−0.95(π/a). The

dispersion relation is affected by the y-displacement more significantly than x-

displacement, and therefore the optical force potential is expected to be more

sensitive to y-displacement, which shall be discussed in more detail later. The

individual floquet wave vector at certain operating frequency corresponding to

different displacements can be then derived by the intersections between the

dispersion relation curves and the isofrequency line at the operating frequency

(the green dash horizontal line in Fig. 6.5). If we do exactly the same thing for

every displacement for one operating frequency, we can derive the floquet wave

vector map as a function of (x,y)-displacements, which is actually the phase

map divided by the lattice constant a, which shall be shown later. Similarly,

we can numerically calculated the dispersion relation of chiral edge state for

the boundary magneto-optical rods belonging to the K’-group for different sets

of (x,y)-displacements as shown in Fig. 6.6. As you can see from Fig. 6.6, the

dispersion relation is almost not sensitive to the x-displacement, which results

in smaller optical force Fx during the alignment process.

The “perfect” bulk modes for the boundary magneto-optical rods of

Group K and Group K’ of 4 different sets of (x,y)-displacements are calculated

on a narrower range of floquet wave vector from −0.015(π/a) to 0.015(π/a) be-

cause the desired bulk modes only appear near the zero wave vector, as shown
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Figure 6.5: Dependence of dispersion relation of chiral edge state when the
boundary magneto-optical rods belonging to K-group. At the operating fre-
quency of 0.27(c/a), the floquet wave vector corresponding to different dis-
placements can be found from the intersections between the dispersion relation
curves and the isofrequency line shown as green dashed line. The dispersion
relation is more sensitive to y-displacement, which results in larger vertical
optical force along y-axis according to RTOF.
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Figure 6.6: Dependence of dispersion relation of chiral edge state when the
boundary magneto-optical rods belonging to K’-group. At the operating fre-
quency of 0.27(c/a), the floquet wave vector corresponding to different dis-
placements can be found from the intersections between the dispersion relation
curves and the isofrequency line shown as green dashed line. In this case, the
dispersion relation is not quite sensitive to x-displacement, which results in
horizontal optical force along x-axis very small
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in Fig. 6.7 and Fig. 6.8. However, near kx = 0 the well-defined structure (the

blue band in Fig. 6.7, xdisp = 0, ydisp = 0) has symmetric bulk mode which

allows both right-propagating and left-propagating waves, and therefore there

can be two floquet wave vectors corresponding to the intersections between

the blue curve in Fig. 6.7 and the operating frequency along the horizontal di-

rection. These two bulk modes result in one stable equilibrium point trapping

the ferrit rods and the other unstable equilibrium point expelling the ferrite

rods which will be shown later. Once the displacements are non-zero, the

breaking of perfect superlattice will generate an one-way waveguide dispersion

relation which is not symmetric with respect to kx = 0 like the dispersion

relation shown in red, for example, in Fig. 6.7. In this situation, the optical

force potential only has a local minimum point which creates a stable equilib-

rium able to trap the ferrite rods. Moreover, due to the limit range of floquet

wave vector, it is possible there is no intersection between certain bands with

the horizontal operating frequency line in green. For example, the blue band

in Fig. 6.7 has no intersection with the green dashed line, and thus at such

operating frequency we cannot find the corresponding kx within the available

simulation data, which results in vacancies in Fig. 6.9.

Now that we already know the dispersion relations of both chiral edge

states and “perfect” bulk modes for either K-group boundary rods and K’-

group boundary rods depend on the displacements of the boundary rods, we

can, for one chosen operating frequency, derive the phase kxa for every possible

(x,y)-displacement. Four examples of phase maps are given in Fig. 6.9, where
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Figure 6.7: Dependence of dispersion relation of “perfect” bulk mode when
the boundary ferrite rods belong to K-group. The floquet wave vector corre-
sponding to different combinations of (x,y)-displacements can be found from
the intersections between the dispersion curves and the isofrequency line in
green. Since the dispersion relations of displacements (0.08a, 0.03a) and (0, 0)
do not have intersections with the dashed green line, the floquet wave vectors
at this operating frequency are not available at this two displacements based
on the existing simulation data.
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Figure 6.8: Dependence of dispersion relation of “perfect” bulk mode when
the boundary ferrite rods belong to K’-group. The floquet wave vector corre-
sponding to different combinations of (x,y)-displacements can be found from
the intersections between the dispersion relation curve and the green horizon-
tal isofrequency line. In this case, since the dispersion relation weakly depends
on y-displacement, the optical force long y-direction is expected to be much
smaller than the optical force along x-direction.
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Figure 6.9: Four examples of phase maps at one single operating frequency.
(a) phase map at the frequency of 0.2532(c/a) when the chiral edge state is
excited for the boundary magneto-optical rods of Group K. (b) phase map at
the frequency of 0.2869(c/a) for the boundary magneto-optical rods of Group
K’ when the chiral edge state is excited. (c) phase map at the operating
frequency of 0.408(c/a) for the boundary magneto-optical rods of Group K
when the “perfect” bulk mode is excited. (d) phase map at the operating
frequency of 0.408(c/a) for the boundary magneto-optical rods of Group K’
when the “perfect” bulk mode is excited.
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Fig. 6.9(a) shows the phase map for the movements of boundary magneto-

optical rods of Group K at the frequency of 0.2632(c/a) at which the chiral

edge state can be excited and Fig. 6.9(b) presents the phase map for the

movements of boundary magneto-optical rods of Group K’ at the frequency

of 0.2869(c/a) when the chiral edge states are triggered as well. According to

RTOF, i.e. F = −1/ω∇(kxa) = −∇U , the phase map is proportional to the

optical force potential. The optical force generated by the chiral edge states in

Fig. 6.9(a)(b) tends to push the boundary magneto-optical rods upwards along

y-axis until they hit the metal wall for both K-group and K’-group structures.

The following step is that we need the bulk modes to create conservative

optical force fields which have minimum potential bottom around the target

position of ferrite rods in a perfect structure. Fortunately, the phase maps

at the frequency of 0.408(c/a) where the “perfect” bulk mode can be excited

present phase minima for both boundary rods of Group K and Group K’.

6.3.2 Optical force exerted by edge topological modes

By using RTOF, the optical force can be calculated as the product be-

tween the inverse of the operating frequency and the gradient of the phase

maps shown in Fig. 6.9. In this section, I show the agreement between RTOF

and the surface integration of Maxwell stress tensor (expressions of MST are

given in Appendix A) as shown in Fig. 6.10 and Fig. 6.11. Since the op-

tical force potentials created by the chiral edge states are not sensitive to

x-displacements as shown in Fig. 6.9 (a),(b), looking at the optical force in
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further details helps to determine whether the equilibrium when optical force

is zero is stable or unstable.

The x-components and y-components of the optical force generated by

chiral edge states (or known as waveguide modes) behave quite differently, as

whether Fx is stable or not not only depends on the frequency but also depends

on y-displacements, while Fy always pushes the boundary rods towards the

metal wall. For example, Fx generated by chiral edge states on boundary rods

of Group K at the operating frequency of 0.2632(c/a) can trap the rods to

the perfect location when y-displacements are 0.02a and −0.01a and expel the

rods when y-displacement is −0.05a as shown in Fig. 6.10(a). Similar force

behavior on the boundary rods of Group K’ can be seen n in Fig. 6.10(c).

We can deduce that, when y-displacement is zero, the optical force is able to

trap the boundary magneto-optical rods to the perfect location along x-axis.

However, the optical force generated by chiral edge states along y-direction

cannot align the boundary magneto-optical rods of either Group K or Group

K’. This task will be accomplished by using the “perfect” bulk mode.

6.3.3 Optical force exerted by “perfect” bulk modes

Although the optical force generated by the chiral edge states can be

used to align the boundary magneto-optical rods along x-direction, this optical

force pushes the boundary rods towards the metal wall and thus the bulk modes

are needed to create the optical force field to trap the boundary rods along

y-direction. Fig. 6.11 (a), (b) show the Fx and Fy generated by the bulk
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Figure 6.10: Agreement of the optical force calculation by using RTOF (curves)
and Maxwell stress tensor integration (dots). (a) Fx on boundary magneto-
optical rods of K-group at the frequency of 0.2632(c/a) for 3 y-displacements
of −0.05a, −0.01a, and 0.02a. (b) Fy on boundary magneto-optical rods of
K-group at the operating frequency of 0.2632(c/a) for 3 x-displacements of 0,
0.04a, and 0.08a. (c) Fx on boundary magneto-optical rods of K’-group at the
operating frequency of 0.2869(c/a) for 3 y-displacements of −0.01a, 0.01a, and
0.03a. (d) Fy on boundary magneto-optical rods of K’-group at the operating
frequency of 0.2869(c/a) for 3 x-displacements of 0, 0.04a, and 0.08a.

120



Figure 6.11: Agreement between RTOF and Maxwell stress tensor integration
on optical force generated by bulk modes for boundary magneto-optical rods of
Group K and Group K’. (a) Fx on boundary magneto-optical rods of K-group
at the frequency of 0.4088(c/a) for y-displacements of −0.072a, 0.039a, and
0.043a. (b) Fy on boundary magneto-optical rods of K-group at the frequency
of 0.4084(c/a) for x-displacements of 0.072a, 0.076a, and 0.080a. (c) Fx on
boundary magneto-optical rods of K’-group at the frequency of 0.4082(c/a) for
the y-displacements of −0.06a, 0.04a, and 0.05a. (d) Fy on boundary magneto-
optical rods of K’-group at the frequency of 0.4080(c/a) for x-displacements
of 0.06a and −0.08a.
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modes can trap the boundary magneto-optical rods of K-group along both

x-direction and y-direction. Similarly, the boundary magneto-optical rods of

K’-group can be trapped by the optical force generated by the bulk modes

as well. By tuning the operating frequency, one can control the final position

where the boundary ferrite rods will be trapped to.

6.4 Force potential as a function of operating frequen-
cies for bulk modes

In Fig. 6.9, I gave the phase maps, which are proportional to the real

optical force potential, for 4 different cases, each with a single operating fre-

quency. Since the operating frequency plays a significant role in shaping the

optical force potential, it is highly desirable to present the shapes of different

optical force potential for arbitrary operating frequency. Therefore, the eigen-

frequencies are plotted with respect to combinations of wave vectors and (x or

y)-displacements, as shown in Fig. 6.12 and Fig. 6.13. The isofrequency con-

tours for different operating frequencies are highlighted on these figures as well,

and the interesting fact is that the frequency contour versus displacements is

proportional to the optical force potential according to RTOF.

The optical force tends to trap the boundary magneto-optical rods to

the target perfect position when the rods are offset from the origins. For in-

stance, in Fig. 6.12 (a) and (b), both Fx and Fy at appropriate operating

frequencies can trap the boundary rods to the location where the optical force

potentials achieve their minima. At a closer examination, we can find Fx will
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Figure 6.12: Eigenfrequencies versus floquet wave vectors and displace-
ments for boundary rods of Group K. (a). Eigenfrequencies versus (kx,
xdisp) when y-displacement=0.039a, the isofrequency contours of 0.4086(c/a),
0.4088(c/a), and 0.4089(c/a) are highlighted as red curves which is propor-
tional to the optical force potential. (b) Eigenfrequencies versus (kx ,ydisp)
when x-displacement=−0.076a, and the isofrequency contours of 0.4083(c/a),
0.4084(c/a), and 0.4085(c/a) are highlighted by yellow curves. (c) Eigen-
frequency versus (kx, xdisp) when y-displacement=0, and the isofrequency
contour of 0.4080(c/a) is highlighted by red curves. The top branch in-
dicates optical potential with minimum which will trap the boundary rods
to xdisp = 0, while the lower branch means optical force potential expels
the boundary rods away from the origins when the light propagates to −x-
direction. (d) Eigenfrequency versus (kx, ydisp) when x-displacement=0, and
the isofrequency=0.4080(c/a) is highlighted by the yellow curves. Similarly,
the top branch indicates stable equilibrium and the bottom branch means
unstable equilibrium.
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Figure 6.13: Eigenfrequencies versus floquet wave vectors and displacements
for boundary rods of Group K’. (a). Eigenfrequencies versus (kx, xdisp)
when y-displacement=0.039a, the isofrequency contours of 0.40825(c/a),
0.40832(c/a), and 0.40838(c/a) are highlighted as red curves which is propor-
tional to the optical force potential. (b) Eigenfrequencies versus (kx ,ydisp)
when x-displacement=−0.076a, and the isofrequency contours of 0.40815(c/a),
0.40818(c/a), and 0.40821(c/a) are highlighted by yellow curves. (c) Eigen-
frequency versus (kx, xdisp) when y-displacement=0, and the isofrequency
contour of 0.4080(c/a) is highlighted by red curves. The top branch in-
dicates optical potential with minimum which will trap the boundary rods
to xdisp = 0, while the lower branch means optical force potential expels
the boundary rods away from the origins when the light propagates to −x-
direction. (d) Eigenfrequency versus (kx, ydisp) when x-displacement=0, and
the isofrequency=0.4080(c/a) is highlighted by the yellow curves. Similary,
the top branch indicates stable equilibrium and the bottom branch means
unstable equilibrium.
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always drag the boundary rods to xdisp = 0, and since the optical force po-

tential along y-axis also depends on x-displacement the boundary rods will be

finally trapped to ydisp = 0 as we can see from the upper branch of isofre-

quency contour in Fig. 6.12(d). One more thing worthy to be mentioned in

Fig. 6.12(d) is that the lower isofrequency contour indicates that the boundary

rods will be expelled from the origins when the floquet wave vector is along

negative x-axis. However, once the boundary rods are pushed away from the

origins, one-way waveguide will be created and the lower isofrequency contour

will disappear, which means the boundary rods will be trapped back to the

origins again. Similar conclusion can be drawn for the boundary rods of Group

K’ as we can see from Fig. 6.13.

