
Copyright

by

Xianlong Hou

2013



The Thesis committee for Xianlong Hou

Certifies that this is the approved version of the following thesis:

Evaluating hydrodynamic uncertainty

in oil spill modeling

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:

Ben R. Hodges

Paola Passalacqua



Evaluating hydrodynamic uncertainty

in oil spill modeling

by

Xianlong Hou, B.E.

Thesis

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May, 2013



Acknowledgements

I would like to express my very great appreciation to some individuals and insti-

tutions for their valuable help and constructive suggestions during this work. First,

I would like to offer my special thanks to my research advisor, Dr. Ben R. Hodges,

for his very patient guidance when I went into the wrong way and his enthusiastic

encouragement when I made progress. My grateful thanks are also extended to the

invaluable assistance of TWDB personnel, Dr. Dharhas Pothina, Dale Crockett, and

Solomon Negusse who were always ready to help. I would also like to thank Dr.

Joseph Zhang from Center for Coastal Resources Management at the Virginia Insti-

tute of Marine Science and Dr. Chris Barker at NOAA for their advice and assistance

in keeping my research progress on schedule. Finally, I wish to acknowledge the help

provided by the PhD student, Itay Rosenzweig, at Stanford University, Dr. Paola

Passalacqua at UT-Austin, and all the EWRE faculty and staff of UT-Austin.

This material is based in part upon work supported by the Research and Devel-

opment program of the Texas General Land Office Oil Spill Prevention and Response

Division under Grant No. 10-097-000-3928 and in part by a grant from BP/The Gulf

of Mexico Research Initiative through the Gulf Integrated Spill Research (GISR)

consortium. Computer support was provided by the UT Center for Research in Wa-

ter Resources.

iv



Evaluating hydrodynamic uncertainty in oil spill modeling

by

Xianlong Hou, MSE

The University of Texas at Austin, 2013

SUPERVISOR: Ben R. Hodges

A new method is presented to provide automatic sequencing of multiple hydro-

dynamic models and automated analysis of model forecast uncertainty. A Hydro-

dynamic and oil spill model Python (HyosPy) wrapper was developed to run the

hydrodynamic model, link with the oil spill, and visualize results. The HyosPy wrap-

per completes the following steps automatically: (1) downloads wind and tide data

(nowcast, forecast and historical); (2) converts data to hydrodynamic model input;

(3) initializes a sequence of hydrodynamic models starting at pre-defined intervals

on a multi-processor workstation. Each model starts from the latest observed data,

so that the multiple models provide a range of forecast hydrodynamics with different

initial and boundary conditions reflecting different forecast horizons. As a simple

testbed for integration strategies and visualization on Google Earth, a Runge-Kutta

4th order (RK4) particle transport tracer routine is developed for oil spill transport.

The model forecast uncertainty is estimated by the difference between forecasts in

the sequenced model runs and quantified by using statistics measurements. The

HyosPy integrated system with wind and tide force is demonstrated by introducing
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an imaginary oil spill in Corpus Christi Bay. The results show that challenges in

operational oil spill modeling can be met by leveraging existing models and web-

visualization methods to provide tools for emergency managers.
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Chapter 1 - Introduction

1.1 Motivation

When an oil spill occurs at night in heavily trafficked shipping lanes, operational

models become the key tool for estimating oil spill motion and deciding the initial

equipment positioning as part of the emergency response. During an oil spill in

coastal waters, the Office of Response and Restoration (OR&R) from the National

Oceanic and Atmospheric Administration (NOAA), is responsible for providing scien-

tific support to the U.S. Coast Guard officers who are in charge of emergency response

operations (NOAA, 2013). To prepare communities for oil spills, OR&R develops

and implements several operational models for response and planning. These include

the General NOAA Operational Modeling Environment (GNOME), an oil spill tra-

jectory forecasting model; Automated Data Inquiry for Oil Spills (ADIOS), an oil

weathering model; and Environmental Response Management Application (ERMA),

a GIS-based model that integrates key response data (NOAA, 2013). Effective oil

spill response requires predicting possible oil spill movement. The oil spill trans-

port model (GNOME) relies on forecasts of water surface currents that are typically

provided by hydrodynamic models developed and maintained by local agencies. In

Texas these are the General Land Office (TGLO) and the Texas Water Development

Board (TWDB). The present TGLO/TWDB system requires TWDB/TGLO staff

members to manually configure, run, and transfer data between models and visual-

ization software, a system that could be made more efficient with the latest software

tools for automatically coupling models.
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A problem that has not been addressed in oil spill response is the effect of un-

certainty in hydrodynamic modeling. Any prediction based on forecast data and

modeling contains uncertainty that depends on the forecast time span and the mod-

els involved (Hodges and Hou, 2013). For example, hurricane and typhoon prediction

maps typically have cone-shaped regions representing the probably future path for

a storm. These cones are updated routinely based on the latest results from mul-

tiple models. The GNOME oil spill trajectory model provides methods to estimate

uncertainty from forecasts for ocean currents and wind. Unfortunately, the exist-

ing hydrodynamic models do not provide any systematic approaches to evaluate the

models’ contributions to uncertainty.

To improve oil spill emergency response, this research addresses the two motiva-

tions above by: (1) developing improved methods for coupling weather/tidal fore-

casts, hydrodynamic models, oil spill models, and visualization, and (2) providing an

approach from creating multiple hydrodynamic model runs as a basis for quantifying

the hydrodynamic forecast uncertainty.

1.2 Research Objectives

The objectives of this research are to: (1) improve the model coupling method

developed by Rosenzweig and Hodges (2011) into an operational framework suitable

for implementation in the TGLO/TWDB Linux-Based computer system with Google

Earth visualization (§3.9), and (2) develop an automatic system that provides a se-

quence of hydrodynamic forecast models running with different wind and tide hind-
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casts/nowcasts/forecasts (historical data/current data/future data) with pre-defined

intervals (§3.7). The difference between these old forecasts and the newer ones is

used to quantify model error which is used to estimate how uncertainty evolves over

time for new forecasts (§3.10).

When this advanced automatic system is installed and operational, TGLO/TWDB

will have a better understanding of the capabilities and limitations of the combined

hydrodynamic/oil spill transport response models and the forecast time horizon over

which a prediction is believable.

1.3 Research Overview

This research presents a new model coupling system to automate multiple hydro-

dynamic model runs, oil spill modeling, visualization in Google Earth, and estimat-

ing hydrodynamic forecast uncertainty. This new model coupling system is a set of

wrapper codes using the Python scripting computer language. In keeping with recent

tradition in naming Python modules, the new model coupling system is known as

HyosPy, which stands for Hydrodynamic and oil spill Python.

