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This dissertation focuses on the study of nonlinear-Schrodinger-type equations as par-
tial differentiation equations (PDEs) arising as effective descriptions of systems of finitely
many interacting bosons. We approach this topic from two perspectives. The old perspective
consists of proving quantitative convergence in an appropriate function space of solutions
to the finite problem to a solution of an effective, limiting PDE, as the number of particles
tends to infinity. The new perspective consists of proving qualitative convergence of geomet-
ric structure, such as the properties of being an integrable and Hamiltonian system. Through
these two complementary perspectives, focusing on both quantitative and qualitative con-
vergence, we gain a deeper understanding of how field theories, both classical and quantum,

may be deformed to a new field theory, and of how this deformation may be reversed.
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Chapter 1

Introduction

1.1 The Cubic Nonlinear Schrodinger Equation

Hamiltonian partial differential equations (PDEs) are a ubiquitous class of equations
which arise as models of physical systems exhibiting at least one, and often several, conser-
vation laws. While the framework of finite-dimensional Hamiltonian systems was initially in-
troduced to formalize Newtonian mechanics, infinite-dimensional Hamiltonian systems have
since become a vast area of study, comprising an important class of models in diverse areas
such as fluid mechanics, plasma physics, and quantum many-body systems. Establishing
a comprehensive mathematical theory of infinite-dimensional Hamiltonian systems which
is rich enough to accommodate all the physical problems of interest seems beyond reach;
however, one can make mathematically rigorous sense of infinite-dimensional Hamiltonian

systems in many interesting cases, see for instance [16] and [2].

Integrable PDE are a special class of Hamiltonian PDE which, broadly speaking, can
be solved explicitlyE] for instance by the inverse scattering transform (IST) discovered by
Gardner, Greene, Kruskal and Miura [34] and its subsequent reformulation by Lax [51]. In

the years since these (and many other) landmark works, there has been much activity on

)

1 Originally, the typical method employed to solve such systems was by method of “quadratures,” or, in

other words, integration.



determining which equations, and more generally, systems, are or should be integrable and
the mathematical consequences of being integrable. The reader may acquire a sense for the
scope of this activity in the very nice survey [19] of Deift. Despite the lively, ongoing debate
[T00] over the defining features of integrability, consensus holds that certain equations, such
as the Korteweg-de Vries (KdV) or one-dimensional cubic nonlinear Schrodinger equation

(NLS), should be integrable under any reasonable definition of the term.

Thus, a compelling example of an integrable, Hamiltonian PDE is the cubic nonlinear
Schrédinger equation (NLS) in one spatial dimension, which, together with its d-spatial-

dimensional analogues, is the subject of this dissertation:
i0:p + Ad = 2k|¢| o, (t,r) e R xR, k€ {£1}. (1.1.1)

The NLS is a ubiquitous model in physics for approximately describing propagation in dis-
persive media, which have the property that wave packets of different frequencies travel
at different velocities. The NLS arises in a myriad of contexts, ranging from Bose-Einstein
condensates to water waves to fiber optics. In this dissertation, we are interested in the phys-
ical setting of a quantum-mechanical system of bosons, which corresponds to Bose-Einstein

condensates.

1.2 Old Perspective: Derivation via Dynamics

Over recent years, many authors have sought how to understand the manner in which
the dynamics of the NLS arise as an effective equation. By effective equation, we mean that
solutions of the NLS equation approximate solutions to an underlying physical equation in

some topology in a particular asymptotic regime.



In the field of quantum many-body systems, the traditional understanding of a deriva-
tion of the NLS from the dynamics of the system of bosons has been as follows. For simplicity,
we shall sketch the derivation starting from the Lieb-Liniger (LL) model, which describes
a finite number of bosons in one dimension with two-body interactions governed by the §
potential. Formally, the Hamiltonian for N bosons is given by

N

Y —Aite Y 6(X - X)), (1.2.1)

i=1 1<i<j<N
where —A,; denotes the Laplacian in the i-th particle variable z; € R, §(X; — X;) denotes
multiplication by the distribution 6(z; —z;), and ¢ € R is the coupling constant determining
the strength of the interaction and whether it is repulsive (¢ > 0) or attractive (¢ < 0). The
LL model is named for Lieb and Liniger, who showed in the seminal works [54], [53] that when
considered on a finite interval [0, L] with periodic boundary conditions, the model is exactly
solvable by Bethe ansatzﬂ While it was originally introduced as a toy quantum many-
body system, the LL model has since attracted interest from both the physics community
[0, [75, 23], 43, 55 71, 22] and the mathematics community [56 87] in modeling quasi-one-

dimensional dilute Bose gases which have been realized in laboratory settings [21], 81, 96, 27].

In applications, the number of particles N is large, ranging upwards from N =~ 103
in the case of very dilute Bose-Einstein condensates. For large N, it is computationally
expensive to extract useful information about the time evolution of the system directly from

its wave function. Thus, one seeks to find an evolution equation, for which one can more

2Bethe ansatz refers to a method in the study of exactly solvable models originally introduced by Hans
Bethe to find exact eigenvalues and eigenvectors of the antiferromagnetic Heisenberg spin chain [II]. For
more on this technique and its applications, we refer the reader to the monograph [35].



efficiently extract information, that provides an effective description of the N-body system

for large values of V.

Accordingly, the goal of Chapter [2] of this dissertation is to rigorously obtain an
effective description of the dynamics of the LL model in the limit as the number of particles
tends to infinity. To obtain nontrivial dynamics in the limit, we consider the mean-field
scaling regime, where the coupling constant ¢ in (1.2.1)) is taken to be equal to 2x/N, for
some £ € R\ {0}, so that the Hamiltonian becomes

N
2
Hy=Y -A+ Nﬁ Y6 - X)), (1.2.2)
=1

1<i<j<N

Note that the mean-field scaling is such that the free and interacting components of the
Hamiltonian Hy are of the same order in N. By means of quadratic forms (see Section [2.3)),
the expression ([1.2.2)) can be realized as a self-adjoint operator on the Hilbert space L2, (RY)

sym

consisting of wave functions ®y € L*(RY) satisfying
PN (Traa), - Tav)) = Pn(@1, ..., 2n) almost everywhere, V€ Sy. (1.2.3)

By Stone’s theorem, the corresponding Schrédinger problem

10,Py = HyPpn
(I)N(O) = CD]\[,() e L? (RN)

sym

(1.2.4)

has a unique global solution @y (t) = e" ¥ dy 5. Of particular interest are factorized initial
data @no = ¢~ for ¢o € L*(R) satisfying ||¢o|/r2y = 1, which correspond to a system
where the N particles are all in the same initial state ¢y. By rescaling spacetime, it suffices

to consider the case k € {£1}.

In general, factorization of the wave function ®y is not preserved under the time

evolution due to the interaction between particles. However, it is reasonable to expect from



the factor of % in the potential term in ([1.2.2) that the total potential experienced by
each particle is approximately described by an effective mean-field potential in the limit as

N — oo. Formally, we may expect that
by~ ¢ as N — oo, (1.2.5)

for some ¢ : R x R — C, in some sense to be made precise momentarily.

To find an equation satisfied by ¢ and to give rigorous meaning to the approximation
(1.2.5), we argue as follows. Let @y be the solution to the Schrodinger equation (1.2.4)), and
consider the density matrix

associated to @ Nﬂ This density matrix is the rank-one projection onto the state @y with
integral kernel
Un(t,zy;2y) = On(t,zn) Dt 2y), Ve, 2y € RY, teR. (1.2.7)

For k € {1,..., N}, we define the k-particle reduced density matriz fyj(\];) associated to @ by

71(\];) = Trpp, N Y, (1.2.8)

where Trj;; . n denotes the partial trace over the coordinates (%ji1,...,2n). By con-

servation of mass for (L.2.4) (ie. [ ®n(t)||2@myy = [|Pwol
Trlmk(fy](\’;)(t)) = 1for every N € N, k € {1,...,N}, and t € R. Using equation (|1.2.4)),

r2mwyy = 1), it follows that

3Here and in the sequel, we use Dirac’s bra-ket notation: for f,g,h € L?(R?), the operator |f) {g] :
L*(R?) — L?*(R?) is defined by (|f) (g])h = (g|h) > f. The integral kernel of |f) (g] is f(z)g(a’).




one can show that {’y](\f)}ﬁ:l solve the coupled system of equations known as the Bogoliubov-

Born-Green-Kirkwood-Yvon hierarchy (BBGKY) hierarchy:

. 2K
Zatﬂy](\];) = [_éka P)/](\’[C):| + N Z [5()(3 - Xj)? 7](\];)]
1<0<j<k
2N — K & (1.2.9)
—k)k
+ N Z Trep < |:5(Xj — Xt1), ”Y](\’;H)} >>
where we have introduced the notation A, == S°% | A; and [, -] denotes the usual commutator

bracket. As N — oo, the sequence {”y](\’;)}keN, where by convention %(\’;) =0 for kK > N,

formally converges to a solution {vx}ren of the Gross-Pitaevskii (GP) hierarchy:
k
0y = =25 YW + 26 ) Trger ([6(X; — Xpar), 7). (1.2.10)
j=1
If there is some function ¢ : R x R — C, such that the GP solution takes the form y*) =

|p®F) (¢*| for every k € N, it is an easy computation from (1.2.10) that ¢ solves the

one-dimensional (1D) cubic nonlinear Schrodinger (NLS) equation

(10, + D)o = 2k[0*0,  6(0) = go. (1.2.11)

Thus, we formally refer to the 1D cubic NLS as the mean-field limit of the LL model. It
is quite interesting that just as the LL model is exactly solvable by Bethe ansatz, as we
commented above, the 1D cubic NLS is exactly solvable by the inverse scattering transform
[101 28]. In Chapter , we consider the relationship between N-body exact solvability and

limiting exact solvability. See also the remarks at the end of Section [1.3.2]

Establishing the validity of the mean-field approximation to the Schrodinger problem

(1.2.4) consists of showing convergence of the k-particle reduced density matrices fy](\’f) to



|p®F) (¢*|, as N — oo, in trace norm:
vkeN, - lim Try g W= 165 (@] =o0. (1.2.12)

We refer to ((1.2.12) as convergence to the mean-field limit or, following terminology in the

kinetic theory literature, as propagation of chaos.

The mathematical investigation of the validity of the mean-field approximation for
the LL model was initiated by Adami, Bardos, Golse, and Teta [3]. The authors proceed by
the so-called BBGKY method, which was pioneered by Spohn [90] for the study of quantum
many-body systems. Namely, Adami et al. show that for each £ € N fixed, the sequence
{7](\];)} ~en has a limit point v*) with respect to a topology weaker than trace norm. They
then show that the sequence {7y },cy is a solution to the GP hierarchy with initial
datum (|¢5") (#5¥|)ren in a certain class akin to the Sobolev space H'. In order to conclude
their proof, they need to show that there can only be one such solution (i.e. prove uniqueness
for the GP hierarchy in the class under consideration), from which propagation of chaos
follows. However, they could not prove this uniqueness, and to our knowledge, their
argument has yet to be completed. We remark that the BBGKY approach does not yield a

rate of convergence in (|1.2.12)) as N — oo and [t| — oc.

Several years later, Ammari and Breteaux [0] revisited the mean-field approximation
to the LL model from the perspective of quantum field theory. Inspired by the approach of
Rodnianski and Schlein [82], which in turn builds on earlier ideas of Hepp [39] and Ginibre
and Velo [36], the authors use the framework of second quantization and reformulate the
problem of mean-field limit for the Hamiltonian in terms of the semiclassical limit

for a related Hamiltonian on the Fock space. Through a very technical argument involving



abstract non-autonomous Schrédinger equations, they construct a time-dependent quadratic
Hamiltonian which provides a semiclasical approximation for the evolution of coherent states.
Borrowing an argument from [82], they are able to show the convergence from
their approximation result for coherent states. We note that the authors do not provide a

quantitative rate for the convergence ({1.2.12)) in terms of NV and t.

In Chapter 2, we give a simple, quantitative proof of the validity of the mean-field
convergence . We defer a precise statement of our result (see Theorem until
Section so as to maintain the accessibility of the introduction. Our proof is inspired by
the method of Pickl [76], (77, [78] and Knowles and Pickl [46] and is based on an energy-type
estimate for a time-dependent functional which gives a weighted count of the number of
particles in the system at time ¢ which are not in the state ¢(t). To overcome difficulties
stemming from the singularity of the d-potential, we introduce a new short-range approxi-
mation argument that exploits the Holder continuity of the N-body wave function in a single
particle variable. In contrast to the previous work of Ammari and Breteaux [6], our simple
proof makes no use of second quantization and provides an explicit rate of convergence to

the mean-field limit.

1.3 New Perspective: Derivation via Geometry

1.3.1 Hamiltonian Structure

In contrast to the vast amounts of activity on the derivation of the dynamics of the
NLS, to the best of our knowledge, questions about the origins of the Hamiltonian struc-
ture of the NLS have remained unexplored. Indeed, continuing with our example from the

previous section, the N-body Schrodinger problem is well-known to admit a description as



an infinite-dimensional Hamiltonian system, but we are unaware of work which mathemati-
cally demonstrates whether, and if so the manner in which, the Hamiltonian structure of the
NLS can be interpreted as a limit of the Hamiltonian structure of the N-body Schrodinger

problem.

This line of inquiry is not merely aesthetically pleasing. Since the Hamiltonian struc-
ture completely determines an equation’s behavior as a dynamical system, understanding
how the geometry arises from the underlying physical system is foundational for under-
standing how complex behavior is a limiting effect of the system in a specified scaling regime.
Furthermore, from the physics’ perspective of connecting field theories, both classical and
quantum, one often obtains a new field theory by deformation (e.g. first and second quan-
tization) of one Hamiltonian structure to another. Ideally, one would like to know that this

process is reversible, in the sense that a certain scaling limit recovers the initial structure.

See Remark for further elaboration on this point.

The Hamiltonian formulation for the NLS has two components: the Hamiltonian func-
tional itself and an underlying phase space geometry provided by a weak Poisson manifoldﬁ
More precisely, to give the Hamiltonian formulation of the NLS, we endow the d-dimensional

Schwartz space S(R?) with the standard weak symplectic structure

wialf. g) = QIm{/Rd dxmg(x)}, Vf,g € S(RY). (1.3.1)

Letting V, denote the symplectic L? gradient, see Remark |3.3.12] the symplectic form w2

4We refer to Definition and Definition for definitions of a weak Poisson and weak symplectic
manifold, respectively.



induces the canonical Poisson structure
{F,G}2() = wre(VsF (), VG()), (1.3.2)

defined for F, G belonging to a certain sub-algebra As C C*=(S(R%); R), the precise descrip-
tion of which we postpone to Proposition |3.3.13] The solution of the NLS (1.3.7) is then

the flow associated to a Hamiltonian equation of motion on the infinite-dimensional weak

Poisson manifold (S(R?), As, {,-},2). More precisely, (1.3.7)) is equivalent to

(59) (0 = V.Hss(o(0). (133

where

Hurs(p(t)) = / dz(|Vo(t,z)|* + klo(t, x)|*). (1.3.4)

R

The goal of Chapter [3] of this dissertation is to derive both the weak Poisson structure and
Hamiltonian functional constituting the Hamiltonian formulation of the NLS. Providing a
rigorous definition and derivation of the geometry will pose the bulk of the difficulty in this

work.

The methods we adopt are guided by the extensive research activity in recent years on
the derivation of NLS-type equations from the dynamics of interacting bosons, as discussed in
Section[I.2] There are a number of different approaches to this derivation problem beginning
with the aforementioned influential work of Hepp [39], later generalized by Ginibre and Velo
[36]. But the one which informs our strategy involves the BBGKY hierarchy introduced
in equation (1.2.9) (see also below for the precise version considered in Chapter (3)).

This approach was pioneered by Spohn [90] in the quantum context of the derivation of

10



the Hartree equation in the mean field scaling regimel] We mention the works of Adami,
Bardos, Golse, and Teta and Adami, Golse, and Teta [3] 4], who provided a derivation of
the one-dimensional cubic NLS via the BBGKY approach in an intermediate scaling regime
between the mean field and Gross-Pitaevskii regimes. We also mention in particular the
works of Erdos, Schlein, and Yau [24] 25| 26], who provided the first rigorous derivation
of the three-dimensional cubic NLS in the Gross-Pitaevskii scaling regime via the BBGKY
hierarchy, resolving what was a significant open problem. There is by now an extensive
body of work, spanning many years, on deriving the dynamics of the NLS from many-body
quantum systems. A thorough account of this history would take us too far afield from
our current goals, and consequently we are not mentioning many important contributions
in our very brief account. We instead refer the reader to [85] for a general survey and more
extensive review on the history of the derivation problem and to the more recent lecture

notes [84].

To appreciate some of the difficulties involved in our pursuit, it is important to note
that while the dynamics of a system of N-bosons is described by the linear Schrodinger
evolution of a wave function, such an equation is not amenable to taking the infinite-particle
limit directly since the wave functions for different particle numbers do not live in a common
topological space. Consequently, in order to take an infinite-particle limit, one performs
a non-linear transformation of the N-body wave functions and considers sequences of k-
particle marginal density matrices whose evolution is governed by the BBGKY hierarchy.
In particular, there is no clear link between the evolution of the N-particle wave function

and the NLS each as Hamiltonian dynamical systems. To complicate matters further, the

®See also the influential works of Lanford [49, 50] on the derivation of the Boltzmann equation.

11



BBGKY hierarchy is no longer an evidently Hamiltonian flow.

At the cost of the added complication of working with the BBGKY hierarchy, the
aforementioned works on the derivation of the one-particle dynamics actually yield the fol-
lowing stronger result: the full dynamics of the interacting boson system governed by the
BBGKY hierarchy converges to dynamics described by the cubic GP hierarchy, which is an
infinite coupled system of partial differential equations for kernelsﬁ (v*)2e | of k-particle
density matrices, defined in (|1.2.10) above. The connection to the NLS is then as follows:

the GP hierarchy admits a special class of factorized solutions given by
YW= 16%") (¢®*], k€N, (1.3.5)
where ¢ : I x R? — C solves the cubic NLS

i0:p + Ad = 25|60, (t,z) € R x R% (1.3.6)

One might conjecture that the BBGKY and GP hierarchies provide the required link
to understand the derivation of the geometry associated to the Hamiltonian formulation
of . In particular, it is natural to wonder whether the BBGKY and GP hierarchies
are Hamiltonian evolution equations posed on underlying weak Poisson manifolds of density
matricesﬂ and whether the Poisson structure for the infinite-particle setting arises in the
infinite-particle limit from the Poisson structure for the N-body problem. To summarize,

one can pose the following questions:

6Tn this work, we follow the widespread convention of using the same notation for both the kernel and
the operator.
"We will in fact work on a Poisson manifold of density matrix hierarchies.
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Question 1.3.1. Can we connect the Hamiltonian structure of the many-body system with
that of the infinite-particle system in the following sense: can the GP hierarchy be realized
as a Hamiltonian equation of motion with associated functional Hgp on some weak Poisson
manifold? Can the Poisson structure and Hamiltonian functional for the GP hierarchy be
derived in a suitable sense from a Poisson structure and Hamiltonian functional at N-particle

level?

In the current work, we answer these questions affirmatively and establish, for the
first time, a Hamiltonian formulation for the BBGKY and GP hierarchies, see Theorem|3.1.3
and Theorem [3.1.10] below, and a link between the underlying weak Poisson geometry and

Hamiltonian functionals in the finite- and infinite-particle settings, see Proposition [3.1.4]

Our geometric constructions will rely on a special type of weak Poisson structure,
namely a Lie-Poisson structure, on a space of density matrix oco-hierarchies, see Section [3.1.2
below. These constructions are motivated by the work of Marsden, Morrison, and Weinstein
[59] on the Hamiltonian structure of the classical BBGKY hierarchy, which relates to the
earlier works on the Hamiltonian structure for plasma systems discovered in Morrison and
Green [68], Morrison [66) [67], Marsden and Weinstein [61], Spencer and Kaufman [89)],
and Spencer [88]. We refer to [57] for more discussion on the Hamiltonian formulation of
equations of motion for systems arising in plasma physics. Our geometric perspective for
the N-body Schrodinger equation is inspired by taking a “quantized” version of the work
of [59]. By adapting their work to the quantum setting, we obtain the formulae for the
Poisson structure for the (quantum) BBGKY hierarchy. Taking the infinite-particle limit,
which was not considered in [59], we obtain the formula for the Poisson structure we use in

the infinite-particle setting. We expect that our proofs can serve as a blueprint for deriving
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the Hamiltonian structure of more general infinite-particle equations arising from systems of

interacting classical and quantum particles.

Returning to the setting of the NLS, the fact that the GP hierarchy admits the
factorized solutions given by tells us that the dynamics of the NLS are embedded
in those of the GP hierarchy. Given that the NLS is a Hamiltonian system and, with our
affirmative answer to Question [I.3.1] so is the GP hierarchy, one might ask if there exists
an embedding of the Hamiltonian structure such that the pullback of this embedding yields
the NLS Hamiltonian and phase space geometry from that of the GP. In other words, one

can pose the following question:

Question 1.3.2. Given our affirmative answer to the previous question, is there then a nat-
ural way to connect the Hamiltonian formulation of the GP hierarchy with the Hamiltonian

formulation of the NLS in such a manner so as to respect the geometric structure?

We provide an affirmative answer to this second question by showing, in Theo-
rem below, that the natural embedding map taking one-particle functions to factorized
density matrices described in is a Poisson morphism between the weak symplectic
manifold constituting the NLS phase space and the weak Poisson manifoldﬁ constituting the
GP phase space. Moreover, the NLS Hamiltonian, see below, is just the pullback of
the GP Hamiltonian under this embedding, see below. In summary, the factorization

embedding pulls back the GP Hamiltonian structure to that of the NLS.

We claim that our work provides a new perspective on what it means to “derive” an

equation from an underlying physical problem. Indeed, to justify this assertion, we highlight

8We refer to Section for definitions of Poisson morphism and weak Poisson manifold.
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some parallels between our results and the aforementioned works of Erdos et al. on the
derivation of solutions to the NLS equation from the N-body problem. In [24] 25, 26],
solutions to the BBGKY hierarchy with factorized or asymptotically factorized initial data
are shown to converge to solutions of the GP hierarchy as the number of particles tends to
infinity. The authors then show that solutions to the GP hierarchy in a certain Sobolev-type
space are unique.ﬂ Thus, the solution to the NLS equation provides the unique solution to the
GP hierarchy starting from factorized initial data, thereby providing a rigorous derivation of
the dynamics of the NLS from . In the current work, we establish the existence of both
the underlying Lie algebra and Poisson structure associated to a Hamiltonian formulation
of the BBGKY hierarchy and prove that in the infinite-particle limit, these converge to a
(previously unobserved) Hamiltonian structure for the GP hierarchy. Moreover, the BBGKY
Hamiltonian, defined in , converges to the GP Hamiltonian. Finally, we demonstrate
that the Hamiltonian functional and phase space of the NLS can be obtained via the pullback
of the canonical embedding , thereby providing a derivation of the Hamiltonian

structure of the NLS.

Remark 1.3.1. We note that our work does not address any derivation of the dynamics
of the nonlinear Schrédinger equation from many-body quantum systems in the vein of the
aforementioned works by Erdos et al. [24] 25, 26]. Our current work is complementary
to those in the sense that it addresses geometric aspects of the connection of the NLS with
quantum many-body systems, answering questions which are of a different nature than those

about the dynamics.

9A new proof of this uniqueness result was later given by Chen et al. in [I4].
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Remark 1.3.2. We view this work as part of broader program of understanding how qualita-
tive properties of PDE arise from underlying physical problems, in particular the importance
of the Hamiltonian formalism. Related to this program, we mention the works of Frohlich,
Tsai, and Yau [32]; Frohlich, Knowles, and Pizzo [29]; and Frohlich, Knowles, and Schwarz
[31]. While these works concern quantization, mean field theory, and the dynamics of the
Hartree and Vlasov equations, the interpretation of these equations as infinite-dimensional
Hamiltonian systems and more generally the Hamiltonian perspective figures prominently in
these very interesting works. We also mention the works of Lewin, Nam, and Rougerie [52]
and Frohlich, Knowles, Schlein, and Sohinger [30], which derive invariant Gibbs measures
for the NLS from many-body quantum systems, as we believe they are related in spirit to

this program.

Remark 1.3.3. As a final inspirational thought for this subsection, we share the suggestion
of Moshe Flato, which we learned of from [29], that new physical theories obtained in the
early 20th century developments of Quantum Mechanics, Special Relativity, and General
Relativity arise from “deformations of precursor theories”. Based on the results of Chapter[3]
we tentatively supplement Flato’s suggestion with the idea that the precursor theory should

be recoverable from the new physical theory through a limiting procedure.

1.3.2 Integrability

Even with the vast research on the implications of an equation’s integrability, such as
conserved quantities, solitons, or hidden symmetries, it remains unclear why equations which
are so physically relevant also happen to be integrable. Mathematical insight into this line

of inquiry would certainly deepen our understanding of the important models that comprise
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the extensive catalog of known integrable systems. In an article [12] on this very question,
Calogero advances his thesis that equations are integrable because they are scaling limits of
integrable (or conjecturally integrable) systems, which we refer to as progenitor models in

this discussion.

Inspired by Calogero’s suggestion, Chapter [ of this dissertation considers aforemen-

tioned 1D cubic NLS
i0ip + Ad = 26|¢[*p,  ¢:RxR—=C, ke {£1}, (1.3.7)

which was shown by Zakharov and Shabat [I0I] to be exactly solvable by the IST (see also
[T, [99] 28]). We consider equation from the viewpoint that it arises as a mean field
scaling limit from the progenitor LL model (recall and (1.2.4)), which we discussed
in Section [1.2] Keeping with Calogero’s thesis, we conjecture that integrability of the NLS
is a consequence of the exact solvability of the underlying LL model, leading us to the ex-
pectation of some manifestation of integrability intrinsically at the level of the GP hierarchy
, for which we saw in that the NLS corresponds to a special case. Accordingly,
Chapter [ of this dissertation focuses on providing evidence for the GP hierarchy as a new

integrable system.

Given the aforementioned debate over the precise definition of an integrable PDE,
this work focuses on a particular type of integrability known as Liouville integrability. The
notion of a Liouville integrable Hamiltonian system was originally introduced in the 19th
century and refers to a finite-dimensional Hamiltonian system where there is a maximal
(in the sense of degrees of freedom) independent set of Poisson commuting integrals. In

the finite-dimensional setting, a Liouville completely integrable system, which satisfies some

17



technical conditions, can be solved by so-called action angle variables, which allow for explicit

integration of the system.

The exact solvability of the one-dimensional cubic NLS by the IST was formally shown
in the aforementioned work [I0I] and was mathematically revisited by Beals and Coifman
[8, @, [7, 10], Terng and Uhlenbeck [93, [04], Deift and Zhou [103, 102, 20], among others.
Liouville integrability is a particular consequence of this exact solvability, which asserts that
the Hamiltonian is one element of a countable sequence of functionals in nontrivial™| mutual

involution. More precisely, one recursively defines (see Appendix|1.2)) a sequence of operators

w. - w1 (@] =0
n S(R) = S(R), {wn+1[¢] — B[] + 13 S [ [6]. (1.3.8)
Each w, generates a functional I,, : S(R) — C by

1(0) = [ dedlawfélia), Vo S®), (139

which is, in fact, real-valued (see Lemma [1.2.2]). One can verify (see Appendix that
{In, L} ;2(0) =0, Vo € S(R), VYn,m € N, (1.3.10)

where the reader will recall from (1.3.1)) the definition of the L? Poisson bracket {-,-},..

Furthermore, the solution to the NLS (|1.3.7)) is the integral curve to the Hamiltonian

equation of motion associated to the third functional I3. That is,

(%ﬁ) (1) = V.I5(6(t)). (1.3.11)

0By nontrivial, we mean that these functionals are not all Casimirs for the Poisson structure (i.e. they
Poisson commute with any functional).
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In particular, if ¢ € C°°([to, t1]; S(R)) is a classical solution to (1.3.7)), then I,,(¢) is conserved
on the lifespan [ty, 1] of ¢ for every n € N. Furthermore, each of the functionals I,, has an

associated equation of motion

d
(£¢> (t) = VI, (p()). (1.3.12)
Following the terminology of Faddeev and Takhtajan [28], we call (1.3.12)) the n-th nonlinear
Schrédinger equation (nNLS). The n = 1,2 equations are trivial, the n = 3 equation is the

NLS (|1.3.7), and the n = 4 equation is the complex mKdV equation
01 = 029 — 6k|0|*0,0, k€ {£1}. (1.3.13)

To our knowledge, the n-th nonlinear Schrédinger equations do not have specific names
for n > 5. Together, the family of n-th nonlinear Schrodinger equations constitutes the

nonlinear Schrédinger hierarchy, as termed by Palais [74].

To set the stage for Chapter [4] of this dissertation, we begin by recalling from Sec-
tion the progenitor LL model and its relation to the NLS. As we previously saw, the LL

model is the many-body problem

N
2
i@y = HyOy,  Hy=)Y —A, + K 5 > (X - Xa), (1.3.14)

— (N — :
j=1 1<j<k<N

where &y € L?

sym

(RY), the coupling constant has been taken to be proportional to 1/N so
that we are in the mean field scaling regime. The value of k € {£1} determines whether
the system is repulsive (k = 1) or attractive (k = —1). Mathematical and physical interest
in (|1.3.14)) stems in large part from its remarkable property of being ezactly solvable, mean-

ing we have explicit formulae for the eigenfunctions and spectrum of the Hamiltonian Hy.
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Analogous to the free Schrédinger equation, one has an explicit distorted Fourier transform
associated to Hy, which by solving an ordinary differential equation in the distorted Fourier

domain yields a formula for the solution to ([1.3.14)).

As we previously saw, the connection between the LL model and the NLS is via an
infinite particle limit by way of the GP hierarchy . In light of our previous discussion
on Liouville integrability of the NLS, we turn to our search for evidence of integrability at
the infinite-particle level. We note that this search necessitates a Hamiltonian formulation
of the GP hierarchy, for which we rely on the recent work of the authors [63, Theorem 2.10]
that shows that the GP hierarchy is the equation of motion on a weak Poisson manifold for

a Hamiltonian Hgp. We formulate the following question:

Question 1.3.3. Does the one-dimensional cubic GP hierarchy possess an infinite sequence
of functionals {H,, }nen containing the Hamiltonian Hgp for the GP hierarchy, which are in

nontrivial involution?

We provide an affirmative answer to Question with our Theorem [4.1.7] evidenc-
ing Liouville integrability of the GP hierarchy. Note that an immediate consequence of the
affirmative answer to Question [1.3.3]is that the functionals H,, are conserved along the flow

of the GP hierarchy.

The functionals H,, which we construct are trace functionals associated to the family
of observable co-hierarchies {—iW,, },,cny which belong to the Lie algebra &, defined in [63],
the definition of which we review in Proposition below. Heuristically speaking, our
definition of these observable hierarchies proceeds by a quantization of the recursive formula

(1.3.8)) for the one-particle nonlinear operators {w, },en. More precisely, we observe that the
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functionals I, defined in ([1.3.9) are finite sums of multilinear forms whose arguments are

restricted to a single function ¢ € S(R) and its complex conjugate ¢ € S(R):
L(¢)=> IP¢,....¢:6,....6], N(n)eN. (1.3.15)

A posteriori of our construction, we show that the k-particle component WP of W, = (Wg )) jEN

is the Schwartz kernel of each Lgk).

To prove the Poisson commutativity of the functionals H,, with respect to the Poisson
structure underlying the GP hierarchy from [63], we simultaneously proceed at the level of
the GP hierarchy and at the level of the NLS equation. We combine a good understanding
of the multilinear structure of the I,, with a knowledge of the structure of bosonic density
matrices to show that Poisson commutativity of the H, is equivalent to that of certain

functionals I}, defined in (4.1.40)), which are associated to an integrable system generalizing

the NLS['T| We rewrite the NLS (1.3.7) as the system

{z’atgb = —A¢ + 26679 (1.3.16)

i0i6 = AP — 2589
and relax the requirement that ¢ denotes the complex conjugate of ¢ (i.e. ¢ and ¢ are
independent coordinates on S(R)). We then show that the family {f,,}nen is mutually
involutive (see Proposition . By also showing that there is a Poisson morphism from

the phase space of 1.3.16E to the phase space of the GP hierarchy, we obtain the desired

"The inspiration for considering this system comes from a remark of Faddeev and Takhtajan [28, Remark
13, pg. 181].

12G¢trictly speaking, the domain of the morphism is a quotient space of the phase space of with
the property that the elements are “self-adjoint”.
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conclusion. This equivalence we prove, recorded in (4.1.48]) below, is quite interesting in its

own right and was not expected by the authors at the onset of this project.

Remark 1.3.4. In [64], the author’s four co-authors of the article [62], which is the basis of
Chapter 4] of this dissertation, identified an infinite sequence of conserved quantities for the
GP hierarchy, which agreed with the I,, defined in ([1.3.9]) when evaluated on factorized states.
At the time of [64], a Hamiltonian structure for the GP hierarchy had not been identified,
so it was premature to ask if the conservation of these quantities was a consequence of their
Poisson commuting with the GP Hamiltonian, let alone their being in mutual involution, as is
the case with the functionals I,,. The current work also provides a substantial generalization
of the previous work [64], in that the definition of the functionals H,, in [64] used the quantum
de Finetti theorems [42], OT], 52]. Indeed, these functionals are initially defined on factorized
states of the form in , and then their domain of definition is extended to statistical
averages of such factorized states by means of quantum de Finetti. In contrast, we now
establish that these functionals are defined on the entire GP phase space. In particular,
we construct H,, without any considerations of admissibilityﬁ and without any recourse to
representation theorems, such as the quantum de Finetti theorems. In fact, admissibility

plays no role in this dissertation.

Following our affirmative answer to Question [1.3.3] one may wonder from a more
dynamical perspective, if there is a natural connection between the flows generated by the
Poisson commuting functionals H, and other well-known one-particle equations. We are

thus motivated to address the following question:

13An infinite sequence of trace-class density matrices {’y(k)}keN is said to be admissible if v*) =
Trk_,_l('y(kJrl)).
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Question 1.3.4. Does each of the functionals H,, generate a Hamiltonian equation of motion

related to the n-th nonlinear Schrédinger equation ([1.3.12) via factorized solutions in the

spirit of (1.3.5))7

Our Theorem below provides an affirmative answer to Question [1.3.4] proving
that factorized solutions of the equation of motion with Hamiltonian #, are of the form
(1.3.5), where now each factor solves the n-th NLS equation. In this sense, we establish that
the family comprised of the n-th GP hierarchies is the appropriate infinite-particle general-
ization of the nonlinear Schrodinger hierarchy. As with the proof of our involution result,
our proof of this factorization connection relies on a good understanding of the multilinear
structure underlying the I,,. We then use this understanding to find a formula for the sym-
plectic gradients VI, which together with a general formula for Hamiltonian vector fields
on the GP phase space allows us to arrive at the desired conclusion. We also include an

explicit computation of the fourth GP hierarchy in Section [£.7.3] which corresponds to the

complex mKdV equation (|1.3.13)).

We close this section by returning to the aforementioned thesis of Calogero with an
eye towards future work. As we previously commented, if Calogero’s thesis is correct for
the NLS, as we believe it is, then there should be some evidence of integrability at the level
of the GP hierarchy. Our work provides such evidence by showing that there is a family
of Poisson commuting functionals which encode the nonlinear Schrédinger hierarchy. Given
that our work in Chapter 2 mathematically demonstrates that the NLS is the mean
field limit of the LL model , it is natural to ask if there exists a connection between

our functionals H, together with the family of n-th GP hierarchies—and by implication

23



the functionals I, together with the nonlinear Schrodinger hierarchy—and the LL model.
Establishing this connection in rigorous mathematical terms seems a difficult but worthwhile
task. We believe that the core difficulty lies in understanding the connection between classical
and quantum field theories via the processes of quantization and mean field limit. This
connection figures prominently in the work of Frohlich, Tsai, and Yau [33] and Frélich,
Knowles, and Pizzo [29] and references therein. We also mention the work [95], in which
Thacker posits a conjecture related to this line of inquiry, and the work [18], in which Davies
discusses the issues with naive quantization of classical approaches to integrability. We hope
that the work of our dissertation will inspire others to join us in elucidating these fascinating

connections.

1.4 Organization of the Dissertation

To conclude the introduction, we make some comments on the organization of the
dissertation. This dissertation is organized into four chapters, including the introduction,
drawing from three articles by the author [83], 63, 62], the latter two of which are co-authored
with Mendelson, Nahmod, Pavlovi¢, and Staffilani. Chapter [2| focuses on a new proof of the
mean-field convergence of the Lieb-Liniger model to the 1D cubic NLS, as described in Sec-
tion [[.2] Chapter [3] focuses on the rigorous derivation of the Hamiltonian structure of the
cubic NLS in all dimensions from the Hamiltonian structure of the Schrédinger problem
for finitely many interacting bosons, as described in Section [.3.1] Chapter [ focuses on
the search for mathematical evidence of integrability of the cubic GP hierarchy in one di-
mension, in particular the construction of infinitely many Poisson commuting functionals,

as described in Section [1.3.2] For more detailed comments on the organization of each of
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Chapter 2, Chapter [3, and Chapter [, we refer the reader to Section [2.1.2] Section [3.1.4] and
Section respectively.

We have also included several appendices to make this dissertation as self-contained
as possible. The appendices are primarily intended to aid in the reading of Chapters [3|and [4
Appendix revisits the treatment in Faddeev and Takhtajan’s monograph [28] of the involu-
tion of the functionals I,, in the more general setting of the system . We were unable
to find a reference covering this generalization. Therefore, we provide a fairly thorough
presentation at the expense of a lengthy appendix. Appendix [2| contains some background
material on locally convex spaces, specifying certain choices which we make in the current
work, which in infinite dimensions can lead to non-equivalent definitions. Appendix [3] is
devoted to technical facts about distribution-valued operators and topological tensor prod-
ucts, which justify the manipulations used extensively in Chapters [3] and ] Furthermore,
this appendix includes an elaboration on the good mapping property, in particular, some
technical consequences of it which are used in the body of Chapters [3] and [ Appendix [4]
contains technical material on products of distributions, specifically on when the product
of two distributions can be rigorously defined. Appendix [5| contains a quick review of some
facts from multilinear algebra on symmetric tensors, which we use to establish approximation

results for bosonic Schwartz functions and density matrices.
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Chapter 2

The Mean-Field Limit of the Lieb-Liniger Model

2.1 Statement of Main Result and Overview of Proof
2.1.1 Main Result and Its Proof

Having introduced the LL model and the problem of establishing the mean-field
approximation and having reviewed prior work on this problem in Section [I.2] we are now
prepared to state our main result. For notational convenience in this chapter, we change

units so that the parameter x in Section is replaced by %/{.

Theorem 2.1.1 (Main result). Let x € {1}, and let ¢y € H*(R) with ||¢o||r2r) = 1. Then

there exists an absolute constant C > 0 such that for every N € N and k € {1,...,N},

1/2
9ol I9olim " o
T 00 = 0(0)°) (0(0)°1] < €/ ( e | eMleel e R,

(2.1.1)
where 7](\];:) 1s the k-particle reduced density matrixz defined in (1.2.8)) and ¢ is the unique

solution to the cubic NLS (T.2.11)) in CY(R; H2(R))[]

Our Theorem establishes the convergence to the mean-field limit (1.2.12]) for

the LL model with an explicit rate of convergence which holds for arbitrary lengths of time

Tt is textbook that the 1D cubic NLS is globally well-posed in the class CY H2 of functions which are
continuous in time values in H2(R). For instance, see [13] and [92].
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in both the repulsive and attractive settings. The H? regularity assumption on the initial
datum ¢, is consistent with the assumption of Ammari and Breteaux [6]. Additionally, an
examination of the argument in Section and Section [2.5] shows that if we replace the
Hamiltonian Hy in with the “regularized Hamiltonian”

N
Hyo =Y A+t % Y WX - X)), ke {1}, (2.1.2)
i=1

1<i<j<N
where V' is a short-range potential satisfying certain regularity conditions and Vy = N7V (N?-
for some fixed o € (0, 00), then for any T' > 0 fixed,
VkeN,  lim sup Tr ‘%(51,(75) — |81 ((1)%F|| = 0, (2.1.3)
N=00 g<jt|<T ’

(k)

where fy]\lz _is the k-particle reduced density matrix associated to the Schrodinger problem

obtained by replacing Hy in ((1.2.4) with Hy,. One can extract a rate of convergence for

(2.1.3]) which tends to the rate (2.1.1)) as o — oo.

We now comment on the proof of Theorem and highlight the major difficulties
and differences from existing work. Inspired by the method of Pickl [76, [77, [78] and the
refinement of this method developed by Knowles and Pickl [46] for derivation of the Hartree
equatiorﬂ in the mean-field limit, our argument is based on an energy-type estimate for a
functional By of the solution ®y to equation (|1.2.4]), which gives a weighted count of the

number of “bad particles” in the system at time ¢ which are not in the state ¢(¢), where ¢

2A function ¢ : R x R? satisfies the Hartree equation if (i0; + A)é = (V * |¢|?)¢, where V is a chosen
locally integrable function. The cubic NLS (|1.2.11]) may be viewed as the special case of the Hartree equation
with V = 6.
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solves the cubic NLS (1.2.11)). The functional Sy takes the form

—

(t) = (x(Ofon@Ox(0) =3\ 3 v OO g, VEER
(2.1.4)

where @y is the solution to (1.2.4) and Py(t) is the projector mapping a wave function

2
sym

the state ¢(t). See (2.4.4) and more generally Section for the precise definition and

onto the subspace of L2, (RY) of functions corresponding to k of the particles not being in
properties of these projectors. The main estimate for [y is given by Proposition below.
To state the proposition, we first introduce some notation. Let E% denote the energy per

particle of the N-body system ({1.2.4)), which is defined by

1

Ex(t) = 55 (N (O HN PN (1)) p2n) = [Vi@n (B)[Z2mn) +

K(N —1)

e O () B,

(2.1.5)
where the ultimate equality follows from integration by parts and the symmetry (1.2.3)). Let
E? denote the cubic NLS energy, which is defined by

E9(t) = V() |32e) + S10(8) ey (2.1.6)

Above, we have used the notation tr;,—; to denote the trace to the hyperplane {z, € RV :

z; = z;}. Note that both Ey and E? are independent of time by conservation of energy for

equations (|1.2.4) and (1.2.11)):

k(N —1
Ex(t) = IVi®noll 2y + %H tr1—o Paoll72@y 1y, (2.1.7)
K
E°(t) = ||V¢0||%2(R) + §||¢0||i4(R)' (2.1.8)
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Proposition 2.1.2 (Evolution of fy). Let k € {£1}. Then there exists an absolute constant
C > 0, such that for every N € N, there exists a continuous function Ay : [0,00) — [0, 00)
such that

By () < An(t)e 1l v e R, (2.1.9)

where Ay satisfies the bound

ol ool
N1/3 + N1/2

A (1) < B (0) + ( (B - E¢>H¢Dnm), VieR.

(2.1.10)
Remark 2.1.3. An examination of the argument in Section [2.5|for obtaining Theorem [2.1.1
from Proposition shows that we have propagation of chaos for any sequence of initial

wave functions ®y o € LZ,,, (RY) such that

lim fy(0) =0 and lim Ey — E®=0. (2.1.11)
N—oo N—oo
To prove Proposition [2.1.2 we proceed by a Gronwall-type argument. Differentiating

By with respect to time and performing some simplications, we find that we need to estimate

the following three terms:

Term, = <<I> ‘ [V¢, A] ® > , 2.1.12

€rmny N|P1P2| V1 NN | q1P2PN 2, (V) ( )

Term, = (| qipa | (¥ = 1)Viz — NV5, iy q1q2<I>N>L2 y’ (2.1.13)
N

Termg = (Pn[p1pa[(N = 1)Vig, ANl @2®N) 2 (govy » (2.1.14)

where we have used the notation Vis = §(X; — X5) and Vf = |¢(X;)|? and we remind
the reader that [-,-] denotes the commutator. Vis(q1¢2®x) and Via(nngiq2®Py), similarly

for the other terms, should be interpreted as elements of H'(R") and the inner product
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as a duality pairing. Here, p; is the rank-one projector |¢) (¢| acting in the x;-variable,
and ¢; = 1y — pj, where 1y is the identity operator on L?(RY) (see Section for more
details). As Termjy is the most difficult case in the analysis and where the existing arguments

in the literature break down, we focus on it.

By expanding the commuator in the definition of Terms and using Lemma to
shift the projectors Py in the definition of ny (see Definition [2.4.4]), we reduce to bounding

the expression

‘<(I)N’p1p2‘/12Q1QQ§]\V(I)N>LéN(RN) : (2.1.15)

where vy = chvzo vn (k)P is a time-dependent operator on L?, (R") such that the coeffi-
cients satisfy vy (k) < ny' (k). See (2.4.68) for the precise definition of vy and 7y. To obtain
an acceptable bound for our Gronwall argument, we need to produce an operator 71y, S0

that

NN < N (2.1.16)

In [46], Knowles and Pickl had to contend with an expression similar to Terms but
with a much more regular potential V', which satisfies certain integrability assumptions of
the form V € LPo + [*°. In order to simplify the comparison, we assume that V € LP°. To
deal with their analogue of , they split the potential into its “regular” and “singular”

parts by making an N-dependent decomposition of the form
‘/;’69 = Vl{\V|§N”}7 Vsing = Vl{V|>NU}; (2117)

where 1) denotes the indicator function for the set {-} and o € (0,1) is a parameter to be

optimized at the end. For the singular part, they express the potential as the divergence of
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a vector field,

V=V-¢ (2.1.18)

and integrate by parts . Crucially, their integrability assumption implies that ¢ € L?(RY)
with L? norm O(N~°), for some § > 0, which is necessary to close their estimate. For the
regular part, the important idea is to exploit the symmetry of the wave function,
since the operator norm of p;psViaqiqo is much smaller on the bosonic subspace Lgym(RN )

than on the full space L?(RY). As the argument is a bit involved, we only comment that it

importantly requires V2, to be integrable.

For V' = 6(x), Knowles and Pickl’s argument described above breaks down. While
we have the identity
1
d(x) = EV sgn(z), (2.1.19)

the signum function is only in L, not in L? as their singular-part argument requires. Ad-
ditionally, since § is only a distribution, we cannot assign meaning to 42 in the regular part
of their argument. In fact, the regular part of their argument is formally vacuous for the ¢

potential.

To overcome the difficulties stemming from the lack of integrability of the & po-
tential, we introduce a new short-range approximation argument as follows. We make an

N-dependent mollification of the potential by setting
V,(z) = N°V(N°z), VzeR, (2.1.20)

where 0 € (0,1), 0 <V < 1, V € C=(R) is even, and [, dzV(z) = 1. By the triangle
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inequality, we have

<‘I>N’p1P2V12Q1Q2171\v<I)N>L2 RN S)<(I)N|p1p2(‘/12_Va,12)QIQZ77]\VCI)N>L2 RN‘
Zn BY) Zn RY)

(2.1.21)
+ ‘<(I)N\p1p2Va,12Q1Q2771\v@N>L%N(RN)‘ .

Combining the scaling relation
/dx\:c]l/zvg(x) ~ N7/2 (2.1.22)
R

with fact that the wave function ¢y is %—Hblder—continuous in a single particle variable by
conservation of mass and energy together with Sobolev embedding (see Lemma [2.2.3)), we

can estimate

(@n[p1p2(Viz = Voi2)tieUNPN) 12 oy | SN 77+ H¢||2,1./2 ||¢H%{;(R)BN

+ ||¢||2C;/2(R)HV1Q1(I)N||%§N(RN)-
Note that by the Sobolev embedding H'(R) c C'/?(R) together with conservation of mass
and energy for the cubic NLS (1.2.11)), we have that H¢||Lg°(R;c;/2(R)) S ool m1my- We can
estimate the second term in the right-hand side of by proceeding similarly as to the
aforementioned Knowles-Pickl argument for the regular part V,., of the potential. While
Vol L2y ~ N°/%, we are able to extract sufficient decay in N from other factors to absorb

this growth in NV, provided we appropriately choose o.