6.5 Conclusion remarks

Unlike the magneto-optical photonic crystal of square lattice in which

the optical power is outside the ferrite rods, the magneto-optical photonic

crystal of honeycomb lattice has the optical power propagating within the

ferrite rods, and therefore the honeycomb lattice is suitable to realize self-

aligned photonic crystal. In row-by-row fabrication technique, the newly added

row of rods with random positions forms a single-mode one-way waveguide, and

the optical force capable of trapping the new row of rods, which is generated by

the chiral edge states, is investigated in this chaper. In the finalized step, the

optical force generated by the bulk mode is also studied, which is proved that

when the optical modes are propagating along +x-direction the optical force
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will trap the ferrite rods to the perfect locations. In the future, time-domain

modulation on magneto-optical material is promising to bend down the left

half of the “perfect” bulk mode and thus to remove the unstable equilibrium.

In this case, the self-aligned topological photonic crystal will be completely

realized.
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Chapter 7

Acoustic trapping of phononic crystal slabs

7.1 Introduction

Even though Ch. 3 has shown the conservative optical force field can be

constructed to automatically align the photonic crystal slabs in layer-by-layer

fabrication technique, it is difficult to apply this optical alignment mechanism

to larger objects because of small magnitude of the optical force. Due to

the momentum conservation, the force exerted on certain object is given by

f = P/v in the simplest scenario where all the incident wave is reflected back

to the direction opposite to its incident direction, where P is the energy flux or

power and v is the wave speed. Since the light speed is usually on the order of

108m/s even in dielectric material, the optical force is generally very weak and

we have to design and fabricate ultra-high quality optical resonators so that

the lifetimes of photons trapped in the optical resonators are long enough for

photon-matter interaction and the oscillating mode in the resonator is signifi-

cantly enhanced to generate a large optical force. Now that the optical force is

hard to be implemented, we can use other forms of waves to realize the similar

automatic alignment and trapping systems because the sufficient condition for

conservative force derived previously has nothing to do with the type of force

and thus can be applied to any single-port system. Since the sound speed is
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6 orders lower than the light speed, thus the acoustic force is 6 orders larger

than the optical force given that the input power is identical. Besides large

force strength, the acoustic force is easy to be excited by piezoelectric mate-

rial, safe to live cells, and transparent to light-opaque materials. However, the

calculation of acoustic force based on the divergence of Reynold stress tensor

(analogy to Maxwell stress tensor in Electromagnetics) has been under debate

for almost 80 years. Until 2012, Bruus [9] introduced a correction form to

Reynold stress tensor and derived correct form of calculating acoustic force

for compressible objects of arbitrary shape (COMSOL expressions of Reynold

stress tensor are given in Appendix A). His formula is further corroborated

by the response theory of acoustic force (RTAF), and we can use the latter to

predict the shape of acoustic potential based on the phase response.

7.2 Response theory of acoustic force – RTAF

During the design of a trapping system, a method capable of predicting

the big picture of the force potential shape is very important. The response

theory of acoustic force states that the force potential is proportional to the

the phase response with respect to the displacements of the moving object.

Therefore, if the correctness of RTAF is corroborated by the first-principle

calculation of the acoustic force using Reynold stress tensor (RST), it will sig-

nificantly facilitate the design and modeling of a mechanically variable system

driven by the acoustic force. Furthermore, the response theory of acoustic

force greatly simplifies the calculation of the acoustic pressure compared with
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the traditional way using RST.

7.2.1 Reynold stress tensor: traditional way of calculating the acous-
tic radiation pressure

We start with the acoustic radiation pressure computed from Reynold

stress tensor on a compressible object in nonviscous fluid when the gravity

is neglected. If the shear mode is not considered, the time-averaged second-

order pressure can be derived from the second-order Navier-Stokes equation

(also known as momentum conservation) as [8, 9, 18, 68]

〈p2〉 =
1

2ρ0c2
0

〈
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1

〉
− 1

2
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〈
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1

〉
=

〈
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(
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∂tϕ

)
− ρ0

2
|∇ϕ|2

〉
(7.1)

where ρ0 is the density of the surrounding fluid, c0 is the sound speed in

fluid, p1 is the pressure of first-order perturbation with linear approxima-

tion (the product of two first-order perturbation is neglected), v1 is the ve-

locity of the first-order perturbation, and φ is the velocity potential. The

〈A(t)B(t)〉 = 1/2Re[A0B
∗
0 ] is the time-averaged integral over one period. The

acoustic radiation pressure in the simplest form is given by the negative sur-

face integral on a time-varying volume V (t), which can be transformed to the

surface integral on a fixed surface by adding a correction term, which is given

by

Frad = −
�

∂V (t)

〈p2〉 dS = −
�

∂Vfixed

dS [〈p2〉n + ρ0 〈(n · v1) v1〉] (7.2)

where ρ0 〈(n · v1) v1〉 is the correction term. The surface integral of Reynold

stress tensor on a fixed surface can be easily calculated in finite-element sim-
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ulations, and the detailed COMSOL expressions of RST both in 2D and 3D

are given in Appendix A.

7.2.2 Agreement between RTAF and Reynold stress tensor

Derived from energy conservation, the response theory of acoustic force

should give identical calculation results of traditional method using Reynold

stress tensor, but in a much simpler way. The response theory of acoustic force

only requires the output power and phase response at each output port as well

as the movement information of the target object to calculate the acoustic

force exerted on the moving part. Similar to RTOF, the RTAF is given by

Frtaf =
Power

ω
∇Φ (7.3)

where ω is the angular frequency of the acoustic wave, Φ is the phase response

at the output port, and the power of a plane sound wave can be calculated as

Area · Pressure2/ρ0c0.

Before we rely on the formula of Frtaf to perform further analysis on

force conservation, we need to make sure Frtaf = Frad as a cross check of

the valid force calculation. The correctness of RTAF has been verified by

two examples as shown in Fig. 7.1 and Fig. 7.2. In Fig. 7.1, the movable

nylon slab is put on top of a fixed substrate nylon slab and a layer of oil

membrane to eliminate the friction (zero-friction assumption in finite-element

simulations) is smeared on top surface of the substrate. The input pressure

wave is only incident from the side of the substrate as shown in the illustration
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Figure 7.1: Agreement between the Reynold stress tensor and the response
theory of acoustic force for 1D movement. The incident acoustic wave only
consists of pressure wave and exerts on the bottom Nylon substrate, and there-
fore a single-port system is created. Because of the interference between the
incident acoustic wave and the reflected acoustic wave, periodic acoustic in-
tensity pattern is formed along the Nylon substrate and part of the acoustic
power penetrates into the top movable Nylon slab. The top Nylon slab can
freely slide on the oil membrane (assume no friction), and thus is trapped to
highest acoustic intensity regions by acoustic gradient force.
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Figure 7.2: Agreement between the Reynold stress tensor and the response
theory of acoustic force for 2D movement. The incident pressure wave hits the
wall of the cylindrical cup made of Nylon and the elastic energy is transferred
to the water inside the cup and applies acoustic radiation pressure on the small
Nylon particle in the water. The radius of the Nylon cup is 500nm, the longer
side of the elliptical particle is 30.9nm, and the shorter side of the elliptical
particle is 19.1nm.
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of Fig. 7.1 and is able to create periodic force potential trapping the top

moving slab because of the standing elastic wave formed by the interference

between the incident wave and the reflected wave in the substrate. Even

though this example is easy to be modeled in a 2D simulation, the top nylon

slab can only move along the longer side of the substrate (1D movement)

to verify the correctness of RTAF in 1D. To further verify the correctness of

RTAF, another example where the nylon particle can move within a 2D plane

is presented in Fig. 7.2. In this case, a small elliptical nylon particle can

move in the water in a cylindrical cup made of nylon, and we can see both

Fx and Fy calculated through RTAF and RST agree with each other as shown

in the bottom half panel of Fig. 7.2. Even though both structures do not

possess high-Q resonance, the normalized acoustic force per Watt is generally

two orders higher the optical force generated by a high-Q optical resonance.

Therefore, a significant enhancement in magnitude of the acoustic force over

the optical force is expected in a well-designed acoustic system with high-Q

resonance.

7.3 Conservative acoustic force in single-port system

As concluded from Ch. 3, a conservative force field can be established in

a single-port system. Here, instead of using nonviscous fluidic pressure waveg-

uide (only pressure wave or P-wave is supported in this kind of waveguide)

which is hard to make in true experiments, I use a plane acoustic wave in free

space to create a single-port acoustic system as shown in Fig. 7.3. Two iden-
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Figure 7.3: Structure of single-port acoustic system in which conservative
acoustic force exerting on the top phononic crystal can be created. The width
and length of one unit cell is a and 1.6a, respectively, to separate two reso-
nances far away enough from each other to simplify the data processing steps.
The thickness of both slabs is kept as 0.2a, and the distance between two slabs
is 0.26a. The height and diameter of the pillars on both slabs are 0.2a. The
plane acoustic pressure wave is incident from the top and is then completely
reflected from the bottom sound hard wall. The phase difference between the
incident wave and the reflected wave Φr is measured for every displacement of
the upper phononic crystal slab.
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tical phononic crystal slabs are stacked to form an acoustic resonator whose

resonance and decay rates change with the displacements of the top phononic

crystal slab. According to the temporal coupled mode theory, the phase re-

sponse as a function of resonant frequencies and decay rates also depends on

the displacements of the upper phononic crystal slab, and therefore an acoustic

force potential which is proportional to the phase response can be constructed.

Simply by tuning the operating frequency, the shape of acoustic potential can

be modulated based on which one can choose the desired potential shape.

To implement the conclusion that trapping of the phononic crystal slab

can be realized in a single-port system, we now look into details of this concrete

example. The phononic crystal is made of rectangular lattice whose width is

a and length is 1.6a to separate two resonant frequencies far away enough in

frequency domain to ease the later data processing step. The thickness of the

slab is 0.2a, as well as the height and diameter of the rods. The phononic

crystal slab on the top can move freely in xy-plane. The plane acoustic wave

in free space is incident from the top and is completely reflected back because

the bottom surface of the substrate phononic crystal is sound hard boundary,

and therefore a single-port system is created. As the upper phononic crystal

is moving, although the reflected acoustic wave power keeps constant, the

acoustic force can be arise from the phase component and is conservative

because of zero gradient of reflected acoustic power according to RTAF. For

example, at the operating frequency of 0.1768(c/a), the phase response as the

upper phononic crystal slab is moving from −0.5b to 0.5b (b = 1.6a) along

135



Figure 7.4: Acoustic force barrier formed along y-axis at the operating fre-
quency of 0.1768(c/a). (a) the phase response as the upper phononic crys-
tal is moving from −0.5b to 0.5b along y-axis where b = 1.6a, as shown in
the embedded illustration. This phase response is proportional to the actual
acoustic force potential according to RTAF. (b) the acoustic force calculated
using RTAF (curve) from the phase response has a perfect agreement with the
first-principle calculation of the acoustic force using RST (dots). Note that
the normalized acoustic force is on the scale of mN per Watt, which is much
larger than the optical force, even though the stacked phononic crystal slabs
at this operating frequency is not on resonance.
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y-axis is shown in Fig. 7.4(a). Note that the system is not exactly on the

resonance because the difference between the minimum and the maximum of

the phase response is much smaller than 2π, but the acoustic force is already

on the scale of mN/W which is 3 orders larger than the optical force even

when the optical resonance is right on the resonance. As this finite-element

simulation is computed in a 3D model, I use the RST in 3D case in Appendix

A which verifies the correctness of RTAF formula shown in Fig. 7.4(b) in

which RTAF has a perfect agreement with Reynold stress tensor.