HyosPy is demonstrated with an automated sequencing of hydrodynamic mod-

els that enables 12 models (or more depending on the hardware configuration) to

run at pre-defined intervals on a single multi-logical-processor workstation. HyosPy

automatically downloads wind and tide nowcasts/forecasts from the web and trans-

forms the data into input formats for each hydrodynamic model. Results from the

different individual hydrodynamic models are used to drive separate runs of an oil
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spill transport model so that multiple predictions of spill transport can be produced

and visualized in Google Earth. The ensemble of results from these 12 modes is

used to statistically evaluate the forecast uncertainty. Because NOAA is still work-

ing on developing a Linux version of the GNOME model that will be compatible

with the TGLO/TWDB system, a simple oil spill transport model based on a 4th

order Runge-Kutta method (RK4 oil spill transport model) has been developed as

a placeholder model that allowed development of the complete integration strategy

and visualization. The structure of the HyosPy wrapper is shown in Fig. §1.3.1.
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Figure 1.3.1: HyosPy wrapper structure (The big box on left represents a sequence of

hydrodynamic models running with wind/tide force and pre-defined intervals marked

as Time delay. The results of this model sequence along with the initial oil spill

conditions are used to visualize oil spill predictions and quantify forecast uncertainty

by using RK4 oil spill transport model.)
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Chapter 2 - Background

2.1 Oil Spill Modeling

Advanced numerical oil spill modeling can provide emergency response managers

with valuable information for risk assessment and contingency planning. To these

ends, the transport and fate of oil spills has been studied using mass balance ap-

proaches and trajectory methods (e.g. Mackay et al., 1980; Huang, 1983; Spauld-

ing, 2010; Shen and Yapa, 1988; Shen et al., 1986; Yapa et al., 1994). Some well-

established oil spill models have been developed to predict oil transport movement

and distribution in water body (Chao et al., 2003), such as GNOME (§2.2), OILMAP

(ASA, 1997) and SINTEF (Reed, 2000).

In the last three decades, oil spill movement on water surface has been a signif-

icant research focus (Wang et al., 2007), resulting in two-dimensional (2D) oil spill

models of advection and spreading (Nagheeby and Kolahdoozan, 2010; Chao et al.,

2012, 2001; Inan and Balas, 1980). Advection is a physical process caused by the

combined effects of winds, currents and waves. Advection for oil consists of two

parts, which are surface oil advection and suspended oil advection in the water just

below the surface. The surface oil advection is dominated by the forces of surface

current and wind drag on oil, while the advection of suspended oil is the movement

of oil droplets entrained in the water column due to water current (Guo et al., 2009).

Spreading is generally simulated using the Fay hypothesis (Nagheeby and Kolah-

doozan, 2010; Inan and Balas, 1980; Guo et al., 2009). According to Fay hypothesis,

spreading, which dominates the surface oil transport at the beginning of the spill,
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is caused by the horizontal expansion of the oil slick due to the counterbalance of

mechanical forces including gravity, surface tension, inertia and viscosity (ASCE-

Task-Committee, 1996; Shen and Yapa, 1988).

After an oil spill event, oil particles can stay in the water column for more than 4

days (Humphrey et al., 1987) degrading the environment. Recent research in three-

dimensional (3D) oil spill modeling has included vertical movement and distribution

of oil droplets (Chao et al., 2003; Lonin, 1999; Wang et al., 2007). Dispersion, rather

than advection and spreading, dominates the oil particle movement in the vertical

direction. A main objective of vertical oil dispersion research has been to estimate

the rate of oil entrainment in the water column from the surface slick. Generally,

vertical particle movement in three-dimensional oil spill modeling is simulated using

the random walk technique (Chao et al., 2003; Lonin, 1999; Wang et al., 2007).

The research studies above are some of the foundations for operational oil spill

modeling, which focuses on trajectory forecast simulation, probabilistic risk analysis,

and information for making real-time responses (William et al., 2013) to minimize

impacts and provide a net environmental benefit.

The primary task that should be undertaken when preparing to conduct real-time

oil spill response operations is a comprehensive risk assessment and hazard analysis

(IPIECA, 2002). Oil spill trajectory models, such as GNOME (§2.2), provide risk

assessment, emergency response and contingency planning activities for the surface

spills that often result from shipboard accidents and operations, and which comprise

the majority of oil spills (Deborah et al., 1999).
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2.2 The TGLO/TWDB Oil Spill System

The existing operational hydrodynamic model for TGLO/TWDB oil spill sys-

tem is the two-dimensional (2D) TxBLEND model, which is used to simulate water

velocities with wind and tide forces. Wind data driving the hydrodynamics are

obtained from the Eta Model from the National Centers for Environmental Predic-

tion (NCEP). Tide forecasts for TxBLEND use tidal harmonic constituents. Tide

hindcasts use field observations from the Texas Coastal Ocean Observation Network

(TCOON). The manual transformation and configuration of the TxBLEND output

data to GNOME format is used to provide an oil spill trajectory prediction and vi-

sualization (Matsumoto, 1993; Rosenzweig and Hodges, 2011).

Hydrodynamic model

Presently, the hydrodynamic model used by TWDB as part of the TGLO oil spill

modeling program is TxBLEND, a 2D (depth-averaged) finite-element model which

simulates water currents by solving the continuity equation, momentum equations,

and the advection-diffusion equation for conservation of salt. TxBLEND follows the

generalized wave equation approach pioneered by Lynch and Gray (1979) that was

developed into the 2D versions of the ADCIRC model (Blain and Rogers, 1998).

TxBLEND has been under continuous development and application by TWDB for

more than twenty years (TWDB, 2013). A primary disadvantage of TxBLEND for

oil spill modeling is the 2D approach, which cannot capture developing wind-driven

currents in the near-surface layer and therefore underestimates the hydrodynamic
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contribution to oil spill advection.

To obtain improved estimation of surface currents, TWDB would like to use

a newer 3D hydrodynamic model in the operational oil spill system. TWDB has

been testing the Semi-Implicit Eulerian-Lagrangian Finite-Element (SELFE) hydro-

dynamic model for this purpose. SELFE is an open-source hydrodynamic modeling

system which is based on unstructured grids and designed for the effective simula-

tion of 3D baroclinic circulation across river-to-ocean scales. To solve the differential

equation system, SELFE implements finite-element and finite-volume schemes with

Eulerian-Lagrangian algorithm (Zhang and Baptista, 2008). No mode splitting is

used in SELFE, thus eliminating the errors associated with the splitting between

internal and external modes (Shchepetkin and McWilliams, 2005).

Oil spill trajectory model: GNOME

The GNOME oil spill trajectory model was developed by the OR&R at NOAA.

As a nowcast/forecast model in pollution transport analyses, GNOME provides the

capability of experimenting with oil spill behavior under different weather condi-

tions (Cheng et al., 2011). GNOME utilizes the NOAA CATS (Current Analysis

for Trajectory Simulation) model for dispersion. GNOME uses splots (also called

Lagrangian/Eulerian (continuous) elements or LEs), which are collections of point

representations that collectively indicate the extent of spilled oil (Beegle-Krause,

2005). Presently, NOAA provides GNOME for Windows and Mac OS X operating

systems. Although the GNOME code base is designed to be portable, NOAA is

still working on removing the platform-dependent code in a Linux version which is
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expected to be released in 2013.

2.3 Python Programming

Python is a powerful dynamic programming language which can be used in

a wide variety of application domains. Guido van Rossum created Python in the

early1990s. To ensure a clear, easy-to-use language, van Rossum only used ideas

that had proven their worth over time in other computer programming languages

(Lindstrom, 2005). Although running Python code is usually 10X slower than C lan-

guage, writing Python code is much easier and faster. In most other programming

languages, a significant amount of code is required just to prepare for implementing

an algorithm. However, in Python, it is not necessary to define variable types, cre-

ate iterators or other support objects, break the code into particular files or produce

other supporting code, such as the headers used in C++ and Java (Lindstrom, 2005).