To close the proof of Proposition [2.1.2] we need to control the auxiliary quantity
V11 P || 12, (RY) in terms of By and other quantities which tend to zero as N — oco. The
desired control is given by Proposition [2.4.10] Our argument exploits the conservation of
mass and energy together with the identity and integration by parts (cf. [46, Lemma
4.6]). Crucially, sgn € L™ so that the multiplication operator sgn(X; — X5) is bounded on
L2(RM).
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Strictly speaking, we do not work in Section directly with the wave function
and with the functional Sy but rather with an approximation obtained by replacing the
Hamiltonian Hp in the Schrodinger problem ([1.2.4]) with the mollified Hamiltonian

N
Hy. =Y A+t % SViXi- X)), ke {1}, (2.1.24)

i=1 1<i<j<N
where V. = eV (-/e), for ¢ > 0 and V as above. This step is purely technical to deal
with issues of operator domains involved in differentiating the functional Sy and to avoid

awkward notation involving distributions. Since Hy. — Hy, as € — 07, in norm-resolvent

sense (see Section [2.3.3)), we are able to obtain Proposition from an analogous estimate
for the mollified version of Sy (see (2.4.19) and Proposition and Proposition [2.4.10)).

2.1.2 Organization of the Chapter

We now comment on the organization of the chapter. Section [2.2]is devoted to basic
notation and preliminary facts from functional analysis used extensively in the chapter. We
begin the section with an index (see Table of the frequently used notation in the chapter.
Section [2.2.1] introduces the spaces of functions and distributions used in the body of the
chapter, and Section [2.2.2| contains some basic estimates for the traces of Sobolev functions,

which we use in Section 2.3 and Section 2.4l

Section [2.3|gives the rigorous construction of the self-adjoint operator Hy correspond-
ing to the expression ((1.2.2)). The main result is Proposition . As the construction
proceeds by means of quadratic forms, we first review such forms in Section and then
prove Proposition in Section [2.3.2, We close the section by establishing a short-range

approximation to Hy in Section[2.3.3] which is used in Section [2.4, While most of the results
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of Section seem to be folklore in the math physics community and have appeared in other
forms elsewhere in the literature (for instance, see [0, Proposition 3.3] for a presentation in

terms of the Fock space formalism), we believe that our presentation is new.

In Section [2.4] we prove Proposition [2.1.2] which is the main estimate for the func-
tional By and the main ingredient for the proof of Theorem As this section constitutes
the bulk of the paper, we have divided it into several subsections corresponding to the steps in
the proof of Proposition 2.1.2] In Section [2.4.1 we introduce the time-dependent projectors
which underlie the definition of the functional Sy. In Section|2.4.2] we approximate the func-
tional Sx with a functional Sy . obtained by regularizing the Hamiltonian Hy (see (2.4.19))
and prove a preliminary estimate for Sy ., which is Proposition In Section we
prove Proposition , which gives an estimate in terms of Sy . for an auxiliary quantity
appearing in Proposition [2.4.9] In Section [2.4.4] we send the regularization parameter ¢ to
zero and obtain Proposition from Proposition [2.4.9 and Proposition [2.4.10}

Lastly, in Section [2.5] we show how to obtain Theorem from Proposition [2.1.2]

As the arguments used in this step are by now well-known, we only sketch the details.
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2.2 Preliminaries

We include Section located at the end of the chapter, as a table of the notation
frequently used in the chapter with an explanation for the notation and/or a reference to

where the definition is given.

2.2.1 Function Spaces

Fix N € N. We denote the Schwartz space on RY by S(RY) and the dual space of
tempered distributions on RY by S’(RY). The subspace of S(RY) consisting of functions
with compact support is denoted by C>°(RY). Given a Schwartz function ® € S(R") and a

tempered distribution T € &'(RY), we denote their duality pairing by
<CD, T>$(]RN)—S’(]RN) = T(@) (221)

For 1 < p < oo, we define LP(RY) to be the usual Banach space of equivalence classes of

measurable functions ® : RN — C with respect to the norm

1/p
[l = [ dzaloer) 22)

with obvious modification when p = co. We denote the inner product on L?(R") by

(@) o = / Ay B ()T (zy). (2.23)

RN
Note that we use the physicist’s convention that the inner product is complex linear in the
second entry. For s € R, we define the Sobolev space H*(RY) to be the completion of the

space S(RY) with respect to the norm
1/2
19| s vy = </RN d§N|f(<I>)(§N)|2> : (2.2.4)
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where F denotes the Fourier transform defined via the convention

F@)6) = [ deydlay)e b, (2.25)

> RN

We can anti-isomorphically identify H~*(R"™) with the dual of (H*(R™))* by

<(I), T>H5(RN)—H*5(]RN) = <<ZN>_ST}<ZN>S®>L2(RN) s (226)

where (z) == (1 + |2[?)}/2 is the Japanese bracket and (V) is the Fourier multiplier with

symbol (& N). For v € (0, 1), we denote the Holder norm on RY of exponent v by

[P(z) — (y)]
[@l ¢ @ry = sup —  [®llevey) = [@llreo@y) + 1 Rler@ry-  (2.2.7)
:c,yiRN ’%’ y’
TH#Y

Remark 2.2.1. In the sequel, we generally omit the underlying domain for norms (e.g. we
write || - ||z» instead of || - ||L»(ryy)), as the domain will be clear from context. Similarly, we
omit the underlying domain for the inner product (-|-) and for the duality pairing (-,-). To
avoid any confusion, we generally reserve upper-case Greek letters (e.g. ®, V) for functions or
distributions RY — C and lower-case Greek letters (e.g. ¢, ) for functions or distributions

R — C. To emphasize the variable with respect to which a norm is taken, we use a subscript

0 72 2
(e.g. CY, Ly, or Ly ).

2.2.2 Some Trace Estimates

In this subsection, we establish some basic estimates pertaining to the trace of a
Sobolev function. We use these trace estimates for the rigorous construction of the LL
Hamiltonian (recall expression (1.2.2)) in Section [2.3] and in the proof of Proposition
in Section 2.4l
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For a Schwartz function ® € S(RY) and indices 1 <i < j < N, we let ®,_; denote
the restriction of ® to the hyperplane {z € RY : x; = x;}. We recall from elementary

functional analysis that for any s > 1/2, there is a unique bounded linear map

trij HS(RN) N HS*§(RN71), || tri—; | AR < ||| Hs(RN) (2.2.8)
with the property that for any ® € S(RY),
tri:j(Q) = (I)i:j~ (229)

For the next lemma, we first recall the elementary distributional identity
1
i(z) = §V sgn(x), Vz € R. (2.2.10)
Lemma 2.2.2 (H! Trace estimate). Let N € N. For any 1 <i<j <N,

(triej Pltrizy W) o1y | <

DO | —

(2.2.11)

Consequently, if ® € H'(RY), then we can define §(X; — X;)® = ®§(X; — X;) € H H(RY)
by

(U, 0(X; — X)) g1 mvy— -1 (ryvy = (trizj W, trmj @) p2gyv-1y_r2@y-1y, (2.2.12)

and

Proof. By considerations of symmetry, it suffices to consider (i,7) = (1,2). Let &, ¥ €
S(RY). Then by definition of the product distribution §(X; — X5)® € S’(RY), we have that

<\I/’ (S(Xl - XZ)q))S—S’ = <\111:2, ¢1:2>L2—L2- (2214)
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Substituting the distributional identity ([2.2.10)) into the left-hand side of the preceding equal-
ity and applying the definition of the distributional derivative together with the product rule,

we obtain that

1
<\IJ1:2, ¢1=2>L27L2 = —5 (<V1\I/, Sgn(Xl — XQ)\IJ>L2,L2 -+ <‘I’, Sgn(Xl — X2>V1®>L27L2) .
(2.2.15)
Taking absolute values of both sides, applying the triangle inequality, followed by Cauchy-

Schwarz, we obtain that
1
(W10, Broa)inrel < SOIVaW e |@s + 0] 2 V1), (2.2.16)

The conclusion ([2.2.11)) then follows from density of S(RY) c H'(RY) and the continuity of
the map tri_p : H}(RY) — HY2(RN-1).
Next, given ® € H'(RY), we define the linear functional §(X; — X3)® on H'(R"Y) by

extending the definition of the product distribution for ® € S(RY). Then by Cauchy-Schwarz

and the estimate ([2.2.16)),

sup |<\D, 5(X1 — X2)<I>>H1—H*1| = sup |<tI‘1:2 \I’, tr1:2 (I)>L2_L2|
”\IIHlel H\I/Hlel

1
< sup (ViU (@l + 12| V12l 22)

(][ 1 =1
< 0l (2.217)
which by duality, implies the desired conclusion. O]

We also record here a partial Holder continuity result for functions in H'(RY) used

in Section .41
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Lemma 2.2.3 (Partial Holder continuity). Let N € N. For any i € {1,..., N}, we have

the estimate

Il -1 2my) S IVilllzey), V0 € S(RY). (2.2.18)
(Z155-1:2i41;N) g
Consequently, every element of H' (RN) has a modification belonging to L%%A-_MQHAN)(RNA? 0;52(]1%)).

Proof. By considerations of symmetry, it suffices to consider i = 1. Let ® € S(R"), and fix

Loy € RY=1. Define the function
Guyn R = C, (bb;N(:c) = ®(r,29.x), Yz ER. (2.2.19)

Applying the fundamental theorem of calculus to ¢z, followed by Cauchy-Schwarz, we

obtain that

|Gayn (2) = Gy )] < |z — Y|V, N2, Yo,y €R, (2.2.20)

which implies that [¢s,  [l¢1/2m) < [[V@s, [l2@®). Therefore, we see from the Fubini-Tonelli

theorem that

[ lba ey < [l Von, oy = V18l (2221)
RN-1 RN-1

The conclusion of the proof then follows from the density of S(RY) ¢ HY(RY). O

2.3 Construction of the Hamiltonian Hy

In this section, we give the rigorous construction of the Hamiltonian Hy, which we

recall from ((1.2.2)) corresponds to the expression

DAt Y dXi-Xy),  me{#l) (2.3.1)

1<i<j<N
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The construction requires some care due to the presence of the § pair potential. The main
ingredients in the construction are the KLMN theorem, which we recall in Proposition [2.3.3
below, and the trace estimate of Lemmal[2.2.2] Before proceeding to the construction, we need
to introduce some terminology from the theory of unbounded operators on Hilbert spaces.
Our presentation follows that of Reed and Simon [80, [79]. In what follows, (H,(:|-),,) is a

separable complex Hilbert space.

2.3.1 Quadratic Forms

We begin with the definition of and basic facts about quadratic forms.

Definition 2.3.1 (Quadratic form). A quadratic form is a sesquilinear map ¢ : Q(gq) X

Q(q) — C, where Q(q) is a dense subset of H called the form domain. If q(¢,v) = q(v, ¢)
for all v, 1 € Q(q), then we say that ¢ is symmetric. If q(p, ) > 0 for every ¢ € H, then we
say that ¢ is positive, and if there exists a constant M > 0 such that ¢(p, ) > —M]||¢l3,

then we say that ¢ is semibounded.ﬂ

Definition 2.3.2 (Closed quadratic forms). Let ¢ : Q(q) x Q(¢) — C be a semibounded

quadratic form with constant M > 0 such that

q(, ) > =M|[pll3, Vv € Qq). (2.3.2)

We say that ¢ is closed if Q(q) is complete under the norm

lolly = /e ) + (M + DIl Vo € Qa). (2.3.3)

3If the quadratic form ¢ is semibounded, then it is in fact symmetric.
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If ¢ is closed and D C Q(q) is dense in Q(g) with respect to the norm || - ||;, then we call D

a form core for q.
Let A be a self-adjoint operator on H. We define a subset of H by
Q(A) = {v € H : [[|Al"¢|n < oo}. (2.3.4)
We can then define the quadratic form ¢ associated to A by setting Q(q) := Q(A) and

q:9(q) x Qq) = C,  qlp,v) = (JA|"*U~yp

JAM), Yo, € H, (2.3.5)

where A = U|A| is the polar decomposition for A (see [80, Theorem VIIL.32]). In the sequel,
we agree to write (p|Av),, for the quadratic form associated to A, even though ¢ € Q(A)
may not belong to Dom(A). We hope this abuse of notation causes no confusion for the

reader.

We now are prepared to state the KLMN theorem.

Proposition 2.3.3 (KLMN theorem, [79, Theorem X.17]). Let A be a positive self-adjoint
operator on H with domain D(A). Suppose that B : Q(A) x Q(A) — C is a symmetric

quadratic form such that there exist constants a <1 and b € R so that

1B, )| < a (DAY +0(Pld)y . VY € D(A). (2.3.6)

Then there ezists a unique self-adjoint operator C' on H with Q(C) = Q(A) and

(0|CY)y = (plA)y + B0, ¥), Vo, ¢ € Q(C). (2.3.7)

Moreover, C is bounded below by —b, and any domain of essential self-adjointness for A is

a form core for C'.
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2.3.2 Existence of Hy

We now use Proposition and Lemma to realize Hy as a self-adjoint operator
on L2, (RY). Let Ay = Zf\;l A; denote the Laplacian on RY. Tt is easy to check that
—Ay is a positive, self-adjoint operator on H2 (RY) and that Q(—Ay) = H. , (RY). We

sym sym

then have the following proposition.

Proposition 2.3.4 (Existence of Hy). Let N € N, and let k € {£1}. Then there exists a

unique self-adjoint operator Hy on L2, (RYN) with form domain Q(Hy) = H., (RY) and

sym sym
such that
K
(BIHN D) oy = (Bl=ANT) fopry T D (i @ftri; ) pagnry . VW € HY L (RY).
1<i<j<N
(2.3.8)
Moreover, Hy is bounded from below by 0, if K = 1, and —(N;D, if k = —1, and any domain
of essential self-adjointness for Ay is a form core for Hy.
Proof. We want to use Proposition [2.3.3] To this end, we let
A= Dy HY, (RY) = 12, (RY), 2:3.9)
and we define the quadratic form
K
B:QA)x QMA) = C,  B(P, V)= > (trimy Ot U) (2.3.10)
1<i<j<N

which is evidently symmetric. Using the symmetry of ®, ¥ under exchange of particle labels,
we see that

B(P, W) = w (tr1—y ®tr1—o W) . (2.3.11)
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By Lemma and Young’s inequality for products, we have that
|(tri—p @tri—p @) < [[V1®[| 2| @] 2 < %(HV@H% +[|®]Z2)- (2.3.12)
Since by another application of the symmetry of @,
(®|-AN®) = N||V,1®]|7, (2.3.13)

we obtain that
(N-1)

5@, ®)] < 2 (B]-Ay) + (9[2) (23.14)

The desired conclusion then follows from application of Proposition [2.3.3] O

Remark 2.3.5. An examination of the proof of the KLMN theorem in [79] shows that the

domain of Hy consists of all ® € H Slym

(R™) such that the distribution

(—AN + % Z §(X; — Xj)> ® ¢ H1(RY) (2.3.15)

1<i<j<N

may be (uniquely) identified with an element ¥ € L? (RY), which we denote by Hy®.

sym

With a little more work, one can show that Dom(H ) consists of all functions

(I) < Hslym(RN> M HSQym(RN \ U {QN c RN T = x]}) (2316)
1<i<j<N
such that
. . K

Note for 1 < i < j < N and almost every (2, 1,2;11,1,Z;41.5) € RV fixed, V;® and

V,;® are continuous away from the hyperplane {zy € RY : ; = z;} by Sobolev embedding.
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2.3.3 Approximation of Hy

We close this section with some approximation results obtained from mollifying the
) pair potential in the expression (1.2.2)) for Hy. These approximation results are used

extensively in Section [2.4]

More precisely, let V' € C%°(R) be an even function such that 0 < V < 1, Jz dzV(z) =

1, and
- 1 <!
V)=l s i (2.3.18)
For e > 0, set V.(z) := e 'V (x/e). It is straightforward to check that the operator
Hy. = Ay + % S VX - X)), ke{l) (2.3.19)

is self-adjoint on H fym(]RN ). So by Stone’s theorem, Hy . generates a strongly continuous
one-parameter unitary group {e“HN’E}teR. We set F, = e~ N N0, Where @ is the same
initial datum as in the Cauchy problem ((1.2.4)), so that ®% is the unique global solution in

CP(R; L (RY)) to the Schrédinger equation

0,05 = Hy .05,
{“ N = TNeEN (2.3.20)

3 (0) = Do
Given that V. — ¢ in distribution, as ¢ — 0, we expect that Hy. — Hy in some sense. The

sense in which this convergence holds is that of norm-resolvent convergence.

Definition 2.3.6 (Norm-resolvent convergence). Let {A4,}°°, be a sequence of self-adjoint
operators on H. Then we say that A, converges to A in norm-resolvent sense if Ry(A,) —

R (A) in norm, for every A with Im A # 0, where R, denotes the resolvent.
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Lemma 2.3.7. Fizx N € N. We have that Hy. — Hy in norm-resolvent sense, as € — 0%.

itHy

Consequently, e — eMIN strongly, as € — 07, uniformly on compact intervals of time.

Proof. Fix k € {£1}. The second assertion regarding convergence of unitary groups follows
from [44], Chapter 9, Theorem 2.16], so we focus on the first assertion. To show that Hy . —

Hy in norm-resolvent sense, it suffices by [79, Theorem VII.25] to show that

lim | Hy. — Hyllmomt =0, (2.3.21)
e—0*t
where || - |1,z denotes the operator norm for maps H'(RY) — H~}(R"Y). To see that

([2.3.21)) holds, we observe that for any ® € H*(RY),

(Hy — Hy.)® = > (X - X;) = Va(Xi - X)) € H'(RY). (2.3.22)

1<i<j<N

K
N
Since H~(RY) is isomorphic to (H*(RY))* and by considerations of symmetry, it suffices to

estimate

(0, (0(X1 — Xo) — Ve(X1 = X2))®) y1 i |

[ (s D)) (120 ®) ) = [ dayVilor = 20)¥z)0a)|

RN

for every ¥ € H'(RY) with ||¥]|;n < 1. By the density of S(RY) in H*(RY), we may assume

without loss of generality that ®, U are Schwartz. By Fubini-Tonelli,

[ dzVito = Wan)bla) = [ dny [ dnVie - o) Vet (2323)

and since [ deVi(z) =1, it follows from translation invariance of Lebesgue measure that

Ay, (tr1—2 W) (2o, n ) (tr122 ) (25,)

N

:/ dQQ;N\/d‘/L‘l‘/S(xl_xz)\p<x2a£2;N)q)(x27£2;N)'
RN-1 R

S

(2.3.24)
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Using the algebra property of Holder norms followed by the dilation invariance of Lebesgue

measure, we see that

/dxl‘/:?(xl - xQ) (\Il(x27£2;N)¢(x27£2;N) - \Ij(xlazzN)@(xl?gzN))
R

S PN, 2o ez |2, o) lleare. (2.3.25)

Integrating both sides of the preceding inequality over RV~! with respect to Zo.n then ap-

plying Cauchy-Schwarz, we obtain that

Ao,y
RN-1 ’

SNy, cxpl®lly, e

/dﬂfl%(ﬂ?l - x2)<‘11(x27£2;N)q)(x27£2;N) - \Ij(x17£2;N)q)(x17£2;N))
R

< eV g1, (2.3.26)

where the ultimate inequality follows from Lemma and the assumption that ||V < 1.

We therefore conclude that
(0, (8(X1 = Xa) = V(X1 = X0))®) jpu_py | S 2@, (2.3.27)

which implies that ||§(X; —X5) —Vo(X1 —Xo)||m1 g < /2. It then follows from symmetry
that

limsup | Hy . — Hy |l op— < limsup Net/2 = 0, (2.3.28)

e—0t e—0t

which completes the proof of the lemma.

We remark that one can also prove the desired norm-resolvent convergence by modi-

fying the argument from [5, Subsubsection 1.3.2]. ]
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2.4 Control of gy
2.4.1 Projectors

As the goal of Section is to prove Proposition we first define the projectors
underlying the definition of the functional Sy in the statement of the proposition. Recall
that ¢ € CP(R; H2(R)) is the unique solution to the cubic NLS with initial datum
b9 € H*(R). We define the projectors

p(t) = 6(t) BB,  alt) =1—p(t), VLER, (2.4.1)

where 1 denotes the identity operator on L?(R). For N € N and j € {1,..., N}, we define
pj =190 pe 19N g =1y —p; =190 qe 1%V (2.4.2)

where 1y = 19 denotes the identity operator on L?(RY). Since 1 = p + ¢, it follows that

Iy =1 +aq) (o~ +an), (2.4.3)

and therefore

N N
In=> P,  P= > ]] P g (2.4.4)
k=0

aye{o,}N j=1
lan|=k

We define P, to be the zero operator on L?(RY) for k € Z\ {0, ..., N}. Important properties

of the operators Py are the following:

(i) Py is an orthogonal projector on L*(RY);
(i) Po(Lym@RY)) C L3, (RY):

sym sym

(i) PyP, = 0 Py, where dy, is the Kronecker delta function;
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(iv) pj,q; commute with Py, for any j € {1,..., N} and k € Z.

Remark 2.4.1. Since the function ¢ : R xR — C underlying the definition of the projectors
D, q; is time-dependent, the projector P is also time-dependent (i.e. Py(t) is a projector on
L? (RY) for each t € R). For convenience, we do not emphasize the dependence on time

sym

with our notation in the sequel.

Remark 2.4.2. In the sequel, we frequently use without comment the elementary fact that

pj, q; are self-adjoint and that we have the operator norm identities
I1pillrz, ®vy—r2 @) = lgillez, @¥)—r2 @y = 1. (2.4.5)

Given a function f :Z — C, we define the operator

F=>"fk)P = f(k)Pi (2.4.6)

kEZ

The reader may check that for f,g : Z — C, we have that E = fﬁ Furthermore, since
Pj, qj, P, commute, it follows that fcommutes with pj, ¢;, Pr. Additionally, if f, g are such

that f > ¢g. Then J?Z g. Indeed, since Py is an orthogonal projector,

(@|(f —9)®) =Y (B[ - g)P®) 20, Vb e L*(RY), (24.7)

k=0

If f >0, then we agree to abuse notation by writing

PR = ﬁlw(kz) and 1= 3 £ ()P (2.4.8)

with the convention that 0-oco = 0.
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Remark 2.4.3. Since each P is time-dependent, as commented in Remark [2.4.1] the oper-
ator fis also time-dependent. Out of convenience, we do not emphasize the dependence on

time with our notation in the sequel.

Definition 2.4.4. Given N € N, we define the functions my,ny : Z — [0, 00) by

k [k
mN(k‘) = leg(k’) and nN(k:) = leo(k), Vk € 7. (249)
Letting @5 denote the solution to the Schrodinger equation ((1.2.4) and with the notation
introduced in (2.4.6)), we define the time-dependent quantities

an(t) = (Ox (DTN (OB () oy and  Su(t) = (@n(OAN (PN (1) jozry>  VEER,
(2.4.10)

Remark 2.4.5. Since Zg:o P, = 1y, we have that

~ qu ~ Z qupk (2.4.11)

keZ j=1
By unpacking the definition of Py in (2.4.4]), the reader can check that Zjvzl ¢; P, = kP,

which implies that

NZ% ZNPk M. (2.4.12)

kEZ

It then follows from the symmetry of the wave function @ under exchange of particle labels

that

an(t) = (n () [my (t)On (1)) %Z On(0)]a:()®n (1) = (Pn()au(t)Pn (),  VEER.

(2.4.13)

We now record two technical lemmas from [46] pertaining to the operator my, which

we frequently use in Section [2.4]

20



Lemma 2.4.6 ([40, Lemma 3.9]). For any function f :Z — [0,00), the following hold:

(i)
H]?l/QC]l(I’NH%N = <<DN‘J/C\QICDN>L2 = <(I)N’fm/\N(DN>L2 ; (2.4.14)

TN N

(i)

~ N ~
71/2 2 _ ~—2
|P qmen]?, = <<1>N\fq1q2<1>N>L%N < (@v|fan’ex) , - (2419
Given n € N, we define the shift operator
T : C% — C%, (o f)(k) = f(k+n), VkeZ, feC~ (2.4.16)

Lemma 2.4.7 ([46, Lemma 3.10]). Letr € N, and let A" be a linear operator on L?, (R").

sym

Fori € {1,2}, let Q; be a projector of the form

Qi = #1- - #r, (2.4.17)

where each # stands for either p or q. Define the linear operator AY)T =AM @1V-". Then

for any function f : Z — C, we have that

QAT 7y = Qi(mf)AY, Q. (2.4.18)

where n = ny — ny and n; s the number of factors q in Q;, fori € {1,2}.

2.4.2 Evolution of fx .

In this subsection, we would like to control the evolution of the quantity Sy introduced

in Definition thereby proving Proposition As commented in Section of the
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introduction, rather than work directly with Sy, we work with the approximation Sy . defined
in below, which is obtained by replacing the N-body Hamiltonian Hy constructed in
Proposition with the mollified Hamiltonian Hy . from Section m The motivation is
to justify some computations involving questions of operator domains and to avoid awkward

notation involving distributions.
Similarly to ax and By, we define the time-dependent quantities an . and By . by
() = (D ()[R (B)  and fxo(t) = (B3O (OB(E), ViR,
(2.4.19)
where ®% is the solution to the regularized Schrodinger equation (2.3.20]). As a corollary of

Lemma [2.3.7, we obtain that ay. — ay and Sy — By uniformly on compact intervals on

time. This result is a consequence of the following more general lemma.

Lemma 2.4.8. Let T'> 0, and let f : Z — C be bounded. For N € N and € > 0, define the

functions Iy, Uy : R = C by
In(t) = <c1>§v(t))f(t)c1>§v<t)> and Oy (t) = <<I>N(t)’f(t)¢>]v(t)>, Vi e R. (2.4.20)

Then for N fixed,
lim sup [Jn.(t) — V(L) = 0. (2.4.21)
e—0t [t|<T

Proof. First, observe from the definition ([2.4.6) for f that for any ¥y € L*(RYN),

N N
IFunlz =SS0 PN < 713 S 1PNl = 71ROl . (24.22)
k=0 k=0
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which implies that Hﬂhiw_wéw < ||flle=e- Now by definition, &y = e~ NPy and ¢5 =
e Ne® . so that by the triangle inequality and Cauchy-Schwarz,
|19N(t) o 19N,a (t)| — ‘<€_itHN¢N,()‘f(t)e_itHN q)N,O> _ <e—itHN,5 (I)Np‘f(t)e_itHN’s (I)N7O>’
< ([le™™ ™ Dpllre + le™ e Dol p2) || f(E) (7Y — TN ) Dy o] 2

< 2| fllee | (€7 — eT V) Dy 12, (2.4.23)

where the ultimate inequality follows from the operator norm bound for f, unitarity of

e "N and e Ve and ||[®ygllpz = 1. The desired conclusion is then immediate from
Lemma 2.3.7 O

The goal of this subsection is to prove the following proposition. The reader will

recall that ¢ is the solution to the cubic NLS (|1.2.11]).

Proposition 2.4.9. Let k € {£1}. Then we have the estimate
leO ooy | 1 N6@Iag | NEONiem |\ 2enm

. A Aty g 2
e S —x— et maon twr o TN 7 A0
1000 B sy IO s gy B (8) + (14 116(8) 2123 ) ||v1q1<t><1>§v<t>uiz(w),
(2.4.24)

for every t € R, uniformly in (¢,0,6) € (0,1)* and N € N.

Proof. By time-reversal symmetry, it is enough to consider ¢ > 0. Using that
¢ € CY(R; HA(R)) N CHR; LA(R)) and @y € H*(RY) = Dom(Hy.) (2.4.25)

together with following the argument in [46, Subsubsection 3.3.2, pg. 113], we see that Oy .

is differentiable with respect to ¢ and its derivative BNg is given by

BN75:Z'/£< [ Z ‘/gzj ZV TLN

1<i<j<N

i > , (2.4.26)
12
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where we have introduced the notation
Vo =Vo(Xi— X;) and V= |o(X)% (2.4.27)

Using the symmetry of ®5, and ny with respect to exchange of particle labels and the

decomposition 1y = (p1 + ¢1)(p2 + ¢2), then examining which terms cancel, we see that

: 1K S
= 5 (03[0 72— - ]
N
= Term; + Termy + Terms, (2.4.28)

where

D1D2 [(N —1)Viio — NV1¢ — NV;), ﬁi\v] Q1p2@§v> ,
N

Term; = 2 Re{m <<I)§V }, (2.4.29)

Termsy := 2Re{m <<I)§V q1p2 [(N —1)Viie — NV1¢ — N‘/f,ﬁ]\v} q1q2<I>§V>

}, (2.4.30)

2
L N

Termg = Re{m <®§V

pipa| (N = Voo = NV = NVY iy | i@y ) } (2.431)
IN
We proceed to estimate Term;, Termy, and Termg individually. In the sequel, we drop the

subscript N, as the number of particles is fixed. For convenience, we also introduce the

notation
VO(x) = (Vo |¢]*)(z) and V2, = (Vo x|8]*)(X;),  Vje{l,....N} (2.4.32)

Note that by Young’s inequality and ||V.||;: = 1, we have the operator norm estimate

Estimate for Term; We first observe that since ¢; commutes with Vf,ﬁ and py,q; are

orthogonal,
<c1>€)p1p2 [ij’,ﬁ} q1p2<1>€> — <<1>€ P11 D2 [Nvf,ﬁ}p2<1>6> — 0. (2.4.34)
R
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Since paV; 19p2 = V¢1p2, it follows that

&,

| Term, | < '<®E

P1P2 [(N 1)V NV1 ) }q1p2®5>

L2

ZIN
- ’<q>f ppa (N = DVZ = NV (A = (am)ape®®) | (2.4.35)
ZIN

where the ultimate equality follows from an application of Lemma|2.4.7] Define the function
p:Z— R, wu(k) = N(n(k) — (t_1n)(k)), Vk € Z, (2.4.36)

and observe that

VN =

So by the triangle inequality,

p(k) =

1
| Term, | < N ‘<CI>E

+ '<<I>€

< S IVARD iz, + 1V — V)R, (2.4.38)

P1p2 (Vjﬁ - V1¢)/7Q1P2 <D€>L2

N

pip2V. 1uq1p2<1> >L

ZIN

where the ultimate inequality follows from Cauchy-Schwarz and [|®¢[|,2 = 1. By transla-

tion invariance of Lebesgue measure and fR dyV.(y) = 1, for any x € R,

(Vo) o) = o] = | [ dsvi) (ot = ) - ol

(2.4.39)

where the ultimate inequality follows from dilation invariance of Lebesgue measure and the

algebra property of o2, Hence,

(Ve 62) = 161l < € 2N180%000 = IV = VWWllig oz, < 2l100702  (2.4.40)

95
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Using the preceding operator norm estimate together with (2.4.33]), we obtain that

16172 A 16172
(2.4.38) < (Tz +51/2||¢||20;/2 lFar® e, S —57 +51/2||¢Hzc;/27 (2.4.41)

where the ultimate inequality follows from the bound (2.4.37) for ;1 and an application of
Lemma together with recalling that n? = m. Thus, we conclude that

IRl
|Term; | < TL””

i 51/2”¢H2~;/2' (2.4.42)

Estimate for Term, Arguing similarly as in (2.4.34)), we see that

(o

QP2 [Vfﬁﬁ} Q1€I2<I>E>L2 = 0. (2.4.43)
N

Therefore,

2
N

2 |Termy| = <@5‘Q1p2 [(N —1)Vii2 — N‘/fﬁ} Q1Q2(I)a>
N —1 - .
= <<I>‘E q1D2 <( >Vs,12 - Vf) Hq1q2® >

N
<¢6|Q1P2Vs,12ﬁQ1QQ@E>L§N ) +

VvV N
=Terms, 1

2
Lz N

IN

, (2.4.44)

<‘I>6 ‘Q1p2‘/§¢ﬁQ1Q2q>a>

2
L3y

'
=Terms 2

where to obtain the penultimate equality have used Lemma and introduced the nota-

tion u from ([2.4.36]) and to obtain the ultimate equality we have used the triangle inequality.

We first consider Terms . By Cauchy-Schwarz together with the estimate ([2.4.33)),
Termy < HCh‘IDEHL;N’|p2‘6¢ﬁQ1Q2q’€’|L§N < HCh‘I)EHL;NH¢H%go”/7Q1CI2‘I)EHL§N- (2.4.45)

By Remark and Lemma [2.4.6(i1), respectively, together with the p bound (2.4.37)), we

have that

@[z, < Ve < VB and  [[Hgg®®|rz < VB (2.4.46)
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Therefore,

Termy» < |[6]|7 < 5= (2.4.47)

We now consider Terms ;. It follows from the distributional identity and the fact
that o x V. = V_ that

V. = %(V sgn VL) = %V(sgn *V2). (2.4.48)
We introduce the notation X, ;5 = 1(sgn *V.)(X; — X»). By Young’s inequality, ||V| 1 =
|| sgn ||z~ = 1, so that

1
[ Xeaollrz —12 < 5> (2.4.49)

Therefore, we find from integrating by parts and applying the product rule and triangle

inequality that

Termm < <V1Q1P2‘b€’Xe,12//iQ1QZq)E>LgN‘ + ‘(q)E|Q1P2Xs,12V1ﬁQ1Q2q’E>L3N = Termg,m + Term27172.

(2.4.50)
By Cauchy-Schwarz and the estimate ,
Termy 11 < [|Vigip2® |z 7129 ||12 , (2.4.51)
so by application of the second estimate of and [|paflrz 12 =1,
Termy 11 S V11922 v/B-. (2.4.52)

Next, we write 1 = p; + ¢; and use the triangle inequality to obtain
Termsy ;9 < ‘<p26h<1>€|X5,12P1V1/7€]1QQ¢5)L%N‘ + ’<p2q1(I>5|Xa712q1V1ﬂq1q2<I>5>L%N . (2.4.53)

By Lemma [2.4.7, we have the operator identity

o~

piVilgr = pr(mip) Vigr. (2.4.54)
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Hence,

<p26h(1’€|Xs,12p1v1ﬁQ1QQq)€>Lz §||Xs,12p2Q1q)€HLg Hp1(7'1u)V1Q1QQ(I)E||Lg
TN IN IN

—

< @@z, [(Tp) Vigra2®|lzz - (2.4.55)

By Remark [2.4.5| ||q1<I>E||LéN < v/B.. Now using the x bound (2.4.37)), we have that

(rip) (k) Sn Yk +1) Sn k), Vk € Z. (2.4.56)

Combining this estimate with the symmetry of ®° under permutation of particle labels, we

find that

—

[ V1010292, < \/(Viar -2V 00299) 7

1 N

=\ 2; (Vigu g1 2101 0%) 1 (2.4.57)

Since the projector ¢; commutes with 772 and n=2 > 0, we have that

<V1ql¢€‘qlﬁ_2V1Q1>L2 = <Q1V1Q1CI)6 ﬁ_2q1V1q1®€>L2 Z 0, (2458)
TN TN

so that by Remark and the identity n? = m,

N N
1 N 1 ~
—N 1 ZQ <V1q1CI>€|qm_2V1Q1CD€>LéN 5 N Zl <VIQI(I)€|%'”_2V1Q1(I)€>[@N

= \/<V1Q1®5|ﬁ72ﬁ2V1Q1¢6>@N

= Vi ®*|rz, - (2.4.59)
After a little bookkeeping, we find that
<pQQI(I)E‘Xs,l2plvlﬁQIQZq)E>LiN‘ < \/ﬁgHvlqquHLgN. (2.4.60)
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Again by Lemma [2.4.7, we have the operator identity

QVijiq = @iiViq, (2.4.61)

and proceeding similarly as immediately above, we find that

<p2Q1‘I)€|Xe,12€l1V1ﬁC]1QQ‘1>E>L§N‘ S @a||V1C]1<I)6||L§N, (2.4.62)
and therefore
Termyp S |V @12, v/ Be (2.4.63)

Together the estimate (2.4.52) for Terms ; 1, we obtain that

Termg’l 5 ||V1qlq)6||[éN AV ﬁe' (2464)

Collecting the estimates ([2.4.64)) for Termy; and ([2.4.47)) for Terms», we conclude that

Termy S [[6l7ee Bz + IV1ia1 @z v/ B (2.4.65)

Estimate for Terms We now consider Terms, which is the most difficult portion of the

analysis. We first note that by arguing similarly as in (2.4.34]), we see that

P1p2 [V1¢a /ﬁ] 01q2 = 0 = p1p2 [Vz(b, /ﬁ] 7192, (2.4.66)
where the reader will recall the notation Vf introduced in (2.4.27]). Therefore,

[Terme| S [(@|p1pl(N = Vs, 7a120%) 1, |

N -1
= — @6
v |

PPNV 12 <ﬁ - (T—2n> Q1Q2‘I)€>L2 , (2.4.67)
N
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where the ultimate equality follows from unpacking the commutator and applying Lemma|2.4.7]

Analogously to the function u defined in ([2.4.36]), we define the function
v:7Z— R, v(k) = N(n(k) — (_an)(k)), Vk € Z. (2.4.68)
It is a straightforward computation from the definition of n in Definition that

2N
VN 1s0(k), VkeZ, (2.4.69)

v(k) = V4 1sa(k)Wk—2 ~

which implies that
v(k) Sn'(k), VkeZ. (2.4.70)

We now introduce an approximation of the pair potential V. as follows. Define V, (x) :=
N"V(N"x), where ¢ € (0,1) is a parameter to be specified momentarily and V is as in

Section [2.3.3. We convolve V. with V, to define
Vie =VexV, and V., = V.o (X; — Xj), VI<i<j<N. (2.4.71)
By the triangle inequality,

<¢’6|p1p2Ve,12/V\Q1QQ‘P€>L%N ‘ < ‘<¢’6|p1]?2(ve,12 — ‘/6,0712)7//\(]1(]2(1)6>L%N ‘ + ‘<CI’E|p1p2Ve,a,12/V\Q1C]2¢’6>L3N

N J/ N J/
TV TV

=:Termgs 1 =:Termg 2

(2.4.72)

Observe that by moving p;ps over to the first entry of the inner product, writing out the
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convolution implicit in V. ; 12, and using the Fubini-Tonelli theorem, we have that
(®° |p1p2Va,a,1zﬁQ1Q2(I>a>L§N
= / dyVa(y)/ dzyoVe(w) — 29 — y)/ dzs. ((p1p2q)€)<’//\QIQQ(I)E))(x1>$2a£3;]v>
R R2 RN—2
= / dyvo(y)/ d£1;2vs($1 — T2 — y)/ dls;N <((p1p2‘b6)(ﬁCI1Q2@€>>(9517902&3;]\/)
R R2 RN-2
- ((plpzq)e)@(h(bq)e)) (w1, 22 + y;&s;N)>

+/dyVa(y)/ dz ., Ve (21 —xz—y)/ dzg;N<(p1p2<I>€)(ﬁq1q2¢>5)>(wl,:vQ+y,£3;N)-
R R2 RN-2
(2.4.73)

By translation invariance of Lebesgue measure applied in the zs-coordinate, we have that

for any y € R,
/ dzyoVe(z1 — 22 — y) / d%;N((plPﬂ)E)(/V\%%@E)) (z1, 22 + Y, Z3.n)
R2 RN-2
=/ dxy.5Ve (71 —$2)/ dzs. N ((plpz@)(ﬁ%%q’a))(951>5172v£3;1v)
R2 RN-2
= (@5\p1p2‘/€712ﬁq1q2<b5>L§N , (2.4.74)

where the ultimate equality follows from using the Fubini-Tonelli theorem and the self-

adjointness of pip,. Since [, dyV,(y) = 1, we conclude that

/ dyV(,(y)/ dzy 5 Ve(1 — 2 — y)/ dig;N((Plpzq’a)(ﬁCIl%@a)) (T1, 22 + Y, 23.5)
R R2 RN-2

= (0° |P1p2‘/;,123Q1Q2<I>5>L§N
(2.4.75)

Next, we have by definition of the Holder norm in the xs-coordinate that

sup ((pIPZ(I)E)(’//\QIQQ(I)E)) (21, T2, 23.5) — <<p1p2q)€)<DQIQ2(I)E)) (z1, 22 + Y, 23.3)

ro€ER

< 1[((p1p2®) (9010209) ) (1, s ) oyl

< NPip2®%) (@1 o)l o2 | (P01 @29 (21, -5 230) | o2 lyl'’?, (2.4.76)
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for every y € R and almost every (r1,25.y) € RN=1 where the ultimate inequality follows
from the fact C'/? is an algebra. So by the Fubini-Tonelli theorem, followed by using the
translation and dilation invariance of Lebesgue measure and then Cauchy-Schwarz, we find

that
/dyVa(y)/ dz,.5Ve(21 —5172—3/)/ d&?,;N‘<(p1p2(bs)(ﬁQIQZq)E)>(xlax%&?,;N)
R RQ RN*Q
- ((MPQ‘I)E)@CH%CDE)) (w1, 72 +y,23.5)
< /N ) dxidzs,y (H(p1p2(1)8)(l‘1, 'a%;N)HC;/ZH(ﬁfhéh@s)(:’fla 'a%;N)H(jl/?
RN-— 2 o

X (/R dylyl'* Vs (y) /Rd:vQVE(xl — oy — y))})

~~
5N—U/2

—o/2 ~
SN ||p1p2<1>6||L§2;Nc;{2 HVQIQQ(I)EHLL;NC;{?, (2.4.77)

where in the ultimate inequality we use the symmetry of ®. to swap z; and x5 in order
to ease the burden of notation. By Fubini-Tonelli, Cauchy-Schwarz, and the normalization

H¢HL§ = 1, we have the estimate

oty e < [0lcalipa® Iz, < 1ol (2.4.78)
where the ultimate inequality follows from the normalization ||®¢|| 2, = 1. By Lemma2.2.3
and the H'/?>* c L*® Sobolev embedding,
Z2NTTF

HﬁQ1Q2(I>€||L2 cl/? S H/V\QI(D(I)EHL? HY N ||/V\QIQZ(I)€HL§N + ||V1/V\QIQ2(I)E“L§N; (2.4.79)
To. N 1

where the ultimate inequality follows from splitting the H! norm and Fubini-Tonelli. Using

the v estimate (2.4.70)), Lemma [2.4.6(ii), and the identity m = n?, we see that
1Pq1029°| 12 < \/<<I>Elﬁ‘2m2¢>f>L;N = \/<q>a|mq>s>LiN = Va. < /.. (2.4.80)
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Next, inserting the decomposition V; = p; V1 + ¢: V1 and applying the triangle inequality,
Vi@ |1z < InVivar@:® |z + [l Vivgge®®(|r: - (2.4.81)
Since p1V1 = —([¢) (V¢|)1,
levll/}%@@aHL;N < ||V¢HL§||/V\(]1(]2¢EHL§N N HVCbHLg\/E, (2.4.82)

where the ultimate inequality follows from the estimate (2.4.80). By Lemma followed
by using the v estimate (2.4.70)),

1 Virg12® [z = [|a7Vig12®% |22 S \/<V1Q1‘DE|Q23_2V16]1¢€>L§N7 (2.4.83)

and arguing as for the estimate (2.4.59)), we find that the right-hand side is < ||V1q1<I>5||L§N.

Therefore,

||3€11Q2‘1>€||L§2‘NC;{2 S (L+IVOlle2) VB + IViar @z S Nllmav/Be + [Viar @ zz -
(2.4.84)

Collecting the estimates ([2.4.78]) and (2.4.84)), we see that

N2 pipalyy  relPana®lyy e S N 10lloye (6l y/Be + V10 9)uz, )

<N 0l2alll B + 1012 a Va0 @

(2.4.85)
where the ultimate line follows from Young’s inequality for products.
After a little bookkeeping, we conclude that
Torma,| € N7+ 012020138 + 1612, V1au®7 3 . (2.486)

leaving us with Termg 5.
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For Terms 2, we borrow an idea from [46] and introduce a partition of unity as follows. Let

XM, x® : Z — [0, 00) be the two functions respectively defined by
XV (k) =1cyis(k), xP(k) =1—xV(k) =1.p15(k), VkeZ (2.4.87)

where § € (0,1) will be optimized at the end. Trivially, we have that y) € {0,1}%, so
that (x)(k))? = x9(k), and xV(k) + x® (k) = 1. We insert this decomposition into the

expression for Termgso and use the triangle inequality to obtain

|Term372| < <‘I>E p1p2‘/€7g,1gﬁx(1)q1ng)5>p + <‘I)E p1p2‘/s,a,12ﬁx(2)91CI2‘I’€>L2
TN TN
::Te?ITlg’g’l ::Te;;l;;’z’z
(2.4.88)

We consider Terms,; and Terms oo separately.

For Termso,, we want to use the fact that the operator norm of pipsV. ,12¢1¢2 is much
smaller on the bosonic subspace L2, (RY) than on the full space L*(RY). Accordingly, we

sym

symmetrize the expression paV; ;5 12¢2 to write

1
Term372,1 = m <q)5

N
> pipiVeeritiaixMoq <I>E>
1=2 L%N

N
1 —
- g, oy M
< vl ;:2 XWa Ve gnipipr @ llrz 11001971z - (2.4.89)

where the ultimate line follows from Cauchy-Schwarz. We claim that ||vg,®°|| 1z, S L

Indeed, by the v bound (2.4.70) and Lemma [2.4.6(1)|

1701 ®°|lzz,, = \J(@ P20 ®e) <\ (@e2m%), =1, (2.4.90)
TN TN ~ TN
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—2 —

since n? = m and |@°|lzz,, = 1. Now expanding the L? norm and using that x® = x®),

we see that

N N
| ZX(I)Qifh‘@,a,lipip1q)€||L§N = \ Z <CI)8 plpiVs,a,ufhQz‘X(l)CIMjVe,a,ljpjpl(I)€>L2

i=2 i,j=2 N

N
< \ <(I’6 plpi‘/s,a,lichQiX(1)QIQi‘/;,a,1ipip1q)a>L2
i—2 TN

J/

VB

+ Z <(I)€’p1pz 501'Lq1Q’LX(1)qlqj‘/&a’ljpjpl(b€>L2 ’
2<i#j<N -

e

where the ultimate inequality follows from the embedding ¢'/? C ¢'. Therefore,

Term3 2,1 N

N (J_+x/_) (2.4.92)

We first consider B, which is the easy term. Since ||(]1QiX(1)Q1QiHL§N_>L§N <1,

M=

B < ”‘/ap,liplpifbaHié Z<q>€|p1pz V2 pipi®F >L2 . (2.4.93)

1=2

[|
N

7

Now by examination of the integral kernel of plinE?U,liplpi,

PV 10pi = (/u@ dydy; V2, (yr — ya) o () Plo(ya) |2 )plpl = lo*(VZ, *1¢|*)ll L1pips,
(2.4.94)

and by Cauchy-Schwarz followed by Young’s inequality,

NP (V2 = 181 1y < NOITalIVE, * 18llz2 < [IVeolliz 1€]17s- (2.4.95)
——

<N
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It then follows from HCI)EH]@N =1 that

B < (N —1)N?[6]1s. (2.4.96)

We proceed to consider A. We first make a further decomposition of A by using that
(x")?2 = xM and then applying Lemma in order to obtain

A= Z <(I)‘E Plpz'Va,a,li%qz’X(l)X(l)%QlVa,a,ljpjplq)€> 5
2<iAj<N Fin
= > <q)E Pﬁh’qj(TzX(l))‘/é,a,liQ1‘/s,a,1j(72X(l))(Jipjplq)a> 2
2<i#j<N P

— o —
> 2

= Z <q)E P1Pigi (TaXW)Ve 0.1, Ve 15 (12X M) ipjp1 @° .

2<iF#j<N N
- Z <<I)E plpz‘Qj(T2X(1))‘/s,a,1z‘p1‘/;,a,1j(T2X(1))Qipjp1@€>L2 ,
2<i#j<N ZN

(. J
~

tA2

-~

=Ay

where the ultimate equality follows from writing ¢ =1 — p;.

