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Over the coming few years, the next-generation of wireless networks

will be standardized and defined. Ad hoc networks, which operate without

expensive infrastructure, are desirable for use cases such as military networks

or disaster relief. Millimeter wave (mmWave) technology may enable high

speed ad hoc networks. Directional antennas and building blockage limit the

received interference power while the huge bandwidth enables high data rates.

For this reason, understanding the interference and network performance of

mmWave ad hoc networks is crucial for next-generation network design.

In my first contribution, I derive the SINR complementary cumulative

distribution function (CCDF) for a random single-hop mmWave ad hoc net-

work. These base results are used to further give insights in mmWave ad hoc

networks. The SINR distribution is used to compute the transmission capac-

ity of a mmWave ad hoc network using a Taylor bound. The CDF of the

interference to noise ratio (INR) is also derived which shows that mmWave ad

vii



hoc networks are line-of-sight interference limited. I extend my work in the

second contribution to include general clustered Poisson point processes to de-

rive insights in the effect of different spatial interference patterns. Using the

developed framework, I derive the ergodic rate of both spatially uniform and

cluster mmWave ad hoc networks. I develop scaling trends for the antenna

array size to keep the ergodic rate constant. The impact of beam alignment

is computed in the final part of the contribution. Finally, I account for the

overhead of beam alignment in mmWave ad hoc networks. The final contribu-

tion leverages the first two contributions to derive the expected training time a

mmWave ad hoc network must perform before data transmission occurs. The

results show that the optimal conditions for minimizing the training time are

different than the optimal conditions for maximizing rate.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Next-generation Ad Hoc Networks . . . . . . . . . . . . . . . . 2

1.3 The Challenges of mmWave Ad Hoc Networks . . . . . . . . . 4

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2. Signal to Interference Plus Noise Ratio in Random
mmWave Ad Hoc Networks 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Use of Beamforming . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Blockage Model . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 SINR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 One-Way Ad Hoc Communication . . . . . . . . . . . . . . . . 21

2.4.1 SINR Distribution . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Validation of the Model . . . . . . . . . . . . . . . . . . 28

2.4.3 LOS Protocol-Gain . . . . . . . . . . . . . . . . . . . . 30

2.4.4 Distributions of r . . . . . . . . . . . . . . . . . . . . . 31

ix



2.4.5 LOS Interference Limited Networks . . . . . . . . . . . 33

2.4.6 One-Way Performance Analysis . . . . . . . . . . . . . . 36

2.5 Two-way Ad Hoc Communication . . . . . . . . . . . . . . . . 37

2.5.1 Two-way SINR Analysis . . . . . . . . . . . . . . . . . . 38

2.5.2 Two-Way Performance Analysis . . . . . . . . . . . . . 40

2.6 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Transmission Capacity . . . . . . . . . . . . . . . . . . . 42

2.6.2 Area Spectral Efficiency . . . . . . . . . . . . . . . . . . 43

2.6.3 Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.4 INR Distribution . . . . . . . . . . . . . . . . . . . . . . 46

2.6.5 Two-Way Communication Results . . . . . . . . . . . . 51

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8.1 Proof of Lemma 2.4.1 . . . . . . . . . . . . . . . . . . . 55

Chapter 3. Ergodic Rate in Random mmWave Ad Hoc Net-
works 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Network Topologies and Access Schemes . . . . . . . . . 63

3.3.2 Channel and Antenna Models . . . . . . . . . . . . . . . 66

3.3.3 Signal Metrics . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 Mathematical Preliminaries . . . . . . . . . . . . . . . . 70

3.4 Ergodic Rate in Outdoor mmWave Ad Hoc Networks . . . . . 71

3.4.1 Uniform Network . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1.1 Scaling of Uniform Networks . . . . . . . . . . . 73

3.4.2 Clustered Network . . . . . . . . . . . . . . . . . . . . . 74

3.4.2.1 Scaling of Cluster mmWave Ad Hoc Networks . 76

3.4.2.2 Coverage in Clustered mmWave Ad Hoc Networks 77

3.5 Imperfect Beam Alignment . . . . . . . . . . . . . . . . . . . . 80

3.5.1 Sectored Antenna . . . . . . . . . . . . . . . . . . . . . 81

3.5.2 Gaussian Antenna . . . . . . . . . . . . . . . . . . . . . 82

x



3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8.1 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . 94

3.8.2 Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . . . 95

3.8.3 Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . . . 97

3.8.4 Proof of Corollary 3.4.5 . . . . . . . . . . . . . . . . . . 98

3.8.5 Proof of Lemma 3.5.2 . . . . . . . . . . . . . . . . . . . 99

Chapter 4. Beam Training in Random mmWave Ad Hoc Net-
works 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Received Signal Model . . . . . . . . . . . . . . . . . . . 108

4.3.3 Transmission Interval Access Method . . . . . . . . . . 112

4.3.4 Technical Preliminaries . . . . . . . . . . . . . . . . . . 115

4.3.4.1 Probability of Success . . . . . . . . . . . . . . 116

4.3.4.2 Mainlobe-sidelobe Ratio . . . . . . . . . . . . . 119

4.3.4.3 Network Scenarios . . . . . . . . . . . . . . . . 122

4.4 Quantifying Overhead . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.1 Independence Between Attempts . . . . . . . . . . . . . 123

4.4.2 Data Transmission Delay . . . . . . . . . . . . . . . . . 125

4.4.3 Ergodic Rate with Overhead . . . . . . . . . . . . . . . 132

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7.1 Proof of Corollary 4.4.2 . . . . . . . . . . . . . . . . . . 141

4.7.2 Proof of Corollary 4.4.3 . . . . . . . . . . . . . . . . . . 143

4.7.3 Proof of Corollary 4.4.4 . . . . . . . . . . . . . . . . . . 143

xi



Chapter 5. Conclusion 145

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . 147

Bibliography 150

Vita 168

xii



List of Tables

2.1 System variables for Chapter 2 . . . . . . . . . . . . . . . . . . 16

2.2 Parameters of results. . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 System variables for Chapter 3 . . . . . . . . . . . . . . . . . . 62

4.1 System variables for Chapter 4 . . . . . . . . . . . . . . . . . . 107

4.2 Values of slot usages and gain during a transmission interval. . 116

4.3 Simulation variable values . . . . . . . . . . . . . . . . . . . . 135

xiii



List of Figures

1.1 In a typical ad hoc network, the omni-directional transmissions
of neighboring users limits performance. Interference mitigation
strategies must be used or the interference must be tolerated for
communication to occur. . . . . . . . . . . . . . . . . . . . . . 3

1.2 In a mmWave ad hoc network, the transmitter and receiver use
antenna arrays to direct the RF energy towards each other. The
interference caused to neighboring users in the sidelobe is less-
ened as compared to omni-directional transmission. Building
blockage also limits signal strength as mmWave propagation is
heavily attenuated by building materials and diffraction around
buildings is not a strong phenomenon. . . . . . . . . . . . . . 6

2.1 An illustration of the sectored antenna model I use. Beamwidths
are 90◦, 30◦, and 9◦, respectively. . . . . . . . . . . . . . . . . 18

2.2 Example realizations of the random network with blockage. The
blue rectangles are random boolean buildings which attenuate
the signal. The red triangles are the Poisson point process of
interferers. The green star represents the typical node. The
user densities are what I call sparse (a) and dense (b) when
discussing the results. . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The SINR distribution of mmWave ad hoc networks with λ =
5× 10−5 (a) and λ = 5× 10−4 (b). . . . . . . . . . . . . . . . 30

2.4 The SINR distribution of mmWave ad hoc networks with λ =
5 × 10−5 (a) and λ = 5 × 10−4 (b). If the desired link is LOS,
significant improvement to the SINR distribution is realized. I
term this the LOS protocol-gain. . . . . . . . . . . . . . . . . . 31

2.5 The effect of receiver distribution is quantified for the overall
(LOS/NLOS) SINR distribution (a) and LOS-only SINR distri-
bution (b). Each link, on average, is 25m. . . . . . . . . . . . 32

2.6 The largest λ for a 10% outage at various SINR thresholds and
dipole distances for NLOS/LOS communication (a) and LOS-
only communication (b). . . . . . . . . . . . . . . . . . . . . . 42

2.7 Area spectral efficiency of network with 10% outage. If the
dipole link is restricted to LOS (b), an order-of-magnitude im-
provement is shown over NLOS/LOS dipole links (a). Note the
different y-axis scales. . . . . . . . . . . . . . . . . . . . . . . . 44

xiv



2.8 Optimal network density for various dipole lengths, subject to
10% outage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9 MmWave ad hoc networks provide significant increase in rate
coverage over lower frequency networks. . . . . . . . . . . . . . 46

2.10 The INR CDF for θant = 9◦. With extreme beamforming, the
network remains interference limited in all but the sparest net-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.11 The INR CDF for θant = 30◦. In the sparsest network, the
interference power is more dominant than the noise power (i.e.
P[INR < 0dB] = 0.4 for the green circle network), but the
red triangle curve shows that the more dense network is always
interference limited. . . . . . . . . . . . . . . . . . . . . . . . . 48

2.12 The INR CDF for θant = 90◦. In all networks, the interference
power is nearly always more dominant than the noise power (i.e.
P[INR < 0dB] = 0.05 for the green circle network). . . . . . . 49

2.13 The INR CDF for λ = 5× 10−5 and θant = 30◦ with only LOS
interference. Compare to Fig. 2.11, I find that the shape of
INR distributions is largely determined by the LOS interference
when the network is dense. . . . . . . . . . . . . . . . . . . . . 50

2.14 The densities correspond to the transmission capacity from Figs.
2.6a & 2.6b for SINR threshold on 0dB. . . . . . . . . . . . . . 51

2.15 The transmission capacity of a two-way network can be im-
proved by allocating bandwidth in an optimal way. . . . . . . 52

2.16 Significant ASE gains can be achieved by intelligently allocating
bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 An example realization of the LOS clustered network (a) com-
pared to LOS PPP (b). The interfering clusters shown are all
LOS from the perspective of the typical cluster at the origin.
The dashed blue circle is the boundary for the typical cluster
while the black dotted circle is the boundary for the other clus-
ters. The clustered point process exhibits much different spatial
properties than the LOS PPP. . . . . . . . . . . . . . . . . . . 65

3.2 The solid line in each plot is obtained by evaluating Theorem
3.4.1 while the markers correspond to numerical simulation.
The network-centric view is shown in (a) where the ergodic rate
per unit area is shown. The per-user ergodic rate is shown in (b). 87

3.3 A verification plot of Theorem 3.4.3 that shows a match between
the analytical expressions and simulation. The solid curves are
the analytical expressions while the markers are simulation re-
sults. The cluster size is given by Rc, and the communication
distance is ro. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv



3.4 A comparison of uncoordinated channel access (UCA) with TDMA
in a mmWave clustered network. The triangle marker corre-
sponds to TDMA simulation while the star marker is UCA sim-
ulation. The solid curves are the analytical expressions from
Theorem 3.4.3 and Corollary 3.4.4. . . . . . . . . . . . . . . . 90

3.5 A plot showing the intra-ε inter-cluster coverage. The curves
are generated by evaluating (3.39). . . . . . . . . . . . . . . . 91

3.6 In (a), rate scaling of a uniform mmWave ad hoc network where
the rate is evaluated from Theorem 3.4.1 and the number of
antennas scale according to Theorem 3.4.2. In (b), I evaluate
Theorem 3.4.3 based on the scaling proposed by Proposition
1. The colors correspond to the PLEs used αm ∈ {2.1, 3, 4} as
green, red, and blue, respectively. . . . . . . . . . . . . . . . . 91

3.7 The impact of antenna alignment depends on the antenna model
used; (a) is a sectored antenna and (b) is a Gaussian antenna.
The blue curve corresponds to ro = 10m, the red curve cor-
responds to ro = 25m, and the green curve corresponds to
ro = 100m. The analytical approximation curve uses Lemmas
3.5.2 and 3.5.3 while the exact analytical curve evaluates the
expectation of Theorem 3.4.1 against the antenna error. . . . . 92

4.1 An example realization of the the PPP network with building
blockages. The LOS ball model is a first-order approixmation
that only considers the average LOS distance. This simplifies
the blockage probability function p(r) compared to other mod-
els, such as the exponential model [1]. All users inside the ball
are considered LOS while all users outside the ball is considered
NLOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 The time-slotted design of the proposed system. A slot is T
sec long. There are Ssyn slots for synchronization, Str slots for
training, and Sdata slots for data. The training block may be
repeated if needed. The total time per transmission interval is
Ttot sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 An example illustration of the hidden node issue with a class 1
interfering user. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 The network scenarios detailed in Section 4.3.4.3. Fig. 4.4a is
normal operation. Fig. 4.4b is a transmitter blockage scenario.
Fig. 4.4c is a receiver blockage scenario. . . . . . . . . . . . . 124

xvi



4.5 Monte-carlo simulations were used to generate the SINR over
multiple slots using the same network distribution. In (a), the
users move a random distance between slots. In (b), different
subsets of the network access the channel in the subsequent
slots. The small movement has a minor effect on the correlated
behavior, but the access probability ζ has a very strong effect.
For ζ < 0.5, the SINR values between subsequent channel ac-
cesses is largely uncorrelated. . . . . . . . . . . . . . . . . . . 126

4.6 The markers correspond to simulation results while the dashed
lines correspond to Corollary 4.4.1. With a low number of an-
tennas, the baseline method performs best because of the direc-
tionality. The overhead with training the entire array quickly
becomes large. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.7 The markers correspond to simulation results while the dashed
lines correspond to (4.47). A similar trend is shown here where
the baseline method performs best in low array sizes. The user
perceived rate goes to zero for high array sizes because the train-
ing on average will not complete before a new solution is needed.137

4.8 The markers correspond to simulation results while the dashed
lines correspond to Corollary 4.4.1. If the fast-synchronization
method is too aggressive with the channel, the aggregate inter-
ference limits the link performance. If the channel is underused,
however, the packets are received but the training time increases
due to utilization. . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.9 The markers correspond to simulation results while the dashed
lines correspond to (4.47). The baseline method is very aggres-
sive with the channel. . . . . . . . . . . . . . . . . . . . . . . . 139

4.10 The solid lines correspond to correspond to Corollary 4.4.4.
Even with many antennas, the fast synchronization method
must back off on the channel to reduce interference. . . . . . . 139

4.11 The solid lines correspond to correspond to Corollary 4.4.2 while
the dashed lines correspond to Corollary 4.4.3. In general,
blockage events at the receiver are tolerated better than block-
age events at the transmitter. . . . . . . . . . . . . . . . . . . 140

xvii



Chapter 1

Introduction

When wireless is perfectly applied, the whole earth will be con-

verted into a huge brain, which in fact it is, all things being particles

of a real and rhythmic whole. We shall be able to communicate with

one another instantly, irrespective of distance. Not only this, but

through television and telephony we shall see and hear one another

as perfectly as though we were face to face, despite intervening dis-

tances of thousands of miles; and the instruments through which

we shall be able to do his will be amazingly simple compared with

our present telephone. A man will be able to carry one in his vest

pocket.

–Nikola Tesla, 1926

1.1 Introduction

Nearly every industry has been affected by the emergence of the ubiq-

uitous mobile data connection: bridges communicate information about cracks

or failures, farmers in rural Africa check the market prices in cities to ensure a

fair price, any fact or idea can be queried instantly, medical devices in the home

1



communicate directly with doctors. There are now more mobile connected de-

vices than people on the planet. The growth in devices has coincided with

an explosion of demand for wireless data; it is expected that the capacity of

wireless networks must increase 1000 fold this decade to meet the demand.

An overwhelming majority of this data is sent over ad hoc networks using

protocols like IEEE 802.11 wireless LAN (WLAN); WLANs transmit roughly

4× the data per month compared to cellular networks as of late 2016 [2].

Ad hoc networks are characterized by their lack of infrastructure. Users

in cellular networks only communicate with fixed base stations, but users in ad

hoc networks communicate with each other directly; all users transmit or re-

ceive data. A fantastic use-case for ad hoc networks is after a natural disaster.

Disasters, such as Hurricane Maria in Puerto Rico, the earthquake in Haiti,

or the typhoon in the Philippines, destroy the cellular infrastructure. Collab-

oration of rescue crews, communication with loved ones, and coordination of

aid delivery is hindered by the devastation. An ad hoc network transforms a

smart phone into both a cell tower and cell phone. By doing this, data can be

transmitted throughout the disaster area. However, such features are largely

ignored because ad hoc networks are notoriously inefficient.

1.2 Next-generation Ad Hoc Networks

Modern wireless communication systems are interference limited mean-

ing that unintended transmissions, e.g. other users, obfuscate the intended

message. Newer fixed, planned networks such as cellular systems utilize so-

2



Figure 1.1: In a typical ad hoc network, the omni-directional transmissions of
neighboring users limits performance. Interference mitigation strategies must
be used or the interference must be tolerated for communication to occur.

phisticated techniques to minimize unwanted interference. The less organized

nature of ad hoc networks limits the opportunity to use these techniques. Ad

hoc networks, illustrated in Fig. 1.1, consistently underperform compared to

fixed, planned networks. A main reason is due to the self-interference created

in the network. There is often little coordination between users which creates

residual interference that leads to poor signal-to-interference-plus-noise ratios

(SINRs) [3].

A fundamental concept of wireless communication is the spectral effi-

ciency in bits/s/Hz of the communication which is a function of the SINR

and primarily limited by interference in modern wireless systems. Broadly

speaking, a user must consume time s or frequency Hz resources to receive

3



their data bits. As more users communicate with ad hoc protocols like IEEE

802.11 [4], IEEE 802.15.3 [5], Bluetooth [6], Zigbee [7], and others, an in-

efficiency feedback loop begins. A user must spend more time or frequency

resources to receive their data which in turn creates more interference for other

users because the time/frequency resources are occupied. MmWave band com-

munication aims to remedy some of these issues. MmWave networks use di-

rectional antennas which limit the interference and boost the SINR to increase

efficiency. Users may require less time or frequency resources to complete their

tasks. The mmWave band is also much wider than current frequencies used

for wireless communication. MmWave communication has the potential to be

more efficient while having access to more resources.

1.3 The Challenges of mmWave Ad Hoc Networks

The vast and underutilized millimeter wave (mmWave) band between

30−300 GHz appears to be an outstanding candidate for the next generations

of ad hoc networks, shown in Fig. 1.2. By moving to the mmWave spec-

trum, many gigahertz of bandwidth are available making it possible to achieve

data rates of gigabits per second even with conventional modulation strate-

gies. While mmWave systems provide an enormous benefit in their bandwidth,

there are several constraints that are not present in lower frequency systems.

First, the mostly digital MIMO implementations found at lower frequencies

are unlikely; high-speed, high-bandwidth analog-digital converters require too

much power to include many in a mobile device [8]. As a result, mmWave sys-
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tems are more likely to use analog beamforming, or hybrid approaches [9], [10].

Second, mmWave propagation is much more sensitive to blockages than lower

frequency signals [11]. While non-line-of-sight (NLOS) communication is pos-

sible, system design parameters may be different between line-of-sight (LOS)

/ NLOS regimes as the path-loss exponent can be vastly different [12]. Third,

mmWave devices will have dozens, perhaps hundred of antennas to overcome

the path-loss. Historically, path loss has been viewed as a limiting factor for

employing mmWave wireless systems; by fabricating many mmWave antennas

in the same physical size of a single UHF antenna, the path-loss difference

can be eliminated. This dissertation develops a framework to evaluate single-

hop ad hoc networks while incorporating the key characteristics of mmWave

communication.

The first two contributions of this dissertation argue mmWave ad hoc

networks can be more efficient in their spectrum usage even with NLOS com-

munication; these contributions show that analog beamforming and building

blockage of mmWave ad hoc networks help decrease the overall interference

if properly designed for. This dissertation extends the current literature by

deriving signal and interference metrics for mmWave single-hop ad hoc net-

works using stochastic geometry. The seminal work by Gupta and Kumar [13]

introduced key bounds and limits on the transport capacity of random wire-

less networks. Baccelli pioneered the use of stochastic geometry for ad hoc

networks [14]. By using stochastic geometry, closed-formed expressions are

derived for the SINR distribution of ad hoc networks; this analysis technique

5



Figure 1.2: In a mmWave ad hoc network, the transmitter and receiver use
antenna arrays to direct the RF energy towards each other. The interfer-
ence caused to neighboring users in the sidelobe is lessened as compared to
omni-directional transmission. Building blockage also limits signal strength as
mmWave propagation is heavily attenuated by building materials and diffrac-
tion around buildings is not a strong phenomenon.

has proved to be extremely popular tool to analyze wireless networks [3,15–22].

In the second and third contribution of this dissertation, I address im-

portant aspects of mmWave antenna array system design: beam alignment

error and training overhead. A key enabling technology for using mmWave

frequencies is active steerable beam pointing [12, 23, 24]. By coupling the en-

ergy better in the channel, the transmitter and receiver achieve beamforming

gain to provide sufficient signal-to-noise (SNR) at the receiver. The key idea is

that the transmitter and receiver sequentially try different beam pairs to find

the pair with the largest effective received power [25,26]. Due to mobility be-

tween users, within a user, or in the environment, the beam must constantly be

realigned. This incurs a high cost as the time to test all the pair combinations

6



grows with the square of the number of pairs.

Together, the contributions of this dissertation demonstrate the capa-

bility of mmWave ad hoc networks communicate in an outdoor, mobile envi-

ronment. I illustrate that mmWave ad hoc networks can communicate over

long distances and remain less susceptible to interference than low-frequency

ad hoc networks. I argue that mmWave networks do not need to cooperate in

a clustered environment due to the directional antenna arrays. Lastly, I show

that while overhead in training mmWave antenna array increases latency and

reduces rate, high data rates are possible given the proper optimizing of the

network parameters.

1.4 Summary of Contributions

This section summarizes the contributions of my PhD dissertation.

1. Chapter 2: Signal to Interference Plus Noise Ratio in mmWave Ad Hoc

Networks

In this chapter, I formulate the performance of mmWave ad hoc networks

in a stochastic geometry framework. I incorporate random factors of a

mmWave ad hoc network such as building blockage, antenna alignment,

interferer position, and user position. Using a similar framework, I com-

pare and contrast the performance against a lower frequency UHF ad

hoc network. The main contributions of the chapter can be summarized

as follows:
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(a) I compute a bound for mmWave ad hoc network signal-to-interference-

and-noise (SINR) complimentary cumulative distribution function

(CCDF). Using the SINR CCDF, a Taylor approximation is used

to compute the transmission capacity and area spectral efficiency of

the network. I argue for LOS-aware protocols due to the large per-

formance increase from LOS communication at mmWave. Lastly, I

calculate the effect of random receiver location on performance.

(b) I derive the interference-to-noise ratio (INR). I include discussion of

the INR when a network is operating at the transmission capacity.

(c) I characterize the effect of two-way communication on the trans-

mission capacity and area spectral efficiency. I show that optimal

bandwidth allocation leads to large gains in both performance met-

rics.

2. Chapter 3: Ergodic Rate in Random mmWave Ad Hoc Networks

In this chapter, I characterize the ergodic rate of mmWave ad hoc net-

works for two different spatial distributions of transmitters. I leverage

stochastic geometry to model mmWave ad hoc networks as uniform net-

works (e.g. a Poisson point process) and a LOS cluster process (e.g.

Poisson cluster process). The main contributions of the chapter are

summarized as follows:

(a) I derive the ergodic rate of a uniform mmWave ad hoc network as-

suming LOS communication, directional antennas, building block-
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age, and Gamma fading. An antenna scaling trend, as transmitter

density increases, of uniform mmWave ad hoc networks is derived.

The result indicates that the number of antennas can scale sub-

linearly with transmitter density.

(b) I compute the ergodic rate of a clustered mmWave ad hoc net-

work assuming LOS communication, directional antennas, building

blockage, and Gamma fading. An antenna scaling trend of clus-

tered ad hoc networks is proposed as a heuristic using the ergodic

rate theorem which indicates that antenna arrays must scale lin-

early with user density. I define and develop a relationship between

the SINR for communication within a cluster (intra-cluster) and

between clusters (inter-cluster) which gives the proximity of the

nearest cluster while maintaining rate requirements within a clus-

ter.