2.4 GNOME/hydrodynamic model coupling

Previous work supported by TGLO under this contract (10-097-000-3928) demon-

strated that both TxBLEND and SELFE could be coupled with GNOME through

a Python wrapper (Rosenzweig and Hodges, 2011). The wrapper was designed to

reduce the manual effort associated with transforming the hydrodynamic models

output into the correct format for GNOME and pre-processing the model configura-

tion. The wrapper was tested by a series of simulations of SELFE and TxBLEND

10



coupled with GNOME for a hypothetical spill in Galveston Bay. The prior project

demonstrated that (1) a wrapper coupling approach is practical, and (2) Python is

an appropriate scripting language for handling the data transformation and model

configuration. It was recognized from the outset that the wrapper developed in

Rosenzweig and Hodges (2011) could not be directly implemented in TWDB com-

puters with a Linux version of GNOME.
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Chapter 3 - Methodology

3.1 Overview

This study builds upon the previous Python wrapper (Rosenzweig and Hodges,

2011) with a completely automated code (HyosPy) for configuring hydrodynamic

input files, running multiple hydrodynamic models at pre-defined time intervals us-

ing nowcasts/forecasts wind and tide data, computing drifter tracks with an RK4

advection algorithm, visualizing different oil spill predictions in Google Earth, and

quantifying the forecast uncertainty of an ensemble of results from multiple models.

HyosPy has been developed and tested for the Linux operating system that TWDB

uses on computers for hydrodynamic modeling. Until a Linux version of GNOME

becomes available, HyosPy cannot be directly tied to GNOME as was done in the

previous Python wrapper (Rosenzweig and Hodges, 2011). However, a new RK4

transport algorithm provides a functional placeholder for testing the integration of

a complete system. The present research has exclusively used the SELFE hydro-

dynamic model to be compatible with the future operational needs of TGLO and

TWDB.

In this research, the Python programming language (§2.3) is used as a master

programming tool to automatically implement each step in Fig. §1.3.1, and integrate

them as a whole system. Because each step in Fig. §1.3.1 is programmed by a cor-

responding Python module that is independent among other modules, the system

can be extended to a broader multi-function platform without any re-programming

work but just by making some connecting changes in the code. Additionally, Python
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can call and edit other programming language module with ease, thus, visualization

via Google Earth can be accomplished by calling and editing an existing JavaScript

module.

3.2 Study Region

The study region is Corpus Christi Bay (Fig. §3.2.1) which is a shallow embay-

ment in the Texas Coastal Bend region that episodically experiences inverse estuarine

conditions (Hodges et al., 2011). The climate is semi-arid and the annual rainfall

varies from 25 to 38 inches. Generally, winters are mild with occasional freezes while

summers are humid and hot. Tropical storms and hurricanes periodically affect the

region (Ward, 1997).
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Figure 3.2.1: Corpus Christi Bay

3.3 SELFE Setup

The setup process for MPI SELFE hydrodynamic model implemented with HyosPy

(§3.7) requires three steps; the order of the steps is not important since each step

is independent with each other. Firstly, The SELFE hydrodynamic model requires

four types of mandatory input files containing: (1) model grid with bathymetry ele-

vations, (2) boundary condition and tidal information, (3) parameter input, and (4)

interpolation mode. For this study, the SELFE grid and boundary data of Corpus

Christi Bay were obtained from TWDB (§3.4). The parameter input file contains all

of the necessary model running mechanism information, such as total running period,

advection on/off switch, implicitness parameter, and global output options (i.e. pa-

rameters to set which output will be recorded). The interpolation mode file specifies

14



the approach used for vertical interpolation (SELFE-developers, 2013b). Second, to

implement SELFE with HyosPy (§3.7) using wind and tide forces, wind and tide

hindcasts/nowcasts/forecasts files are also required. Downloading and transforming

wind and tide real-time nowcast/forecast data are discussed in §3.5 and §3.6, respec-

tively. In addition, the SELFE source code needs to be compiled before running.

In this research, the SELFE source code was compiled with the Intel Fortran com-

piler, which is recommended by the SELFE developers. When a SELFE simulation

is completed, the binary outputs need to be combined with the post-processing tools

(SELFE-developers, 2013a) to visualize and integrate with the oil spill models.

3.4 Model grid

The SELFE grid domain used herein extends from Aransas Bay to the north

to just below Baffin Bay to the south (Fig. §3.4.1), which includes a small part of

the Gulf of Mexico (GoM), Nueces Bay, Corpus Christi Bay. The SELFE domain

is generally very shallow, 5m or less (Zhang, 2010), and thus the effects of wind

and tide are expected to play a significant role in surface currents which directly af-

fect surface oil spills. Fig. §3.4.2 shows the basic SELFE grid for Corpus Christi Bay.
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Figure 3.4.1: SELFE grid domain outline. The large rectangular sections are dummy

domains for river inflows that are used to reduce boundary effects associated with

rapid changes in river inflow rates.
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Figure 3.4.2: SELFE grid for Corpus Christi Bay

3.5 Wind nowcasts/forecasts/hindcasts

HyosPy is configured to download and translate wind nowcasts/forecasts/hind-

casts data from a server hosted by Texas A&M University (TAMU) (§5.2). This

server collects wind data from 341 observation sites along the west part of GoM

(Fig. §3.5.1) and provides 3-hourly historical wind data, wind nowcasts, and 4-day

wind forecasts for all observation sites in GMT (UTC) local time. The TAMU server

updates the wind forecast data for every site every 3 hours. The raw data is down-

loaded in a tar format which contains individual ASCII text files for each wind site.

Each wind data file has its station number along with latitude and longitude loca-

tion in the header. For this research, wind nowcasts/forecasts from site 51 (i.e. the

observation site for Corpus Christi Bay) are used.
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Figure 3.5.1: Distribution of wind sites. Figure provided by D. Robertson, TGLO.

For each wind site, the wind data format from TAMU is shown in Table §3.5.1:

Year Month Day Hour U(mi/hr) θ

2013 01 01 00 6.4 165.8

2013 01 01 03 17.9 148.4

... ... ... ... ... ...

Table 3.5.1: Wind data format from the TAMU server (Wind direction (θ) is recorded

as degrees using the NWS convention where 0 means wind from the north.)

The wind speed and direction data from the TAMU server are transformed into

SELFE wind velocity vectors of u and v using (SELFE-developers, 2013b):
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u = 0.447U sin

(
θ

2π

360

)
(1)

v = −0.447U cos

(
θ

2π

360

)
(2)

where u and v represent the value of wind speed (m/s) in easterly and northerly

directions, respectively, such that negative values are westerly and southerly vectors;

the constant 0.447 is a unit conversion from mi/hr to m/s.

3.6 Tide nowcasts/forecasts/hindcasts

HyosPy obtains tide nowcasts/forecasts/hindcast from the Texas Coastal Ocean

Observation Network (TCOON) hosted by Texas A&M University Corpus Christi.

TCOON is a network of scientific data collection platforms that records, maintains,

and distributes wind and water data along the Texas Coast. The network currently

consists of 37 data collection stations from South Padre Island, Texas to the Texas

Louisiana border on the Sabine River (TCOON, 2013). TCOON provides measured

tidal elevations for hindcast and nowcast with tidal predctions using harmonic anal-

ysis. The tide data can be downloaded with elevation relative to either the station

datum or several standard datums (e.g. NAVD88). In this research, the tide data is

downloaded with the datum of mean sea level (MSL) to be compatible with SELFE

elevation datum of Corpus Christi Bay. Fig. §3.6.1 shows the relationship between

the measured and harmonic tides for Bob Hall Pier (sited on the Gulf of Mexico
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outside of Corpus Christi Bay) over five days. The data set was downloaded on

4/20/2013.