7.3.1 Phase response predicted by temporal coupled mode theory

As explained in Ch.3, the temporal coupled mode theory is able to

calculate the phase response for arbitrary operating frequency once the reso-

nant frequencies and decay rates are already known, which not only saves a

huge amount of simulation time but also helps us to determine the shape of

acoustic potential shape based on the resonant frequency maps and to predict

force strength by looking at the decay rate maps. In this single-port multiple

resonance system, the complex reflection coefficient is given by

S =
S−
S+

= eiφ0
(

1 +
2iγA (ω − ωB) + 2iγB (ω − ωA)

− (ω − ωA) (ω − ωB)− iγA (ω − ωB)− iγB (ω − ωA)

)
(7.4)

where ωA,B are resonant frequencies and γA,B are decay rates. The phase

response predicted by Eq. 7.4 has a perfect agreement with that calculated

from FEM simulations, as shown in Fig.7.5, for three different displacements

(0.5a, 0.5b) (green), (0, 0.5b) (orange), and (0.5a, 0) (blue). The first fact can
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Figure 7.5: Fitting the temporal coupled mode theory (curves) to the first-
principle FEM simulation (dots). The blue curve corresponds to displacements
of (0.5a, 0), the green curve corresponds to displacements of (0.5a, 0.5b), and
the orange curve corresponds to displacements of (0, 0.5b). In all three cases,
the phase response predicted by the temporal coupled mode theory have per-
fect agreement with those from FEM simulations. Different displacements of
the upper phononic crystal slab will cause the resonant frequencies to change.
Moreover, the dependence of the resonant frequency along y-direction is larger
than that along x-direction.

be immediately found is that the resonant frequency depends on the displace-

ment. At a closer look at the phase response, the resonant frequency is more

dependent on y-displacement than x-displacement, as half-cell y-displacement

will shift the resonant frequency more than 10δ but the half-cell x-displacement

can only shift the resonant frequency within 1δ. Moreover, decay rates also

depend on the displacements because the decay rate is obviously the smallest

when both x-displacement and y-displacement are zero where the 2π phase

transition is sharper than anywhere else.
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7.3.2 System characterization using temporal coupled mode theory

In the last section, I showed the fitting of the temporal coupled mode

theory to the phase response calculated from the first-principle FEM simula-

tions for only 3 sets of displacements. The same procedure can be repeated

for every displacement of the upper moving phononic crystal in xy-plane, and

thus we can derive the resonant frequencies and decay rates as functions for

every displacement in xy-plane as shown in Fig. 7.6. Unlike the stacked pho-

tonic crystal slabs, both the resonant frequency maps and decay rate maps

in stacked phononic crystal slabs are not quite sensitive to x-displacement as

those to y-displacements. Therefore, it is highly possible to create acoustic

potential barrier along y-axis and hard to create round or elliptical potential

wells as in electromagnetic counterpart. On the other hand, similar to pho-

tonic crystal slabs, the high qualify factor guarantees favorably large acoustic

force to trap the phononic crystal slab along y-direction.

7.3.3 Realization of 1D acoustic trapping along the longer side of
phononic crystal unit cell

1D acoustic trapping along the longer side of the phononic crystal unit

cell can be constructed by carefully choosing the operating frequency. How-

ever, 2D acoustic trapping is only possible within a very narrow bandwidth

of the operating frequency because the resonant frequency maps of stacked

phononic crystal slabs do not vary obviously with the displacements long the

shorter side of the phononic crystal unit cell, which is quite different from the
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Figure 7.6: Resonant frequency maps and decay rate maps with respect to the
displacements of the upper phononic crystal slab in xy-plane. (a) resonant fre-
quency map of the red resonance with respect to the displacements in xy-plane.
(b) decay rate maps of the red resonance with respect to the displacements in
xy-plane. (c) resonant frequency map of the blue resonance with respect to
the displacements in xy-plane. (d) decay rate maps of the blue resonance with
respect to the displacements in xy-plane. Both red resonant frequency and
blue resonant frequency are not sensitive to x-displacement compared with
their dependence on y-displacement. Similarly, decay rates are more depen-
dent on y-displacement than x-displacement. Since the shape of acoustic force
potential is determined by the resonant frequency map, it is much easier to cre-
ate 1D acoustic barrier along y-direction without fine tuning of the operating
frequency.
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stacked photonic crystal slabs.

To illustrate how the resonant frequency map facilitates the prediction

of acoustic force potential, one example of operating frequency of 0.1766(c/a)

is given in Fig. 7.7. The isofrequency plane at 0.1766(c/a) is shown in green

in Fig. 7.7(a), which intersects with the blue resonant frequency map already

presented in Fig. 7.6(c). Whenever the operating frequency hits the resonant

frequency, a phase transition of 2π is triggered at that displacement and there-

fore we can construct the phase map at the operating frequency with 2π phase

transition at the intersections in Fig. 7.7(a). Based on RTAF, the sharp and

huge phase variation will produce favorably large acoustic force. For example,

if we cut the phase map in Fig. 7.7 (b) at the plane of ∆x = 0.5a, the cross

section is black curve as shown in Fig. 7.7(c) based on whose gradient the

acoustic force can be calculated using RTAF and agrees with the traditional

force calculation via RST as shown in Fig. 7.7(d). As previously mentioned,

this acoustic force is 3 orders higher than the optical force in this similar struc-

ture (even optical resonator possesses a much higher Q-factor up to 6 × 108,

while acoustic resonator generally has Q-factor on the order of 104−5) because

of much lower sound speed compared with the light speed. This normalized

acoustic force on the order of N per Watt is more suitable for realistic appli-

cation in auto-alignment than the optical force which is on the order of mN

per Watt. Also, the plane acoustic wave in free space is easier to generate

than plane optical wave which requires collimated laser beam.
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Figure 7.7: 1D acoustic potential barrier as well as acoustic force calculated
based on resonant frequency map and decay rate map derived from the tem-
poral coupled mode theory. (a) intersection between the isofrequency plane
of 0.1766(c/a) and the resonant frequency map of the blue resonance. The
curves at the intersections determines the shape of acoustic force potential.
(b) The phase response predicted by the temporal coupled mode theory at the
operating frequency of 0.1766(c/a). The 2π phase transition happens at the
displacements where the operating frequency plane intersects with the reso-
nant frequency map. The intersection between the cut plane at ∆x = 0.5a
and the phase response map is shown as the black curve. (c) the intersection
between the cut plane at ∆x = 0.5a and the phase response map, i.e. the
black curve in (b). (d) the acoustic force calculated based on the phase re-
sponse in (c) using RTAF agrees with the acoustic force calculated using RST.
Since the single-port CMT is used to do RTAF calculation, the acoustic force
is conservative.
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7.4 Computation Concerns

Even though the structure has been carefully selected and designed

to avoid complicated and fine features, the 3D FEM simulation of stacked

phononic crystal slabs mentioned in last section is very computationally ex-

pensive. The whole simulations in 7.3.1 is finished on distributed computation

platform consisting of 4 servers (CPUs: 2 of Xeon E5-1650 and 2 of Xeon

E3-1245) connected with high-bandwidth optical internet network. Unlike

multicore platform where a shared memory is accessible by all CPUs, the dis-

tributed computation infrastructure adopts a message-passing mechanism to

realized parallelism. To minimize the information transmitted via network,

the task is parallelized according to displacements and operating frequencies,

so that only two variables and compuated phase/power/RST are transported

within the network. Compared with sequential computation program, the

total simulation time is reduced by 80%.

7.5 Conclusion Remarks

In this chapter, I presented the response theory of acoustic force which

calculates the force from the point of view of energy conservation. The per-

fect agreement between RTAF and RST with correction term given by Bruus

et al corroborates the correct form of calculating the acoustic radiation pres-

sure which was under long-time debate until 2012. More importantly, RTAF

provides concise insight to the force property in an acoustic system, which

facilitate the design and modeling of a mechanically driven system by the
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acoustic force.

Even though a concrete example realizing acoustic trapping is given in

this chapter, 2D acoustic trapping is hard to construct in this kind of stacked

phononic crystal slabs system because of insensitive change of the resonant

frequency with respect to the displacement along certain direction. However,

one can still use this structure to do automatic alignment in layer-by-layer

fabrication technique, in which we can have two sets of perpendicular stacked

phononic crystal attached to the corners of the wafers and each set of phononic

crystal is responsible for aligning the wave in their own prefer direction.
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Appendix A

General stress tensor expressions in COMSOL

A.1 General Maxwell Stress Tensor in COMSOL

General form of MST in Eq 2.9 is suitable to compute the total force

for any type of material such as anisotropic material or even magneto photonic

crystals. The default MST in COMSOL such as “dnTx”, “unTx”, “dnTy”,

“unTy”, “dnTz”, and “unTz” require one to artificially plot a bigger box en-

closing the target entirely and integrate the MST over the surface of the box

to calculate the total optical force coming from radiation pressure. The MST

expressions in this chapter is adapted to do the integral right on the surface

of the target without necessity of the outer box, even if the permittivity or

permeability at the interface jumps. Again, it is suitable for any kinds of mate-

rials and has been verified through comparison with default MST expressions

in COMSOL.

uTmx=0.5∗ r e a l (up(emw. Bx) ∗(up( conj (emw.Hx) )∗emw. unx+up(
conj (emw.Hy) )∗emw. uny+up( conj (emw. Hz) )∗emw. unz )−0.5∗
emw. unx∗(up(emw. Bx)∗up( conj (emw.Hx) )+up(emw. By)∗up(
conj (emw.Hy) )+up(emw. Bz)∗up( conj (emw. Hz) ) ) )

dTmx=0.5∗ r e a l (down(emw. Bx) ∗(down( conj (emw.Hx) )∗emw. dnx+
down( conj (emw.Hy) )∗emw. dny+down( conj (emw. Hz) )∗emw. dnz
)−0.5∗emw. dnx∗(down(emw. Bx)∗down( conj (emw.Hx) )+down(
emw. By)∗down( conj (emw.Hy) )+down(emw. Bz)∗down( conj (emw
. Hz) ) ) )
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uTmy=0.5∗ r e a l (up(emw. By) ∗(up( conj (emw.Hx) )∗emw. unx+up(
conj (emw.Hy) )∗emw. uny+up( conj (emw. Hz) )∗emw. unz )−0.5∗
emw. uny∗(up(emw. Bx)∗up( conj (emw.Hx) )+up(emw. By)∗up(
conj (emw.Hy) )+up(emw. Bz)∗up( conj (emw. Hz) ) ) )

dTmy=0.5∗ r e a l (down(emw. By) ∗(down( conj (emw.Hx) )∗emw. dnx+
down( conj (emw.Hy) )∗emw. dny+down( conj (emw. Hz) )∗emw. dnz
)−0.5∗emw. dny∗(down(emw. Bx)∗down( conj (emw.Hx) )+down(
emw. By)∗down( conj (emw.Hy) )+down(emw. Bz)∗down( conj (emw
. Hz) ) ) )

uTmz=0.5∗ r e a l (up(emw. Bz) ∗(up( conj (emw.Hx) )∗emw. unx+up(
conj (emw.Hy) )∗emw. uny+up( conj (emw. Hz) )∗emw. unz )−0.5∗
emw. unz ∗(up(emw. Bx)∗up( conj (emw.Hx) )+up(emw. By)∗up(
conj (emw.Hy) )+up(emw. Bz)∗up( conj (emw. Hz) ) ) )

dTmz=0.5∗ r e a l (down(emw. Bz) ∗(down( conj (emw.Hx) )∗emw. dnx+
down( conj (emw.Hy) )∗emw. dny+down( conj (emw. Hz) )∗emw. dnz
)−0.5∗emw. dnz ∗(up(emw. Bx)∗up( conj (emw.Hx) )+up(emw. By)
∗up( conj (emw.Hy) )+up(emw. Bz)∗up( conj (emw. Hz) ) ) )

uTex=0.5∗ r e a l (up(emw.Dx) ∗(up( conj (emw. Ex) )∗emw. unx+up(
conj (emw. Ey) )∗emw. uny+up( conj (emw. Ez) )∗emw. unz )−0.5∗
emw. unx∗(up(emw.Dx)∗up( conj (emw. Ex) )+up(emw.Dy)∗up(
conj (emw. Ey) )+up(emw. Dz)∗up( conj (emw. Ez) ) ) )

dTex=0.5∗ r e a l (down(emw.Dx) ∗(down( conj (emw. Ex) )∗emw. dnx+
down( conj (emw. Ey) )∗emw. dny+down( conj (emw. Ez) )∗emw. dnz
)−0.5∗emw. dnx∗(down(emw.Dx)∗down( conj (emw. Ex) )+down(
emw.Dy)∗down( conj (emw. Ey) )+down(emw. Dz)∗down( conj (emw
. Ez) ) ) )

uTey=0.5∗ r e a l (up(emw.Dy) ∗(up( conj (emw. Ex) )∗emw. unx+up(
conj (emw. Ey) )∗emw. uny+up( conj (emw. Ez) )∗emw. unz )−0.5∗
emw. uny∗(up(emw.Dx)∗up( conj (emw. Ex) )+up(emw.Dy)∗up(
conj (emw. Ey) )+up(emw. Dz)∗up( conj (emw. Ez) ) ) )

dTey=0.5∗ r e a l (down(emw.Dy) ∗(down( conj (emw. Ex) )∗emw. dnx+
down( conj (emw. Ey) )∗emw. dny+down( conj (emw. Ez) )∗emw. dnz
)−0.5∗emw. dny∗(down(emw.Dx)∗down( conj (emw. Ex) )+down(
emw.Dy)∗down( conj (emw. Ey) )+down(emw. Dz)∗down( conj (emw
. Ez) ) ) )

uTez=0.5∗ r e a l (up(emw. Dz) ∗(up( conj (emw. Ex) )∗emw. unx+up(
conj (emw. Ey) )∗emw. uny+up( conj (emw. Ez) )∗emw. unz )−0.5∗
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emw. unz ∗(up(emw.Dx)∗up( conj (emw. Ex) )+up(emw.Dy)∗up(
conj (emw. Ey) )+up(emw. Dz)∗up( conj (emw. Ez) ) ) )

dTez=0.5∗ r e a l (down(emw. Dz) ∗(down( conj (emw. Ex) )∗emw. dnx+
down( conj (emw. Ey) )∗emw. dny+down( conj (emw. Ez) )∗emw. dnz
)−0.5∗emw. dnz ∗(down(emw.Dx)∗down( conj (emw. Ex) )+down(
emw.Dy)∗down( conj (emw. Ey) )+down(emw. Dz)∗down( conj (emw
. Ez) ) ) )