(c) I characterize of the effect of random beam misalignment between

the desired user pairs. I present results for two antenna models:

sectored and Gaussian. The loss in rate per user is shown to be

proportional to alignment error variance; a rate loss of up to 45%

occurs if the alignment error standard deviation is 10◦.

3. Chapter 4: Beam Training in Random mmWave Ad Hoc Networks

In this chapter, I characterize the overhead cost of beam alignment in

terms of latency and rate reduction. I use stochastic geometry to model

the user pair locations, the antenna array as a sectored antenna array,
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and line-of-sight (LOS) ball blockage model. I derive analytic expressions

and bounds to be derived for the data transmission delay and the user

perceived rate. The main contributions of the chapter are summarized

as follows:

(a) I compute the relative strength of the interfering users in a mmWave

ad hoc network. The results show that despite the decreasing prob-

ability of a mainlobe collision between a user and interferer as the

antenna array grows, the interferers with colliding mainlobes remain

the dominant and thus the limiting source of an interference-limited

scenario. In LOS and non-line-of-sight (NLOS) scenarios, mainlobe

collisions are stronger by a factor that is proportional to the array

size given a sectored antenna model. I present results that show

the increase in synchronization time due to a blockage event at the

transmitter as well as a complete blockage event at the receiver. I

show that blockage events at the transmitter are essentially nonre-

coverable due to the degradation of signal power for fast training

techniques while blockage events at the receiver may allow success-

ful communication.

(b) I derive of the expected data transmission delay of three different

beamforming strategies as a function of transmission probability

and antenna array size. I show that using omni-directional recep-

tion is optimal for mmWave ad hoc networks if the transmission

probability is sufficiently low or if the antenna array size and train-
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ing length is sufficiently large. In particular, I give expressions for

the optimal transmission probability for minimizing the delay as

well as well as the region where omni-directional reception is opti-

mal.

(c) I characterize of the user-perceived ergodic rate when using each of

the synchronization methods. The results indicate that the optimal

transmission probability for ergodic rate is typically larger than the

optimal point for delay within a fixed transmission block; a similar

conclusion holds for the array size. In the high mobility case where

overhead is most costly, if the underlying user density is too high,

the users must back off the channel too frequently for successful

training to complete and data transmission to begin.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 intro-

duces the SINR and INR of mmWave ad hoc networks, as well as the transmis-

sion capacity. Chapter 3 presents the ergodic rate for clustered and uniform

mmWave ad hoc networks including the capacity scaling and capacity loss

regarding antenna arrays. Chapter 4 determines the potential overhead for

beam sweeping for mmWave ad hoc networks. The dissertation is concluded

in Chapter 5 with parting thoughts and avenues of future work.
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Chapter 2

Signal to Interference Plus Noise Ratio in

Random mmWave Ad Hoc Networks

In this chapter1, I derive the SINR CCDF of outdoor mmWave ad

hoc networks with LOS and NLOS communication. I first give a overview of

prior stochastic geometry results pertinent to mmWave and ad hoc networks

in Section 2.1. Next, I introduce the system model and relevant metrics in

Section 2.3. In Section 2.4, I detail the derivation of the one-way SINR CCDF

which is followed by the two-way SINR CCDF in Section 2.5. The results are

presented in Section 2.6, and the chapter is concluded in Section 2.7.

2.1 Introduction

Prior work has leveraged stochastic geometry to calculate the perfor-

mance of ad hoc networks [20]. The transmission capacity is the maximum

spatial density (users per m2) of transmitters given an outage constraint and

is well studied, see [3,15,16,19,20,27], and references therein. A related metric

1This chapter is based on the work that will appear in the journal paper: A. Thornburg,
T. Bai and R. W. Heath Jr., ”Performance Analysis of Outdoor mmWave Ad Hoc Networks,”
in IEEE Transactions on Signal Processing, vol. 64, no. 15, pp. 4065-4079, Aug.1, 1 2016.
This work was supervised by Prof. Robert Heath. Dr. Tianyang Bai provided insights in
the stochastic geometry modeling of mmWave wireless networks.
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is the area spectral efficiency which yields the b/s/Hz/m2 of a network [28].

Both metrics are widely used to compare and contrast transmission techniques

and network architectures.

Beamforming has been analyzed with stochastic geometry and other

methods in ad hoc networks under the term smart antennas, phased arrays, or

adaptive antennas. Prior work on ad hoc networks considered smart antennas

and other directional antennas [16, 29–32]. The transmission capacity of ad

hoc networks with directional antennas was computed in [16] assuming small-

scale Rayleigh fading. A directional MAC testbed was benchmarked in [29].

In [30], the analyses and performance of the system assumes Rayleigh fading.

The optimization of the MAC for directional antennas was discussed in [31,32].

While the results are frequency agnostic, the results are built around channel

models that reasonably apply only for sub-mmWave systems.

Blockage is an important impairment in mmWave ad hoc systems.

Work in [12, 33, 34] showed that the path-loss models were different between

line-of-sight (LOS) and non-line-of-signt (NLOS) due to building blockage.

This was the basis of the stochastic geometry analysis in [1] which was applied

to cellular systems. The exclusion zone of the cellular system model in [1]

is not applicable to ad hoc networks. In the cellular model, the users fall

in the Voronoi cell of the base station. The strongest interferer due to the

Voronoi structure must lie outside a ball centered at the receiver. While in an

Aloha ad hoc network, an interfering transmitter can be arbitrary close [35].

In [36], blockage results from small-scale fading. At mmWave frequencies,
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blockages are due to obstacles like buildings which heavily attenuate mmWave

signals [37]. The effect of blockage is developed in [1] for mmWave cellular net-

works; rate trends for cellular are captured with real-world building footprints

in [38]. A LOS-ball approach is taken in [39] for backhaul networks which is

validated using real-world building data. Wearable networks which quantified

the effect of human blockage was considered in [40]. No consideration has been

made in the literature, however, to the effect of blockage on outdoor mmWave

ad hoc networks.

2.2 Contributions

In this chapter, I formulate the performance of mmWave ad hoc net-

works in a stochastic geometry framework. I incorporate random factors of a

mmWave ad hoc network such as building blockage, antenna alignment, inter-

ferer position, and user position. Using a similar framework, I compare and

contrast the performance against a lower frequency UHF ad hoc network. The

main contributions of the chapter can be summarized as follows:

• Derivation of a bound for mmWave ad hoc network signal-to-interference-

and-noise (SINR) complimentary cumulative distribution function (CCDF).

Using the SINR CCDF, a Taylor approximation is used to compute the

transmission capacity and area spectral efficiency of the network. I ar-

gue for LOS-aware protocols due to the large performance increase from

LOS communication at mmWave. Lastly, I calculate the effect of random

receiver location on performance.
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• Computation of the interference-to-noise ratio (INR). I include discussion

of the INR when a network is operating at the transmission capacity.

• Characterizing the effect of two-way communication on the transmission

capacity and area spectral efficiency. I show that optimal bandwidth

allocation leads to large gains in both performance metrics.

The rest of the chapter is organized as follows. Section 2.3 provides the

system model and assumptions used in the chapter. Section 2.4 derives the

SINR distribution, transmission capacity, ASE, and INR distribution for the

one-way network. Section 2.5 quantifies the transmission capacity and ASE

for two-way networks. I present the results in Section 2.6 and conclude the

chapter in Section 2.7. Throughout the chapter, P[X] is the probability of

event X and E is the expectation operator. A summary of the commonly used

variables is in Table 2.1.

2.3 System Model

2.3.1 Network Model

Consider an ad hoc network where users act as transmitter or receiver.

I use the dipole model of [35] where each transmitter in the network has a

corresponding receiver at distance ro. The transmitters operate at constant

power with no power control. The location of the transmitting users within

the network are points from a homogeneous Poisson point process (PPP) Φ on

the Euclidean plane R2 with intensity λu, which is standard for evaluating the
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Φ homogeneous Poisson point process (PPP)
λu intensity of the PPP
ζ transmission probability
λ effective transmitter density
ro communication distance

SINR signal-to-noise ratio
Γ SINR threshold for success comm
p(x) blockage probability function
β blockage building density
ai path loss exponent
N number of antennas

Gml, Gsl mainlobe,sidelobe antenna gain
κ system antenna gain
λε transmission capacity

Table 2.1: System variables for Chapter 2

transmission capacity of ad hoc networks, see [20] and the references therein.

I analyze performance at the typical dipole pair at the origin. The perfor-

mance of the typical dipole characterizes the network performance thanks to

Slivnyak’s Theorem [35]. The channel is accessed using a synchronized slotted

Aloha-type protocol with parameter ζ. During each block, a user transmits

with probability ζ or remains silent with probability (1 − ζ). I condition on

a fully outdoor network. I define the effective transmitting user density, used

throughout the rest of the chapter, as

λ = ζpoutλu, (2.1)

where pout is the probability a user is outdoors. A homogeneous PPP is perhaps

overly simplistic, but I leave the investigation of mmWave ad hoc networks

modeled with non-homogeneous PPPs to future work. I leave the optimization
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of ptx to future work, but provide a framework to find the solution in Section

2.5. The analysis of [37] shows how to compute pout using stochastic geometry.

2.3.2 Use of Beamforming

Now I explain the role of beamforming in the mmWave signal model.

The natural approach to combat increased omni-directional path-loss of mmWave

is to use a large antenna aperture, which is achieved using multiple anten-

nas [12,41,42]. The resulting array gain overcomes the frequency dependence

on the path-loss and allows mmWave systems to provide reasonable link mar-

gin. I denote the path-loss intercept as A = 20log10

(
2πdref

λref

)
with dref = 1m [34]

and λref as the carrier wavelength.

I assume that adaptive directional beamforming is implemented at both

the transmitter and receiver where a main lobe is directed towards the domi-

nate propagation path while smaller sidelobes direct energy in other directions.

No attempt is made to direct nulls in the pattern to other receivers [43]; this

is an interesting problem for future work. To facilitate the analysis, I approx-

imate the actual beam pattern using a sectored model, as in [16]. The beam

pattern is parameterized by three values: main lobe beamwidth (θant), main

lobe gain (Gml), and back lobe gain (Gsl). Such an antenna is shown in Fig.

2.1 where the mainlobe is 90◦, 30◦, or 9◦ with gain of 3dB, 10dB, or 15dB,

respectively. The interferers are also equipped with directional antennas. Be-

cause the underlying PPP is isotropic in R2, I model the beam-direction of

the typical node and each interfering node as a uniform random variable on
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Figure 2.1: An illustration of the sectored antenna model I use. Beamwidths
are 90◦, 30◦, and 9◦, respectively.

[0, 2π]. Thus, the effective system antenna gain of the interference seen by the

typical node is a discrete random variable described by

κi =


GmlGml w.p. ρml,ml = ( θant

π
)2

GmlGsl w.p. ρml,sl = 2 θant

π
π−θant

π

GslGsl w.p. ρsl,sl = (π−θant

π
)2

. (2.2)

The typical dipole performs perfect beam alignment and thus has an

antenna gain of GmlGml. I note that the sectored model is pessimistic with

regards to side band power. A typical uniform linear array, for instance, will

consist of a main-lobe and many less powerful side-lobes each separated by

nulls. The sectored model takes the most powerful side-lobe as the entire side-

lobe (i.e. on average, the sectored model provides higher side-lobe power).

Other work ignores the side-lobe power [44].

2.3.3 Blockage Model

The signal path can be either unobstructed/LOS or blocked/NLOS,

each with a different path-loss exponent. This distinction is supported by
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empirical measurements conducted in Austin, Europe, and Manhattan [11,12,

33, 34]. The measurements conducted by [34] include various vertical heights

such as building (e.g. 17m) and closer-to-pedestrian (e.g. 7m). I believe the

7m measurements to be applicable to ad hoc networks. The measurements

of [34], at 28, 38, 60, and 73GHz, show the path-loss difference of LOS/NLOS.

Additionally, a European consortium, Miweba, has also conducted peer-to-peer

urban canyon measurements made similar conclusions [33]. One reason for

larger difference in LOS/ NLOS path losses is that diffraction becomes weaker

in mmWave, as the carrier frequency goes high [33]. Besides, the Fresnel zone,

whose size is proportional to the square of the wavelength, becomes smaller

at mmWave. Therefore, the mmWave signals will be less likely affected by

objects in the LOS links, and transmit as in free space [33]. The work of [37]

assumes no particular architecture for the 2-dimensional stochastic geometry

derivation. The work captures the distribution and placement of buildings

with potential applications to cellular networks and ad hoc networks.

The blockages are modeled as another Poisson point process of build-

ings independent of the communication network. Each point of the building

PPP is independently marked with a random width, length, and orientation.

Under such a scenario, it was shown that by using a random shape model of

buildings to model blockage [37,45], the probability that a communication link

of outdoor users is LOS is P[LOS] = e−βd,where d is the link length and

β =
2λb(E[W ] + E[L])

π
, (2.3)
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with λb as the building PPP density, E[W ] and E[L] are the average width and

length, respectively, of the buildings. I note that the work of [37] includes a

parameter to capture the setting where transmitters are indoors, but this is not

required in the model as I analyze outdoor networks and therefore condition

on outdoor transmitters. A different analysis would be required for indoor

networks. This is reasonable because because mmWave signals are heavily

attenuated by many common building materials [12]. For example, brick ex-

hibits losses of 30dB at 28 GHz. While the leakage of indoor mmWave signals

might be possible through open windows, I ignore the potential interference

from indoors and focus solely on the outdoor setting.

The path-loss exponent on each interfering link is a discrete random

variable described by

αi =

{
αL w.p. p(x)

αN w.p. 1− p(x)
, (2.4)

where αL and αN are the LOS and NLOS path-loss exponents and p(x) is the

probability a link of length x is LOS. Fig. 2.2 shows an example realization of

the ad hoc network. The density and mean building size are modeled to match

The University of Texas at Austin [37]. I ignore correlations between blockages,

as in [37]; the blockage on each link is determined independently. While the

correlations might affect the tail behavior of the SINR distribution [46], it was

shown that the difference in the practical operating SINR range is small when

ignoring the correlation [45]. Moreover, simulations that use real geographical

data [39,47] match analytic expressions ignoring blockage correlation.
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2.3.4 SINR

To help with the analytic tractability, I model the fading as a Nakagami

random variable with parameter Nh. Consequently, the received signal power,

h, can be modeled as a gamma random variable, h ∼ Γ(Nh, 1/Nh). As Nh →

∞, the fading becomes a deterministic value centered on the mean, whereas

Nh = 1 corresponds to Rayleigh fading.

The SINR is the basis of the performance metrics in this chapter. Pt

is the transmit power of each dipole, κo is the antenna gain corresponding

to both main beams aligned, ho is the fading power at the dipole of interest,

Am is the path-loss intercept, ro is the fixed dipole link length, αo is the

path-loss exponent, and Nm
o is the noise power. The interference term for

each interfering dipole transmitter is indexed with i: di is used to represent

the distance from the interferer to receiver of interest, hi is each interference

fading power distributed IID according to a gamma distribution, and κi is the

discrete random antenna gain distributed IID according to (2.2). The SINR

is defined as [35]

SINR =
PtκohoAmr

−αo
o

Nm
o +

∑
i∈Φ PtκihiAmd

−αi
i

. (2.5)

2.4 One-Way Ad Hoc Communication

In this section, I derive the SINR distribution for one-way transmission

in the ad hoc network described in Section 2.3. I first characterize the overall

SINR complimentary cumulative distribution function (CCDF) by analyzing
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Figure 2.2: Example realizations of the random network with blockage. The
blue rectangles are random boolean buildings which attenuate the signal. The
red triangles are the Poisson point process of interferers. The green star repre-
sents the typical node. The user densities are what I call sparse (a) and dense
(b) when discussing the results.
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the network when the desired link is either LOS and NLOS. Next, I define the

protocol-gain by limiting communication to LOS links and argue why this is a

useful concept. I quantify the effect of random receiver distance. I show that

neglecting noise and NLOS interference does not change the SINR distribu-

tion, suggesting that mmWave ad hoc networks are LOS interference limited

in dense networks. This is reinforced by the derivation of the INR cumulative

distribution function CDF. Lastly, the performance metrics, transmission ca-

pacity and area spectral efficiency, are computed using a bound of the SINR

CCDF.

2.4.1 SINR Distribution

I define the CCDF of the SINR as

Pc(Γ) = P[SINR ≥ Γ], (2.6)

where Γ is target SINR. In other work, (2.6) is referred to as the coverage

probability [16, 20, 35]. I can use the law of total probability to expand the

SINR CCDF as [1]

Pc(Γ) = P L
c (Γ)P[LOS] + PN

c (Γ)P[NLOS], (2.7)

where P L
c and PN

c are the conditional CCDFs on the event that the main link

is LOS and NLOS, respectively. The SINR CCDF conditioned on the link

being LOS is [1]

P L
c (Γ) = P[SINR ≥ Γ|LOS]. (2.8)
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Going forward, for brevity, I will drop the conditional notation when

using P L
c . Using (2.5),

P L
c (Γ) = P

[
PtκohoAmr

−αL
o

Nm
o +

∑
i∈Φ PtκihiAmd

−αi
i

≥ Γ

]
(2.9)

= P
[
ho ≥

ΓrαL
o

PtκoAm

(
Nm
o +

∑
i∈Φ

PtκihiAm

dαii

)]
(2.10)

= P
[
ho ≥

ΓrαL
o

PtκoAm

(Nm
o + IΦ)

]
(2.11)

= 1− P
[
ho <

ΓrαL
o

PtκoAm

(Nm
o + IΦ)

]
(2.12)

= 1−
∫ ∞

0

P
[
ho <

ΓrαL
o

PtκoAm

(Nm
o + x)|IΦ = x

]
pΦ(x)dx, (2.13)

where IΦ is the aggregate interference due to the PPP and pΦ is the probability

distribution function of the PPP. I introduce the following Lemma to aid the

analysis.

Lemma 2.4.1. The cumulative distribution function of a normalized gamma

random variable with integer parameter k, y ∼ Γ(k, 1/k), can be tightly lower

bounded as

[
1− e−az

]k
< P [y < z]

with a = k(k!)−1/k.

Proof. See Appendix 2.8.1.
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Now I can bound (2.13) as

P L
c (Γ) < 1−

∫ ∞
0

[(
1− e−a

Γr
αL
o

PtκoAm
(Nm

o +x)

)Nh
]
pΦ(x)dx (2.14)

= 1− EΦ

[(
1− e−a

Γr
αL
o

PtκoAm
(Nm

o +IΦ)

)Nh
]

(2.15)

=

Nh∑
n=1

(
Nh

n

)
(−1)n+1EΦ

[
e
−an Γr

αL
o

PtκoAm
(Nm

o +IΦ)]
, (2.16)

where (2.16) is from the Binomial Theorem [1].

Because the correlation between each random blockage is ignored, each

point in the building blockage PPP is independent which permits the use of

the thinning theorem from stochastic geometry [21]. I further thin Φ based

on the random antenna gain. Essentially, I can now view the interference as 6

independent PPPs such that

IΦ = IGmlGml
ΦLOS

+ IGmlGsl
ΦLOS

+ IGslGsl
ΦLOS

+ IGmlGml
ΦNLOS

+ IGmlGsl
ΦNLOS

+ IGslGsl
ΦNLOS

, (2.17)

with the superscripts representing the discrete random antenna gain defined in

(2.2) and each interfering node either a LOS transmitter or NLOS transmitter.

I can distribute the expectation in (2.16) as

P L
c <

Nh∑
n=1

(−1)n+1

(
Nh

n

)
e−nKLΓNm

o

∏
i

∏
j

EI
Φi
j

[
e
−nKLΓI

Φi
j
]

(2.18)

with i ∈ {(ml,ml), (ml, sl), (sl, sl)}, j ∈ {LOS,NLOS}, and KL = ar
αL
o

PtκoAm
. In

(2.18), i and j index each interference sub-PPP. In essence, each expectation

is the Laplace transform of the associated sub-PPP, and each of these Laplace

transforms are multiplied together.
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Using stochastic geometry, I can analytically represent the first Laplace

expectation term as

E
[
e
−nKLΓI

GmlGml
ΦLOS

]
= (2.19)

e
−2πλpGG

∫∞
0

(
1−Eh

[
e
−nKLΓPtAmGGh

xαL

])
p(x)xdx

,

where ρGmlGml
and p(x), capture the thinning of the PPP for the first sub-PPP

in (2.17). Notice that Eh[eηh] corresponds to the moment-generating function

(MGF) of the random variable h (e.g. gamma). A similar approach was

taken in [1] for the analysis of mmWave cellular networks. The final Laplace

transform of the PPP is given as

L
I
GmlGml
ΦLOS

= e
−2πλρGmlGml

∫∞
0

(
1−1/(1+

nQLΓ

xαLNh
)Nh

)
p(x)xdx

. (2.20)

with QL = KLPtGmlGmlAm = ar
αL
o GmlGml

κo
. Each other Laplace transform is

computed similarly, but noting that ρGmlGml
, p(x), and xαL will change de-

pending on the antenna gain of the sub-PPP and if the sub-PPP is LOS or

NLOS. I can summarize the results in the following theorem

Theorem 2.4.1. The SINR distribution of an outdoor mmWave ad hoc net-

work can be tightly upper bounded by

Pc(Γ) <

Nh∑
n=1

(
Nh

n

)
(−1)n+1e−nKLΓNm

o e−2πλ(ωL+ωN)p(r)

+

Nh∑
n=1

(
Nh

n

)
(−1)n+1e−nKNΓNm

o e−2πλ(ξL+ξN)

(
1− p(r)

) (2.21)
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where

ωL =
∑
i

ρi

∫ ∞
0

[
1− 1/

(
1 +

nQLΓ

xαLNh

)Nh
]
p(x)xdx (2.22)

ωN =
∑
i

ρi

∫ ∞
0

[
1− 1/

(
1 +

nQLΓ

xαLNh

)Nh
](

1− p(x)
)
xdx (2.23)

ξL =
∑
i

ρi

∫ ∞
0

[
1− 1/

(
1 +

nQNΓ

xαNNh

)Nh
]
p(x)xdx (2.24)

ξN =
∑
i

ρi

∫ ∞
0

[
1− 1/

(
1 +

nQNΓ

xαNNh

)Nh
](

1− p(x)
)
xdx (2.25)

with KL = ar
αL
o

PtκoAm
, KN = ar

αN
o

PtκoAm
, i ∈ {(ml,ml), (ml, sl), (sl, sl)}, QL = ar

αL
o κi
κo

,

and QN = ar
αN
o κi
κo

.

Proof. Substituting each Laplace transform (2.20) into (2.18) for the condi-

tional P L
c yields the first summation in Theorem 2.4.1. The same process is

done for the Laplace transforms corresponding to PN
c . These summations are

then multiplied by P[LOS] and P[NLOS], respectively, to give the full CCDF

of (2.7).

In Theorem 2.4.1, ωL and ωN correspond to the LOS and NLOS interfer-

ence, respectively, when the desired signal is LOS while ξL and ξN correspond

to the LOS and NLOS interference, respectively, when the desired signal is

NLOS. While Theorem 2.4.1 may appear unwieldy, the decomposition of the

terms illustrates the insight that can be gained from the Theorem. In the

first summation, there are exponential terms that correspond to noise, LOS

interference (i.e. ωL), and NLOS interference (i.e. ωN). Further, both ωL and
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Parameter Value
λ 5× 10−5, 5× 10−4 (m−2)
r 25, 50, 75 (m)
β, αLOS, αNLOS 0.008, 2, 4
Nm
o -117 dB

hi, Nh Gamma, 7
θant, Gml, Gsl

π
6
, 10, 0.1

Pt 1W (30dBm)

Table 2.2: Parameters of results.

ωN (and similarly ξL and ξN) can be decomposed based on each antenna gain.