For A, we have by the triangle inequality and self-adjointness of (T2x())g; that

|Ay| < Z

<<72X(1))Qj‘1’6 ‘Plpi‘/é,a,li‘/;,a,1jpjp1 (Tgx(l))qi<1>5>L2
2<iA <N

N

(2.4.98)

Using that V. , > 0 and commutativity of point-wise multiplication operators, we can write
VeoriiVeo1j = (Veo1iVeuo,15) 2 (Veo1iVe,o1) 2 (2.4.99)

and then use Cauchy-Schwarz to obtain

<(T2X(1))qjq’€

P1PiVe0,1i Ve 0,1iPiP1 (sz(l))Q¢q>€>L2 < (Vs,a,uv«c—,a,lj)1/2P1Pi(72x(1) )q;° HL%N

ZN

x| (Vs,o,1z‘Vs,a,1j)1/2pjp1 (T2x V) q; ®° HL;N :
(2.4.100)
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From Young’s inequality for products and the symmetry of ®¢ under permutation of particle

labels, we then find that

(2.4.98) < Z <(I>a (TQX(l))ijlpiv:s,a,li‘/a,a,ljplpin(TQX(l))(I)E> , (2.4.101)
2<i£j<N Loy
Next, by computation of its integral kernel, we see that
PiVeo1iVeo1ipi = Pi(Veo * |¢|2)1Vs,a,1j, (2.4.102)
and
(pl(‘/a,a * |¢|2)1‘/;,U,1jp1> =P (‘/6,0' * (|¢|2(VYE,J * |¢|2)>)] (24103)

By Young’s inequality with ||V, ,||z: = 1, followed by Hoélder’s inequality, and then another

application of Young’s, we have that

I(Vewr * (101" (Ve # [61)) 12z < @l 7ee Ve 1671250 < [l Dl7c (2.4.104)

which implies that
1P1PiVeraiVeonipipilliz 1z < 0[] 72c - (2.4.105)

Applying this last estimate to the right-hand side of (2.4.101)) and the symmetry of ®¢ we

obtain that

A S ol S 1 D)gi0% 3 < N0l mxMand?l3, - < N2l i | (mxD)aee|2; .
2<i#j<N

(2.4.106)

to the factor || (72x")q1 @12 -

~—

where the ultimate inequality follows by application of Lemma|2.4.6(i

In order to estimate the last expression, we claim that
(rox M) (k)n(k) < N792,  Vke{0,...,N}. (2.4.107)
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Indeed, recalling from (2.4.87)) that Y = 1.y1-s, where § € (0, 1), we see that

(XD (k) = Leo-a(k + Lo P22 <122 2 2.0108)

from which the claim follows. Applying this estimate to the right-hand side of (2.4.106)

leads to the conclusion

A1 S N2l e (2.4.10)
Now using the identity
P1Veo1iP1Veo1p1 = p1(Veo * 012)i(Veo * |¢|2)j, (2.4.110)

which follows from examination of the integral kernel, and arguing similarly as for Ay, we

find that

Aol < Veo % 61717 D Mla(rax ™)1z, Nl (ax V)l S N*7°|3]| -

2<i£j<N
(2.4.111)
Thus, we conclude from ([2.4.109) and (2.4.111)) that
Al S N*7°(|¢ ]l e (2.4.112)

To conclude the estimate for Termso; defined in (2.4.88) above, we insert the estimate
(2.4.96|) for B and the estimate ([2.4.112)) for A into the right-hand side of (2.4.92)), obtaining

1 1174 1|7
< — o 4 2—§ 4 < @ e
Terms o1 < N <\/(N DN°|l6ll3, + \/N IE] w) S vzt e (2.4.113)

It remains for us to estimate Terms s 9, which we recall from ([2.4.88) is defined by

—

Termg o = ‘<q’6 p1p2Ve,a,12/V\X(2)Q1Q2‘I>€> (2.4.114)

2
LzN
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D1/251/2

Writing v =v and using the same symmetrization trick as above, we find that

1
Term37272 = —0— <(D€

N
Zplpz aalz%chx() /2 1/2®6>
L2

N -1
1=2
IN
N —_—
< 1P, 4| D <<1>6 plpiva,a,liQIQiX(Q)/V\QIQj‘/E,a,ijjpl(I)E>L2 7
i =2 zN

(2.4.115)
where the ultimate inequality follows by Cauchy-Schwarz and expanding the LiN norm of

the second factor. By the v estimate ([2.4.70]) together with Lemma [2.4.6{(1)}

1720001, = (@ @)y, S\ (@0 9%), S /B (2.4.116)

Thus, splitting the sum -, = >, +>_,; in the second factor of (2.4.115) and applying

the embedding ¢/ C ¢*, we obtain that

Termgs < N\/__l (VA+VB), (2.4.117)

where

—

N
B = Z<<I>€ P1PiVe o i1 @iX 2>ﬂé,a,upip1<1>€>p , (2.4.118)

=2 IN

A= Z <q>s plpz"/é:,a,lichQiX(Q)I//\QJV;,U,Upjpl(I)6> 5

2<i# <N ey

(2.4.119)

Note that in contrast to the inequality (2.4.92) for Terms s 1, we have a factor of /f; in the
right-hand side of inequality (2.4.117)).

We first dispense with the easy case B. We recall from ([2.4.87)) that x®) = 1. yi-s, which
together with the v bound ([2.4.70)) implies the estimate

D)) < 1oyros (F)n~2(k) = 1>N15(k),/% SN2 Whez.  (24.120)
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Therefore, we have the LiN operator norm estimate

—_

laraix®olles 2, S N2 Vie{l,...,N}, (2.4.121)
which implies that

N
B SN2 Veouimpi®ll7s = (N = YNV g 1appe®7; | (2.4.122)
=2

where the ultimate identity follows from the symmetry of ®°. Since by Cauchy-Schwarz

and Young’s inequality,

PPV, 1ompa = 12 (V2, + 0Pl apipa S N6l Lapipa, (2.4.123)

< N7, we conclude that

~Y

where we also use ||V, .||,

B < NY™4 g4, (2.4.124)
For the hard case A, we again use Lemma as in (2.4.97)) to write A = Ay + A,, where

—_— —1/2 —_— —1/2
Ay = Z <(I)€ P1pigi (Tax @) (o) Veo1iVeo15(Tax@)(12v) Qipjplq)€> )
2<i#j<N Lin

(2.4.125)

p10iqi (TaX ) (12v) Vi1 Veo1i(max @) (1av) Qipjplq)>

Ay=— ) <c1>6

2<iA <N

2
Ly N

(2.4.126)

For A;, we use that V., > 0 to apply Cauchy-Schwarz and exploit the symmetry of ®,

under exchange of particle labels in order to obtain

A< ) <c1>€

2<i£j<N

— /\1/2 — /\1/2
Qj(T2X(2))(T2V) plpivs,a,uvs,a,1jpip1(7'2X(2))(T2V) Qj‘I)E>

2
L3 N

(2.4.127)
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Using the LiN operator norm estimate ([2.4.105|), we conclude that

—_— —1/2 - IR
A S lelie Y I(mx®)(rp)  @d 72, S N2ll7ee (°[R2%) 1, = N?|[]1 -,

2<iAj<N S

—
(T2V)Q1<I>5>L2

<(ae
Zy

(2.4.128)

where the penultimate inequality follows from the v estimate (2.4.70]) together with Lemma|2.4.6{1)|
and the ultimate equality is by definition of . (recall (2.4.19))). Next, using the operator
identity (2.4.110) and arguing similarly as for A, in the case of x), we also obtain the

estimate

|[As| S N?|[0||752 -, (2.4.129)

leading us to conclude that

Al S N?|[6]|70 - (2.4.130)

Inserting the estimates (2.4.124) for B and (2.4.130) for A into the right-hand side of
(2.4.117), we find from the normalization |[¢|;2 = 1 and Young’s inequality for products

that

\/_
N —

1+o‘ 2(c—1)+6
(N9l VB + NF 9l ) S llole b+ NTEL (24.31)

Term3 2,2 N

Collecting the estimates (2.4.113)) for Terms o ; and ([2.4.131]) for Terms s, we find that

+5

[Termga| < N3 (9l + N 39l + 18]35 6. + N7 (2.4.132)

Now inserting the estimates (2.4.86) for Terms; and (2.4.132) for Termgs, into the right-
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hand side of (2.4.72)), we conclude that

| Terms| S N~7 + [][2, 1/2||¢|!12L1165 +9lI2, 1/2||V1€11‘1’€||%2
_9 2(o—1)448 1)+6
H¢“L4 + N3 H¢HL°<> + H¢HL0055 +Nz

SN+ 612,111 B + 1117021 V101 9|72+ N2 Nol3s + N E[gl3e + N2
(2.4.133)

where the ultimate line follows from the trivial C3/* C L2 embedding and the fact [|¢[|%,, >

1.

We are now prepared to conclude the proof of the proposition. After a bookkeeping
of the estimates ([2.4.42)) for Term;, (2.4.65)) for Term,, and (2.4.133]) for Terms, we find that

. ol
Be S = 8050 + 18158 + V101912, v Be + 55 + 10122 117 Be

H‘ﬁH%g H¢||%g° N2(cr—21)+6
N(l—a)/2+ Né/2 + :

+ 1161221 V101 977 +
(2.4.134)

The desired conclusion now follows from Young’s inequality for products, ||¢||,2 = 1, and

some algebra. |

2.4.3 Control of |V1q; Py 2

Before we can pass to the limit ¢ — 0% to remove the regularization of the LL
Hamiltonian, we need to control the auxiliary quantity || V¢ P% || 12, appearing in the right-

hand side of ([2.4.134)). To this end, we first introduce the energy per particle of the solution
d%, to equation ([2.3.20)):

g 1, . .
EY =+ <®N|HN,8<1>N>L§N(

k(N —1
= N 1) (@ V1B g

2N
(2.4.135)
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where the ultimate equality follows from conservation of energy, unpacking the definition

(2.3.19) of Hy ., and exploiting the symmetry of ®°. We recall from (2.1.8)) that the energy
of the solution ¢ to the cubic NLS (|1.2.11]) is given by

K K
E® = ||Vol 72w + §H¢Hi;§(n§) = Véoll7m + §H¢0Hi4(u@)- (2.4.136)

The reader will remember that x € {41} denotes the sign of the interaction (i.e. repulsive or
attractive). The goal of this subsection is to prove the following proposition, which controls

HVWI(EV”%;N in terms of 3., N, and (EY — E?).

Proposition 2.4.10 (Control of ||[V1q1®n|3.). Let k € {£1}. Then we have the estimate

E 5 608l ce
‘|V1ql<t)(pN(t)’|%2(RN) 5 E}i\} — E¢ + 61/2H¢(t)Hé1/2(R) + H¢<t)”H2(R)B€(t) + \/N ( )7
(2.4.137)

for every t € R, uniformly in e >0 and N € N.

Proof. As before, we drop the subscript N, as the number of particles is fixed throughout
the proof. We introduce two parameters x; € (0,1) and ks > 0, the precise values of
which we shall specify momentarily. Using the decomposition 1 = p;ps + (1 — p1ps) and

the normalizations ||| 1z, =1= |#l| 2, together with some algebraic manipulation of the

quantities ([2.4.135)) and ([2.4.136|), we arrive at the identity

6
(1= k)IVi(1 = pup2)@°[7, = E* — B + > Term;, (2.4.138)

i=1
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where

Termy = —[|[Vipipa®°[l7; + [ VSIlLs, (2.4.139)

Termy = —Ko <<I>5|p1p2<I>€)L§N + Ko, (2.4.140)
k(N —1 K

Term3 = —% <(I)6|p1p2‘/5,12p1p2q)6>L;N + EHQS”ZE%’ (24141)

Termy = —2 Re{(vl(l - p1p2)<1>5|V1p1p2<1>5)L2N}, (2.4.142)
k(N —1

Terms = —% Re{(@ﬂ(l — plpg)%712p1p2®E>L%N }, (2.4.143)
H(N — 1) 1/2 € € €

Termg := —T||Vs,{2(1 —pip2)O|[L; =kl Vi1 = pap2) @7z — k2l (1 — pap2) @717, -

(2.4.144)

We keep the term E®°—E?. We want to obtain upper bounds for the moduli of Termy, . . ., Terms,
and we want to show that Termg < 0 provided that we appropriately choose k1, k9 depending

on kK.

Estimate for Term; Since Vipy = (|V¢) (¢])1, it follows from 1 = [|®][;2 ~that
Termy = ||Vo|2, (1 - <<I>E|p1p2CI)€>L%N) = (@°[(1 = pip2)®°) 5 (2.4.145)
Since 1 — p1pa = ¢q1p2 + G2p1 + q1¢o, it follows from Remark and the triangle inequality
that
(d°](1 — p1p2)(I>E>L§N < 3a. < B, (2.4.146)
leading us to conclude that

Termy < [|Vol|72 5. (2.4.147)

Estimate for Term, Using the identity x| ®°[|7. = k2 and the estimate ([2.4.146]), we find
TN
that

Termy = ko (P°[(1 — plpg)CI)e)LéN < Kof. (2.4.148)
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Estimate for Terms First, observe that

p1p2Vispip2 = ||¢||igp1p2 and  p1p2Vz12p1p2 = 6] (V2 * |¢|2)||L;:P1p2- (2.4.149)

So by the triangle inequality;,

91174
2

N -1
_< ) <(I)E|p1p2¢€>L§N + 1’ .

N
(2.4.150)

1
[ Termg| < B ‘<‘I>E|p1p2(vs,12 — V12)p1p2q’6>L%N‘ +

Since ||®°]|7, =1, the second term in the right-hand side equals
ZN

191174
2

1 € € g 1>
N (D |p1p2® >L§N +(P°](1 — p1p2)® >L§N

Slolly (5 +6.) 2415

where the ultimate inequality follows from the triangle inequality, (®¢|p;p2®°) < ||P°]|2, =
ZIN
1, and the estimate (2.4.146]). Again using that H(I)E”L:%N = 1, we see that the first term in

the right-hand side of (|2.4.150)) is bounded by

1

SO (Ve [0) = 161°) 121 S @Il (2.4.152)
which follows from the estimate (2.4.40) and ||¢||;2 = 1. Therefore,

1
Termsz < 51/2”@5”20;/2 + ||¢||i;1 (N + ﬁg). (2.4.153)

Estimate for Termy By using the decomposition 1 — pi1ps = ¢1p2 + ¢2p1 + q1q2, the triangle

inequality, and the fact that [g2, V1] = 0 = gapa, we see that

J/

| Termy| < <V1q1p2<I>E|V1p1p2<I>E>L§N + <V1q2p1®5|vlp1p2¢€)L§N + (V1Q1QQ@€’V1P1P2(I)E>L§N
) > o %
= (@] (- 20)pip20°) ;|
= |20 32 (— A pipa®) ’ (2.4.154)
N
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where the penultimate equality follows from integration by parts and the ultimate equal-
ity from writing 1 = n~'/?n'/2. The reader will recall the definitions of n and 7 from

Definition [2.4.4, By Cauchy-Schwarz and ¢ = ¢,
‘<ﬁ*1/2q1q)s’ﬁ1/2<_A1)p1p2q)s>L%N ‘ < Hﬁfl/qucbeuLéN quﬁl/2<_A1)plp2q)€HL§N
< v ﬁs”ﬁhﬁlm(—Aﬂppo@EHLéN, (2.4.155)

where the ultimate line follows from applying Lemma [2.4.6(1)| to the first factor in the

right-hand side of the first line. By Lemma [2.4.7, we have the operator identity

—1/2 ——1/2

Chﬁl/z(_Al)Pl = CJ1(—A1)(7’1”) b= Q1(—A1)p1(71”) . (2-4-156)

So writing ¢; = 1 — p; and using the triangle inequality together with the operator norm

estimates

[(=A)pillez ez, <Az and  pi(=A)pillrz ~rz < ||V¢||ig (2.4.157)
we find that
~1/2 . —1/2 . —1/2 .
[ 2 (=A)pip2®lrz < [(=AD)pi(min) - pa®lrz + P (=A)pi(min) - p2®lrz

9 —1/2 .
< (180l + Vol ) I1(mam) ~ @*lzz (2.4.158)

where we eliminate p, using ||p2||L%N_>L92”N = 1. Using the embedding ¢*/? C ¢*, we see that

1
Jv ok e VREZ (24150)

4This is the only place in this work where the H? regularity assumption is strictly needed.
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By another application of ¢}/2 C ¢! together with ||®5||L§N =1,
—1/2 . —1/4
[(rin) @z < VB +NT/7 (2.4.160)

Using Young’s inequality for products and interpolation of H*® spaces with ||¢[[z2 = 1, we

obtain that
Termy| S (1800122 + V0132 ) VB (VB + N7V1) S gl (B + N7V2). (2.4.161)

Estimate for Term; Using the decomposition 1 — p1ps = p1g2 + p2q1 + q1q2 together with
the triangle inequality and the symmetry of ®° under exchange of particle labels, we have

that

| Terms| < ’(‘1)€|p1p2%,12Q1p2¢8>L%N + <¢€|p1p2%,12QQP1@8>L%N + ((I>€|p1p2‘/;,12q1qQ®6>L3N

N ’<@5|p1p2%,1QQ1p2‘1’5>L%N ‘ + ‘<@6|p1p2%,12Q1Q2¢6>L%N ) (2.4.162)
:1T;1;15,1 :ZT;an,Q

For Term; ;, we note from an examination of its integral kernel that

P1P2Ve12q1p2 = p1p2Vf1Q1, (2.4.163)

where we use the notation V) introduced in (2:4:32). Now writing 1 = 7~/?7%/2, we find
that

Terms; = ‘ <(I>E ‘plpgl/;fblﬁlﬂﬁ_l/qu@a>

|

12 b ~—1/2 e
< pipa(min) %[z (VIR 2@z (2.4.164)

2
Lz

p1p2(Tin) Vjﬂl 1/2611(1)€>

2
Ls N
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where the penultimate line follows from an application of Lemma and the ultimate

line follows from Cauchy-Schwarz. Applying the operator norm identity ||p;|/r2—z2 = 1

together with the estimate to the first factor in , we obtain that
Terms,, < <\/5_ + N—1/4> At S P (2.4.165)
Now since ||‘/5(’ﬁ1HL§N*>L§N < [9ll7z, we find that
VAR 2000 1z < 16l A 200 2 < 6112 v/ (2.4.166)

where the ultimate equality follows from Lemma and the trivial fact that n? = m.

Using the embedding (/2 C ¢', we conclude that
Terms 1 < || 7 \/ﬁa(\/ﬁa + N‘”“) Sol7ee (B + N2, (2.4.167)

For Terms 5, we use, as in the proof of Proposition the distributional identity (2.2.10)
to write V. 10 = (V1 X 12), where X, 19 = %(Va xsgn)(X; — X3). Thus,
Terms o = (‘I)s|P1p2(V1Xe,12)Q1Q2<I)€>L3N’

= |(®° |P1p2(V1Xe,12)/ﬁﬁ_1CI1QQ(I)E>L§N ‘

= <cp6

p1pa(Ten) (V1X5,12)ﬁ_IQ1QQ‘I)€>L2

N
= <@p1p2®5‘(V1Xa,12)ﬁ_IQ1QQ(I)€>L2 , (2.4.168)
N

where the penultimate line follows from an application of Lemma Now integrating

by parts and then applying the product rule and triangle inequality, we obtain that

’ <(T2n)p1p2<1>6 ’ (V1X5,12)/ﬁ_IQ1Q2@€>

< ‘ <V1 (Tom)p1p2®° ‘Xe,12ﬁ_IQ1Q2‘I)€>

L2

2
L 2.

zN

2
L2,

= Term57271 + Term572,2. (24169)

+ ‘ <(T2n)p1p2¢’6 ’X5,12V1ﬁ_191%®6>
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We first dispense with the easy case Terms o ;. By Cauchy-Schwarz and using the operator

norm estimates

1
||V1P1HL§N—>L§N < ||V¢||L§: and ||Xe,12||L§N—>L§N < 2 (2.4.170)
we obtain that
Term5,2,1 S ||V¢”L% ||(’7'2TL)(I)6||L%N ||ﬁ_IQ1QQ(I)E||L§N. (24171)

By arguing similarly as for the estimates (2.4.159) and (2.4.160)), we find that

— 1
)02 < B+ ——, 2.4.172
[(r2n) %12 S VB N ( )

and by applying Lemma [2.4.6((ii)|, we have that
A 01029%]| 12 S V/ B (2.4.173)
Thus, we conclude that

1
Terms o S |Vl (ﬁa + N)' (2.4.174)

For the hard case Terms 9, we first use Cauchy-Schwarz and ([2.4.170)) to obtain

Termsz2 < ||(r2n)pip2®lrz, ViR~ 4162912

< (VB + N Vi a2 e, (2.4.175)

where the second line follows from applying the estimate (2.4.172)) to the first factor in
the right-hand side of the first line. For the remaining factor ||Vin 'q1q.®°|| 12, We write

1 = p; + ¢ and use the triangle inequality to obtain
||V1/ﬁ_IQ1CI2®€||L§N < ||p1vlﬁ_IQ1Q2‘I)€||L§N + ||Q1V1/ﬁ_IQ1CJ2<D€||L§N. (2.4.176)
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Since ||p1V1||L%N_>L%N < IVl L2, it follows that

levlﬁ’lqquCI)EHL;N < HV¢HL3H371(]1Q2@EHL§N SIVAllzz v Be, (2.4.177)

where the ultimate inequality follows from applying Lemma and n? = m. Next,

observe that by Lemma [2.4.7, ¢:Vin ¢ = ¢;n~'V1qi, which implies that

larVin ™ 1o @z, < 107 Vigige®°lzs = \/<V1Q1®E|Q2ﬁ_2V1Q1@E>L§N» (2.4.178)

where the ultimate equality follows from the fact that ¢, commutes with n72V;q; and
¢ = @o. By the symmetry of ®° with respect to permutation of particle labels and the

operator identity

R N
T2 S <ﬁ>mﬁ—2 <1, (2.4.179)
=2

which follows from Remark we see that

N
~ 1 A,
<V1qlq)€‘qﬂl 2V1QI(I)E>L§N = —Zz:; <V1q1q)€|an 2V1Q1@€>L§N S, HV1Q1(I>€||%§N

N -1
(2.4.180)
Hence,
|l Vin™ qa® 2 S IVigi®°lzz, - (2.4.181)
We therefore conclude from another application of Young’s inequality that
Terms oo S |Vollr2 (B + N7 + (\/ﬁ_ + N*1/2> V112 - (2.4.182)

Collecting the estimate (2.4.174)) for Termso; and the estimate (2.4.182) for Terms 2, we
find that

Terms s S [|[Vo||z2 (8. + N7Y) + (ﬁ + N*l/Q) V11912, - (2.4.183)
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Together with the estimate ([2.4.167]) for Terms ;, we conclude that

[Terms| S 613 (8 + N72) + [96l2 (8 + N7) + (VB + N7 IVian@°llsz,
(2.4.184)

Estimate for Termg We want to show that Termg < 0. We assume here that k = —1;

otherwise, it is trivial that Termg < 0 and we can take k5 = 0. By the same argument used

to prove Lemma [2.2.2]
VA~ pp) @2 < IV = pipe)® oz (1 - pip2)®fliz,. (24.185)

and by Young’s inequality for products,

(N-1)
2N

IV1(1=p1p2) @%[|z [|(1=p1p2)®° Iz < mr|[Vi(1—pip2) 7Lz + IN?R,

(1=pip2) |75 -
(2.4.186)

We choose k3 > 1/(2k1). Then,
(N — 1) 1/2 e e e
5N VA3 (1 — pip)@ 7z = Fll V(1 = pap2) @75 — mal (L = pap2) 7175

(N - 1)2 €
< (m — riz ) [I(L = p1p2) 7175

Termg =

<0, (2.4.187)
as desired.
Having estimated the terms Termy, ..., Termg, we can now complete the proof of

the proposition. Combining estimate ([2.4.147)) for Term;, (2.4.148]|) for Terms, (2.4.153|) for
Termg, (2.4.161)) for Termy, and ([2.4.184]) for Terms, we see that there exists an absolute
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constant C' > 0 such that
(1= k)AL = prp2)@°[Fy < (B = E°) + O (2162, + (VB A+ N2 Vi 7z, )
+C((101 + Nellm) N2 + (IV6las + 1ol ) N )

+ B (190112, + ol oy () + 8l + 1813 + 199l1z2 + I61L,).
(2.4.188)

Note that by using Sobolev embedding, the interpolation property of H*® norms, and the

normalization [|¢||z2 = 1, we can simplify the right-hand side of (2.4.188)) to
(= r)IV2(1 = pip2)®Il3y < (B = B%) + Cll]l s (N + 5.)

F (2P0 + (VB + N72) V10097, ).
(2.4.189)

for some larger absolute constant C' > 0. To close the proof of the lemma, we want to obtain
a lower bound for the left-hand side of (2.4.189) in terms ||V1¢®¢||7. . To this end, we note
N

that
1—pips =p1 + ¢ — p1p2 = p1g2 + a1, (2.4.190)
so that by the triangle inequality and the fact that g commutes with Vy,
||VIQI(D6||L§N S ||V1<1 - p1p2)¢)€||L§N + ||V1]?1Q2(I)EHL§N. (24191)

Since |[Vipillrz 1z < IV@|rz, it follows that

IVip1g2 @z < [[VOllr2lg2®°[ 2 < [VOlli2 v/ B (2.4.192)

where the ultimate inequality follows from Remark and o, < .. Therefore,

3HV1Q1(I)E||%§ )
15196

2
IV1(1 = pip)@7[12 > (V0@ 1z, — [IV6lzv/B:) 2

(2.4.193)
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where the ultimate inequality follows from application of Young’s inequality for products.

Inserting the preceding lower bound into the inequality (2.4.189) and rearranging, we find

that
3 2 EY — B¢ c 1/2 4112 —1/2 e
IVl < S (Sl + (VA N IV10 )
Cligllaz

- (N2 + B.) + 15V 9|72 8-

1—/*{1

(2.4.194)
By Young’s inequality for products,

C I3 _1/2 402 1 1 B 2
1_—m|’v1Q1qD ||L§N(\/ B+ N ) < m /Bg—i_ﬁ +1\|V1q1<1> ”LEN’ (2.4.195)
The desired conclusion now follows after some algebra. O]

2.4.4 Proof of Proposition

We now use the results of the previous subsections to pass to the limit ¢ — 07 and

obtain an inequality for Sy, thereby proving Proposition [2.1.2]

Proof of Proposition[2.1.3. Applying Proposition [2.4.10] to factors ||V1¢1P% || 12, appearing

in the right-hand side of the inequality given by Proposition [2.4.9|and using the majorization

||¢||§{% < ||¢|| g2 together with a bit of algebra, we obtain the point-wise estimate

I8N0l 1 Mol 6l e

1/2)) 4112 -
+e H¢HC;/2 + JN T Ne + N—0)/2 " N2

(1 10l200 Il Bue + (14 6120 ) (BE = B + 22 6]12).

9l
Pre SN

(2.4.196)
We now optimize the choice of 4,0 € (0,1). We choose §,0 € (0,1) such that

l1—0

l—0o=¢ and o= ,
2

(2.4.197)
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which, after some algebra, implies that (d,0) = (2/3,1/3). Inserting this choice of (4, o) into
the right-hand side of inequality (2.4.196)) and using Sobolev embedding together with the

interpolation property of the H® norm, we obtain

11172 ||¢||§h

Brne S \/_ + o+ o172 Bn.e + (1+||¢||é;/2><E§s —E¢+€”2ll¢ll20;/2>- (2.4.198)

Integrating both sides of the preceding inequality over the interval [0,¢] and applying

the fundamental theorem of calculus, we obtain that

Bnalt) < Bye(0) + C / 05)16() 122 Brv o (5)

2
v [as(LMie L WO 4 (1t o)) (B = B+ 21000 ) ),
(2.4.199)

where C' > 0 is an absolute constant. So applying the Gronwall-Bellman inequality, specifi-

cally [73 Theorem 1.3.1], we find that

Bne(t) < Anc(t)exp (C’ /t dngzﬁ(s)H%Iz), Vit >0, (2.4.200)
0

where 2y : [0,00) — [0,00) is the function defined by

lo()Z | I6()I2
( \/N + N1/3 +(

Lt [0()l20e) (BE — B% + sl/2||¢<s>nzl/2)),
(2.4.201)

Ay (t) = BN@(O)—I—C’/ ds

0

for every t > 0.

We now send ¢ — 0%. By Lemma [2.4.8, we have that 5. y(t) — On(t), as ¢ — 0T,

uniformly on compact intervals of time. Recalling the definition of the energy per particle

E?" and the cubic NLS energy E? from (2.4.135)) and (2.4.136]), respectively, we see that

(V-1

e K
EY —E?= ||V1(I)N,O||2L2(]RN) + N (P o|Ve12Pn0) 2y ||V¢0||L2 ||¢0||%4(]R)

(2.4.202)
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It follows from the proof of Lemma that V. 190®n o — Vi2®no in HH(RY) as e — 07,

Therefore,

lim Ey — E® = Ey — E?, (2.4.203)

e—07t
where EY is the energy per particle of the solution ®y to equation (1.2.4) introduced in

(2.1.5), so that

+ (Ex — E°) (L4 [8(s)[E/2) | = An(t),

(2.4.204)

QIN’E(t) — BN(O)—FC /t ds

0

l6(s) 1% 190
VN T N1/3

as € — 07, locally uniformly. Using the higher conservation laws of the 1D cubic NLS (see
[28, Chapter T]) [[| we have that the H* norms of ¢ are bounded (up to an absolute constant)

by ||¢ol| g+, for any k € Ny. Thus, there exists an absolute constant C’ > C' such that

1ol
VN

Now taking the limit as ¢ — 0% of the inequality (2.4.200) and using Lemma once

9ol 7
N1/3

An(t) < Bn(0) + C”t( + + llgollin (EX — E¢)), Vt>0. (2.4.205)

more, we obtain that
B (t) < An(t) exp(C'||golF2t), — VE>0. (2.4.206)

Comparison with the statement of Proposition [2.1.2| completes the proof of the proposition.

]

°In fact, Koch and Tataru [47] have shown that there exist conserved quantities for the 1D cubic NLS
corresponding to the H* norm, for any s > —2. See also the work [45] of Killip, Visan, and Zhang for a

2
similar result for the case —% <s<0.
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2.5 Proof of Theorem [2.1.1]

In this last section, we show how Proposition implies Theorem [2.1.1 As the
implication is well-known, we only sketch the details. We first recall two technical lemmas

from [46].

Lemma 2.5.1 ([46, Lemma 2.1]). Let k € N, and let {y'D}*_, be a sequence of nonnegative,

trace-class operators on Lgym(Rj), for je{l,... k}, with unit trace and such that

Trj AU =AW vie{l,... k—1}. (2.5.1)
Let ¢ € L*(R) satisfy |||z = 1. Then

1-— <gp®k‘7(k)g0®k> <k(1- <g0|’y(1)go>). (2.5.2)

Lemma 2.5.2 ([46, Lemma 2.3]). Let k € N, and let v*) be a nonnegative self-adjoint

trace-class operator on L?, (RF) with unit trace (i.e. a density matriz). Let ¢ € L*(R) with

sym

|lellzz = 1. Then

77777

particle reduced density matrix of the N-body system, where ®y is the solution to the
Schrodinger equation ((1.2.4). Let ¢ be the solution to the 1D cubic NLS (1.2.11). It is

straightforward from the definition of partial trace that

<¢‘%(V1)¢>Lz = (@x|((l9) (s) ® 1®N_1)¢N>L§N = (NP1 Pn)pz (2.5.4)
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which implies by Remark that

1= (opVs) | = (@xla®y),: = av. (2.5.5)
Since ay < [y, Proposition [2.1.2] implies that there is an absolute constant C' > 0 such that
| pollZ: , l1oll? 2
1=(s()p Wot)) < (5N<o> + 0|t|( O O+ Noll (BN - B?) ) )€1l
(2.5.6)
for every t € R. Since @y = ¢5", we see from unpacking Definition for By that
N
— k
Be(0) = (66~ |nn (0065 ) = 7\ (05 [P0y (2.5.7)
k=0

where the reader will recall the definition of the projector Py, from (2.4.4)). Fork € {1,..., N},
the terms in the definition of P (0) contain a projector ¢;(0) = (1 — |¢o) (¢o|);, for some
j € {1,..., N}, which is orthogonal to the state ¢5~. Thus,

P(0)p5N =0, Vk e {l,...,N}, (2.5.8)

which together with the identity (2.5.7) implies that Sy(0) = 0. Additionally, using the

normalization ||¢g|/z2 = 1 and Fubini-Tonelli, we have that

(N — 1),% N—2 K
Ey — E® = |[Vigg™ 122y + THWOWO ® g )H%Q(RN—l) —Voollizm) — §||¢0||i4(R)

K
= —ﬁﬂcbo”diél(ua)- (2:5.9)
Now by application of Lemma m Lemma , and the Hy/* ¢ L% Sobolev embedding,

the inequality (2.5.6)) implies that there is an absolute constant ¢’ > C| such that for any
k € N fixed,

(k) ®k ok / H¢0H§{1 Hd)OH?{z Cllgoll2 5 |t] V2
Trya P00 = 160 (0()°H1] < (8RO e (Fogitt + X0 ) Clouliall) e R
(2.5.10)

Thus, the proof of Theorem [2.1.1]is complete. ]
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Symbol Definition
A<B, A~B There are absolute constants Cy,Cy > 0 such that A < C1B or C9B< A< C{B
Tpy Tiivk (x1,... k), (@iy...,%ipk), where z; € R for j € {1,...,k} or j € {i,...,i+k}
dzy, dx;, .y, dry---dxy, dr;- - drig
N, Ny natural numbers, natural numbers inclusive of zero
Sn symmetric group on N elements
C2(RN) smooth, compactly supported functions on RY
S(RY) Schwartz space on RY
S’ (RM) tempered distributions on RY
LPRY), |- [|zv standard p-integrable function space: see
H*RM), || - |lgs | standard L2-based Sobolev function space: see
CYRN), ||+ le standard Holder-continuous function space: see
sym subscript which denotes functions symmetric under permutation of coordinates

L?(RY) inner product with physicist’s convention: {f|g)
duality pairing
Dirac’s bra-ket notation: see footnote

fRN dme(l‘N) (zn)

Al(f)% subscript denotes that the operator on L?(RY) acts in the variables (x;,,...,z;,)

P&k k-fold tensor product of ¢ with itself realized as ¢®F(z;) = [[*_, ¢(z:), z;, € R

Try N trace on L?(RY)

Tryq1,.. N partial trace on L?(RY) over z41,...,oy coordinates

1, 1y identity operator on L?(R) and on L?(RY)

Dy, DY solution to Schrodinger problem and to regularized problem

10} solution to cubic NLS

Hy, Hy, LL Hamiltonian and regularlzed LL Hamiltonian: see and m

p(t), qlt) rank-one projector |¢(t)) (6(t)] and 1— |6(t)) (6(¢ >\:

Pj, 4j projectors 17"l @ p® 1NV77, 1971 @ ¢ 1V7: see

P projector onto subspace of k partlcles not in the state ¢( ): see

]?, J/”\*l operator L2(RY) — L2(RY) defined by ]? = Eévzof(k:)Pk, for f : Z — C: see
(2.4.6)

nn,my 7N, my | functions Z — C and operators L?(RY) — L2(RY): see Definition lm

W,V v functions Z — C and operators L*(RY) — LQ(RN): see ([2.4.36) and (2.4.68)

ayn, By time-dependent functionals of solution ¢ to ( and @y to (1.2.4): see Defini-
tion [2.4.4]

T shift operator on CZ: see

tri—; trace of a function to hyperplane {z € RV : z; = z,}: see

Ay Laplacian on R*: A, = Zle A

[ ] commutator bracket: [A, B] = AB — BA

Table 2.1: Notation
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Chapter 3

A Rigorous Derivation of the Hamiltonian Structure of
the Nonlinear Schrédinger Equation|]

3.1 Statements of Main Results and Blueprint of Proofs

We now state precisely and outline the proofs of our three main results: Theo-
rem [3.1.3] Theorem [3.1.10, and Theorem [3.1.12] The first two results provide the affirmative
answer to Question [1.3.1] establishing the BBGKY hierarchy and GP hierarchy, respectively,
as Hamiltonian flows. Theorem provides the link between the Hamiltonian structure
for the GP hierarchy and the Hamiltonian structure for the nonlinear Schrodinger equation,
answering Question[1.3.2] Our approach to answering these questions is to meticulously build

a formalism, step-by-step, which renders the desired conclusions quite intuitive in hindsight.

We recall the N-body Schrodinger equation, BBGKY hierarchy, and limiting GP
hierarchy to set the stage for our discussion of the geometry below. It will be useful going
forward to fix the following notation: for d > 1, we denote the point (x1,...,zy) € R¥ by

2. We let S;(R¥Y) be the subspace of S(R?) of Schwartz functions which are symmetric

IThis chapter is based on an article published prior to the final submission of this dissertation (see
reference [63] for the bibliographic information). The article is an equal collaboration with D. Mendelson,
A.R. Nahmod, N. Pavlovi¢, and G. Staffilani.
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in their arguments, that is, for any 7 € SNE| we have
Q(Tr1ys -5 Trvy) = P21, ., 2N), zy € R, (3.1.1)

We call S,(R4) the bosonic Schwartz space, see Definition [3.3.24| for more details.

Consider the N-body Schrodinger equation
i@t(I)N = HNCI)N, by € SS(]RdN) (312)

where Hp is the N-body Hamiltonian

Hy = Z(-A%)+N2f Y WX - X)), me{xl). (3.1.3)

j=1 1<i<j<N

The pair interaction potential has the form Vy = N%¥V(N%.) where 8 € (0,1), V is an
even nonnegative function in C2°(RY) with [, dzV(z) = 1, and Vy(X; — X;) denotes the

operator which is multiplication by Vi (x; — ;).

The N-body density matrix, associated to the wave function @y € S,(R*) is given
by
Uy = [@y) (Dn] € LISUR™),Sy(R™)[T

and the reduced density matrix hierarchy

k
(VNN = (Trppr. ~ (U,

2Sy is the symmetric group of order N.
3L(S!(RIV), S, (RIY)) denotes the space of continuous linear maps from symmetric tempered distribu-
tions to symmetric Schwartz functions.
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solves the quantum BBGKY hierarchy

Z.am(\/;;) _ [_Azk’%(\l;)] n NQil Z [VN(X X;), (k)}

1<i<j<k

N 2H](VN k) ZTrkH([VN(X Xis1), V%CH)D’ I<k<N—1 (3.14)

:[Axk,fy](v] 3 [VNX X)), )} k=N,

1<7,<]<k

where we have introduced the notation A, = Z?:1 Ay,

The GP hierarchy is formally obtained from the BBGKY hierarchy (3.1.4]) by letting
N — oo. More precisely, a time-dependent family of density matrix oo-hierarchies I'(t) =

(v(t)*))22 | solves the GP hierarchy if
0™ = —[Ag,, 7] + 26Bpy* Y, VEeEN (3.1.5)

with x € {£1} and

M»

Bipy ™ = By — B, Bjyi)y" Y, (3.1.6)

J=1

where

(B+k+17(k+1))(t7£k;£;c> = /R2d g1 dz 1 0(Tpen — Ty )0(25 — xk+1>7(k+l)(t7£k+l;£§c+l)
(3.1.7)
with an analogous definition for B, ., with §(z; — xx41) replaced by (2} — xx41). When
rk = 1, we say that the hierarchy is defocusing and for kK = —1, we say that the hierarchy is

focusing (in analogy with the defocusing and focusing NLS, respectively).

As we outlined in the introduction, our first main results establish that the BBGKY

hierarchy (3.1.4) and the GP hierarchy (3.1.5) are Hamiltonian flows on appropriate weak
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Lie-Poisson manifolds. To do this, we need to define a suitable phase space for the Hamil-
tonian evolution in both the finite- and infinite-particle settings. In particular, we need to
construct certain Lie-Poisson manifolds of density matrix hierarchies, and we outline this
construction in the next subsection. We will also establish that the procedure described
above for obtaining the BBGKY hierarchy from the N-body Schrodinger equation can be
given by the composition of several natural Poisson maps, thereby establishing the existence
of a natural Poisson morphism which maps the N-body Schrédinger equation to the BBGKY

hierarchy.

3.1.1 Construction of the Lie algebra &y and Lie-Poisson manifold &7

For each k € N, we let
g = {AW € L(S,(RF), S,(RF)) : (AW = — AW},

endowed with the subspace topology of £(S,(R¥), S’ (R¥)). We define a Lie algebra (gy, [, Ta)s
with Lie bracket defined by

[A®), B®] = k[A®) BW], (3.1.8)

9k

where the right-hand side denotes the usual commutator bracket. We refer to elements of gy

as k-particle bosonic observables. For N € N, we then define the locally convex direct sum

N
Q5N = @gk, (319)
k=1

and we refer to elements of &y as observable N -hierarchies.

To define a Lie bracket on the space &y, we consider the following natural embedding
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maps. For N € N and k € N<y, there exists a smooth map

€xN - Ok — 9N, (3.1.10)

which embeds a k-particle bosonic observable in the space of N-particle bosonic operators

so as to have the filtration property

[EZ,N(gé)a€j,N(9j)]gN C €min{l+;j—1,N},N (gmin{gﬂ-_LN}) C gn- (3.1.11)

Using this filtration property and the injectivity of the maps €, we can now endow &y
with a Lie algebra structure by defining the bracket

ABE = Y ah(len(A),gn (BN, ), ke{l . N}L o (3112)

1<¢,j<N
min{f+j—1,N}=k

Furthermore, the maps {e; x }i_, induce a Lie algebra homomorphism

N
ey 16N s an,  Len(An) =D e (AY), YAy = (AQ )reney- (3.1.13)

k=1
In other words, ¢, y maps an observable N-hierarchy to an N-body bosonic observable. In
Section |3.4, we will establish several properties of the embedding map, which ultimately

enable us to prove the following result.

Proposition 3.1.1. (8, [, g, ) is a Lie algebra in the sense of Definition |3.5.14)
Next, we define the real topological vector space

&y = {Tn = (W, € Hz S/ (R™), 8,(R™)) : ( =}, (3.1.14)
k=1
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and we refer to elements of &}, as density matriz N-hierarchies. Let Apy n be the algebra

with respect to point-wise product generated by the functionals in the set
{FeC®®y;R): F(:)=iTr(Ayn"), Ay € By} U{F € C*(&;R): F(-) =C € R}.
We can define a Lie-Poisson structure on &%, given by
{F,G}e: (Tn) = i Tr([dF[CN], dG[Tn]]g, - Tn), Vly € &Y, (3.1.15)

where F,G € Ay n.

To construct the weak Lie-Poisson manifold &7, a good heuristic to keep in mind
is that density matrices are dual to skew-adjoint operators. The superscript %, however,
does not denote the literal functional analytic dual, but rather denotes a space in weakly
non-degenerate pairing with &,y. The fact that we only have weak non-degeneracy means
that we will be unable to appeal to classical results on Lie-Poisson structures, see for in-
stance Proposition below, and instead we will proceed by direct proof to establish the

following result.

Proposition 3.1.2. (&}, Aun.{- -}@,J*V) is a weak Poisson manifold.

To establish that the BBGKY hierarchy is a Hamiltonian flow on this weak Poisson

manifold, we need to prescribe the BBGKY Hamiltonian functional

Hepary,n(Tn) = Tr(Wgpaky,n - I'n), (3.1.16)

where —iW ppaky,n is the observable 2-hierarchy defined by
WBBGKY,N = (—AI,KVN(Xl —XQ),O,...). (3117)
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We can now state the following theorem, which establishes that the BBGKY hi-
erarchy admits a Hamiltonian formulation and lays the groundwork for our answering of

Question [1.3.1]

Theorem 3.1.3. Let I C R be a compact interval. Then I'y = (71(\1;))1@]\7:1 € C™(I;8Y) is a

solution to the BBGKY hierarchy (3.1.4) if and only if

d

%FN = XHBBGKY,N(FN)7 (3'1'18)

where Xy pemey.n 15 the unique vector field defined by Hppaxy,n (see Definition with

respect to the weak Poisson structure (&%, Aun,{-, .}67\1)'

3.1.2 Derivation of the Lie algebra &, and Lie-Poisson manifold &7

Having established the necessary framework at the N-body level, we are now prepared
to address the infinite-particle limit of our constructions. Via the natural inclusion map, one

has &y C &), for M > N. Hence, one has a natural limiting algebraﬁ given by

Foo = JEv =P (3.1.19)
N=1 k=1

By embedding &y into this limiting algebra, the rather complicated Lie bracket [, ']6N

converges pointwise to a much simpler Lie bracket.

We let Sym,; denote the k-particle bosonic symmetrization operator, see Defini-
tion [3.3.30, and we let [-,-]; be a certain separately continuous, bilinear map, the precise
definition of which we defer to Section [3.41 We establish the following result.

4This discussion could be formulated more precisely in terms of co-limits of topological spaces ordered
by inclusion.
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Proposition 3.1.4. Let Ny € N. For A = (A®)cn, B = (B®)en € G, we have that

lim [A, By, =C = (C®)en, (3.1.20)
where
C® = 3" Symy([AY,BY)]), (3.1.21)
£,5>1
1=k

in the topology of Foo.

The topological vector space given in (3.1.19) is too small to capture the generator of
the GP Hamiltonian, defined in below. Indeed, the 2-particle component Vy(X; —
Xs) of the N-body Hamiltonian Hy given in converges to the distribution-valued
operatOIﬂ (X7 — X3) as N — oo. The operator —id(X; — X3) does not belong to g, since

it does not map S,(R??) to itself.

Since we will need our Lie algebra &, to contain the generator of the GP Hamil-
tonian functional, this necessitates an underlying topological vector space which includes
distribution-valued operators (DVOs). The inclusion of DVOs introduces technical difficul-
ties in the definition of the bracket [-,-];. As we will see, the definition of the bracket [-, -],
involves compositions of distribution-valued operators in one coordinate, which in general is
not possible. Consequently, we need to find a setting in which we can give meaning to such

a composition, thus motivating our introduction of the good mapping property:

Definition 3.1.5 (Good mapping property). Let i € N. We say that an operator A® ¢

L(S(R¥), S'(R%)) has the good mapping property if for any a € N, the continuous bilinear

5Not to be confused with operator-valued distribution.
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map
SR x S(R") — S'(R)RS(RY)

(f(i),g(i)) — dry...dre 1dTe .. .dmiA(i)(f(i))(xl, o ,:vl-)g(i)(xl, e Ty Ty Tt 1y - -5 L),
Ri—1

may be identified with a continuous bilinear map S(R%) x S(R%) — S(R??)[f

Here and throughout this chapter, an integral should be interpreted as a distributional
pairing, unless specified otherwise. We will denote by Lg,(S(R%), S'(R%)) the subset of

L(S(R¥), S'(R%¥)) of operators with the good mapping property.

Remark 3.1.6. It is evident that £,,,,(S(R%), S’ (R%)) is closed under linear combinations
and therefore a subspace. Note that here and throughout we endow £(S(R%), §'(R%)) with
the topology of uniform convergence on bounded sets, and we endow L, with the subspace

topology. To see that Ly, is a proper subspace of £, consider the multiplication operator

§(X,) € L(S(R*),S'(R*)).

The formula for the limiting Lie bracket given in Proposition has a greatly
simplified form compared to the N-body bracket [, ], ~due to the vanishing of the higher
“contraction commutators”. Moreover, as we prove in Appendix the good mapping
property gives an appropriate definition to the bracket [A(i), BU )] , as a well-defined element
of Lymp(S(R*), S'(R*)). Hence, we can take advantage of the good mapping property and

extend the limiting formula from Proposition [3.1.4]to a map on a much larger real topological

6We use & to denote the completion of the tensor product in either the projective or injective topology
(which coincide). See Section for furhter discussion.
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vector space &, given by the locally convex direct sum
Boo = @gkymzﬂ Gk,gmp = {A(k) € ﬁgmp(SS(de)7S;(de)) AW — _(A(k))*}- (3.1.22)
k=1
We refer to the elements of &, as observable co-hierarchies, and the elements of g, gy
as k-particle bosonic observables. The verification of the Lie algebra axioms then proceeds

by direct computation, and we are able to establish the following result.

Proposition 3.1.7. (&, [,]_) is a Lie algebra in the sense of Definition|3.5.14),

Analogously to the N-body setting, our second step is the dual problem of building
a weak Lie-Poisson manifold (&%, A, {-,}g. ). If we were in the finite-dimensional setting
or a “nice” infinite-dimensional setting, such as &7 being a Fréchet space and &, being its
predual, then this step would follow from standard results (see Section . While &7 is
Fréchet, the predual of &7 is

{A=(a® keNe@[r Sy(R*), SL(RM®Y : (AW = AW (3.1.23)

which is too large a space for the Lie bracket [-, -]@w to be well-defined. Therefore, the
standard procedure for obtaining a Lie-Poisson manifold from a Lie algebra can only serve

as inspiration.

We define the real topological vector space

&%, = {T = (Y")ien € [ [ LSIR™), So(RH)) : 4¥) = (4y(W)* Wk € N}, (3.1.24)
k=1
where the topology is the product topology. Using the isomorphism
L(S)(R™), S,(RH*)) = S, (R x R, (3.1.25)
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the elements of &*

[oop)

which we call density matriz oo-hierarchies, are infinite sequences of
k-particle integral operators with Schwartz class kernels K(xz;;z)), which are separately

invariant under permutation in the z, and z) coordinates.