A.2 General Reynold Stress Tensor in COMSOL

The Reynold stress tensor in COMSOL can be computed as

2D-axisymmetric structure in Pressure-acoustics model

p2av = 0.25/ rho0 /c0 ˆ2∗ abs ( acpr . p t ) ˆ2−0.5∗ rho0∗acpr .
v rms ˆ2

f1densz = p2av∗acpr . nz
f1dens r = p2av∗acpr . nr
f2densz = 0.5∗ rho0 ∗( r e a l ( conj ( acpr . vz ) ∗( acpr . vr∗acpr . nr+

acpr . vz∗acpr . nz ) ) )
f 2dens r = 0.5∗ rho0 ∗( r e a l ( conj ( acpr . vr ) ∗( acpr . vr∗acpr . nr+

acpr . vz∗acpr . nz ) ) )
Fz = −intop1 ( f1densz+f2densz )

3D structure in Pressure-acoustics model

fx = ((1/(2∗ rho0∗c0 ˆ2)∗acpr . p t ∗ conj ( acpr . p t ) /2−1/2∗
rho0 ∗( acpr . vx∗ conj ( acpr . vx )+acpr . vy∗ conj ( acpr . vy )+
acpr . vz∗ conj ( acpr . vz ) ) /2)∗acpr . nx+rho0∗ r e a l ( ( acpr . nx∗
acpr . vx+acpr . ny∗acpr . vy+acpr . nz∗acpr . vz )∗ conj ( acpr . vx
) ) /2)

fy = ((1/(2∗ rho0∗c0 ˆ2)∗acpr . p t ∗ conj ( acpr . p t ) /2−1/2∗
rho0 ∗( acpr . vx∗ conj ( acpr . vx )+acpr . vy∗ conj ( acpr . vy )+
acpr . vz∗ conj ( acpr . vz ) ) /2)∗acpr . ny+rho0∗ r e a l ( ( acpr . nx∗
acpr . vx+acpr . ny∗acpr . vy+acpr . nz∗acpr . vz )∗ conj ( acpr . vy
) ) /2)

f z = ((1/(2∗ rho0∗c0 ˆ2)∗acpr . p t ∗ conj ( acpr . p t ) /2−1/2∗
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rho0 ∗( acpr . vx∗ conj ( acpr . vx )+acpr . vy∗ conj ( acpr . vy )+
acpr . vz∗ conj ( acpr . vz ) ) /2)∗acpr . nz+rho0∗ r e a l ( ( acpr . nx∗
acpr . vx+acpr . ny∗acpr . vy+acpr . nz∗acpr . vz )∗ conj ( acpr . vz
) ) /2)

Fx = −intop1 ( fx )
Fy = −intop1 ( fy )
Fz = −intop1 ( f z )
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Appendix B

Time reversal symmetry

Time reversal symmetry provides another set of solution to dynamic

equation and transfer function of temporal coupled mode theory. If all the pro-

gresses could run backward in time, we can imagine the fields would recover to

their primary states which can be depicted by a similar but not identical set of

solutions to Maxwell equations. While implementing time reversal symmetry,

one must be careful about which quantities should be flipped. For example, if

the polarization of electric field Eo remains unchanged, the sign of magnetic

field Ho must be reversed so that the field propagates in opposite direction to

original wave. Accordingly, t must be replaced by −t, for example, to make

the following Maxwell equations equivalent

∇×
(
Eoe

−iωt)+ µo
∂ (Hoe

−iωt)

∂t
= ∇×

(
Eoe

iωt
)

+ µo
∂ (−Hoe

iωt)

∂(−t)
= 0 (B.1)

Left-hand side of first equality sign is original Maxwell equation and right-

hand side of first equality sign is written in time-reversal manner. For a lossless

isotropic medium in which ε = ε∗, µ = µ∗ , one can take the complex conjugate

for the above equation to make ω real so that

∇×
(
Eoe

−iωt)+ µo
∂ (−Hoe

−iωt)

∂(−t)
= 0 (B.2)
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In resonator-waveguide system, the localized mode in resonator decays

into waveguide mode with a real photon lifetime τ so that the mode ampli-

tude has a form of A(t) = A(0)e−iωot−t/τ to satisfy the dynamic equation of

dA/dt = −iωoA− A/τ . Instead of exponentially decay into waveguide, the lo-

calized mode amplitude exponentially grows as fields feed into resonant cavity

in time reversal symmetry with a form of A(t) = A(0)e−iωot+t/τ∗ . Although

the photon lifetime here is real so that it equals to its complex conjugate, the

off-diagonal elements in decay matrix Γ are not real if two cavity modes do not

decay symmetrically or anti-symmetrically due to mirror symmetry breaking.

In this case, we have to take complex conjugate for decay matrix in time rever-

sal symmetry because the phases must accumulate in time reversal manner if

they previously lost in original form when coupled to waveguides. In general,

the localized mode profile presented by electric field in time reversal symmetry

should be expressed as

[A(t) = [A(−t)]∗ = A∗e−iωt+t/τ (B.3)

One the other hand, the propagation modes in time reversal symmetry are

simply complex conjugates of the old fields in opposite directions because

they are not time-dependent but only directional. It is straightforward that,

if phases of original outgoing fields accumulated, new phases should decay as

incident waves running backward in time. Therefore, the propagation modes

in time reversal symmetry are written as

|S±〉 =
∣∣S−(±)

〉∗
(B.4)
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Any resonator-to-waveguide transfer matrix K or D relating incident

waves to localized mode or localized mode to outgoing waves should preserve

their primary form because even in time reversal symmetry localized modes

and propagation modes must interact with the same fashion as before. In

addition, the consideration of phase accumulation or lost has been already

included in A(t) and |S±〉 such that K and D only depend on medium and

structure. To summarize, in time reversal symmetry, the dynamic response

equation is written as

(−iωI + iΩ + Γ∗)

[
A∗

B∗

]
= KT |S−〉∗ (B.5)

Applying complex frequency ω = Ω+iΓ in time reversal symmetry and |S−〉 =

D

[
A
B

]
as original propagation modes excited only by resonant cavity to have

2Γ∗ = KTD∗ (B.6)

Recall that D†D = 2Γ, we can finally arrive at

K = D (B.7)
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Appendix C

Upper limit of truncation error in

periodic Helmholtz-Hodge decomposition

Here I present the upper limit of truncation error in periodic Helmholtz-

Hodge decomposition and show the nearly linear dependence of truncation

error on the single-side truncated period. Getting rid of the scaling factor δ in

Eq. 3.26, the divergence-free component can be found by adopting analytical

gradient of 2D Green’s function and replacing summation in discrete HHD by

smooth double integral as

f (n)
∆
=
∑
jn

∇×G (ri − rjn) · u (rjn)

= 1
2π

� x,y=(n+ 1
2)a

x,y=(n− 1
2)a

(
x

x2+y2
uy − y

x2+y2
ux

)
dxdy

(C.1)

Without explicit analytical expressions of ux and uy, it is impossible to ac-

curately estimate the value of f(n) . To make the matter clear and simple,

if we assume the vector field has a central-symmetry as well as ux and uy

are independent of x and y, respectively, we can further simplify Eq. C.1 by

integrating x for first term and y for second term to arrive at

f (n) =
� (n+ 1

2)a
(n− 1

2)a
ux ln

[(n+ 1
2)a]

2
+x2√

(na)2+x2
√

[(n+1)a]2+x2
dx

−
� (n+ 1

2)a
(n− 1

2)a
uy ln

[(n+ 1
2)a]

2
+y2√

(na)2+y2
√

[(n+1)a]2+y2
dy

(C.2)
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Figure C.1: Linear dependence of truncation error on truncation period in log-
log scale. (a) Conservative periodic vector field with both ux and uy are −1 in
[−1, 0] and 1 in [0, 1] ; (b) f(n) which is convolution between curl of Greens
Function and the periodic vector field in the nth period vanishes at infinity,
and it blurs at large n due to limitation of precision of numeric data type of
machine; (c) Truncation error ET presents a linear dependence on truncation
period N in log-log scale.

If ux and uy have finite values, f(n) obviously approaches to zero as the trun-

cated period n goes to infinity. Furthermore, we can easily calculate f(n) once

we know the vector field either analytically or from numerical simulations and

practical experiments. The convergence of truncation error with increasing

truncation period of a testing vector field which is periodic and conservative

is numerically plotted in log − log scale in Fig. C.1. Two components of the

testing force field ux and uy are both set to be 1 in
[(
n− 1

2

)
a, na

]
and −1 in[

na,
(
n+ 1

2

)
a
]

(a = 2) as shown in Fig. C.1(a). In this case, f(n) is plotted in

Fig.C.1(b) which decreases with increasing n , and it becomes blurred around

n = 1000 due to precision of numeric data type of machine. It is obvious that

the testing vector field is conservative and the truncation error has a rate of
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convergence equal to approximately 2 with respect to truncation period N as

shown in Fig. C.1(c)

logET = log

∑∞
n=N f (n)∑∞
n=−∞ f (n)

≈ −2 log n+ C (C.3)
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Appendix D

Weak-form formula for electromagnetic fields

D.1 Weak form for E-field

In the case when the permeability µ is anisotropic and r dependent,

and ε is a complex constant depicting the material loss. The electric field can

be writen as E (r) = u (r) e−ik·r. By using the equation that ∇ × (αV) =

α∇ × V + ∇α × V we can find the curl of the electric field as ∇ × E =

e−ik·r∇× u +∇e−ik·r × u = e−ik·r (∇× u− ik× u). Starting from the wave

equation

∇×
(

1

µ
∇× E

)
− εω

2

c2
E = 0

we can reorganize the wave equation and remove e−ik·r on both sides as

∇×
[

1

µ
e−ik·r (∇× u− ik× u)

]
− εω

2

c2
ue−ik·r = 0

∇×
[
e−ik·r

1

µ
(∇× u)

]
−∇×

[
e−ik·r

1

µ
(ik× u)

]
− εω

2

c2
ue−ik·r = 0{

e−ik·r∇×
[

1

µ
(∇× u)

]
+∇e−ik·r ×

[
1

µ
(∇× u)

]}
−{

e−ik·r∇×
[

1

µ
(ik× u)

]
+∇e−ik·r ×

[
1

µ
(ik× u)

]}
− εω

2

c2
ue−ik·r = 0{

∇×
[

1

µ
(∇× u)

]
− ik×

[
1

µ
(∇× u)

]}
−{

∇×
[

1

µ
(ik× u)

]
− ik×

[
1

µ
(ik× u)

]}
− εω

2

c2
u = 0
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∇×
[

1

µ
(∇× u)

]
− ik×

[
1

µ
(∇× u)

]
− i∇×

[
1

µ
(k× u)

]
− k×

[
1

µ
(k× u)

]
− εω

2

c2
u = 0

− k×
[

1

µ
(k× u)

]
− ik×

[
1

µ
(∇× u)

]
− i∇×

[
1

µ
(k× u)

]
+∇×

[
1

µ
(∇× u)

]
− εω

2

c2
u = 0

By using another vector equation A · (B × C) = B · (C × A) = C · (A×B),

we can finally derive the weak-form for E-field as

v ·

 −k×
[

1
µ

(k× u)
]
− ik×

[
1
µ

(∇× u)
]
−

i∇×
[

1
µ

(k× u)
]

+∇×
[

1
µ

(∇× u)
]
− εω2

c2
u


= (k× v) ·

[
1
µ

(k× u)
]

+ i (k× v) ·
[

1
µ

(∇× u)
]
−

i (∇× v) ·
[

1
µ

(k× u)
]

+ (∇× v) ·
[

1
µ

(∇× u)
]
− ω2

c2
v · εu

D.2 Weak form for H-field

Similar to derivation of weak form for E-field, the periodic harmonic

magnetic field is expressed as

H(r) = u(r)e(iωt−ik·r)

, and the curl of the magnetic field can be then written as (eiωt is neglected)

∇×H = e−ik·r (∇× u− ik× u)