Figure 3.6.1: Typical measured and predicted tidal elevations (TCOON, 2013)

The measured and the predicted tides do not align when transition from past to

future, typically because of the effects of wind and circulation in the Gulf of Mexico

and storm tides driven by atmospheric pressure effects. An unrealistic sudden jump

in the tidal elevation would occur if SELFE were run from a hindcast through to

a forecast by simply switching from the measured tide to the predicted harmonic.

Thus, to provide a smoother transition of tide series from past to future is required

using:
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Zm
P = Zm

H +

∑n
i=0(Z

i
M − Zi

H)

n
: m = 1, 2, 3... (3)

where Zm
P is the predicted tidal elevation at the mth future time interval, Zm

H is the

harmonic tide at the the mth future time interval, Zi
M is the measured tidal ele-

vation at the ith past time interval, Zi
H is the harmonic tidal elevation at the ith

past time interval, and n is the number of past time intervals used for the compu-

tation. The parameter n (the historical tidal time series) needs to be long enough

to remove high-frequency changes from the measured data, but also small enough to

guarantee an appropriate jump from the harmonic data. Judging from Fig. §3.6.1,

n is set to be 240 (24 hours with data recorded every 6 minutes). Fig. §3.6.2 shows

the generated tide prediction (yellow curve) based on the harmonic tidal elevation.

The tide hindcast/nowcast/forecast data can be transformed in SELFE input format

(SELFE-developers, 2013b) in an ASCII text file using Python (§5.2).
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Figure 3.6.2: Tide prediction

3.7 HyosPy automation

HyosPy builds upon and extends the Python wrapper developed in the prior

TGLO project (Rosenzweig and Hodges, 2011). When installed with SELFE on a

multiple logical-processor workstation, HyosPy can be used to automatically run a

sequence of SELFE hydrodynamic models at pre-defined time intervals, with each

model using the latest wind and tide nowcasts/forecasts. HyosPy automates the

entire pre-processing (i.e. wind and tide hindcasts/forecasts downloading and con-

figuration), the multiple models running with pre-determined intervals, and the post-
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processing work (i.e. combining binary outputs for oil spill integration). To be spe-

cific, HyosPy does the following steps automatically (Hodges and Hou, 2013):

a. Download wind and tide data (§5.2, §5.2).

b. Convert data to the hydrodynamic model input format (§5.2, §5.2).

c. Initialize the hydrodynamic model and start simulation on a single processor

(§5.2).

d. Wait a predetermined time interval and obtain new forecast, nowcast and

historical data (§5.2).

e. Start a new simulation on another processor using initial conditions based on

the latest forecast/nowcast/hindcast data (§5.2).

f. Repeat steps d and e.

g. Combine the binary outputs for analysis (§3.3).

The approach used for automating the hydrodynamic model sequence is illus-

trated in Fig. §3.7.1. Before initiating the HyosPy system on a multiple logical-

processor workstation, the time interval between simulation starts is defined as

∆Tstart, and the simulation time duration as Ttotal. Thereafter, up to real-time = 0,

HyosPy automatically downloads and transforms the real-time wind and tide now-

casts/forecasts/hindcasts, with which the first SELFE model (the first box with 0

hindcast and Ttotal forecasts in Fig. §3.7.1) runs on the first logical-processor. The

process is automated and seamless. At real-time = 0, no hindcast data are used, but

Ttotal forecasts are available so that the initial SELFE run is in a completely forecast
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mode. After pre-defined interval ∆Tstart, new wind/tide observations become avail-

able. To make use of this data, the HyosPy automatically downloads and transforms

another set of real-time wind and tide hindcasts/forecasts (up to real time = ∆Tstart),

and the second SELFE model is started on the second logical-processor with ∆Tstart

hindcasts and (Ttotal - ∆Tstart) forecasts.

Figure 3.7.1: Hyospy Mechanism

Since the first SELFE model used forecast data from 0 to ∆Tstart, i.e. the time

when the second model begins, the first SELFE model will likely diverge from the

second model that uses observed data during the same time interval. As the two

models continue forward in time, the difference between them provides insight into

the uncertainty associated with the initial forecast data. As new wind/tide observed

data becomes available after another pre-defined interval ∆Tstart, the third SELFE is
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started using the last available wind/tide observed data. This sequence is continued

until all SELFE are running a different simulation based on different latest available

wind and tide hindcast/forecast data. Given that one SELFE requires TCPU time to

finish running, at any time the number of models running on the multiple logical-

processor workstation depends on the amount of overlap (Fig. §3.7.1).

A limitation of the present approach is that each model starts from the same

initial conditions, which means that the third model will complete exactly the same

results from 0 to ∆Tstart as the second model. This is a temporary approach designed

for testing the multiple model sequence running with pre-defined time intervals. Fu-

ture work requires transforming the prior models outputs to create the next model’s

initial conditions so that redundant computations are eliminated.

3.8 RK4 Surface Tracer Transport Routine Mechanism

Hydrodynamic models are inherently mechanistic, translating tidal and wind forc-

ing into time and space-varying velocities which are recorded as part of the model

output. Surface velocities from a hydrodynamic model can be used as input files

for oil spill modeling. NOAA is presently rewriting the GNOME oil spill model into

a Linux kernel that can be integrated with HyosPy in the future. In the interim,

a Runge-Kutta 4th order method particle transport routine (RK4 tracer routine)

was developed to use as a simple testbed for integration and visualization strategies

(Hodges and Hou, 2013). This transport method can also be used as a basis for

drifter modeling, which may be valuable when developed into web-based tool for

25



the public to use in visualizing flow paths. The RK4 tracer routine was designed to

compute the transport of multiple particles spread over a range of starting positions.

The mechanism of this tracer routine is illustrated in Fig. §3.8.1.

Figure 3.8.1: RK4 Surface Tracer Transport Routine Mechanism

An imaginary oil spill can be introduced at any location represented by a number

of particles distributed about a center location. Along with the time and space-

varying surface velocity (part of SELFE outputs), the movement of oil particles can

be calculated by implementing a Runge-Kutta 4th order method (RK4) (Al-Khafaji

and Tooley, 1986). In this RK4 transport method, the movement of oil particles

is recorded as a series of Universal Transverse Mercator (UTM) coordinates which

uses a two-dimensional Cartesian coordinate system to give locations on the surface

of the Earth. The RK4 tracer routine can be integrated with HyosPy (§3.7) at any

given time by just reading part of the hydrodynamic model sequence which is still

running in progress (§5.2).
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The time i+ 1 positions (x, y) of a particle is computed as:

xi+1 = xi +
1

6
(k1x + 2k2x + 2k3x + k4x) (4)

yi+1 = yi +
1

6
(k1y + 2k2y + 2k3y + k4y) (5)

where the k functions are of the form:

k1x = ∆t u (ti, xi, yi, ) (6)

k2x = ∆t u

(
ti +

∆t

2
, xi +

k1x
2
, yi +

k1y
2

)
(7)

k3x = ∆t u

(
ti +

∆t

2
, xi +

k2x
2
, yi +

k2y
2

)
(8)

k4x = ∆t u (ti + ∆t, xi + k3x, yi + k3y) (9)

where ∆t is the time interval used for the forward time-marching integration, and

u(t, x, y) is the x velocity evaluated at time t and position (x, y) from the hydrody-

namic model velocity data. The ky values are similar, but using the velocity in the

y direction, v(t, x, y), instead of u(t, x, y). The ∆t used in the RK4 is the same as

the model time step in SELFE.