It is possible to compare relative contributions to the total SINR CCDF. For

example, by computing ωN, I was able to see that ωL � ωN for many different

system parameters of interest. Therefore, e−2πλ(ωL+ωN) ≈ e−2πλωL which means

NLOS interference has relatively no effect on the SINR distribution. I use this

insight in Section 2.4.5 to conclude that mmWave ad hoc networks are LOS

interference limited.

2.4.2 Validation of the Model

Before proceeding, I verify the tightness of the bound in Theorem 2.4.1.

Table 2.2 shows the values used throughout the section. The parameters of

(2.7) are simulated through Monte Carlo, while Theorem 2.4.1 is used for the

analytic model. For the simulation, a PPP was generated over an area of

4km2. The building model of [48] is used to generate the building blockage for

the simulation. This includes correlation between the points. An underlying

building density of λb = 9.3× 10−5 is used with a expected width and length
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of the buildings as E[L] = 64 and E[W ] = 70. This yields β = 0.008. The

thermal noise power of 500MHz bandwidth at room temperature is −117dB.

I used Nh = 3 when computing the analytic expressions. I chose Nh = 3

because measurement campaigns have shown that small-scale fading is more

deterministic at mmWave [34]. In the measurements of [12, 49], small-scale

fading is not very significant. Because of the directional antennas and sparse

channel characteristics, the uniform scattering assumption for Rayleigh fading

is not valid at mmWave frequencies. I chose a 30◦ beamwidth. Additionally,

10dB gain corresponds to the theoretical gain of a 10 element uniform linear

array unit gain antennas.

Fig. 2.3a compares the analytic SINR distribution with the empirical

given a λ = 5×10−5m−2 or an average of 50 users/km2. This can be attributed

to the directional antennas limiting the interference seen by the typical node.

The analytic expression in Theorem 2.4.1 of the mmWave ad hoc network

matches extremely well to the simulations. For all three link lengths, the

SINR of the users is greater than 0dB a majority of the time.

Fig. 2.3b compares the SINR distribution results for a much denser

network, λ = 5× 10−4m−2 which corresponds to an average of 500 users/km2.

Again, Theorem 2.4.1 matches the simulation well. For the larger link dis-

tances, I see bi-modal behavior of the CCDF with the plateaus around −10dB.
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Figure 2.3: The SINR distribution of mmWave ad hoc networks with λ =
5× 10−5 (a) and λ = 5× 10−4 (b).

2.4.3 LOS Protocol-Gain

In this section, I define and discuss the LOS protocol-gain. I can view

Pc(Γ) as a mixture of P L
c (Γ) and PN

c (Γ). In Fig. 2.3b, the interference causes

most of the density of PN
c (Γ) to shift to very low SINR. The plateaus in the

CCDF of Fig. 2.3b illustrate this separation. Unless the SINR threshold

is very low (e.g. below -20dB), these links will not be able to communicate

without LOS communication. This motivates the need for a protocol to ensure

LOS communication (e.g. using a LOS relay to multi-hop around a building).

If LOS communication is assumed, the SINR distribution in the LOS regime

will be equal to P L
c (Γ) (i.e. set P[LOS] = 1). With many users nearby, the

network will have multiple users that could potentially be a LOS receiver.

Fig. 2.4 shows the SINR distribution of a mmWave ad hoc network if

the desired link is LOS. The improvement is quite large. The 90% coverage

30



-40 -30 -20 -10 0 10 20 30 40

SNR Threshold (dB)

0

0.2

0.4

0.6

0.8

1
P

c(T
)

Coverage Probability of mmWave Ad-Hoc Network

Analytic r = 25m
Analytic r = 50m
Analytic r = 75m
Sim r = 25m
Sim r = 50m
Sim r = 75m

(a)

-40 -30 -20 -10 0 10 20 30 40

SNR Threshold (dB)

0

0.2

0.4

0.6

0.8

1

P
c(T

)

Coverage Probability of mmWave Ad-Hoc Network

Analytic r = 25m
Analytic r = 50m
Analytic r = 75m
Sim r = 25m
Sim r = 50m
Sim r = 75m

(b)

Figure 2.4: The SINR distribution of mmWave ad hoc networks with λ =
5 × 10−5 (a) and λ = 5 × 10−4 (b). If the desired link is LOS, significant
improvement to the SINR distribution is realized. I term this the LOS protocol-
gain.

point in Fig. 2.4a is improved by 10dB for 25m, 20dB for 50m, and 30dB

for 75m, compared to the same network in 2.3a. The improvement in Fig.

2.4b is even more drastic. For the 25m link, 20dB improvement is seen. This

knowledge should influence MAC design, which is why I call it protocol-gain.

2.4.4 Distributions of r

One of the limitations of the dipole model is the fixed length of the

communication link. This model is used for its analytic tractability but is not

a realistic expectation. In a D2D gaming scenario, for example, the distance

between the receiver and transmitter will vary as the two users walk around. To

quantify this, I can integrate Theorem 2.4.1 against a receiver location density

function. The SINR distribution accounting for different receiver geometries
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Figure 2.5: The effect of receiver distribution is quantified for the overall
(LOS/NLOS) SINR distribution (a) and LOS-only SINR distribution (b).
Each link, on average, is 25m.

is

P r
c (Γ) =

∫
S

Pc(r,Γ)fR(r)dr (2.26)

where S is the support of the location density distribution and fR is the density

and Pc(r,Γ) is Theorem 2.4.1, but I allow varying receiver distances. I compare

two different distributions against the fixed dipole assumption.

As shown in Fig. 2.5, I use two receiver geometries to compare against,

the uniform and Rayleigh [18]. For larger SINR thresholds, including a ran-

dom receiver distance improves performance. This is due to the positive effect

of having the receiver closer some of the time. As shown in Fig. 2.3, communi-
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cation when NLOS generally has poor SINR. The random shorter link means

LOS communication is more likely. Conversely, the random receiver locations

hurt performance for lower SINR thresholds. If assuming random receiver

locations, both distributions give similar results despite the Rayleigh distribu-

tion having unbounded support. Surprisingly, the results indicate that simply

knowing the mean of the distribution captures much of the SINR distribution.

2.4.5 LOS Interference Limited Networks

Interference is a key design limitation for ad hoc networks. Cellular

network analysis has shown that mmWave cellular networks can be modeled

as noise-limited with inter-site-distances of 200m [1, 12, 38, 39]. This network

topology, however, is different from an ad hoc network as cellular users asso-

ciate with a fixed base station. I now characterize the transition from noise-

limited to interference-limited operation as a function of user density, building

density, antenna pattern, and transmission distance. I achieve this by using

the interference-to-noise ratio (INR) cumulative distribution function (CDF)

PNL(Γ) = P[INR ≤ Γ]. (2.27)

I leave the threshold value up to system designers to determine what value of

Γ is appropriate for defining noise limited. A natural choice may be 1 (0dB)
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or 10 (10dB). The INR CDF can be written as

PNL(Γ) = P
[∑

i∈Φ PtκihiAmr
−αi
i

Nm
o

≤ Γ

]
(2.28)

= P
[
1 ≥

∑
i∈Φ PtκihiAmr

−αi
i

ΓNm
o

]
(2.29)

= P
[
1 ≥ IΦ

ΓNm
o

]
(2.30)

= 1− P
[
1 <

IΦ

ΓNm
o

]
. (2.31)

To analytically evaluate P
[
1 < IΦ

ΓN0

]
, I replace 1 with a random variable, C,

with low variance. I let C ∼ Γ(NC, 1/NC). If I examine the probability density

function (PDF) of C,

fC(x) =
NNC

C xNC−1e−NCx

Γ(NC)
, (2.32)

the lim
NC→∞

fC(x) = δ(x− 1). Further, I leverage Lemma 2.4.1 again. The INR

distribution can then be bounded as

PNL = 1− P
[
C <

IΦ

ΓN0

]
(2.33)

< 1− EΦ

[(
1− e−a

IΦ
ΓNm

o

)NC

]
(2.34)

=

NC∑
n=1

(
NC

n

)
(−1)n+1EΦ

[
e
−an IΦ

ΓNm
o

]
, (2.35)

where (2.34) is from the law of total probability and gamma CDF approxi-

mation while (2.35) is from the Binomial Theorem. The transmitters, again,

are six independent PPPs as explained in (2.17). Because each sub-process

is independent, I re-write (2.35) as a product of expectations. The analytic

expression of the first Laplace expectation term is
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E
[
e
− an
Nm
o Γ

I
GmlGml
ΦLOS

]
= e

−2πλρGmlGml

∫∞
0

(
1−Eh

[
e
−anPtAmGmlGmlh

xαNm
o Γ

])
p(x)xdx

. (2.36)

I invoke the MGF of a gamma random variable to yield the final Laplace

transform of the PPP as

L
I
GmlGml
ΦLOS

= e
−2πλρGmlGml

∫∞
0

(
1−1/(1+

anPtAmGmlGml
xαNm

o ΓNh
)Nh

)
p(x)xdx

. (2.37)

Each other Laplace transform is computed similarly but ρGmlGml
will corre-

spond to the probability of the antenna gain {(ml,ml), (ml, sl), (sl, sl)} and

the NLOS probability is 1 − pLOS. I summarize the results in the following

theorem.

Theorem 2.4.2. The INR distribution of a mmWave ad hoc network can be

tightly bounded by

PNL(Γ) <

NC∑
n=1

(
NC

n

)
(−1)n+1e−2πλ(υL+υN) (2.38)

where

υL =
∑
i

ρi

∫ ∞
0

(
1− 1/

(
1 +

anPtAmκi
xαLN

m
o ΓNh

)Nh

)
p(x)xdx (2.39)

υN =
∑
i

ρi

∫ ∞
0

(
1− 1/

(
1 +

anPtAmκi
xαNN

m
o ΓNh

)Nh

)(
1− p(x)

)
xdx (2.40)

with i ∈ {(ml,ml), (ml, sl), (sl, sl)}.

Proof. Substituting the Laplace transform (2.37) into (2.35) yields the result.
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While I focus on investigating the impact of the node density and

beamwidth of directional beamforming in this chapter, the INR distribution

also depends on other system parameters, such as transmission power. It

should be noted that the INR in (2.27) scales with the transmit power; in-

teresting future work is discovering a transmission power control scheme to

optimize the INR. Such a scheme could limit the transmit power based on the

proximity of the nearest interferer.

2.4.6 One-Way Performance Analysis

Now, using Theorem 2.4.1, I characterize the transmission capacity, λε.

This is the largest λ the network can support given an SINR threshold, Γ and

outage ε. More simply, 1 − ε = Pc(Γ) of users will have an SINR larger than

Γ. The transmission capacity can also be defined as the number of successful

transmissions per unit area, which is directly connected to the number of users

supported by the network. To do this, I approximate the exponential terms of

Theorem 2.4.1 as

P L
c <

Nh∑
n=1

(−1)n+1

(
Nh

n

)
e−nKLΓNm

o

(
1− 2πλεΘ + 2πλ2

εΘ
2

)
(2.41)

where Θ = ωL +ωN. I leverage the bound, e−x ≤ (1−x+x2/2) for x ∈ R+, for

the Laplace functional term. This bound is tight for small x. I am interested in

analyzing the optimal λ for Pc near 1. As a result, the Laplace functional will

be close to 1; the argument will be close to 0. A similar bound is done for the

NLOS term in Theorem 2.4.1. I combine (2.41) and the NLOS approximation
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to form

1− ε <
Nh∑
n=1

(−1)n+1

(
Nh

n

)
e−nKLΓNm

o ×

(
1− 2πλεΘ + 2πλ2

εΘ
2

)
+

Nh∑
n=1

(−1)n+1

(
Nh

n

)
×

e−nKNΓNm
o

(
1− 2πλεΨ + 2πλ2

εΨ
2

)
(2.42)

with Ψ = ξL + ξN. Because of this bound, Pc is now a quadratic equation

in λ which can be solved in closed-form. The exact solution depends on Nh.

Symbolic tools, such as Mathematica, can factor and solve (2.42) such that

λε = f(Γ, ε). (2.43)

Area spectral efficiency is a useful metric because it can characterize

the network performance, rather than just a single link, as SINR does [28]. I

define area spectral efficiency as

ASE := λε︸︷︷︸
users
area

log2(1 + Γ)︸ ︷︷ ︸
efficiency

(1− ε)︸ ︷︷ ︸
%ofthetime

. (2.44)

Substituting (2.43) into (2.44) yields a function of just Γ and ε. The ASE

yields a result in terms of bits/sec/Hz/m2.

2.5 Two-way Ad Hoc Communication

The derivations from the Section 2.4 are for one-way communication.

There is no consideration for the reverse link (i.e. receiver to transmitter).

In real systems, however, successful transmission usually relies on a two-way
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communication stack. The two-way transmission capacity quantifies the maxi-

mum density of users a network can support while both the forward and reverse

link are subject to outage constraint, ε [27].

The forward link is defined as the transmitter to receiver link (i.e. what

was discussed in Section 2.4), while the reverse link is the receiver to trans-

mitter control link. Frequency division duplexing (FDD) is used between the

forward and reverse links, as is done in [27]. Each link operates concurrently

with differing rate requirements. Consider the bandwidth from Section 2.4

split among the forward and reverse links. Hence, Btotal is the bandwidth

available to the system. The forward link is allocated BF, while the reverse

link is allocated BR = Btotal−BF. The SINR is similarly defined as SINRF and

SINRR. Correspondingly, from Shannon’s equation, the links achieve rates, RF

and RR. A user with rate requirement RF would then have an SINR thresh-

old of ΓF = 2RF/BF − 1. It should be noted that time division duplexing can

similarly be used with the threshold of ΓF = 2
RF

τFBtotal − 1 with τF being the

fraction of time for the forward link. The reverse link thresholds are similarly

defined. I consider only FDD for the remainder of the analysis.

2.5.1 Two-way SINR Analysis

The two-way SINR probability is the probability that the forward link

and reverse link exceed an SINR threshold. More precisely,

P tw
c = P[SINRF > ΓF, SINRR > ΓR]. (2.45)
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I assume that the forward and reverse link do not have the same SINR

threshold because the reverse control link is generally low-rate compared to the

forward link. To analyze this probability, I leverage the following definitions

and lemma.

Definition 1 [27]: A random variable X defined on (Ω,F,P) is increas-

ing if X(ω) ≤ X(ω′) for a partial ordering on ω, ω′. X is decreasing if −X is

increasing.

The SINR is a random variable defined on the probability space which

is determined by how the interferers are placed on the plane. Let ω be a set

of active interferers from the PPP. Then, ω′ ≥ ω if ω′ is a superset of ω. The

SINR (2.5) decreases if another interferer is added: SINR(ω) ≥ SINR(ω′).

Therefore, SINR is a decreasing random variable.

Definition 2 [27]: An event A from F is increasing if IA(ω) ≤ IA(ω′)

when ω ≤ ω′ where IA is the indicator function. The event is decreasing if Ac

is increasing.

The SINR probability event, {SINR > Γ} is a decreasing event. If

another interfering user is added to ω, the probability of successful transmis-

sion decreases. Now, I can leverage the Fortuin, Kastelyn, Ginibre (FKG)

inequality [50].

Lemma 2 [50]: If both A,B ∈ F are increasing or decreasing events

then P (AB) ≥ P (A)P (B).

The FKG inequality can give a bound on the two-way SINR prob-
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ability. The bound is only tight when the forward and reverse channels are

independent; the dependence, however, can be low in ad hoc network as shown

in [1,27]. In [27], this was shown to be a tight lower bound. Using FKG, I can

define the two-way SINR probability as

P tw
c ≥ P[SINRF > ΓF]P[SINRR > ΓR]. (2.46)

Therefore, the two-way SINR probability can be lower-bounded as

P tw
c ≥

[
Nh∑
n=1

(−1)n+1

(
Nh

n

)
e−2πλ

[
ωL(ΓF)+ωN(ΓF)

]]
[

Nh∑
n=1

(−1)n+1

(
Nh

n

)
e−2πλ

[
ωL(ΓR)+ωN(ΓR)

]]
. (2.47)

2.5.2 Two-Way Performance Analysis

Now I compute the two-way transmission capacity, λtw
ε . Because of the

constraint that both transmitter and receiver must succeed in transmission, I

can argue λtw
ε ≤ λε. It is unclear, however, if the gap is large in a mmWave

network. Using the transmission capacity framework can quantify how many

users must be removed from the network to support the reverse link. Using

a similar approach as with the one-way transmission capacity, I use a Taylor

expansion of the exponential function to yield

P tw
c ≈

[ Nh∑
n=1

(−1)n+1
(Nh

n

)(
1− 2πλtw

ε Θ(TF) + 2π(λtw
ε )2Θ2(ΓF)

)]
[ Nh∑
n=1

(−1)n+1
(Nh

n

)(
1− 2πλtw

ε Θ(ΓR) + 2π(λtw
ε )2Θ2(ΓR)

)]
. (2.48)
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The result is a quartic equation in λtw
ε which has an analytic expression. The

general solution, however, is quite messy, and the equation is a page long, so

it is omitted here. An analytical solver, such as Mathematica, can factor the

coefficients of (2.48) which can be input into a polynomial root solver to yield

the solution. The two-way area spectral efficiency can be defined as [19]

ASEtw
ε := λε

(
RF +RR

Btotal

)
(1− ε). (2.49)

Given rate requirements RF and RR, what is the allocation of bandwidth that

maximizes (2.49)? I explore this trade-off in Section 2.6.

2.6 Performance Results

In this section, I evaluate the performance metrics to obtain the trans-

mission capacity, λε. Further, I compute the area spectral efficiency to define

the best λ, given by λ?. I compare the achievable rates for mmWave net-

works with classic results for lower frequency ad hoc networks. The section is

concluded with an investigation into two-way communication.

Throughout the section, I compare the mmWave results to UHF ad hoc

networks (e.g. 2.4 GHz). For the UHF network, I adjust the model parameters

to fit UHF networks. I maintain a constant antenna aperature between models

which keeps the relative physical size of the devices constant. For an antenna,

the gain is computed using G = Aeff

λ2/4π
where Aeff is the aperature of the

antenna. By increasing the frequency ten-fold (e.g. 2.4GHz to 28GHz), the

gain of the resulting mmWave antenna is 100 (20dB); this matches the 20dB

41



SNR Threshold (dB)
-20 -15 -10 -5 0 5 10

λ
ǫ
 (

m
-2

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Transmission Capacity with ǫ  = 0.1

mmWave r = 25m
mmWave r = 50m
mmWave r = 75m
UHF r = 25m
UHF r = 50m
UHF r = 75m

(a)

SNR Threshold (dB)
-20 -15 -10 -5 0 5 10

λ
ǫ
 (

m
-2

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Transmission Capacity with ǫ  = 0.1

mmWave r = 25m
mmWave r = 50m
mmWave r = 75m
UHF r = 25m
UHF r = 50m
UHF r = 75m

(b)

Figure 2.6: The largest λ for a 10% outage at various SINR thresholds and
dipole distances for NLOS/LOS communication (a) and LOS-only communi-
cation (b).

total gain for both transmitter and receiver (i.e. 10dB for each transmitter

and receiver). I maintain 1W (0dB) of transmit power for UHF. To capture

the effect of LOS/NLOS communication, I use αL = 2.09 and αN = 3.75 as

shown in [51] which are taken from 3GPP LTE measurements. I use the same

blockage model as mmWave. I use a path-loss intercept of 40.4dB and a noise

power of −127dB (e.g noise power for 50MHz). For the rate calculations, I use

a bandwidth of 50MHz.

2.6.1 Transmission Capacity

Fig. 2.6 shows the transmission capacity for mmWave and lower fre-

quency networks with a 10% outage. Fig. 2.6 shows the relationship between

providing a higher SINR (and thus rate) to users while maintaining a con-

stant outage constraint. As expected, the shortest dipole length can support
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the highest density of users. A linear increase in SINR (in dB) results in an

exponential decrease in the density of users in the network.

In Fig. 2.6a, both LOS and NLOS communication is allowed. If the

dipole length is 25m, mmWave networks can allow a larger density. If the

dipole length is 50m or 75m, however, lower-frequency networks can permit

higher densities when the communication threshold is higher. This is because

the mmWave network begins to be noise limited. Essentially, the blockage

probability is larger than ε; because of the longer link length (and increased

path-loss exponent for NLOS communcation), there is no density that will

meet the threshold requirements and the transmission capacity is 0. For the

UHF network, the lower path-loss exponent and noise power permit a positive

transmission capacity. Fig. 2.6b shows the improvement if communication is

kept to LOS links. Because the communication is always LOS, the longer links

can now support a positive transmission capacity for higher SINR thresholds.

2.6.2 Area Spectral Efficiency

Similar trends are evident in Fig. 2.7. The mmWave network has a 10×

efficiency gain compared to UHF networks when the transmission capacity

is non-zero. This gain is realized through the interference reduction in the

directional antenna array and the increased path-loss exponent for NLOS links.

Because buildings do not attenuate UHF as much, even the NLOS interference

in a UHF network limits performance.

The shape of the curves suggests an optimal density with respect to
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Figure 2.7: Area spectral efficiency of network with 10% outage. If the dipole
link is restricted to LOS (b), an order-of-magnitude improvement is shown
over NLOS/LOS dipole links (a). Note the different y-axis scales.

ASE. This leads to the optimization problem

λ? = argmax
λε

λεlog2(1 + Γ)(1− ε). (2.50)

The numerical solution to this problem is the density corresponding to the

largest ASE from Fig. 2.7. I leave the exploration of analytical solutions

to (2.50) for future work. Fig. 2.8 shows the numerically obtained λ? from

Fig. 2.7b. The optimal density is exponentially decreasing in r. The optimal

density, λ?, corresponds to an average neighbor distance 1/2 the link distance

in the LOS-only (protocol gain) case. MmWave ad hoc networks can not

only support high density, but this density is best for overall network

efficiency. This is due to both the directional antennas and blockage. The

blockage thins the interference PPP as shown in Section 2.4.5. The remaining

LOS interferers are effectively pushed away. The interference power from a
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Figure 2.8: Optimal network density for various dipole lengths, subject to 10%
outage.

close neighbor into the side-lobe (i.e. the power is heavily attenuated) is the

same as that interferer being further away but using omni-directional antennas.

Of course, if an interferer is in the main-lobe of the antenna, this phenomenon

works against the receiver, but more often, it helps.

2.6.3 Rate Analysis

Fig. 2.9 shows the rate coverage probability, where R = W log2(1 + Γ),

and W is the system bandwidth. From Theorem 2.4.1, a user will achieve

SINR > Γ with some probability as shown in Fig. 2.3a and Fig. 2.3b which

leads to an achievable rate probability. For example, according to Fig. 2.4a, a
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Figure 2.9: MmWave ad hoc networks provide significant increase in rate
coverage over lower frequency networks.

LOS mmWave communication link of 50m will have an SINR of at least 10dB

95% of the time which, assuming Gaussian signaling, leads to a rate according

to Shannon’s equation. In Fig. 2.9 I consider networks with both LOS and

NLOS communication.

The system bandwidth used in Fig. 2.9 is 500MHz for the mmWave and

50MHz for the lower frequency system. While the bandwidth is only a 10×

increase, I see orders-of-magnitude increase in the rate coverage for mmWave

networks. All link lengths of the mmWave network support over 1Gbps a

majority of the time.

2.6.4 INR Distribution

Figs. 2.10, 2.11, and 2.12 show the INR CDF for three values of λ for

each of the beam patterns in Fig. 2.1. Indeed, in all antenna patterns, the

sparsest network exhibits noise limited behavior. For example, the P[INR <
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Figure 2.10: The INR CDF for θant = 9◦. With extreme beamforming, the
network remains interference limited in all but the sparest network.

0dB] = 0.4 for 30◦ antennas in the sparest network. Yet, these results show

compelling evidence that a mmWave ad hoc network can still be considered

interference limited. In dense networks (22m and 70m spacing), in all but the

very narrow beam case, the network exhibits strong interference. Because of

this, I urge caution when considering mmWave networks to be noise limited.