. Start from the wave equation

∇× (
1

ε
∇×H)− µω

2

c2
H = 0

and follow the steps in the last section, one can derive the weak form for H-field

as

v ·
{
−k

ε
× (k× u)− ik×

(
1
ε
∇× u

)
−

i∇×
(

1
ε
k× u

)
+∇×

[
1
ε

(∇× u)
]
− µω2

c2
u

}
= − (k× v) · 1

ε
(k× u)− i (k× v) ·

(
1
ε
∇× u

)
− i (∇× v) ·

(
1
ε
k× u

)
+ (∇× v) ·

(
1
ε
∇× u

)
− ω2

c2
v · ↔µu
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The coded weak-form expressions in COMSOL is given below (Note

these expressions are suitable for lossy topological photonic crystals with active

shells):

k0 2∗ pi ∗ f r e q0 [ Hz ] / c con s t ””
kx lambda [1/m] ”””show d e f a u l t s o l v e r ”” to blacken

lambda/ p e r i o d i c a long x−d i r e c t i o n ”
ky 0 [1/m] ””
kz 0 [1/m] ””
ux 0 [V/m] ”uz i s dependent ”
uy 0 [V/m] ”uz i s dependent ”
kcrossux ky∗uz−kz∗uy ””
kcrossuy kz∗ux−kx∗uz ””
kcros suz kx∗uy−ky∗ux ””
cur lux d( uz , y ) d( uz , y )−d(uy , z )
cur luy −d( uz , x ) d(ux , z )−d( uz , x )
cu r luz 0 [V/mˆ2 ] d(uy , x )−d(ux , y )
e p s i l o n r x x epsr ””
e p s i l o n r y y epsr ””
e p s i l o n r z z epsr ””
mur xx mur diag ””
mur xy mur o f fd iag ””
mur xz 0 ””
mur yx −mur o f fd iag ””
mur yy mur diag ””
mur yz 0 ””
mur zx 0 ””
mur zy 0 ””
mur zz mur diag ””
eps r inv xx 1/ e p s i l o n r x x ””
eps r inv yy 1/ e p s i l o n r y y ””
e p s r i n v z z 1/ e p s i l o n r z z ””
murinv xx murinv diag ””
murinv xy mur inv o f fd i ag ””
murinv xz 0 ””
murinv yx −mur inv o f fd i ag ””
murinv yy murinv diag ””
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murinv yz 0 ””
murinv zx 0 ””
murinv zy 0 ””
murinv zz murinv diag1 ””
weak1Ez k0 ˆ2∗( t e s t ( ux )∗ e p s i l o n r x x ∗ux+t e s t ( uy )∗

e p s i l o n r y y ∗uy+t e s t ( uz )∗ e p s i l o n r z z ∗uz ) ””
weak2Ez −( t e s t ( cur lux ) ∗( murinv xx∗ cur lux+murinv xy∗

cur luy+murinv xz∗ cur luz )+t e s t ( cur luy ) ∗( murinv yx∗
cur lux+murinv yy∗ cur luy+murinv yz∗ cur luz )+t e s t ( cu r luz
) ∗( murinv zx∗ cur lux+murinv zy∗ cur luy+murinv zz∗ cur luz
) ) ””

weak3Ez 1 i ∗( t e s t ( cur lux ) ∗( murinv xx∗ kcrossux+murinv xy∗
kcrossuy+murinv xz∗ kcros suz )+t e s t ( cur luy ) ∗( murinv yx∗
kcrossux+murinv yy∗ kcrossuy+murinv yz∗ kcros suz )+t e s t (
cu r luz ) ∗( murinv zx∗ kcrossux+murinv zy∗ kcrossuy+
murinv zz∗ kcros suz ) ) ””

weak4Ez −1 i ∗( t e s t ( kcrossux ) ∗( murinv xx∗ cur lux+murinv xy∗
cur luy+murinv xz∗ cur luz )+t e s t ( kcrossuy ) ∗( murinv yx∗
cur lux+murinv yy∗ cur luy+murinv yz∗ cur luz )+t e s t (
kc ros suz ) ∗( murinv zx∗ cur lux+murinv zy∗ cur luy+
murinv zz∗ cur luz ) ) ””

weak5Ez −( t e s t ( kcrossux ) ∗( murinv xx∗ kcrossux+murinv xy∗
kcrossuy+murinv xz∗ kcros suz )+t e s t ( kcrossuy ) ∗(
murinv yx∗ kcrossux+murinv yy∗ kcrossuy+murinv yz∗
kcros suz )+t e s t ( kc ros suz ) ∗( murinv zx∗ kcrossux+
murinv zy∗ kcrossuy+murinv zz∗ kcros suz ) ) ””
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Appendix E

MATLAB codes for HHD

E.1 Sequential program

1 f unc t i on [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x ,
d i v f r e e y , hx , hy ] = gfm2dhhd (Vx, Vy, x , y , de l ta , pbc ,
num period )

2 % GFM2DHHD ( Green ’ s Function Method 2D Helmholtz−Hodge
Decomposition ) i s

3 % used to decompose vec to r f i e l d in to cur l−f r e e part and
divergence−f r e e

4 % part based on Green ’ s Function v ia minimizing
D i r i c h l e t energy , i . e .

5 % l e a s t squares method .
6 % Vx and Vy are input vec to r f i e l d components which can

be e i t h e r a p e r i o d i c
7 % or p e r i o d i c by s e t t i n g pbc to be 0 or 1 , r e s p e c t i v e l y .

For non−p e r i o d i c
8 % app l i c a t i on , Vx and Vy have to vanish at the boundary ,

and f o r p e r i o d i c
9 % a p p l i c a t i o n when div−f r e e p o t e n t i a l i s zero , Vx ( : , 1 )=

Vx ( : , end+1) which
10 % can be s h i f t e d to zero , Vx ( 1 , : )=Vx( end +1 , : ) which i s

not zero , Vy ( 1 , : ) =
11 % Vy( end +1 , : ) which can be s h i f t e d to 0 , and Vy ( : , 1 )=Vy

( : , end+1) which must
12 % not be zero .
13 % x and y are coo rd ina t e s a f t e r meshgrid , d e f a u l t g r i d

s i z e i s 1 .
14 % de l t a : r e g u l i z a t i o n fac to r , d e f a u l t va lue i s 1e−6.
15 % num period : number o f per iod emanating from o r i g i n a l
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uni t c e l l , d e f a u l t
16 % value i s 5 .
17 % pbc : p e r i o d i c boundary cond i t i on i s s e t to 1 by

d e f a u l t . Thus , to
18 % decompose an a p e r i o d i c vec to r f i e l d , pbc needs to be

0 .
19 % phi : cur l−f r e e po t en t i a l , or s c a l a r p o t e n t i a l .
20 % p s i : div−f r e e p o t e n t i a l ( only z−component because x

and y components are
21 % both zero ) .
22 % c u r l f r e e x / c u r l f r e e y : cur l−f r e e components o f vec to r

f i e l d s
23 % d i v f r e e x / d i v f r e e y : d ivergence−f r e e components o f

vec to r f i e l d s .
24 % hx/hy : harmonic remainder .
25 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx,Vy)
26 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx, Vy, x , y )
27 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx, Vy, x , y , d e l t a )
28 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx, Vy, x , y , de l ta , pbc , num period )
29

30 % −Hui Dong− ed i t ed on Apr i l 27 th , 2014 , r e v i s e d on May
19 , 2014 −

31 % $Vers ion1 . 2 $
32 [ num row , num column ] = s i z e (Vx) ;
33 i f ( narg in == 2)
34 x = 1 : num column ;
35 y = 1 : num row ;
36 [ x , y ] = meshgrid (x , y ) ;
37 de l t a = 1e−6;
38 pbc = 1 ;
39 num period = 5 ;
40 e l s e i f ( narg in == 4)
41 de l t a = 1e−6;
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42 pbc = 1 ;
43 num period = 5 ;
44 e l s e i f ( narg in == 5)
45 pbc = 1 ;
46 num period = 5 ;
47 end
48 xgr id = abs ( x (1 , 2 )−x (1 , 1 ) ) ;
49 ygr id = abs ( y (2 , 1 )−y (1 , 1 ) ) ;
50

51 phi = NaN(num row , num column ) ;
52 p s i = NaN(num row , num column ) ;
53 [ num xgrid , num ygrid ] = meshgrid ( 0 : num column , 0 : num row )

;
54 rx = xgr id ∗num xgrid ;
55 ry = ygr id ∗num ygrid ;
56 i f pbc == 0
57 GFquarter = −1/2/ p i ∗ l og ( s q r t ( rx .ˆ2+ ry . ˆ 2 ) ) ;

GFquarter (1 , 1 ) = −1/2/ p i ∗ l og ( s q r t ( d e l t a ) ) ;
58 e l s e
59 [ xextend , yextend ] = meshgrid ( ( num column−1)∗(−

num period : num period ) , ( num row−1)∗(−num period :
num period ) ) ;

60 xextend = xgr id ∗xextend ; yextend = ygr id ∗yextend ;
61 rx pb = kron ( rx , ones (2∗ num period+1) )+repmat ( xextend

, num row+1,num column+1) ;
62 ry pb = kron ( ry , ones (2∗ num period+1) )+repmat ( yextend

, num row+1,num column+1) ;
63 temp = −1/2/ p i ∗ l og ( s q r t ( ( rx pb ) .ˆ2+( ry pb ) . ˆ 2 ) ) ;

temp ( temp == i n f )=−1/2/p i ∗ l og ( s q r t ( d e l t a ) ) ;
64 temp = mat2ce l l ( temp , ( 2∗ num period+1)∗ones (1 , num row

+1) , (2∗ num period+1)∗ones (1 , num column+1) ) ;
65 temp = c e l l f u n (@sum, temp , ’ UniformOutput ’ , f a l s e ) ;

temp = c e l l f u n (@sum, temp , ’ UniformOutput ’ , f a l s e ) ;
66 GFquarter = ce l l 2mat ( temp ) ;
67 end
68 GreenF = [ rot90 ( GFquarter , 2 ) , f l i p u d ( GFquarter ) ; f l i p l r (

GFquarter ) , GFquarter ] ; GreenF ( num row +1 , :) = [ ] ; GreenF
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( : , num column+1) = [ ] ;
69 [ dGx whole , dGy whole ] = grad i en t ( GreenF , xgrid , ygr id ) ;
70

71 h = waitbar (0 , ’ 1 ’ , ’Name ’ , [ ’ Decomposing ’ , num2str ( num row
) , ’ x ’ , num2str ( num column ) , ’ vec to r matrix ’ ] ) ;

72 f o r icolumn = 1 : num column
73 f o r irow = 1 : num row
74 dGx = dGx whole ( num row+2−i row : end−irow ,

num column+2−icolumn : end−icolumn ) ;
75 dGy = dGy whole ( num row+2−i row : end−irow ,

num column+2−icolumn : end−icolumn ) ;
76 phi ( irow , icolumn ) = sum(sum(dGx.∗Vx+dGy.∗Vy) )∗

xgr id ∗ ygr id ;
77 p s i ( irow , icolumn ) = sum(sum(dGy.∗Vx−dGx.∗Vy) )∗

xgr id ∗ ygr id ;
78 end
79 formatSpec = ’ Computing the %03dth column ’ ;
80 waitbar ( icolumn /num column , . . .
81 h , s p r i n t f ( formatSpec , icolumn ) ) ;
82 end
83

84 [ d i v f r e e x , d i v f r e e y ] = grad i en t ( ps i , xgr id , ygr id ) ;
85 temp = d i v f r e e x ;
86 d i v f r e e x = d i v f r e e y ;
87 d i v f r e e y = −temp ;
88 [ c u r l f r e e x , c u r l f r e e y ] = grad i en t ( phi , xgr id , ygr id ) ;
89 hx = Vx−c u r l f r e e x−d i v f r e e x ;
90 hy = Vy−c u r l f r e e y−d i v f r e e y ;
91 d e l e t e (h)

E.2 Parallel program

1 f unc t i on [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x ,
d i v f r e e y , hx , hy , GreenF ] = pargfm2dhhd (Vx, Vy, x , y , de l ta
, pbc , num period )

2 % GFM2DHHD ( Green ’ s Function Method 2D Helmholtz−Hodge
Decomposition ) i s

3 % used to decompose vec to r f i e l d in to cur l−f r e e part and
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divergence−f r e e
4 % part based on Green ’ s Function v ia minimizing

D i r i c h l e t energy , i . e .
5 % l e a s t squares method .
6 % Vx and Vy are input vec to r f i e l d components which can

be e i t h e r a p e r i o d i c
7 % or p e r i o d i c by s e t t i n g pbc to be 0 or 1 , r e s p e c t i v e l y .