3.9 Visualizing particles on Google Earth

To visualize different particle positions through time on Google Earth, the UTM

coordinates calculated by the RK4 tracer routine requires converting to Latitude and

Longitude (§5.2) (IBM-developers, 2013) since Google Earth does not provide tools
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to read UTM coordinates. Therefore, these converted Latitudes and Longitudes can

be copied to a Google Map Marker animation JavaScript module (§5.2) (Google-

developers, 2013) using Python. This Google Marker animation JavaScript module

is a Google Map API that can mark multiple points with Latitude and Longitude on

Google Earth and store as an html file format. Thus, visualizing oil spill particles on

Google Earth is available by opening a Google Earth html file with all the particle

positions marked. The web-visualization process is shown as Fig. §3.9.1:

Figure 3.9.1: Web-visualization process

3.10 Evaluating hydrodynamic uncertainty

The combination of HyosPy and the RK4 tracer routine provides multiple fore-

casts of oil spill motion through time. Each spill forecasts contains different hydrody-

namic forecast uncertainty due to the different wind and tide data used as boundary

conditions. A simple uncertainty metric is the distance between the predicted parti-

cle positions at each time step for the different simulations.

To calculate the distance, the position of the ith particle at the kth time step for

the mth simulation is defined as (xki:m, y
k
i:m). Thus, the distance between a particle

in the mth model and its companion in the nth model at the k time step, Lk
i:m,n, can
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be determined by:

Lk
i:m,n =

√(
xki:m − xki:n

)2
+
(
yki:m − yki:n

)2
(10)

The uncertainty can be estimated by either the mean distance or root-mean-

square distance between corresponding particles compared across every simulation

at a single time step based on the assumption that all models are equally likely. Let

NP represent the number of particles representing a spill with NT as the number of

time steps and NS as the number of simulations that are sequenced by HyosPy. The

distance is computed between the ith particle in the mth simulation and all the other

Ns − 1 simulations for estimating uncertainty. The mean uncertainty at the k time

step is an average for all the particles across the distances between each particle and

its companions in all the simulations at the same time, which can be written for the

k time step as:

Uk
M =

1

2NP (NS − 1)2

NP∑
i=1

NS∑
m=1

NS∑
n=1

Lk
i:m,n (1− δmn) : k = {1...NT} (11)

where δmn is the Kronecker delta that is equal to unity where m = n and zero where

m 6= n. Use of δmn eliminates the zero distance between a particle and itself. The

factor 2 in the denominator is necessary because the summation provides a double

counting of the distances, i.e. the distance between the ith particle in model m = 1

and model n = 3 is the same as the distance between that particle for m = 3 and
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n = 1.

A second measure of uncertainty is the root-mean-square distance, which can be

written for the k time step as:

Uk
R =

{
1

2NP (NS − 1)2

NP∑
i=1

NS∑
m=1

NsS∑
n=1

(
Lk
i:m,n

)2
(1− δmn)

}1/2

: k = {1...NT} (12)

The forecast horizon, the time span over which the forecast is believable, can be

determined using the measurement of mean distance or RMS distance as a repre-

sentative of forecast uncertainty to fill in the curve of Fig. §3.10.1 over simulation

time.

Figure 3.10.1: Forecast horizon
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Chapter 4 - Results and Discussion

4.1 HyosPy and RK4 Tracer Simulation

The following example shows a HyosPy simulation of Corpus Christi Bay for 48

hours using wind and tidal data starting at midnight on 2/16/2013. Twelve hydro-

dynamic SELFE models run at starting intervals of four hours. The first model run

uses all forecast data, with subsequent models using available hindcast data (Table

§4.1.1). These sequenced simulations are designed only to demonstrate the auto-

mated functionality of the HyosPy code in downloading data, running a sequence of

hydrodynamic models, tracking particles, and visualizing results. Appropriate spin-

up simulations and validation of the model have not been conducted as part of this

research.

Model # Start time Hindcast Forecast

1 2/16 0:00 0 hour 48 hours

2 2/16 4:00 4 hours 44 hours

3 2/16 8:00 8 hours 40 hours

... ... ... ...

12 2/17 20:00 44 hours 4 hours

Table 4.1.1: Sequenced model operations

The tidal conditions used for the 1st, 4th, 8th and 12th model are shown in Fig.

§4.1.1:
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Figure 4.1.1: Tide data used for model 1, 4, 8, and 12

The wind conditions used for the 1st, 4th, 8th and 12th model are shown in Fig.

§4.1.2:

Figure 4.1.2: Wind data used for model 1, 4, 8, and 12
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An imaginary oil spill is introduced at 0:00 2/16/2013 represented by 13 particles

distributed about a center location (Fig. §4.1.3). More particles can be used in the

RK4 method; a reduced number of particles was used in the present simulations to

simplify testing of the visualization techniques.

Figure 4.1.3: Initial arrangement of particles

The RK4 method moves the particles at the same 15 minute time step used by

SELFE, providing 192 positions over the 48 hours of simulation. By integrating the

hydrodynamic modeling results with the RK4 surface tracer transport routine, 12

different oil spill trajectories are obtained. For the present work, the visualization

does not distinguish between the different trajectories, but shows all of the particles

to provide a visualization of the spread produced by the different models. Fig. §4.1.4

shows all 192 positions of each of the 13 tracking particles over the course of the

simulations, while Fig. §4.1.5, Fig. §4.1.6, and Fig. §4.1.7 show enlarged view near

the start, in the middle, and near the end of the spill, correspondingly.
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Figure 4.1.4: Oil spill trajectory prediction (48 hours). Results from 12 different

RK4 surface tracer simulations plotted using Google Earth
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Figure 4.1.5: Particle distribution near the start of the spill

Figure 4.1.6: Particle distribution in the middle of the spill
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Figure 4.1.7: Particle distribution near the end of the spill

4.2 Hydrodynamic model forecast uncertainty

The HyosPy and RK4 tracer results in Fig. 4.1.4 can be used to compute the

hydrodynamic model forecast uncertainty using the approach of §3.10. Fig. §4.2.1

shows the hydrodynamic uncertainty involved with modeling time for the above sim-

ulation. The horizontal axis represents the simulation time in hours while the vertical

axis is hydrodynamic uncertainty which is quantified using mean distance and RMS

distance between the predicted particle positions at each time step for the different

simulations.
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Figure 4.2.1: Hydrodynamic forecast uncertainty

4.3 Discussion

Because the present modeling exercise was to test model functionality, the SELFE

model was started with zero velocities and a flat free surface; i.e. no “spin-up” time

was allowed. The resulting particle transport (Fig. 4.1.4) is dominated by currents

along the ship channel driven by the initial adjustment of the basin driven, prin-

cipally by tidal flow. It does not appear that significant wind-driven effects were

developed; however, this remains an area where more detailed study of SELFE is

necessary.