Let A, be the algebra with respect to point-wise product generated by functionals

in the set

{FeC®BR): F(-)=iTr(A), Ac B U{F € C(&;R): F(-) =C € R}.
(3.1.26)

We will observe later that, importantly, our choice of A, contains the observable co-hierarchy

—tWgp, which generates the GP Hamiltonian.

As in the finite-particle setting, the Lie algebra structure on &, canonically induces
a Poisson structure on &7 . This canonical Poisson structure, which is called a Lie-Poisson

structure, is defined by the Poisson bracket
{F, G}, (T) =i Tr([dF[T],dG[]g_-T), VI € &%, (3.1.27)

where F,G € C*(®% ;R) are functionals in the unita]m sub-algebra A, and we identify the
Gateaux derivatives dF[I'], dG[I'] as observable oo-hierarchies via the trace pairing ¢ Tr(-).
We will ultimately establish the following result, which provides the underlying geometric

structure required to address Question [1.3.1

Proposition 3.1.8. (&%, Ay, {-, }g: ) is a weak Poisson manifold.

Define the Gross-Pitaevskii Hamiltonian functional

Hap : @Zo — R (3128)

"i.e. containing a multiplicative identity
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by

Hep(D) = —Tri (A7) + Tri2(6(X: — Xo)v®),  T'=(y")ren € 8%,  (3.1.29)

77777

discussion. Then we can rewrite Hgp as
HGP(F) = TI‘(WGP . F), WG’P = (—Aml,é(Xl — XQ), 0, .. .), (3130)

which one should compare with (3.1.16|).

Remark 3.1.9. Note that —iWgp is an observable oco-hierarchy, that is, an element of & .
Since we have the convergence —itWpparxyny — —iWgp in B, as N — oo, it follows that
Heperyn — Hep in C®(&%;R) endowed with the topology of uniform convergence on

bounded sets.

We now state our next main result, which addresses the final component of Ques-
tion [L3.1k
Theorem 3.1.10 (Hamiltonian structure for GP). Let I C R be a compact interval. Then
['e C®(I;8%) is a solution to the GP hierarchy if and only if
d
(EF) (t) = Xnep(T'(2)), Vtel, (3.1.31)

where Xy, 15 the unique Hamiltonian vector field defined by Heap with respect to the weak

Poisson structure (8%, A, {-, } g )-

Remark 3.1.11. The result of Theorem [3.1.10| extends, with an almost identical proof, to

the Hartree hierarchy, and it seems likely that this result should also extend to the quintic
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GP hierarchy [I5] and other variants which account for higher-order particle interactions

[98).

We now give a geometric formulation of the procedure by which one obtains the
BBGKY hierarchy from the N-body Schrodinger equation. The results described below will
be proved in Section |3.4.3] To record the Hamiltonian structure for the N-body Schrédinger
equation, we equip the bosonic Schwartz space S,(R*¥) with the standard symplectic struc-

ture and define the Hamiltonian functional

Hy(Dy) = % /R ey On(zy) (Hyey)(zy), Yy € S(R™). (3.1.32)

Then the Schrodinger equation (3.1.2) can be viewed as a Hamiltonian flow on this weak sym-
plectic manifold. We can endow the space £(S,(R™), S,(R™)) of bosonic density matrices

with a weak Poisson structure by defining

(F.G}y =iTn N([dF[\I/N],dG[\IfN]]gN\IJN>, YUy € £(S'(RIN), Sy(RINVY), (3.1.33)

.....

where dF' and dG denote the Gateaux derivatives, see Definition of F' and GG, which
are smooth real-valued functionals with suitably regular Gateaux derivatives. Then the
Poisson bracket {-, -}, is a Lie-Poisson bracket induced by the Lie algebra of N-body bosonic
observables with Lie bracket given by [-,-] .

There is a canonical map from N-body wave functions to N-body density matrices

given by
LDM,N SS(RdN) — ,C(Sé(RdN),SS(RdN))a LDM,N((I)N) = ‘(I)N> <(I)N| . (3134)
We will show in Proposition [3.4.27| that

toarn © (Ss(R™), {3 ) = (L(SIR™), S{R™M)), {+, -} ),
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is a Poisson morphismﬁ and consequently maps solutions of the Schrodinger equation (|3.1.2])

to solutions of the von Neumann equation
0V = [Hy, Uy, (3.1.35)

where the right-hand side denotes the usual commutator. Defining the Hamiltonian func-

tional

1
Hy(Vy) = v Try ~(HyUy), YWy € L(S/(R™), S,(RMY), (3.1.36)

the von Neumann equation (3.1.35)) can be viewed as a Hamiltonian equation of motion on the
weak Poisson manifold (£(SL(R™), Ss(R™)),{-,-}y). We will prove in Proposition [3.4.29
that the dual of the map ¢ n given in (3.1.13) induces a canonical morphism of Poisson

manifolds, which is precisely the reduced density matrixz map, given by

tromN = Uy O = O o (Tn) = (Ton v (Un))E = (), (3.1.37)

which maps solutions of the von Neumann equation to solutions of the quantum BBGKY

hierarchy.

3.1.3 The Connection with the NLS

We will now tie together our main results and state the result which provides an
affirmative answer to Question [1.3.2, We connect the GP hierarchy to the cubic NLS, each

as infinite-dimensional Hamiltonian systems, through the canonical embedding

LSRN = B, o (107F) (0 ren. (3.1.38)

SWe recall {-,-};2 v = N{--}2, and see (1.3.2) for a definition of {-,-};.. We also note that the
co-domain of this map will be replaced by the appropriate space of N-body density matrices.
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Although ¢ is rather trivial in terms of the simplicity of its definition, and for this reason

we sometimes refer to ¢ as the trivial embedding, it has the important property of being a

Poisson morphism (see Definition below).

Theorem 3.1.12. The map ¢ is a Poisson morphism of (S(RY), As, {-,},2) into (8%, Ao, {+, 1 )

1.e. it 1s a smooth map such that
{FouvGoui}.(p) ={F, G}ﬁ,&)(L(qﬁ)), Vo € S(RY), (3.1.39)

for all functionals F,G € As.

We conclude by discussing why the results described in this section provide “a rigorous
derivation of the Hamiltonian structure of the NLS”. It is a quick computation to show that

the pullback of the GP Hamiltonian ([3.1.30]) under the map ¢, denoted by t*H¢gp, equals the
NLS Hamiltonian (L.3.4) ] that is

L*HGP = %NLS- (3140)

Hence, Theorem [3.1.12] Theorem|3.1.10/and ((3.1.40)) ultimately demonstrate that the Hamil-

tonian functional and phase space of the NLS can be obtained via the pullback of the canon-
ical embedding . Together with the results of Section [3.4.3] which provide a geomet-
ric correspondence between the N-body Schrodinger equation and the BBGKY hierarchy,
and Proposition [3.1.4] which enables us to take the infinite-particle limit of our geomet-
ric constructions at the N-body level, this provides a rigorous derivation of the Hamiltonian

structure of the NLS from the Hamiltonian formulation of the N-body Schrédinger equation.

9In particular, as a corollary of Theorem [3.1.10|and Theorem [3.1.12} we obtain the well-known fact that
if ¢(t) is a solution to the cubic NLS (1.3.7), then I'(¢) := ¢(¢(t)) is a solution to the GP hierarchy (3.1.5).
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3.1.4 Organization of the Chapter

Section [3.3|is devoted to preliminary material on weak Poisson manifolds modeled on
locally convex spaces, Lie algebras, and tensor products. The reader familiar with infinite-
dimensional Poisson manifolds and Lie algebras may wish to skip the first two subsections

upon first reading and instead consult them as necessary during the reading of Section (3.4

and Section [3.5

In Section [3.4] we build the requisite Lie algebra structure for &y and weak Lie-
Poisson structure for &3%;, thereby proving Proposition and Proposition m Sec-
tion [3.4.1] contains the Lie algebra construction, and Section [3.4.2] contains the dual Lie-
Poisson construction. Lastly, in Section [3.4.3] we show that the familiar maps of forming
a density matrix from a wave function and taking the sequence of reduced density matri-
ces of a density matrix have geometric content. Namely, we prove Proposition |3.4.27| and

Proposition [3.4.29 which assert that these maps are Poisson morphisms.

In Section [3.5] we build the requisite Lie algebra structure for &, and weak Lie-
Poisson structure for &%, thereby proving Proposition [3.1.7] and Proposition [3.1.8 The
section is broken up into several subsections. Section |3.5.2|is devoted the Lie algebra con-
struction, and Section [3.5.3|is devoted to the dual Lie-Poisson construction. Finally, we will

prove Theorem [3.1.12 in Section

Lastly, in Section 3.6, we prove our Hamiltonian flows results Theorem and The-
orem [3.1.10] which assert that the BBGKY and GP hierarchies, respectively, are Hamiltonian

flows on the weak Lie-Poisson manifolds constructed in the previous sections.

Remark 3.1.13. In Section [3.4] Section 3.5 and Section[3.6], we will fix the dimension to be

104



one for simplicity, but we emphasize that our results hold independently of the dimension.

3.2 Notation
3.2.1 Index of Notation

At the end of the chapter, we include Table as a notational guide for the various
symbols which appear in this chapter. In this table, we either provide a definition of the
notation or a reference for where the symbol is defined. When definitions for these objects
may have appeared in the introduction, we will give references to where they first appear in

subsequent sections.

3.3 Preliminaries

3.3.1 Weak Poisson Structures and Hamiltonian Systems

The classical notion of Poisson structure, as can be found in [60], is ill-suited outside
the Hilbert or Banach manifold setting due to the fact that for a given smooth, locally
convex manifold M, not every functional in C*°(M,R), the space of smooth, real-valued
functionals on M, need admit a Hamiltonian vector field. Since we will need to work with
Fréchet manifolds, an alternative theory is needed. We opt for the notion of a weak Poisson

structure due to Neeb et al. [69)].

We recall that a unital subalgebra A C C°°(M;R) contains constant functions and

is closed under pointwise multiplication.

Definition 3.3.1 (Weak Poisson manifold). A weak Poisson structure on M is a unital
subalgebra A C C*°(M;R) and a bilinear map {-,-} : A x A — A satisfying the following

properties:
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(P1) The bilinear map {-,-}, is a Lie bracket and satisfies the Leibnitz rule
{F.GH} ={F,G}H + G{F, H}, VF,G,H € A. (3.3.1)
We call {-,-} a Poisson bracket.

(P2) For all m € M and v € T,,M satisfying dF[m](v) = 0 for all F' € A, we have that
v=0.

(P3) For every H € A, there exists a smooth vector field Xy on M satisfying
XuyF={F H}, VFeA[ (3.3.2)

We call Xy the Hamiltonian vector field associated to H.

If properties |[(P1)| - are satisfied, then we call the triple (M, A, {-,-}) a weak Poisson

manifold.

We now record some observations from [69] about the definition of a weak Poisson

structure.

Remark 3.3.2. |(P2)[implies that the Hamiltonian vector field X associated to some H € A

is uniquely determined by the relation

{F,H}(m) = (XgF)(m) = dF[m](Xg(m)), VF € A. (3.3.3)

10Tn the left-hand side of identity (3.3.2]), we use the notation Xz to denote the vector field identified as
a derivation.
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Indeed, if Xy ; and X o are two smooth vector fields satisfying the preceding relation, then

the smooth vector )?H = Xpu1 — Xpo satisfies

dFm](Xp(m)) =0, VF € A, (3.3.4)
for all m € M, which by implies that )?H =0.
Remark 3.3.3. For all F,G, H € A, we have that

[XFaXG]H: {{HvG}vF} - {{HvF}7G}
={H{G, F}}

— Xa.;m H. (3.3.5)

Hence, by Remark [3.3.2, [Xp, X¢| = X(g ry for F,G € A. Additionally, the Leibnitz rule

for {-,-} implies the identity
Xpe = FXe+GXp, VFGeA (3.3.6)

Remark 3.3.4. If A C C*(M;R) is a unital sub-algebra which satisfies properties |(P1)]
and of Definition [3.3.1] then (3.3.6) implies that the subspace

{H € A: Xy exists as in |(P3)[} (3.3.7)

is a sub-algebra of A with respect to pointwise product. Hence, it suffices to verify property

(P3)[ for a generating subset A, C A.

We note that unlike in the finite-dimensional setting, a symplectic form w : V xV — R

on an infinite-dimensional locally convex space V' need not represent every continuous linear
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functional via w(-,v), for some v € V. If the form does satisfy such a Riesz-representation-
type condition, we call a symplectic form w strong, otherwise, we call w weak. Analogously,
a 2-form w on a smooth locally convex manifold M is strong (resp. weak) if all forms

wy 1 Ty,M x T,M — R, for p € M, are strong (resp. weak).

Definition 3.3.5 (Weak symplectic manifold). Let M be a smooth locally convex manifold,
and let X' (M) denote smooth vector fields on M. A weak symplectic manifold is a pair

(M, w) consisting of a smooth manifold M and a closed non-degenerate 2-form w on M.

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector

fields on M by
ham(M,w) ={X € X(M) : 3H € C*(M;R) s.t. w(X, ) =dH}. (3.3.8)
Similarly, we denote the larger Lie algebra of symplectic vector fields on M by
sp(M,w) ={X e M : Lxw = 0}, (3.3.9)

where Lx denotes the Lie derivative with respect to the vector field X.

With this definition in hand, we see that one has the desired implication analogous
to the finite dimensional setting, namely that weak symplectic manifolds canonically lead to

weak Poisson manifolds.

Remark 3.3.6 (Weak symplectic = weak Poisson). Let (M,w) be a weak symplectic man-
ifold. Let
A={H € C®(M;R): IXy € X(M) s.t. w(Xg, ) =dH}, (3.3.10)
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then

(Vi Ax A=A {F.G}=w(Xp Xg) = dF[Xg] = XcF (3.3.11)

defines a Poisson bracket on A satisfying properties [P1)| and [[P3)| If we additionally have

that for each m € M and all v € T,,, M, the condition
w(X(m),v) =0, VX € ham(M,w) (3.3.12)

implies that v = 0, then property [(P2)|is also satisfied. Consequently, the triple (M, A, {-,-})

is a weak Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Poisson

structures. This leads to the notion of a Poisson mapping, alternatively Poisson morphism.

Definition 3.3.7 (Poisson map). Let (M;, A;,{-,-};), for j = 1,2, be weak Poisson mani-
folds. We say that a smooth map ¢ : My — Ms is a Poisson map, or morphism of Poisson

manifolds, if p* A C A; and
O {F,G}, ={¢"F,¢"G},, VE G € As. (3.3.13)
Remark 3.3.8. In [69], the authors define a Poisson morphism
o (My, Ar{s ) = (Mo, Ay { o))
with the requirement that ¢*As = A;. We drop this requirement in our Definition [3.3.7]

As an example, we demonstrate that the Schwartz space S(R¥) is a weak, but not
strong, symplectic manifold. The following analysis also holds for the bosonic Schwartz space

S, (R¥) mutatis mutandis, which will be important for our applications in the sequel.
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We equip the space S(R¥) with a real pre-Hilbert inner product by defining

(b, = 2Ref [ anTTdoteo | 3310

The operator J : S(R¥) — S(R¥) defined by J(f) := if defines an almost complex structure

on (S(R¥), (-|)g.), leading to the standard L* symplectic form

wrz(f, 9) = (Jf|g)r. = 2Im{/Rk dzk@g(zk)}, Vf, g € S(RF). (3.3.15)

Proposition 3.3.9. (S(R*),w;2) is a weak symplectic manifold.

Proof. S(R¥) is trivially a smooth manifold modeled on itself. Moreover, it is evident from
its definition that w2 is bilinear, alternating, and closed. To see that w;2 is non-degenerate,

let f € S(R¥) and suppose that
wr2(f,9) =0 Vg€ S(RY). (3.3.16)

It then follows tautologically that Im{(f|g)} = 0. Replacing g by ig, we obtain that
Re{(flg)} = 0, which implies that (f|f) = 0, hence f = 0. O

Now given a functional F' € C*(S(R*); R), the Gateaux derivative dF[f] at the point
[ € S(R*) defines a tempered distribution. We consider the case when dF[f] can be identified
with a Schwartz function via the inner product (:|-)p.. The next lemma follows by the

Lebesgue lemmaE and the same argument used to prove non-degeneracy in Proposition m

11'We use the name Lebesgue lemma to refer to the result that if w1, uo are two locally integrable functions
such that u; = wuy in distribution, then w; = us point-wise almost everywhere.
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Lemma 3.3.10 (Uniqueness of gradient). Let F' € C*°(S(R*);R) and f € S(R*). Suppose
that there exist g1, go € S(R*) such that

(0110f)ge = dF[f1(6f) = (9210 f)go»  VOf € S(RY). (3.3.17)
Then g1 = gs.

Definition 3.3.11 (Real L? gradient). We define the real L? gradient of F € C®°(S(R*); R)
at the point f € S(R*), denoted by VF(f), to be the unique element of S(R¥) (if it exists)

such that
AF[)(6f) = (VE(DIf)ne. VoS € S(RE). (3.3.18)

We say that F has a real L? gradient if VF : S(R¥) — S(R*) is a smooth map.

Remark 3.3.12. Since the Hamiltonian vector field of Xp, if it exists, is defined by the

relation
dF[f1(0f) = wi2(Xr(f),6f), (3.3.19)

and since Xp is unique by the fact that S(R¥) is dense in S'(R*), we see that Xp(f) =
—iVF(f). In the sequel, we will use the notation V F = Xp, which we refer to as the

symplectic L* gradient.

We now use Remark to show that the symplectic form w2, which we recall is
defined in (1.3.1)), canonically induces an L? Poisson structure on S(RF).

Proposition 3.3.13. Define a subset As C C°(S(RF);R) by

As ={H : V,H € C™(S(R"); S(R¥))}, (3.3.20)
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and define a bracket {-,-};. on As x As by
{F,G};» = w2(VF, V,G). (3.3.21)
Then (S(R*), As, {,},2) is a weak Poisson manifold.
Proof. By Remark , we only need to check that for every fixed g € S(R¥), the condition
w2 (X(f),9) =0, VX € ham(S(R*),w;2) (3.3.22)

implies that ¢ = 0 € S(R*). Since ham(S(R¥),w;2) contains the constant vector fields
X(-) = fo, for any fixed fy € S(R¥), we see that by taking X (f) := ig for all f € S(R¥),
that the condition ((3.3.22) implies that

0=w(ig,g) = —QIm{/Rk d%k@@k)g@k)} = 2”9”%2(11@)- (3.3.23)

Hence, g = 0, completing the proof. O

3.3.2 Some Lie Algebra Facts

In this subsection, we collect some facts about Lie algebras for easy referencing. We
outline a canonical construction of a Poisson structure on the dual of a Lie algebra, which is
known as a Lie-Poisson structure. Furthermore, we will outline a construction of hierarchies
of Lie algebras which will serve as an inspiration for our construction of the Lie algebra &.

We refer the reader to [60, [59] for more background and details.

We begin by recording the definition of a Lie algebra for subsequent reference in our

proofs.
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Definition 3.3.14 (Lie algebra). A Lie algebra is a locally convex space g over the field
F € {R,C} together with a separately continuous binary operation [-,:] : g X g — g called
the Lie bracket, which satisfies the following properties:
(L1) [-,] is bilinear.
(L2) [z,z] =0 for all z € g.
(L3) [, -] satisfies the Jacobi identity

@, [y, 2]] + [z, [#,y]] + [y, [z,2]] = O (3.3.24)

for all z,y, 2z € g.

Remark 3.3.15. Usually (see, for instance, [72]), a Lie bracket is required to be continuous,
as opposed to separately continuous. We drop this requirement in this work, due to functional

analytic difficulties.

Definition 3.3.16 (Nondegenerate pairings). Let V' and W be topological vector spaces
over the field I, and let

(|): VxW—=TF
be a bilinear pairing between V' and W. We say that the pairing is V -nondegenerate (respec-
tively, W-nondegenerate) if the map V- — W* z — (z|-) (respectively, W — V* y — (-|y))
is an isomorphism. If the pairing is both V- and W-nondegenerate, then we say that the

pairing is nondegenerate.

Definition 3.3.17 (dual space g*). Let (g, [-,]) be a Lie algebra. We say that a topological

vector g* is a dual space to g if there exists a pairing (|-) : g x g* — F which is nondegenerate.
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Example 3.3.18. If g is a reflexive Fréchet space, for instance the Schwartz space S(R?),
then taking g* to be the topological dual of g equipped with the strong dual topology, the
standard duality pairing

gxg" = F:(z|p) =)

is nondegenerate.

A consequence of the existence of a dual space g* for a Lie algebra g is the exis-
tence of functional derivatives, which is crucial to proving that the Lie-Poisson bracket in

Proposition [3.3.20] below is well-defined.

Lemma 3.3.19 (Existence of functional derivatives). Let g be a Lie algebra, and let g*

be dual to g with respect to the nondegenerate pairing (-|-) For any functional F €

g—g*’

t o

Cl(g*;TF), there exists a unique elemen 5. € 0 such that

oF "
<5— 5u> _AF(u),  ponE g (3.3.25)
© g—g*

Proof. Let 1 € g*. The Gateaux derivative of F' at p denoted dF'[u] and defined in Defini-
tion is a continuous linear functional on g*. Hence by the nondegeneracy of the pairing,
there exists a unique element ‘;—F € g such that

I

SF .
<5— 5u> =dF[pl[op],  odpeg O
© g—g*

We now have the necessary ingredients to define the canonical Poisson structure on
the dual space g*, which we call the Lie-Poisson structure, following Marsden and Weinstein

58].
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Proposition 3.3.20 (Lie-Poisson structure). Let (g, [-,-];) be a Lie algebra, such that the
Lie bracket is continuous, and let g* be dual to g with respect to the non-degenerate pairing

(-|->g_g*. Define the Lie-Poisson bracket

{3 C=(g"F) x C= (g% F) — C(g"; F) (3.3.26)

[F.GYH) = <[§—Z g]

u> : e g (3.3.27)
.
Then (C*°(g*;F),{-,-}) is a Lie algebra.

Remark 3.3.21. Note that in the statement of Proposition [3.3.20, we require that the Lie
bracket [-, -] o be continuous, not merely separately continuous as in Definition . Since
the Lie brackets we consider in Section |3.4] and Section [3.5] are only separately continuous,
we do not use Proposition directly, and therefore we have omitted the proof of it. We
emphasize, though, that the construction of the proposition inspires our constructions in the

sequel.

3.3.3 Bosonic Functions, Operators and Tensor Products

We denote the symmetric group on k letters by S;. For a permutation m € S, we

define the map 7 : R¥ — R* by
T(2y,) = (Ta1)s - - - Tr(k))- (3.3.28)

For a complex-valued, measurable function f : R¥ — C, we define the map
(mf)(zy,) = (fom)(zy) = f(@r1), - Tr())- (3.3.29)
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We denote the pairing of a tempered distribution u € §'(R¥) with a Schwartz function

f € S(R*) by
(U, s @ry-s@n)- (3.3.30)
Throughout, we will use an integral to represent the pairing of a distribution and a test
function. For 1 < p < oo, we use the notation LP(R¥) to denote Banach space of p-integrable
functions with norm || - || z»gr). In particular, when p = 2, we denote the L* inner product

by

o) = [ deFlao(e). (3331)
Note that we use the physicist’s convention that the inner product is complex linear in the

second entry. Similarly, for u € §'(R¥) and f € S(R¥), we use the notation (u|f) to denote

(ul ) = (u, f)s@r)-sms)- (3.3.32)

Alternatively, the right-hand side may be taken as the definition of the tempered distribution

u.

Definition 3.3.22. We say that a measurable function f : R¥ — C is symmetric or bosonic
if
T(f)=1r (3.3.33)

for all permutations m € Sy.

Definition 3.3.23. We define the symmetrization operator Sym, on the space of measurable

complex-valued functions by

Symy(f)e) = 75 3 (e ). (3331

TESK

By duality, we can extend the symmetrization operator to S'(IR¥).
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Definition 3.3.24 (Symmetric Schwartz space). For k € N, let S,(R*) denote the subspace

of S(R¥) consisting of Schwartz functions f with the property that
f(a:ﬂ(l)v cee >x7f(k)) = f(zy), (z),) € R* (3.3.35)
for all permutations m € Sg.

Definition 3.3.25 (Symmetric tempered distribution). We say that a tempered distribution

u € 8'(RF) is symmetric or bosonic if for all permutations m € S,
<u, 7Tg>Sl(Rk),3(Rk) = <U, g>$/(Rk),3(Rk), (3336)
for all g € S(R¥). We denote the subspace of symmetric tempered distributions by S’(R¥).

Remark 3.3.26. It is straightforward to check that Sym,, is a continuous operator S(R¥) —

S,(R*) and S'(R*) — S!(R¥). Furthermore, a measurable function f is bosonic if and only
if f = Symy(f).

Lemma 3.3.27. We have the identification

S!(RF) = (S,(RF)Y. (3.3.37)

Proof. Let € € (S,(R¥))". For all f € S,(R*), we have that

Uf)=4Ur(f), m€Sk (3.3.38)
Hence,
() = 25 3 () = USymy(£). (3339

Since Sym,, is a continuous linear operator on S(R¥), it follows that £oSym, € S’(R*). Since
Symy (7(f)) = Sym,(f) for any permutation m € S, it follows that £ o Sym, is permutation

invariant, hence an element of S’ (R¥). O
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Given two locally convex spaces E and F', we denote the space of continuous linear
maps E — F by L(E; F'). We topologize L(F; F') with the topology of bounded convergence.
For our purposes, we will typically have E, F € {S(RF), S,(RF), S'(R*), S’ (R*)}.

Remark 3.3.28. In the special case where F = F = S(RF), we will write £(S(R¥), S(R¥))
to denote the vector space L£(S(R¥), S(R¥)) equipped with the subspace topology induced
by L(S(RF),S'(R*)). The same statement holds with the Schwartz space replaced by the

bosonic Schwartz space.

In the case that F = S(RY) and F = &'(R?), the bounded topology is generated by

the seminorms
HA”zR = fSUI?R |<Af7 g>8’(Rd)78(Rd)’7 VA € 5(8<Rd)a31(Rd))7 (3~3~40)
796

where R ranges over the bounded subsets of S(R?). An identical statement holds with all
spaces replaced by their symmetric counterparts. We topologize S'(RY) with the strong dual

topology, which is the locally convex topology generated by the seminorms of the form

| dereetey)|. (3:3.41)

1fll5 = sup
peDB

where B ranges over the family of all bounded subsets of S(RY). Note that since S(R")
is a Montel space, bounded subsets are precompact. An identical statement holds with all

spaces replaced by their symmetric counterparts.

Definition 3.3.29 (Symmetric wave functions). For k € N, let L2(IR*) denote the subspace

of L*(R*) consisting of functions f which are bosonic a.e.
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For A € L(S(R*),S'(R*¥)) and 7 € Sy, we define
A1)ty =T O A0 T (3.3.42)

Definition 3.3.30. Given A € L(S(RF),S'(R¥)), we define its bosonic symmetrization
Symy (A) by

Sym,,(A) = 0 Z A1), m(k))- (3.3.43)

Definition 3.3.31 (Bosonic operators). Let k € N. We say that an operator A : S(R*) —

S'(R¥) is bosonic or permutation invariant if A maps S,(R¥) into S’ (R¥).

The analogue of Remark [3.3.26| holds for the symmetrization of operators in that

symmetrized operators are indeed operators on the bosonic Schwartz space.

Lemma 3.3.32. Let k € N. If A®) ¢ £L(S(RF),S'(R*)), then
Sym, (A" € L(S,(R¥), SL(R)). (3.3.44)

Proof. Tt suffices to show that for any k-particle operator A®) € £(S(R¥), S'(R¥)) and any

permutation o € Sy, it holds that

/Rk dlk(symk(A(k))f) (z)9(0 () = /

- dzy, (Symk(A(k))f) (zr)g(zy) (3.3.45)

for all f € S,(R*) and for all g € S(R*). To this end, observe that

/Rk dzy, (Symy,(AW) £) (2)9(xo-101), - - Tor (1))

1 k
= / dxy, (E Z <AEW)(1) ,,,,, 7T(k))f) (lk))g(xa—1(1)7 S 7xa_1(k))' (3.3.46)
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By definition (3.3.42), we have

(x (D)) = 7A® (7 f). (3.3.47)

Therefore,

1 k _
7 Z /Rk dxy, (Aél,),,_,k)(ﬂ 1f)>($n(1), e ,ﬂfw(k))g(%ﬂu),---,%71(1@))

TESK
1 —
- E Z /Rk dlk (A(k) (7T lf))(gk)g(rﬁflcr*l(l)a R 7:E7r*10'*1(k))
TESK
1
=5 Z /Rk dx,, (A(k)f) @k)g(xrlrl(l), o 7x7r710-71(k))7 (3.3.48)
TESE

where, recalling (3.3.29)), the second line follows from a change of variable and the third
line follows from the assumption that f is symmetric with respect to permutation of the
coordinates. Since for any fixed o € S, m — 7 'o~! defines a bijection of the group Sy, it

follows from a change of summation index that

1
Kl Z /Rk dz (A(k)f)(ik)g(xrloflu), e Talg-1(k))

TESE

1
5 Z /Rk d£k<A(k)f) (z)9(xz), - -, Ta))
T weSy

1
P> /Rk day, (AP(7F)) (@amra), - Bamrey)9(2i)

7ESh,
= /Rk dzxy, (Symk(A(k))f) (z4)g(2y), (3.3.49)

where the penultimate line follows from the assumption that f is symmetric and a change

of variable. This concludes the proof. O

The following technical lemma will be useful in the sequel. For definitions and dis-

cussion of the generalized trace, see Definition |3.2.1}
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Lemma 3.3.33. Let k € N, and let v € L(S.(R¥), S,(R¥)) and A® € L(S(RF),S'(RF)).

Then for any permutation T € Sg, we have that

Tt (At ™) = Tran (A% ). (3.3.50)

.....

Proof. Let 7 € Si. Now let
Y =" 1) (il (3.3.51)
j=1

be a decomposition for v*), where >y N < 1 and {f3224, {9,372, are sequences tending

to zero in S,(R¥). In particular, the partial sums

N
SN o] 1% in £(S)(RY), 5,(BF)). (33.52)
j=1

Since the map
Try, k (AE%) ..... T(k)') L L(S'(RY), S(RY)) — C, (3.3.53)

(k)
A T(k))fj> : (3.3.54)

Since f; and g; are both bosonic, we have by definition of the notation Agﬁzl) (k) 1 (13.3.42])

.....

that

ABL i) = AP D)) = (] AV ), YiEN. (3.355)

77777

(o
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Therefore,

N
j AE%) ..... T(k))fj> = ng{l)oz)\g <9j‘A(k)fj>
j=

N
= T (A““) (Z i l5) <gj\))
= Try,. s (A®HH), (3.3.56)

Try . & (A(k)-) and the convergence of the partial sums. O

-----

We define the usual contraction operator B;.; appearing in the literature on derivation

of quantum many-body systems.

Definition 3.3.34 (The contractions operator B;;). Let & € N. For integers 1 <i,j5 < k

with ¢ # j, we define the continuous linear operators operators
+ . k+1 k+1 k k
B L(S'(R*), S(R*™)) = L(S'(R*), S(RY)) (3.3.57)
by defining the Schwartz kernel of B, (y**1)) by the formula
B (Y ) @y zp) = /Rdy5(xi — )Y N @y Yz 2 Y ),

for all (z,z},) € R*. Similarly, we define the Schwartz kernel of B (y**V) by the formula

BT:] (7(k+1)>(£k7 &2) = A dy(S('r; - y),y(kJrl) @1;]‘—17 Y, &],ka &ll;jfh Y, &;’;k)a
for all (x;, ) € R* We define the continuous linear operator

Biyj + LIS (RM), S(RF)) = LS((RF), S,(RY))
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Bi; = Bf, — By (3.3.58)

Given two locally convex spaces E and F', we denote an@ algebraic tensor product

of E and F consisting of finite linear combinations
Y Nej®fi, ¢ €E, fjeF (3.3.59)
j=1

by EF® F. We note that since the spaces we deal with in this chapter are nuclear, the topolo-
gies of the injective and projective tensor products coincide. Hence, we can unambiguously

write EQF to denote the completion of E® F under either of the aforementioned topologies.

Given locally convex spaces F; and Fj for j = 1,2 and linear maps 7" : Iy — E5 and

S : Fy — Fy, and a tensor product
B:FE, x Ey - E; ® Es, (3.3.60)
the notation T' ® S denotes the unique linear map T'® S : E1 ® F; — Ey x F, such that
(T®S)oB=T x S. (3.3.61)

Note that the existence of such a unique map is guaranteed by the universal property of the

tensor product.
When F and F' are subspaces of measurable functions on R™ and R"™ respectively,

and e € F and f € F, we let e ® f denote the function

e@ [R"XR"=C,  (e® f)(@,,;2,) = e(z,)f(z),), (3.3.62)

T

12The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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which induces a bilinear map F x F' — E® F. Similarly, if £’ and F” are the duals of spaces
of test functions £ and F, for instance E' = A’(R™) and F' = A’'(R"), we let u ® v denote

the unique distribution satisfying

(u®v)(e® f)=ule)-v(f). (3.3.63)

Finally, if ¢ : R™ — C is a measurable function, we use the notation ¢®*, for k¥ € N, to

denote the measurable function ¢®* : R™* — C defined by

k

6 (@rs ) = [ [ S@m): (3.3.64)

/=1

and we use the notation ¢** to denote the measurable function ¢** : R™ — CF

O (2) = (D) -, D(2,))- (3.3.65)

3.4 Geometric Structure for the N-Body Problem

In this section we establish proofs of the results stated in Section [3.1.1]

3.4.1 Lie Algebra &y of Finite Hierarchies of Quantum Observables

We begin by defining a Lie algebra g, of k-body observables. We have some freedom
to choose our definition of this Lie algebra, provided that our choice is large enough to
include the Hamiltonian of the N-body problem yet small enough so that operations such
as composition and taking adjoints are well-defined. We find that continuous linear maps

from the bosonic Schwartz space to itself forms a convenient choice.

For k € N, define

g = {A®) € £(S.(RY),S.(RY)) : (AD) = —A®)}, (34.1)
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where we recall that £(S,(RF),S/(R*)) is defined in Remark [3.3.28, Let
[ ']gk C0k X Ok — Bk
be the usual commutator bracket scaled by a factor of k:
[A, B], = k[A, B] = k(AB — BA). (3.4.2)

Note that the commutator is well-defined since the space £(S,(R¥), S(R¥)) is closed under

composition. We refer to the elements of gi as k-body observables.

The first goal of this subsection is to verify that (g, [, ] gk) is a Lie algebra in the
sense of Definition [3.3.14] Namely, we prove the following proposition.

Proposition 3.4.1. (gx, [-,"],, ) is a Lie algebra in the sense of Definition |5.5.14

Proof. That [-,] .. is algebraically a Lie bracket is immediate from the fact that the com-

mutator satisfies properties [(L1)| |(L2)| and [(L3)l Therefore, it remains to verify that the

commutator is separately continuous with respect to the topology on gix. By symmetry,
it suffices to show that for fixed A®) ¢ g,, the map B® — A®B® is continuous on
L(S,(R¥), S,(R¥)), which amounts to showing that for any bounded subset R C S,(R¥),
there exists a bounded subset & C S,(R¥), such that

sup [(g]A® B )| < sup [(g|Bf)]. (3.4.3)
f9eR ~

f,geR
Now note that (g|A®B®) f) = <(A(k))*g|B(k)f>. Since (A®)* = —A® it follows from
the continuity of A® that (A®)*(%R) it a bounded subset of S;(R*). Choosing % = R U
(A®Y*(R) completes the proof. O
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We next introduce some combinatorial notation used frequently in the sequel. For
N € N and k € Ney, let PV denote the collection of k-tuples (jy, ..., i) with k distinct
elements drawn from the set Ncy. Given an element (ji,...,Jjx) € PV, let (my,...,my_)
denote the increasing arrangement of N<y \ {j1,...,Jx}. We denote by ;..;, € Sy the
permutation

| e
m(a) = {Z’ a=Jjifori€Ne (3.4.4)

k+1, a=m; foriENSN_k'

Our first lemma defines a continuous linear map €,y which allows us to regard a k-
particle observable as an N-particle observable. This map € y is crucial to the definition of
the Lie bracket between two observable N-hierarchies and by duality, to the Poisson bracket

of two density matrix N-hierarchies.
For A®) € £(S,(RF),S,(RF)), N € Nwith 1 <k < N, and (ji,...,jx) € PY we can

define the operator

A(k’)

(j17"'7jk

) € L(S,(RY), S(RY)) (3.4.5)

which acts only on the variables {ji,...,jx} by defining

(k) _ Ak
A(l,...,k) = AW @ Idy_4
and setting
(k) - (k)
(Jroendn) 7Tj1~1"jk © A(l,...,k) O Tjyee g (3.4.6)

We establish some properties of such operators, which we call k-particle extensions, in Propo-
sition m These k-particle extensions are used to define a map €5 x. We will show first, in
the following lemma, that ¢, x have the desired mapping properties, and then subsequently

that the €, n are injective, and hence they are proper embeddings of the space g; into gy.
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Remark 3.4.2. Although A® is a priori only defined on the proper subspace S,(R¥) C
S(R¥), this operator admits an extension to the space S(R*) since we may always consider

A®oSym,. We agree going forward to abuse notation by identifying A*) with this extension.

-----

all our constructions are independent of the choice of extension.

Lemma 3.4.3. For integers 1 < k < N, there is a continuous linear map

exn : L(So(RF), SHRF)) — L(S,(RY), SL(RY)) (3.4.7)
defined by
anx(A®)=Cpy Y AL (3.4.8)
(J1rsd)EPY
where

S (110)) R —— "

Moreover, if A®) € L(Sy(R¥),S,(RF)), then ex n(A®) € L(S{(RY), Sy (RY)), and if A®) is

skew-adjoint, then e, x(AW) is skew-adjoint. In particular, e n(gx) C gn-

Proof. Fix 1 < k < N. From Proposition m, it follows that if A® € L(S,(RF),S!(R*)),
then e, v (A®) as given in (3.4.8) is a well-defined element of £(S,(RY), S’ (R")) and the map
€r n is linear. Furthermore, it follows from Lemma that skew-adjointness is preserved.

So it remains for us to show that
exnv (L(Ss(RF), S,(RF))) € L(S,(RY), S, (RY)) (3.4.10)

and that €, x is continuous.

13Note that Cy y = 1/|PN].
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e Consider the assertion (3.4.10). By properties of tensor product and the continuity of
itself, and hence that
A(k)

(J15-7%)

' So(RY) — S(RY)

is a continuous map follows directly from (3.4.6). We thus need to show that e, y(A®)(f)

is bosonic.

Let m € Sy. It is straightforward from the definition of Ag? and (3.3.29)) that, for any

----- k)
test function f € Ss(RY), we have
(k) _ A(R) ()
TA i) F) = Aati)n ) (TF) = A, cinin () (3.4.11)

where the ultimate equality follows from f being bosonic. Since Sy induces a left group

action on P, it follows that

(k) _ (k)
D AGaw= 2 At (3.4.12)

reen(AM)(f) = Con D> mAL () = an(AD)(), (3.4.13)

-----

as desired.

e Now we will prove the assertion that € y is continuous. Let iy be a bounded subset of

S,(RY). We need to show that there exists a bounded subset R, C S,(R¥) such that

sup (g™ ]ern(AD NS sup [(g®]AW ] (3.4.14)
£

f) g eRy k),g(k) exy,
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Using the fact that there are finitely many terms in the definition of €5 y and that the finite
union of bounded subsets is again a bounded subset, it suffices to show that, for Ry as
above and any tuple (ji,...,jx) € P}, there exists a bounded subset R, ;) C S(RF),

such that

k
s ‘<9(N)’A§jl),...,jk>f (N)>‘ S sup (g™ |A® fEy] (3.4.15)
f(N),g<N)€9%N f(’“),g”“)ei)%(jl

since then the desired bounded subset R C S,(R¥) is obtained by taking

Ry, = Symy, U R i)

iy
Now (|3.4.15]) is a consequence of the fact that

L(S,(RF), S/ (RF)) = L(S,(RFQSRYF) S'(RY)), AW AW @ Idy_;, (3.4.16)

is continuous, (3.4.6), and the fact that for any j, € PN the map mj, _;, defined by (3.4.4)

and duality is a continuous endomorphism of &'(RY).
[

We next show that the maps €, x are injective. This property is crucial as we will

ultimately construct our Lie bracket on the hierarchy algebra by embedding elements of the

sequence into the ambient algebra gy, taking the bracket in gy, and then identifying the

output as an embedded element of gy, for some k£ € N<y.

Lemma 3.4.4 (Injectivity of e n). For integers 1 < k < N, the map exn : g — OGN 1S

injective. Consequently, €, n has a well-defined inverse on its image, which we denote by
—1
€N
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Proof. Fix 1 < k < N. We will show the contrapositive statement: if A® = 0, then
€k,N(A(k)) # 0.
We introduce a parameter n € Ny, with n < k. We say that A®) has property P,, if

the following holds: there exists f, g1, ..., gx—n € S(R) such that

A®) (Symk ( " é) ga)> 40, (3.4.17)

where the tensor product is understood as vacuous when n = 0. We define the integer n,
by
Nmin = max{min{n € N, : A® has property P,}, k} (3.4.18)

Note that we must have n.;, < k, else, by definition of property P,,, we would then have

that for all ¢1,...,9x € S(R),
A®(Sym, (g1 @ --- @ gi)) = 0. (3.4.19)

By linearity and continuity of A®) together with density of finite linear combinations of

symmetric pure tensors in S,(R¥), (3.4.19) implies that A%*) = 0, which is a contradiction.

To avoid notation confusion, we first dispense with the trivial case ny;, = 0. The
definition of property Py implies that there exists an element f € S(R) such that A®)(f®k) £

0. It then follows trivially from the definition of each summand Agf)

Lyeees,

) in the definition of
€k7N(A(k)) that
e (A (fEN) £ 0 € SI(RY). (3.4.20)

14We adopt the convention that the minimum of the empty set is 0o, and therefore we take the maximum
with k& to ensure that n;, is finite.
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We now consider the case 1 < ny;, < k. The definition of property P,, . implies that

there exist elements f, g1,..., gn... € S(R) such that

A® <Symk ( fEFmin é{) ga)> #0 € Si(RY). (3.4.21)

a=1

Define an element hY) € S,(RY) by
AN = Sym, ( fERmmin ® ) f®N’“). (3.4.22)

We claim that e, y(A®)(AM) £ 0 € S/(RY). Indeed, unpacking the definition of ¢, x(A®))

and Sym ,, we have

een(AD) (V) = Crn Y AL jk)(z m(fEF i @ ( ®ga f®N"“)>. (3.4.23)

,,,,,

i epN TESN

We first examine the interior sum. For each j . € P}, we can partition Sy into the sets

Sy, = {7 € Syt (k= Min + Do AR} N G il =1} (3420
forr =0,...,nmn. We write
TESN a=1 r=0 7r€§7

By symmetry considerations, we may suppose that (ji,...,jx) = (1,...,k). It is a short

counting argument that for each r € {0, ..., nyun}, we have that

Mmin

Z ﬂ_(f@)k;—nmin ® (® ga) ® f®N—k:>

Clhnnrd) S so 50 @) Sy (8 ) k).

n =1 = 1
E"mm EPnrrr?llr? a a=r+

(3.4.26)
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where C'(k, nyin, 7, IV) is another combinatorial factor depending on the data (k, nmyi,, 7, V).

Each term
Symy, <f®’“‘7” ® ) gea> ® Symy_, (( Q) ) ® f®N‘"mm—’“+’"> (3.4.27)
a=1 a=r+1

k
..... )
Now by definition of 7, we have that for each r € {0, ..., nyin — 1} that

Y e - T R - p ).
a=1

a=r+1
= A® (Symk(f‘@k"“ © Q) %)) ® Symy_y <( &) 9e) @ fN ‘”“‘i“"“*’“)
a=1 a=r+1

=0 € S, (RF)QS,(RNF).
When r = ny,, we have that

AEIIC)k;) (Symk(f@)knmi“ ® ® Ge,) ® f®Nk))

a=1

Nmin

= A0 Sy (1 0 R ) ) 0 5

a=1
is a non-zero element of S’ (R¥)&S,(RNY=*) by choice of the elements f, g1, ..., ... € S(R).

Consequently, for a possibly different combinatorial factor C’(k, V), we conclude that

Tmin

€k7N(A(k))(h(N)) = C(k,N) Symy <A(k) (Symk<f®k—nmm ® ®ga)) Q f®N—k> (3.4.28)
a=1

is a nonzero element of S,(RY), completing the proof of the lemma. O

We next show that the bracket [-, -]  respects the hierarchy in the sense that

gN

lee,n(9e), Ej,N(gj)]gN C €min{t4j—-1,N},N (Gmin{e+j—1,81) C ON- (3.4.29)
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This filtration or gradation property is crucial to our definition of the hierarchy Lie bracket

in the sequel.

Before proving Lemma below, we introduce some contraction and commutator-
type notation used in the proof and in the sequel. Consider integers N € N, ¢,j € Ncy, k =
min{/+j — 1, N} and r > 1 satisfying appropriate conditions. Let A®) € L(S,(R*), S,(R"))
and BY) € L(S,(R7),S,(R7)). We define the r-fold contractions

. e -
A® o, BY) = Agl)’m’g)( > BY MT)> € L(S,(R"), S'(RY)) (3.4.30)
,€Pt
BW o, A® = B(({?wj)( > AD j+é—r)) € L(S,(R"), S'(RM)). (3.4.31)
ozTEPTj

Note that the compositions are well-defined since
() 0
Z B(QT,E-H ----- L+j—r) and Z A(QTJH ----- G+e—r) (3‘4'32>
a,€Pt Q,EPZ
have targets which are symmetric under permutation in the first £ and j coordinates, respec-

tively. We then set

(A0, U] (J) A© o, BO) _ <£> B o A®. (3.4.33)
r T

r

The motivation for the combinatorial factors in (3.4.33|) will become clear from the proof of

Lemma below.

Remark 3.4.5. We may also proceed term-by-term to define (3.4.30]) and (3.4.31]) by consid-

by the target symmetry of operators with which the extensions are right-composed.
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In the sequel, we will need a technical lemma concerning the separate continuity of
the binary operation o,. The proof of this result is quite similar to that of (the more general)

Lemma below, so we omit the proof.

Lemma 3.4.6. Let (,j,k, N > 1 be integers such that £,j7 < N and min{¢ +j — 1, N} = k.

Let r be an integer such that ro < r < min{l, j}, where
ro = max{l, min{¢, j} — (N — max{/, j})}. (3.4.34)
Then the bilinear map
() or (1) : L(S(R), S(RY)) x L(S(R'), S(R')) = L(S(R"), S(R")) (3.4.35)
is separately continuous|!]