For non−p e r i o d i c
8 % app l i c a t i on , Vx and Vy have to vanish at the boundary ,

and f o r p e r i o d i c
9 % a p p l i c a t i o n when div−f r e e p o t e n t i a l i s zero , Vx ( : , 1 )=

Vx ( : , end+1) which
10 % can be s h i f t e d to zero , Vx ( 1 , : )=Vx( end +1 , : ) which i s

not zero , Vy ( 1 , : ) =
11 % Vy( end +1 , : ) which can be s h i f t e d to 0 , and Vy ( : , 1 )=Vy

( : , end+1) which must
12 % not be zero .
13 % x and y are coo rd ina t e s a f t e r meshgrid , d e f a u l t g r i d

s i z e i s 1 .
14 % de l t a : r e g u l i z a t i o n fac to r , d e f a u l t va lue i s 1e−6.
15 % num period : number o f per iod emanating from o r i g i n a l

un i t c e l l , d e f a u l t
16 % value i s 5 .
17 % pbc : p e r i o d i c boundary cond i t i on i s s e t to 1 by

d e f a u l t . Thus , to
18 % decompose an a p e r i o d i c vec to r f i e l d , pbc needs to be

0 .
19 % phi : cur l−f r e e po t en t i a l , or s c a l a r p o t e n t i a l .
20 % p s i : div−f r e e p o t e n t i a l ( only z−component because x

and y components are
21 % both zero ) .
22 % c u r l f r e e x / c u r l f r e e y : cur l−f r e e components o f vec to r

f i e l d s
23 % d i v f r e e x / d i v f r e e y : d ivergence−f r e e components o f

vec to r f i e l d s .
24 % hx/hy : harmonic remainder .
25 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,
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hy ] = gfm2dhhd (Vx,Vy)
26 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx, Vy, x , y )
27 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx, Vy, x , y , d e l t a )
28 % [ phi , ps i , c u r l f r e e x , c u r l f r e e y , d i v f r e e x , d i v f r e e y , hx ,

hy ] = gfm2dhhd (Vx, Vy, x , y , de l ta , pbc , num period )
29

30 % −Hui Dong− ed i t ed on Apr i l 27 th , 2014 , r e v i s e d on May
19 , 2014 , r e v i s e d January , 2015−

31 % $Vers ion1 . 3 $
32

33 [ num row , num column ] = s i z e (Vx) ;
34 i f ( narg in == 2)
35 x = 1 : num column ;
36 y = 1 : num row ;
37 [ x , y ] = meshgrid (x , y ) ;
38 de l t a = 1e−6;
39 pbc = 1 ;
40 num period = 5 ;
41 e l s e i f ( narg in == 4)
42 de l t a = 1e−6;
43 pbc = 1 ;
44 num period = 5 ;
45 e l s e i f ( narg in == 5)
46 pbc = 1 ;
47 num period = 5 ;
48 end
49 xgr id = abs ( x (1 , 2 )−x (1 , 1 ) ) ;
50 ygr id = abs ( y (2 , 1 )−y (1 , 1 ) ) ;
51

52 phi = NaN(num row , num column ) ;
53 p s i = NaN(num row , num column ) ;
54 [ num xgrid , num ygrid ] = meshgrid ( 0 : num column , 0 : num row )

;
55 rx = xgr id ∗num xgrid ;
56 ry = ygr id ∗num ygrid ;
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57 c l e a r ’ num xgrid ’ ’ num ygrid ’
58 i f pbc == 0
59 GFquarter = −1/2/ p i ∗ l og ( s q r t ( rx .ˆ2+ ry . ˆ 2 ) ) ;

GFquarter (1 , 1 ) = −1/2/ p i ∗ l og ( s q r t ( d e l t a ) ) ;
60 e l s e
61 GFquarter = NaN( num row+1,num column+1) ;
62 parpool (6 ) ;
63 pa r f o r inum row = 1 : num row+1
64 f o r inum column = 1 : num column+1
65 [ xextend , yextend ] = meshgrid ( ( num column

−1+1)∗(−num period : num period ) , ( num row
−1+1)∗(−num period : num period ) ) ;

66 xextend = xgr id ∗xextend ; yextend = ygr id ∗
yextend ;

67 rx pb = kron ( rx ( inum row , inum column ) , ones
(2∗ num period+1) )+xextend ;

68 ry pb = kron ( ry ( inum row , inum column ) , ones
(2∗ num period+1) )+yextend ;

69 temp = −1/2/ p i ∗ l og ( s q r t ( ( rx pb ) .ˆ2+( ry pb )
. ˆ 2 ) ) ; temp ( temp == i n f )=−1/2/p i ∗ l og ( s q r t
( d e l t a ) ) ;

70 GFquarter ( inum row , inum column ) = sum(sum(
temp ) ) ;

71 end
72 end
73 c l e a r ’ temp ’ ’ xextend ’ ’ yextend ’ ’ rx pb ’ ’ ry pb ’
74 d e l e t e ( gcp )
75 end
76 %i f Vx i s MxN, b = (M−1)∗dy , a=(N−1)∗dx ; GreenF i s (2M

+1)x (2N+1) where one
77 %more row and one more column are extended f o r c o r r e c t

Gradient . xextend
78 %and yextend should be (2∗ num period+1)x (2∗ num period+1)

whose xgr id i s a
79 %and ygr id i s b .
80 GreenF = [ rot90 ( GFquarter , 2 ) , f l i p u d ( GFquarter ) ; f l i p l r (

GFquarter ) , GFquarter ] ; GreenF ( num row +1 , :) = [ ] ; GreenF
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( : , num column+1) = [ ] ;
81 [ dGx whole , dGy whole ] = grad i en t ( GreenF , xgrid , ygr id ) ;
82 % c l e a r ’ GFquarter ’ ’ GreenF ’
83

84 parpool (5 ) ;
85 p a r f o r p r o g r e s s ( num column ) ;
86 pa r f o r icolumn = 1 : num column
87 f o r irow = 1 : num row
88 tempx = dGx whole ;
89 tempy = dGy whole ;
90 dGx = tempx ( num row+2−i row : end−irow , num column

+2−icolumn : end−icolumn ) ;
91 dGy = tempy ( num row+2−i row : end−irow , num column

+2−icolumn : end−icolumn ) ;
92 phi ( irow , icolumn ) = sum(sum(dGx.∗Vx+dGy.∗Vy) )∗

xgr id ∗ ygr id ;
93 p s i ( irow , icolumn ) = sum(sum(dGy.∗Vx−dGx.∗Vy) )∗

xgr id ∗ ygr id ;
94 end
95 p a r f o r p r o g r e s s ;
96 end
97 p a r f o r p r o g r e s s (0 ) ;
98 d e l e t e ( gcp )
99 c l e a r ’dGx ’ ’dGy ’ ’ tempx ’ ’ tempy ’

100

101 [ d i v f r e e x , d i v f r e e y ] = grad i en t ( ps i , xgr id , ygr id ) ;
102 temp = d i v f r e e x ;
103 d i v f r e e x = d i v f r e e y ;
104 d i v f r e e y = −temp ;
105 [ c u r l f r e e x , c u r l f r e e y ] = grad i en t ( phi , xgr id , ygr id ) ;
106 hx = Vx−c u r l f r e e x−d i v f r e e x ;
107 hy = Vy−c u r l f r e e y−d i v f r e e y ;
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Appendix F

Parallel HHD in C++ using OpenMP and

MPI

F.1 Head File

1 #inc lude <iostream>
2 #inc lude <f stream>
3 #inc lude <math . h>
4 #inc lude <s t d i o . h>
5 #inc lude <s t d l i b . h>
6 #inc lude <iomanip>
7 #inc lude <omp . h>
8 #inc lude <time . h>
9 #inc lude <mpi . h>

10

11 us ing namespace std ;
12 #d e f i n e VERBOSE 0
13

14 c l a s s gf2d{
15 p r i v a t e :
16 i n t m, n ;
17

18 pub l i c :
19 long double ∗∗ g f ;
20 i n t ntds ;
21 gf2d ( i n t mm, i n t nn){
22 // to use MPI, 2D array has to be

cont iguous , g f [ 0 ] i s i n i t i a l i z e d
23 // g f [ i ] i s s e t
24 i n t i ;
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25 m = mm; n = nn ;
26 i f (m%2 == 0 | | n%2 == 0)
27 {cout<<”Green ’ s Function must have odd

rows and odd columns . . . \ n” ; e x i t (1 ) ;}
28 g f = new long double ∗ [m] ;
29 g f [ 0 ] = new long double [mm∗nn ] ;
30 f o r ( i =1; i<m; i++) g f [ i ]=&gf [ 0 ] [ i ∗n ] ;
31 }
32

33 void a p e r i o d i c ( long double , long double , long
double ) ;

34 void p e r i o d i c ( long double , long double , int ,
long double , i n t ) ;

35 void output ( char ∗) ;
36

37 ˜ gf2d ( ) {
38 d e l e t e [ ] g f ;
39 }
40 } ;
41

42 c l a s s mtxgdt{
43 p r i v a t e :
44 i n t m, n ;
45

46 pub l i c :
47 long double ∗∗a , ∗∗ gdtx a , ∗∗ gdty a ;
48 mtxgdt ( i n t mm, i n t nn){
49 i n t i ;
50 m = mm; n = nn ;
51 a = new long double ∗ [m] ;
52 a [ 0 ] = new long double [mm∗nn ] ;
53 f o r ( i =1; i<m; i++) a [ i ] = &a [ 0 ] [ i ∗n ] ;
54 gdtx a = new long double ∗ [m] ;
55 gdtx a [ 0 ] = new long double [mm∗nn ] ;
56 f o r ( i =1; i<m; i++) gdtx a [ i ] = &gdtx a

[ 0 ] [ i ∗n ] ;
57 gdty a = new long double ∗ [m] ;
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58 gdty a [ 0 ] = new long double [mm∗nn ] ;
59 f o r ( i =1; i<m; i++) gdty a [ i ] = &gdty a

[ 0 ] [ i ∗n ] ;
60 }
61 void input ( char ∗) ;
62 void gdt ( long double , long double , long double ∗∗)

;
63 void output ( char ∗ , char ∗) ;
64 ˜mtxgdt ( ) {
65 d e l e t e [ ] a ;
66 d e l e t e [ ] gdtx a ;
67 d e l e t e [ ] gdty a ;
68 }
69 } ;
70

71 c l a s s mtxsum{
72 p r i v a t e :
73 i n t m, n ;
74

75 pub l i c :
76 long double ∗∗a , sum ;
77 mtxsum( i n t mm, i n t nn){
78 i n t i ;
79 m=mm; n=nn ;
80 a = new long double ∗ [m] ;
81 f o r ( i =0; i<m; i++) a [ i ] = new long

double [ n ] ;
82 }
83 void input ( char ∗) ;
84 long double sumsum ( ) ;
85 ˜mtxsum ( ) {
86 i n t i ;
87 f o r ( i =0; i<m; i++) { d e l e t e [ ] a [ i ] ; }
88 d e l e t e [ ] a ;
89 }
90 } ;
91
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92 c l a s s p o t e n t i a l s {
93 p r i v a t e :
94 i n t m, n ;
95

96 pub l i c :
97 long double ∗∗phi , ∗∗ p s i ; // p o t e n t i a l s . phi and

p o t e n t i a l s . p s i are cont iguous
98 p o t e n t i a l s ( i n t mm, i n t nn){
99 i n t i ;

100 m = mm; n=nn ;
101 phi = new long double ∗ [m] ;
102 phi [ 0 ] = new long double [m∗n ] ;
103 f o r ( i =1; i<m; i++) phi [ i ] = &phi [ 0 ] [ i ∗n

] ;
104 p s i = new long double ∗ [m] ;
105 p s i [ 0 ] = new long double [m∗n ] ;
106 f o r ( i =1; i<m; i++) p s i [ i ] = &p s i [ 0 ] [ i ∗n

] ;
107 }
108 void c a l p o t e n t i a l s ( int , int , int , int , long

double , long double , long double ∗∗ , long
double ∗∗ , long double ∗∗ , long double ∗∗ ,
i n t ) ;

109 ˜ p o t e n t i a l s ( ) {
110 d e l e t e [ ] phi ;
111 d e l e t e [ ] p s i ;
112 }
113 } ;

F.2 Class File

1 #inc lude ”gf2dhhd . h”
2

3 //2D Green Function
4 void gf2d : : a p e r i o d i c ( long double dx , long double dy ,

long double de l t a ){
5 i n t m quarter=(m+1) /2 ;
6 i n t n quar te r =(n+1) /2 ;
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7 long double p i = 1/3.141592653589793;
8 i n t i =0, j =0;
9

10 f o r ( i =0; i<m quarter ; i++){
11 f o r ( j =0; j<n quar te r ; j++){
12 i f ( i==0 && j==0){
13 g f [ m quarter −1] [ n quarter −1] = −0.5∗

pi ∗ l og ( s q r t ( d e l t a ) ) ;
14 #i f VERBOSE >=1
15 p r i n t f ( ”%f ” , g f [

m quarter −1] [
n quarter −1]) ;

16 #e n d i f
17 }
18 e l s e { //dy i s v e r t i c a l g r id and

app l i ed to rows , whi l e dx i s
h o r i z o n t a l g r id and app l i ed on
column

19 g f [ m quarter−1+i ] [ n quarter−1+
j ] = −0.5∗ pi ∗ l og ( s q r t (pow( i
∗dy , 2 )+pow( j ∗dx , 2 ) ) ) ;

20 #i f VERBOSE >=1
21 p r i n t f ( ”%f ” , g f [ m quarter−1+i

] [ n quarter−1+j ] ) ;
22 #e n d i f
23 }
24 }
25 #i f VERBOSE >=1
26 cout<<endl ;
27 #e n d i f
28 }
29

30 f o r ( i =0; i<m quarter −1; i++){
31 f o r ( j =0; j<n quar te r ; j++){
32 g f [ i ] [ n quarter−1+j ]= g f [m−1− i ] [

n quarter−1+j ] ;
33 }
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34 }
35

36 f o r ( i =0; i<m; i++){
37 f o r ( j =0; j<n quarter −1; j++){
38 g f [ i ] [ j ] = g f [ i ] [ n−1−j ] ;
39 }
40 }
41 }
42 void gf2d : : p e r i o d i c ( long double dx , long double dy , i n t

num period , long double de l ta , i n t ntds ){
43 i f ( num period%2 == 0) {cout<<”Number o f per iod

has to be odd because per iod i s t runcated
evenly . . . \ n” ; e x i t (1 ) ;}

44 long double ax = dx ∗ ( 0 . 5∗ ( n−1) ) ; //ax i s l a t t i c e
constant along x−d i r e c t i o n , n i s odd , gf2d

i s 2x2 o f un i t c e l l
45 long double ay = dy ∗ ( 0 . 5∗ (m−1) ) ;
46 long double ∗ rx pb = new long double [ num period