The hydrodynamic uncertainty curve (Fig. §4.2.1) shows an increase in the first

12 hours, followed by a small decrease, then slowly increasing for 12-24 hours, fol-

lowed by a rapid increase to 37 hours, followed by another decrease until 42 hours.
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This behavior is consistent with slowing and reversal of the tidal current, which

is expected to be approximately 90 degrees out of phase with the tidal elevation.

From Fig. 3.6.1 it is expected that the initial current will begin slowing at 8 hours

and be fully reversed near 14 hours, which leads to particles reversing their path

and decreasing the dispersion distance (which is the uncertainty measurement). The

dramatic increase of uncertainty beyond 24 hours occurs when the particles leave the

ship channel and enter the near-shore current (see Fig. 4.1.4), which is coincidentally

near the time of the next current reversal. The increase in dispersion of the particles

entering the near shore current dominates the effects of current reversal at this time.

However, once the particles are well established in the nearshore current, then the

current reversal beginning around 36 hours leads to decreasing uncertainty as the

particles are again forced back upon their previous tracks. Generally, the forecast

horizon might be around 30 hours for this simulation compared with Fig. §3.10.1.

Fig. §4.1.5 shows that there are only 13 particles distributed in the original shape

at the first few time steps, which indicates that these twelve different oil spill trajec-

tories are overlapped with each other and there is little uncertainty. However, the

distribution of the particles becomes disordered in Fig. §4.1.6 and Fig. §4.1.7, which

means the twelve oil spill trajectories are no longer overlapped and there is increasing

uncertainty involved with simulation time. Because the hydrodynamic prediction at

any time depends on the behavior at previous times (including error), there is a for-

ward integration of uncertainty involved with the hydrodynamic forecast simulation.
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Chapter 5 - Conclusions and Future Work

5.1 Conclusions

This study develops a system, HyosPy wrapper & RK4 surface tracer trans-

port routine, for automated sequencing of multiple hydrodynamic (currently SELFE)

model runs and oil spill transport visualization on Google Earth. By setting up a

sequence of hydrodynamic models running with pre-defined intervals, the HyosPy

wrapper can provide an ensemble of model predictions based on wind and tide forc-

ing for creating an estimate of the hydrodynamic forecast uncertainty. As a testbed

for sequenced models, HyosPy does not presently include the initial conditions for

SELFE (i.e. the newer model initiates just with latest wind and tide data but not

with the output conditions from the prior model). The hydrodynamic model fore-

cast uncertainty is estimated using simple statistical measurements and the forecast

horizon can be determined through the forecast uncertainty curve. The simulation

result shows that hydrodynamic model uncertainties will increase slowly at the be-

ginning of the prediction period and will increase sharply after some point, which

is defined as forecast horizon. Therefore, this advanced forecast modeling system

will provide quantitative insight into how far in the future the hydrodynamic model

forecast results can be trusted, which will provide operational managers with better

information to effectively position emergency response equipment.
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5.2 Future Work

In the prior project, an automated linkage between TWDB hydrodynamic models

and GNOME oil spill trajectory model was developed under Mac OS X operating

system (Rosenzweig and Hodges, 2011). In this project extension, the development

platform has moved to Linux to suit for TWDB policy and system implementation

convenience. NOAA is still working on the port of GNOME to Linux, so a simple

RK4 surface tracer transport routine was developed in this research to simulate the

surface oil spill trajectory. Future work should include integrating GNOME with the

HyosPy when the Linux version of GNOME is available.

Since the current HyosPy only initiates multiple hydrodynamic SELFE model

running with wind and tide data (i.e. not with initial SELFE condition from the

prior model outputs) it is not presently suitable for operational implementation:

sequenced models will consume too much computational time repeating the same

computations. Work to be completed in the summer of 2013 will include translating

the prior SELFE output into the initial condition of the next SELFE model.

In this research, the tide forecast is generated using the harmonic tidal elevation

with a matching condition that adjusts the forecast for a smooth transition. This

approach becomes questionable over longer time scales. This method could be im-

proved in the future by using predictions from Gulf of Mexico circulation models

rather than harmonic tides.

The RK4 method in this study uses the same time step as the SELFE model.

However, the RK4 has a strict stability limit for the Courant-Friedrichs-Lewy con-
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dition (CFL condition) which is a necessary condition for convergence while solving

certain partial differential equations. But SELFE can be stable with large CFL con-

ditions in the velocity field. Thus, it is possible that the time step for SELFE may

be too large for the RK4 method. Future work requires conducting more analysis

to the CFL conditions for RK4 and taking a smaller time step with the RK4 and

interpolating in both time and space between SELFE velocity fields.

In addition, the forecast uncertainty analysis in this study is a preliminary demon-

stration of a simple approach. Better methods to evaluate the hydrodynamic forecast

uncertainty should be developed by conducting in-depth analysis of different kinds

of statistics to calculate the forecast uncertainty.
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Appendix

This appendix shows all the modules and structures of hyospy, the RK4 tracer

routine, and the forecast uncertainty tool. The comments explaining of each module

is presented with a # in front of the code.

MODULE 1: Wind Forecasts Download and Conversion

# wind_th.py

# This module would automatically download the wind forecasts,

# transform the data format,and save the wind.th to SELFE directory.

import urllib

import string

import math

import os

import tarfile

from contextlib import closing

# Download wind forecast data and save it at "./twdb_1c.tar".

url = ’http://seawater.tamu.edu/tglopu/twdb_lc.tar’

path = ’./twdb_1c.tar’

data = urllib.urlopen(url).read()

f = file(path,’wb’)

f.write(data)

f.close()

# Unzip the tar file to ’./wind’ when the download is over.

path = ’./twdb_1c.tar’

if os.path.isfile(’./twdb_1c.tar’):

os.mkdir(’./wind’)

with closing(tarfile.open(’./twdb_1c.tar’,’r’)) as t:

t.extractall(’./wind’)

# Create wind.th

string1=’*’

a=open(’./wind/twdb051.wndq’, ’r’).readlines()

open(’./wind.txt’,’w’).write(’’)

for x in a:
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if string1 in x:

continue

open(’./wind.txt’,’a’).write(x)

string2=’days’

d=open(’./wind.txt’,’r’).readlines()

open(’./wind1.th’,’w’).write(’’)

for y in d:

if string2 in y:

continue

open(’./wind1.th’,’a’).write(y)

file = open(’./wind1.th’,’r’)

row=[]

for s in file.readlines():

column=[]

line=s.split()

for field in line: column.append(field)

row.append(column)

file.close

for m in range(len(row)):

row[m][0:4]=[]

for n in range(len(row)):

aa=string.atof(row[n][0]);bb=string.atof(row[n][1])

row[n][0]=0.447*aa*math.sin(bb*math.pi/180)

row[n][1]=-0.447*aa*math.cos(bb*math.pi/180)

# Save wind.th to the SELFE directory

f=open(’./SELFE/wind.th’,’w’)

for i in row:

k=’ ’.join([str(j) for j in i])

f.write(k+’\n’)

f.close
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MODULE 2: Tide Forecasts Download and Conversion

# wind_th.py

# This module would automatically download the wind forecasts,

# transform the data format,and save the wind.th to SELFE directory.

import urllib

import string

# Download pwl and harmwl data from TCOON

# Change date part of url to get different tide forecast

url = ’http://lighthouse.tamucc.edu/pd?stnlist=014&serlist\

=pwl%2Charmwl&when=03.03.2013-03.11.2013&whentz=\

UTC0&-action=c&unit=metric&elev=stnd’

path = ’./elevation.txt’

data=urllib.urlopen(url).read()