Fig 2.13 shows the INR distribution if I ignore NLOS interference for

when θant = 30◦. It shows that for many mmWave networks the interference is

largely driven by the LOS interference in the two denser networks. The CDF

of the two denser networks in Fig. 2.13 is nearly identical to Fig. 2.11 which

indicates that NLOS interference plays no role at those densities. I believe this

47



−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0m1

0m2

0m3

0m4

0m5

0m6

0m7

0m8

0m9

1

TndBA

P
[IN

R
t<

tT
]

CDFtoftINRtwithtθ =t30degtGtGaint=t100

Analytictλ =t0m001
Simtλ =t0m001
Analytictλ =t0m0005
Simtλ =t0m0005
Analytictλ =t0m0001
Simtλ =t0m0001

Figure 2.11: The INR CDF for θant = 30◦. In the sparsest network, the
interference power is more dominant than the noise power (i.e. P[INR <
0dB] = 0.4 for the green circle network), but the red triangle curve shows that
the more dense network is always interference limited.
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Figure 2.12: The INR CDF for θant = 90◦. In all networks, the interference
power is nearly always more dominant than the noise power (i.e. P[INR <
0dB] = 0.05 for the green circle network).
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Figure 2.13: The INR CDF for λ = 5 × 10−5 and θant = 30◦ with only LOS
interference. Compare to Fig. 2.11, I find that the shape of INR distributions
is largely determined by the LOS interference when the network is dense.

shows compelling evidence that interference cancellation may be useful, even

at mmWave frequencies. In particular, eliminating LOS interference is most

important.

In Fig. 2.14, the INR is shown for the transmission capacity of the

networks from Figs. 2.6a & 2.6b. If conditioned on LOS communication (i.e.

LOS protocol-gain), the networks support very dense deployments. As such,

the INR is nearly always > 0dB as shown in Fig. 2.14. If the network does

not enforce a LOS-only transmission scheme, the transmission capacity is less.

The interference, however, is not negligible for networks of 25m and 50m. If
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Figure 2.14: The densities correspond to the transmission capacity from Figs.
2.6a & 2.6b for SINR threshold on 0dB.

the communication link is 25m, the INR is > 0dB 70% of the time; if the link

is 50m, the INR is less but still > −10dB roughly half the time.

2.6.5 Two-Way Communication Results

The results presented in this section consider a two-way system using

bandwidth allocation to split resources. I show that, in asymmetric traffic, the

transmission capacity of a two-way network can be vastly improved compared

to equal bandwidth allocation or rate-proportional allocation. The two-way

area spectral efficiency is compared to one-way area spectral efficiency. I show

that 75% of the one-way efficiency can be achieved for outage of 10% which

is a 100% increase over the baseline equal allocation. In all the results, the
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Figure 2.15: The transmission capacity of a two-way network can be improved
by allocating bandwidth in an optimal way.

dipole link length is 50m.

I consider asymmetric traffic. For example, in TCP assuming 1000 byte

data packets, the receiver must reply with 40 byte ACK packets [52]. Hence,

the rate asymmetry in TCP is 1/25. The following results consider a system

bandwidth of 100MHz, a forward rate requirement of 200Mbps, and a reverse

link rate requirement of 8Mbps.

Fig. 2.15 shows the transmission capacity as a function of forward

bandwidth allocation. As more bandwidth is added to the forward link, the

required SINRF decreases to meet the rate requirement. Because the reverse

link rate requirement is quite small, the increase in SINRR does not change the
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SINR probability much (i.e. I am operating at very low SINRR which is where

the SINR probability plateaus to 1). Fig. 2.15 shows the naivet of simply

splitting the bandwidth in half. A nearly 2x improvement in transmission

capacity is achieved by going from 50% to the optimal allocation of 90%.

What is somewhat more surprising is that a 96% split (i.e. splitting according

to the rate requirement) results in nearly the same performance as a naive 50%

allocation. Lastly, Fig. 2.15 shows that this allocation is invariant to outage

constraint.

Fig 2.16 shows the performance gains in terms of area spectral efficiency

that can be achieved by various bandwidth allocations. In all curves, the

sum rate of the system is 208Mbps. As expected from Fig. 2.15, the area

spectral efficiency is the worst in the naive 50/50 bandwidth allocation. The

rate based (96%/4%) allocation performs better, but additional gains can be

made by further optimizing the allocation. With the optimal allocation, the

two-way system can achieve 75% the area spectral efficiency of the one-way

system. Because the one-way and two-way area spectral efficiency is linear in

λε and λtw
ε , respectively, I can see the effect two-way communication has on the

transmission capacity. If the users split the resources equally, considering the

two-way constraint reduces the density by nearly a factor of 3. If the resources

are split optimally, the network can support 2× the number of users from the

equal split. This density is roughly 75% of one-way density.
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2.7 Conclusions

I presented an analysis that characterized the performance of mmWave

ad hoc networks for both one-way and two-way communication. I showed that

mmWave networks can improve on the performance and efficiency of UHF

networks when considering both LOS and NLOS communication. Massive

improvements in transmission capacity and area spectral efficiency (e.g. 10-

100×) are possible when only communicating over LOS links which motivates

LOS aware protocols. Further, I showed the NLOS interference is negligible

and LOS interference can still be the limiting factor for a mmWave ad hoc

network. This also motivates the need for LOS interference mitigation strate-

gies. Lastly, by, understanding the requirements of the reverse link in the

mmWave network for two way traffic, 75% of the one-way capacity can be

achieved which is twice as efficient as an equal allocation of resources.

2.8 Appendix

2.8.1 Proof of Lemma 2.4.1

From [53] Theorem 1,[
1− e−βxp

]1/p
<

∫ x
0
e−t

p
dt

Γ(1 + 1/p)
(2.51)

with β = [Γ(1 + 1/p)]−p and p ∈ (0, 1). It is shown in [53] that∫ x

0

e−t
p

dt =
1

p
γ

(
1

p
, xp
)

(2.52)

where γ(·, ·) is the lower incomplete gamma function. A normalized gamma

random, y ∼ Γ(k, θ), variable is such that the shape, k, and scale, θ, are
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inverses of each other so that E[y] = 1 (i.e θ = 1/k). If I let k = 1/p and

xp = kz, I have

[
1− e−βxp

]1/p
<

1

p

γ
(

1
p
, xp
)

Γ(1 + 1/p)[
1− e−βkz

]k
<
kγ (k, kz)

Γ(1 + k)[
1− e−az

]k
<
γ (k, kz)

Γ(k)

= P[y < z]

(2.53)

with a = k [Γ(1 + k)]−1/k = k(k!)−1/k.
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Chapter 3

Ergodic Rate in Random mmWave Ad Hoc

Networks

In Chapter 2, I derived the SINR distribution of a spatially uniform

mmWave ad hoc network. While the PPP model is useful in many network

scenarios, other spatial deployments are of interest as well. In this chapter1, I

extend the work from the previous chapter to include when users are clustered

spatially. Additionally, the analysis extends to the evaluation of the ergodic

rate of mmWave ad hoc networks. I derive antenna array scaling trends which

shows how the array size must scale as users density increases to keep ergodic

rate constant. Lastly, this contribution ends with quantifying the lost rate

when mmWave antenna beams are not aligned.

3.1 Introduction

The ergodic rate is a useful metric because it quantifies the average

rate that is attainable by the users in the network. The ergodic rate has

been explored via stochastic geometry in several chapters on low frequency

1This chapter is based on the work published in the journal paper: A. Thornburg and R.
W. Heath, ”Ergodic Rate of mmWave Ad Hoc Networks,” to appear in IEEE Transactions
on Wireless Communications, 2017. This work was supervised by Prof. Robert Heath.
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networks, see e.g. [17, 54] and references therein. MmWave ad hoc networks

have also been studied in the past using different metrics. Finite mmWave

wearable networks were investigated in [40]. Prior work in [55–57] considered

only the coverage of homogeneous networks, while the work in [40] considers

a finite enclosed network such as a train car for wearables.

Because ad hoc networks are limited by nearby interference, accurately

modeling the spatial characteristics of the transmitters is needed. In the case

of military squads or consumer cliques, users may be clustered together either

around a squad leader or a WiFi hotspot, for example. In this chapter, the

clustering is considered an inherent property of the network; the clustering is

not due to a MAC protocol which is considered in [58–60]. Prior work has

considered clustered lower frequency ad hoc networks [61, 62]. In [61], several

interference properties and the coverage of a clustered Neyman-Scott process

was derived; results for spread-spectrum communication to deal with the intra-

cluster interference were presented. The performance of clustered interference

alignment (IA) networks was developed in [62], and it was shown that IA can

effectively deal with intra-cluster interference for certain cluster sizes as IA

outperformed TDMA for larger cluster sizes. The previous work showed that

mmWave ad hoc networks are line-of-sight (LOS) interference limited [56].

Because of this, I am motivated to analyze the ergodic rate spatially uniform

mmWave ad hoc networks as well as clustered mmWave ad hoc networks,

which has not been investigated previously.

The number of elements within an array is a new design parameter
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as mmWave arrays allow many elements within a small physical footprint

[23]. Antenna arrays with many elements to beam steer energy are used in

mobile systems to fulfill the mmWave link budget [1, 55, 63]. Using ergodic

rate as a base metric, antenna scaling trends of ad hoc networks were derived

in [17, 54]. The antenna scaling trend shows how many antennas are needed

to keep ergodic rate per user constant as users are added to the network

(i.e. the marginal gain of adding an antenna to the array in terms of extra

users). Both [17, 54] also quantify the scaling of rate in ad hoc networks.

In [17], the authors exploit channel state information (CSI) to develop scaling

laws for SIMO networks, while in [54], the authors extend [17] to MIMO

ad hoc networks using zero-forcing and successive-interference-cancellation.

The scaling of low frequency multi-antenna ad hoc networks with Rayleigh

fading was derived in [17]. In order to fully utilize the gain from antenna

arrays, the alignment of the antenna beams must be accurate. Others have

characterized the effect of beam alignment in wireless networks [64–66]. In [64],

stochastic geometry was used to analyze the effect of misalignment. It was

shown that performance can be affected by the misalignment of directional

antenna beams. It does not include mmWave phenomenon such as blockage

and analyzes the performance in terms of transmission rate, as do [65, 66]. I

compute the ergodic rate scaling as the user density and antenna array size

increases and derive effect of imperfect beam alignment on ergodic rate for

mmWave ad hoc networks which has not previously been done in the literature.
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3.2 Contributions

In this chapter, I characterize the ergodic rate of mmWave ad hoc

networks for two different spatial distributions of transmitters. I leverage

stochastic geometry to model mmWave ad hoc networks as uniform networks

(e.g. a Poisson point process) and a LOS cluster process (e.g. Poisson cluster

process). The main contributions of the chapter are summarized as follows:

• Derivation of the ergodic rate of a uniform mmWave ad hoc network

assuming LOS communication, directional antennas, building blockage,

and Gamma fading. An antenna scaling trend, as transmitter density

increases, of uniform mmWave ad hoc networks is derived. The result

indicates that the number of antennas can scale sub-linearly with trans-

mitter density.

• Computation of the ergodic rate of a clustered mmWave ad hoc network

assuming LOS communication, directional antennas, building blockage,

and Gamma fading. An antennna scaling trend of clustered ad hoc net-

works is proposed as a heuristic using the ergodic rate theorem which

indicates that antenna arrays must scale linearly with user density. I

define and develop a relationship between the SINR for communication

within a cluster (intra-cluster) and between clusters (inter-cluster) which

gives the proximity of the nearest cluster while maintaining rate require-

ments within a cluster.
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• Characterization of the effect of random beam misalignment between the

desired user pairs. I present results for two antenna models: sectored

and Gaussian. The loss in rate per user is shown to be proportional to

alignment error variance; a rate loss of up to 45% occurs if the alignment

error standard deviation is 10◦.

The rest of the chapter is organized as follows. Section 3.3 provides

the system model and assumptions used in the chapter. Section 3.4.1 derives

the ergodic rate and scaling of the uniform mmWave ad hoc network. Section

3.4.2 develops the ergodic rate, scaling, and inter-cluster coverage of clustered

mmWave ad hoc networks. Section 3.5 discusses the rate loss due to antenna

misalignment on the signal of interest. I present the numerical results in Sec-

tion 3.6 and conclude the chapter in Section 3.7. A summary of the commonly

used variables is in Table 3.1.

3.3 System Model

In this section, I establish the two different network architectures: the

uniform model and clustered model. I present the signal model which includes

the path-loss, building blockage model, and antenna model. Next, I define the

key metric of the work, the ergodic rate. Finally, I show several mathematical

preliminaries that will aid the subsequent sections.
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Φp parent point process
Φc cluster point process
Φ homogeneous Poisson point process (PPP)
Nx finite cluster point process centered on x
λp intensity of parent point process
λu intensity of the PPP
Rc cluster radius
ro intra-cluster communication distance
re inter-cluster communication distance
Ia intra-cluster interference
Ie inter-cluster interference

SINRu SINR with PPP
SINRa intra-cluster SINR
SINRe inter-cluster SINR
p(x) blockage probability function
αm path loss exponent
N number of antennas

L(z) Laplace functional of point process
G(v) generating functional of point process

Table 3.1: System variables for Chapter 3
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3.3.1 Network Topologies and Access Schemes

The network topology determines the interference characteristics. I

analyze two different network topologies for user locations: uniform and clus-

tered. These topologies have noticeably different spatial characteristic as shown

in Fig. 3.1. If the distances between transmitters is invariant to geographic

location (e.g. mesh network), I model the transmitter locations as uniform; if

transmitters tend to gather around certain geographic locations, a clustered

model is appropriate (e.g. a device-to-device VR monster app).

I build the transmitter models from the standard homogeneous Poisson

point process (PPP) [3,21,55]. I denote the collection of transmitter locations

on R2 formed by the PPP Φ as the uniform network. I denote the intensity

of Φ as λu = ζλ where ζ is the transmission probability and λ is the intensity

of all potential transmitters.

Given a finite area of R2, the transmitters will be randomly uniformly

placed within the area. To account for geographic clustering, I also use a

general Poisson cluster point process Φc. The cluster process is formed by

randomly placing c transmitters in a ball of radius Rc centered at the points

of a parent Poisson point process Φp. Specifically,

Φc =
⋃
y∈Φp

Ny, (3.1)

where each Ny ∈ B(y,Rc) is a finite point process of c points centered on

y. For simplicity, I assume all users in the finite point process cluster Ny

experience the same LOS or NLOS distinction as clustered users are likely to
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be affected by the same spatial blockage if Rc is smaller than the average LOS

distance. I consider the distinction between LOS and NLOS parent points as

an independent mark. Each parent point is therefore LOS and NLOS as a

result of the Thinning theorem. The cluster parent process Φp is an Poisson

point process with intensity measure given as

Λ(B) =

∫
B

λp(x)p(x)dx︸ ︷︷ ︸
LOS clusters

+

∫
B

λp(x) (1− p (x)) dx︸ ︷︷ ︸
NLOS clusters

(3.2)

for all Borel sets B of R2 where λp is the intensity of the generative cluster

Poisson point process and p(x) is the probability a link of length |x| is LOS.

I call the cluster density λp. Without loss of generality, due to Slivnyak’s

theorem, I consider a typical cluster located at the origin N o by conditioning

on the event that a point at the origin exists in Φp.

For this work, I consider a random symmetric ad hoc network such as a

device-to-device (D2D) or tactical military network. Each transmitter in both

the uniform and clustered network has the same hardware and/or capabili-

ties (e.g. antenna number, processing capability, beam alignment scheme). I

consider a symmetric network due to tractability, and practical relevance for

peer-to-peer applications. Each transmitter has a receiver located at a fixed

distance ro away with the orientation distributed uniformly in [0, 2π] [21];

these receiver points are not part of Φp nor Φc. Fig. 3.1 shows an example

realization of the network PPP with the associated receivers.

I consider two MAC protocols: uncoordinated channel access (UCA)

and time-division multiple-access (TDMA). For the uniform network under
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Figure 3.1: An example realization of the LOS clustered network (a) com-
pared to LOS PPP (b). The interfering clusters shown are all LOS from the
perspective of the typical cluster at the origin. The dashed blue circle is the
boundary for the typical cluster while the black dotted circle is the bound-
ary for the other clusters. The clustered point process exhibits much different
spatial properties than the LOS PPP.

UCA, all the transmitters access the channel within each channel time slot

as determined by ζ. For the clustered network under UCA, all c transmit-

ters in a cluster access the channel with each time slot as determined by ζ.

In TDMA, only one transmitter from each cluster accesses the channel with

each time slot. I do not consider TDMA for the uniform network; because I

consider single-hop networks, each transmitter-receiver pair is geographically

isolated with no coordination between transmitters. In other stochastic ge-

ometry work, the UCA is considered as ALOHA, but the randomness of the

ALOHA channel access would make the number of active transmitters per

cluster random; this added randomness reduces the tractability of the analy-

sis. TDMA is widely used in mmWave standards such as IEEE 802.11ad [67].
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Each cluster communicates with the same frequency resources.

3.3.2 Channel and Antenna Models

I use the standard unbounded path loss model

`(x) =
Am

|x|αm
(3.3)

where αm is the path loss exponent (PLE) and Am is the path loss intercept.

This model is valid for far-field communication and if the interference is greater

than 1m away. Measurements show a lower PLE for line-of-sight (LOS) versus

non-line-of-sight (NLOS) signals [34]. This discrepancy is largely caused by

building blockage. I use a distance-dependent LOS blockage function p(r). In

general, the work is agnostic to the choice of a proper p; I, however, model the

blockage as in [48, 56, 68]. As shown in [48] using random shape theory, the

probability a link is LOS is given by p(r) = exp(−βr) where β is a function of

the average building perimeter and area. For simplicity, I ignore correlation of

LOS probabilities among links, as in [48]. It was shown that the difference in

the performance analysis is small for sparse to moderately dense outdoor en-

vironments when ignoring the correlation [48]. The previous work [57] showed

that mmWave networks are LOS-interference limited; I ignore the contribution

of NLOS users in the analytical expressions throughout the chapter. The clus-

ter process Φc, therefore, effectively represents the clustered LOS transmitters

seen from the typical cluster at the origin while the uniform process Φ is the

LOS user process. For LOS signals, αm is typically between 2 and 2.5.
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I assume the transmitter and receiver are able to beam steer towards

the desired angle of departure and arrival. In the previous chapter, I used the

sectored antenna model [56,57,68]. I model the antenna array with a sectored

antenna model

Gtx/rx(θ) =

{
N θ ∈ [−νθ3dB, νθ3dB]
1
N

otherwise
, (3.4)

where N is the number of antennas at each transmitter and receiver and the

mainlobe beamwidth factor ν is 2. I relax the sectored assumption in Section

3.5. The 3dB beamwidth of a ULA is approximately δ′

2N
where δ′ = 102π

180
. The

mainlobe of the sectored antenna is then δ′

N
. The resultant system gain GrxGtx

is modeled as a discrete random variable κ such that

κ =


N2 w.p. p1 = δ2

N2

1 w.p. p2 = 2
(
1− δ

N

)
δ
N

N−2 w.p. p3 =
(
1− δ

N

)2
,

(3.5)

where δ = δ′

2π
. When beamforming with the sectored antenna, the channel

power is h = N2|γ|2 where |γ|2 corresponds to Gamma fading with mean 1

and parameters (Nh,
1
Nh

). For Nh = 1, this corresponds to Rayleigh fading,

while as Nh → ∞ the fading becomes deterministic. I use a Gamma random

power term for each signal to capture both the minimal small-scale fading

and any other random attenuation effects. At mmWave frequencies, small-

scale fading is not a strong phenomenon as shown in [11, 68]. Additionally,

it is unlikely the power transfer of the channel is perfect. For example, the

scattering and reflection of the mmWave may not transfer 100% of the power;

in [12], this is modeled as an exponential random variable, which is a special

case of Gamma.
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3.3.3 Signal Metrics

The received signal for the user at the origin for both uniform and

clustered networks is

yo =
√
`(ro)hoκoAmso +

∑
i∈Φc

√
`(xi − ro)hiκiAmsi + v, (3.6)

where so, si ∼ NC(0, Pt), Pt is the signal power, v ∼ NC(0, Nm
o ), Nm

o is the

noise power, κo, κi is the antenna gain as defined in (3.5), hi ∼ Γ(Nh,
1
Nh

), and

xi is the random location of each point of point process to the typical receiver

ro. Ignoring misalignment, I assume that the desired signal performs perfect

beamforming such that κo = N2. The received SINR of the uniform network

is

SINRu =
PtAmN

2`(ro)ho
Nm
o +

∑
i∈Φ PtAm`(xi − ro)hiκi

, (3.7)

where the interference is from transmitters in Φ. Additionally, I wish to note

the use of intra-cluster SINRa. For the clustered network, the SINRa is the

same as SINRu, but the interference is summed over the clustered point process

Φc. I note that the signal terms are identical between the two networks which

is to be expected. Each network models the signal as an user pair transmitting

and receiving at a fixed distance. This is the SINR of the user pair within a

cluster. I introduce the inter-cluster SINRe later in the chapter as a means to

quantify the communication between clusters.

I am interested in analyzing the ergodic rate which is the expected sum
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rate of the network, expressed in terms of b/s/Hz. I define this as

RΣ = EP,h,κ

[∑
i∈P

log2 (1 + SINRi)

]
, (3.8)

for some point process of transmitters P. This is the average sum rate assum-

ming Gaussian signaling and is a lower bound on the unknown sum capacity.

The ergodic rate as defined in (3.8) captures the dynamics of the channel and

network. As nearby users begin or cease transmitting, the SINR varies over

time slots. The fixed-rate approach of the previous work and others does not

consider rate-adaption techniques to take advantage of different fading and

point process realizations [1, 56]. Previous work considers a success probabil-

ity based on a fixed SINR threshold. By adapting the rate and coding scheme

over different realizations, the ergodic rate quantifies the contribution from

good and bad channels. For the network topologies considered in this chapter,

I leverage the properties of point processes to simplify (3.8). In the case of

the uniform network with a homogeneous PPP, I can use Slivynak’s Theorem

such that

RΣ
u = λu|A|EoΦ,h,κ [log2 (1 + SINRu)] , (3.9)

where A is the area of interest for the network [17] Each transmitter/receiver

pair experiences the same SINR on average as the typical pair at the origin [21].

Similarly, I can simplify the clustered network metric as

RΣ
c = λpc|A|EoΦc,h,κ [log2 (1 + SINRa)] , (3.10)
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where all clusters in the network experience the same signal to interference and

noise ratio (SINR) statistics as the typical cluster located at the origin [61].

The sum rate, therefore, is the expected rate at the origin multiplied by the

cluster density c. I present results in terms of the sum ergodic rate (e.g.

RΣ
u and RΣ

c ) as well as the ergodic rate of each user (b/s/Hz/user). These

quantities are defined as Ru = RΣ
u

λu|A| and Rc = RΣ
c

λpc|A| .

3.3.4 Mathematical Preliminaries

The following technical details will aid the development of the results

in the next sections.

Lemma 3.3.1. Let X > 0 and Y > 0 be non-negative and independent random

variables. Then, for any a > 0,

E
[
ln

(
1 +

X

a+ Y

)]
=

∫ ∞
0

e−az

z

(
1− E

[
e−zX

])
E
[
e−zY

]
dz.

Proof. See [17, Lemma 2] and references therein.

To evaluate the scaling trends on the rate of the networks, I also use

the following lemma

Lemma 3.3.2.

log2

(
1 +

eE[log(X)]

E[Y ]

)
≤ E

[
log2

(
1 +

X

Y

)]
≤ log2

(
1 + E[X]E

[
1

Y

])
.