Lemma 3.4.7 (Filtration of hierarchy). Let N € N and let 1 < ¢,j < N. Then for any
A® € gy and BY € g;, there exists a unique C¥) € gy, for k == min{l + j — 1, N}, such
that

[6471\7(14(2)), Ej,N(B(j))} = €k7N(O(k)). (3436)

9N

15We recall that £(S(RF),S(R*) denotes the space £(S(RF),S(R¥)) of continuous linear maps from
Schwartz space to itself equipped with the subspace topology induced by £(S(R¥), &' (R¥)).
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Proof. By definition,

[e&N(A(Z)), ej’N(B(j))]

gN
NG| X A (X B ) = X B (2 Al )
mZEPN @]EP].N nJEPJN mEEPN
min{¢,j} © ”
— J
= NCynCj N Z ( Z A(mly--~7m[)( Z B(mwnj))
r=1 mZGPZN ﬂjePJN

{mq,..., mz}ﬁ{nl ..... nj}\:r

o Z B&L---ﬂj)( Z Agfgll,---yme))>'

n;ePN meePN
J J
[{m1,..., mp}n{ny,..., nj}|:r

(3.4.37)
Without loss of generality, suppose that ¢ > j. We consider the case / + 7 —1 < N. For

each integer 1 <r < j, we have by the S;-invariance of the operator BY) that

() _ (7 )
Z B(nlwwnj) - (7,) Z B(nl,...,nj)' (3.4.38)

ﬂjePJN ﬂjeij
[{m1,..., mp}r{ny,..., nj}|:r {ni,..., nr}C{mq,..., my}
{npgp1sn nj}ﬁ{ml ..... mp}=0

Similarly, by the S,-invariance of the operator A®), we have that

® _(f 0
Z A(m1 ----- me) (7) Z A(mh...,mg)' (3.4.39)

meeP]N meePN
[{n1,..., nj}ﬁ{'ml ..... mp}=r {m1,..., my}C{ny,..., nj}
{mpg1sees mp}rn{ny,..., nj}:E)

Upon relabeling the summation, we see that

min{¢,j} .
_ J @ (4)
(3:4.37) = NCE’NC"N Z Z <<7») A(P1,~~-,Pl) ( Z B(p41,~~~7mr 7pé+17--~7p£+jr))

1<ly,...,4r <t
p2+j re [+J s \{Zl »»»»» Ly }|=mr

€\ 56) ()
o (fr) B(pl,m,pj) Z A(pjlw-J’jr’Pj+1,~~~:pj+2—r)

1<jy,00dr <Jj
[{d1,--sdr}l=r

(3.4.40)
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If r =1, then the summand of (3.4.40) equals

£ J
A0 () (©) ©®
NCE’NC]"N Z jA(Pl ~~~~~ Pe) <Z B(Paapz+1,--~»l7k)> o gB(le-,Pz) ( A(Pmpj+17~--7pk))

N =
Bkepk a=1

= NCnCjn Z j<A(z) 1 B(j))(pl,---,pk) - g(B(j) o1 AM))(?I ----- k)

N
Ekepk

o (NCK,NC’j,N
=€ N| —F=F——

o Sym, (j(AY oy BY)) — ¢(BY o, A<’f>))>. (3.4.41)
kN

Now suppose that » > 1. Observe that

T\ 40 ()
Z ( (/r’) A(plu“'ﬂpf) < Z B(pfl seesPly ’pZ+17"'7pl+jT)>

epN. 1<0y,. bn<t
PoyjpStedj—r {210 rtr} =

€\ H6) ©
o <T)B(p1 ----- p;) Z A(lev---vpjmpj-!—l ----- Pito—r)

(3.4.42)

1<j1,.5dr<Jj
[{i1,dr}l=r

cannot be immediately identified as an embedded element of g; because the summation is
not over tuples p, € PYN. Indeed, we are missing k — ({ + j —r) = r — 1 coordinates.

To address this issue, we observe that we can write p, € PV as p, = (2_96+j—7" q. 1), where

Poyj, € P}, and
g, € Nen \{p1,. .. Derj—r ) with {aq1, ..., ¢ 1} =7 — 1. (3.4.43)

For each Ppojy € P}{,_,, the number of (r — 1)-cardinality subsets of Ney \ {p1, ..., petjr}

N—-l—j5+r
r—1 '

Since there are (r — 1)! ways of permuting r — 1 distinct elements, we conclude that for

18
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N
£Z+j—r € P€+J'*7”

g, € Nan \{p1,- o0 ) Han e =7 = 1} = (N_g_j+r) (r—1)!

where we use that ¢ + j — 1 = k. Hence, the summand of (3.4.40)) equals

NCynCjN 3 AWG S BY
HT__ll(N—k—i—m) r ) (P1pe) (Dey e sPly Pr+15e Dot j—r)

BEF b (3.4.45)
€\ H0) (©)
o (7‘) B(Pl ,,,,, D) Z A(pjl ----- DjpsDj41eesDjtbl—r) )
j €P!

and by definition, we obtain that this expression equals

. ]YSK,NCj,N Symk((j> A0 o BO) (f) B o, A(f)) . (3.4.46)
Con T2 (N =k +m) r "

Now suppose that £+ 5 — 1 > N. Then proceeding as above, we see that r > 1 must

in fact satisfy the lower bound
r > min{l,j} — (N —max{/, j}) = ro. (3.4.47)

Combining these results, we conclude that

[Q,N(A(e)), ej7N(B(j))] o

N .
= €ep N <Symk Z NCynCj N ((J)A(g) o, BU) _ (E) BU) o, A(£)> 7
7 = Cen 2 (N —k+m) \\r r
(3.4.48)

which concludes the proof of the lemma. O
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We now have all the technical lemmas needed to define the Lie algebra &y of observ-

able N-hierarchies. For N € N, let &y denote the locally convex direct sum

N
k=1
where we recall that
ar = {A® € L(S,(RY), S,(RF)) : (AW = —AW}, (3.4.50)

We define a bracket on Ay = (Asl\f))keNSN,BN = (B](\],C))keNSN € Gy by

[An, Bylg, = Cn = (CV)kencys (3.4.51)

where

o= % ah([fatarans)] ). (3.4.52)

1<¢,j<N
min{{+j—1,N}=k

It remains for us to check that &y together with its bracket is actually a Lie algebra in
the sense of Definition [3.3.14] as we have so claimed above. Before doing so, we collect a result
which will be useful in the sequel. Namely, that as a byproduct of the proof Lemma [3.4.7]
we have the following explicit formula for the Lie bracket [Ap, BN]QSN for two observable

N-hierarchies, which is quite useful for computations.

Proposition 3.4.8 (Formula for [Ay, BN]gCI)V). Let N € N, and let Ay = (AS\];));CGNSN, By =

(B](\I;))kENgN be observable N -hierarchies. Then for integers 1 < k < N, we have that

min{¢,j}
[AN7 BN}((;;?, - Z Symk ( Z CijrN [A%), B](\],)] > y (3453)
1<0,5<N r=rQ

min{¢+j—1,N}=k
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where

NCynCjn
Cin [ (N —k+m

ijkrN = ) To = maX{lamin{£>j} - (N - max{&j})h
(3.4.54)

and where [-, -] is defined in (3.4.33).
We now establish Proposition [3.1.1], which is our first main result of this section.

Proposition 3.1.1. (&y, [, ']@N) 1s a Lie algebra in the sense of Definition |3.5.1J).

Proof of Proposition |3.1.1] There are two parts to the verification: an algebraic part and an

analytic part.

e We first consider the algebraic part, which amounts to checking bilinearity, anti-symmetry;,
and the Jacobi identity. The first two properties are obvious from the definition of &y.

For the third property, let Ay, By, Cy € &y. We need to show that

[An, [By, Cnlgy ], + (O, [An, Bl | + [By, [Ony Anls ], =0 (3.4.55)

Since €y is injective, it suffices to show that e, 5 applied to the left-hand side of the
preceding identity equals the zero element of gy. We only present the details when the
component index satisfies 1 < k < N and leave verification of the remaining k = N case

as an exercise to the reader. Using the definition of the Lie bracket and bilinearity, we

6Recall that Cp n = 1/|P}|.
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have the identities

ek,N([AN,[BN,CN]@N}gj)V): > [Ejl,N(A%ﬂ)ﬁjz,N([BNaCN]gfv))]

Jit+jz—1=k

N ejl’N<A%1))7 Ejs,N(ng));€j4,N(C§\?4))
gN

J1+j2—1=k jz+ja—1=j2

= Y [t [ (B ene)] |
gN

L1 +lo+-l3=k+2

N

N

Ek,N<[CN7 [AN,BN]QSN}2;2> - Z [EjlvN(C](\{l)%Ej?vN([AN’BN]gJQV))}

Jitje—1=k

B e N (CF), € (AR, €5, 5 (BEY)
N an

Jit+jiz—1=k jz+ja—1=j2

an

= Y [ frn A cnm)] ]
N

l1+La+l3=k+2 N

een ([Br, [Cns Anlg, ] &) = e v (BEY), €5, n([On, ANIE)
(B3N gN

J1+je2—1=k

B EjlvN(B%I))’ €j3,N(CJ(\ZS))a€j4,N(A%4))
gN

Jj1t+ji2—1=k jz+ja—1=j2 N

= > [EzQ,N(B%Q)% [Eeg,N(Cz(vfs)),%,N(A%l))] } :
l1+0o+l3=k+2 o N

Since [, -], is a Lie bracket and therefore satisfies the Jacobi identity, it follows that for

fixed integers 1 < 01,05, 03 < N,
0= [ea (), [ n (B ()] ]
Nl gn
+ |:€€3,N(C](\§3))7 [Gel,N(A%l)),GZQ,N(B%Q))L } (3.4.56)
N

e B, e ) A )]|
N

anN

140



Hence,

6k,N<[ANa [Bn, ON]@N](k) + [ON, [An, BN]@N}(’C) + [BN, [CN,AN]@N}SCL) =0¢€gn.

@N ®N
(3.4.57)

We now consider the analytic part, which amounts to checking the separate continuity of
[, -]g,- Using the anti-symmetry of the bracket, it suffices to show that for Ay € &y
fixed, the map

Gy — By, By = [An, Bylg, (3.4.58)

is continuous. Moreover, it suffices to show that for each k € N<y, the map
& By — [Ay, By
N — Ok, ~ = [An, N]@N
is continuous.

Let (Bn.a)aca, Where By , = (B](\lf,)a)keNSN, be a net in &y converging to By = (B](\lf))keNSN €
& y. By the continuity of the projection maps &y — gj for each k € Ny, we have that

(Bz(\];,)a)aeA is a net in g, converging to B](\lf) € k.

Unpacking the definition of [Ay, B N:a]g;z)v and using the continuity of the Sym, operator

and the operations of addition and scalar multiplication, together with the fact there are

only finitely many terms, it suffices to show that for any integers 1 < ¢, 7 < N satisfying

min{f + j — 1, N} = k, any integer ro < r < min{/, j}, we have the net convergence
40,88, = [0, B9 (3.4.59)

in £(S,(R*¥),S(R*)). But this convergence is a consequence of Lemma m, thus com-

pleting the proof.
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3.4.2 Lie-Poisson Manifold &7}, of Finite Hierachies of Density Matrices

In this subsection, we define the Lie-Poisson manifold g}, of N-body density matrices
and the Lie-Poisson manifold &% of density matrix N-hierarchies. A good heuristic to keep
in mind is that density matrices are dual to skew-adjoint operators. We remind the reader
that the superscript * does not denote the literal functional analytic dual of gy (respectively,
&) as a topological vector space, but rather a space in weakly non-degenerate pairing with

gy (respectively, &y ).

To begin with, we define the real topological vector space
gy = {Uy € L(SURY),S,(RY)) : Uy = Uy} (3.4.60)
endowed with the subspace topology.

Remark 3.4.9. Our definition of g}, is quite natural as it is isomorphic to the strong dual

of gn. The proof of this fact is quite similar to that of Lemma [3.5.8] shown below.

We now define a suitable unital sub-algebra Apy n C C™(gy; R) of admissible func-

tionals to build a weak Poisson structure for gy .

Definition 3.4.10. Let Apy; v be the algebra with respect to point-wise product generated

by the functionals in

{F e C®(gyiR): F() = iTry, v(AN:), AN € gy} U{F € C(gisR) : F(-) = C € R},
(3.4.61)

In words, Apy, n is the algebra (under point-wise product) generated by the constants

and the image of gy under the canonical embedding into (g} )*.
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We record the following result, whose proof we omit since it is similar to and simpler

than that of Proposition |3.1.8] which will be used in Section below.

Proposition 3.4.11. (g, Apu,n, {; -} ) is a weak Poisson manifold.

Before proceeding, it will be useful to record the following lemma regarding the dual

of gy. In particular, we note that the dual of g} is not isomorphic to gy.

*

Lemma 3.4.12 (Dual of g}). The topological dual of g3, denoted by (gy)* and endowed

with the strong dual topology, is isomorphic to
{AM) € £(S,(RYN),S{RM)) - (AWM = —AM)Y (3.4.62)

equipped with the subspace topology induced by L(Ss(RY), S (RYN)), via the canonical bilinear

form

N(AMTY), Ty € gh. (3.4.63)

.....

Proof. The proof follows from the duality £(S,(RY),S/(RY))) = L(S/(RY),S,(RY))* to-

gether with a polarization-type argument. We leave the details to the reader. O]

Remark 3.4.13. The previous lemma implies that, given a functional F' € C*(g};R) and
a point ¥y € g}, we may identify the continuous linear functional dF[Vy], given by the
Gateaux derivative of F at the point ¥y, as a skew-adjoint element of £(S,(RY),SL(RY)).
We will abuse notation and denote this element by dF[¥ y]. Moreover, as we will see below,

it is a small computation using the generating structure of Apy n that dF[VUy] € gn.
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We next define the Lie-Poisson manifold of density matrix N-hierarchies. To begin,

define the real topological vector space

N
&y = {Iw = (T )keny € [ L(SURY), S(RY)) 190 = ()" vk e N} (3.4.64)

k=1
endowed with the subspace product topology. We first note that our definition of &3 is
quite natural, as it is isomorphic to the topological dual of &y, a fact we prove in the next

lemma.

Lemma 3.4.14 (Dual of &y). The topological dual of &, denoted by (Gn)* and endowed

with the strong dual topology, is isomorphic to &Y.

Proof. Using the isomorphism
(£(S.(R), 8,(RY)) = (L(S.(BY). S/(RY)" = L(SU(RY). 5,(RY),  VheN, (3465)

which follows from the proof of Lemma together with the duality of direct sums and

direct products, see for instance [41l, Proposition 2 in §14, Chapter 3], we have that

(@L > Hﬁ (S/(R¥), S, (RF)), (3.4.66)

,q)/]g 1

via the canonical trace pairing
(AN, FN> — ZTI'(AN . FN)

Thus elements of (By)* may be identified with functionals ¢ Tr(-I'y), and so to prove the

lemma, we will show that the map
OBy — (By)T, Iy —iTr(-Ty), (3.4.67)
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is bijective and that both ® and ®~! are continuous.

First, we show surjectivity of ®. Given any functional ' € (&y)*, we need to find

some density matrix N-hierarchy I'y € &7 such that
To accomplish this task, we define a functional
Fe (@ ﬁ(ss(Rk),ss<Rk))> (3.4.69)
k=1
by the formula

F(Aw) = 3F(Ax — A%) — F((Ax — A}) + 3 F(i(Ax + AX)) — SF((Ax + Ay).

(3.4.70)
By the canonical dual trace pairing, there exists a unique
N
Py € [] £()(R), 8.())
k=1
such that
~ N ~
F(Ay)=iTr(Ay-Ty),  VAy € @ L(S,(R*), S, (RY)). (3.4.71)
k=1

Evaluating Fon Ay € &y, that is assuming Ay = — A}, we obtain from (3.4.70]) that
(1—9)F(Ay) =1Tr(Ayx - T'y), (3.4.72)
and adding this expression to its conjugate implies that

2F(An) = Z(T]f(AN I'y) = m>
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Since

(Ay -Ta)® = AWV F ¢ £(S/(R"), S,(R")),  Vk € Noy,

its trace exists in the usual sense of an operator on a separable Hilbert space. Furthermore,
the adjoint of Agl\;)%(\]f) as a bounded linear operator on L?(IR¥), denoted by (AEI\;) 7](\’,“))*, belongs
to L(S!(R*), S(R¥)). A short computation using the skew- and self-adjointness of Ag\lf) and

7](\’,6), respectively, shows that

k k) % k k
(AP = AR,

where we abuse notation by letting A%“) also denote the extension to an element of £(S/(RF), S/(R¥)).

Consequently, we are justified in writing

T (A7) = ook ((ADA)) =~ T (SO ALY = oy (A1),

where the ultimate equality follows from an approximation of AEI\;) and the cyclicity of trace.
Therefore,

-1
Fy =5y +T%) (3.4.73)

is the desired density matrix N-hierarchy. Injectivity of ® follows from the polarization

identity by considering elements of &y of the form

AR {W(ko)) (fEN, k= ko

_ , 3.4.74
Noko 0, otherwise ( )

where ko € Ney and f*0) € S (R*). Hence ® is bijective.

Next, we claim that both ® and ®~! are continuous. Since &% is a Fréchet space,
it suffices by the open mapping theorem to show that ® is continuous. Let (g, denote the

canonical inclusion map

6n C P L(S.(RY), 8.(RY)), (3.4.75)

k=1
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which is continuous by definition of the subspace topology, with adjoint

i (@ £(S,(RY), Ss(Rk))> (BN, (3.4.76)

and let 1 denote the canonical inclusion map

&5 C [ L(SURY), S (RF)), (3.4.77)
k=1

which is also continuous by definition of the subspace topology. Then we can write
D =5, 0 (D)7 otey, (3.4.78)

where @’ is the canonical isomorphism described in (3.4.66). Since g = is continuous, as can
be checked directly or by appealing to the corollary of Proposition 19.5 in [97], it follows

that ® is the composition of continuous maps, completing the proof of the claim. O

We now need to establish the existence of a Poisson structure for &%;. As before, we
choose a unital sub-algebra Ay v C C°(B%; R), generated by trace functionals and constant

functionals, to be the algebra of admissible functionals.

Definition 3.4.15. Let Ay y be the algebra with respect to point-wise product generated

by the functionals in

{FeC®®y:R): F(-) =iTr(Ay:), AN € By} U{F € C*(B;R): F(-) =C € R}.
(3.4.79)
Remark 3.4.16. Our definition of Ay x is not canonical in the sense that one may include

additional functionals in it. However, since we are really only interested in trace functionals,

we will not do so in this work.
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Remark 3.4.17. The structure of Ay y will be frequently used in the following way: it will
suffice to verify various identities for finite products of trace functionals and constant func-
tionals. Moreover, by Remark below and the Leibnitz rule for the Gateaux derivative,

it will often suffice to check identities on trace functionals.

Remark 3.4.18. By the linearity of the trace and the definition of the Gateaux derivative,
a trace functional has constant Gateaux derivative. Similarly, a constant functional has zero

Gateaux derivative.

To define the Lie-Poisson bracket on Agy y X Apg n using the Lie bracket |-, ']6N con-
structed in Section [3.4.1] we need the following identification of continuous linear functionals
with skew-adjoint operators, given via the canonical trace pairing. We note, in particular,

that (®%)* is not isomorphic to & y.

Lemma 3.4.19 (Dual of &%). The topological dual of &%, denoted by (&%)* and endowed

with the strong dual topology, is isomorphic to

N
Sy = {Ay € P L(S(RF), SIRY)) : (AY)" = -4V} (3.4.80)
k=1
Proof. We omit the proof as it proceeds quite similarly to that of Lemma [3.4.14] O

We continue to abuse notation by using dF'[I'y] to denote both the continuous linear

functional and the element of & ~- We are now prepared to introduce the Lie-Poisson bracket

{-, }Qﬁ}*\, on AHJ\/ X AH,N~
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Definition 3.4.20. Let N € N. For F,G € Ay n, we define

{F.G}g, () = i Tr([dF[Dx), dG[Txlg, -Tv) = iml ,,,,, e([dFITx], dGITN AR

k=1

(3.4.81)

for Ty = (73 kenoy € B

We now turn to the second main goal of this subsection, that is, proving Proposi-

tion |3.1.2 the statement of which we repeat here for the reader’s convenience.

Proposition 3.1.2. (&%, Aun,{- '}05}%) is a weak Poisson manifold.

We begin with the following technical lemma for the functional derivative of {-, -}6%.

Lemma 3.4.21. Suppose that G; € Ay n is a trace functional G;(I'y) = i Tr(dG;[0] - T'n)
for 3 =1,2. Then for all 'y € By, the Gateaur derivative d{Gl,Gg}Qﬁ?\][FN] at the point

'y may be identifed with the element
[dG1[0], dG2[0]] s, € BN (3.4.82)

via the canonical trace pairing. If Gy is a trace functional and Gy = G31Ga 2 is the product

of two trace functionals in Ay n, then d{Gy, Gg}@}‘v [C'n] may be identified with
G21(I'n)[dG1[0], dG22[0]] s + G2,2(I'n)[dG1[0], dG21 0] (3.4.83)

for all I'y € &} via the canonical trace pairing.

Proof. The first assertion follows readily from the definition of {G1, G2} o To see the second
assertion, observe that by the Leibnitz rule for the Gateaux derivative and the bilinearity of

the bracket [, -],

[dGy[Ty], dGa[TN] D] = Ga (D) [dGA[0)®), dG22[0]9] | + Goa(Tw) [dG1[0)®), dG24[0]9)] .
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Hence using Proposition [3.4.8 and introducing the notation

NCZ,NCj,N
Con [ (N —k+m)’

Cojrrn = ro = max{l, min{/¢, j} — (N —max{¢,j})}, (3.4.84)

we obtain that

(G [T ], dG,[Tx 1%

min{t,j}

— Z Symk( Z CijrN[dGl[FN](Z)vdGQ[FN](j)L")

1<t,j<N r=rQ
min{{+j—1,N}=k

min{¢,j}
= Gr1(I'w) Z Symk( Z CijrN[dGl[O](e),dGQ}Q[O](j)]r)

1<t,j<N
min{{+j—1,N}=k

min{¢,j}
G2,2(FN) Z Symk < Z CﬁjkrN [dGl[O] (é), dGQ’l[O] (])] r>

1<0,5<N
min{l+j—1,N}=k

r=rQ

r=rg

= G1(T'w)[dG1[0], dG22[0))%) + Ga2(I'n)[dG1[0], dG2, [0])%) (3.4.85)
where the ultimate equality follows from another application of Proposition |3.4.8 n

We divide our proof of Proposition [3.1.2] into several lemmas. We first show that

{, '}(’5}% is well-defined and is a Lie bracket satisfying the Leibnitz rule.

Lemma 3.4.22. The formula
{F, G} (D) =i Te([dF[Tn], dG[Cnllg, - T), VI € &% (3.4.86)
defines a map Agn X Agn — Agn which satisfies property in Definition m

Proof. We first show that for F,G € Ay y, one has {F, G}Qﬁ}kV € Apn. Recall that Ag y

is generated by constant functionals and trace functionals, hence using the Leibnitz rule,
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bilinearity of [-, -]®N, and the linearity of the trace, it suffices to consider the case where F, G
are both trace functionals. Indeed, elements of Ay n are finite linear combinations of finite
products of trace functionals and constant functionals, hence using that the derivative of
constant functionals is zero, upon applying the Leibnitz rule, the elements of the product
which are not differentiated can be treated as scalars when evaluated at a point I'y and

hence can be pulled out of the Lie bracket and then out of the trace by bilinearity.

When F,G are both trace functionals, dF[['y| and dG[I'y] are constant in I'y by
Remark (3.4.18], hence

{F, G}, () = i Te([dF[0],dG[0]]s, - Tn),  VIy € &}. (3.4.87)

So, we only need to show that the right-hand side defines an element of Ay n. Since dF[0]
and dG[0] both belong to &y, it follows from Proposition that [dF[0], dG[0]], € G-

Hence, {F, G}®7v € Ay n, which completes the proof of the claim.

Bilinearity and anti-symmetry of {-, ~}Q5}ﬂV are immediate from the bilinearity and anti-
symmetry of [, ~]®N, so it remains to verify the Jacobi identity. Let F,G, H € Ay n. As we
argued above, it suffices to consider the case where G and H are trace functionals and F' is

a product of two trace functionals, that is, F' = F} F,, where Fy, Iy € Ay n are such that

Fy(Ty) =i Te(dF;[0]-Ty),  VLy €®%, j=1,2. (3.4.88)
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Thus, we need to show that for all I'y € G,

0= {F.{G, H}g, }%(FN) +{eqm, F}%}%(PN) +{H.AF. G}%}%(FN)
_ z’Tr([dF[FN}, A{G, H} g, [FN]} . rN> T ( [dG[FN], d{H, F}y. [FN]] L FN)
+ iTr([dH[FN], d{F, G}%[FN]} L FN). (3.4.89)

We show the desired equality by direct computation:

First, since dF[I'y] = F1(In)dF3[0] + Fo(T'y)dFi[0], where we use that F} and Fp
have constant Gateaux derivatives by Remark [3.4.18] it follows from the linearity of the

trace that

i Tr ( [dF[FN], A{G, H} g, [FN]} . FN> — iFy(Dy) Tt ( [dFQ 0], d{G, H} g [FN]] L FN)

4 iFy(Ty) Tr ( [dF1 0], d{G, H} [FN]} L FN>

— iR (Ty) Tr([dF2 0], dH[0]]g, ] . .FN)
iFy(Ty) Tr< (AR [0], [dG[0], dH (0], ] .PN>,
(3.4.90)

where we use Lemma to obtain the ultimate equality.

Next, since F' is a product of two trace functionals, we have by Lemma [3.4.21| that

d{H, F}. [Px] = F(Dy)[dH[0], dF3[0]]s, + Fa(Tx)[dH [0, dFy 0], YTx € G
(3.4.91)
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Hence by bilinearity of the Lie bracket and linearity of the trace,

i Tr ( [dG[PN], d{H, F}y. [PN]} o FN) — iF,(Ty) Tr<[da[0], [dH[0], dF (0] ] - FN)

+iFy(Ty) Tr([dG[O], (dH[0), dFA (0], ] - rN).

Finally, similarly to the preceding case,
d{F, G} [Un] = Fi(n)[dE2[0], dG[0]]s, + F2(T'n)[dF1[0], dG[0]] (3.4.93)
and therefore,

iTr([dH[FN], d{F, G}, [FN]] . FN) — iF(Ty) Tr([dH[O], (AR [0, dG[0]], ] 5 - FN>

FiFy(Ty) Tr<[dH[o], (dF1[0], dG[0]]g ] - FN>.
(3.4.94)

Combining the preceding identities, we obtain that
z’Tr([dF[FN},d{G,H}(,j;‘v[FN]} -FN) +z'Tr([dG[FN],d{H, F} e [FN]] .FN)
@N N QSN

4T ( [dH[FN], A{F, G}, [FN]} L FN>

— iR (Ty)Tr (([dF2 0], [dG[0], dH (0]} ], + [dG[0], [dH[0], dF3[0]], ]

6] SN

—+ [dH[O], [dFQ[O], dG[OHQﬁN] QﬁN) . FN)

FiFy(Ty) Tr (([dFl 0], [dG[0], dH [0, ], + [dG[0], [dH[0], dFy[0]],, ]

®N ®N

+[dH[0], [dF1[0], dG[0], ], ) - T )

—0, (3.4.95)

where the ultimate equality follows from the fact that both lines in the penultimate equality

vanish by virtue of the Jacobi identity of the Lie bracket [, [ .
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Finally, we claim that {, -}67V satisfies the Leibnitz rule:
{FG, H}y, (T) = GTx){F, H}g. (Tw) + F(Tn){G, H}g: (T),  VTy € Gy. (3.4.96)

Since d(FG)[I'y] = F(I'y)dG[I'y] + G(I'y)dF[I'y] by the Leibnitz rule for the Gateaux
derivative, we see that
[FG. H}y, () = i Te([d(FG)[Dn), dH D], - T)
= iF(T'y) Tt ([dG[Tn],dH[TN]]g,, - Tw) +iG(T'n) Tr([dF([Cn], dH[Tx]]g, - Tn)
— F(T){G, H}g, () + GTx){F, H} g (T, (3.4.97)

where the penultimate equality follows by bilineariy of the Lie bracket and linearity of the

trace and the ultimate equality follows from the definition of the Poisson bracket. m

We next verify that Ay y satisfies the non-degeneracy property .
Lemma 3.4.23. Ay y satisfies property in Definition |3.3.1]

Proof. Let I'y € &% and v € Tr,®%, and note that Ty, 8y = &%. Suppose that
dF[T'n](v) =0 for all ' € Ag . We will show that v = 0.

Consider functionals of the form Fy () == Tr(Ank,-),

A {—uﬂW>w%w,k:ko

- . (3.4.98)
0, otherwise

N,ko "

for kg € Ney and f*0) € S (R*). By Remark [3.4.18] we have dF; 4, [Tn](-) = Fy,(+), so if

v= (v(k))keNSN € B is as above, we have by definition of the trace that
Fio(v) = (uto) flRo)| flho)y = 0, (3.4.99)
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Since v(¥) extends uniquely to a bounded operator on L?(R¥) and S,(IR*) is dense in L2(R¥),
it follows from a standard polarization argument that v®) = 0 for all & € Ncy, which

completes the proof. O

Lastly, we show the existence of a unique Hamiltonian vector Xy for H € Ay n with
respect to the Poisson structure {-, '}@E' With this last (most difficult) step, the proof of

Proposition will be complete.

Lemma 3.4.24. (&%, Ay, {-, -}Qj?v) satisfies property in Definition W Further-

more, if H € Apn, then we have the following formula for the Hamiltonian vector field

XH N
N min{¢,j}
j k
Xa(@n) O =" > Chon Trevree | | D2 AHIONE st sminersrary W | |
Jj=1 r=ro a,€Pt
(3.4.100)
where
k=min{{+j—1,N}, ro = max{l, min{/, j} — (N — max{¢,j})}
and where
/ J NCynCj N
CijrN = p— : )
r Ck,N Hm:1<N —k+ m)

Jor Con, Crn as in (3.4.9).

Proof. Given F,H € Apy, we first identify a candidate vector field Xy by directly com-
puting {F, H }®7v' Once we have found the candidate and verified its smoothness as a map

By — B}, the proof is complete by the uniqueness guaranteed by Remark [3.3.2
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By definition of the Poisson bracket on &%, we have that
{F,H}g, (Un) = i Te([dF[Tn], dH[Cn]ls, - T)

=iy Tr ([dF[rN], dH[FN]]g?V%(\’,“)), (3.4.101)

for 'y = (7]((;))5:1 € ®. Using the linearity of the Sym, operator, we have by the formula

from Proposition that

min{¢,j}
[dF[CNLdH[TN]s) = > > Cojrew Symy ([dF[Dx] 9, dH[TN] D] ),

1<¢,j<N =70
min{{+j—1,N}=k

and
; J
Symy, ([dF[Cy])®, dH[TN]Y] ) = Sym, < (T) dF[TN] ( S aHryd Hj_r)))
a,€Pf
¢
- Symk<<r) dH[UN]i j)( > APl ... j+z—r))>=
a,€P]

where we have used the combinatorial notation Cpji,n defined in (3.4.84). Recall from

Remark that we are justified in writing

j ¢ j ‘
dH[FN]EJI) j)< Z dF[FN]Eg)TJH ..... j+£—r)) - Z dH[PN]Ejl?...,j)dF[FN]gg) JH L jAl—r)"

-----

a,€P} a,€P}
(3.4.102)
Let (myq, ..., m;_,) be the increasing arrangement of the set N<;\ {1, ..., a,}. Defining the
permutation 7 € S by the formula
i, a=q;for1 <qi<r
—J i +1<a<j+0—
ra) =3¢ I Jrlsas Rl (3.4.103)
{+1, a=m;for1 <i<j—r
a, otherwise
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we find that for each o, € P/ fixed,

<dH[FN](j) dF [Ty

(L,9)

_ (4) )
(5 O j+€r)>(T(1) T(k))—dH[FN]u ..... rd+1,..., e+j—r)dF[FN] 0)"

77777

() () _ () (0)
Sy, <dH[FN]({ ..... j)dF[FN](gr,£+1 ..... eﬂ;r)) = Symy, <dH[FN](]1 ,,,,, 41, €+jfr)dF[FN](1 ..... e))'
(3.4.105)
Consequently, using that [P?| = (?)r!, we obtain that
¢ () (0
Symy, ( (r) dH[FN](]l ..... j)( Z _ dF[FN](gT,jH ..... G+0—r)
a,€p! (3.4.106)
0\ (7 () (0
. (T) (r> P Symg (dHIONE vr s @IV ).
Now given o, € P let (my,...,me_,) be the increasing arrangement of the set N, \
{ai,...,a,}. We recycle notation to define a new permutation 7 € Sy by
Q;, 1< <r
(@) =S mip, r+1<i</. (3.4.107)
1, otherwise
Then
Symy, ((dH[FN]g) 041 1z+er)dF[FN]E? e)) )
""" R (1) (R)) (3.4.108)

j ¢
= Symy, (dH[FN]EJg)T,Z—&-l ,,,,, £+j—r)dF[FN]E1),-~,4))’

0)
1

77777

where we can “undo” the permutation 7’s effect on dF[I" N]E o by its Sp-invariance. Using

that |P¢| = (f)r!, we obtain that

IAVE] ; ¢
<r) (T) r! Symy, <dH[FN]E]1?...7r,Z+1 ..... é—i—j—r)dF[FN]El?...,é))

) . o (3.4.109)
= (r) Z Symy, <dH[FN](]gT,€+1 ..... £+jfr)dF[FN](l ..... e)>-
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w([dF D], dH[Ty]IS) ) and

.....

-----

min{¢,j}
. 4 k
=1 Z Z CEJ’W‘N( ) Z (Trl ----- k (dF[FN]E1),..., )dH[FN]Ea VAR f+jfr)r7](\f)>

min{{+j—1,N}=k r=ro o, €P!
¢ k
—Try, (BN M_r)dF[rN]Eﬁ_..,mﬁv))).
(3.4.110)
Since dH [FN](a) ¢11. 0rjr is skew-adjoint and therefore by duality extends to an element

in £(S!(RF),S'(R*)), it follows from the cyclicity property of Proposition |3.2.3(iii)| that

[ k
Try,. (dH[FN](a) /AS é+j—r)dF[PN]E1) 5)7](\’))

.....

) (3.4.111)
=T, k<dF[FN](1 ..... ( dH[FN](a NSRS r))>
Since
AHIN]G) privjory s N AHNG (i1 gy € LISURY),SRY),  (34.112)

the usual partial trace Trp, 1 . of each of these operators exists and defines an element of

L(S!(RY), S(RY)). Moreover, since dH[I'y]) and 7](\];) are skew- and self-adjoint, respectively,

these partial traces are self-adjoint.

Returning to the expression i Tr([dF[I'y], dH L y]] N ~) and interchanging the or-
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der of the k and ¢ summations, we see that

N
S i, ([AF (TN, dH TN E )
k=1
N N min{{j} -
k
ZZZ Z ljk: N(Trl ----- ¢ (dF[FN](E)( Z Trypy, (dH[FN]Ei) AR min{eﬂ—r,fg})%(v)
=1 j=1 r=ro o, €Pf
k
— Ty, (dF[FN}(Z)( Z Tropr, (VJ(V)dH[FN]EJ) £41,...,min{l+; rk})))))’
o, Pt
where

k:=min{¢+j—1,N}, (3.4.113)
C’ NC@’NCJ“Y (‘7 ) . (3.4.114)
tik Cin I LN =k +m)

Note that since 7](\’;) admits a decomposition

NG _ZA FAARTiCIN (3.4.115)

where > |\,] <1 and fm ,gfn) converge to zero in S,(RF), we see that

.....

o0 ) (3.4.116)

— (k) ©) (k)
g )\m <f ‘dH[FN](QTZ-F """" mln{Z—}—] Tk}f >

which is independent of the choice of extension of dH[I'y]) to domain S(R’) by the per-

mutation invariance of each f,gf ), Furthermore, the operator

i;: .
S T i (WaHTNY ) (3.4.117)

-----
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is invariant under the S, action, since P’ is invariant under the S, group action. Hence, it

maps into S,(R¥), and its left-composition with dF[I" x| is well-defined.

Using the bilinearity of the generalized trace, we obtain the candidate Hamiltonian

vector field

N min{t,j} ]

0 . ! . (4) (k)

Xp(Py)" = Z Z Clitrn Z (Trfﬂ ..... k (dH [FN](QT,ZH ..... min{t4j—rk}) TN )
Jj=1 r=ro a,EP!

];; .
=Ty i <71(V)dH[FN]E;)T,e+1 ..... min{eﬂr,i%}))) :

(3.4.118)

We now verify that Xy, as defined above, is a smooth map &3 — &7, so that we may
conclude the proof by Remark [3.4.18, We claim that the right-hand side of the preceding

identity defines a continuous linear (hence, smooth) map

By — éﬁ(sg(R’“),Ss(Rk)). (3.4.119)

k=1
Linearity is obvious, and the map is continuous from

N

&y = D LISIRY), S[RY))

k=1
by Proposition [3.2.4L That we may replace the target S(R*) by the bosonic subspace S,(R¥)
is a consequence of the following facts: P’ is invariant under the S, group action, dH[I"y]¥) is
S;-invariant, and ”y](\’,;) is a fortiori Sy-invariant. The self-adjointness of X (I'y)® follows from
the skew- and self-adjointness of dH[I'y]") and 7](5:), respectively, and the adjoint properties

of the generalized partial trace. O
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3.4.3 Density Matrix Maps as Poisson Morphisms

We close this section with the observations that the well-known operations of forming
a density matrix out of a wave function and forming an N-hierarchy of reduced density
matrices from an N-body density matrix respect the geometric structure we have developed,

in the sense that these operations define Poisson morphisms.

We first define the density matriz map or ket-bra map from N-body bosonic wave

functions to N-body bosonic density matrices.

Definition 3.4.25 (Density matrix map). We define the density matriz map or ket-bra map
by
LDM,N SS(RN) — g}kv LDM,N((I)N) = |q)N> <(I>N| = (I)N ®E (34120)

It is easy to verify that ¢py/ v is a smooth map from S(RY) to gi. We now show
that the density matrix map is a Poisson map. To prove this property, we recall from Defi-
nition the requirement that 7, M, NApu N C As. If F is smooth, then the smoothness
of tpasn implies by the chain rule that f = Foipyn € C°(S,(RY); R). However, it is not

a priori clear that f € As, where we recall that As C C®(S(RY);R) is defined by
As ={H : V,H € C*(S(R"); S(RV))}, (3.4.121)
In the sequel, we will use the notation As y to make the dependence on N explicit.

Lemma 3.4.26. Let N € N. For any F' € Apun, the functional f = F oipyn €
C>=(8,(RY); R) belongs to As . Furthermore,

st((I)N> = dF[[/DM,N((I)N)]((I)N)y V<I>N € SS(RN>, (34122)

where we identify dF[ipyn(PN)] as a skew-adjoint operator by Remark|3.4.15,
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Proof. Observe from the chain rule that for ®y,d®y € S,(RY),

df[Pn](0PN) = dF [tpy,n (Pn)](depm N [PN] (6PN ))
= dF[tppn(Pn)](|Pn) (0PN | + [0DN) (Pn]), (3.4.123)
where we use the elementary computation
dipuN[PN](0PN) = |Pn) (0PN| + [0DPN) (D] . (3.4.124)

Identifying the functional dF[tpy v (P )](+) with a skew-adjoint DVO given by dF[tpyr v (Pn)]
as in Remark we have that

dF [tppmn (PN)](|Pn) (6PN |+ [0Dn) (Pn|) = i Tr1. N (dF o N (PN)](|Pn) (0PN | + [0DN) (Pn]))

=1 <(5(I)N|dF[LDM’N((I)N>](I)N> + 1 <(I)N|dF[LDM’N[(I)N](5(I)N> .

-----

Since dF[tpyn(Py)] is skew-adjoint, the preceding expression equals

i<5(I)N|dF[LDM’N((I)N)](I)N> —1 <dF[LDM’N((I)N)](I)N|6q)N> = —2Im <(5(I)N|dF[LDM’N((I)N)](I)N>

= sz(dF[LDM,N(CDN)](I)N, (S(I)N)

We claim that the map ®y — dF[tpyn(Pn)] Py is a smooth map of Ss(RY) to itself, which
justifies our preceding manipulations. Indeed, suppose first that F' € Apy n is a trace
functional. Then dF[tpyn(Pn)] = dF[0], and therefore the claim follows since dF[0] is a
continuous linear map of Sy(RY) to itself by definition of Apyn. The general case then
follows by the Leibnitz rule for the Gateaux derivative. Therefore, the functional f has
symplectic L? gradient

st(q)N) = dF[LDM,N<(I)N)](I)N>

and V,f is a smooth map of S;(R") to itself, which implies that f € As . O
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We recall from (|1.3.2) the definition for {-,-},., and we consider the rescaled Poisson

bracket
{0 ey = N{- }e (3.4.125)

Proposition 3.4.27. Let N € N. Then

LDM,N (SS(RN)7AS,N7 {'7 '}L2,N> - (g}kaADM,Na {‘> '}g}fv) (3-4-126)

18 a Poisson map.

Proof. As observed above, the smoothness of tpy v is evident, and by Lemma [3.4.26| F' o

tpmuN € Asn for any F' € Apyn. Hence, it remains for us to show that for all I, G €

ADM,N7
{FO LDM’N,GO LDM,N}L27N(CI)N) = {F, G}g}k\/ o LDM,N((I)N); Voy € SS(RN> (34127)

For convenience, we introduce the notation f := Fowpyny and g := G o tpy . We first

consider the expression {f, g} y(®n). Observe that by definition of the Poisson bracket
{'7 '}L2,N7
{f, g}L2,N((I)N) = Nwr2 (Vs f(Pn), Vsg(Pn))

=2NIm <dF[LDM,N(¢N)]®N|dG[LDM,N(®N)]¢N> . (34128)

Now using the skew-adjointness of dG[tpy n(Pn)] and dF [tpyn(Pn)], we conclude that the
last expression equals

iN(PN|AE[tpa,n (PN )AG [y, n (PN)]|PN) — (PN |dG[pa, N (PN)]AF [Lor, N (PN)]PN))

= i Tr1, ([0 o (O], dGlpasy (@), [08) (@)

= {7 G}G}‘v otpuN(Pn), (3.4.129)
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which is exactly what we wanted to show. O]

We next show that there is a linear homomorphism of Lie algebras &y — gy induced
by the embeddings {ex n }ren. - We will then combine this fact with a duality argument to

prove that the reduced density matrix operation is a Poisson mapping
(g}k\ﬁ ADM,N7 {'7 }g’;v) — (ij\h AH,N; {'7 }Qﬁ}ﬂv) (34130)

Proposition 3.4.28. For any N € N, the map

N
le,N Gy — an, LgN(AN) = Z€k7N(AS\’;))7 (34131)

k=1

s a continuous linear homomorphism of Lie algebras.

Proof. Continuity and linearity are evident from the continuity and linearity of the maps
e (recall Lemma |3.4.3)). To show that gy, v is a homomorphism of Lie algebras, we need

to show that for any
An = (A )eney, By = (BW)ken.y € G, (3.4.132)

we have that

ten ([An, Bile,,) = [ten (AN, ten(By)]y,.- (3.4.133)

Consider the left-hand side expression. By the definition of the map ¢ y, the definition
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of the Lie bracket |-, ], from (3.4.52), and Lemma|3.4.7, we obtain that

WE

e ([An, Balg,) = 3 e (A, Bl )

B
Il
—

exn(CF))

WE

e
Il
—

] =

S [ental) a9

1 1<ej<N N
min{{+j—1,N}=k

T

Using the partition

N
{(6,5) € Nen)®} = [ J{(t.)) € (Nen)? s min{l + j — 1, N} = k}, (3.4.134)
k=1
we see that
N A N N A
Sy [EK,N<A§§>>,6]-,N(B§§>)L -y {Q,N(A%),ej,N(B}@)L . (3.4.135)
k=1  1<tj<N N =1 =1 N

min{f+j—1,N}=k

By the definition of the map ¢y and the bilinearity of Lie brackets, we observe that

N N
SN e (AD)en(BD)] = (At (Bu)g, (3.4.136)
=1 j=1 N

which completes the proof. O]

Finally, we show that there is a canonical Poisson mapping of gy, — &% given by

taking the sequence of reduced density matrices.

Proposition 3.4.29 (RDM Map is Poisson). The map tgpy.n : 9 — &N given by
Uy) =Ty = (7 W= v 3.4.137
LRDM,N( N)~ N (VN )keNSN; YN - Trt1,.., N( N) ( . )

15 a Poisson map.
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To prove Proposition we will show that tgpas v 1s the dual of the map tsym n,
which, by Proposition [3.4.28] we know is a continuous linear homomorphism of Lie algebras.
We then appeal to the following general result, the statement of which we have taken from

[60, Proposition 10.7.2].

Lemma 3.4.30. Let (g,[,-];) and (b,[-,]) be Lie algebras. Let a: g — b be a linear map.
Then the map « is a homomorphism of Lie algebras if and only if its dual map o : h* — g*

is a (linear) Poisson map.

Proof of Proposition[3.4.29. As stated above, we want to show that the reduced density
matrix tgpasn is the dual of the map
N
Le,N : QﬁN — 9N, AN = (AS),,AE\]/V)) — ZQ@,N(AE\I;)> (34138)

k=1
Indeed, observe that for ¥y € gj and Ay = (AS\’;))keNSN € Gy, we see from unpacking the
definition of ¢, y and using the bilinearity of the generalized trace that

“n(UN)(Ay) =i Tr ANUN) =Y i Tr ADYwy ). 3.4.139

LE,N( N)(An) =i Tr1 n(ten(AN)¥N) iTry v exn(Ay) VN ( )

k=1
Unpacking the definition (3.4.8) of the map e, N(Ag\lf)) and using the bilinearity of the gen-
eralized trace again, we see that
N

Y i, <ek,N(A§§>)\pN> =3 Y Gy TN (Agif(m ..... m%). (3.4.140)
k=1 k=1p epN

Hence using that ¥ is bosonic and Lemma [3.3.33] we have that

Try,. N(A%C?(pl ..... pk)\I’N>:TT1 ..... N(AS\];?“ ..... k)‘I’N>=TY1 ..... k<A§5)Trk+1 ..... N(‘I’N)>
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where the ultimate equality follows by definition of fy](\lf). Since |PY| = 1/C}.n, we conclude

that
N
() (An) = D iTr x (AVA) = i Tr(A -t (2)), (3.4.142)
k=1
which completes the proof of the proposition. O

3.5 Geometric Structure for Infinity Hierarchies

In this section, we compute the limit of the N-body Lie algebra (&ny,[, ], ) as
N — 0o0. We then show that in this limit, the higher-order contractions appearing in formula
(3.4.53]) vanish. Consequently, the domain of definition of the Lie bracket may be enlarged,
for which we construct the Lie algebra (&, [, | ) of observable oo-hierarchies and dually,

the weak Lie-Poisson manifold (&%, A, {-, } . ) of density matrix oo-hierarchies.

3.5.1 The Limit of &y as N — oo

In order to pass from the N-particle setting to the oco-particle setting, we first study

the limit of the Lie algebra (&y, |-, ']@N) as N — oo.

Via the natural inclusion map, we can identify &y as the subspace of the locally

convex direct sum
Soo = U 6y = @gk (3.5.1)
N=1 k=1

consisting of elements A = (A®),cy, where A®) = 0 for k > N + 1. In our next result,

Proposition 3.1.4] we establish a formula for the limiting bracket structure for & .
Proposition 3.1.4. Let Ny € N. For A = (A®),cn, B = (B®™)1en € By, we have that

lim [A, Bly, =C = (C*)en, (3.1.20)

N—oo
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where

C® = 3" Symy([AY,BY)]), (3.1.21)

£,52>1
t4j—1=k

in the topology of Foo-

Proof. Let k € N. For M > k, we have by Proposition and the linearity of the map

€K, N that

Z 6,;}\/[ ( [EK,M(A(K))’ EJ}M(BU))} 9M>

2,j>1
+j—1=k
min{¢,j}
MCynCim .
=S s [ MGG (g0, o)
£,j>1 r=1 Ck,MHa:l(M_k'WLa)
0tj—1=k
MCy i C .
= > sy (M 0, oy )
£,5>1 kM
l+5—1=k
min{¢,j}
MCy i Cs A
+ > Sym| Y [0, Y]
£5>1 r=2 Cr,m Ha:l(M_k+a)
(+j—1=k
=: Termy ps + Termy p;. (3.5.2)
We first consider Term; 5;. Since
M , MTTF (M 11— Wias!
i MCmCine g Loy (M 1= a) — dim S =1,
e Gy e ([ (M + 1= a) ([T (M + 1= @) 32 M5
we see that
Termyy — > Sym,([4“, BY]), (3.5.3)

0,5>1:04j—1=k

as M — oo, in gy.
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We next consider Terms 5;. Let 2 <7 < min{/, j}. Since

- MCynCiar . MITE_ (M +1—a)
Moo G [Ti2y (M =k +a) - M=o (T (M + 1= a))([Thoy (M + 1= a)([[,2 (M — k +a))
) Mk+1
= W AT

= lim M

M—oo

=0, (3.5.4)

we see that

Sym, ]\{E’f,MCj,M [A(Z)7 B(j)} — 0, (3.5.5)
Crou [[ooy (M =k +a) '

as M — oo, in gj. Summing over the ranges 2 < r < min{/, j} and {+j —1 = k, for a total

of finitely many terms, we conclude that
Terms 5y — 0, (3.5.6)

as M — oo, in @i, proving the result. O

3.5.2 The Lie Algebra &, of Observable co-Hierarchies

As mentioned in the introduction, the simplified form of [-,-]s allows us to take
advantage of the good mapping property and extend this bracket to a map on a much
larger real topological vector space, which we redefine &, to be, to obtain a Lie algebra of

observable oo-hierarchies. We rigorously construct this extension now.