# print data

f = file(path,’wb’)

f.write(data)

f.close

# Create elev.th

string1=’#’

a=open(’./elevation.txt’, ’r’).readlines()

open(’./elev.txt’,’w’).write(’’)

for x in a:

if string1 in x:

continue

open(’./elev.txt’,’a’).write(x)

string2=’NA’

d=open(’./elev.txt’,’r’).readlines()

open(’./elev1.th’,’w’).write(’’)

for y in d:

if string2 in y:

continue

open(’./elev1.th’,’a’).write(y)

file = open(’./elev1.th’,’r’)

row=[]

for s in file.readlines():

column=[]

line=s.split()

for field in line: column.append(field)
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row.append(column)

file.close

row.pop()

for m in range(len(row)):

del row[m][0]

sum=0

for n in range(len(row)):

aa=string.atof(row[n][0]);bb=string.atof(row[n][1])

diff=aa-bb

sum=sum+diff

x=sum/len(row)

file1 = open(’./elev.txt’,’r’)

row1=[]

for q in file1.readlines():

column1=[]

line1=q.split()

for field1 in line1: column1.append(field1)

row1.append(column1)

file1.close

row1.pop()

for aa in range(len(row1)):

del row1[aa][0];del row1[aa][1]

y=row1.index([’NA’])

file2 = open(’./elev.txt’,’r’)

row2=[]

for q in file2.readlines():

column2=[]

line2=q.split()

for field2 in line2: column2.append(field2)

row2.append(column2)

file2.close

row2.pop()

for i in range(y,len(row2)):

row2[i][1]=x+string.atof(row2[i][2])
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for k in range(y):

row2[k][1]=string.atof(row2[k][1])

for m in range(len(row2)):

row2[m][0]=360*m

del row2[m][2]

for t in range(len(row2)-1):

row2.insert(2*t+1,[(2*t+1)*180,\

(row2[2*t][1]+row2[2*t+1][1])/2])

del row2[0]

# Save elev.th to SELFE directory

h=open(’./SELFE/elev.th’,’w’)

for l in row2:

g=’ ’.join([str(j) for j in l])

h.write(g+’\n’)

h.close
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MODULE 3: Hyospy Wrapper

# hyospy_wrapper.py

# This module runs multiple hydrodynamic models(SELFE)

# with pre-defined intervals

import subprocess

import time

def runSELFE(direc):

subprocess.Popen(’./SELFE.exe’,cwd=direc,shell=False)

# Put all SELFE folder directions in selfedir.txt

for line in file(’./selfedir.txt’):

thisdirec = line.strip(’\n’)

runSELFE(thisdirec)

time.sleep(7200) # Set pre-defined intervals
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MODULE 4: Rk4 Surface Tracer Transport Routine

# RK4.py

# Compute the transport of multiple particles in multiple

# hydrodynamic models(SELFE) with RK4 method

# Mark the multiple oil spill trajectory predictions

# on Google Earth

import string

import heapq

import pyselfe_v1

import math

# Get all of the coordinate info and save them in

# the list of location

file = open(’./drag.gr3’,’r’)

location=[]

for s in file.readlines():

column=[]

line=s.split()

for field in line: column.append(field)

location.append(column)

file.close

del location[0:2];del location[23286:]

for i in range(len(location)):

del location[i][0]

for j in range(len(location)):

del location[j][2]

# Velocity reader: read velocity at point(x,y) at time t

def readVel(t,x,y):

# Find the n nearest nodes to (x,y)

distance=[]

for m in range(len(location)):

aa=string.atof(location[m][0])-x

bb=string.atof(location[m][1])-y

distance.append(aa*aa+bb*bb)

# Find 3 smalleset number and save them at list ’nearest’

nearest=heapq.nsmallest (3, distance)
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n1=distance.index(nearest[0]); n2=distance.index(nearest[1])

n3=distance.index(nearest[2])

x01=string.atof(location[n1][0]);y01=string.atof(location[n1][1])

x02=string.atof(location[n2][0]);y02=string.atof(location[n2][1])

x03=string.atof(location[n3][0]);y03=string.atof(location[n3][1])

# Save the velocity in x direction at time step n in ui;

# y direction at time step n in wi, i=1,2,3

if isinstance(t,int):

u01=mdata[t,n1,5,0];w01=mdata[t,n1,5,1]

u02=mdata[t,n2,5,0];w02=mdata[t,n2,5,1]

u03=mdata[t,n3,5,0];w03=mdata[t,n3,5,1]

else :

u01=mdata[int(t),n1,5,0]/2+mdata[int(t)+1,n1,5,0]/2

w01=mdata[int(t),n1,5,1]/2+mdata[int(t)+1,n1,5,1]/2

u02=mdata[int(t),n2,5,0]/2+mdata[int(t)+1,n2,5,0]/2

w02=mdata[int(t),n2,5,1]/2+mdata[int(t)+1,n2,5,1]/2

u03=mdata[int(t),n3,5,0]/2+mdata[int(t)+1,n3,5,0]/2

w03=mdata[int(t),n3,5,1]/2+mdata[int(t)+1,n3,5,1]/2

# Save the distance between (x,y) and

# the three nearest points to Li,i=1,2,3

L1=math.sqrt((x01-x)*(x01-x)+(y01-y)*(y01-y))

L2=math.sqrt((x02-x)*(x02-x)+(y02-y)*(y02-y))

L3=math.sqrt((x03-x)*(x03-x)+(y03-y)*(y03-y))

Lsum=L1+L2+L3

# Interpolate to find velocity component of (x,y) at time step n

# and save them as u,w

u=L1/Lsum*u01+L2/Lsum*u02+L3/Lsum*u03

w=L1/Lsum*w01+L2/Lsum*w02+L3/Lsum*w03

return t,u,w

# Set how many hydrodynamic models(SELFE) need to run

# Define selfe_data_dirn as the direction of each model’s outputs

selfe_data_dir1 = ’./SELFE_outputs_1’

selfe_data_dir2 = ’./SELFE_outputs_2’

dirlist=[]

# Add selfe_data_dirn into a list

dirlist.append(selfe_data_dir1);dirlist.append(selfe_data_dir2)

traceroutput=[] ; gradientoutput=[] ; dt=900 ; h=900
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# Main loop(loop with different models)

for nmodels in range(2):

selfe = pyselfe_v1.Dataset(dirlist[nmodels]+’1_hvel.64’)

# Argument ’nfiles’ represents the total running time

[t,t_iter,eta,dp,mdata]=\

selfe.read_time_series(’hvel.64’,nfiles=48,\

datadir=dirlist[nmodels])

length=len(mdata[:,7,5,0])

for a in range(3):

x=[None]*(length+1) ; y=[None]*(length+1)

u=[None]*length ; w=[None]*length

tracer=[] ; element=[] ; velocity=[] ; uv=[] ; gradient=[]

xy=[] ; vel0=[] ; vel1=[] ; vel2=[] ; vel3=[]

# Set N particles at different starting positions

if a ==0:

x[0]=691731.019;y[0]=3059752.263

elif a ==1:

x[0]=676785.5671;y[0]=3071586.4213

else :

x[0]=678077;y[0]=3066553

for n in range(length-1):

vel0=list(readVel(n,x[n],y[n]))

u[n]=vel0[1];w[n]=vel0[2]

dx=dt*u[n] ; dy=dt*w[n]

uv=[u[n],w[n],dx,dy]

velocity.append(uv)