Proof. See [17, Lemma 2] and references therein.
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I denote G, Gp, Gc as the generating functionals of a point process, the

parent process, and cluster process, respectively,

G(v)
(a)
= Gp

(
G(·)(v)

)
(3.11)

(b)
= Gp

(
G(y)(v)

)
(3.12)

(c)
= Gp (Gc (v (y + ·))) (3.13)

(d)
= exp

(
−
∫
R2

(1− Gc (v (y + ·))) Λ(dy)

)
(3.14)

(e)
= exp

(
−λp

∫
R2

(1− Gc (v (y + ·))) p (y) dy

)
, (3.15)

where (a)-(c) is due to [69, eqs. 5.15 & 5.16], (d) is due to the generating

functional for any Poisson point process, and (e) is due to (3.2). I note that

the generating functional of the cluster Gc is

Gc (v (y + ·)) = E

[∏
x∈No

v(y + x)

]
(3.16)

=

(
1

πR2
c

∫
B(0,Rc)

v(y + x)dx

)c
, (3.17)

where c is the fixed number of points in the cluster.

3.4 Ergodic Rate in Outdoor mmWave Ad Hoc Net-
works

In this section, I develop the theorems that characterize the ergodic rate

of outdoor mmWave ad hoc networks in both uniform and clustered networks.

71



3.4.1 Uniform Network

To analyze the ergodic rate, I start by rearranging (3.7) so that

SINRu =
ho`(ro)

Nm
o

N2PtAm
+
∑

i∈Φ `(xi − ro)hiκ′i
, (3.18)

where κ′i = κi
N2 and κi is each unnormalized sectored antenna gain. Because the

gain κi from each interfering transmitter is an independent random variable,

the thinning theorem is used to split the interference into three separate PPPs.

The interference in SINRu is decomposed such that

Ip =
∑
n

Inu , (3.19)

where Inu =
∑

i∈Φ|κ′i=n
`(xi − ro)hiκ

′
i is the interference with antenna gain

n ∈ {1, N−2, N−4}. With this decomposition in mind, I can state the main

result of the section.

Theorem 3.4.1. The ergodic rate per unit area (b/s/Hz/user) of a uniform

outdoor mmWave network is

Ru =
1

log(2)

∫ ∞
0

e−zθ

z

[
1−

(
1 +

z`(ro)

Nh

)−Nh]
Lp(z)dz (3.20)

with

θ =
Nm
o

N2PtAm

(3.21)

and

Lp(z) = exp

(
−2πλu

∑
n

pn

∫ ∞
0

[
1−

(
1 +

z`(r)κ′n
Nh

)−Nh]
p(r)dr

)
. (3.22)

Proof. The proof is presented in Appendix 3.8.1.
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3.4.1.1 Scaling of Uniform Networks

In this section, I establish how the antenna array must grow to ac-

commodate new users (i.e. as λu grows) with the goal of keeping the per

user ergodic rate constant. Because λu grows large, and thus noise becomes

negligible, I switch my focus to the SIRp, which is defined as

SIRp =
h0

rαm
o

∑
i∈Φ d

−αm
i hiκ′i

. (3.23)

Additionally, for this section, I ignore the blockage as λu increases because as

the network density increases the blockage of users nearby diminishes. The

following theorem specifies the scaling rate of antennas as the user density

increases.

Theorem 3.4.2. Assume the number of antennas at each user N scales such

that N2 = tλu for αm ∈ (2, 4]. Then the rate scales such that

RΣ
u

λu

= Θ
(

log2(1 + t
−αm

2 )
)

(3.24)

as λu →∞.

Proof. The proof is presented in Appendix 3.8.2.

Comment: Somewhat surprisingly for αm ∈ (2, 4], the number of

antennas scales independently of the PLE and simply scales with Θ(
√
λu).

This follows other scaling trends for ad hoc networks [13,17]. In previous rate

scaling results, [17] showed that the link distance ro must scale with Θ(
√
λu)

to match the interference scaling. The result shows that the same scaling can
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be achieved by increasing the antenna array. It is important to note that the

upper bound arises from only a single interferer. As the network becomes

dense, the closest transmitter to the receiver that is accidentally aligned in the

antenna beam pattern essentially limits the overall performance of the system.

Practically, the asymptotics of antennas and user density is not seen in a real

system (i.e infinite antennas). I have seen that for αm ∈ (2, 4] and N < 10

the number of antennas can scale as λ
1

4/αm+1
u . I will discuss this further in the

results.

3.4.2 Clustered Network

In this section, I derive the ergodic rate of a clustered mmWave network

under two channel access assumptions. To begin, I re-arrange the SINRa such

that

SINRa =
ho`(ro)

Nm
o

N2PtAm
+
∑

i∈Φc
`(xi − ro)hiκ′i

, (3.25)

where κ′i = κi
N2 . Similar to the uniform case, I define the interference term to

be Ic = Ia + Ie where Ia is the intra-cluster interference and Ie is the inter-

cluster interference. Each interference term can be further decomposed in

three sub-PPPs depending on the gain of the interference as before.

Theorem 3.4.3. The ergodic rate per user (b/s/Hz/user) of an outdoor clus-

tered mmWave network with directional antennas and uncoordinated channel

access is

RUCA
c =

1

log(2)

∫ ∞
o

e−zθ

z

[
1−

(
1 +

z`(ro)

Nh

)−Nh]
La(z)Le(z)dz (3.26)
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with

θ =
Nm
o

N2PtAm

, (3.27)

La(z) = (g(ro, z))
c−1 , (3.28)

Le(z) = exp

(
−2πλp

∫ ∞
o

(1− g(r, z)c) rp(r)dr

)
, (3.29)

and

g(r, z) =
∑
n

pn
πR2

c

∫
B(0,Rc)

(
1 +

z` (u− r)κ′n
Nh

)−Nh
du. (3.30)

Proof. The proof is presented in Appendix 3.8.3.

Comment: I note the inclusion of g(r, z) (i.e. averaging of the interfer-

ence signal over the clusters) in (3.76) and (3.84) which is typical of clustered

point process [61,62]. Essentially, (3.76) averages over the typical cluster which

is offset by ro whereas (3.84) averages over the interference clusters which are

offset by r. While a closed form expression, Theorem 3.4.3 requires several

numerical integrations which can take some time. In particular, the integral

over the ball in g(r, z) cannot be reduced by converting to polar coordinates

because of the offset of r. It is possible, however, to view the integral as the

expectation of the random distance from a given point r to a random point in

the ball B(0, Rc). The distribution of this random distance can be derived to

simplify g(r, z) to a single integration.

Next, I specialize the results to TDMA channel access.
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Corollary 3.4.4. The ergodic rate per user (b/s/Hz/user) of an outdoor clus-

tered mmWave network with directional antennas and TDMA channel access

is

RTDMA
c =

1

log(2)

∫ ∞
o

e−zθ

z

[
1−

(
1 +

z`(ro)

Nh

)−Nh]
Le(z)dz (3.31)

with

θ =
Nm
o

N2PtAm

(3.32)

and

Le(z) = exp

(
−2πλp

∫ ∞
o

(1− g(r, z)) rp(r)dr

)
. (3.33)

Proof. This is a simplification of Theorem 3.4.3 noting that there is no intra-

cluster interference and only one interfering transmitter per cluster.

3.4.2.1 Scaling of Cluster mmWave Ad Hoc Networks

In this section, I investigate the scaling properties of clustered mmWave

ad hoc networks as c→∞. I scale the number of users in the cluster c rather

than the cluster density λp because as the inter-cluster distance grows small,

the spatial characteristics of the interference approach the uniform network

case. Again, I am interested in keeping the per user ergodic rate constant as c

grows large. Because I am letting c grow large, I switch the focus to the SIRc

which is defined as

SIRc =
h0

rαm
o

∑
i∈Φc

d−αm
i hiκ′i

. (3.34)
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I only present a claim in this section as the scaling of the network with

c appears intractable.

Claim 1. Assume the number of antennas at each user N scales such that

N = tc. Then the rate scales such that

RΣ
c

cλp

= Θ
(

log2(1 + t
−αm

2 )
)

(3.35)

as c→∞.

Proof. The claim is based on an numerical evaluation of Theorem 3.4.3. The

numerical results are presented in Section 3.6.

3.4.2.2 Coverage in Clustered mmWave Ad Hoc Networks

I consider two coverage metrics in the clustered case: intra-cluster cov-

erage and inter-cluster coverage. I say users are covered if P[SINR > Γ] ≥

1 − ε. This ensures that users can support a data rate R = log2(1 + Γ) at

least (1 − ε)% of the time. I denote the intra and inter-cluster coverage by

Pa(Γ) = P[SINRa > Γ] and Pe(Γ) = P[SINRe > Γ]. The intra-cluster coverage

is the coverage between a receiver and transmitter operating within the same

cluster head. This is useful for peer-to-peer gaming applications or soldiers

of the same squad sharing data. The inter-cluster coverage is the coverage

between the cluster heads. This characterizes data propagation throughout

the network; if clusters are isolated (e.g poor inter-cluster coverage), the data

between squads will not propagate.
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For inter-cluster communication, I define another SINR as

SINRe =
PtAmN

2r−αm
e ho

Nm
o +

∑
i∈Φc

PtAm`(xi − ro)hiκi
, (3.36)

where re is the random distance to the nearest cluster center. For simplicity,

I consider this point rather than a point randomly located in the cluster. The

distribution of this random distance is fre(r) given in [48, Corollary 10.1].

In this section, for clarity and brevity, I consider Nh = 1 as it simplifies

the expressions. The previous work considered coverage and transmission rate

of mmWave ad hoc networks for Nh > 1. To see a derivation with the added

complexity, see [56]. I am interested in the balance between the inter and intra

cluster coverage. To begin, I define the transmission rate of the intra-cluster

communication to be

q(ε,Γ) = arg max
λp

s.t. Pa(Γ) ≥ 1− ε, (3.37)

which is the largest cluster density while maintaining the intra-cluster coverage

requirement. Because Pa(Γ) is a decreasing function with λp, it suffices to solve

Pa(Γ) = 1− ε for λp. Given this cluster density, I can evaluate Pe(Γ). I define

a metric to quantify this as the intra-ε inter-cluster coverage. Specifically, I

define it as

P (ε,Γ) = P[SINRe > Γ|λp = q(ε,Γ)]. (3.38)

This metric quantifies the probability that an inter-cluster link is covered while

ensuring that each intra-cluster link is covered at least (1 − ε)% of the time.
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As the cluster density increases, re decreases, but the communication within

the cluster must deal with more interference.

Corollary 3.4.5. The intra-ε inter-cluster coverage of an outdoor clustered

mmWave ad hoc network is

P (ε,Γ) =

∫ ∞
o

e−r
αm
e θΓLa(rαm

e Γ)Le(r
αm
e Γ)fre(r)dr, (3.39)

with θ, La, and Le defined as in Theorem 3.4.3 and the cluster density λp in

Le equal to

q(ε,Γ) =
− log

(
1−ε

exp(−rαm
o θΓ)La(rαm

o Γ)

)
2πW (rαm

o Γ)
, (3.40)

with

W (rαm
o Γ) =

∫ ∞
o

(1− (g(r, rαm
o Γ))c) rp (r) dr. (3.41)

Proof. The proof is presented in Appendix 3.8.4.

Comment: I define Corollary 3.4.5 such that the SINR threshold is

the same for intra-cluster and inter-cluster communication. Having a different

SINR threshold would give different guaranteed rates for intra-cluster versus

inter-cluster communication. This could cause data bottlenecks if the goal

of the network was to allow data to propagate both within the cluster and

between the clusters. While I consider the same rate requirements, Corollary

3.4.5 can be modified to allow for different rate requirements (e.g. Γa,Γe).
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3.5 Imperfect Beam Alignment

The beam alignment algorithm for a mmWave device will inevitably

introduce error into the pointing of the mainlobe of the antenna beam [64,

70, 71]. As such, the misaligned beam will not achieve the maximum gain

(e.g. N2) as noted in Section 3.3. As the signal term of the the uniform and

clustered network are the same, the results presented in this section apply for

both the uniform and clustered networks.

In this section, I quantify the drop in the ergodic rate due to the mis-

alignment. First, I introduce the error model. Second, I derive the loss in rate

when sectored antennas are misaligned. Lastly, I comment on why the sec-

tored model is lacking, introduce the Gaussian antenna model, and compute

the loss in rate for Gaussian antennas.

I model the beam alignment error as ε ∼ NT (0, σ2) where NT is the

truncated Gaussian distribution and σ2 is the variance of the error. As a

baseline, these values are taken from the Cramer-Rao bound of common beam

alignment algorithms [70, 71]. Because I consider an ad hoc network, each

communicating link will have a misaligned beam. Due to the uncoordinated

nature of the ad hoc network, I propose the following.

Lemma 3.5.1. The statistics of the interference in an outdoor mmWave net-

work are invariant to antenna beam misalignment.

Proof. The desired pointing angle of an interferer’s antenna is uniformly dis-

tributed from [0, 2π] because the associated receiver is also distributed uni-

80



formly from [0, 2π]. Similarly, the pointing angle of the typical receiver is

uniform over [0, 2π]. Because the pointing angles wrap around with any per-

turbation of the angle, the distribution will remain uniform over [0, 2π]. The

resultant angle between the interferer and the typical receiver remains the

product of two uniform random variables.

3.5.1 Sectored Antenna

Because of the symmetry in the sectored antenna, I directly calculate

the probability of the error changing the gain of the antenna. With the trun-

cated error model, the probability that the antenna gain, Gtx/rx, remains in

the mainlobe is the probability the absolute value of the error is less than the

3dB beamwidth, P[|ε| ≤ θ3dB]. More precisely,

pG(σ) =

∫ θ3dB

−θ3dB
fNT (x)dx (3.42)

=
Erf
(
θ3dB/

√
2σ2
)

Erf
(
π/
√

2σ2
) , (3.43)

where fNT (x) is the PDF of the truncated normal distribution and Erf is the

error function. Essentially, each receiver/transmitter gain is now a discrete

random variable described as

Gtx/rx =

{
N w.p. pG(σ)
1
N

w.p. 1− pG(σ)
. (3.44)

With this, I now define the resulting system gain (i.e. GtxGrx) as

GtxGrx =


N2 w.p. pG(σ)2

1 w.p. 2pG(σ) (1− pG(σ))
1
N

w.p. (1− pG(σ))2

. (3.45)

81



I now use this to quantify the loss in rate due to antenna misalignment with

sectored antennas.

Lemma 3.5.2. The loss in ergodic rate per user in a mmWave ad hoc network

due to beam alignment error with sectored antennas is

∆R = log2(N2)2pG(σ) (1− pG(σ)) + log2(N4) (1− pG(σ))2 + O

(
1

SINR

)
.

(3.46)

Proof. The proof is presented in Appendix 3.8.5.

The final step in Lemma 3.5.2 makes intuitive sense as there should

be no loss in rate due to errors that keep the mainlobes aligned. I note that

Lemma 3.5.2 gives the loss in rate per user because I have not accounted for

the density of users. Simply multiply by λu to obtain the results in terms of

(b/s/Hz/m2). While the loss in rate per user is invariant to user density by

Lemma 3.5.2, the overall sum network rate is not. I will show in the results that

the high SINR approximation is quite accurate for various system parameters.

3.5.2 Gaussian Antenna

Most prior stochastic geometry work with mmWaves considers a sec-

tored antenna with an ideal gain pattern. I consider a second antenna model

Gaussian [33, 68]. The sectored antenna is slightly unrealistic as real antenna

patterns have roll-off; the Gaussian antenna model captures this effect while

remaining tractable [33]. It is similar to the sectored model used in [56,57,68],

82



but with a smoother roll-off. It is defined as

G
tx/rx
i =

(
N − 1

N

)
e−ηθ

2

+
1

N
(3.47)

where G is the maximum gain which occurs as θ = 0 and η is a parameter that

controls the 3dB beamwidth. For example, to set η for a specific beamwidth

G
tx/rx
i =

(
N − 1

N

)
e−ηθ

2
3dB +

1

N
(3.48)

1

2
N =

(
N − 1

N

)
e−ηθ

2
3dB +

1

N
(3.49)

η =
log
(

N− 1
N

1/2N− 1
N

)
θ2

3dB

. (3.50)

If I consider the resulting system antenna gain

GtxGrx =
(
Ge−ηε

2
tx + g

)(
Ge−ηε

2
rx + g

)
, (3.51)

with the sidelobe gain g, I see that because of the error in alignment at both

the receiver and transmitter the system gain will get some fractional portion

of mainlobe gain due to the exponential term involving the error. I quantify

this fractional portion as a random variable, ζ. I derive the CDF as

P[ζ ≤ x] = P[e−ηε
2 ≤ x] (3.52)

= P[−ηε2 ≤ log(x)] (3.53)

= P
[
ε ≥ ±

√
− log(x)/η

]
(3.54)

= 1−
Erf
(√

− log(x)
2ησ2

)
Erf
(

π√
2σ2

) x ∈ [Gmin, 1], (3.55)
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where

Gmin = e−ηπ
2

. (3.56)

The PDF of ζ is the derivative of (3.55)

fζ(x) =
x

1
2ησ2−1

σErf
(

π√
2σ

)√
−2πη log(x)

x ∈ [Gmin, 1]. (3.57)

The PDF in (3.57) captures the randomness at either the transmitter or re-

ceiver, but not both. I must define a new random variable K = ζrxζtx as

the product of each end of the communication link. If I expand (3.51), there

are extra terms that represent one end of the link completely misaligned and

operating out of the sidelobe. In this work, however, I am interested in quan-

tifying the effect of relatively small antenna alignment errors. I am interested

in error regimes when the mainlobes are still mostly aligned. Because of this,

I will ignore the sidelobe power such that GrxGtx ≈ Ne−ηε
2
rxNe−ηε

2
tx = N2K.

Because of this simplification the PDF of K and therefore the system gain

computable. The product distribution of the antenna gain loss described in

(3.57) yields the PDF of K as

fK(z) =

∫ ∞
−∞

fζtx(x)fζrx(z/x)
1

|x|
dx (3.58)

=

∫ 1

z

x
1

2ησ2−1

σ
√
−2πη log(x)

(z/x)
1

2ησ2−1

σ
√
−2πη log(z/x)

1

x
dx (3.59)

=
z

1
2ησ2−1

2ησ2Erf
(

π√
2σ

)2 z ∈ [G2
min, 1], (3.60)

where the bounds of integration go from z to 1 because z/x cannot be greater

than 1 and G2
min = e−2ηπ2

. Note that (3.60) is for a symmetric network, e.g.
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each handset has similar hardware and thus η and σ are the same for each.

I have found that the product distribution to be intractable if ηrx 6= ηtx and

σrx 6= σtx. This assumption is reasonable for an ad hoc network or D2D

network.

Using (3.60), I summarize the loss similarly as with the sectored an-

tenna with the following Lemma.

Lemma 3.5.3. The loss in ergodic rate per user in a mmWave ad hoc network

due to beam alignment error with Gaussian antennas are approximated as

∆R =
4ησ2 − 2e−π

2/σ2
(2ησ2 + 2ηπ2)

Erf
(

π√
2σ

)2

log(4)
+ O

(
1

SINR

)
. (3.61)

Proof. I proceed as with Lemma 3.5.2. Let Gε be the reduction in the gain

from perfect antenna gain Gp = N2. I begin with the final step of Lemma

3.5.2.

∆R ≈ E[log2(
Gp

Gε

)] (3.62)

a
= −E[log2(K)] (3.63)

= −
∫ 1

G2
min

log2(z)fK(z)dz (3.64)

where (a) is due to the assumption that Gε = N2K. Evaluating the integral

yields the result.

Note that the second term in the numerator is due to the lower bound

of the integral in (3.5.3) which is nearly zero for large ratios of π2/σ2; this also
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means that Erf
(

π√
2σ

)
≈ 1. Thus, the loss in rate is mostly determined by

4ησ2/ log(4).

Comment: These results are valid for both uniform and clustered

networks as the error in beam misalignment only affects the signal term. As

stated earlier, the signal terms for clustered and uniform networks are the

same. The scaling results, however, are affected for a fixed σ. For a fixed

misalignment error, the antenna array will eventually become impossible to

align as the beamwidth shrinks. I plan to consider this tradeoff in future

work.

3.6 Numerical Results

In this section, I compare the analytical results from the previous sec-

tions with numerical simulations. First, I analyze the general ergodic rate of a

uniform mmWave ad hoc network with perfect beam alignment (e.g. Theorem

3.4.1). Second, I calculate the results for clustered ad hoc networks with both

UCA and TDMA. I also show the trade-off between inter and intra cluster

coverage. Then, I present the results for the scaling of both clustered and

uniform ad hoc networks. Finally, I look at the impact of beam misalignment

with sectored antennas and Gaussian antennas.

In Fig. 3.2, I plot the ergodic rate for an aligned uniform mmWave

ad hoc network with N = 10. The user densities of the networks vary from

λu = 10−6 to 10−3 which correspond to an average of 1 to 1000 users per
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Figure 3.2: The solid line in each plot is obtained by evaluating Theorem 3.4.1
while the markers correspond to numerical simulation. The network-centric
view is shown in (a) where the ergodic rate per unit area is shown. The
per-user ergodic rate is shown in (b).

1km2, respectively. The dipole communication length varies r = 10, 25, 100m.

The noise power is set to -100dB (-70dBm). The path loss intercept is 60dB

which matches the measurements from [12]. The path loss exponent is set to

αm = 2.5. The random Gamma power variable parameter is set to Nh = 1 as

in [56]. The transmit power is normalized to 1. I plot the results in terms of

both (b/s/Hz/m2) and (b/s/Hz/user). I see that Theorem 3.4.1 is an accurate

representation of the ergodic rate as it matches the simulations. Intuitively, I

see in Fig. 3.2b that the per user ergodic rate decreases as the density (and

therefore interference) increases. The overall net network rate, however, is

positive as shown in Fig. 3.2a by the positive slope of the curves; Theorem

3.4.1 provides a method to balance the needs the users versus the needs of the

network. Lastly, in the previous work [57], I argue that mmWave networks are
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still interference limited. The per-user ergodic rate in Fig. 3.2b shows that for

network densities greater than 10−5 the communication links are very much

interference limited as the rate drops significantly per user.

In Fig. 3.3, I show the results of Theorem 3.4.3 compared with simu-

lation. For the simulation, the building model of [48] is used to generate the

building blockage. This includes correlation between the points and eliminates

the LOS cluster requirement. An underlying building density of λb = 9.3×10−5

is used with a expected width and length of the buildings as E[L] = 64 and

E[W ] = 70. This yields β = 0.008. I consider two cluster sizes and two

communication distances over a range of cluster densities. I set αm = 2.5,

Nm
o = −100dB, Am = −60dB, and N = 10. Fig. 3.3 shows that, for large

communication distances, the size of the cluster leaves a constant performance

gap with the larger cluster performing better as the probability that the inter-

fering transmitters are far away increases. For short communication distances,

the small cluster size severely limits the performance even at low cluster den-

sities.

Fig. 3.4 shows the comparison of TDMA with UCA using numerical

simulation and the analytic expressions from Section 3.4.2. The parameters

are the same in Fig. 3.3, but with the cluster size fixed at Rc = 25 and ro = 10

and varying numbers of antennas. For N = 1, I see that TDMA is the best

choice for total cluster rate as the directional antennas do not attenuate any of

the intra-cluster interference at low cluster density or inter-cluster interference

at high cluster densities. With only three antennas, however, simply having
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Figure 3.3: A verification plot of Theorem 3.4.3 that shows a match between
the analytical expressions and simulation. The solid curves are the analytical
expressions while the markers are simulation results. The cluster size is given
by Rc, and the communication distance is ro.

uncoordinated communication in the cluster is optimal for many cluster den-

sities. At high cluster densities, by restricting the transmission to one user per

cluster, TDMA gives a larger per cluster rate. I can see the same trend for

N = 6, but the transition is an even higher cluster density.