We define gy, gm; to be

Grgmp = {A® € L, (So(RY), S{RF)) : AW = — (AW~} (3.5.7)

169



In words, @i gmp is the real, locally convex space consisting of skew-adjoint elements of
L ymp(Ss(RF), SE(R¥)). We will hereafter refer to the elements of gi gmp as k-particle or k-

body observables. We define the locally convex direct sum

G = @gk,gmp- (358)
k=1

We refer to the elements of &, as observable co-hierarchies. For
A= (A(k))keNa B = (B(k))keN € 6,
we define

[A, 3]600 =C = (C(k))keN,

Ch) = Symk( S [a0, BU)L)a (3.5.9)

£,j>1
(+j—1=k

where Sym,, denotes the bosonic symmetrization operator defined in Section [3.3] which we

recall is given by

) K _
Symy (A™) = Z A(ﬂ-(l ..... (k) Agm) ..... (k) = T O AP jor™! (3.5.10)

TESE
and where [A(e), B(j)}l is given according to (3.4.33) by

[A“), B(j)]l = jA© o, BU) — ¢BW) o, A
(3.5.11)
:JA 1,..,0) (Z B(ae+1 ..... O4+j—1 ) o (ZA (g +1,. g4~ 1))'

The main goal of this section is to establish the existence of a Lie algebra of observable

oo-hierarchies, namely, to prove Proposition [3.1.7

Proposition 3.1.7. (8, [,]s_) is a Lie algebra in the sense of Definition|3.5.1/),
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The construction follows closely our N-body approach in Section however, there
are new technical difficulties that have to be considered. Indeed, &, contains more singular
objects than &y, and we have to heavily exploit the good mapping property in order to
handle this issue. We remind the reader the enlarged definition of &, as opposed to simply
the union of the &y, is necessary to accommodate the observable co-hierarchy —iW g p which

generates the GP Hamiltonian functional.

We first need to establish that the Lie bracket given by (3.5.9)) is well-defined on &.

To this end, we must begin by giving meaning to the composition

¢
(O] ()
A(1 ..... o) (Z B(i,fﬂ ..... Z+j1)> (3.5.12)
a=1

as an operator in L£(S(R¥),S'(R¥)), for which it will be convenient to proceed term-wise
by extending A®) and B to operators defined on the entire space S(Rf) and S(R7),
respectively, as described in Remark . For general A® ¢ L(S(RY),S’(RY)) and
BY) ¢ L(S(R7),S8'(R7)), such a composition may not be well-defined, see Remark ,
and hence we appeal to the good mapping property of Definition to give meaning to
(3-5.12). It will be useful in the sequel to observe that the definition of the good mapping
property says the following: let A € £(S(R?),S’(RY)) and (£, ¢V) € S(RY) x S(R?), and
for fixed z/, € R, consider the distribution in §’(R) defined by

¢ — <A(Z)f(€)7 (¢ Qo Q(Z)('a To '))>S/(RZ)—3(RZ)’ (3.5.13)

where

(6 @0 99C,70,)) (y,) = 0(ya)9 (Y, 70y sy,) Y, ERE (3.5.14)

17We will see later that the choice of extension is immaterial.
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Then A® € L,,.,(S(RY),S'(RY)) if the element of S(R; S'(R)) defined by

:U/Oé = <A(é)f(z)7 () ®a g(g)(a x/om .)>S/(Re)7$(RZ)’ (3515)

may be identified with a (necessarily unique) Schwartz function ®(f®, ) in S(R?) by

<A(Z)f(£)a ¢ ®a g(ﬂ)(’ x:)u ')>S’(RZ)—S(R4) = /Rd$a(p(fv g)(l’a, ZL‘:X)Qb(Ia), ZE; S R’ (3516)
and the assignment ® : S(RY) x S(RY) — S(IR?) is continuous.

Lemma 3.5.1 (of contraction). Leti,j € N, let k =i+ j —1, and let (o, ) € Ng; x Ng;.

Then there exists a bilinear map, continuous in the first entry,

ol LIS(RY),S'(RY)) X Lymp(S(RT), S'(R))) — L(S(RF),S'(RY)), (3.5.17)

(07

such that A% of BY) corresponds to

i N _ 4@ (4)
A® Og BY = A(1 ..... i)B(i]+1 ,,,,, i+8—1,00i+B,....k)’ (3.5.18)

when AW € L(S(R?),S(RY)) and BY) ¢ L(S(R?),S(R7)) or AV ¢ L(S(R?),S'(R?)) and
BY) € L(S'(R7),S'(RY)). If we replace the domain space L(S(R?),S'(R?)) for the first entry
by Lymp(S(RY), S'(RY)), then the bilinear map

oF : Lomp(S(RY), S'(BY)) X Lymp(S(RI), §'(B)) = Lomp(SRY), S(RY))  (35.19)

18 continuous in the first entry.

18Given a HausdorfF locally convex space E, we let S(R?; E) denote the space of functions f € C*(R%; E)
such that for each pair of d-dimensional polynomials P and @ with complex coefficients, the union
Upera{P(#)Q(8;)f(x)} is contained in a bounded subset of E. We endow S(R? E) with the topology
of uniform convergence of the functions P(x)Q(9;)f(z), for all P and Q.
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Remark 3.5.2. Using this lemma and bosonic symmetry, we note that we can rewrite our
definition of [+, -], from (3.4.33) using the contractions o? as follows: Let i,j € N and set
k:=i+j—1. We extend [-, -], to be the bilinear, continuous in the first entry, map
[Ty Lomp(S(RY), S'(RY) X Lgnp(S(R?), S'(RT)) = Lyp(S(RY), S'(RY))
i J
(A9, B9) s 3757 A0 o8 BO) — BO) o5 A, (3.5.20)

a=1 =1

for of and of as in Lemma m

Proof of Lemma[3.5.1. We first show that for fixed f € S(IR¥), there is a well-defined element

(AD o8 BUY(f) € S'(R¥) (3.5.21)
corresponding to
(4) )
AL o Bii irprais,.n(f) (3.5.22)

Let g € S(R¥). Now it follows from the assumption that BY) has the good mapping property
and Remark that the bilinear map

(F.8) = (BE. s (F@as T ). O @) 0 (35.29)
which is a priori a bilinear continuous map
S(R) x S(R*) = 8o, 2. 1any R X R X RS S, (R)), (3.5.24)
is identifiable with a unique smooth map
Dpi) 0t S(R) X S(RF) = S(g,0) (R*). (3.5.25)
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Since we have the canonical isomorphism
L(S(RY),S'(RY)) = S'(R¥) (3.5.26)
by the Schwartz kernel theorem, we therefore define the composition by
(A% o8 BN, g)simry—s@ry = (K a, P a5 f g)t>5/(R2i)75(R2i)7 (3.5.27)
where
q’B(j),a,,B(f: g)t(%‘;ﬁg) = q’B(i),a,ﬁ(f, 9)(z5; 2;), (2, 2;) € R*.

Hence, taking (3.5.27)) as the definition of ([3.5.21) for f € S(R¥), we have defined an

evidently linear map

AW of BU) . S(RF) — S'(R¥). (3.5.28)

The continuity of this map follows from its definition as a composition of continuous maps.
Bilinearity of o? in A® and B is obvious. Moreover, it is clear that if BY) has the good
mapping property, then A® of B has the good mapping property. Lastly, the reader
can check from the distributional Fubini-Tonelli theorem that our definition of A® of BW)
coincides with the composition in the cse where AW € £(S(R?), S(R?)) and BY €
L(S(R7),S(R7)) or AW € L(S(R?),S'(R?)) and BY) € L(S'(R7), S'(R7)).

We now prove that the map
()0 () : LISR), S'(RY)) X Lomp(S(RY), S'(RY)) = Lymp(S(RY),S'(RY))  (3.5.29)
is continuous in the first entry, that is, for fixed BY) € L£,,,,(S(R?), S'(R?)), the map
L(SRY),S'(RY)) = Lymp(SRF), S'(RF)), AW s AD oF BU) (3.5.30)
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is continuous. By considerations of symmetry, it suffices to consider the case (o, 5) = (1,1).
To this end, it suffices to show that given a bounded subset R*¥) C S(R¥), there exists a
bounded subset R C S(R?) such that
sup ‘<(A(i) o1 B(j))f(k)|g(k)>| S osup |<A(i)f(i)’g(i)>| : (3.5.31)
FB) () eR(®) F00),g() eR()

To see how to obtain the desired seminorm, first observe that

|<(A(7') O% B(]))f(k) ‘g(k)>‘ = )<KA(i)a q)B(j),l,l(f(k)? g(k))t>3/(R2i),S(R2i)

, (3.5.32)

where the ultimate equality follows from the definition of the generalized trace (recall Defi-
nition and we commit an abuse of notation by using (DB(j)71’1(f(k), g") to denote the
operator in £(S'(R?), S(R?)) defined by this integral kernel. Since S3*) is bounded, the im-
age P i) 11 (RE) x RW) is a bounded subset of S(R*) = L(S'(R?), S(R")), and since A is
continuous, it follows that

sup | Tr, i(A(i)v(i))} < 0. (3.5.33)

i k Ky
~Ded 1J(z)f{( ) xR (K))

B(),

Hence, there exists an element " € ® 5011 (R® x RE) such that

1 o
5 sup | Try,. i (AD @) (3.5.34)
2 500€ ) | L (R0 xR0)

.....

Since each element of S(R*) can be written as >, )\gfe(i) ® géi), where > 7 |\ <1, and

féi), géi) are sequences in S(R?) converging to zero, we see from the separate continuity of
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the generalized trace that

T, (A8 © o)

IN

f<1) 79(1) e{fézl 7g(<)7;£l }?/0:1

We claim that { féfz, géf%}g’il is a bounded subset of S(R*), which then completes the proof.

Indeed, this follows readily from the fact that fé?, g(()l’% converge to zero. O

Remark 3.5.3. If we restrict the domain of the map of to the space
Lomps(SR'), S'(R)) X Ly (SR, S'(RY))

consisting of distribution-valued operators satisfying the good mapping property such that
their adjoints also satisfy the good mapping property, which we endow with the subspace

topology, then it follows by duality that o? is separately continuous on this space.

Remark 3.5.4. If BY) € £,,,,(S,(R7), S!(R7)), then it follows from bosonic symmetry that
for any (o, 8) € N<; x Ngj,
AD o8 BU) = AW ol BU), (3.5.36)

Remark 3.5.5. If A® € £(S,(R?),S'(RY)) and BY € L,,(Ss(R7), S,(R7)), then given two
extensions Agi), AS’ € L(S(R?),S'(R)) of A® | we claim that

> AV L BY =3 AP o BY € L(S,(R"), S (RY)) (3:5.37)
a=1 a=1

Indeed, for f € Ss(R*), g € S(R*), we have that

AW oL Bl - <K - t> . 3.5.38
;<g’ ( 1 oa )f>S(Rk)—S (Rk) ; A(1)7 B( ),a71(f7 g) S’(RQZ)_S(]RZZ) ( )
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Since each @) o1(f,9) € S(R¥) and f € S,(R¥), we see that

Z%um -9 Z<I>B(J>a1 fo)enz),  (z,2) €R¥ (3.5.39)

for any permutation 7 € S;. Consequently, for fixed 2 € R, the function 22:1 Ppi)aa(f,9)(

belongs to S;(R?) on which the two extensions A?) and AS) agree. It then follows from the

Schwartz kernel theorem that

7 t i t
<KAgi)’ (Z (DB(j),a,l(fa g)) > = <KA§)7 (Z CDB(J')@,l(fv g)) > )
a=1 S/ (R%)—S(R27) a=1 S'(R2)—S(R2?)

(3.5.40)
and therefore
i:(% (A o} B9 ) sey—s ey = i:(% (A o} B9 ) s@ey—s @t (3.5.41)
a=1 a=1
which establishes our claim.
By Lemma [3.5.1],
AV P BY ¢ £ (S(RF),S'(RF)),  forl+j—1=k. (3.5.42)
Hence, by definition of the bracket [-, -], and Remark ,
D [AY BY] | € Lyp(Si(RF), S'(RY)). (3.5.43)
21
5 1=k

Thus it remains to show two properties: first that the symmetrization of an operator pre-

serves the good mapping property, which will then establish that C*®) € £,,,,,,(S,(R¥), S.(R¥)),

where C®) is defined according to (3.5.9)), and second that C*) is skew-adjoint. We begin
with the following lemma which establishes the desired property of the symmetrization op-

erators.
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Lemma 3.5.6. If A = (AW € @2, Lomp(SRY), S'(RY)), then
Sym(A) € @D Lymp(S:(RF), SLRY)).
k=1
Proof. Tt suffices to show that for each k € N, if A® € £,,..(S(R¥), S'(R¥)), then
Symy,(AY) € Lgmy(S:(RY), SU(RY)).

Let oo € N<. We need to show that the map
S, (R*) x S,(R*) — S(R; S'(R))
(F®,g%9) = (Symy(A®)(F9), () ©a 9025 )) gty s

may be identified with a continuous map S,(R¥) x S,(R¥) — S(R?). By definition of the

(3.5.44)

Sym, operator and bilinearity of the distributional pairing, we have that

<Sym A(k))f(k) (*) ®a g(k)<.7x;7.)>SI(R,€)7S(R,€)

F® (. (®) (. > _ 3.5.45
DI R NS ENLIEAS ) S (3545

TESK

-1

By definition of the notation Al 3 , we have that

= <A(k)(f(k) om ) o, () ®a g(k)('v T, ')>s'(Rk)—s(Rk)

= (AD (P o, (1) @4 g P (-, 2, .)>S,(Rk)78(Rk), (3.5.46)

where the ultimate equality follows from the assumption f*) € S,(R*). Let ¢ € S(R) be a

test function. Then by definition of the permutation of a distribution,

(AW (fE) o m, ¢ @4 gM (-, 2, D)1y —sr) = (AW (¢ @0 g® (- a0,)) 7T_1>S’(Rk)—S(Rk)'
(3.5.47)
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Observing that

((¢®ag(k)<> 3::17 '))Oﬂ_l)(gk) = g(k) (-1'71'—1(1)’ s Tr—1l(a—1); xav Tr=1(a+1)s - - 7$ﬂ_1(k)>¢($ﬂ_1(0¢))7

(3.5.48)

upon setting j := 77 («) and using the bosonic symmetry of ¢™®). we obtain that

(6229 (2, ) o™ Nay) = 9™ (251,70, 25 10)0(w5) = (6®19 (24, )) (). (3.5.49)

Since A® has the good mapping property, we have that

<A(k)f(k)a ¢ ®j g( ( ) aa : >S’ (RF)—S(RF) <(I)A(k) f(k) g( Ly ¢>S’(R S(R)’ (3550)

where @ 4 ; : S(RF) x S(R¥) — S(R?) is a continuous bilinear map. Since S,(R¥) continu-
ously embeds (trivially) in S(R¥) and since a@ € N¢j, was arbitrary, we conclude that ([3.5.45))
is identifiable with a finite sum of continuous bilinear maps S,(R*) x S,(R*) — S(R?), and

the proof of the lemma is complete. O

Finally, to conclude our proof that the Lie bracket is well-defined, we only need
to verify that C*) defined according to (3.5.9) is skew-adjoint. This is a consequence of
Remark [3.5.2, Remark [3.5.5, and the following lemma.

Lemma 3.5.7. Let i,j € N, and define k =i+ j — 1. Let AD € L,,,,(S(R?),S'(R))
and BY) € L,,,(S(R7), S'(R7)) be skew-adjoint distribution-valued operators. Then for any
(oz,ﬁ) S Ngi X Nij

(A(Z) Og B(]))* = (B(]) Og A(l)>(z+1 ..... i+p—-1,0,040,...k,1,..., i) € ‘Cgmp(S(Rk)7S/<Rk)) (3551)
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Proof. By considerations of symmetry, it suffices to consider the case where (o, 5) = (1,1).
Recalling the definition of the adjoint of a distribution-valued operator, see Lemma [3.1.1],
we need to show that

<(B(j) o% A(i))(1,¢+1 ..... k,2,..0) 9> J?>5,(Rk),S(Rk)

= ((AW o1 BU))f, §>S’(Rk)7$(Rk)7

for any f,g € S(R¥). By Lemma m,

(3.5.52)

are both skew-adjoint elements of £,,,,(S(R¥), S'(R¥)). Now by density of linear combina-

tions of pure tensors, linearity, and the continuity of the operators AE?__ i B(({)i k) and
AW ol BU) it suffices to consider the expression
(AW ol BU))f, 9) 51(RE)—S(RF) (3.5.53)

in the case where f,g € S(R¥) are pure tensors of the form

k k
f=@fa and g =(X)ga, (3.5.54)
a=1 a=1

respectively, where f1,..., fe, g1, .., gx € S(R). Recalling the definition ([3.5.27) for A® ol

BY_ we have that

<(A(Z) O% B(]))f7 g>3/(Rk)—S(Rk) - <KA(1')7 (I)B(j),l,l(f7 g)t>5/(R2i)_S(R2i)'

An examination of the @z (f,g) together with the tensor product structure of f and g

180



reveals that

(I)B(J)ll(fg Lss z ®fa .7321 (®%) (22)

=1
= ab/—’
— fi=1) =g g1 (3.5.55)

k k
X <B(j) <f1 2 X fa>,(-) ® X %> (1),
a=i+1 a=i+1 S'(RI)—S(RY)

Since BY has the good mapping property, it follows that the element of S, (R) defined by
the second factor in the right-hand side of (3.5.55) is in fact an element of S(R), which we

denote by

a=1+1

Thus, using (3.5.56|) and (3.5.55)), we can write

(I)B(J) ,1 1<f g)( Ly z) ¢B(J) 1<f(j)7 g(j_l))(xl)f(iil) (£272>W<x/1)m(£12,1)7 ( Ly z) € R22
(3.5.57)

Ppu)1 <f1 ® ® Ja: ® ga) = $p0 1 (fP, gU D). (3.5.56)
a=i+1

and

<KA(1')’ CI)B(J'),LI(.ﬂ g)t>5/(R2i)_$(R2i)

— A(i)( 5 (FO) G- (zl) M & gl 1)> 3.5.58
< ¢ (f9), 9V D) ® f ®9) s ( )

by the Schwartz kernel theorem. Since A® is skew-adjoint, we have that this last expression

equals

_ < AD (g0 @ gi=DY g0 (fO), gGD) @ f(i—1)> . (3.5.59)

S/ (R1)—S(R?)
Now since A® also has the good mapping property by assumption, the element of S, (R)
defined by

L AD (4O & gi-DY (. <i—1)> 3.5.60
(A0 2 ™), OO D) (3.5.60)
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is identifiable with a unique element of S,, (R), which we denote by
— Gain (g @ g, FED). (3.5.61)
Using , we see that
= - /Rdwm,wg“) ® ¢, FD) (@)pgors (/9,90 M(z).  (35.62)

After unpacking the definition of the Schwartz function ¢z 1 (fY), gU=1) given in (3.5.55)
and (3.5.56)), it follows that

3569 < BO FG) & o - (V) @ gli—1). FG-D (j—1>>
(562 = (BOSD, da01(g0 @ g0, fEE) @ g0 )
_ B(j)< o (0D @ =D FiD) g U= 1)) (g>
< Paw (g @g" T ) ®g f @) -S(®)

. _ , —\t
= <KB(].), (<¢A<i>,1(g(1) ® g(z—l)’ f(z—l)) ®g(J—1)> ® f(])) > , (3.5.63)

S/ (R27)—S(R?7)

where we use the skew-adjointness of BYU) to obtain the penultimate equality and the

Schwartz kernel theorem to obtain the ultimate equality.

Our goal now is to show that

((bA(i),l(g(l) ®g" ™, fi-D) @ gt~ ) © fO(x ;3 2;)

) (3.5.64)
- q)A(i),l,l(g om, f ° W)(I], *T])
where m € Sy, is the permutation
1, a=1
mla)=qa+j—1, 2<a<i (3.5.65)

a—t1+1, 1+1<a<k.
With m we then have by definition of the composite distribution BYW ol A®) see
(3.5.27), and the notation



see Proposition (3.3.1], that

(3.5.63) = <KB(j)7 Dy 11(gom, fo 7r)t>$’(IR<21')—S(IR<2J')
(B9 o A9 gom) fow>3/(w o

= <(B 2 O1 A ’ )(1,i+1 ,,,,,,,,,,, g) f>3/ RF)—S(RF)’ (3566)

which is exactly what we needed to show.

Turning to (3.5.64)), observe that

k

(gom)(zy) = g1, Tj41, -+ s Thy 2, 5) = G1(T1) ®ga Tiiq) ® 9a)(2.;), (3.5.67)
+

and similarly for (f o 7). By the same analysis as in (3.5.55)), it then follows that

k

k
q)A(i),l,l(g o, fo W)(Eﬁ&;) = ( ® ga)@z;g‘)( ® ﬁ)@ég)ﬁ(%)

a=i+1 a=i+1

X <A(i)(®ga),(-) ®®ﬁ> (z1)
a=1 S'(RV)—S(R?)

a=2

= ¢4 (g @ g, FED) (21) gV (2y,) fO (), (3.5.68)

as desired. ]

We now turn to the proof of Proposition [3.1.7]

Proof of Proposition[3.1.7. We first verify the Lie bracket properties (L3)| in Defini-

tion [3.3.14] Bilinearity and anti-symmetry are immediate from the linearity of the bosonic

symmetrization Sym operator, see (3.3.43|) above, and the bilinearity and anti-symmetry of

the bracket [-, ;.
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To verify the Jacobi identity
4, [B,C|® +[C, [4, B + [B,[C, A" =0, (3.5.69)

we use our convergence result Proposition m together with the fact that [-, ] is a Lie
bracket by Proposition . Let A,B,C € G, where A = (A®),cn, B = (B®) ey, C =
(C™)ien. Note that since &, is a direct sum, there exists an Ny € N such that A® =
B®) = C®) =0 for k > Ny. Now by mollifying and truncating the Schwartz kernels of the
k-particle components A®, B%*) C®*) we obtain approximating sequences
Any = (A ken, Bry = (BU)ken, Cny = (Ch)ken € Boo N @E(SQ(RIC),SS(R]C))

o (3.5.70)
such that for all (ny, ny, n3) € N3, ASL’? = B,(J;) = Cq(q,lz) = 0 € gk gmp for k > Ny. In particular,
Anyy By, Chy € 6y for any integer M > Ny. Now for such M, we know from the Jacobi

identity for [, ], ~that

[Anm [Bmv Cns]qﬁM} + [Cnsv [Anu an]qu]

o + [Bns, [Cng,Am]@M]@M =0€ 6y C By,

(3.5.71)

Snr

Consequently, for fixed (ni,ns,n3) € N3, we obtain from Proposition that

0= lim <[An17 [Bn27 Cn:”]@M}QﬁM + [Cn3, [Anp an]qu}ﬁM + [ana [Cnaa Am]@M}@M)

M—o0

= (A, [Bras Cuglo g+ [Crss [Anis Brolo g + [Bras [Crgs Anile g - (3:5.72)

Next, using three applications of the separate continuity of the bracket [, -],_ established
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below, we have that

(A, [B,Clg_]. = n}linoo nllinoo nl,linoo [An [Bras Crsle ] g (3.5.73)
[C,[A, Blg ] = Jim  lim T [Cruss [Anss Brale ] g (3.5.74)
[B’ [07 A]Goo] Goo - n}gnoo nignoo nl,gnoo [Bn27 [Cn37 Anl]eﬁoo} Goo (3575)

Summarizing our computations, we have shown that

0= lim lim lim lim ([Am,[Bm,C%}@M}@ + [Crs: [Anys Buole,, |

n1—00 N2—00 n3—o00 M —o00 Snm

+ |:Bn2’ [Onsa Anl]ﬁM}®M>

(3.5.76)

M

= [A,[B,Cls_ o + [C.[A, Blg ]+ [B.[C, Alg_]

Goo Boo’

which completes the proof of the Jacobi identity.

Finally, we check that the map [-, -], _ is separately continuous. By linearity, it suffices
to show that for each fixed ¢, j € N and fixed @ € Ny, the binary operation o} is separately

continuous as a map
O¢11  Be,gmp X Gj.gmp Egmp,*(S(Rk)a S/(Rk)) (3.5.77)

where k = ¢ + j — 1 and where the space L,,.(S(RF),S'(R¥)) consists of distribution-
valued operators satisfying the good mapping property such that their adjoints also satisfy
the good mapping property, endowed with the subspace topology. This property follows from
Remark together with the fact that the adjoints of elements in gy gmp and g gmp also
satisfy the good mapping property by skew-adjointness. Thus, the proof of the proposition

is complete. O
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3.5.3 The Lie-Poisson Manifold &}  of Density Matrix oco-Hierarchies

In this subsection, we define the Poisson structure on &7 , which will be used in the
sequel in order to establish Hamiltonian properties of the GP hierarchy. Since many of the
proofs from Section [3.4.2] carry over with trivial modification, as they do not make use of
the good mapping property, we focus instead in this section on the parts of the construction
which require the good mapping property. To begin, we define the real topological vector
space

6, = {I' = (1P )ren € [ [ LISURY), S(RY)) : 4™ = (V)" VI € N}, (3.5.78)

k=1
endowed with the product topologyF_QI Analogous to Lemma |3.4.14] it holds that &7 is

*

isomorphic to the dual of (&)*.

Lemma 3.5.8 (Dual of 8.,). The topological dual of &, denoted by (B)* and endowed

with the strong dual topology, is isomorphic to & .

We now need to established the existence of a Poisson structure on &7 . We start by

specifying a unital sub-algebra of C>°(&?*_; R).

Definition 3.5.9. Let A, be the algebra with respect to point-wise product generated by

functionals in

{FeC®B;R): F(-)=1Tr(A), Ac B, U{F € C*(B;R): F(-) =C € R}.
(3.5.79)

YWe remark that &7 is the projective limit of the spaces {&% }nen directed with respect to reverse
inclusion.
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In other words, A, is the algebra (under point-wise product) generated by constants

and the image of &, under the canonical embedding into (&% )*. We note that our previous
remarks Remark Remark [3.4.17, Remark carry over with Ay y replaced by
Aoo-

We now wish to define the Lie-Poisson bracket {-,-}s. on As x A using the Lie
bracket constructed in Section |3.5.2] In order to so, we first need an identification of contin-

uous linear functionals as skew-adjoint operators, which follows from Lemma [3.4.19]

Lemma 3.5.10 (Dual of &% ). The topological dual of &%, denoted by (&%,)* and endowed

with the strong dual topology, is isomorphic to
—{Ae @c ), SL(RF)) : (AR = — AW, (3.5.80)

equipped with the subspace topology induced by @y, L(Ss(R¥),SL(RF)), via the canonical

bilinear form
iTe(A-T) =Y Try  (APy®) T = (yW)ey € &7, (3.5.81)

Remark 3.5.11. The previous lemma implies that, given a smooth real-valued functional F' :
&% — R and a point I' € &%, we may identify the continuous linear functional dF[I'], given
by the Gateaux derivative of F' at T', as a skew-adjoint element of @~ L(Ss(R¥), SI(RF)).

We will abuse notation by denoting this element by dF[['] = (dF[[']*®)en.

We are now prepared to introduce the Lie-Poisson bracket {-,-}. on Ay x Ax.

Definition 3.5.12. For F,G € A, we define

{F,G}g. (I) =i Te([dF[),dG[ly_-T), VI € L. (3.5.82)
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Remark 3.5.13 (Existence of Casimirs). The functional F(T') := Tr;(y) is a Casimi for
the Poisson bracket {-,-}. . Consequently, the Poisson bracket {-,-}4. is not canonically

induced by a symplectic structure on &7_.

We now turn to our ultimate goal of this subsection, that is, proving the following:

Proposition 3.1.8. (&%, A, {*, }¢. ) s a weak Poisson manifold.

Properties |(P1)| and [(P2)[ in Definition for weak Poisson manifolds are readily

proved using the same arguments in the proofs of Lemma [3.4.22| and Lemma [3.4.23] re-
spectively, together with the following technical result, which in turn follows from the same

argument as in Lemma |3.4.21] We omit the details of the verification of these properties.

Lemma 3.5.14. Suppose that G; € A is a trace functional G;(I') = i Tr(dG,[0] - T') for
Jj =1,2. Then for all ' € &%, the Gateaur derivative d{G1,G2}g. [I'] at the point T' may

be identified with the element
[dGH[0], dG2[0]] s € Boo (3.5.83)

via the canonical trace pairing. If Gy is a trace functional and Gy = G31Ga 2 is the product

of two trace functionals in A, then d{G1, G2}y, [I'] may be identified with
Go1(I)[dG1[0], dG2[0]] s + Go2(I')[dG1[0], dG21[0]] (3.5.84)

for all T" € &% wvia the canonical trace pairing.

20i.e. it Poisson commutes with every functional in A.,.
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Property is more delicate: to show that the Hamiltonian vector field is well-
defined, we have to exploit the good mapping property. Analogous to the proof of Propo-
sition [3.1.7] rather than prove directly the well-definedness of the Hamiltonian vector field,
we can use our earlier investment of work in proving Lemma [3.4.24] which gives an explicit
formula for the N-body vector field, together with our convergence result Proposition

and an approximation argument.

Lemma 3.5.15. (&}, A, {-, } 4. ) satisfies property in Definition . Furthermore,
if H € Ay, then we have the following formula for the Hamiltonian vector field Xy :

0 ¢
Xu(D)9 =3 i Tren i ( [Z dH[NEQ,Hl,...,HjA)? V(Hj_l)] ) : (3.5.85)
j=1 a=1
Proof. Let F, H € A,. In order to find a candidate Hamiltonian vector field, we compute
{F, H}g. using an approximation to reduce to the case where F' and G belong to Ap,n,
for all N sufficiently large, together with the N-hierarchy Hamiltonian vector field result
Lemma[3.4.24] and our convergence result Proposition[3.1.4 Once we have found a candidate,
we then verify that the vector field is a smooth map &7 — &7, which then completes the

proof by the uniqueness guaranteed by Remark

By definition of A, the functionals ' and H are finite linear combinations of finite

products of trace functionals generated by elements in &:

Mg Mg, F My Ma,m
F(O) =) Cor [[ iTr(Apr-T),  HI) =) Con [ iTr(An-T),  (3.5.86)
a=1 b=1 a=1 b=1

where Mp, My, Mor, Mo €N, Cor,Con € R, and Ay r = (Al(f}’)keNaAb,H = (A,(ffﬁ)keN €

6. Additionally, since &, is a direct sum, there exists an integer Ny € N such that for
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eachl <a< Mpand1<b<M,p,
A =0€ Gogmp,  VI< k<N (3.5.87)

and similarly for Al()kl){ So by mollifying and truncating the Schwartz kernels of each
Aé’j}),, Agﬂl){, we obtain approximating sequences A, , p = (Ailkl)) rkeny and A, p g = (Ailk,)) 1) keNs
such that

v Anp it € B NEP L(SL(RY), S,(RY)), (3.5.88)
k=1
Apnpr = App, and A, p g — Ap g in B as n — oco. In particular, each A, 7, Anpm € G

for every integer M > Ny. Now using the approximants A, ; r and A, y, we can define

sequences (Fy,)nen and (H,,)qen of functionals in A, by

MF Ma,F MH Mu.,H
Fu(T) =Y Cor [[ iTe(Anpr-T),  Ho(T)=> Con [] iTr(Anpu-T), (3.5.89)
a=1 b=1 a=1 b=1

such that F,(T') — F(T') and H,(I') — H(T') as n — oo uniformly on bounded subsets of

&7 . Lastly, note that by the Leibnitz rule for the Gateaux derivative,
dF,[T],dH,[[] € &y, VM > Ny (3.5.90)

and dF,[I'] = dF[['] and dH,[I'] = dH[T] in @, , L(Ss(R*),S.(R*)), as n — oo, uniformly

on bounded subsets of &% .

Now by separate continuity of the Lie bracket [-, -],  and the separate continuity of

the generalized trace (see Proposition [3.2.3]), we obtain from the definition of {:, -}4. that

{F, H} g, (I) = i Tr([dF (], dH[ )y - T)

=4 lim lim Tr([anl[F],dan[FHes

n1—r00 N2 —r00

-F)

]

= lim lim {F,,, Hy,}es (D), (3.5.91)

n1—00 Ny —>00

190



for each I' € &7_. Since
dF,, [T)® = dH,,[T1™ =0 € grgmp, Yk > Ny, (n1,n2) €EN?, T &7,  (3.5.92)
it follows from an examination of the definition of [dFy,, [I'], dHp,[I']]s_ that
[dF [T, dHa, [T =0 € ggmp, Yk >2No+1, (ni,n2) € N?, D€ &%, (3.5.93)

Therefore, if I' = (7)) ey € &, then letting I'y; := (y®)M | be the projection onto an

element of &3, for M > 2N, + 1, we see that

Tr([dFp, [I], dHo, [, - T) = Tr([dF, (U], dHp, D, - Do)

= Tr([dFy, [Tong 1], dHns [Tongi1]]g, - Tongr1).  (3.5.94)

For each (ni,ny) € N2, we have by Proposition and the separate continuity of the

generalized trace that

Tr([dFy, [Cangt1], dHny [Congt1]]le.. - Tanos1) = i Tr([dF, [Pangs1]s dHny[Cong41]ls,, - Danos1)-
(3.5.95)

For M > 2y,+1, we have by Lemma [3.4.24] that

Z.Tr([dFm [F2N0+1]7 dHnQ [F2N0+1]]05M ’ F21\/0-&-1) = {Fmv an}cj* (F2N0+1)

= Z v Try anl [Tong 1] XHn2 &1, (Tangs1) ))

(3.5.96)
where
X675, (Cang+1)
n2sS M 0
M min{l,j} (3 5 97)
k 0.
= Z Z OZ]krM Trf‘f'l ~~~~~ k Z dHn2 PQNO‘H]E(X) L+1,. . min{l+j—rk})’ 75]\20_,_1

r=ro a,.€Pt
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and where

kE=min{{+j—1, M}, ro:=max{l,min{l,j}— (M —max{/,j})}, (3.5.98)
and
: v '
Cljkrnr = (j) TEE’MC]’M , (3.5.99)
r C’@M Hmzl(M—k+m)

Since dF,,[Tang+1] = 0 € g and dH,,[Tany1]Y) = 0 € g;, for £,j > Ny, we see upon
substituting the right-hand side of into that, for any M > 2Ny + 1, only
pairs (¢, j) satisfying £+ j — 1 < M give a nonzero contribution to the resulting expression.
Similarly, only pairs (¢, j) such that ro = 1 give a nonzero contribution to (3.5.96)). Therefore,

we may write

X,y 3, (Dang 1)
M min{¢,j} : ( :
j t+j—1
= Z Z Cljrns Trogr,. o1 Z dH,, [F2N0+1]E]%,e+1 ..... Cj—r) VoNor1
j=1 r=1 o, €Pf
(3.5.100)
By the analysis from the proof of Proposition [3.1.4] we have that
im ), =40 "1 (3.5.101)
M—poo  RTM 0, 2<r<min{lj} o

Since the summands in (3.5.100)) are zero for 5 > Ny, it then follows that

[ L
9 . ] 145—1
Xty 01, Tang1)” M—_Zm> Z] Treg1,.ej-1 ( [Z dH,, [F2N0+1]Ei{g_%lv“?g_s_j_l)7 ’YéNOJH )] > :

j=1 a=1

J/

-

=X, 65 Cang+1)"

(3.5.102)
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The preceding convergence result implies, by the separate continuity of the generalized trace,

that for fixed (ni,ny) € N2,

No
Nl[gnoo Z iTry, o (dFy, [Tang ] (Z)Xan,qs;;f (Pangs1))
= (3.5.103)

Recalling from (3.5.92) that dH,,[[ony41]"Y = dH,,,[]9, for all j € N, and

W) =AY for £ 45 — 1 < 2Ny + 1,

Y

by definition of the projection I'yn,+1, we obtain that

o0

¢
Xn,, 05 (Tangs1)? = Zj Tropn, erj ( [Z dH,, [T]&Z@Jrl ..... 41y 7““_1)] ) . (3.5.104)
a=1

j=1

-~

:ZXHn2 (F) (Z>

for £ € Ney,. Similarly, by (3.5.92), dF,, [Tan,11]¥ = dF,,[T]®, and so we have that

NO NO
> iy (dFy, Pangsa] Y X,y 0o, Tangs) D) =D i Try o (dF,, 19Xy, (1)9)
(=1 =1

We now proceed to the analysis of the iterative limits ny — oo followed by n; — oo.
Since

dH,,[[] — dH|T]

in B, as no — 00, it follows from Proposition and the universal property of the tensor

product that the (¢ + j — 1)-particle extensions

dan[F]Ei),€+1 ,,,,, e+jf1)—>dH[F]gi),e+1 ..... (+j—1) (3.5.106)
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in Ly (SR, S'(RI71)) as M — oo. for T' € &7, fixed. The continuity of the com-
mutator bracket, the good mapping property, and the separate continuity of the generalized

trace imply that
X, ([) — X (D). (3.5.107)

in [T,2, £(S.(RF),S;(R¥)) as ny — oo. Moreover, the continuity of the adjoint operation
(see Lemma and the self-adjointness of Xy, (I') imply that Xp(I') is self-adjoint,
hence an element of &% . We note that writing Xy (I") is a slight abuse of notation since we
have not yet verified that Xy satisfies all of the desired properties, but this limit, Xz, will

be our candidate Hamiltonian vector field from the statement of the lemma.

For each n; € N fixed, the separate continuity of the generalized trace and the fact

that dF,,,[I']") = 0, for £ > Ny, then implies

lim i Tr(dFy, [I']- X4, (T') =i Tre(dF,, [I]- Xg(T)). (3.5.108)

ng—00

Since dF,,,[I'] — dF[I'] in B4, as ny — oo, by construction of the approximations F,,,

another application of the separate continuity of the generalized trace yields

lim 4 Tr(dF,, [[] - Xp(T)) = i Te(dF[T] - X (D). (3.5.100)

ny—oo

After a little bookkeeping, we have shown that for every I' € &_,

{F, G(}es,&3 (F) = lim lim lim zTr([dFm [F2N0+1]7 dHn2 [F2N0+1H(5M . F2N0+1)

n1—00 ng—o00 M—o00

= lim lim lim iTr(dF[F2N0+1] . XHTL27®]\/I (F2N0+1))

ni1—00 na—00 M—o00

= lim lim iTr(dF,, ] X4, (D))

n1—r00 Ny —r0o0

— i Te(dF[T] - X (D). (3.5.110)
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We now verify that Xy is a smooth map &% — &7 in order to conclude by Re-
mark It remains only to check the smoothness property. If H is a trace functional,
then since dH[I')Y) = dH[0]") satisfies the good mapping property, the desired conclusion is
immediate. The general case then follows by the Leibnitz rule for the Gateaux derivative,

since constant functionals and trace functionals generate A. O]

3.5.4 The Poisson Morphism ¢ : S(R) — &7

We now turn to the proof of Theorem [3.1.12] We recall that we are considering the
map

L SR) = &%, u(¢) = (10%%) (%)), e (3.5.111)

which sends a 1-particle wave function to a density matrix oo-hierarchy. We recall the

definition
As={H : V,H € C*(S(R); S(R))} € C=(S(R);R).
and we restate Theorem [3.1.12 here for the reader’s convenience.

Theorem 3.1.12. The map ¢ is a Poisson morphism of (S(R?), As, {-,-},) into (&%, A, {-, Fer )

1.e. it 1s a smooth map such that
{Fou,Goui}pa(9) = {F.Gle, (), Vo€ SRY, (3.1.39)

for all functionals F,G € Ax.

We recall that although we set d = 1 in the proof, it works in any dimension. To
prove Theorem [3.1.12) we will need the following technical result which gives a formula for

the Gateaux derivative of ¢.
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Lemma 3.5.16 (Formula for di). Let ¢,1p € S(R). Then for all k € N,

k k
dfgl()® = 37 169D @ v © 674 ) (6] + 3 [6%) (97" @ © 07
- " (3.5.112)

Proof. The desired formula follows readily from the product rule. O

Remark 3.5.17. We record here the observation that for ¢ € S(R) fixed, each sum in
(3.5.112) has co-domain L£(S’(RF),S,(R¥)). We will use this observation throughout the
proof of Theorem [3.1.12] below.

Proof of Theorem |5.1.12. Smoothness of ¢ follows readily from Lemma [3.5.16| and induction

on k, therefore, it remains to check that
(i) L*.AOO - .Ag,
(11) L*{'a '}Qﬁ’go - {L*'7 L*'}S(R)'

We prove assertion . Let F € A,. We need to show that f = F o € As, that is,
we need to show the symplectic L? gradient of f exists and is a smooth S(R)-valued map.

To this end, observe that by the chain rule, for any ¢,0¢ € S(R), we have

df9](69) = dF[u(¢)](de[¢](60))
= 1 Tre(dF[o(®)] - di[¢](60))
=iy Try  k(dF[(0))Pdu[g] P (59)), (3.5.113)

k=1
where the penultimate equality follows from the identification of dF[c(¢)] as an element of

65\;, the bi-dual of &, via the canonical trace pairing and the ultimate equality follows
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from the definition of the dot product. Now applying Lemma [3.5.16| and the bilinearity of

the generalized trace, we see that

Try, e (dF[(0)) Vde[0] ) (09)) = Tro_ k<dF (k<§:|¢®m1>®5¢®¢®km><w%0>
k
+ Try,., k( ] (Z 165%) (62D @ 56 @ ¢®(km)|>>
m=1
k
dF[L(Qs)](k) (Z ¢®(m—1) R Ip ® ¢®(k—m)> >

m=1

k
+ <Z gb@(m—l) ® 5¢ ® ¢®(k—m)

m=1

dF [L(cb)](’“)¢®’“> :
(3.5.114)

where the ultimate equality is just applying the definition of the generalized trace. Since

dF[1(¢)]™ is skew-adjoint, we have that

k
<¢®k dF[L(¢)](k) (Z ¢®(m71) ® 8 ® ¢®(km)> >

——mewwwm

(3.5.115)

k
Z ¢®(m71) ® (5¢ ® ¢®(km)> .
m=1

Since dF[1(¢)]®) satisfies the good mapping property, the preceding expression can be written
as — (Ypi|d¢), where Yp € S(R) is the unique Schwartz function coinciding with the bosonic

tempered distribution

<Z() Qa ¢®(k_1)

a=1

dF[L(¢)](k)gb®k> : (3.5.116)

and we recall the notation (-) ®, ¢®*~1) introduced in ([3.5.14). Similarly,

<i ¢®(m—1) ® 5¢ ® ¢®(k—m)

m=1

dF[L(¢)](’“)¢®k> = (60|vrk) - (3.5.117)
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Therefore, we have shown that

k
<¢®k dF[L(Qb)](k) <Z ¢®(m—1) ® 5(;5 ® ¢®(k—m)> >
m=1

k
+ <Z ¢®(m_1) ® 5¢ ® gb@(k—m)

m=1

= 20 Im{(0¢|Yr) }

= iwp2 (8¢, V) (3.5.118)

dF ()] o™ >

and consequently by (3.5.113)), (3.5.114)), (3.5.118]) and bilinearity

i Try gk (dF[u(0)] P[] P (59)) ZW 5p,bpg) = wiz(Yp, 60),  (3.5.119)

where we have defined ¢p = > 7, ¥px and used the anti-symmetry of wy2 to obtain the
ultimate equality. Note that moving the summation inside the second entry of wy2 is justified
by the bilinearity of the symplectic form since dF[.(#)]*) = 0 for all but finitely many k, by
assumption that /' € A, and the generating structure of A.,. Consequently, ¢r) = 0 for

all but finitely many k. We conclude that

df[9](0¢) = wr2(Yr, 66), (3.5.120)

and hence, recalling the definition of the symplectic L? gradient in Remark [3.3.12, we have

that
V.f(¢) = vr € S(R). (3.5.121)

Lastly, using the identity (3.5.121]), we prove assertion By definition of the
Hamiltonian vector field X¢(1(¢)) in|(P3)|together with Lemma|3.5.15 which gives a formula
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for X¢(t(¢)), we have that for F,G € A,

{F, G o (1(6))

=iy Tri 4 (dF[L(aﬁ)](’“’ > Tk, HH(

J=1

(3.5.122)

GO i1 ey D)7 = 0207 @2 dGu(9)] V) (¢%)) (6°FH7V], (3.5.123)

where ¢®*F—1) @ dG[(4)]V)(¢%7) is the tempered distribution in S’'(R**7~1) defined by
(¢®(k_1) ®“ dG[L<¢)](j)<¢®j)) (Ekﬂel)
(3.5.124)
= ¢®(a_1)(_a 1)¢® (b= a)( Lot1; £)dG (¢)] (xaaxkﬂ kHj— 1)

Since dG[1(¢)]Y) has the good mapping property by assumption G € A, it follows from

Remark and the definition of the generalized partial trace that

bt detiz1 (dG[ (¢)](a)k+1 k+3—1)L(¢)(k+j_l))

""" (3.5.125)
= (6% @ Y610 @ ¢°¢7) (6],
where ¢ ;.o € S(R) is the unique Schwartz function such that
(06lYc.a) = (06 @a 0°0 V|GV (67)), Vi) € S(R). (3.5.126)
Moreover, since dG[(¢)]7)(¢®7) € S (R7), it follows from Lemma that
(66 ®a 6"V V[dGL(0)]P (6™)) = (3¢ @ $°UV[dGIU)V(6™)),  (3.5.127)
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for any 1 < o, @’ < j, and therefore ¢ j o = V¢ ;. Hence,

Triyq,., k+j—1<dG[L(¢)]E2’k+l k+j71)L(¢)(k+j_1)>

.....

o ) (3.5.128)
= 027D @ v, @ oY) (97,

where 9 ; is defined the same as g above, except with (F,k) replaced by (G,j). By
completely analogous reasoning together with the skew-adjointness of dG[i(¢)]Y), we also

obtain that

Tryq,.., k+j71(L(¢)(k+j71)dG[b(¢)]Ei),kﬂ k—i—j—l))

,,,,,

1 ) ) (3.5.129)
=-3 16%%) (62D @ g ; @ ¢PF)|

Substituting the identities (3.5.128)) and (3.5.129)) into (3.5.122), we obtain the expression

o) o) k
i3 T (FR@) (3D 1670 @ gy @ 67 ) (6]

k=1 j=1 a=1

+16°%) () @, @ 670 ))

k
dF [i(¢))Y (Z ¢* V@ Ya; ® ¢®<M>) >

a=1

k
+ <Z ¢® ) @ g ; @ ¢P ) dF[L(¢>]<k>¢®’“>

a=1

0o 00 k
=-2) > Im{ <Z #°0D @ g @ ¢ dF[a<¢>]<k>¢®k> }
a=1

j=1 k=1

= =23 Im{(a e}, (3.5.130)

=1 k=1
where the penultimate equality follows from the skew-adjointness of dF[i(¢)]*) and the

ultimate equality follows from the definition of ¢ p. Since ¥p; = g ; = 0 for all but
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finitely many j, k, we are justified in writing

=2 > {(elvre}t = —2Im{(elvr)}, (3.5.131)

where Y is defined as above and vg = Z;L Yq,; is defined completely analogously. Re-
calling (3.3.15)) for the definition of w2 and identity (3.5.121)) for the symplectic gradient,

we obtain that

— 2Im{(gltr)} = wiz (Vo f(6), Vog(0)). (3.5.132)

After a little bookkeeping, we realize that we have shown that

{F, Gl (U(0)) = w2 (Vs f(), Vsg(0)). (3.5.133)

Since the symplectic form w2 canonically induces the Poisson bracket {-,-};. through

{f,9}12(¢) = w2 (V. f(9), Vsg(0)), (3.5.134)
the proof of assertion is complete. n

3.6 GP Hamiltonian Flows

In this last section, we prove Theorem [3.1.3] and its limiting version Theorem [3.1.10}

3.6.1 BBGKY Hamiltonian Flow

For the reader’s benefit, we recall that the BBGKY Hamiltonian Hppcry,n is the

trace functional given by

HBBGKY,N(FN) = TY(WBBGKY,N : FN)> (3-6-1)
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where

WBBGKY,N = (—Ax,/iVN(Xl —XQ),O,...>, (362)
with x and Viy as in (3.1.3). We also recall here the statement of Theorem |3.1.3]

Theorem 3.1.3. Let I C R be a compact interval. Then I'y = (7](\1;))sz1 € C®(I;8Y) is a
solution to the BBGKY hierarchy (3.1.4) if and only if

d

%FN = XHBBGKY,N (FN)7 (3'1'18>

where Xy ey 18 the unique vector field defined by Hppaxy,n (see Definition with

respect to the weak Poisson structure (&%, Agn,{-, '}Qﬁ}«v).