] ;
47 f o r ( i n t i =0; i<num period ; i++) rx pb [ i ] = ( i−(

num period−1)/2)∗ax ; //−2ax,−ax , 0 , ax , 2 ax i f
num period=5

48 long double ∗ ry pb = new long double [ num period
] ;

49 f o r ( i n t i =0; i<num period ; i++) ry pb [ i ] = ( i−(
num period−1)/2)∗ay ;

50

51 i n t m quarter = (m+1) /2 ;
52 i n t n quar te r = (n+1) /2 ;
53 long double p i = 1/3.141592653589793;
54 long double subGF ;
55 i n t i , j ;
56 omp set num threads ( ntds ) ;
57 #pragma omp p a r a l l e l num threads ( ntds ) d e f a u l t ( shared )

p r i v a t e (subGF , j )
58 #pragma omp f o r schedu le ( s t a t i c )
59 f o r ( i = 0 ; i<m quarter ; i++){
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60 f o r ( j = 0 ; j<n quar te r ; j++){
61 // g f [ m quarter−1+i ] [ n quarter−1+j ] =

0 . 0 ;
62 //subGF = 0 . 0 ;
63 f o r ( i n t i 1 = 0 ; i1<num period ;

i 1++){
64 f o r ( i n t i 2 =0; i2<

num period ; i 2++){
65 subGF = −0.5∗ pi ∗

l og ( s q r t (pow(
i ∗dy+ry pb [ i 1
] , 2 )+pow( j ∗dx
+rx pb [ i 2 ] , 2 )
) ) ;

66 i f ( i s i n f (subGF)
) subGF =
−0.5∗ pi ∗ l og (
s q r t ( d e l t a ) ) ;

67 g f [ m quarter−1+i
] [ n quarter
−1+j ] +=
subGF ;

68 }
69 }
70 #i f VERBOSE >=1
71 p r i n t f ( ”%f ” , g f [ m quarter−1+i ] [

n quarter−1+j ] ) ;
72 #e n d i f
73 }
74 #i f VERBOSE >=1
75 cout<<endl ;
76 #e n d i f
77 }
78 d e l e t e [ ] rx pb ;
79 d e l e t e [ ] ry pb ;
80

81 #pragma omp p a r a l l e l f o r num threads ( ntds ) d e f a u l t (
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shared ) p r i va t e ( j )
82 f o r ( i =0; i<m quarter −1; i++){
83 f o r ( j =0; j<n quar te r ; j++){
84 g f [ i ] [ n quarter−1+j ]= g f [m−1− i ] [

n quarter−1+j ] ;
85 }
86 }
87 #pragma omp p a r a l l e l f o r num threads ( ntds ) d e f a u l t (

shared ) p r i va t e ( j )
88 f o r ( i =0; i<m; i++){
89 f o r ( j =0; j<n quarter −1; j++){
90 g f [ i ] [ j ] = g f [ i ] [ n−1−j ] ;
91 }
92 }
93

94 }
95 void gf2d : : output ( char ∗ s t r 1 ){
96 i n t i , j ;
97 ofstream fout ( s t r 1 ) ;
98 i f ( ! s t r 1 )
99 {cout<<”Cannot c r e a t e the f i l e ”<<s t r1<<endl ;

e x i t (1 ) ;}
100 #i f VERBOSE >=1
101 cout<<”Green ’ s Function i s :\n” ;
102 #e n d i f
103 f o r ( i =0; i<m; i++){
104 f o r ( j =0; j<n ; j++){
105 fout<<” ”<<std : : s e t p r e c i s i o n (16)<<g f [ i ] [

j ] ;
106 #i f VERBOSE >=1
107 cout<<” ”<<g f [ i ] [ j ] ;
108 #e n d i f
109 }
110 fout<<endl ;
111 #i f VERBOSE >=1
112 cout<<endl ;
113 #e n d i f
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114 }
115 f out . c l o s e ( ) ;
116 }
117

118

119 //Find Gradient o f 2D matrix
120 void mtxgdt : : input ( char ∗ s t r 1 ){
121 i n t i , j ;
122 i f s t r e a m f i n ( s t r 1 ) ;
123 i f ( ! f i n )
124 {cout<<” Input i d e n t i t y ”<<s t r1<<” doesn ’ t

ex i s t−−mtxgdt . c\n” ; e x i t (1 ) ;}
125 f o r ( i =0; i<m; i++){
126 f o r ( j =0; j<n ; j++)
127 f i n>>a [ i ] [ j ] ;
128 }
129 f i n . c l o s e ( ) ;
130 #i f VERBOSE >= 1
131 f o r ( i =0; i<m; i++){
132 f o r ( j =0; j<n ; j++)
133 cout<<a [ i ] [ j ]<<” ” ;
134 cout<<endl ;
135 }
136 #e n d i f
137 }
138 void mtxgdt : : gdt ( long double dx , long double dy , long

double ∗∗a ){
139 i n t i , j ;
140

141 f o r ( i =0; i<m; i++){
142 f o r ( j =1; j<n−1; j++){
143 gdtx a [ i ] [ j ] = 0 . 0 ;
144 gdtx a [ i ] [ j ] = 0 . 5∗ ( a [ i ] [ j +1]−a [

i ] [ j −1]) /dx ;
145 }
146 gdtx a [ i ] [ 0 ] = 0 . 0 ;
147 gdtx a [ i ] [ 0 ] = ( a [ i ] [ 1 ] − a [ i ] [ 0 ] ) /dx ;
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148 gdtx a [ i ] [ n−1] = 0 . 0 ;
149 gdtx a [ i ] [ n−1]=(a [ i ] [ n−1]−a [ i ] [ n−2]) /dx ;
150 }
151 #i f VERBOSE >= 1
152 f o r ( i =0; i<m; i++){
153 f o r ( j =0; j<n ; j++)
154 cout<<gdtx a [ i ] [ j ]<<” ” ;
155 cout<<endl ;
156 }
157 #e n d i f
158

159 f o r ( j =0; j<n ; j++){
160 f o r ( i =1; i<m−1; i++){
161 gdty a [ i ] [ j ] = 0 . 0 ;
162 gdty a [ i ] [ j ] = 0 . 5∗ ( a [ i +1] [ j ]−a [

i −1] [ j ] ) /dy ;
163 }
164 gdty a [ 0 ] [ j ] = 0 . 0 ;
165 gdty a [ 0 ] [ j ] = ( a [ 1 ] [ j ]−a [ 0 ] [ j ] ) /dy ;
166 gdty a [m−1] [ j ] = 0 . 0 ;
167 gdty a [m−1] [ j ] = ( a [m−1] [ j ]−a [m−2] [ j ] ) /

dy ;
168 }
169 #i f VERBOSE >= 1
170 f o r ( i =0; i<m; i++){
171 f o r ( j =0; j<n ; j++)
172 cout<<gdty a [ i ] [ j ]<<” ” ;
173 cout<<endl ;
174 }
175 #e n d i f
176 }
177 void mtxgdt : : output ( char ∗ s t r2 , char ∗ s t r 3 ){
178 i n t i , j ;
179 ofstream foutx ( s t r 2 ) ;
180 i f ( ! s t r 2 )
181 {cout<<”Cannot open the f i l e ”<<s t r2<<endl ; e x i t

(1 ) ;}
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182 #i f VERBOSE >= 1
183 cout<<” Gradient x−component i s :\n” ;
184 #e n d i f
185 f o r ( i =0; i<m; i++){
186 f o r ( j =0; j<n ; j++){
187 foutx<<” ”<<std : : s e t p r e c i s i o n

(16)<<gdtx a [ i ] [ j ] ;
188 #i f VERBOSE >= 1
189 cout<<” ”<<gdtx a [ i ] [ j ] ;
190 #e n d i f
191 }
192 foutx<<endl ;
193 #i f VERBOSE >= 1
194 cout<<endl ;
195 #e n d i f
196 }
197 foutx . c l o s e ( ) ;
198

199 ofstream fouty ( s t r 3 ) ;
200 i f ( ! s t r 3 )
201 {cout<<”Cannot open the f i l e ”<<s t r3<<endl ; e x i t

(1 ) ;}
202 #i f VERBOSE >= 1
203 cout<<” Gradient y−component i s :\n” ;
204 #e n d i f
205 f o r ( i =0; i<m; i++){
206 f o r ( j =0; j<n ; j++){
207 fouty<<” ”<<std : : s e t p r e c i s i o n

(16)<<gdty a [ i ] [ j ] ;
208 #i f VERBOSE >= 1
209 cout<<” ”<<gdty a [ i ] [ j ] ;
210 #e n d i f
211 }
212 fouty<<endl ;
213 #i f VERBOSE >= 1
214 cout<<endl ;
215 #e n d i f
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216 }
217 fouty . c l o s e ( ) ;
218 }
219

220

221 //Find Sum of 2D Matrix , This c l a s s i s not nece s sa ry
222 void mtxsum : : input ( char ∗ s t r 1 ){
223 i n t i , j ;
224 i f s t r e a m f i n ( s t r 1 ) ;
225 i f ( ! f i n )
226 {cout<<” Input matrix ”<<s t r1<<” doesn ’ t ex i s t−−

mtxsum . c/n” ; e x i t (1 ) ;}
227 f o r ( i =0; i<m; i++){
228 f o r ( j =0; j<n ; j++)
229 f i n>>a [ i ] [ j ] ;
230 }
231 f i n . c l o s e ( ) ;
232

233 #i f VERBOSE >= 1
234 f o r ( i =0; i<m; i++){
235 f o r ( j =0; j<n ; j++)
236 cout<<a [ i ] [ j ]<<” ” ;
237 cout<<endl ;
238 }
239 #e n d i f
240 }
241 long double mtxsum : : sumsum ( ) {
242 i n t i , j ;
243 sum = 0 . 0 ;
244 f o r ( i =0; i<m; i++){
245 f o r ( j =0; j<n ; j++)
246 sum += a [ i ] [ j ] ;
247 }
248 #i f VERBOSE >= 1
249 cout<<sum<<endl ;
250 #e n d i f
251 r e turn sum ;
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252 }
253

254

255 // Ca lcu la te the Potent i a l s , MPI to s p l i t irow
256 void p o t e n t i a l s : : c a l p o t e n t i a l s ( i n t rowstart , i n t rowend

, i n t mglobal , i n t ng lobal , long double dx , long
double dy , long double ∗∗Vx, long double ∗∗Vy, long
double ∗∗dGx , long double ∗∗dGy , i n t ntds ){

257

258 omp set num threads ( ntds ) ;
259 #pragma omp p a r a l l e l f o r num threads ( ntds )
260 f o r ( i n t irow=rowstar t ; irow<=rowend ; irow++){
261 f o r ( i n t icolumn =0; icolumn<ng loba l ;

icolumn++){
262 long double sumphi = 0 . 0 , sumpsi

= 0 . 0 ;
263 f o r ( i n t i =0; i<mglobal ; i++){
264 f o r ( i n t j =0; j<ng loba l ;

j++){
265 sumphi += Vx [ i ] [

j ]∗dGx [
mglobal−i row+
i ] [ ng lobal−
icolumn+j ]+Vy
[ i ] [ j ]∗dGy [
mglobal−i row+
i ] [ ng lobal−
icolumn+j ] ;

266 sumpsi += Vx [ i ] [
j ]∗dGy [
mglobal−i row+
i ] [ ng lobal−
icolumn+j ]−Vy
[ i ] [ j ]∗dGx [
mglobal−i row+
i ] [ ng lobal−
icolumn+j ] ;
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267 }
268 }
269 phi [ irow−rowstar t ] [ icolumn ] =

sumphi∗dx∗dy ;
270 p s i [ irow−rowstar t ] [ icolumn ] =

sumpsi∗dx∗dy ;
271 }
272 }
273 }

F.3 Main File

1 #inc lude ”gf2dhhd . h”
2 //COMPILE: mpicxx gf2dhhd . c gf2dhhd main . c −o

gf2dhhd main −std=c99 −openmp − l r t −wd981
3

4 i n t main ( i n t argc , char ∗∗ argv ){
5

6 MPI Status s t a t u s ;
7 MPI File f i l e p h i ; //MPI−IO to the same output

f i l e
8 MPI File f i l e p s i ;
9 MPI Datatype l o c a l p h i ; // Create subarray

10 MPI Datatype l o c a l p s i ;
11 char procname [ 3 2 ] ; // s t o r e p ro c e s s o r ’ s name
12 i n t i e r r ; i e r r = MPI Init(&argc ,& argv ) ;
13 i n t mpirank ; i e r r |= MPI Comm rank(

MPI COMM WORLD, &mpirank ) ;
14 i n t mpis i ze ; i e r r |= MPI Comm size (

MPI COMM WORLD, &mpis i ze ) ;
15 i n t namelen ; MPI Get processor name ( procname , &

namelen ) ;
16

17 char ∗ s t r 1 = ”Vx . dat” ;
18 char ∗ s t r 2 = ”Vy . dat” ;
19 const i n t m=99,n=70; //Change !
20 const long double de l t a = 4.832930238571752 e−09;
21 i n t num period = ( argc ==3)? a t o i ( argv [ 2 ] ) : 2 0 ;