Fig. 3.5 shows the evaluation of (3.39) with N = 10 and various cluster

sizes and intra-cluster communication distances. I see that for small cluster

sizes of Rc = 25 the inter-cluster coverage is invariant to the intra-cluster

communication distance. The optimal cluster density for the intra-cluster

communication to maintain the SINRa requirement with small cluster sizes

does not vary with the communication distance. If the cluster size is Rc = 250,

the transmitters are spread out more which allows a higher cluster density

which improves the inter-cluster coverage. If the communication link is longer,

I see that the inter-cluster coverage goes to zero for high SINRa requirements.
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Figure 3.4: A comparison of uncoordinated channel access (UCA) with TDMA
in a mmWave clustered network. The triangle marker corresponds to TDMA
simulation while the star marker is UCA simulation. The solid curves are the
analytical expressions from Theorem 3.4.3 and Corollary 3.4.4.

In Fig. 3.6a, I plot the ergodic rate of a uniform mmWave ad hoc

network over a wide range of user densities and PLEs. The rate is evaluated

according to Theorem 3.4.1. For each user density, I scale the number of

antennas according to the rules developed in Theorem 3.4.2. The plot shows

that the scaling trends developed are precise. For the αm = {2.1, 3, 4}, I

see a constant rate achieved for the solid lines as λu grows large when N =
√
λu. Conversely, when the scaling is N <

√
λu, I see the rate go to zero

asymptotically which means that the signal gain and interference reduction of

the additional antennas does not preserve the SINR of the network. Eventually

the receiver is overwhelmed by interference. Lastly, for small λu and N , Fig.

3.6a shows that scaling N
4
αm

+1 = λu gives a constant rate for small N and λu.

As users are added from λu = 10−5, the ergodic rate remains constant until

λu = 100 for αm = 3 and λu = 10−2 for αm = 2.5. If the number of users and
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Figure 3.6: In (a), rate scaling of a uniform mmWave ad hoc network where
the rate is evaluated from Theorem 3.4.1 and the number of antennas scale
according to Theorem 3.4.2. In (b), I evaluate Theorem 3.4.3 based on the
scaling proposed by Proposition 1. The colors correspond to the PLEs used
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Figure 3.7: The impact of antenna alignment depends on the antenna model
used; (a) is a sectored antenna and (b) is a Gaussian antenna. The blue curve
corresponds to ro = 10m, the red curve corresponds to ro = 25m, and the
green curve corresponds to ro = 100m. The analytical approximation curve
uses Lemmas 3.5.2 and 3.5.3 while the exact analytical curve evaluates the
expectation of Theorem 3.4.1 against the antenna error.

antennas is small, N can scale slower than
√
λu. In Fig. 3.6b, the number

of antennas scales with the cluster user density c. The asymptotic result is

obtained when N grows very large. At this N , the interference κ′ is always

1/N4 because with so many antennas the main lobe beamwidth is extremely

small. Even with this extreme interference reduction, the number of antennas

must still scale linearly which is much faster than in the case of the uniform

network.

In Fig. 3.7, I show the differences between Lemma 3.5.2 and Lemma

3.5.3 (both plots are on the same scale). For both plots in Fig. 3.7, N = 10

and I vary the communication distance. The user density is λu = 10−5. In

Fig. 3.7a, I see that for σ = 4 and ro = 100m the sectored antenna model
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yields a rate of 7 b/s/Hz/user, but the Gaussian antenna indicates a rate of 8

b/s/Hz/user. This is a disagreement of roughly 15%. I see that the high SINR

approximation is valid for small antenna errors or for small ro. The results

for the Gaussian antenna are less accurate for higher σ because I ignore the

sidelobes as well for the Gaussian case when considering K. Both antenna

results indicate that rate losses of 50% when σ = 10.

3.7 Conclusions

In this chapter, I presented a means to balance the ergodic rate re-

quirements of the users with the efficiency needs of the overall network. Using

tools from stochastic geometry, I derived exact expressions for the ergodic

rate of clustered mmWave ad hoc network for uncoordinated channel access

and TDMA. The results indicated that because mmWave utilizes directional

beamforming uncoordinated channel access can be used to provide net clus-

ter rate gains over TDMA as opposed to lower frequency communication. If

the cluster density is large enough, however, the reduced interference from

TDMA allowed for higher cluster rate. I introduced and developed the notion

of intra-ε inter-cluster coverage. The results indicate that, for small cluster

sizes, the clusters remain covered if the required data rate is small. Using the

Theorems, I established scaling trends of both uniform and clustered mmWave

ad hoc networks. The results showed that antenna arrays of uniform networks

can scale sub-linearly while clustered network arrays must scale linearly as the

user density increases. I characterized the performance loss of beam steering
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misalignment using two different, popular antenna models. I showed that per-

formance loss varies as much as 15% depending on the antenna model and

system parameters. Further, I showed that antenna misalignment reduces er-

godic rate per user by 45% if the error standard deviation is similar to the

3dB beamwidth of the array; in general, the loss in capacity is proportional to

error variance σ2 of beamforming.

3.8 Appendix

3.8.1 Proof of Theorem 3.4.1

I leverage Lemma 3.3.1 to expand the SINRu term (3.7) in the rate

equation (3.8). First, I note that E[e−zX ] from Lemma 3.3.1 corresponds the

moment-generating function of the signal term; the random element of the sig-

nal is the Gamma random fading. Similarly, E[e−zY ] is the Laplace transform

of the interference field generated by the PPP. To begin,

Lp(z) = E
[
e−zIp

]
(3.65)

(a)
= E

[
e−z

∑
n I

n
p
]

(3.66)

=
∏
n

E
[
e−zI

n
p
]

(3.67)

(b)
=
∏
n

E

[∏
i∈Φ

(
1 +

z` (xi − ro)κ′n
Nh

)−Nh]
(3.68)

(c)
=
∏
n

E

[∏
i∈Φ

(
1 +

z` (xi)κ
′
n

Nh

)−Nh]
(3.69)

(d)
=
∏
n

exp

(
−pnλu

∫ ∞
0

[
1−

(
1 +

z` (x)κ′n
Nh

)−Nh]
p(x)dx

)
, (3.70)
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where (a) is due to the interference decomposition according to κ, (b) is from

the evaluation of the moment generation function of the fading, (c) is because

of the homogeneous nature PPP, and (d) due to the generation functional of

the PPP. The intensity of each decomposed interference is pnλu. Converting

the product to a sum and noting that the PPP is isotropic yields the result.

3.8.2 Proof of Theorem 3.4.2

I use Lemma 3.3.2 to derive upper and lower bounds on the rate ex-

ploiting the structure of the SIRp. To show that R ≥ log2(1 + t
−αm

2 ), I begin

noting that the rate decreases with Nh as the fading becomes more random be-

cause the mutual information between the receiver and transmitter decreases.

I continue with Nh = 1 (e.g. Rayleigh fading) and Lemma 3.3.2 for the signal

fading. I have

R ≥ EIm
[
log2

(
1 +

eE[log h0]

rαm
o Im

)]
= EIm

[
log2

(
1 +

e−γ

rαm
o Im

)]
=

1

log(2)

∫ ∞
0

1− e−γz

z
e−z

2
αm πλur2

o

∑
n pn(κ′n)

2
αm

sinc(2/αm) dz

(a)

≥ 2

αm

log2

1 +

(
sinc( 2

αm
)
)αm

2(
πr2

oλu

∑
n pn (κ′n)

2
αm

)αm
2

 ,

where γ ≈ 0.577 is the Euler constant, (a) comes from the substitution u =

z
2
αm πλuR

2
d

∑
n pn(κ′n)

2
αm

sinc(2/αm)
and (the fact that e−u ≥ 2

αm
e−u

αm
2 for αm > 2 [17]. The

final step is simply a reversal of Lemma 3.3.1 without the expectation. I give
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bounds on
∑

n pn(κ′n)
2
αm . Using the values from (3.5), I have

ψ(N) =
∑
n

pn(κ′n)
2
αm

=
δ

N2
+ 2

(
1− δ

N

)
δ

N

(
1

N2

) 2
αm

+

(
1− δ

N

)2(
1

N4

) 2
αm

.

After expanding and combining terms, it can be seen that

ψ(N) =
1

N2
+

1

N
8
αm

+ O(N−
4
αm
−1).

Thus, for αm ∈ (2, 4], the antenna factor term is dominated by N−2 as N →∞.

Next, for the upper bound, I note by a similar argument that Ru is

bounded above by the rate of the network with no fading (e.g. Nh = ∞).

Additionally, I can bound the rate from above by only considering the closest

interferer from the sub-PPP with the highest gain (e.g. κ = N2, κ′ = 1). I

have

Ru ≤ log2

(
1 + `(ro)E

[
1

mini∈Φ{`(xi − ro)}κ′i

])
(a)
= log2

(
1 + `(ro)E

[
rαm

nn

κ′

])
(b)
= log2

(
1 + `(ro)

∫ ∞
0

rαm
nn

κ′m
2πpmλurnne

−πpmλur2
nndrnn

)
(c)
= log2

(
1 + `(ro)

Γ(1 + αm

2
)

(λupm)
αm
2 κ′m

)

= log2

(
1 + `(ro)

Γ(1 + αm

2
)(

λu
δ2

N2

)αm
2

)
where (a) is due to the nearest-neighbor (closest interferer) rnn of the sub-PPP,

κ′m is the max gain of the system, and pm is its corresponding probability, (b)-

(c) is the evaluation of the expectation over the nearest-neighbor distribution.
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Combining the upper and lower bounds and noting that N−2 ≤ ψ(N) ≤

MN−2 for αm ∈ (2, 4], I arrive at the final bounds as

log2

(
1 +

a

t
αm
2

)
≤ Ru ≤ log2

(
1 +

b

t
αm
2

)
.

3.8.3 Proof of Theorem 3.4.3

The first term of (3.26) is a direct application of Lemma 3.3.1. The

second term is obtained after taking the MGF of the signal fading. The Laplace

transform of the intra-cluster interference is given as

La(z) = E
[
e−zIa

]
(3.71)

= E
[
e−z

∑
i∈No `(xi−ro)hiκ′i

]
(3.72)

(a)
= E

[∏
i∈No

(
1 +

z`(xi − ro)κ′i
Nh

)−Nh]
(3.73)

(b)
=

(
E

[(
1 +

z`(x− ro)κ′i
Nh

)−Nh])c−1

(3.74)

=

(∑
n

pnEx

[(
1 +

z`(xi − ro)κ′i
Nh

)−Nh])c−1

(3.75)

(c)
=

(∑
n

pn
πR2

c

∫
B(0,Rc)

(
1 +

z`(xi − ro)κ′i
Nh

)−Nh
dx

)c−1

, (3.76)

where (a) is the MGF of an exponential random variable, (b) is due to indepen-

dence and the c− 1 other transmitters in the cluster, and (c) is a substitution

due to (3.17).
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The Laplace transform of the inter-cluster interference is given as

Le(z) = E
[
e−zIe

]
(3.77)

= E
[
e−z

∑
i∈Φc

`(xi−ro)hiκ′i
]

(3.78)

= E

[∏
i∈Φc

(
1 +

z`(xi − ro)κ′i
Nh

)−Nh]
(3.79)

= E

∏
y∈Φp

∏
x∈Ny

(
1 +

z`(y − x− ro)κ′

Nh

)−Nh (3.80)

= EΦp

∏
y∈Φp

ENy

[ ∏
x∈Ny

(
1 +

z`(y − x− ro)κ′

Nh

)−Nh] (3.81)

(a)
= G

((
1 +

z`(y − x− ro)κ′

Nh

)−Nh)
(3.82)

(b)
= exp

(
−λp

∫
R2

(1− g (y, z)c) p (y) dy

)
(3.83)

(c)
= exp

(
−2πλp

∫ ∞
o

(1− g (r, z)c) rp (r) dr

)
, (3.84)

where (a) is due to (3.17) and the definition of a generating functional for

a point process, (b) is due to (3.15) and the stationarity of the inter-cluster

interference with respect to ro, and (c) due to the isometric properties of the

inter-cluster interference.

3.8.4 Proof of Corollary 3.4.5

First, I must evaluate the transmission rate of intra-cluster communi-

cation. I compute Pa(Γ) in the standard way by re-arranging the SINRa to
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exploit the exponential fading such that

P [SINRa > Γ] = P [ho > (rαm
o θ + rαm

o I) Γ] (3.85)

= E [exp (−rαm
o θΓ− rαm

o IΓ)] (3.86)

= e−r
αm
o θΓE [exp (−rαm

o Γ(Ia + Ie))] (3.87)

= e−r
αm
o θΓLa(rαm

o Γ)Le(r
αm
o Γ), (3.88)

where θ is defined as in Theorem 3.4.3 and the Laplace functionals of the

interference as given in (3.28) and (3.29). Because λp only appears in Le

outside the integration, I can invert (3.88) to obtain the transmission rate as

q(ε,Γ) =
− log

(
1−ε

exp(−rαm
o θΓ)La(rαm

o Γ)

)
2πW (rαm

o Γ)
. (3.89)

To evaluate Pe(Γ), I note that it is equivalent to to Pa(Γ), but ro is replaced

with re and must be integrated over fre(r).

3.8.5 Proof of Lemma 3.5.2

Let Gε be the variable error-induced gain (e.g. (3.45)) as opposed to

the perfect antenna gain Gp = N2 and SINRG be the SINR without the signal

antenna gain. Further, let the ergodic rate of the network be

R = E[log2(1 +GpSINRG)], (3.90)
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and therefore the reduction in rate of the network is

∆R = E[log2(1 +GpSINRG)]− E[log2(1 +GεSINRG)] (3.91)

= E[log2(1 +GpSINRG)− log2(1 +GεSINRG)] (3.92)

= E
[
log2 (Gp) + O

(
1

SINRG

)
− log2(Gε)− O

(
1

SINRG

)]
(3.93)

= E
[
log2

(
Gp

Gε

)
+ O

(
1

SINRG

)]
. (3.94)

Isolating the signal antenna gain is due to Lemma 3.5.1. I use (3.45) to evaluate

the expectation and note that log2(N2/N2) = 0.
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Chapter 4

Beam Training in Random mmWave Ad Hoc

Networks

In the previous two chapters, I assumed that the communication link

had been established. The transmitter and receiver were assumed to achieving

the full gain from the antenna arrays. In this chapter, I focus on the overhead

and effort required to align the antenna arrays. I evaluate the latency and user-

perceived rate after accounting for the overhead of beam sweeping and mobility

in the channel. Without a time constraint, exhaustive search provides the best

beamforming pair at the receiver and transmitter. Due to latency concerns for

the user, overhead in protocol design, and channel conditions changing, this

approach cannot be used unless searching is done quickly. It is unclear if or

when exhaustive beam sweeping is optimal or even tolerable with respect to

latency and overhead for mmWave ad hoc networks.

4.1 Introduction

Beam sweeping and training for mmWave ad hoc networks was studied

in [72–76]. A distributed algorithm is used to match users to access points for

optimal beam training and beamwidth in [72]; an optimal beamwidth in an
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interference free environment is shown to exist that balances throughput with

training overhead. In [73], low-frequency 2.4GHz wireless LAN (WLAN) car-

ries the control and coordination for synchronization of 60GHz WLAN. The

results in [73] show that handshaking between neighbors by up to 55%, but

the low-frequency band is not used for accelerating beam training. WLAN po-

sitioning techniques in the 5GHz band were used in [74] to aid the beamform-

ing process for 60GHz WLANs; a similar out-of-band positioning technique

is studied in [75] where the low-frequency information is used to get coarse

alignment with the potential of fine beam alignment using in-band measure-

ments. Both [74, 75] did not consider interference in the signal model as well

as relying on the out-of-band measurements. Multi-user methods with hybrid

architecture were studied in [76] to reduce the overhead of beam training as

the number of users grows. The system model of [76] did not include interfer-

ence, relies on a more complex hybrid architecture, and requires user diversity

for full benefit.

The changes of angle-of-arrival (AoA) and angle-of-departure (AoD)

due to channel variations are a large obstacle for mmWave communication for

mobile environments. Beam tracking typically relates to tracking the small

movements on a per OFDM symbol basis. I am concerned with beam failure

events (i.e. require a complete beam re-alignment). Beam tracking was con-

sidered in [77,78]. In [77], a hybrid architecture is used to collect information

from multiple directions that is given to a probabilistic optimization model

which accelerates the beam training and corrects alignment errors. Without
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interference, the beam acquisition time is reduced by 50%, but it also required

the hybrid architecture using 16 transmit and 6 receiver chains in the eval-

uation. The results of [78] require a continuous variation in the angles after

beam sweeping to track properly; if the AoA or AoD suddenly changes due to

mobility, the method does not support that. The impact of mmWave channel

variation was studied in [79] for vehicular environments. The authors derive

expressions for the beam coherence time, which showed that the antenna ar-

ray beamwidth greatly affected the doppler spread of the fading signals. If the

beams were too narrow, the rays cannot be tracked and the coherence time

was small, but some directivity helps limit the doppler which aided the beam

tracking is within the transmission block.

Beam alignment for mmWave networks within the cellular context was

studied in [25,26]. In a cellular system, the user may connect to the strongest

base station, but in ad hoc networks, however, interference with neighboring

users is possible. The user may not be able to connect to the closest user.

In [25], (near)-orthogonal pilots provide synchronization and broadcast access

to a mmWave cellular network. The orthogonality of the pilots allowed the

base station and users to tolerate intra-cell interference and avoid collisions; in

an uncoordinated ad hoc network, all users may not be beam sweeping at the

same time making the use of pilots ineffective. Four beam sweeping methods

for synchronization were studied in [26] with stochastic geometry, but the user

assumed to connect to the strongest transmitter which is not necessarily the

case with ad hoc networks. In [80], a context-aware method using side infor-
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mation database is used to aid in mmWave cell discovery which illustrates the

additional information provides substantial gains to mmWave cellular training

time, but the dynamic nature of ad hoc networks makes database upkeep an

additional overhead. The authors of [81] argue that out-of-band assistance

(e.g. < 6GHz) was indispensable for quick mmWave cellular beam alignment;

a method using the current LTE specifications was shown provide enough di-

rection information in the low-frequency band to lower the beam sweeping

time in the mmWave band, but the analysis assumed the other cellular base

stations do not affect the training process.

4.2 Contributions

In this chapter, I characterize the overhead cost of beam alignment in

terms of latency and rate reduction. I use stochastic geometry to model the

user pair locations, the antenna array as a sectored antenna array, and line-of-

sight (LOS) ball blockage model. I derive analytic expressions and bounds to

be derived for the data transmission delay and the user perceived rate. The

main contributions of the chapter are summarized as follows:

• Computation of the relative strength of the interfering users in a mmWave

ad hoc network. The results show that despite the decreasing probability

of a mainlobe collision between a user and interferer as the antenna array

grows, the interferers with colliding mainlobes remain the dominant and

thus the limiting source of an interference-limited scenario. In LOS and

non-line-of-sight (NLOS) scenarios, mainlobe collisions are stronger by
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a factor that is proportional to the array size given a sectored antenna

model. I present results that show the increase in synchronization time

due to a blockage event at the transmitter as well as a complete block-

age event at the receiver. I show that blockage events at the transmitter

are essentially nonrecoverable due to the degradation of signal power for

fast training techniques while blockage events at the receiver may allow

successful communication.

• Derivation of the expected data transmission delay of three different

beamforming strategies as a function of transmission probability and

antenna array size. I show that using omni-directional reception is op-

timal for mmWave ad hoc networks if the transmission probability is

sufficiently low or if the antenna array size and training length is suffi-

ciently large. In particular, I give expressions for the optimal transmis-

sion probability for minimizing the delay as well as well as the region

where omni-directional reception is optimal.

• Characterization of the user-perceived ergodic rate when using each of

the synchronization methods. Our results indicate that the optimal

transmission probability for ergodic rate is typically larger than the opti-

mal point for delay within a fixed transmission block; a similar conclusion

holds for the array size. In the high mobility case where overhead is most

costly, if the underlying user density is too high, the users must back off

the channel too frequently for successful training to complete and data

transmission to begin.
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The rest of the chapter is organized as follows. Section 4.3 provides the

system model and assumptions used in the chapter. Section 4.4.2 describes

the data transmission delay and presents the analytic results. Section 4.4.3

develops the ergodic rate and the effect of overhead. I present the numerical

results in Section 4.5 and conclude the chapter in Section 4.6. There are several

appendices at the end of the chapter which provide detailed proofs.

4.3 System Model

In this section, I describe the uniform network model used to model

the positions of the transmitters. I define the received signal model and enu-

merate the long and short term fading assumptions. I describe the proposed

super-frame structure used to provide synchronization and training. Finally, I

provide some mathematical preliminaries from prior work, to make the chapter

self-contained. A summary of the key variables is given in Table 4.1.

4.3.1 Network Model

I build the transmitter and receiver location model from the standard

homogeneous Poisson point process (PPP) [3, 21, 55]. I denote the collection

of transmitter locations on R2 formed by the PPP Φ as the uniform network.

I assume a slotted ALOHA style medium access control (MAC) with trans-

mission probability ζ. I denote the intensity of Φ as λ = ζλu where λu is the

intensity of all potential transmitters. The transmission probability ζ is an

important parameter to tune the interference strength, as discussed further in
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τsyn+tr expected data transmission delay
βxy delay ratio between x and y
R ergodic rate
Φ homogeneous Poisson point process (PPP)
λu intensity of the PPP
ζ ALOHA transmission probability
ro desired communication communication distance
Rlos LOS ball radius

SINR SINR with PPP
Γ SINR threshold for successful comm
p(x) blockage probability function
αm path-loss exponent
Am path-loss intercept
Nm
o noise power
N number of antennas

L(z) Laplace functional of point process
Psyn+tr probability of synch+training phase success
κsyn,κtr antenna gain during synchronization or training phase

ρ antenna gain probability
γ mainlobe gain correction factor
η ratio of mainlobe to sidelobe interference
T slot time
Ttot transmission interval time

Ssyn, Str, Sdata number of synchronization, training or data slots

Table 4.1: System variables for Chapter 4
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Section 4.3.4.2. Each transmitter has a receiver located at a fixed distance ro

away with the orientation with respect to the transmitter distributed uniformly

in [0, 2π] [21]; these receiver points are not part of Φ.

4.3.2 Received Signal Model

The received signal yo of transmitted symbol xo at the desired user pair

is affected by the channel H, the precoding vectors f , the combining vectors

w, each interfering symbol xi, and noise n

yo = w∗oHofoxo +
∑
i∈Φ

w∗iHifixi + n. (4.1)

I assume xo, xi ∼ N(0, Po),N(0, Pi) and n ∼ N(0, Nm
o ). I use the subscript o

to indicate the signal of interest at the origin and i to indicate the interfering

signal from user i. I model the channel as in prior work in mmWave by using

the single-path model [9]. The path represents the LOS path or reflective sur-

faces in the physical world such as buildings or automobiles for a NLOS path.

The effective channel H between a receiver and transmitter communicating at

distance r is a composite value based on the large-scale path-loss `(r), small-

scale fading h, the antenna array response a(θ) at the angle-of-arrival (AoA) θ,

and the antenna response a(φ) at the angle-of-departure (AoD) φ. The vector

signal model for a single reflector is

H =
√
`(r)ha(θ)a∗(φ). (4.2)

I detail each term in the following paragraphs.
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The optimal precoding and combining strategy for a single path with-

out interference is to beamform towards the AoA and AoD. I assume the

transmitter applies a precoding vector f so that |a∗(φ)f |2 = Gtx(φ); the re-

ceiver applies a combining vector w so that |w∗a(θ)|2 = Grx(θ). Mobility in

the network, however, causes the AoA or AOD of the path to change [82]. The

beamforming solution is only valid for a finite amount of time. It is crucial,

therefore, to avoid over training in high mobility environments.

I simplify the antenna response by using the sectored antenna model

[25]. The sectored model reduces the antenna gain to either a mainlobe or

sidelobe gain. The resultant gain for an array with N antennas at either the

receiver or transmitter is

Gtx/rx (θ, φ) =

{
G

tx/rx
ml = 2π

θant

γ
1+γ

θ, φ ∈ [− θant

2
, θant

2
]

G
tx/rx
sl = 2π

2π−θant

1
1+γ

otherwise
, (4.3)

where θant is the mainlobe beamwidth which is θant = 2π
N

. The mainlobe/sidelobe

correction factor γ is representative of the front-to-back ratio of the antenna

array which is the ratio between the maximum gain and the gain 180◦ from the

maximum. I denote the gain of the mainlobe and sidelobe by G
tx/rx
ml /G

tx/rx
sl .