We now proceed to proving Theorem [3.1.3, Since by Lemma [3.4.24] we have the

formula
XHBBGKY,N (FN)(E)
N min{lj}
A & (3.6.3)
=Y Clhon T | D dHBBGKY,N[FN]E‘;)NzH ..... min{l+j—rk})’ W |
j=1 r=rg a,.EP!
where
k:=min{¢+j—1,N}, ro:=max{l,min{l,j} — (N —max{/,j})}, (3.6.4)
and
/ NCZ NCj N j
Coikry = R
Clc,N Hm:l(N —k+ m) r

our task reduces to simplifying the expression in the right-hand side of (3.6.3)).

To this end, we first need a formula for the Gateaux derivative dHppary N of Hepaky N

and its identification with an observable N-hierarchy via the canonical trace pairing. Indeed,
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let N € N. Then for any I'y = (%(5))2]:1 € 8%, we have that
drHBBGKY,N[FN]((SFN) = Tr(WBBGKY,N . 5FN), Vol'y € Qj}kv (365)

Therefore, dHppery N[I'n] = dHpperyn[0] is uniquely identifiable with the observable

2-hierarchy —iWppary,n. As a consequence, we see that

dHBBGKY,N[FN]E;)WHl min{t+j—rk}) = 0 (3.6.6)

.....

for 3 < j < N. Therefore, by (3.6.3), we have

V4
. l
X'HBBGKY,N (FN)(Z) = _ZcélélN Z [(_Afcl)(a)’%(\f)]
a=1

min{¢,2}
— K Z Cloirn Z Treq,., k([(VN()ﬁ — X2))(a, t41,... min{ﬁ+2—r,k})77}\?)i|>
r=ro a,ept
=: Term; ; + Termsy . (3.6.7)

We first consider Term, ;. Note that (—A;)@w) = —A,,. Now unpacking the definition
of the normalizing constant Cj,,,, we find that

NCy nC
Chnn = w =NCy =1, (3.6.8)

where the ultimate equality follows from the fact that Cy y = 1/|P}| = 1/N. Hence,

14

Term; y = —i Z [—Awa, %(5)} (3.6.9)
a=1
We next consider Termy . We divide into cases based on the values of £ € {1,..., N}.
e If /=1, then
Termg; = —ikC g9, n T2 < [(VN(Xl — X5)(1,2): 7](3)} ), (3.6.10)
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where we use that k = 2. Since (Vy(X; — X3))a,2) = Va (X1 — Xy), it follows that
Termm = —iIiCi221N TI'2 ( |:VN(X1 - X2)7 ’)/](\?)] > . (3611)

Unpacking the definition of the constant C7yyy, We see that

NCi nC 2
Clomn = —A—= =2NCiy =2, (3.6.12)
CQJV 1 ’
hence,
Terng = —QiKTIQ([VN(Xl - XQ),’}/](\?):|> (3613)

If2<?¢< N -1, then
ro = max{min{¢,2} — (N —max{/,2}),1} =max{2 — (N —¥¢),1} =1  (3.6.14)
and therefore

2
Termay = —ik Y Clogiapn Tfe+1([VN(X1 - XQ)(QT,£+1)7'7](\§+1)]>7 (3.6.15)

r=1 a, €Pf

where we use that k = ¢+ 1. If r =1, then

y4
> Tren ( [VN(Xl — Xo)(a,,041) 7](§+1)D = Trp ( [VN(Xa — Xo11), %(5“)} )
a=1

a, P! =

(3.6.16)
and recalling (3.4.9)), we have
NCynCon (2 2(N — 1)
Corierin = " Conn (1) = o1 (3.6.17)

If r =2, then min{¢ + 2 — r, k} = ¢, which per our notation implies that

Z Tr4+1<[VN(X1 — X2)(gr,e+1)7%(§+l)D = Z Tre+1<[(VN(X1 — X2)(041,a2)7’y](\§+1)

a,€P! (o,02)€P¥

(3.6.18)
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Since a1, a € Ny and Vy (X1 — X9)(ay,00) = VN(Xa; — Xa,), we have that

o ([0~ X 7)) = [~ Xl (2029

Now since k = ¢ + 1, it follows from our computation in (3.6.17]) that

NCynCo N 2 1
’ = = = —. 6.2
Coagerryan Comn(N —k+1) (2) N1 (3.6.20)

Since Vn(Xa, — Xa,) = Vn(Xa, — Xa,) by the evenness of the potential V', it follows
that

> V(X = Xa) W] = % > [WXay - X)W | 3621)

a,€PY 1<ar<an<t

After a little bookkeeping, we obtain that

4

C2(N —¢
Termy p = —m% Z Troiq ( [VN(XQ — Xo11), V%H)D

9 a=1 (3.6.22)
. ¢
ik Y [VN(XOH . XQQ),%(V)].
1<ai<az<l
Lastly, if £ = N, then
ro = max{min{N, 2} — (N — max{N,2}),1} = 2. (3.6.23)
Moreover, k = N, so that
Termy y = —ikChypyay S [(VN(X1 - XQ))(%)%(VN)]. (3.6.24)
QQEPQN

Since

L) =T (3.6.25)

Chanon = N_1

NCN,NOQ,N (2) . 1

Cn.N
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we can again use the evenness of the potential V' to conclude that

0i
Termy y = —NZ_Kl Z [VN(X&1 — XQQ),%(VN)]. (3.6.26)

1<a;<as<N

Putting our case analysis together, we obtain

XHBBGKY,N (FN)(l) = —1 [_Am ) 7](\})] — 2iK TI"2 ( [VN(XI - XZ)a 7](\?)] ) ) (3627)

while for 2 < ¢ < N — 1 we have

¢ :
) 0 2tk ’
XHBBGKY,N (FN>(£) =t Z |:_All7a7’yj(v)i| CN-—1 Z [VN(Xal B XOQ)”YJ(V)}
o , e (3.6.28)
2ik(N — ¢
S en L (FEAE )]
a=1
and finally
al 2ik
: ¢ N
Ntsacrrn T = =03 [0 W] = 775 50 [ = X))
a=1 1<ai<as<N
(3.6.29)

which we see, upon comparison with (3.1.4)), are precisely the equations for solutions to the
BBGKY hierarchy, thus completing the proof.

3.6.2 GP Hamiltonian Flow

In this subsection, we prove Theorem [3.1.10l For the reader’s benefit, we recall that

the GP Hamiltonian Hqp is the trace functional given by
Hep(T) =Tr(Wgp-T), T € &~; Wep = (—AL, k6(X1 — X5),0,...). (3.6.30)
We recall the statement of the theorem.
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Theorem 3.1.10 (Hamiltonian structure for GP). Let I C R be a compact interval. Then
['e C(I;8%) is a solution to the GP hierarchy (3.1.5)) if and only if

(7)) = Xy C0), vier (31.31)

where Xy, 1s the unique Hamiltonian vector field defined by Hap with respect to the weak

Poisson structure (&%, Aso, {, } s )-

The proof is similar to the proof that the BBGKY hierarchy is a Hamiltonian equation
of motion, and Theorem may be viewed as the N — oo limit of Theorem [3.1.3] In
Chapter [4], we will obtain Theorem for the 1D cubic GP hierarchy as part of a more
general theorem which connects the Hamiltonian structure of an infinte coupled system of
linear equations, which we call the n-th GP hierarchy, to the Hamiltonian structure of the
n-th equation of the nonlinear Schrodinger hierarchy, which is of fundamental interest in
the study of the NLS as an integrable system (see, for instance, the survey of Palais [74]).
The GP hierarchy under consideration here then corresponds to the n = 3 equation of the

aforementioned family of equations.

We now proceed to proving Theorem [3.1.10 Recalling equation (3.1.5)) for the GP

hierarchy, we need to show that
X D)W = —i([-Ag, . Y] + 26Biiy®™™Y),  keN, (3.6.31)

for any I' = (y*)) € &*_, which we do by direct computation.

Let I' € &7, . By application of Lemma|3.5.15/to Hp together with the identification
dHep[l'] = —iWep, (3.6.32)
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which is immediate from the fact that Hgp is a trace functional, we know that
o0
j=1

mce —1 ), = € @i gmp, for j > 3, we see from ([3.6. that the formula for Xy
Si WY, =0 € g;gmp, for j > 3 from (3.6.30) that the formula for Xy, (T
simplifies to

k
XHGP (F)(k) = —1 Z(<_A931)(06)7(k) - W(k)<_AIB1>(O¢))
a=1

k
— 12K Z Tryr1 (6(X7 — X2)(a,k+1)7(k+l)) — Trp (7(k+1)5(X1 — X2)(ajit1) )
a=1

(3.6.34)
for k € N.
Since (—Az,) @) = —Ay, and A, = 3" A, by definition, it follows that
k
—i> (As)@¥" =YW (A2 @) = —i[-Ag,, 7™]. (3.6.35)
a=1

Since 0(X1 — X2)(ap41) = 0(Xoa — Xgy1), it follows from Proposition for the
generalized partial trace that Try,(6(Xo — Xpi1)y*+Y) is the element of £(S(R¥), S(R¥))

with Schwartz kernel

/ d95k+15(33a - xk+1)’7(k+1)(£k+1;£2, $k+1) = ”Y(Hl)(&k, %Aﬁw ﬂUa) = B(Jlr;mﬂ(k“)(&k;&;g)-
R
(3.6.36)
Similarly, Try 1 (Y*+Y6(Xa — Xpp1)) is the operator with Schwartz kernel
/Rdxa&(x’a — 2y )V (@, g o) = VD (2, 7l 2 ) = By (2 2)-
(3.6.37)
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Since By = >.¢_, BL,., — B

k1 wks1 DY definition, we conclude that

k
=260 Trer (0(X1 = Xo) (7™ Y) = Tren (YEI6(X0) = Xa)(apin)) (3.6.38)
> 6.

= —2m’Bk+17(k+1).

After a little bookkeeping, we see that we have shown (3.6.31]), thus completing the
proof of Theorem [3.1.10]
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Symbol Definition

(@k):@k (‘rla"'7xk)

FU— (Trmys - Tmy)

Lisitk (Tiy ooy Tir)

dz;, dxq---dzy

Ak da; - - dzit

N<; or N3, {neN:n<itor{neN:n>i}

Sk symmetric group on k elements

S(RF), S'(RF) Schwartz space on R¥ and tempered distributions on R*
D'(RF¥) distributions on R*

Ss(RF), S{(R)

L(E;F)
L(S(R*), S(RY))

L(S(RF), Ss(RF))
dF
V or V,
Alr (1), (k)
Sym(f)
Sym(A)
L2(R¥)
B}, Biy
¢@5£
CL)LZ
As
{5 }re

(k)

(J1yeeesJk)
9k
(QjNa ['7 '}951\1)

Oy
(67% “4007 {'7 }67\,)
gk,gmp

(6007 ['a ']600)

(6207 Aco, {" }Qﬁ;o)

symmetric Schwartz space, Definition and symmetric tempered
distributions

continuous linear maps between locally convex spaces E and F
L(S(RF),S(R*)) equipped with the subspace topology induced by
L(S(R*),S'(RY))

analogous to previous definition

the Gateaux derivative of F', Definition

the real or symplectic L? gradients, Definition Remark
conjugation of an operator by a permutation, see (3.3.42)
symmetrization operator for functions, Definition
symmetrization operator for operators, Definition

symmetric wave functions, Definition [3.3.

contraction operators, Definition [3.3.3
k-fold tensor of ¢ with itself,
symplectic form on L?(RF), (3.3.15)

see Proposition and

Poisson bracket on L?(R¥), ([3.3.21))

k-particle extension,

locally convex space of k-body bosonic observables,

Lie algebra of observable N-hierarchies,

r-fold contraction,

Lie-Poisson manifold of density matrix /N-hierarchies,

locally convex space of k-body observables satisfying the good mapping
property, (3.5.7)

Lie algebra of observable co-hierarchies, and

contraction operator, Lemma

Lie-Poisson manifold of density matrix oo-hierarchies, (3.5.78]), Defini-

tion [3.5.9| and (|3.5.82))

generalized trace, Definition
generalized partial trace, Proposition [3.2.4

Table 3. %1 d\T otation




Chapter 4

Poisson Commuting Energies for a System of Infinitely
Many Bosonsd]

4.1 Statement of Main Results and Blueprint of Proofs

We provide an outline and discussion of the main results of this chapter and their
proofs. We begin by recalling in Section several of the main geometric results from

Chapter [3| which are needed in the current chapter.

4.1.1 Review of Chapter

As we saw in Chapter [3| a major soure of difficulty is the construction of an infinite-
dimensional Lie algebra of observable oo-hierarchies and its dual weak Lie-Poisson mani-
fold of density matrix co-hierarchies, which together form the geometric foundation of the
Hamiltonian formulation of the GP hierarchy. The analytic difficulties in this definition stem
primarily from the fact that the GP Hamiltonian Hgp = Hs is the trace functional associ-
ated to a distribution-valued operator (DVO )E] The natural Lie bracket for such operators
requires composition of two operators in a given particle coordinate. Such a definition is not

possible in general since the composition of two DVOs may be ill-defined. Overcoming these

IThis chapter is based on an equal collaboration with D. Mendelson, A.R. Nahmod, N. Pavlovié¢, and G.
Staffilani.
2Not to be confused with operator-valued distributions in quantum field theory.
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difficulties necessitated the identification of a property for DVOs which we termed the good

mapping property, whose definition we recall here.

Definition 4.1.1 (Good mapping property). Let ¢ € N. We say that an operator A ¢
L(S(RY),S'(RY)) has the good mapping property if for any a € N, the continuous bilinear
map

S(RY) x S(R’) = Sy, (R; S, (R))

(f(é), g(g)) —> dry ... dTe_1dTosy ... d:ng(g)(f(f))(xl, . ,l’g)g(é)<l'1, e T 1, T Tyt

Ré-1

may be identified with a continuous bilinear map S(R?) x S(R) — S (Rz).

The good mapping property has the following important consequence: let (a, 3) €
N, x Ngj, and let A® € L£(S(R?),S'(RY)) and BY) € L(S(RY),S'(R?)) have the good
mapping property. If k= ¢+ j — 1, then the bilinear map

S(RF)? = S, R x R x R4 S (R))

Al
a71’£a+1;l1£[)

B(]) . f(k) xa_,.’xa 05°)), (- ®g(k) x,’.> , /8:
(f®, g™ < ((1’)“”)( ar e )0 @) S'(R7)~S(R7)
’ J k k
(B sasor O s e D O 090 B
(4.1.1)
may be identified with a unique smooth bilinear map
Dp) 0p t S(RY) X S(RY) = S, ) (R) (4.1.2)

3Here and throughout this chapter, an integral involving a distribution should be understood as a dis-
tributional pairing unless specified otherwise.
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via
/ 020 ® 50 o 5 (f®, 09 (@p: 2))b(0)
R

() (k) ) . F) (. = 1.
(B (O @asiZae D0 @90 )) fo1 (413)

N (4) k k
<B(;,...,ﬂ,1,5+1 ..... ])(f( )(£a717 5 L4130 ))7 ¢ & g( )(zléa .)>S’(Rj)—S(RJ')7 B 7& 1,

for any ¢ € S(R) and (2,41, Z4y14.2;) € R*7'. Here, the subscript (2,...,5,1,8 +
1,...,7j) is to be interpreted in the sense of the subscript notation in (4.1.13]) (see also

Proposition E| Hence, by the Schwartz kernel theorem isomorphism
L(S(RY), S'(R¥)) = S(R?*), (4.1.4)
we can define the following composition as an element
(AW o8 B ¢ £(S(RF), S'(R¥)) (4.1.5)
by

<(A(€) Og B(]))f(k)7 g(k)>3/(Rk),3(Rk) = <KA(£)7 (I)tB(j),OCWB(f(k)a g(k))> (416>

S’(R2k)fS(R2k)7
where K ) denotes the Schwartz kernel of A and (I)fB(j),a, ﬁ( %) g denotes the transpose

of D) 05(f™, g*)) defined by
i o (FYs 9" (@5 2)) = Ppor 0 s(fP, 0" (@) 2;), V(g af) € RY. (4.1.7)
Note that A® o? BU) coincides with the composition

B(j)

(10, 0) P (041, 4+ B—1,0,04B,.... k) (4.1.8)

4So as to avoid a cumbersome consideration of cases in the sequel, we will not distinguish between the
B =1and 8 # 1 cases going forward.
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when the latter is defined. We let £,,,,(S(R?), S'(RY)) denote the subset of L(S(R?),S'(RY))
of elements with the good mapping property, and Ly, .(S(R?), S'(RY)) denote the further
subset of elements which are skew-adjoint (see Lemma and Definition for the
definitions of adjoint and skew-adjoint for a DVO). We established in Lemma and Re-
mark that the composition
(+) 0% () Lgmp(S(RY), S'(RY)) X Lops(S(RT), S'(RT)) = Logmp(S(RY), S'(RY))  (4.1.9)
is a separately continuous, bilinear map.
With the composition map (-) o2 (-) in hand, we proceed to reviewing the main
geometric actors from Chapter [3] We recall that
Gtgmp = {AY € Lonp(S,(RY), Sy(RY)) = (AW)* = —AB}, (4.1.10)

where S,(R") is the subspace of S(R*) consisting of functions invariant under permutation

of coordinates (see Definition [3.3.24)), and

@oo = @gk,gmp (4111)
k=1

endowed with the locally convex topology. We equip &, with a Lie bracket given by
[4, By, =C = (C(k))keN

W = Symk< > ZZ of BY) — (BW o5 A<€>))> (4.1.12)

0,5>10+j—1=k a=1 =1

where Sym,, denotes the bosonic symmetrization operator given by

k) (k) _ k -1
Sym, (A™) o Z Al Ay wy =T 0 AP o, (4.1.13)

TESK

5Strictly speaking, a priori it is not the operators A®) and B\) that appear in the right-hand side,
but instead extensions A € £, (S(RY),S'(R)) and BY) € L,,(S(R7), S'(R7)). The right-hand side is
independent of the choice of extension, as shown in Remark and therefore we will not comment on
this technical point in the sequel.
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Proposition 4.1.2 (Proposition [3.1.7). (S, [, ) is a Lie algebra.

Next, we recall the definition of the weak Lie-Poisson manifold (&%, A, {-, } e ),
which is the phase space underlying the GP hierarchy. We define the real topological vector

space

gr = {7 € L(S/(R"), 8,(RY)) : y¥) = (y¥)*} (4.1.14)

and define the topological direct product

6r, =[] g (4.1.15)
k=1

Attached to &7 is the admissible algebra of functionals A., defined to be the real algebra

with respect to point-wise product generated by functionals in the set

{FeC®B;R): F(-)=iTr(W:), We B, JU{F € C®B;R): F(-)=C € R}.
(4.1.16)

Most importantly, our choice of A, contains the trace functionals associated to the ob-
servable co-hierarchies {—iW,,}2°,. We can then define the Poisson bracket of functionals

F.Ge A, by
{F, G}, (T) =i Te([dF[T],dG ]y -T), VI € &, (4.1.17)

In the right-hand side of (4.1.17)), we identify the Gateaux derivatives dF[['] and dG[I'],
which are a priori continuous linear functionals, as elements of &.,. This identification is
possible thanks to the definition of A., and the next lemma, which characterizes the dual of

&
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Lemma 4.1.3 (Lemma [3.5.8). The topological dual of &, denoted by (&% )" and endowed

with the strong dual topology, is isomorphic to
—{Aec EBL S,(RF), S/ (RF)) : (AR = — AW, (4.1.18)

equipped with the subspace topology induced by @r, L(Ss(R¥),SL(RF)), via the canonical
bilinear form
iTr(A-T) = zZTrl ..... R(AE) A )Y VI = (Y")pen € &%, A= (AW € G
k=1
(4.1.19)
In Chapter [3] classical results on the existence of a Lie-Poisson manifold associated
to a Lie algebra were unavailable to us due to functional analytic difficulties, such as the fact
that &, C G Nevertheless, we verified directly that our choices for &7, A, and {-, -} .

satisfy the weak Poisson axioms of Definition [3.3.1] thereby establishing the following result.

Proposition 4.1.4 (Proposition and Lemma 3.5.15). (&%, A, {",}s: ) is a weak

Poisson manifold. Furthermore, for any F € A, the Hamiltonian vector field Xr is given

by the formula

(4.1.20)

where the extension dH [T ]Ea)g+1

41y U defined via Proposition|3.3.1.

4.1.2 Statement of Main Results

Having reviewed the results from Chapter |3 presently germane, we are now prepared

to state the main results of the current work. We previously introduced the GP hierarchy in
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(1.2.10)), which we recall now. We say that a sequence of time-dependent kernels (7*))xen

of k-particle density matrices is a solution to the GP hierarchy if

0™ = —[Ay, . AW] + 26Bp (v*FY), K eN, (4.1.21)
with k € {£1}, and
k
By (V) = By — Bry) GFH), (4.1.22)
j=1
where for every (z,,z}) € R?**,
Bj—k+1( (k+1))(t xlmmk) = /y(k—’—l)(taikvmj)g;wxj%
(4.1.23)
B VNt 2y ) = I (8 ay, 2 2, 7).
When £ = 1, we say that the hierarchy is defocusing and for kK = —1, we say that the

hierarchy is focusing (in analogy with the defocusing and focusing NLS, respectively).

To address Question[1.3.3, we must first establish the existence of an infinite sequence

of observable oco-hierarchies {—iW,, },,en € B+ by a recursion argument inspired by that for

the operators w,, in . Due to analytic difficulties, once again stemming primarily from

the need to consider the composition of DVOs, we proceed in three steps.

The first step consists of constructing an element
n € @ L(S(RF), S'(RF))

by the recursive formula

Wl = El = (]dl,O,)

n—1

Wil = (i)W 630 3 0 = Xen) (W e W,

m=1£,j>1;0+j=Fk

217

)

Vk € N,
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Note the structural similarity between this recursion and the one for the operators w,, stated
in 1} While the DVO W ® VNV,(LJ_)m is well-defined by the universal property of the

tensor product, the composition
§(X1 — Xp1) (VV;? ® W‘fﬁm) (4.1.25)

is a priori purely formal, since evaluation on a Schwartz function leads to products of dis-
tributions, in particular products of § functions and their higher-order derivatives. Thus,
the challenge is to give meaning to this composition. The key property which allow us to
make sense of the composition is that if we formally expand the recursion, we will only find
products such as §(z1 — z2)d(xy — x3), which is well-defined as the Lebesgue measure on the
hyperplane {z, € R* : ; = 2, = z3}. To systematically handle the products of distribu-
tions, we use the wave front set and a useful criterion of Hormander for the multiplication

of distributions (see Proposition [4.0.14] and more generally, Appendix [4)).

A priori, Hérmander’s criterion only yields that the product of two tempered dis-
tributions is a distribution, not necessarily tempered, which is problematic since we work

exclusively with tempered distributions. Moreover, we wish any definition of the composition

(4.1.25) to satisfy the property

§(X, — X, (Ww WU)) 0 g F0)), 40 <j>>
<( 1= Xee) (Wi @ W ) (75 @ 7). 67 @ 9 S (RF)—S(RF)

(4.1.26)
_ /Rdx q)vaSf?(f( ’g(f))(%x)q>wglm(f(3),g(y))(x,:c),
where
o : S(RY)? — S(R?), Po S(RH)? — S(R?) (4.1.27)
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are the necessarily unique maps identifiable with

SR = SyR:S,R) (19.9) = (WO, @), oo

| o 0 ' 4 (4.1.28)
S(R7)? = S, (R: S.(R)) (f(])’g(])) S <Wﬁ7—mf(])7 () ® g(])(gj/’ .)>3/(RJ')—5(RJ)
via
dr®~ O ¢ (z; ") (x) = WO O b g0, ’
/R W%)(.f g )( )¢( ) < m f d) g ( )>$’(R4)—S(RZ) (4 1 29)

S'(RI)—S(RI)’

[ datgn (199 @i )ote) = (Wit 00 60, )
for any ¢ € S(R).
We ensure that this is achieved thanks once more to the good mapping property of
Definition Indeed, proceeding inductively and exploiting the recursion formula and
the induction hypothesis that

Wi oo W € @) LanplS(RY), S (RY)

k=1

together with some Fourier analysis, we show that the composition (4.1.25)) is exactly what
we think it should be, namely, the unique distribution in D'(R¥) satisfying , which
can then be shown to be tempered. Moreover, by further appealing to the good mapping
property and the universal property of the tensor product, we can show that the composition
indeed belongs to L,,,,(S(R*), S'(R*)). The preceding discussion is summarized by

the following proposition.

Proposition 4.1.5. For each n € N, there exists an element

W, € D Lo (SRY), S®Y)

k=1
defined according to the recursive formula (4.1.24]), where the composition (4.1.25)) is well-
defined in the sense of Proposition [4.0.1].
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Since we are interested in the action of the elements Wn on density matrices, which are
self-adjoint, the second step in the construction is to make each Wn self-adjoint in the sense
of Definition m By the involution property of the adjoint operation (see Lemma ,
the DVO

W, .0 = %(W‘n + W;) (4.1.30)

is a self-adjoint element of £L(S(R¥),S’(R*)). Since we want to preserve the good mapping
property throughout each step of the construction, the challenge is to show that W;‘L also
has the good mapping property. Naively taking the adjoint of the recursive formula (4.1.24]),
we should formally have that
n—1
W= W —ig,) +rY S (W@ W )6(X) — Xe). (4131)
m=10,j>10+j=k
While the expression on the right-hand side is, a priori, meaninglessﬂ by inducting on the
statement that WT, e ,VV;_I having the good mapping property and exploiting duality,
the recursion for Wn, and the good mapping property for Wm we are able to prove that the

\7\72 have the good mapping property, as desired.

The third, final, and easiest step of the construction is to symmetrize the W, 4, so
that we obtain an oo-hierarchy which belongs to &,. The motivation is that we always
restrict to permutation-invariant test functions, reflecting the bosonic nature of the under-
lying physics. To obtain a formula for W,, from W, , is straightforward. We record this

definition in the following proposition:

6 Among other issues, we note that for f*) € S(R¥), the tempered distribution 6(x; — xs41)f* does
not belong to the domain of WO o W)
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Proposition 4.1.6. For eachn € N,

?

—iW,, = —iSym(W,, 5,) = 5

(Sym (Wn) + Sym (W‘n)) €., (4.1.32)

where Sym is a bosonic symmetrization operator, the definition of which is given in Defini-

tion [3.5.30.

Having constructed the oo-hierarchies {—iW,,}°° ;. we define trace functionals H,, €
Ay by
Ho(D) = Te(W, - T), T e&. (4.1.33)

Since the functionals I,, are generated by the operators w,, much in the same manner as
the trace functionals H, are generated by the W,,, our next task is to relate W,, to the
one-particle nonlinear operators w,, defined in ([1.3.8)). Doing so necessitates understanding

the action of the k-particle components W and W™ on pure tensors of the form

[p1 @+ @) (V1 @ @Yyl G1y s Ok 1, -k € S(R). (4.1.34)

To make this connection precise for the arguments in Section [4.7] our strategy is to replace
the nonlinear operator w,, with a multilinear operator by generalizing the recursion (|1.3.8]).
See Section [4.5.1] for more details. As most of the results in Section [4.5 are of a technical
nature, and perhaps not so enlightening at this stage, we mention only the following re-

sult, which connects H,, to the functionals I,, and can be obtained as an easy corollary of

Proposition [4.6.2}

Ha(T) = In(¢), VD = (16%) (6" )ren, ¢ € S(R). (4.1.35)

Next, we turn to establishing the involution statement of Question [1.3.3] which we

record in the following theorem:
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Theorem 4.1.7 (Involution theorem). Let n,m € N. Then

{’Hn,’Hm}@,éo =0 on &._. (4.1.36)

To prove Theorem 4.1.7], we proceed on both the one-particle and infinite-particle
fronts. We prove that there is an equivalence between the involution of the functionals
‘H,, and the involution of certain real-valued functionals I, defined in below, on
a weak Poisson manifold of mixed states. We find this equivalence, explicitly stated in
Theorem below, quite interesting its own right. We now provide some details of the

proof of this equivalence.

On the one-particle front, we relax ((1.3.7) to a system

{z’@tqﬁl = —A¢y + 262, (4.1.37)

10y = Ay — 2KP5¢1 7
where ¢1,¢9 : R x R — C. We study as an integrable system on a complex weak
Poisson manifold (S(R?), Asc,{-,} 12.c), see Proposition for the precise definition of
this manifold, by revisiting in detail the treatment of the NLS in [28]. Specifically,

we show that there are functionals

(1, ¢2) = /R Ao (T)Wn (61.60)(T),  V(P1,¢2) € S(R)?, n €N, (4.1.38)

where w, (4,6, (%) satisfies a similar recursion formula to the wy,, see (|1.2.12)), such that I is
the Hamiltonian for NLS system (#.1.37), and such that the ,, commute on (S(R?), Asc, {-, Frec)-

Since we are ultimately interested in real, not complex, weak Poisson manifolds, we

pass to another weak Poisson manifold of mized states, (S(R; V), Asy, {",}2,), where the
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space S(R;V) consists of Schwartz functions v taking values in the space V of self-adjoint,

off-diagonal 4 x 4 complex matrices:

0 0 0 ¢
1 — — 1 by
Y= §Odiag(¢17 G2, P2, ¢1) = 2 8 (;)2 %2 8 ) o1, P2 € S(R)~ (4‘1'39)
é1 0 0 0

We refer to (4.3.17)), (4.3.19), and Proposition for the precise definition and properties

of this weak Poisson manifold.

We use the I,, to define real-valued functionals I, € As on the manifold (S(R; V), Asy, {-, -} L2y

via the formula
1/~ L _
Tyn(y) = §<In(¢17 $2) + In(2, ¢1)>> (4.1.40)

and we show in Proposition that the family {I,,}nen is in mutual involution with
respect to the Poisson bracket {-,-};.,,. As we do not feel the results described in this
paragraph are the primary contribution of this work, but nevertheless believe they may be
of independent interest to the community, we have placed them in Appendix [I| and not the

main body of the chapter.

On the infinite-particle front, we first demonstrate that there is a Poisson morphism
bm * (S(R§ V)a AS,Vv {‘7 '}LZ,v) - (6;7 Ao, {'a }@&)

L ek ek o 7 @k 1. . (4.1.41)
Lm(7> = §(|¢1 > <¢2 |+ ’¢2 > <¢1 DkGN’ 7= §Od1ag(¢1a¢27¢27¢1)-

The subscript m signifies that ¢, produces a mixed state element of & .

Theorem 4.1.8. The map vy is a Poisson morphism of (S(R; V), As v, {, -} 12) into (6%, A, {*, }ex );

i.€., it is a smooth map with the property that
L:'l{'a '}Qﬁéo = {L:{a L;'}Lan (4142)
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where 1}, denotes the pullback of ty,.

Theorem 4.1.8] is a generalization of Theorem [3.1.12] from Chapter |3| and, in fact,
recovers this previous theorem since Proposition demonstrates that there is also a

Poisson morphism

1 . S —
lpm - (8(R>7A87{'7'}L2> — (S<R7 V)aAS,Vu{’v'}L{V)? Qb'—) §Od1ag(¢7¢v ¢, ¢)7 (4143)
and the composition of Poisson morphisms is again a Poisson morphism.

The motivation for Theorem is the following. Since
Ln(7) = Halm(7)), V7 € S(R;V) (4.1.44)

by Proposition and since {Iy 5, Iym} 21, = 0 on S(R; V), for any n,m € N, by Propo-
sition [1.3.7, Theorem [4.1.§ implies that

0= {HmHm}ngo(Lm(’Y)) - 5 ZZTrl ..... k([_ZWna _ZWm]ésjo( |¢(1X>k> <¢é®k| + ’¢é®k> <¢?k‘))
(4.1.45)
Note that only finitely many terms in the above summation are nonzero. Next, we use a

scaling argument to show that (4.1.45]) implies that each of the summands in the right-hand
side of (4.1.45)) are identically zero:

(W WGl (1659 (6551 + 15%) (9F*))) =0, Ver,d2 € S(R), keN.
(4.1.46)

.....

The intuition is that if a polynomial is identically zero then all of its coefficients are zero.

By unpacking the definition of the Poisson bracket {,, Hom }e- , (4.1.40) yields

[Ho Hondo, () =0, VT = (1655 (0251 + 1075) (0241) e (4.1.47)

N | —
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where ¢y 1, dr2 € S(R) for every k € N. By then using an approximation argument from
Appendix involving symmetric-rank-1 approximations (see Corollary together with
the continuity of {#,, Hym}g. , we obtain from that Poisson commutativity of the
Iy, implies the Poisson commutativity of H,,. The reverse implication is a straightforward
consequence of Theorem [£.1.8] Summarizing the preceding discussion, we have the following

equivalence result:

Theorem 4.1.9 (Poisson commutativity equivalence). For any n,m € N,
{1y, Ibvm}LQ,V(V) =0, Vv € S(R; V), (4.1.48)

if and only iof
{Hn,Hm}ngo(F) =0, VI e &7 . (4.1.49)

In light of Proposition [1.3.7, which asserts the validity of (4.1.48), we then obtain
Theorem from Theorem [4.1.9] thus answering Question [1.3.3]

Having resolved Question|1.3.3] we turn to answering Question [1.3.4, For each n € N,
we define the n-th GP hierarchy (nGP) to be the Hamiltonian equation of motion generated

by the functional H,, with respect to the Poisson structure on &7 :

(%p) = Xy, (D), (4.1.50)

where X3, is the unique Hamiltonian vector field defined by H,,. See of Definition m
for the definition of the Hamiltonian vector field. We generalize the fact that solutions to
the NLS generate a special class of factorized solutions to the GP hierarchy by proving that
the same correspondence is true for the (nNLS) and (nGP). Thus, we are led to our final

main theorem, providing an affirmative answer to Question [1.3.4
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Theorem 4.1.10 (Connection between (nGP) and (nNLS)). Let n € N. Let I C R be a
compact interval and let ¢ € C*°(I;S(R)) be a solution to the (nNLS) with lifespan I. If we
define

PeC™(I6y), T (167 (6%), (4.1.51)

then I" is a solution to the (nGP).

Remark 4.1.11. In Chapter 3| we defined the Gross-Pitaevskii Hamiltonian functional Heap
by

Hep(D) = Tri (A vW) + £ Tri2(6(X1 — Xo)v®), VI = (v¥)pen € &%, (4.1.52)

In particular, Hsp = Hs, and in the one-dimensional case, we recover Theorem [3.1.10| from
Chapter , which asserts that the GP hierarchy (4.1.21) is the Hamiltonian equation of

motion on (&, A, {-, ‘}6&) induced by Heap.

Remark 4.1.12. Theorem[4.1.10]does not assert that the factorized solution ( |¢=*) (¢%*|)ren
is the unique solution to the n-th GP hierarchy starting from factorized initial data, only
that it is a particular solution. More generally, Theorem [4.1.10| makes no assertion about
the uniqueness of solutions to the (nGP) in the class C*°(I; &% ). While the (nNLS) are
known to be globally well-posed in the Schwartz class by the work of Beals and Coifman [§]
and Zhou [102], unconditional uniqueness of the n-th GP hierarchy in the class C*°(I; &%),
for some compact interval I, is an open problem, the resolution of which we do not address

in this work.

To prove Theorem [4.1.10, we need to show that the n-th GP Hamiltonian vector field
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Xy, can be written as
k

X, (D)W =3 (1677 @ VI, (¢) @ ¢* ) (67 + [67%) (677D @ V() ® 6*)),

"~ (4.1.53)
for I" as in the statement of Theorem [£.1.10] We remind the reader that VI, denotes the
symplectic gradient of I, with respect to the form w2, see Definition [3.3.11] To establish
the identity , we use a formula from Section for V,1I,,, which is in terms of
the Gateaux derivatives of the nonlinear operators w,. Combining this formula with the
computation of X, (T) for factorized I' (see Lemma [4.7.2)), which extensively uses the good
mapping property of the generators of the H, (i.e. —iW,), we obtain (4.1.53)) and hence

the desired conclusion.

4.1.3 Organization of the Chapter

We close Section by commenting on the organization of the chapter. In Sec-
tion we introduce several extensions of the weak Poisson manifold (S(R¥), As, {-,},2)
from Section|3.3.1] We have omitted a review of calculus in the locally convex setting, tensor
products, Lie algebras, and general weak symplectic/Poisson manifolds, as a review of these

subjects is contained in Section [3.3]

In Section [4.4] we construct our observable oo-hierarchies —iW,, thereby proving
Proposition [4.1.6, The section is divided into three subsections corresponding to each stage
of the construction: the preliminary version, followed by the self-adjoint version, followed by

the final bosonic, self-adjoint version.

Section {4.5|is devoted to analyzing the correspondence between the w, and the W,

and the consequences of this correspondence. Section contains the “multilinearization”
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of the w,. Section contains the proof of a formula for the symplectic gradients of the ,,.
Section connects the multilinearizations of the w, from Section with the partial

traces of the W,,.

In Section we prove our involution result, Theorem in addition to the main
auxiliary results involved in the proof of this theorem, which might be of independent inter-
est. This section is broken down into four subsections in order to make the presentation more
modular. Section [4.6.1] contains the proof of the Poisson morphism result, Theorem 4.1.8|
Section connects the infinite-particle functionals H,, to the one-particle functions I,
via the Poisson morphism of Theorem [4.1.8] and the correspondence results of Section [4.5.3|
Section contains the proofs of the Poisson commutativity equivalence result, Theo-
rem and the involution result, Theorem [{.1.7] Lastly, Section [£.6.4] contains the proof
of Proposition[4.6.3] which asserts that there is at least one functional which does not Poisson

commute with a given H,,.

In the last section, Section , of the chapter, we prove our n-th GP/n-th NLS
correspodence result, Theorem Section is devoted to the computation of the
Hamiltonian vector fields of the H, evaluated on factorized states, and Section |4.7.2] is
devoted to the proof of Theorem To close the section, we compute in Section [4.7.3

the fourth GP hierarchy, which corresponds to the complex mKdV equation.

4.2 Notation
4.2.1 Index of Notation

We include Table [4.1] located at the end of the chapter, as a guide for the frequently

used symbols in this work. In this table, we either provide a definition of the notation or a
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reference for where the symbol is defined.

4.3 Preliminaries

We need several examples of weak Poisson/symplectic manifolds in this work. An
example we discussed at length in Section is the Schwartz space S(RF), as well as its
bosonic counterpart S,(R¥). However, we shall also need several generalizations of these

examples. We begin with some comments on variational derivatives.

Remark 4.3.1 (Variational derivatives). For functionals F,G € C*(S(R¥);R) having a
special form discussed below, there is a computationally more convenient way to express
their symplectic gradients and Poisson bracket in terms of variational derivatives. Given a

smooth functional F : S(R*)? — C, we define the variational derivatives V1 F and V3F by

the propertym

AF (61,5300, 032) = | d(ViF(00,32)001 + VaF (61,52)502) (o). V(on, ), (561, 552)

(4.3.1)
The reader can verify that the variational derivatives, if they exist, are unique.
Let F,G € C*(S(R*); R). Suppose that
F(¢) = F(¢.9),  FeC™(S[RY0), (4.3.2)
where [ satisfies the conditions
“Our notation for variational derivatives is s nonstandard. In the calculus of variations literature, one
typically finds % and % instead of V' f(¢1,¢2) and V3(¢1, p2), respectively. We prefer our notation as

it emphasizes the nature of the variational derivatives as vector fields. The motivations for the seemingly
odd use of the subscript 2, as opposed to just 2, will become clear later in this subsection.
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and similarly for G and G. Then we claim that F, G € Ag and their Poisson bracket {F, G} 12

may be rewritten as

R

Indeed, observe that

AF [p1, )61, 0) =

hH(l) F(¢y + e8¢, g + €002) — Fb1, d3)

3

= lim F~1(¢2 _'_6@754_557%) - ﬁ‘((ﬁ%a)

e—0 g

= dF[92,61](562,561)
— [ 4 (ViF(0n0000 + VaF o o)don) ), (135)
Rk

where the ultimate equality follows by definition of the variational derivatives. Since

A1, 62](061,062) = /IR (V1P (61,82)001 + V3P (61,82)082) (). (4.3.6)

we conclude by uniqueness of variational derivatives that

ViE (¢, 92) = VoF($9,01),  VaF(¢1,2) = ViF (s, b1). (4.3.7)

Now recalling the definition of the symplectic gradient, we have that

= dF[6,3)(v. D)
/ (VLE(6,9)0 + VaF(6,9)7) ()

- {/d%Vﬁw¢mmw%ﬁ, (438)
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where the ultimate equality follows from the relations (4.3.7). By uniqueness of the sym-

plectic gradient, we conclude that
- ~ —_ ~ p— 1 - ~ —_ ~ p—
VF(6) = ~iViF(0,0) = ~iV3F(6,6) = 5 (z’VlF(qb, ) — iV5F(6, ¢)). (4.3.9)

Since the right-hand side of the preceding identity defines an element of C°°(S(R*); S(R*¥)),

we obtain that ' € As. Now we can rewrite the Poisson bracket as

(9.0, 9.6(0) =210 [ as(19:7(6.99:66.9) @) |

k

0) = ViF(6.0)V1G(6,9)) ()

8) ~ V2F(6,6)V1G(6,9) ) (z).
(4.3.10)

_ / d, (ViF(6,0)V1G(0,
_ i / k i, (Vi F(6,8)VaG(6.

where the ultimate equality follows from the relations (4.3.7)).

In the sequel, all of the functionals we consider will satisfy the requirements (4.3.3)).
Consequently, we will pass between the variational derivative formulation (4.3.4) and the

symplectic gradient formulation of the Poisson bracket without comment.

To motivate our next extension of the weak Poisson manifold (S(R¥), As, {-,};2), we

observe that we can identify a one-particle wave function ¢ with the pure state

|0) (¢l

We can define a real topological vector space of pure states by considering the space of

Schwartz functions taking values in the space of self-adjoint, off-diagonal 2 x 2 complex

(% ?) | (4.3.11)
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The natural generalization of a pure state is a mixed state,

S(161) (02l + 162) {n]).

and we can define a real topological vector space of mixed states as follows: let V denote the

real vector space of self-adjoint, off-diagonal 4 x 4 matrices of the form
. T
§od1ag(a, b,b,a), a,b e C. (4.3.12)

We let S(R¥; V) denote the space of Schwartz functions taking values in the space V. Ele-

ments of S(R¥; V) have the form

1 . — _
V(@) = Godiag(dr(zy), da(zy), da(zy), dilzy)), Vo, €RY, ¢, 0 € S(RY). (4.3.13)
We can define a real pre-Hilbert inner product on S(R¥; V) by

(e =2 [

. dz;, treegez (71 @k)’h,swap@k))a V1,72 € S(Rk; V), (4.3.14)
R

where trezge2 denotes the 4 x 4 matrix trace and

I .. — — 1 . — —
Y2,5wap = §od1ag(gb2, ¢1, ¢1, P2), Y2 = §od1ag(¢1, P2, P2, P1). (4.3.15)
The matrix left-multiplication operator
J: SR V) — S(R% V),  J = diag(i, —i,i, —i) (4.3.16)

defines an almost complex structure. We can then define a symplectic form wy2 ) by

wrz y(71,72) = <J71‘72,swap>Re7v~ (4.3.17)
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Analogous to Proposition [3.3.13) we have that (S(R¥; V), wyz2) is a weak symplectic mani-

fold. Moreover, the obvious map
1 _ _
o S(RY) > SRE V), 6= Sodiag(6,6,6,9) (4.3.18)

is a symplectomorphism. Additionally, if we denote the symplectic gradient with respect to

the form wy2y by V,y, then one can show that if we define
Asy = {F € C*(S(R*;V);R) : V,,F € C*(S(R*; V), S(R*; V))}, (4.3.19)

and let {-,-} 2y be the Poisson bracket canonically induced by the form w2y, then the
triple
(S(Rk’ V)? AS,V7 {'7 '}L2,V) (4320)

is a weak Poisson manifold. We summarize the preceding discussion with the following

proposition.

Proposition 4.3.2. (S(R¥; V), w2 y) is a weak symplectic manifold, and (S(R*; V), Asy, {-, -} 2 )

15 a weak Poisson manifold, where
{F, G}Lz,v(V) = wL?,v(Vs,vFW)a V. vG(7)). (4.3.21)
Furthermore, the map Ly 15 a symplectomorphism; i.e., it is a smooth map such that
LymWL2 Y = WLz, (4.3.22)
where 1y, denotes the pullback of tpm, so that
o+ (S(BE), s, {1} 12) = (SR V), Asy {1} pa) (4.3.23)

1s a Poisson morphism.
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Remark 4.3.3. Remark carries over to the setting of S(R¥; V). More precisely, suppose
F € C*(S(R*;V);R) is such that

~ _ — 1 — _
F(y) = F(¢1, g2, 92, 1), V= §Odia‘g(¢l7¢27 2, 01) € S(RM V), (4.3.24)
where F' € C*°(S(R¥)*: C), is such that
V.F, Vs5F, V,F, ViF € C*(S(RF)* S(RF)), (4.3.25)

where the four variational derivatives are uniquely defined by

dF[¢la ¢§7 ¢27 ¢i](5¢17 5¢§7 5¢27 5¢i)

. . . . (4.3.26)
= [ due((VaF061+ VP05 + VaFoon + ViFb01) (61,65,00.01)) (22,
and F has the involution property
F(¢17 ¢§a ¢27 ¢i) = F(E? %7 %7 a) (4327)

Then F' € Asy. Additionally, if F, G are two such functionals, then their Poisson bracket

may be rewritten as

(F.6}on0) =i [ dn(ViPO)V6(0) = VaF () V1G(r) ()

) ] ) ) (4.3.28)
~i [ (VP QIVIG() - ViFG)VAG0)) (),

where we identify v with the 4-tuple (¢y, ¢z, 2, ¢1) for the sake of more compact notation.

In the sequel, all the functionals on S(R¥;V) we consider satisfy the conditions of
the remark. Consequently, we will pass between the variational derivative and symplectic

gradient formulations for the Poisson bracket without comment.
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Lastly, we make heavy use of a “complexified” version of the weak symplectic manifold
(S(R¥),w;2). More precisely, consider the cartesian product S(R*)? and define a complex-

valued map

wre,c(f, 9,) = /R dzy trea (Jef,g,) (20), (4.3.29)
where
) I ) EE

trcz denotes the 2 x 2 matrix trace, and J¢ is the left-matrix multiplication operator
diag(i, —i). Here, we identify a Schwartz function taking values in the space of off-diagonal

2 X 2 matrices with an element of S(R¥)? in the obvious manner.
Remark 4.3.4. Note that if f, = odiag(f, f) and g, = odiag(g,g), for f,g € S(R¥), then
orellyg,) =i [ (15 To)(z) - 2Im{ /. dzk@g@w} —w(fig) (4331)
Proposition 4.3.5. Define a subset Asc C C°(S(RF)% C) by
Asc = {H € C®(S(R*);C) : V,cH € C*(S(R)*;S(R)*)}, (4.3.32)
and define a bracket {-,-} > - by
(F,G} oo = wize(VocF, V,0G), (4.3.33)
Then (S(R*)?, Asc, {-,-}12.c) is a weak Poisson manifold.

Remark 4.3.6. As before, if F,G € C*(S(R¥)?;C) satisfy the condition (4.3.3)), then
F G e AS,(C and

{F,G} > (91, 02) = —i/Rk dz), (V1F (91, 02)VaG(o1, 92) — VaF(¢1, 02) V1G (1, d2)) ().
(4.3.34)
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Remark 4.3.7. All the Schwartz space examples given in this subsection have their 2L-
periodic analogues, where S(IR¥) is replaced by C*(T%). We will need the periodic examples

in Appendix [1}

4.4 The Construction: Defining the W,

We now define the operators W,, giving rise to the Hamiltonian functionals H,,. As

detailed in Section [4.1], in order to construct the operators W,,, we proceed incrementally.

4.4.1 Step 1: Preliminary Definition of Operators

Let

Wl 1 kEN € @'Cgmp Rk S/(Rk)) Wl = Elv (441)
where we recall that

E, = (EP) keNe@cm S(RY),S'(RY),  EV = Idyd;, (4.4.2)

J

where Idy, is the identity operator in £L(S(R¥), 8'(R¥)) and &, is the Kronecker delta function.
We regard E; as the j coordinate element of @, L(S(R¥), S'(R¥)). It is clear that these

operators satisfy the good mapping property.

We would like to recursively define

W1 = (W ken € @D Lomp(S(RY), S'(RY)) (4.4.3)
k=1

by the formula

W, = 0, WH 4 4 Z > G- X)) (WPe WD), keN (144)

m=1/£,3>1;{+j=k
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where we regard the multiplier operator —i0,, as a k-particle operator by tensoring with the
identity in the Xs, ..., X} coordinates. Similarly, we regard the multiplication §(X; — X,41)
as k-particle operator simply by tensoring with the identity in the X, ..., Xy, Xpio, ..., Xk

coordinates.