# Transport the oil spill particles by using

# RK4 algorithm

k1x=h*u[n] ; k1y=h*w[n]

vel1=list(readVel(n+0.5,x[n]+k1x/2,y[n]+k1y/2))

k2x=h*vel1[1] ; k2y=h*vel1[2]

vel2=list(readVel(n+0.5,x[n]+k2x/2,y[n]+k2y/2))

k3x=h*vel2[1] ; k3y=h*vel2[2]
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vel3=list(readVel(n+1,x[n]+k3x,y[n]+k3y))

k4x=h*vel3[1] ; k4y=h*vel3[2]

x[n+1]=x[n]+(k1x+2*k2x+2*k3x+k4x)/6

y[n+1]=y[n]+(k1y+2*k2y+2*k3y+k4y)/6

element=[(n+1)*900,x[n],y[n]]

tracer.append(element)

traceroutput.append(tracer)

# Mark oil spill trajectories on Google Earth

lonlat=[]

# nmodelpoint is the number of "# of model * # of point"

for nmodelpoint in range(6):

for nposition in range(len(traceroutput[nmodelpoint])):

aaa=utmToLatLng(14,traceroutput[nmodelpoint][nposition][1],\

traceroutput[nmodelpoint][nposition][2],northernHemisphere=True)

lonlat.append([aaa[0],aaa[1]])

coordinates=str(lonlat)

file1 = open(’./javascript.txt’,’r’) # Open Google Marker JavaScript

row=[]

for s in file1.readlines():

row.append(s)

# Copy all of the coordinates in the javascript

row[11]=’ ’+’var’+’ ’+’locations’+’=’+coordinates

# Generate the final html file

h=open(’./tracers_googlemap_markers.html’,’w’)

for l in row:

g=’’.join([str(j) for j in l])

h.write(g+’\n’)

h.close

51



MODULE 5: UTM coordinates conversion

# This module convert (x,y) coordinates to (lat,lon)

def utmToLatLng(zone, easting, northing, northernHemisphere=True):

if not northernHemisphere:

northing = 10000000 - northing

a = 6378137

e = 0.081819191

e1sq = 0.006739497

k0 = 0.9996

arc = northing / k0

mu=arc/(a*(1-math.pow(e,2)/4.0-\

*math.pow(e,4)/64.0-5*math.pow(e,6)/256.0))

ei=(1- math.pow((1-e*e),(1/2.0)))/(1+math.pow((1-e*e),(1/2.0)))

ca = 3 * ei / 2 - 27 * math.pow(ei, 3) / 32.0

cb = 21 * math.pow(ei, 2) / 16 - 55 * math.pow(ei, 4) / 32

cc = 151 * math.pow(ei, 3) / 96

cd = 1097 * math.pow(ei, 4) / 512

phi1=mu+ca*math.sin(2*mu)+cb*math.sin(4*mu)+\

cc*math.sin(6*mu)+cd*math.sin(8*mu)

n0=a/math.pow((1-math.pow((e*math.sin(phi1)),2)),(1/2.0))

r0=a*(1-e*e)/math.pow((1-math.pow((e*math.sin(phi1)),2)),(3/2.0))

fact1 = n0 * math.tan(phi1) / r0

_a1 = 500000 - easting

dd0 = _a1 / (n0 * k0)

fact2 = dd0 * dd0 / 2

t0 = math.pow(math.tan(phi1), 2)

Q0 = e1sq * math.pow(math.cos(phi1), 2)

fact3=(5+3*t0+10*Q0-4*Q0*Q0-9*e1sq)*math.pow(dd0,4)/24

fact4=(61+90*t0+298*Q0+45*t0*t0-252*e1sq-3*Q0*Q0)*\

math.pow(dd0,6)/720

lof1=a1 / (n0 * k0)
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lof2=(1 + 2 * t0 + Q0) * math.pow(dd0, 3) / 6.0

lof3=(5-2*Q0+28*t0-3*math.pow(Q0,2)+\

8*e1sq+24*math.pow(t0,2))*math.pow(dd0,5)/120

_a2=(lof1 - lof2 + lof3) / math.cos(phi1)

_a3=_a2 * 180 / math.pi

latitude =180*(phi1-fact1*(fact2+fact3+fact4))/ math.pi

if not northernHemisphere:

latitude = -latitude

longitude = ((zone > 0) and (6 * zone - 183.0) or 3.0) - _a3

return [latitude,longitude]

MODULE 6: Google Map Marker animation JavaScript

#Google_marker.html

<html>

<head>

<meta http-equiv="content-type" content="text/html;charset=UTF-8"/>

<title>Google Maps Multiple Markers</title>

<script src="http://maps.google.com/maps/api/js?sensor=false"

type="text/javascript"></script>

</head>

<body>

<div id="map" style="width: 1300px; height: 800px;"></div>

<script type="text/javascript">

var locations = [];

var map =

new google.maps.Map(document.getElementById(’map’), {

zoom: 10,

center: new google.maps.LatLng(27.8, -97.35),

mapTypeId: google.maps.MapTypeId.ROADMAP

});

var infowindow = new google.maps.InfoWindow();

var marker, i;
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for (i = 0; i < locations.length; i++) {

marker = new google.maps.Marker({

position:

new google.maps.LatLng(locations[i][0], locations[i][1]),

map: map

});

google.maps.event.addListener(marker, ’click’, (function(marker, i)

{

return function() {

infowindow.setContent(locations[i][0]);

infowindow.open(map, marker);

}

})(marker, i));

}

</script>

</body>

</html>

MODULE 7: Forecast Uncertainty Routine

import string

import heapq

import pyselfe_v1

import math

from pylab import *

import numpy

# forecast.py

# Estimate and quantify hydrodynamic forecast uncertainty

...# Use RK4 tracer routine to calculate all of the coordiantes

um=[] ; ur=[] ; np=13 ; ns=12 ; nt=len(multiplemodel[0][0])

# np is the total particle number; ns is the total model number

# nt is the total time steps

for k in range(nt): # k is time step

sum0=0 ; sum1=0

for i in range(np): # i is the particle number

for m in range(ns): # m is the model number
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for n in range(ns): # n is the model number

sum0=sum0+math.sqrt(math.pow(\

(multiplemodel[m][i][k][1]-multiplemodel[n][i][k][1]),2)\

+math.pow((multiplemodel[m][i][k][2]-multiplemodel[n][i][k][2]),2))

sum1=sum1+math.pow(math.sqrt(math.pow(\

(multiplemodel[m][i][k][1]-multiplemodel[n][i][k][1]),2)\

+math.pow((multiplemodel[m][i][k][2]-multiplemodel[n][i][k][2]),2)),2)

um.append([(k+1)*900,sum0/2/np/math.pow((ns-1),2)])

ur.append([(k+1)*900,math.sqrt(sum1/2/np/math.pow((ns-1),2))])

uum=numpy.asarray(um)

uur=numpy.asarray(ur)

xlabel(’Simulation time (hours)’)

ylabel(’Uncertainty’)

title(’Uncertainty analysis’)

grid(True)

plot(uum[:,0]/3600,uum[:,1],’-’)

plot(uur[:,0]/3600,uur[:,1],’-’)

show()
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