The correction factor γ is computed so that the total energy transmitted by

the array is always unity G
tx/rx
ml

θant

2π
+G

tx/rx
sl

2π−θant

2π
= 1, with γ = 2π

C0(2π−θant)
for

some constant C0 [25]. Typical front-to-back ratios for arrays are on the order

of the array size e.g. γ ∼ N [83]. I use the equivalence of γ = N in our results

to simplify the expressions.

At the same time, independently, the other users in the network are
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LOS Ball

Figure 4.1: An example realization of the the PPP network with building
blockages. The LOS ball model is a first-order approixmation that only consid-
ers the average LOS distance. This simplifies the blockage probability function
p(r) compared to other models, such as the exponential model [1]. All users
inside the ball are considered LOS while all users outside the ball is considered
NLOS.

transmitting in random directions. The resultant system gain Grx(θ)Gtx(φ) of

the interfering signals is modeled as a discrete random variable

κ =


Gtx

mlG
rx
ml w.p. ρml,ml = ρ (Gtx

ml) ρ (Grx
ml)

Gtx
mlG

rx
sl w.p. ρml,sl = ρ (Gtx

ml) ρ (Grx
sl )

Gtx
sl G

rx
ml w.p. ρsl,ml = ρ (Gtx

sl ) ρ (Grx
ml)

Gtx
sl G

rx
sl w.p. ρsl,sl = ρ (Gtx

sl ) ρ (Grx
sl )

(4.4)

where ρ(·) is the probability of the transmit or receive beam pattern occurring.

For example, ρ (Gtx
sl ) is the probability that the interfering transmitter sidelobe

is pointed towards the receiver; likewise, ρ (Grx
sl ) is the probability the receiver

sidelobe is pointed towards an interfering transmitter. The sidelobe probabili-

ties are calculated from the mainlobe probabilities ρ
(
G

tx/rx
sl

)
= 1−ρ

(
G

tx/rx
ml

)
.

The short term effects are representative of typical fast fading effects
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[34]. I assume a narrowband channel model where the fast fading channel

coefficient h is a random variable. Wideband channels are converted to such

narrowband models via multicarrier techniques such as OFDM. The long term

channel effects are due to phenomena like building reflections or blockage that

change the path-loss. I use the standard unbounded path-loss model

`(r) =
Am

rαm
(4.5)

where αm is the path-loss exponent (PLE) and Am is the path-loss intercept.

The path-loss intercept represents the power loss in the first meter of transmis-

sion. This model is valid for far-field communication and if the interference

is greater than 1m away; in the case an interfering user is within 1m, I do

not account for the near-field for tractability as is common in other stochastic

geometry work [1, 25, 26]. Measurements show a lower PLE for line-of-sight

(LOS) versus non-line-of-sight (NLOS) signals [34]. Both the desired signal and

the interference signals are either LOS or NLOS. This discrepancy is largely

caused by building blockage. The difference between the signals is quantified

by the distance dependent path-loss function p(r) which gives the probability

that a user at distance r is LOS. I use the LOS ball blockage model where all

users within a distance Rlos are considered LOS while all users outside that

distance are considered NLOS; as a result, p(r) = 1{r≤Rlos}. The LOS distance

Rlos is chosen based on the average LOS view for a specific geographic location

or area. From the exponential random shape model [38,48], Rlos is calculated

so the average number of LOS transmitters remains the same between the
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models. In [38], the calculated values for Chicago and Manhattan are 87.13m

and 90.42m, for example.

Simplifying the received signal model yields

yo =
√
Amr−αm

o hoκoxo +
∑
i∈Φ

√
Amd

−αm
i hiκixi + n (4.6)

The received signal to interference ratio (SINR) is the source of the metrics

used throughout the chapter. The transmit power Po(Pi) is equal between all

users. The noise power of the receiver is Nm
o . The random distance between

the receiver of interest and each interfering user is di. The SINR of the received

signal is

SINR =
PoAmκohor

−αm
o

Nm
o +

∑
Φ PiAmκihid−αm

. (4.7)

The SINR changes on a slot by slot basis each transmission because of the new

snapshot of transmitters and different short term fading.

4.3.3 Transmission Interval Access Method

I assume the transmissions follow the time-slotted method shown in

Fig. 4.2. For simplicity, the network uses a fixed transmit time T sec for each

transmission opportunity. Each user transmits during a transmission slot with

probability ζ. Each transmission slot is a small chunk of data such as an OFDM

symbol. I assume that overhead within these symbols, e.g. cyclic prefix, is

included in T . I note that recent proposals to 5G standards have included

using the cyclic prefix to account for beam switching time as well; therefore,
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synchronization training data

T

TSsyn TStr TSdata

Ttot

TSsyn TStr

...repeat as needed...

fr
e
q
u
e
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Figure 4.2: The time-slotted design of the proposed system. A slot is T sec
long. There are Ssyn slots for synchronization, Str slots for training, and Sdata

slots for data. The training block may be repeated if needed. The total time
per transmission interval is Ttot sec.

sweeping over the beams on a per OFDM symbol is feasible [84]. I denote the

number of transmission slots for synchronization, training, and data as Ssyn,

Str, and Sdata. The total time a user spends synchronizing and training is

then T ·(Ssyn+Str)

ζ
sec. The whole transmission block is the transmission interval

which includes the synchronization, training, and data slots and lasts for Ttot

sec. Because of the network conditions, I allow for the possibility to have

multiple synchronization and training blocks per transmission interval. The

number of these blocks plays an important role in the latency. The system

is considered to be invariant to small-scale fading over the T sec transmission

slot. Additionally, the network is assumed to invariant to large-scale fading

effects (e.g AoA / AoD / blockage) for Ttot sec. If ζ is sufficiently small, it is

possible for T ·(Ssyn+Str)

ζ
> Ttot because of the random access in the channel. In

this situation, no data communication occurs.

The mobility of the users in the network is captured by the value of Ttot

which is the time that the long-term channel effects are valid. The mobility of

113



the network includes pedestrians walking or vehicular movement, but mobility

also includes effects such as local handset movement (i.e, moving a handset

from one ear to another or removing a phone from a pocket). These local

effects will change the AoA and AoD. There are proposals to use inertial

measurement units (IMUs) in smartphones to track these changes, but the

efficacy of these approaches is unknown in real systems [77]. I assume that

the small local changes are tracked by the receiver, but a new beamforming

solution must be computed every Ttot sec.

I use three synchronization and training methods: baseline, fast-training,

and fast-synch-ronization and training. These methods were studied in [26]

for a cellular environment. The methods are variations on the beamsweeping

algorithms from standards such as 802.11ad [67]. During each transmission

slot of synchronization and training, the user pair sweeps possible beam com-

binations. I consider the correct beam combination when the mainlobes of

each user are aligned with total gain GtxGrx =
(
N γ

1+γ

)2

. For all methods,

during the synchronization phase, one user (e.g. the primary) transmits the

beacon-like frames while the other user (e.g. the secondary) listens; during

the training phase, the secondary user sends feedback over one or many beams

while the primary user listens. Because there is a single path in the channel,

there is a unique best sector where Gtx = N γ
1+γ

and Grx = N γ
1+γ

. In [26],

the best trade-off between initial delay and end user throughput for a cellular

system is to have a coarse synchronization phase while refining the beam pat-

tern in the training phase. Table 4.2 provides a summary of the beamforming
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methods used in the chapter.

In the baseline method, during the synchronization phase, each user

in the dipole pair sweeps over its beam patterns which takes Ssyn = N2 slots

with antenna gain κsyn =
(
N γ

1+γ

)2

; during the training phase, the primary

user sweeps over its beams again while the secondary user transmits using

the best beam from the synchronization phase; this takes Str = N slots with

antenna gain κtr =
(
N γ

1+γ

)2

.

In the fast-training method, during the synchronization phase, each

user in the dipole pair sweeps over its beam patterns which takes Ssyn = N2

slots with antenna gain κsyn =
(
N γ

1+γ

)2

. During the training phase, the

primary user listens omni-directionally while the other user fixes its beam on

the best result from the synchronization phase; this takes Str = 1 slot with

antenna gain κtr = N γ
1+γ

.

In the fast-synchronization and training method, during the synchro-

nization phase, the primary user sweeps over its beam patterns while the

secondary user listens omni-directionally which takes Ssyn = N slots with an-

tenna gain κsyn = N γ
1+γ

. During the training phase, the roles are swapped;

this takes another Str = N slots with antenna gain κtr = N γ
1+γ

.

4.3.4 Technical Preliminaries

In this section, I summarize the main result on success probability of

mmWave ad hoc networks from prior work [56]. I define the mainlobe/sidelobe

interference ratio which gives the relative strength of the interference in the
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Method Synchronization Phase
Values

Training Phase Values

Baseline Gtx
ml = N γ

1+γ
, Grx

ml = N γ
1+γ

,

ρ (Gtx
ml) = 1

N
, ρ (Grx

ml) = 1
N

,
Ssyn = N2

Gtx
ml = N γ

1+γ
, Grx

ml = N γ
1+γ

,

ρ (Gtx
ml) = 1

N
, ρ (Grx

ml) = 1
N

,
Str = N

Fast Train-
ing

Gtx
ml = N γ

1+γ
, Grx

ml = N γ
1+γ

,

ρ (Gtx
ml) = 1

N
, ρ (Grx

ml) = 1
N

,
Ssyn = N2

Gtx
ml = N γ

1+γ
, Grx

ml = 1 ,

ρ (Gtx
ml) = 1

N
, ρ (Grx

ml) = 1,
Str = 1

Fast
synchro-
nization &
Training

Gtx
ml = N γ

1+γ
, Grx

ml = 1,

ρ (Gtx
ml) = 1

N
, ρ (Grx

ml) = 1,
Ssyn = N

Gtx
ml = N γ

1+γ
, Grx

ml = 1,

ρ (Gtx
ml) = 1

N
, ρ (Grx

ml) = 1,
Str = N

Table 4.2: Values of slot usages and gain during a transmission interval.

main and side lobes. I also define user blockage scenarios using the LOS ball

model to add tractability to transmitter and receiver blockage events.

4.3.4.1 Probability of Success

The probability of success of a packet transmission is

P (Γ) = P[SINR > Γ], (4.8)

where Γ is the decoding threshold based on the modulation and coding rate

of the packet. Our previous work [56,85–87] considered the probability of suc-

cess in various network configurations during data transmission. The generic

results for the success probability are

P (Γ) = e−
r
αm
o Γ
κo

Nm
o

PoAm︸ ︷︷ ︸
signal

LΦ(z)︸ ︷︷ ︸
interference

, (4.9)

where LΦ(z) is the Laplace functional of the interference. The specific evalu-

ation of LΦ(z) depends on the network assumptions.
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In the case of a uniform PPP network described in Section II.A, LΦ(z) =

Lp(z) with

Lp(z) = exp

(
−2πζλu

∑
i

ρi

∫ ∞
0

[
1−

(
1 +

zκi
xαm

)−1
]
p(x)xdx

)
, (4.10)

and i ∈ {(ml,ml), (ml, sl), (sl,ml), (sl, sl)} is the possible gain of the interfering

links according to (4.4). For compactness of the notation, I denote the integral

of the interference within the Laplace function as

Θ = 2πλu

∑
i

ρi

∫ ∞
0

[
1−

(
1 +

zκi
xαm

)−1
]
p(x)xdx. (4.11)

I also write the desired signal term from the exponential in (4.9) as

Ω =
rαm
o Γ

κo

Nm
o

PoAm

. (4.12)

The probability of success in the uniform network is then compactly written

as

P (Γ) = e−Ω−ζΘ. (4.13)

Throughout the chapter, I compare the different access methods or the differ-

ent stages of access. To do so, I use the notation Ωx
y and Θx

y to represent the

signal or interference of y stage of x method. For example, Ωbase
syn is the signal

term of the base method during the synchronization phase (i.e. κo = κsyn).

In our previous work, the integral within the Laplace functional is left

to numeric integration when evaluated. For the LOS ball blockage model, the

117



integral within the Laplace functional simplifies to a semi-closed form for the

LOS interference with∫ ∞
0

[
1−

(
1 +

zκ

xαm

)−1
]
p(x)xdx =

∫ ∞
0

[
1−

(
1 +

zκ

xαm

)−1
]
1{x≤Rlos}xdx

(4.14)

=

∫ Rlos

0

[
1−

(
1 +

zκ

xαm

)−1
]
xdx (4.15)

= 2F1

(
1,

2

αm

,
2 + αm

αm

,−−R
αm
los

zκ

)
, (4.16)

where 2F1 (·) is the Gauss hypergeometric function. While (4.16) does not

evaluate to simpler functions for arbitrary PLEs, if αm = 2 which is a common

value for LOS communication, I simplify (4.16) when αm → 2 which leads to

the following Theorem.

Theorem 4.3.1. The interference integral under the LOS ball model for LOS

interference is

Θ = 2πλu

∑
i

ρi
zκi
2

log

(
1 +

R2
los

zκi

)
+ O (αm − 2) (4.17)

while the interference integral under the LOS ball model for NLOS interference

is

Θ = 2πλu

∑
i

ρi

√
zκi
2

atan

(√
zκi
R2

los

)
+ O (αm − 4) . (4.18)

Proof. I begin with

2F1

(
1,

2

αm

,
2 + αm

αm

,−−R
αm
los

zκ

)
=
zκ

2
log

(
1 +

R2
los

zκ

)
+ O (αm − 2) (4.19)

≤ zκ

2
log

(
1 +

R2
los

zκ

)
. (4.20)
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In other stochastic geometry work, it is typical to restrict the PLE to αm > 2.

This is not needed in our system model because of the LOS ball blockage

model. The restriction of αm > 2 prevents the situation of infinite interference

as the integration bounds tend towards infinity. With the LOS ball model, the

integral in (4.20) is finite because it only goes to Rlos.

The NLOS interference (i.e. users with ||x|| > Rlos) is similarly simpli-

fied when αm → 4 which is a common parameter for NLOS mmWave commu-

nication. The NLOS interference in the LOS ball model is∫ ∞
0

[
1−

(
1 +

zκ

xαm

)−1
]
p(x)xdx =

∫ ∞
0

[
1−

(
1 +

zκ

xαm

)−1
]
1{x>Rlos}xdx

(4.21)

=

∫ ∞
R

[
1−

(
1 +

zκ

xαm

)−1
]
xdx (4.22)

= zκR2−αm
2F1

(
1, αm−2

αm
, 2− 2

αm
,−zκR−αm

los

)
αm − 2

(4.23)

=

√
zκ

2
atan

(√
zκ

R2
los

)
+ O (αm − 4) . (4.24)

Equation (4.24) is either an overestimate or underestimate, depending on the

specific NLOS PLE. If αm ≥ 4 which is typical, (4.24) is an upper bound on

the interference strength.

4.3.4.2 Mainlobe-sidelobe Ratio

The interference in the network model implicitly assumes that there are

four classes of interfering users: (1) those with mainlobes directed towards the

receiver’s mainlobe, (2) those with mainlobes directed towards the receiver’s
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sidelobe, (3) those with sidelobes directed towards the receiver’s mainlobe,

and (4) those with sidelobes directed towards the receiver’s sidelobe. For our

analysis and simplicity, because I assume each user has the same number of

antennas, there are three classes of interfering users (2) and (3) mainlobe

sidelobe combination at the receiver and transmitter results in the same gain.

If I focus on the Laplace functional of (4.10), the summation over i represents

the contribution from each interfering user class. The relative degradation of

each user class to the overall success of communication is quantified. I define

a metric, independent of user density, called the mainlobe-sidelobe ratio

η =
pml,ml

∫∞
0

[
1−

(
1 +

zκml,ml

xαm

)−1
]
p(x)xdx∑

i 6=ml,ml
pi
∫∞

0

[
1−

(
1 + zκi

xαm

)−1
]
p(x)xdx

. (4.25)

Using the (4.20), the relative interference between class 1 and class 4

interfering users is

η =
pml,mlκml,ml log

(
1 +

R2
los

rαm
o κml,ml

)
psl,slκsl,sl log

(
1 +

R2
los

rαm
o κsl,sl

) (4.26)

=

(
1
N

)2
(
N γ

1+γ

)2

log

(
1 +

R2
los

rαm
o (N γ

1+γ )
2

)
(
1− 1

N

)2
(

N
N−1

1
1+γ

)2

log

(
1 +

R2
los

rαm
o ( N

N−1
1

1+γ )
2

) (4.27)

=
N2 log

(
1 +

R2
los

rαm
o

)
log
(

1 +
R2

losN
2(N−1)2

rαm
o

) , (4.28)

where I leverage the equivalence of the front-to-back ratio γ = N . Whereas
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the relative interference between class 1 and class 2/3 interfering users is

η =
pml,mlκml,ml log

(
1 +

R2
los

rαm
o κml,ml

)
2pml,slκml,sl log

(
1 +

R2
los

rαm
o κml,sl

) (4.29)

=

(
1
N

)2
(
N γ

1+γ

)2

log

(
1 +

R2
los

rαm
o (N γ

1+γ )
2

)
2
(
1− 1

N

) (
1
N

) (
N
N−1

1
1+γ

)(
N γ

1+γ

)
log

(
1 +

R2
los

rαm
o ( N

N−1
1

1+γ )(N γ
1+γ )

) (4.30)

=
N log

(
1 +

R2
los

rαm
o

)
2 log

(
1 +

R2
losN(N−1)

rαm
o

) . (4.31)

With γ = N , (4.28) and (4.31) show that even with the decreasing the prob-

ability of the mainlobes aligning, the interference caused by class 1 users re-

mains the dominant factor for all antenna configurations. The logarithm in

the denominator does grow faster than the logarithm in the numerator in both

(4.28) and (4.31) but the pre-log term dominates. Using similar logic, the same

relationship between the interference is shown in the NLOS case.

Comment: Class 1 interfering users are the primary limiting interfer-

ence source. Because of this, any access method should attempt to remedy

this source of degradation. It can be checked with Campbell’s Theorem that

the expected power of the LOS interference is invariant to the antenna array

size; this is due to the unity total radiated power constraint on the antenna

array. The utility of the antenna array is a bit of sleight-of-hand; the gain

from the antenna array is the boost to the signal strength. Ironically, as the

array size grows, the proportion of interference coming from class 1 interfer-

ence grows. The issue of class 1 interference is an extreme case of the hidden

121



desired link

hidden node

Figure 4.3: An example illustration of the hidden node issue with a class 1
interfering user.

node problem with carrier sense protocols such as 802.11. Fig. 4.3 shows an

example of issue. The transmitter of interest is outside the mainlobe of the

class 1 interfering user. Because of this, no carrier sense will be reliable as the

interference is hidden to the transmitter as the SINR at the receiver will be

degraded by the interference. I use ζ to reduce the interference which is not

as robust as analyzing a collision avoidance method like RTS-CTS frames but

remains tractable.

4.3.4.3 Network Scenarios

I consider three network situations shown in Fig. 4.4. The first scenario

in Fig. 4.4a consists of a LOS signal path, but also strong LOS interference

nearby. In this case, ro < Rlos. This is the primary scenario I consider in this

chapter. The second scenario in Fig. 4.4b consists of strong LOS interference,

but the signal path is greater than the LOS distance so the desired signal is

NLOS. In this situation, I show that establishing communication is difficult,

even with large antenna arrays. In this case, ro > Rlos. The third scenario in
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Fig. 4.4c consists of nearly all NLOS signals. In this scenario, the blockage is

large so LOS signals (both desired and interference) are unlikely. In this case,

ro >> Rlos and Rlos → 0.

4.4 Quantifying Overhead

In this section, I define the data transmission delay metric and compute

closed-form solutions for PPP networks with PLEs of αm = 2 and αm = 4. I

calculate the ratio between the baseline method and the fast-synchronization

method when encountering a blockage event. I derive a formula for the mini-

mum delay with respect to the number of antennas and user density. I conclude

the section by computing the user-perceived ergodic rate which is affected by

the data transmission delay and user density. Because I am interested in eval-

uating the sequential success or failure of packet transmissions, the correlation

between each access must be considered.

4.4.1 Independence Between Attempts

Typically in stochastic geometry analysis, the location of the users in

the PPP is averaged out. As shown in [88,89], the correlation between trans-

missions may cause a large difference in the results. In [89], the data trans-

mission delay for cellular users may be infinite under certain conditions for

static users. Because some users will be stuck on cell edges, the training time

for those users is infinite. This issue is remedied partially by the channel ac-

cess parameter ζ because the cell edge effect disappears when a base-station is
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(a) The network is primarily lim-
ited by the LOS interference, but a
strong LOS signal remains.

(b) The network is primarily limited
by the LOS interference, but with-
out a LOS signal path, the SINR
will suffer.

(c) In extremely dense blockage sce-
narios, all signals are likely to be
NLOS.

Figure 4.4: The network scenarios detailed in Section 4.3.4.3. Fig. 4.4a is
normal operation. Fig. 4.4b is a transmitter blockage scenario. Fig. 4.4c is a
receiver blockage scenario.
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silent. Consider, however, the sequence of active transmitters in time-slot s as

Φs ⊆ Φ where Φ is the realization of the PPP at time-slot s. In the case where

ζ = 1 and the users are not moving, each time-slot experiences interference

from the same interfering locations. The success probability in this case was

studied in [88, Theorem 1] which concluded that for αm → 2 the correlation

between channel access is small, even for ζ → 1. Evaluating [88, Theorem 1,

(24)] over the LOS ball from 0 to Rlos for two successes (i.e. the joint proba-

bility), the integral of the interference can be studied similar to Theorem 4.3.1

which yields

Θs = ζzκ

(
log

(
1 +

R2
los

zκ

)
− ζR2

los

2(zκ+R2
los)

)
. (4.32)

The 1
2

from Theorem 4.3.1 is lost due to the squaring effect of the two attempts.

The trailing term, however, indicates that effect of the interference is less

when considering both probabilities. This is supported by the Monte-carlo

simulations in Fig. 4.5. The simulations were run over 10, 000 iterations that

simulated a network layout and then either moving the users, as in Fig. 4.5a,

or using a different subset as transmitters 4.5b. In general, the movement of

the users has a small effect on the SINR distribution while the ζ has a very

large effect. For ζ < 0.5, the SINR between transmissions is uncorrelated.

4.4.2 Data Transmission Delay

The data transmission delay is the time it takes for the synchronization

and training phases to complete. During the synchronization and training

phases, the transmitter and receiver realign their beams. The synchronization

125



0 5 10 15 20 25 30

|x0 - x1| 

0

0.2

0.4

0.6

0.8

1

P
0 &

 P
1

P
0
2

P
0
 & P

1

(SINR
0
,SINR

1
)

(a) The correlation in SINR over
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(b) The correlation in SINR over
different transmit probabilities.

Figure 4.5: Monte-carlo simulations were used to generate the SINR over
multiple slots using the same network distribution. In (a), the users move a
random distance between slots. In (b), different subsets of the network access
the channel in the subsequent slots. The small movement has a minor effect on
the correlated behavior, but the access probability ζ has a very strong effect.
For ζ < 0.5, the SINR values between subsequent channel accesses is largely
uncorrelated.
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and training phases of the transmission interval are considered successful if

the transmission during the desired beam in the synchronization and training

phases exceeds an SINR threshold. I denote SINRsyn as the SINR during

the synchronization phase and SINRtr as the SINR during the training phase.

The variables for SINRsyn and SINRtr are the same as (4.7), but with the

gain values appropriately chosen according to Table 4.2. Because the receiver

experiences a different fading and interference realization in each transmission

slot and the results present in Section 4.4.1, the SINR of the training phase is

assumed to be independent of the synchronization phase for the remainder of

the chapter. The probability of success for both phases Psyn+tr is the product

of the individual success probabilities. Specifically,

Psyn+tr = P [SINRsyn > Γ]P [SINRtr > Γ] , (4.33)

where the threshold for success Γ is chosen to match the sensitivity of a low

rate control signal (e.g −4 dBm to 0 dBm).