181



22 long double width = 1 . 0 , he ight =1.4 ;
23 long double dx = width/n , dy = he ight /m; //

changed , Note Vx and Vy are de l e t ed 1 row and
1 column

24

25 // Divide rows onto d i f f e r e n t p r o c e s s e s
26 const i n t root = 0 ;
27 i n t l o ca l m l en = m/ mpis i ze ; //4 proc , 105/4 = 26
28 i n t rowstar t = mpirank∗ l o c a l m l en ; //

0−25;26−51 , . . .
29 i n t rowend = ( mpirank+1)∗ l o ca l mlen −1;
30 i f ( mpirank == mpis ize −1){ //78−105
31 rowend = m−1; l o ca l m l en = rowend−

rowstar t +1;
32 }
33

34 //To use MPI Bcast , the se 4 ar rays are
cont iguous

35 long double ∗∗Vx, ∗∗Vy;
36 long double ∗∗dGx , ∗∗dGy ;
37 Vx = new long double ∗ [m] ; Vy = new long double

∗ [m] ;
38 Vx [ 0 ] = new long double [m∗n ] ; Vy [ 0 ] = new long

double [m∗n ] ;
39 f o r ( i n t i =1; i<m; i++){
40 Vx[ i ] = &Vx [ 0 ] [ i ∗n ] ;
41 Vy[ i ] = &Vy [ 0 ] [ i ∗n ] ;
42 }
43 dGx = new long double ∗ [ 2∗m+1] ; dGy = new long

double ∗ [ 2∗m+1] ;
44 dGx [ 0 ] = new long double [ ( 2∗m+1)∗(2∗n+1) ] ;
45 dGy [ 0 ] = new long double [ ( 2∗m+1)∗(2∗n+1) ] ;
46 f o r ( i n t i =1; i<2∗m+1; i++){
47 dGx [ i ] = &dGx [ 0 ] [ i ∗(2∗n+1) ] ;
48 dGy [ i ] = &dGy [ 0 ] [ i ∗(2∗n+1) ] ;
49 }
50
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51 i n t ntds = ( argc == 2) ? a t o i ( argv [ 1 ] ) : 6 ; //
OpenMP threads number

52 s t r u c t t imespec t c g s t a r t = {0 ,0} ; // time o f
c on s t ru c t i ng GF

53 s t r u c t t imespec tcgend = {0 ,0} ;
54 s t r u c t t imespec t g d t s t a r t = {0 ,0} ; // time o f

f i n d i n g grad i en t
55 s t r u c t t imespec tgdtend = {0 ,0} ;
56 s t r u c t t imespec t p s t a r t = {0 ,0} ; // time o f

f i n d i n g p o t e n t i a l
57 s t r u c t t imespec tpend = {0 ,0} ;
58

59 //Vx and Vy can be read from the same f i l e by
d i f f e r e n t p r o c e s s o r s

60 i f ( mpirank == 0) {
61

62 // read f o r c e f i e l d in to memory
63 i f s t r e a m Vxin ( s t r 1 ) ;
64 i f ( ! Vxin ) {cout<<” Input f i l e Vx does

not e x i s t !\n” ; e x i t (1 ) ;}
65 f o r ( i n t i =0; i<m; i++){
66 f o r ( i n t j =0; j<n ; j++){
67 Vxin>>Vx[ i ] [ j ] ;
68 }
69 }
70 Vxin . c l o s e ( ) ;
71 i f s t r e a m Vyin ( s t r 2 ) ;
72 i f ( ! Vyin ) {cout<<” Input f i l e Vy does not

e x i s t !\n” ; e x i t (1 ) ;}
73 f o r ( i n t i =0; i<m; i++){
74 f o r ( i n t j =0; j<n ; j++){
75 Vyin>>Vy[ i ] [ j ] ;
76 }
77 }
78 Vyin . c l o s e ( ) ;
79

80 // Build 2x l a r g e r Green Function , use
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OpenMP
81 gf2d GreenF (2∗m+1,2∗n+1) ;
82 c l o c k g e t t i m e (CLOCK REALTIME,& t c g s t a r t ) ;
83 GreenF . p e r i o d i c (dx , dy ,2∗ num period+1,

de l ta , ntds ) ; // i f small , OpenMP, i f
l a r g e OpenMP+MPI ( Wil l See )

84 c l o c k g e t t i m e (CLOCK REALTIME,& tcgend ) ;
85 cout<<”Time o f bu i l d i ng Green ’ s Function

i s ”<<(tcgend . tv sec−t c g s t a r t . t v s e c
) ∗1000+( tcgend . tv nsec−t c g s t a r t .
t v n s e c ) /1000000<<”ms\n” ;

86 #i f VERBOSE >=1
87 GreenF . output ( ”GreenF100 . dat” ) ;
88 #e n d i f
89 //Find Gradient o f Green ’ s Function , not

time−consuming , no need to
p a r a l l e l i z e

90 mtxgdt GF(2∗m+1,2∗n+1) ;
91 #i f VERBOSE >=1
92 GF. input ( ”GreenF100 . dat” ) ;
93 #e n d i f
94 c l o c k g e t t i m e (CLOCK REALTIME,& t g d t s t a r t )

;
95 GF. gdt (dx , dy , GreenF . g f ) ; //OpenMP
96 c l o c k g e t t i m e (CLOCK REALTIME,& tgdtend ) ;
97 cout<<”Time o f f i n d i n g the g rad i en t i s ”

<<(tgdtend . tv sec−t g d t s t a r t . t v s e c )
∗1000+( tgdtend . tv nsec−t g d t s t a r t .
t v n s e c ) /1000000<<”ms\n” ;

98 #i f VERBOSE >=1
99 GF. output ( ”dGx100 . dat” , ”dGy100 . dat” ) ;

100 #e n d i f
101 //Read dGx . dat and dGy . dat in to dGx and

dGy
102 f o r ( i n t i =0; i<2∗m+1; i++) dGx [ i ] = &GF

. gdtx a [ 0 ] [ i ∗(2∗n+1) ] ;
103 f o r ( i n t i =0; i<2∗m+1; i++) dGy [ i ] = &GF
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. gdty a [ 0 ] [ i ∗(2∗n+1) ] ;
104 cout<<”Master ’ s Rank which i s ”<<mpirank

<<” ; and name i s ”<<procname<<” has
f i n i s h e d c a l c u l a t i n g Vx, Vy, dGx , and
dGy ! ”<<endl ;

105 }
106 //

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

107

108 //Now we have Vx, Vy, dGx , dGy , they should be
broadcasted to every proce s s

109 MPI Bcast(&Vx [ 0 ] [ 0 ] , m∗n , MPI LONG DOUBLE, root ,
MPI COMM WORLD) ;

110 MPI Bcast(&Vy [ 0 ] [ 0 ] , m∗n , MPI LONG DOUBLE, root ,
MPI COMM WORLD) ;

111 MPI Bcast(&dGx [ 0 ] [ 0 ] , (2∗m+1)∗(2∗n+1) ,
MPI LONG DOUBLE, root , MPI COMM WORLD) ;

112 MPI Bcast(&dGy [ 0 ] [ 0 ] , (2∗m+1)∗(2∗n+1) ,
MPI LONG DOUBLE, root , MPI COMM WORLD) ;

113

114 // This part i s the most time consuming part , no
need f o r b a r r i e r

115 p o t e n t i a l s p t l ( l oca l mlen , n) ;
116 c l o c k g e t t i m e (CLOCK REALTIME,& t p s t a r t ) ;
117 p t l . c a l p o t e n t i a l s ( rowstart , rowend , m, n , dx ,

dy , Vx, Vy, dGx , dGy , ntds ) ;
118 c l o c k g e t t i m e (CLOCK REALTIME,&tpend ) ;
119 MPI Barrier (MPI COMM WORLD) ; // not necessary ,

j u s t want to see p r i n t s c r e en
120 f f l u s h ( stdout ) ;
121 cout<<”The rank ”<<mpirank<<” whose name i s ”<<

procname<<” c a l c u l a t e s rows from ”<<rowstart
<<” to ”<<rowend<<” ; ”<<endl ;

122 cout<<”\tTime o f f i n d i n g the p o t e n t i a l i s ”<<(
tpend . tv sec−t p s t a r t . t v s e c ) ∗1000+( tpend .
tv nsec−t p s t a r t . t v n s e c ) /1000000<<”ms\n” ;
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123

124 // D i f f e r e n t p r o c e s s e s wr i t e to the same ” phi . txt
” and ” p s i . txt ” s imultaneous ly−LAST PROBLEM

125 // Create char datatype
126 char p h i f i l e [ 3 0 ] , p s i f i l e [ 3 0 ] ;
127 s p r i n t f ( p h i f i l e , ” phi p%d . dat” , num period ) ;
128 s p r i n t f ( p s i f i l e , ” p s i p%d . dat” , num period ) ;
129 MPI Datatype p h i a s s t r i n g ;
130 const i n t charspernum = s i z e o f ( long double ) +8;
131 MPI Type contiguous ( charspernum , MPI CHAR, &

p h i a s s t r i n g ) ;
132 MPI Type commit(& p h i a s s t r i n g ) ;
133 char ∗ p h i a s t x t = new char [ l o ca l m l en ∗n∗

charspernum ] ;
134 i n t count = 0 ;
135 f o r ( i n t i =0; i<l o c a l m l en ; i++){
136 f o r ( i n t j =0; j<n−1; j++){
137 s p r i n t f (& p h i a s t x t [ count∗

charspernum ] , ”%1.15Le ” , p t l
. phi [ i ] [ j ] ) ;

138 count++;
139 }
140 s p r i n t f (& p h i a s t x t [ count∗charspernum ] ,

”%1.15Le\n” , p t l . phi [ i ] [ n−1]) ;
141 count++;
142 }
143

144 MPI Datatype p s i a s s t r i n g ;
145 MPI Type contiguous ( charspernum , MPI CHAR, &

p s i a s s t r i n g ) ;
146 MPI Type commit(& p s i a s s t r i n g ) ;
147 char ∗ p s i a s t x t = new char [ l o ca l m l en ∗n∗

charspernum ] ;
148 count = 0 ;
149 f o r ( i n t i =0; i<l o c a l m l en ; i++){
150 f o r ( i n t j =0; j<n−1; j++){
151 s p r i n t f (& p s i a s t x t [ count∗
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charspernum ] , ”%1.15Le ” , p t l
. p s i [ i ] [ j ] ) ;

152 count++;
153 }
154 s p r i n t f (& p s i a s t x t [ count∗charspernum ] ,

”%1.15Le\n” , p t l . p s i [ i ] [ n−1]) ;
155 count++;
156 }
157

158 // Create subarray
159 i n t g l o b a l s i z e s [ 2 ] = {m, n } ;
160 i n t l o c a l s i z e s [ 2 ] = { l o ca l mlen , n } ;
161 i n t s t a r t s [ 2 ] = { rowstart , 0} ;
162 i n t order = MPI ORDER C;
163 MPI Type create subarray (2 , g l o b a l s i z e s ,

l o c a l s i z e s , s t a r t s , order , p h i a s s t r i n g , &
l o c a l p h i ) ;

164 MPI Type commit(& l o c a l p h i ) ;
165 MPI Type create subarray (2 , g l o b a l s i z e s ,

l o c a l s i z e s , s t a r t s , order , p s i a s s t r i n g , &
l o c a l p s i ) ;

166 MPI Type commit(& l o c a l p s i ) ;
167

168 MPI File open (MPI COMM WORLD, p h i f i l e ,
169 MPI MODE CREATE |

MPI MODE WRONLY, //
WRONLY: Write only

170 MPI INFO NULL, &
f i l e p h i ) ;

171 MPI Fi l e s e t v i ew ( f i l e p h i , 0 , MPI CHAR,
l o c a l p h i , ” nat ive ” , MPI INFO NULL) ;

172 M P I F i l e w r i t e a l l ( f i l e p h i , p h i a s t x t ,
l o ca l m l en ∗n , p h i a s s t r i n g , &s t a t u s ) ;

173 MPI Fi l e c l o s e (& f i l e p h i ) ;
174

175 MPI File open (MPI COMM WORLD, p s i f i l e ,
176 MPI MODE CREATE |
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MPI MODE WRONLY, //
WRONLY: Write only

177 MPI INFO NULL, &
f i l e p s i ) ;

178 MPI Fi l e s e t v i ew ( f i l e p s i , 0 , MPI CHAR,
l o c a l p s i , ” nat ive ” , MPI INFO NULL) ;

179 M P I F i l e w r i t e a l l ( f i l e p s i , p s i a s t x t ,
l o ca l m l en ∗n , p s i a s s t r i n g , &s t a t u s ) ;

180 MPI Fi l e c l o s e (& f i l e p s i ) ;
181

182 MPI Type free(& l o c a l p h i ) ;
183 MPI Type free(& l o c a l p s i ) ;
184 MPI Type free(& p h i a s s t r i n g ) ;
185 MPI Type free(& p s i a s s t r i n g ) ;
186

187 //
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

188 d e l e t e [ ] Vx ;
189 d e l e t e [ ] Vy ;
190 d e l e t e [ ] dGx ;
191 d e l e t e [ ] dGy ;
192 d e l e t e [ ] p h i a s t x t ;
193 d e l e t e [ ] p s i a s t x t ;
194

195 MPI Final ize ( ) ;
196 r e turn 0 ;
197 }
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