I treat each synchronization and training block (e.g. Ssyn + Str slots)

as a Bernoulli random variable with probability Psyn+tr. The number of syn-

chronization and training blocks νdisc+tr until successful beam alignment is

a geometric random variable. The expected time to begin transmission is

then [26]

τsyn+tr = E
[
νdisc+tr

TSsyn + TStr

ζ

]
. (4.34)

I do not include the total transmission interval Ttot in the delay time. Be-

cause users in the uniform network are dipole pairs, if the training phase is
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not successful, the users will simply restart the training phase. In a low mo-

bility situation, Ttot >> T , the effect of overhead per transmission interval is

negligible. As such, TSsyn+TStr

Ttot
→ 0. The metric of interest is therefore the

data transmission delay.

The first result gives the expected data transmission delay.

Corollary 4.4.1. The expected data transmission delay τsyn+tr of a mmWave

ad hoc network with uniform spatial deployment is

τsyn+tr = eΩsyn+Ωtreζ(Θsyn+Θtr)

(
TSsyn + TStr

ζ

)
. (4.35)

Proof. Because νdisc+tr is a geometric random variable, the expected number

of trials until the first success is the reciprocal of the success probability Psyn+tr

and (4.34) simplifies to

τsyn+tr =
1

Psyn+tr

TSsyn + TStr

ζ
. (4.36)

In the case of a uniform PPP network,

Psyn+tr = e
−rαm

o
Nm
o Γ

PoAm

(
1

κsyn
+ 1
κtr

)
Lp

(
rαm
o

Γ

κsyn

)
Lp

(
rαm
o

Γ

κtr

)
(4.37)

where Lp(z) is (4.10). The inversion of the exponential removes the negation

which yields the results using the notation developed in Section II.

Comment: Corollary 4.4.1 shows that the transmission probability ζ

is an important parameter as it affects the strength of the interference as well as

the the time the training takes to complete. The effective transmitter density
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λ, as shown in Section 4.3.1, is the product of the potential transmitter density

λu and the transmission probability ζ. In our previous work [85–87], I only

considered the effective transmitter density as ζ only affected the transmitting

density. Because reducing ζ increases the expected training time TSsyn +TStr

in (4.34), I must consider ζ and λu separately. The relationship between

these values is important to consider as ζ allows sufficient reduction of the

interference in dense deployments, but as a result, the synchronization and

training time takes much longer. I show the interplay of these values in Section

4.5.

I define the blockage events as transitions between the scenarios from

Fig. 4.4. Scenario 1 in Fig. 4.4a is normal, desired operation. Scenario 2 is

Fig. 4.4b, and Fig. 4.4c is scenario 3. I define a transmitter blockage as the

transition from 1 to 2. With transmitter blockage, the receiver still has LOS

interference, but the desired path from the transmitter to receiver becomes

blocked. For example, if the transmitter turns a corner on a street, the desired

LOS path is blocked. Conversely, I define a receiver blockage event as the

transition from 1 to 3 because the receiver experiences heavy blockage, most

signals become NLOS. For example, a user entering a vehicle may block all

LOS paths from nearby transmitters.

It is useful to directly compare the various methods presented in Section

4.3.3. The following Corollary quantifies the increase in delay when moving

from network scenario (1) to network scenario (2). Consider the situation

when ro = Rlos − ε. The users are operating in LOS signal region with delay
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τ
(1)
syn+tr. If the signal becomes NLOS due to a transmitter blockage event, i.e.

ro = Rlos + ε, this models a blockage event. Now the delay is τ
(2)
syn+tr.

Corollary 4.4.2. Given the common term

C =
N + 1

N
+ 4πζλu

(
Γ log

(
1 +

R2
los

Γr4
o

)
− Γ log

(
1 +

R2
los

Γr2
o

))
, (4.38)

a path-loss exponent of 2, and a NLOS path-loss exponent of 4, the increase in

expected transmission delay due to a transmitter blockage event for the baseline

method is approximated by

β
(1)base
(2)base = exp

(
C

N2

(
r4
o − r2

o

))
, (4.39)

and the increase in expected transmission delay due to a transmitter blockage

event for the fast-synchronization method is approximated by

β
(1)fast−syn
(2)fast−syn = exp

(
C

N

(
r4
o − r2

o

))
. (4.40)

Proof. The proof is presented in Appendix 4.7.1.

Comment: The transmitter blockage scenario is the worst possible

scenario because the transmitter is blocked. The desired signal becomes NLOS

while the interference remains LOS. As I show in Section 4.5, the increase in

τsyn+tr is large for the fast-synchronization method as the increase in delay

decays only with 1
N

. The decay according to 1
N2 in the exhaustive method

allows the baseline method to be blockage tolerant as I show in Section 4.5.

The following Corollary quantifies the increase in delay when moving

from network scenario (1) to network scenario (3). If the signal becomes NLOS
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due to a receiver blockage event, i.e. Rlos → 0, this models the transition from

(1) to (3). Now the delay is τ
(3)
syn+tr.

Corollary 4.4.3. Given the common term

D =
(
r2
o − 1

) N + 1

N
+ 4πζλu

(√
Γatan

(
R2

los

Γr4
o

)
− Γ log

(
1 +

R2
los

Γr2
o

))
,

(4.41)

a LOS path-loss exponent of 2, and a NLOS path-loss exponent of 4, the in-

crease in expected transmission delay due to a receiver blockage event for the

baseline method is approximated by

β
(1)base
(3)base = exp

(
r2
o

N2
D

)
, (4.42)

and the increase in expected transmission delay due to a receiver blockage event

for the fast-synchronization method is approximated by

β
(1)fast−syn
(3)fast−syn = exp

(
r2
o

N
D

)
. (4.43)

Proof. The proof is presented in Appendix 4.7.2.

Comment: The increase in the transmission delay is better tolerated

in the case of a receiver blockage event because of the r2
o term rather than

r4
o − r2

o. While signal is NLOS, the interference is NLOS as well. The same

trend with regard to antenna scaling is evident. The fast-synchronization and

training method is less tolerant of (1) to (3) blockage events, but it is possible

to still have successful communication.
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In each training method, there is a balance between the mutual inter-

ference reduction by users transmitting with probability ζ and the increase in

the overall training time. Using Corollary 4.4.1, I present results for the min-

imum delay with respect transmission opportunity ζ and number of antennas

N . The optimal ζ is presented in the following Corollary.

Corollary 4.4.4. The minimum delay in a uniform mmWave ad hoc network

occurs with a transmission opportunity of

ζ̂ =
1

Θsyn + Θtr

, (4.44)

where Θsyn is the interference during synchronization and Θtr is interference

during training.

Proof. The proof is presented in Appendix 4.7.3.

Comment: Corollary 4.4.4 shows that, surprisingly, the optimal trans-

mission probability is only a function of the interference strength. The syn-

chronization and training time term TSsyn + TStr disappears even though the

latency is heavily affected by that term.

4.4.3 Ergodic Rate with Overhead

After the training phase is completed, the remaining time in the trans-

mission interval is used for data. I use ergodic rate as the metric to measure

the rate. I define the ergodic rate as

Ru = EP,h,κ

[∑
i∈P

log2 (1 + SINRi)

]
, (4.45)
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where the expectation is taken over the random PPP points P, random fading

h per slot T , and the random interference antenna gain κ. In the high mobility

region, the per transmission interval overhead is expensive as Ttot is small. In

this region, I let TSsyn+TStr

M
→ ε.

In the uniform network case, the user perceived ergodic rate is heavily

affected by the transmission probability ζ. The user perceived rate of the

network is

R =

(
1− min (τsyn+tr, Ttot)

Ttot

)
(ζ)EP,h,κ

[∑
i∈P

log2 (1 + SINRi)

]
, (4.46)

where the first term on the right hand side represents the expected overhead

in transmission interval. I note that for certain network situations (e.g. small

Ttot), it is possible for the synchronization to take the entire Ttot sec to com-

plete; in this scenario, the effective rate is zero as the beamforming must be

re-done after the Ttot sec. The second term adjusts the ergodic rate for trans-

mission probability because the remaining time left per transmission interval

is reduced by ζ; while there are Sdata slots, only ζSdata slots on average will be

used. I include this term because I am interested in the user perceived rate of

bits/sec/Hz not bits/slot/Hz. Because I use the transmission probability as

an interference reduction method, I must reduce the data rate as well to keep

the comparisons fair. The final term is the ergodic rate of the network. Ana-

lytic solutions to the ergodic rate are available for both uniform and clustered

networks in our previous work [85, 87]. For a uniform network, the ergodic
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rate is

Ru =
1

log(2)

∫ ∞
0

e−zΩ

z

[
1− (1 + z)−1]

Lp

(
z
rαm
o Γ

κo

)
dz (4.47)

with Ω and Lp defined above. I use numerical integration methods to evaluate

(4.47).

4.5 Results

In this section I provide numerical results to illustrate the effectiveness

of different beamforming solutions and methods. I present results by vary-

ing both the transmission probability ζ and the number of antennas N . I

present the results for the three network scenarios described in Section 4.3.4.3.

The system parameters correspond to a generic wideband mmWave system

(e.g. OFDM 160MHz) and are summarized in Table 4.3. At 160MHz with an

2048 FFT size, the FFT period is 12.8µs. The total slot time is T = 15µs

which includes all overhead including cyclic prefix and interframe spacing.

The transmission interval is Ttot = 100ms. The number of slots per interval

is Ttot

T
= 6, 666. The maximum number of antennas is Nmax = 64 which could

require up to N2
max + Nmax = 4, 160 training slots per transmission interval

depending on the beamforming method. The SINR threshold for the synchro-

nization and training phases is set to Γ = 0 dBm. The LOS distance was set

to Rlos = 250 with the communication distance ro = 100. The PLE was set to

αm = 2 for LOS and αm = 4 for NLOS.

Typically mmWave devices operate with a predetermined codebook
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Variable Value
system bandwidth 160MHz

T 15µs
Ttot 100ms

Ssyn + Str + Sdata 6, 666 slots
Nmax 64

Γ 0 dBm
Rlos 250m
ro 100m

LOS PLE 2
NLOS PLE 4

Nm
o −92 dBm

Am 60 dB
P 1 W (30 dBm)

Table 4.3: Simulation variable values

of beamforming vectors. The number of codewords within the codebook is

not limited to the number of antennas within the mmWave array; it may be

larger or smaller than the number of antennas. For this reason, the number

of antennas listed in the results is the codebook side. There are methods, for

example, to create the beam pattern of an antenna with 4 elements from an

array with 16 elements [90]. I vary the number of antennas, but in effect, I am

varying the codebook size.

In Fig 4.6 and 4.7, the transmission opportunity was set to ζ = 0.5 and

the intensity of the PPP λu = 5× 10−4. The results in Fig. 4.6 and 4.7 show

that for ad hoc networks, the exhaustive search is optimal depending on the

array size, where the overhead for exhaustive search becomes too cumbersome.

This is different than the cellular case of [26] where the fast case reduces

135



0 10 20 30 40 50 60 70

Number of Antennas

0

50

100

150

200

E
xp

ec
te

d 
T

ra
ns

m
is

si
on

 D
el

ay
 (

m
s)

Baseline
Fast Training
Fast Synchronization and Training

Figure 4.6: The markers correspond to simulation results while the dashed
lines correspond to Corollary 4.4.1. With a low number of antennas, the
baseline method performs best because of the directionality. The overhead
with training the entire array quickly becomes large.

overhead to increase user perceived throughput regardless of array size. The

difference is because the proximate interference of ad hoc networks ruins the

fast methods. When the receiver is using an omni-directional antenna, it is

not rejecting any of the nearby interference. When the number of antennas

is large, the fast-synchronization and training becomes better because the

single directional antenna provides enough gain to overcome the interference;

additionally, overhead grows as N whereas the exhaustive search grows as

N2. For the network parameters chosen, the fast-training method provides no

benefit. The decrease in the training block time is overpowered by the decrease

in the success probability of the training phase. A similar trend is shown in

Fig. 4.7. At smaller array sizes, the baseline method is optimal as a way to

eliminate interference while the effect of the N2 overhead is tolerable. It is
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Figure 4.7: The markers correspond to simulation results while the dashed
lines correspond to (4.47). A similar trend is shown here where the baseline
method performs best in low array sizes. The user perceived rate goes to zero
for high array sizes because the training on average will not complete before
a new solution is needed.

interesting to note that minimum of Fig. 4.6 and the maximum of Fig. 4.7

occur at different array sizes. The lowest transmission delay occurs at N = 5

while the maximum rate occurs at N = 30. At the minimum delay of N = 4,

the user perceived rate is is about 25% lower than the maximum possible rate

for the network configuration; conversely, the minimum delay is 80% less than

the delay at the maximum rate.

In Fig 4.8 and 4.9, the antenna array size was set to N = 16 and the

intensity of the PPP λu = 1 × 10−3. Fig. 4.8 and 4.9 illustrate the balance

between the transmission probability and the success of the training phase

for the fast-synchronization and training phase. If ζ is too small, the training

block term TSsyn +TStr increases the latency undesirably. If ζ is too large, the
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Figure 4.8: The markers correspond to simulation results while the dashed
lines correspond to Corollary 4.4.1. If the fast-synchronization method is too
aggressive with the channel, the aggregate interference limits the link perfor-
mance. If the channel is underused, however, the packets are received but the
training time increases due to utilization.

omni-directional reception of the method cannot eliminate the interference and

success probability of the phase Psyn+tr decreases extremely fast. Conversely,

the baseline method is aggressive with the transmission probability because

the interference is canceled by the array gain while the training block time

increases as N2. Again, Fig. 4.8 shows the ineffectiveness of the fast-training

method. It suffers the same N2 training block time growth, but also suffers

from decreased Psyn+tr during the training phase which causes the latency to

be unbearable at high ζ.

In Fig. 4.10, I plot the optimal transmission probability ζ to minimize

the delay. Because of the increase by N2 in the training time, the base method

is very aggressive with the channel in nearly all cases. The optimal ζ quickly

138



10-2 10-1 100

Transmission Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
se

r 
P

er
ce

iv
ed

 R
at

e 
(b

/s
/H

z)

Baseline
Fast Training
Fast Synchronization and Training

Figure 4.9: The markers correspond to simulation results while the dashed
lines correspond to (4.47). The baseline method is very aggressive with the
channel.
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Figure 4.10: The solid lines correspond to correspond to Corollary 4.4.4. Even
with many antennas, the fast synchronization method must back off on the
channel to reduce interference.
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Figure 4.11: The solid lines correspond to correspond to Corollary 4.4.2 while
the dashed lines correspond to Corollary 4.4.3. In general, blockage events at
the receiver are tolerated better than blockage events at the transmitter.

goes to 1. Fig. 4.10 again shows the sensitivity of the fast-synchronization

and training method to the interference. Even when N = 64, it is optimal to

back off transmission slightly in order to minimize the delay in the network.

Fig. 4.11 shows the multiplying factor when encountering a blockage

event at the transmitter (solid curves) or receiver (dashed curves). The block-

age event at the transmitter is not shown for the fast synchronization method

because the expected delay is greater than 20 for all the antenna values. If

the blockage event occurs at the receiver, the fast synchronization method

encounters roughly 2.5× increase in the delay if 20 antennas are used.
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4.6 Conclusions

In this chapter, I developed a framework to analyze the impact of over-

head in synchronization and training methods of mmWave ad hoc networks. I

explored the balance in optimizing two important next-generation metrics: la-

tency and rate. The derived equations show that the transmission probability

and antenna array size that maximizes rate is different than the the value that

minimizes latency. Exhaustive search sweeping is much more tolerant of inter-

ference but must be very aggressive with the channel to minimize the delay.

I showed that if omni-directional reception is used, the transmission proba-

bility must be carefully tuned; too conservative of a transmission probability

under utilizes the channel, but too high of a transmission probability creates

too much interference at the receiver. Additionally, I define three different

network operating scenarios and show that blockage events at the receiver are

tolerated much more in terms of increased delay or lost rate as compared to

blockage events at the transmitter.

4.7 Appendix

4.7.1 Proof of Corollary 4.4.2

The ratio for the baseline method is

β =
τ

(2)
syn+tr

τ
(1)
syn+tr

(4.48)

=
exp

(
r4
oΩ
′
(

1
κsyn

+ 1
κtr

)
+ Θ

(2)
syn + Θ

(2)
tr

)
exp

(
r2
oΩ
′
(

1
κsyn

+ 1
κtr

)
+ Θ

(1)
syn + Θ

(1)
tr

) TSbase
syn +TSbase

tr

ζ

TSbase
syn +TSbase

tr

ζ

, (4.49)
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where Ω′ is Ω without the κ and ro terms. I suppress the Ω′ term in the

following equations to minimize the clutter. In the next step, I only consider

the class 1 interference when calculating the gain

β = exp

((
r4
o − r2

o

) N + 1

N3
+

4πζλu

Γr4
o log

(
1 +

R2
los
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o

)
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−
Γr2

o log
(

1 +
R2

los

Γr2
o

)
N2
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))))
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(4.51)

which yields the result. For the ratio between of the fast-synchronization

method, I skip to the last few steps

β = exp
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(4.53)

which completes the proof.
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4.7.2 Proof of Corollary 4.4.3

The ratio proof is similar as the previous Corollary and I begin with

the base again

β =
τ

(2)
syn+tr

τ
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syn+tr

(4.54)

=
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where Ω′ is Ω without the κ and ro terms. In the next step, I only consider

the class 1 interference when calculating the gain

β = exp
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which yields the result. The proof for the fast synchronization method follows

in the same way as before.

4.7.3 Proof of Corollary 4.4.4

First, I show that the expected delay time (4.35) is strictly convex

function in ζ. I express (4.35) generically as

f(ζ) = eΩ+ζΘ c

ζ
, (4.58)
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with first and second derivatives as

f ′(ζ) = eΩ+ζΘ c(ζΘ− 1)

ζ2
(4.59)

f ′′(ζ) = eΩ+ζΘ c(ζΘ2 − 2ζΘ + 2)

ζ3
. (4.60)

The first term eΩ+ζΘ is strictly positive. The polynomial ζΘ2 − 2ζΘ + 2 has

no real solutions for any ζ ∈ (0, 1); from the quadratic formula,
√

4ζ2 − 8ζ

is always negative. The polynomial is therefore strictly positive as well. The

time constant c is always strictly positive. Lastly, the denominator ζ3 is always

positive as the transmission probability must also be strictly positive for non-

zero ζ.

Because the function is strictly convex, it suffices to find the zero point

of the first derivative. The minimum delay is achieved by solving (4.59) for ζ

which yields the desired result.
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Chapter 5

Conclusion

This section gives a summary of the contributions of the dissertation in

Section 5.1. Potential avenues for future research are detailed in Section 5.2.

5.1 Summary

In this dissertation, I develop a framework for analyzing mmWave ad

hoc networks using stochastic geometry. The three major contributions of this

dissertation are as follows:

In Chapter 2, I formulate the performance of mmWave ad hoc networks

by incorporating random factors of a mmWave ad hoc network such as building

blockage, antenna alignment, interferer position, and user position. Using a

similar framework, I compare and contrast the performance against a lower

frequency UHF ad hoc network. I argue for LOS-aware protocols due to the

large performance increase from LOS communication at mmWave. I include

discussion of the INR when a network is operating at the transmission capacity.

In Chapter 3, I characterize the ergodic rate of mmWave ad hoc net-

works for two different spatial distributions of transmitters: uniform networks

(e.g. a Poisson point process) and a LOS cluster process (e.g. Poisson clus-
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ter process). An antenna scaling trend, as transmitter density increases, of

uniform mmWave ad hoc networks is derived. The result indicates that the

number of antennas can scale sub-linearly with transmitter density while clus-

tered ad hoc networks must scale linearly with user density. I define and

develop a relationship between the SINR for communication within a cluster

(intra-cluster) and between clusters (inter-cluster) which gives the proximity

of the nearest cluster while maintaining rate requirements within a cluster. I

characterize of the effect of random beam misalignment between the desired

user pairs.

In Chapter 4, I characterize the overhead cost of beam alignment in

terms of latency and rate reduction. I show that blockage events at the trans-

mitter are essentially nonrecoverable due to the degradation of signal power

for fast training techniques while blockage events at the receiver may allow

successful communication. I show that using omni-directional reception is

optimal for mmWave ad hoc networks if the transmission probability is suffi-

ciently low or if the antenna array size and training length is sufficiently large.

In particular, I give expressions for the optimal transmission probability for

minimizing the delay as well as well as the region where omni-directional recep-

tion is optimal. The results indicate that the optimal transmission probability

for ergodic rate is typically larger than the optimal point for delay within a

fixed transmission block; a similar conclusion holds for the array size. In the

high mobility case where overhead is most costly, if the underlying user density

is too high, the users must back off the channel too frequently for successful
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training to complete and data transmission to begin.

5.2 Future Research Directions

In this section, I present some new directions and extensions of the work

developed in my dissertation for further investigation and characterization of

mmWave ad hoc networks.

1. LOS Relaying: As shown in Chapter 2, mmWave ad hoc networks

are extremely limited if the desired signal is NLOS while there are LOS

interference signals. The underlying point process assumes that there

are users remaining silent during each transmission. These silent users

can potentially serve as relays for long NLOS mmWave links in ad hoc

networks. Relaying has been studied extensively in the past for ad hoc

and cellular networks [91, 92]. Relaying is part of the IEEE 802.11ad

standard as both amplify-and-forward and decode-and-forward [67]. Be-

cause of the vastly different path-loss exponents between LOS and NLOS

communication, relaying may prove to be a huge boon for mmWave net-

works. Depending on the link distance, the received relay signal may

potentially be several 10s of dB stronger than the direct link. In order

to extend the framework from Chapter 2 to account for relaying, the

SINR can be evaluated over two, potentially correlated, transmissions.

The problem of mmWave relaying with stochastic geometry is investi-

gated in [93], but the authors do not include interference in the signal

metrics.
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2. Improved Beam Training Methods: The framework developed in

Chapter 4 provides a method to evaluate peer-to-peer beamforming, but

several extensions can be made. First, the analysis of overhead in the

peer-to-peer case does not consider any enhancements and detriments

by training multiple users during the same transmission interval. In a

clustered environment with many users (e.g. a WLAN access point), the

access point may only have to beam sweep once which saves time, but

each added user adds overhead as well. Second, any optimization to the

transmitted waveform are not consider. In the peer-to-peer environment,

the OFDM waveform can be compressed in frequency to reduce the noise

figure at the receiver which would help the reception in noise-limited

environments. Third, the alignment error model developed in Chapter

3 is not included. The quality of the alignment and channel estimate

depends on the amount of training sent in the control packets. This

additional overhead is not considered.

3. Real Hardware Prototype: The trends and system guidelines devel-

oped in this dissertation should be validated against a real hardware

prototype. Unfortunately, the cost and difficulty to acquire mmWave

hardware, especially the active phased antenna arrays, is high and such

an endeavor was not possible during the completion of this dissertation.

The previous generation of wireless standards (e.g. 3GPP LTE and

IEEE 802.11n/ac) were prototyped using software defined radio (SDR)

platforms. A particular popular platform is the National Instruments
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/ Ettus USRP (Universal Software Radio Peripheral). As of this writ-

ing, the largest baseband bandwidth available in the USRP platform is

160MHz [94]. In lieu of wider bandwidth USRP option, current and fu-

ture mmWave ad hoc protocols may be prototyped at baseband using

a limited bandwidth, but upconverted to mmWave using an external

mixer. National Instruments also offers a full mmWave transceiver sys-

tem with a 2GHz bandband bandwidth, but the cost is nearly $200, 000

for a single bi-directional link with no phased array [95]. Once affordable

mmWave phased arrays are available, more sophisticated beam tracking

and beam training methods can be tested.
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