Our aim is then two-fold. First, we need to make sense of the definition . At first
glance, the right-hand side of is purely formal, since for n > 4, the sum will contain
products of § functions. However, as we will prove in the next lemma, the operators in (4.4.4])
are well-defined elements of £,,,(S(R¥),S'(R¥)). Intuitively, this is because the products
in (4.4.4) never contain delta functions with identical arguments, such as 6*(X; — X3).
Subsequently, we will show that all but finitely many terms in the recursion are non-zero,
which justifies our use of the direct sum notation. Thus, we are led to Proposition [£.1.5] the

statement of which we recall below.

Proposition 4.1.5. For each n € N, there exists an element

W, € éﬁgmp(S(Rk),s'<Rk))

k=1
defined according to the recursive formula (4.1.24]), where the composition (4.1.25)) is well-
defined in the sense of Proposition [{.0.14)

We begin the proof of Proposition with establishing the recursion (4.4.4)).

Lemma 4.4.1 (Rigorous recursion). For every k,n € N, the distribution-valued operator

W,(Lk) is an element of Lymp(S(RF), S’ (R¥)) and satisfies the following:
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(R1) There exists a finite subset AY) C NE of multi-indices such that

WO = 37 g 050, e S@Y) (4.4.5)

ap GA%]C)

where uq, , € S'(RF).
(R2) For every o, € AP cither

Case 1 WF(uy, ) =0, or

Case 2 WF(ugy, ) # 0 and satisfies the non-vanishing pair property:

(@k,€,) € WF(uq,n) = 3, j € Ny, s.t. £ < j and both § # 0 and &; # 0.
(4.4.6)

Remark 4.4.2. In other words, means that W can be written as a linear combi-
nation of terms, where each term consists of a differential operator left-composed with a
distributional multiplication operator. The motivation for the non-vanishing pair property
is to exploit the fact that the products of delta functions in do not have the same

arguments.

Proof of Lemmal[4.4.1. We prove the assertion by strong induction on n > 1. The base case,
namely that the claims hold for n = 1, is clear. Next, let n > 1 and suppose that for every
k € N, we have that

WP W e £ (S(RY), S'(RF)) (4.4.7)

are defined according to (4.4.1) and (4.4.4)) and satisfy the properties|(R1){and |[(R2)] We will

show that for any k& € N, the observable Wiﬂl is a well-defined element of £,,,,(S(R"), S'(R"))

and satisfies the properties|(R1)|and |(R2)} We organize our argument into several steps:
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Step I: We first prove . If AP NF is a finite subset of multi-indices such that

WE B = Ny, 000, vfR e SRE), (4.4.8)

ay eAng)

where uy, , € S’ (R¥), then by the product rule,

(=00 )W LD = 37 (=00, ta, )02 ) it 0 025 fO), W fH) € S(RY).

leAa(f)
(4.4.9)
Let Am and A}/ () . be finite subsets of Njj and N{), respectively, such that
WO = 3" g, W02 fO, V9 e SR (4.4.10)
QZEA%)
W D= 3" g pemde fO, V9 € SRY), (4.4.11)
0 A
where g, ,, € S'(RY) and Ua,n—m € S'(R?). Define the set
AP =AD x AV C Nj x Nj (4.4.12)

so that

(WO WD 0 = 3 (tapm @ ta0m) (32 002) 9, vf® e SERY.

(Q[ 7Qj)€A£zk,Zn

(4.4.13)
Hence, to prove the claim, it suffices to show that
8(X) = Xp1) (W0 @ Wi, (4.4.14)
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is well-defined in £(S(R¥), S'(R¥)), and that for all f*) € S(R¥), (#.4.14) admits the repre-

sentation

(5(X1 - XZ—}—I) (W%) ® W’/(’glm>>f(k) = Z 5(371—.7:(_’_1) <ugg7m ® ugjyn—m> (agf ® agj) f(k)7
(g0, €A,

(4.4.15)

where §(z1 — Ze11) (Uaym ® Ua,n—m) is well-defined in S'(R¥). We will do this in two steps:

e First, we will show that (4.4.14) admits the representation (#.4.15) for all f*) ¢ S(R¥),

and that 6(z1 — ze1)(Ua,m @ Ua,n-m) € D’ (R*) in the Hérmander product sense of

Proposition
e Second, we will show that the products are, in fact, tempered distributions.
To show that the product of distributions
8 = wern) (Wi @ W) (70) (4.4.16)

is well-defined in D'(R*) for every f*) € S(RF), it suffices by Hérmander’s criterion (Propo-

sition to show that
(2,€,) € WF(O(w1 — 2011)) = (, —€,) ¢ WR((WW @ WL, ) f®). (4417)

By Lemma [4.0.10, which computes the wave front set of 6(x; — x441), we need to show that
if & # 0, then

((xla &2;67 L1, lé+2;k)a (gla Q2;£a _€I;Q£+2;k)) ¢ WF < (W%) (%9 ngm> f(k)> . (4418)
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Since for any (ay, a;) € Afﬁn and for any ¢g®) € S(R*), we have the inclusion

WF < (ugl,m ® qu,n—m>g(k)> C WF <u%m ® u%_m_m), (4.4.19)

by Proposition [4.0.9(f)] it follows from Proposition [4.0.9(c)| and (4.4.13)) that

WF((W%) ® VNij_)m) f(k)> C U WF <u%m ® ug‘j,n,m), Vi® e S(RF).
(Q@»Qj)EAn,m

(4.4.20)
Now by Proposition we have that
WF (u%m ® ugj,n_m) c (WF(u%m) % WF <ugj7n_m>)
U (supp(ua,m) x {0,}) x WF (ugﬁn_m> (4.4.21)
UWF(UQN,L) X <supp(ugj,n_m> X {Qj}>.
Note that we abuse notation with the cartesian products on the right-hand side of the
preceding inclusion in the following sense: we denote an element of WF (uq,m) X WF (uq, n—m)
by
(£€7£f+1;k7§g7§g+1;k>7 (4.4.22)
where
(20:6) € WF(taym),  (Zesry 1) € Wt o)
and similarly for elements of (supp(ua,,m) < {00 }) X WF (tq, n—m) and WEF (uq, m) X (SUpp(ta, n—m) ¥

{0;}). We now consider three cases based on the values of the sets WF (uq,,m) and WF(uq, n—m)-

(i) Suppose that WF (u%m) and WF (ugj,n_m> are both empty. Then it follows readily

from (4.4.21]) that
WF (u%m ® ugj,n_m) —0, (4.4.23)

and so (4.4.18]) is satisfied.
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(ii) Without loss of generality, suppose that WF (ugj,n,m> = () and that WF (ua,m) # 0
and satisfies the non-vanishing pair property. Then by (4.4.21)), we have

WF (u%m ® ugj,n,m> C WF (ug,m) ¥ (supp <ugj,n,m> X {Qj}>. (4.4.24)

Observe that the set on the right-hand side does not contain an element of the form

(%1, Zopr T1, Zyyoge)s (€1, 0o —E1, Opyag)) & # 0. (4.4.25)

since WF(uq,m) is nonempty and satisfies the non-vanishing pair property.

(iii) Suppose that both WF (ug,,,) and WF (ugjﬁn_m> are both nonempty and satisfy the
non-vanishing pair property. Then if (z,,{ k) e WF (u%m ® ugjm_m), one of three

sub-cases must occur:

1. £, =0 and there exists [;, 1> € {¢+1,...,0+ j} such that &, # 0 and &, # 0.

2. = 0 and there exists 1,1y € {1,..., ¢} such that §, # 0 and &, # 0.

§Z+1;k
3. §,#0, §€+1;k # 0, and there exist l1,ls € {1,...,¢} and I3,14y € {{+1,...,k} such

that 6[1 7é 07 6[2 7é 07 6[3 7é 0 and €l4 7£ 0.

Any of these three sub-cases guarantees (4.4.18|).

To summarize, we have shown that

(@1, 201, 2e120), (61,00 =60, 00)) € U WF (am @ty ), (4:4.26)

(ap,e)) eAll ),

and therefore

o — 22) (W @ W, ) (F) (4.4.27)
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is defined in D'(R*) according to Proposition [4.0.14} proving the first claim.

We now show that this Hormander product is tempered:
5@1—wﬂj6ﬁ$@ﬁﬁﬂmyf®)€SﬂWL vk e S'(RY). (4.4.28)

Since by the inductive hypothesis, WY and W

n—m

satisfy the good mapping property
of Definition 1| (and we refer to Appendix 3.3 E 3| for more details on the good mapping

property), there exist unique continuous bilinear maps

q)N(e) S(RZ)Q — S(xa’x&)(Rz), P : S(Rj)z — S(zﬁ’mrﬂ)(RQ), S Ngg, RS Ngj

w8
(4.4.29)

identifiable with the maps
SR = Sy (R; S}, (R),  (£9,90) = (WO, () @0 g0,

SR > Sy (R: S, (R), (9, 99) = (WSO, () @3 g9, ) )

)>S’(R‘~’)—S(R‘Z)’

S'(RI)—S(RI)’
(4.4.30)

via
/ dxa (5) (f( )(ZL‘a, l‘a)¢<l'a) = <W’Ez€)f(£>’ gb ®o¢ g(ﬂ)(_, ZE;, >>
R
/Rdwﬁ@wm S, gD) (s ) glwp) = <Wgsz(j)7¢®5 g (@, -)>

S'(RY)—S(RY)

S'(R7)-S(RI)’
(4.4.31)

? CM’

for ¢ € S(R), respectively. Above, the notation (-) ®q g9 (-, 27, ) and (-) ®z g (-, 2}, ) is

defined by
(6 @0 99C 20, ))(y) = 0(Wa)9 (Y, T oiy,)s Yy, €R
e 0 , . V9 eSR).
((b ®ﬁ g ! <'7 xﬂ? ))(gg) = (b(yﬁ)g ! <g136_1, ‘rﬁ7yﬁ+1;j)7 vg‘] € R]
(4.4.32)
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Now given f®), g% ¢ S(R¥), we see that

(2, 20) = P (FP (g, ), 90 (@l ) € Sty (R Sy (R))- (4.4.33)
Thus, we can define a map Vi) | - S(R¥)? — S(R2(+1)
\ijqulm’l (f(k)v g(k))($e+1§ £2+1)
k k / / ’ 20041 (4434)
= o) ,1(f( )(ib ')79( )(gb I (@es1; Thir), V(zgpyy,2p4) €R e+ ),

: S(RY)? — S(R?) is bilinear and

which is bilinear and continuous. Now since (I)VV“) L
m o

continuous, the universal property of the tensor product and the identification of S(R?") =

S(RY)®S(R) implies that there exists a unique continuous linear map

o, S(R*) = S(R?), (4.4.35)
with the property that
Do (F0,90) = b (FO ©99), VO, g0 € SR, (4.4.36)
Hence, the function
S, (Two (FP 00 mes ap) ) (@ial), V(o zen,al ) € R

defines an element of S(R?), and moreover,

S(R")* — S(RY),

(f(k)ag(k)) = (I)VNV%)DI <\I]\7NV£Lj)m,1(f(k)’g(k))('vajé-i-l; ',$2+1)> ($1; :Ell)’ V(l’1,$g+1,[£/1, xZ—i—l) eR*

(4.4.37)
is a continuous bilinear map. Thus, we may define a functional u;u on S(R*) by
<uf(k> ) g(k)>5/(Rk)_5(Rk)
= /2 drydre6(z) — IHI)(I)W%)J(\Ilwijlm,l(f(k)ag(k)x"x“l; .,xzﬂ))(g;l;xl), Vg(k) c SGRk).
’ (4.4.38)
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This functional ux) is evidently linear, and it follows from the continuity of P and

w

v , that it is continuous § (R*) — C, hence a tempered distribution. Furthermore, we

W)

n—m?

claim that the map
S(R) — S'(RY), FE = (g0, s me) —sen (4.4.39)

satisfies the good mapping property. Indeed, replacing f*), ¢ with 7f® 7¢®, for any
7 € Sk, it suffices to verify this assertion for the case & = 1 in Definition [4.1.1 Additionally,
it suffices by the universal property of the tensor product and the Schwartz kernel theorem
isomorphism S(R¥) 2 S(RY)®S(IR’) to show that there is a (necessarily unique) continuous,
multilinear map

®, : (S(RY) x S(R))* — S(R?),

such that for £, ¢ € S(RY) and fU), g € S(R7),

/dmu(f“),f(j),g(e),g(j))(ﬂf;x')(ﬁ(v@)
R

(4.4.40)
= (Upw g & @ (99 ® gDV (@, ) s mr)_s@H)s Vo € S(R), ' € R.
Now for any ¢ € S(R), the bilinearity of &) | implies
(I)aniwﬂl((fw) ® f(]))(gb ')7 (¢ ® (g(f) X g(j))(xlv ))(zéa )) (QTg.H; mZ—i—l)
= [z)o(21)g (@', )00 (f990) (@eaniahyy),  V(@e 240, 07) € R*F.
(4.4.41)

Hence,

U0) 71(f(€) @ f9,6® (9 @ g, ) (@esrs 2041

= f(e) (%)Gﬁ(xi)gm (x,&é;e)‘bwglm,l(f(j), g(j))(WH; xleﬂ)a V@Hhﬂﬂ) e R0,
(4.4.42)
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For 2’ € R and ¢ € S(R), define the function §§?¢ e S(RY) b

a(@y) = o()g O ), Vay € R, (4.4.43)

so that we can write

\IJVNVSQWI(f D@ 990 (g9 @gW)(a', ) (@e; 2h4)
(4.4.44)
~(£

= (Y0l @i m)ege (fV ) @i ti),  V(@e 2hp) € R,

Therefore, using identity (4.4.44] m ) and the linearity of the map @< we see that

W(Z) 17

(I)W%),l <qu(j) 1(f(£) ® f(j)7 ¢ & (g(ﬁ) X g(j))<x/a )) ('7 Te4+15 xlé-i—l)) (xl; -1711)
- q)vajj) (f( D (@es; x€+1)<I>~ © 4 <f( '® g(,)¢) (21;77)

q)W(J (f(J )(xé—i-lv x(—l—l)q)N 1(f( )7 gi’?(ﬁ)(l‘lv .%'/1), (4445)

where the ultimate equality follows from the property (4.4.36). Recalling the definition
(4.4.38) for us), we obtain that

(upog0, ¢ @ (9 @ g)(a, ‘)>3'(Rk)—s(Rk)

= / drydre10(z1 — Topr) P 1<\I’{,vv(j> (O 9 ¢ (gY@ g (@, ), wera; '7l‘£+1)> (z1521)
R2 m n—m:
:/ drrde16(01 — 2e01) Pg0) (FD gD @prs 2B (£, 559,) (@1 21)
J ) ) Wi » Il b 1,41
R2 m

/dx<1>~g> (D, g (@52) P, (FO, 55, (w3 2)
R

— (WO, b0 (79,693, )
<Wmf ’(I)nglmyl(‘f y g )|y:ygz',¢ S’(RZ)—S(RZ)’

where ®=) (fY), g9)|,—, denotes the restriction to the hyperplane {(y,¢') : y = 4/} C R?

W(]) 7

and the ultimate equality follows from the definition of & n (4.4.29). Unpacking the

w1
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definition of g gz '» from (4.4.43)) and applying the definition of P w , once more, we conclude

that

_ 0 ~ G 40N O (.
(W <¢<1> 9,10 =) © 0@
/ drPgin | (f“), 4O) (2 2)$(0) g (9, g9 (a3 2). (4.4.46)
R n—m?’

Therefore, the desired map @, is given by
(I)u(f(e)> f(j)> g(@a g(j))(x> iL‘l) = (I){;vaﬁ)71(f(£)7 g(f))(% x/)q){ﬁ;jlm71(f(j)7 9(3))(177 33'), (4447)

which is evidently multilinear and continuous (S(Rf) x S(R/))? — S(R?) being the compo-

sition maps. Thus, the proof that f*) — u s has the good mapping property is complete.

Lastly, we claim that ugx) coincides with the Hérmander product
(a1 — ) (WE @ W, ) (1)

defined above via Proposition 4.0.14] To prove the claim, we rely on the uniqueness criterion

for the product. We set
g® = ¢M @ gD @M gl ¢® =M g el g oM g =D (4.4.48)

for g, g, oM sV ¢ S(R), g1 ¢V ¢ S(R!), and gv=V ¢~ ¢ S(R'1). By

density of linear combinations of tensor products, it suffices to show that

2 —~ P
(F(Q(k) uf(k))v(b(k))S’(Rk)—S(Rk) = <-7:(g(k)5($1—xul))*}—(g(k)(W%)@’Wgzm)(f(k)))a¢(k)>3f(Rk)—5(Rk),
(4.4.49)
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since pointwise equality then follows from the localization lemma (see Chapter 2, §2 of [40])
together with the continuity of the Fourier transforms involved. This is then an exercise,
the details of which we leave to the reader, relying on the good mapping property and the

distributional Plancherel theorem.

Step II: The property [(R2)| is readily established by the arguments in the previous step
and the fact that A,(f,)n defined in (4.4.12)) has finite cardinality, it then follows from another

application of Proposition 4.0.9(c)| that either
WE(,50) <
or

WF (Wfﬁl f (k)> # () and satisfies the non-vanishing pair property.

Step III: Next, we show that the map f*) — Wq(ﬁlf(k) satisfies the good mapping property
for every k € N. Since differentiation is a continuous endomorphism of S’(R¥), it is immediate

from the induction hypothesis that
— 10, WH € £,,,(S(RY), S'(RF)). (4.4.50)
Since Ly,,(S(RF), S'(R¥)) is a vector space, it remains to show that
F9 s §(zy — 2p41) (VV,(,? ® W‘fjﬁm) (F®) (4.4.51)

satisfies the good mapping property for every ¢,j € N with ¢ + j = k and m € N.,,_;. But
this follows from Step II, where we showed that u ;) defined in (4.4.38)) coincides with the
Hormander product in the right-hand side of (#.4.51)) and that the DVO f®) = 4 ) defined

in (4.4.38)) has the good mapping property.
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Step I'V: Finally, we show that

—~

WH . S(RF) — S'(RF)
is a continuous map. As argued before, it suffices to show that the map
(fO, f9) s 6(wy — z041) (v”vff) ® Vvi{lm) (fO @ 9y (4.4.52)

is a continuous bilinear map S(RY) x S(R7) — S'(R*). Bilinearity is obvious. For continuity,
suppose that (£, [)) = 0 € S(RY) x S(R7) as r — co. We need to show that for any
bounded subset R of S(RF),

lim sup |(3(z1 = 2e) (W @ W) (£9 @ £9), g% gy s | =0, (4.4.53)

r—00 g(k> R
But this follows from our analysis proving the good mapping property of the map f* — v F8)

in Step II. O

We now turn to showing that only finitely many components of Wn are nonzero for

a given n € N. This property justifies our use of the direct sum notation.

Lemma 4.4.3. For all n € N, we have

W =0e L(SRF), S (RF) k€ Nopyt, (4.4.54)

and

W =0e L(SRY),S'(RY),  keNspio (4.4.55)

Proof. We prove the lemma by strong induction on n. We first establish the base case n = 1.

It follows from the recursion (4.4.4)) that

W, = —id,, E;. (4.4.56)
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Since Egk) = 0 for k > 2, it follows that V/Vék) = (0 for k > 2. To see that Wék) =0 for k > 3,
observe that

(—i0,, )W = 0 € L(S(RF), S'(RF)), (4.4.57)

since WS = 0. If k > 3 and /, j € N satisfy £+ j = k, then max{/, j} > 2. Since W™ =0

for m > 2, we obtain that
W o W =0 e £(S(RF), S'(RF)), (4.4.58)

which implies that 0(X; — Xy41) (Wg) ® ng)) =0.

We now proceed to the inductive step. Let n € N>o and suppose that for all integers

m € Ngn,

Wi =0¢€ L(S[R"),S'(RF),  Vk€Napp (4.4.59)

W =0e L(SRY),S'(RY),  Vk € Nspyo. (4.4.60)

We now need to show that these identities hold with m = n + 1. We first handle the case of

even indices. Specifically, we show that

W

2(n+1) — 0 ¢ L(S(Rk)’sl(Rk))7 ke NZn—l—Q-

Observe that if £ > n + 2, then by the induction hypothesis, Wg@l )1 = 0 and therefore
— 0, W =0 € L(S(R"),S'(R")). (4.4.61)

(n+1)—1

We now consider the Hormander product terms

0(X1 — Xop1) (Wﬁﬁ) ® W§Q+1_m), (+j=k (4.4.62)
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arising in the recursion relation (4.4.4)) for Wga 41y By symmetry, it suffices to consider the
following case: if m is odd (i.e. m = 2r 4+ 1 for some r € Ny) then 2n + 1 — m is even (i.e.

2n+1—m = 2r' for some 7’ € N), and we can write n = r+r'. By the induction hypothesis

WO =0, VleNs, s (4.4.63)
W;Q—I—l—m = 07 Vj € NZT’+1- (4464)

If k>n+2=r+1r +2, then either £ > r+2 or j > '+ 1, since if both £ < r 4+ 1 and

j <7’ then
k=0+j<r+r+1 (4.4.65)
Thus,
6(X1 — Xp11) (Wg? ® vaﬁﬂ,m) =0 € L(S(RY),S'(RY)), (4.4.66)

and so it follows from the recursion relation (4.4.4)) that \7\7;]81 Ly =0€L(S (R¥), S'(R¥)) for

k>n+2.

We next handle the case of odd indices, namely we show that

W) L =0€ LSRN, S'(RF),  k>n+3. (4.4.67)

2(n+1)

As before, observe that if £ > n + 3, then

(=i, )W =0 € L(S(RF), S'(RF)) (4.4.68)

2(n+1)

by the result of the preceding paragraph. Now consider the Hormander product terms

0(X1 — Xop1) (W,‘f} ® W§Q+2_m> (4.4.69)
in the recursion relation (4.4.4) for W;’E’QL +1)+1- We consider two cases:
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C1. Suppose m is odd (i.e. m = 2r 4+ 1 for some r € Ny). Then 2n + 2 —m is odd (i.e.
2n+2—m = 2r'+1 for some 1’ € Ny), and we can write 2(n+1)+1 = 2(r+7'+1)+1.
If k> (r+r"+4+1)+2, then either £ > r+ 2 or j > r' + 2, since if both £ < r 4 1 and
j <"+ 1, we have that

k=0+j7<(r+7+1)+1 (4.4.70)

Hence applying the induction hypothesis to obtain W%) =0or ngn) +o_m = 0, respec-

tively, we conclude that

5(X1 — Xop1) (W;’? ® W§Q+2,m) — 0 € L(S(R"), S'(RF)). (4.4.71)

C2. Suppose m is even (i.e. m = 2r for some r € N). Then 2n + 2 — m is even (i.e.
2n 42 —m = 2r' for some 1’ € N), and we can write 2n + 2 = 2(r + 1’). Once again,

if k>r+1r"+1, then either £ >r+1or j > 1"+ 1, since if £ < r and j < 1’/, then
k=0+7<r+7r. (4.4.72)
Hence, we obtain again that
5(X1 = X)) (W 0 WEL, ) = 0 € £(S(RY), S'(RY)). (4.4.73)
by the induction hypothesis.

In now follows from the recursion relation (4.4.4) that w

2(n+1)+1

— 0 € L(S(RF),S'(RF))

for k > n + 3, completing the proof of the inductive step. n
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4.4.2 Step 2: Defining Self-Adjoint Operators

Our goal is now to define the self-adjoint elements W, 4., proving the following:
Proposition 4.4.4. For each n € N, there exists an element
n sa S @ Egmp * Rk Sl(Rk))

given by
1/~
Wow =5 (wn n W;’;). (4.4.74)

Remark 4.4.5. Recall that
(W) = Wi,

is the adjoint operator defined in Lemma (3.1.1
It follows readily from Lemma that
n sa 6 @ £ S, Rk))

and is self-adjoint. Thus, in order to prove Proposition [4.4.4] we only need to verify each
W,, s, satisfies the good mapping property, for which it suffices by linearity and the fact that
each W € L ymp(S(RF), S'(R¥)) to prove that

W= e £ (SRF),S'(RF),  VkeN. (4.4.75)
Using the recursion (4.4.4)), the linearity of the adjoint operation, and the fact that

(10, W) = W (210, € Loyl SEE), S'(RY) (4.4.76)
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by Lemma we just need to show that
(506 = Xen) (W0 & vafjlm)) € Lomy(S(RY), S'(RF) (4.4.77)

for any m € N¢,,_; and ¢,j € N satisfying £ + j = k. We prove this assertion by another

induction argument.

Lemma 4.4.6. Let n € Nso, and suppose that W, ... ,W;_l € D, Lomp(S(RF), S'(RF)).
Then (4.4.77)) holds.

Proof. Let k € N. Given f*) ¢ S(R¥), we define the tempered distribution vy by

where the composition 0(X; — Xg.,_l)(W%) ® Wffzm) is well-defined by Lemma m It is

easy to check that the map
SRY) = S'RY), Vv (4.4.79)

is a continuous linear map, so it remains for us to verify the good mapping property. As in

the proof of Lemma [4.4.1] it suffices to show that for any a € N¢;, the map
(S(R") x S(R?))? = Sy, (R; S, (R))
| | | (4.4.80)
(f(e)a f(j)ag(aag(])) = <Uf(l)®f(j) ‘() Ra (g(f) ® g(]))('wr/aa )> ) x/a €R.

may be identified with a (necessarily unique) continuous map (S(R?) x S(R?))? — S(R?),
which is antilinear in the f©, f) variables and linear in the ¢, g¥) variables. The reader
will recall that the notation ®, is defined in (4.4.32). To simplify the presentation, we will

assume o < (. The case ¢ < a < k follows mutatis mutandis. Moreover, by replacing
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O, g0 with 7f© mg®, for m € Sy, we may assume that o = 1. For any ¢ € S(R), we have

by the distributional Fubini-Tonelli theorem that,

<<Uf<e>®f<j> ’() ® (9( ' ® 9 ) (2, - > ¢>s/ (R)—S(R
= (Vingro|o ® (¢ ® g9) (], )
- <f(e> © f9|6(z1 — es1) (vay@ 2 ngm) (6® g0, ) ® g(j>)>

_ (e — <V“\7(e) WU)) Oz ) @ gD). FO <j>> (4481
<(x1 Tet1) m © Wim (¢®9 (#1,:) ® g )f ©f S'(RF)—S(RF) ( )

Using the identifications of (4.4.31]) and the action of the DVO 6(X; — Xg+1)(W7(£) ®\A7\7,(£m)
given by (4.4.38]) in Step II of the proof of Lemma 4.4.1, we find that
[@E431) = / A1 @0 (99, FO) (13 21) B0 (¢ ® g (2], ), FO) (@1; 21)
R n—m?
= <f(€)<bw(jz ’1(9(j)aﬁ)|y:y’ W%) (9’5 ® 9(@(1’/1’ ))>

_ <Vv1gg>,* ( 7O g0 71(g<j>,m)\y:y,) O .)> ’ (4.4.82)

where the ultimate equality follows from the definition of the adjoint of a DVO, see Lemma|3.1.1
As before, the notation |,—, denotes restriction to the hyperplane {(y,v') : y = y'} C R%
By the induction hypothesis, \7\7%)* possesses the good mapping property. Therefore, for

any « € No,, we can uniquely identify the map

SR = Sy (R;S;, (R),  (f,59) — <W%)’*JF( () @a g0, ')>s'<RZ>—S<Rf>

(4.4.83)
with a continuous bilinear map
CI)VV,%)’*,a : S(R£)2 — S(ma’mra)(]RQ)
dza®irn (7O, 50 (zo: 2 a:<VNV< . /.> R).
/]R X W%)’ ,a(f g )(ZE 7Ia)¢(x ) f ¢® g (7 Ty ) S’(RZ)—S(RZ)7 ¢€S( )
(4.4.84)
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Hence,

[@4.82) = <Wff?’* (f<f><I>W<j) (g, U’)\y:yf)’cb@g“)(x’u ')>

n—m> SI(RZ)_S(RZ)
= [ dng. (10 (00 Ty g st
= / Ay ([0 (99, fO)ymy, 90N @i al)plar).  (44.85)

Defining the map

(FO,F9D, g0 gD) = g (FODG0) (99, FD)]ymy, D) (4.4.86)

yields the desired conclusion, being the composition of continuous maps, antilinear in the

@, U variables, and linear in the ¢, g¥) variables. O

Since the base case W{* ¢ L ymp(S(RF), S'(R¥)) for every k € N is trivial, the lemma

and the remarks preceding it imply the Proposition 4.4.4}

4.4.3 Step 3: Bosonic Symmetrization

We now modify the definition of the operators W, ,, from the previous subsection in
order to obtain a bosonic operator which generates the same trace functional as W, 5, when
evaluated on elements of &7 . As an immediate consequence of Lemma [3.3.32] we obtain
Proposition completing the main objective of Section [£.4] We conclude this subsection

by explicitly computing W3 and Wy.
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Example 4.4.7 (Computation of W3). From the recursion (4.4.4)), we have that

W = (0, W 0 Y 60 — X (W & W)

Cri=k
(—i0,,)?, k=1

= RO(X1 = Xo)Idy = kO(X, — X), k=2 (4.4.87)
Ok, k> 3.

(k)

Since the components W3 are already self-adjoint and bosonic, it follows that

Wy = W = ((=id,, )%, k6(X; — X5),03,...). (4.4.88)

Example 4.4.8 (Computation of Wy). Similarly, from the recursion (4.4.4)), we have that

W = (—io, )W ’”HZ > a(X = Xe) (W0 0 WE,). (4.4.89)
m=1{+j=k
If k=1, then
Wi = (=it Wy = (=ide,)* = WY, (4.4.90)

since (—id,, )? is self-adjoint and bosonic. If k = 2, then

W = (=i, )W+ k6(X) — X5) (W @ WEY) 4+ ko(X) — ) (W @ W)
= K((—i05,)0(X1 — Xo) 4+ 0(X; — Xo)(Idy ® (—i0,)) + (X1 — Xo)((—i0,) ® Idy))

= —m(@xlé(Xl - Xg) + 5(X1 - Xz)(axl + 8902)) (4491)
The term —id(X; — X3)(0s, + Os,) is evidently bosonic, and it is self-adjoint since

[6I1 + azm 5<X1 - XQ)] == 0
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For the term —i0,,d(X; — X3), Lemma implies that the adjoint is given by —id(X; —
X3)0z,, and therefore

g Sym2((—la$1)(5(X1 — XQ) + 5(X1 - XQ)(_Zacm))

- Z«_Zawl - Zait?)(;(Xl - X2) + 5(X1 - XQ)(_i8I1 - 18952))
= (=0, = i0,,)0(X1 = Xa), (4.4.92)

where we use that § is an even distribution and again that [0, + Ou,, (X1 — X3)] = 0. We

conclude that
B 3K

2
W =2

(=10, —10.,)6(X1 — X3). (4.4.93)

Finally, it is evident that Wflk) = 0, for k > 3.

4.5 The Correspondence: W, and w,

4.5.1 Multilinear Forms w,,

In this subsection, we analyze the structure of the nonlinear operators w,, as sums of

restricted multilinear forms. For each k € N, we define a (2k — 1)-C-linear operator

wP : S(R)F x SR)F = S(R),  (¢1,- -, dri oy -y ) > wB [y, s o, -1y,
(4.5.1)
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recursively by

wgk)[(bl, ey ¢k;¢2a cee 7¢k] = ¢15k1a
wgﬂl[gblv ce 7¢k;¢27 s aqu)k]
= (_Zaa:)wfglk)[gbla s 7¢kn ¢27 s aqu)k]

n—1
+'L€Z Z w€+lw%)[¢la"'a¢€;w27“'7w€]w7(1]—)m[¢f+la'"7¢k;wﬁ+27"'7wk]7

m=14,5>1;4+j=k

(4.5.2)
where 01 denotes the usual Kronecker delta. The next lemma establishes several important

structural properties of the w,, including that w is identically zero for all but finitely many

ke N.

Lemma 4.5.1 (Properties of wgk)). The following properties hold:

e For each odd n € N, w® =0 for k > "T“ and for k < "TH we have

k k
w1(’Lk) [le, s 7¢k7 ¢27 o 71/}k] = Z an,(gk,gkfl)(H agrgb'r')(n a§r¢r>7
(ap.of_j)eNak—1 r=1 r=2
lag e, I=n—1-2(k—1)
(4.5.3)
where Un (a0l ,) € R.
e For each evenn € N, w =0 Jor k> 3 and for k < 3 we have
k k
W b1, drs b, -] =i > tn oo ([ O5 o) (T [ 057 0),
(gk,gﬁc,l)eNgk_l r=1 T=2
lagl+laf, 4 l=n—1-2(k-1)
(4.5.4)

where n, (ot _,) €R.
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Proof. We prove the lemma by strong induction on n. We begin with the base case n = 1.
That (4.5.3) holds for n = 1 is tautological. For the induction step, suppose that there
exists some n € N such that either (4.5.3)) or (4.5.4) holds for every odd or even j € N,

respectively. We consider two cases based on whether n is even or odd.

Consider the even index case. We first show that w,(lk) =0 for k > 5 Since n — 1 is

odd, the induction hypothesis implies that

(—idy)w®, = 0, k>g. (4.5.5)

Now suppose that ¢, j € N are such that ¢/ + j = k and

wO @uw, | £0, (4.5.6)

n—1l—m

where 1 < m < n — 2. By symmetry, it suffices to consider when m is odd and n — 1 —m is

even. By the induction hypothesis,

1 . 1
w =0, > % and w,(f_)l_m =0, 7> % (4.5.7)
Consequently, we must have that
m+1 n—1—-m n
E=0+j< = —. 4.5.8
TSy T T 2 (4.5.8)

It then follows from the recursion (4.5.2) that w¥ =0 for k > 5

Next we establish the asserted expansion formula. By the induction hypothesis,

k k
k /
T D DT Sl ) vty | EATS!
(ap-af_)enak—1 r=1 r=2
lag | +laf, _y |=n—2-2(k—1)

(4.5.9)
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where the coefficients a, 1 (qa, o o, ) are real. Hence by the Leibnitz rule, we can define real

coefficients by, (a, ., ,) sSuch that

— 0w [, Gri e, ] = 3 - <H 07 ) Hf’)‘“ Ur).

2k—1
(ag.ef_,)EN2 r=1

lag |+l l=n—1-2(k—1)

(4.5.10)
Similarly, for m € N<,,_5 and ¢, j € N, the induction hypothesis implies that
( ¢ ¢
> anapay (L]0 o) ([ 057r), m odd,
(apaf )enzt=t r=1 r=2

lag|+laf_l=m—1-2(¢-1)

‘ Z Um,(aaf_y) HaaWr Haa ¥,), m even

wlpr, .. bei e, .- ] =

(e, )eNQe 1 r=2
lagl+la)_ l=m—1-2(£~1)
(4.5.11)
and
wﬁzjll—m[@H,...,qsk; Vera,s oo Y]
( & &
' (1] amonC I o5¢r), m odd
t an—l—m,(gjg},l) z Pr 2" Wr), M O
(aj yengi—t r=0+1 r=0+2
lgjma \_:L 2—m—2(j—1) (4‘5‘12)
= k k 7
!
Z An—1-m,(a;.a_,) ) ( H 9y e )( H 09rih,), m even
(g a 1)€N2] 1 r=0+1 r=0+2
\|Qj\+\g; 1\—n 2—m—2(j—1)

where an—1-m (a0} ,)» Wn-1-m,(a,! ) € R. For £+ j =k and (a,, aj_,), (e, aj_) as in the

summations above, the multi-index
2k—2
(ab O[J, aé L& ) N
satisfies

(g )|+ () g, )| =m—1-2(—1)+n—2—m—2(j—1) =n—1-2(k—1). (4.5.13)
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Consequently, we can define real coefficients ¢, (q, o, ) such that

n—1
Z Ve [d1, ..., de; o, . .. ,¢j]w521_m[¢e+1, s Ok ey, U]
m=1

i LI (4.5.14)
=i Y e o([Joren [ o).
(gk,ggﬁl)eNgk_l r=1 r=2
lagl+lay,_ql=n—1-2(k—1)
Defining
a”v(gkvﬁk_l) = bn,(gk,g;c_l) + Cn,(gk,gk_l)a (4515)

and summing (4.5.10]) and (4.5.14) shows that (4.5.4) holds.

Next, consider the odd index case. To establish that w¥ =0 for k > "T“, we have

by our previous discussion in the even case, that

—1
—igw®, =0,  k>" — (4.5.16)
Suppose that ¢, 7 € N are such that ¢+ j = k and
wi @w,_,, #0, (4.5.17)

where 1 <m < n—2. If m is odd, then n—1—m is odd, and so by the induction hypothesis,

1 : _
wh =0, £> % and  w?, =0 j>" > m (4.5.18)
Consequently, we must have that
._m+1 n—-m n+1l
k=0+7< = . (4.5.19)

-2 2 2
Similarly, if m is even, then n — 1 — m is even, and so by the induction hypothesis

- —m—1
wh =0, (> % and wiﬁkm %

=0, j> (4.5.20)
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Consequently, we must have that

m n—m-—1 n—1
k=04+7< —+ = . 4.5.21
]_2 2 2 ( g )

It now follows from the recursion (4.5.2)) that wP =0 for k > 2+l Repeating the proof
mutatis mutandis from the n even case, we see that w(” has the representation (4.5.3). Thus,

the proof of the induction step is complete. n

We establish now some notation we will use here and in the sequel. For k,n € N, we

define densities

PWpy, . b, ] = 0w by, ... o, .. k] € S(R), (4.5.22)

and we define

IW by, . dratby, ... k) ::/dxpyf>[¢1,...,¢k;zpl,...,¢k](x). (4.5.23)
R

It is clear from Lemma m, that P . S (R)?* — S(R) is a 2k-C-linear, continuous map,
and thus 1" S(R)?* — C is a 2k-C-linear, continuous map. For k € N, we recall the

notation ¢** from (3.3.65)) to denote the measurable function ¢** : R™ — Ck

O (@) = (D(2pn)s - -5 D)), (4.5.24)

and similarly for 1.

Remark 4.5.2. It is clear from the recursion (4.5.2)) that

o

L(¢) =Y 16758, Ve e S(R), (4.5.25)

k=1

where [, is as defined in ((1.3.9)).
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Remark and the structure result Lemma allow us to give a proof of the
seemingly obvious fact that the functionals /,, are not constant on S(R). We obtain this fact
as a consequence of a more general lemma. Note that since I,,(0) = 0, the nonconstancy of

I,, is equivalent to I,, # 0.

Lemma 4.5.3. Let n € N, and let ¢ = {c}xen C C such that ¢; # 0. Define the map
Lie:SR) = C, L) = alP*6",  voeSR). (4.5.26)

Then I, . # 0.

Proof. Assume the contrary. Then for any A € C, we find from the 2k-complex linearity of

the functionals L(Lk) that

= 1.(0) = 3 aIP[(00)* 100) ] = S el FIW 64 3, Ve e S(R).
k=1 k=1
(4.5.27)
Now fix ¢ € S(R) and define a function
poc CoCo oV =D i APFIP [k, 6 ", (4.5.28)
k=1
which is well-defined and smooth since I = 0 for all but finitely many indices k. Now
observe that
0 = (010506.0)(0) = a1}V (6 6] = &1 / dx §(x)(~i0:)" " 6 (x). (4.5.29)
R

~

Choosing ¢ € S(R) to be a function whose Fourier transform qﬁ satisfies 0 < ¢ <

~ o f1, 2<¢<3
cb(f)—{& f<l e>4’ (4.5.30)

we obtain a contradiction from Plancherel’s theorem, since ¢; # 0 by assumption. O
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4.5.2 Variational Derivatives

In this subsection, we show that the functionals I, satisfy the conditions of Re-
mark and explicitly compute their symplectic gradients. To this end, we record here a
recursive formula for the functions wy, (y, 4,), which generalizes the recursive formula (|1.3.8)

for w,, given by

(¢1¢2( ) 7vbl( )

. , (4.5.31)
wn+1,(¢1,¢2)(x) = —Zaan,(wl,wz ) + Ko (x Z Wi, (g1, 1/12 wn*M,(wl,W)(gj)
and we refer to (1.2.19) for more details. We define I,, : S(R)? — C by
fn(%,%) = / Az 2 (X)W, (g ) (), Y(ih1, 1) € S(R)?. (4.5.32)
Remark 4.5.4. By comparing the recursion (4.5.31)) to the recursion (4.5.2)), we see that
Wn,(1,3h2) Z Wy, k X(k 1)] (4.5.33)
k=1
and consequently
L(thr, ) =Y I . (4.5.34)
k=1

We now use the multilinear wflk) introduced in the previous subsection in order to

compute the variational derivatives, defined in (#.3.1)), of the functions I,. We first dis-

pense with a technical lemma asserting the existence of a partial transpose for the wgk) in

C>®(S(R)*71;S(R)). The proof follows from the structural formula of Lemma and

integration by parts; we leave the details to the reader.
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Lemma 4.5.5. Let n,k € N. Then for 1 < 5 < k, there exists a unique partial transpose
wflk])t € C°(S(R)*~1;, 8(R)), such that for every 6¢ € S(R) and ¢y, . .., Pr, s, ... Yy € S(R)

we have

/ dzdp(x)w, k) t[¢1, s Ok Y, U] ()
R (4.5.35)

:/Rdﬂf%(x)wr(f)[cbl,---,¢j—1,5¢7¢j+1>---7¢k;¢2,--->¢k](9§),

Similarly, for2 < j < k, there exists a unique partial transpose w( € C>*(S(R)*~1;S(R)),
such that for every 61 € S(R) and ¢1,. .., ¢k, Vo, ... Y € S(R) we have

/ da:&ﬁ(x)w,(f;}t[%, o Ori e, ()
R

(4.5.36)
= / dmwj(x)wqgk)[¢l7 v 7¢k; 2/}27 e 77~pj—17 5¢7 ¢j+17 s 7wk]<x>
R
For convenience of notation, we define w,(ﬁit € C*(S(R)*1; S(R)) by
wﬁfi;t[¢l> ety ¢k7 w27 e 7wk] = wék)[¢1a s >¢ka ¢2, e awk] (4537)

We may now proceed to establish formulae for the variational derivatives of the I,,.

Lemma 4.5.6. For n € N, we have that

Zzw (ij 1) ¢><(k 7) wx (k— 1)] (4538)

kljl

Vil (¢,1) = ZZw o] (4.5.39)

k=1 j=1
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for every (¢,v) € S(R)%. In particular,

(0=~ > 3 a0, 6,05

k’ljl

ZZ“’ TR (4.5.40)

k=1 j=1

% Z( Hpx =D, ¢, p* k=), e x (k= 1>] willf;;t[quk;ax(k_l)])'

Proof. Fix a point (¢,v) € S(R)?. Unpacking the definition of I, and using the chain rule

for the Gateaux derivative, we obtain that

oo k
L[¢, ¢ (69, 00) = ZZ(/de“f (<UD, 56, ¢ K9] (x)

k=1 j=1 (4.5.41)
o [ dnPBIe i >)
Since
PP ¢ 07D 60, = F=9 7 F) = P01 5, ¢ -7, D) (4.5.42)
and
(B)1 o xk. k—1 .
P[>k px =1 gap qp*B=D)] = (Sww]? [ ,¢X‘( it = ! (4.5.43)
n ) ) s ¢w£L)[gbxk;wx(gf2),5w’¢x(k—])], 9 S] <k )
upon application of Lemma we see that
[ P50, 070D )
R (4.5.44)

_ / dad () ) [¢0D, 4, ¥ ) <] ()
R

and

[ PPt 0 0,0 @) = [ dsvaels) ot @), (455)
R R
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Substituting (4.5.44)) and ( into - we arrive at the identity

7.6, 0](66. 6) = ZZ(/ 1266 ,t[qﬁx(jfl)’wj¢><(k*j);w><(k71)]<x>

k=1 j=1 (4.5.46)

+ / d:c&ﬂ(m)wik]).}t [¢F; 1) (1')) :
. ,

Using that there are only finitely many indices k yielding a nonzero contribution by Lemma|4.5.1],

we can move the summations inside the integral to conclude that

dfn[¢,w](5¢,5¢)=/ﬂ§diﬁ5¢ (ZZw [ U™, 4p, ¢ B (D] >>

/dxdw (ZZw Rl [ ))

k=1 j5=1

(4.5.47)

which yields the desired formula for the variational derivatives in light of (4.3.1)).

To see the second assertion for the symplectic gradient VI, (¢), we recall that from

the fact that I,(¢) = I,(¢, @), Remark {4.3.1} and (£.3.9) that we have the the identity

V. 1,(¢) = —iVi1,(6,¢) = =iVl (¢, b).

Substituting the identities for V11, (¢, @), Vs, (¢, ) into the right-hand side of the previous

equality completes the proof. O

4.5.3 Partial Trace Connection of W,, to w,,

We next connect the linear DVOs Wq(f) constructed in Section to the multilinear
Schwartz-valued operators wﬁlk) constructed in Section . We note that since the definition
of the W, is fairly straightforward given the definition of Wn, it will suffice to establish these

connections for the latter operators.
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It will be important to remember the following consequence of the fact that wik)

satisfies the good mapping property: the generalized partial trace

k

k
Tro,. (VNVSZ“ X o) (X zm), (4.5.48)
/=1

(=1

which is a priori the element of £(S(R),S’(R)) given by the property

K k
<T1“2 ..... k (ng) &) é0) <®@/}e|) ¢,¢>
=1

=1 §/(R)-S(R)
ok k
= <W£’“>®¢e,¢® <®w,¢> >
=1 =1 8:’51 (R) *Szl (R) S’(Rk)—S(]Rk)
ok k
= (¢n]9) <W§L’“) Rt ® ®¢e> , (4.5.49)
/=1 (=2 S'(RF)—S(R¥)
for every ¢, € S(R), is in fact uniquely identifiable with the element in S(R?) which we
denote by
(I)ngk)(¢la cee 7¢k;a7 cee 7%)
via

k k
<Tr2 ,,,,, k (Wff) |® b¢) <® ¢£|> I/ 9>
S'(R)=S(R)

(=1 /=1

(4.5.50)
— /R2 dxdx’q)wgm((bl, e Or L, ) (s 2 f () g().

Moreover, the map

S(R)2k—>S(R2)7 (¢177¢k7w177wk) H®wg)(¢17a¢kva77%) (4551)

is continuous. The objective of the next lemma is to obtain a formula for @W(k) in terms of

wi.
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Lemma 4.5.7. Let k,n € N. Then the following properties hold:

e For any ™ € Sy with (1) = 1, we have that for all (z,2') € R?,

P+ (@1, Pr; 1, - - i) (3 2)
n,(7(1),..., w(k)) (4552)

= U1 (@)W [Brr)s - - s G ()i Pri)s - - - s i) (),

and

q){;vv(k)a* (¢177¢k7%77%)(‘r7$l>
(w1 (1), (k) (4.5.53)

= wl (xl)wff%t[aa ww(2)a s >w7r(k)7 ¢7r(2)> BRI ¢7r(k)](x>

e For any ™ € Sy with w(1) # 1, we have that for all (z,2') € R?,
CDWUC) (¢177¢k7%a7%)($71‘/>
n,(w(1),..., (k))

k )
= ($’)w7(m)rfl(1)/[¢n(1), e D) V(@) - U1 (1)=1) Ur(1)s V(1 (1) 41) s - - > V(i) (2),
(4.5.54)

CI)W(/C);* (¢17'"7¢k;aa"->%)($;x/>
n,(w(1),..., 7(k))

. —
=1 (x')wiﬂ):l(l) [Vr)s - s Un(r-1(1)=1) Pr(1)s U1 (1)41)s - - s L ()i Pr(2)s - - - P (),
(4.5.55)

Proof. We will begin by establishing the first claim for the identity permutation, that is, for
each k € N and for any ¢y, ..., ¢k, ¥1,. .., € S(R), we have that

(I){;Vvslk)(¢la <. 7¢k3%7 R 7%)('7:71./)

o o (4.5.56)
= w1<x/)w7(f)[¢la I >¢ka ¢27 e 77%](53)7 V(ﬂj, xl) € RQ'
By Lemma m, it suffices to prove (4.5.56|) by induction on
{(k,n) e N*: k <n}. (4.5.57)
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We begin with the base case, (k,n) = (1,1). Since W{") = Id; € L(S(R),S'(R)), we have

the Schwartz kernel identity

(W61} 1]} @is2h) = an(@)br () = baleuiVli (@), Vwn,a)) € R, (45.58)

which proves (4.5.56|) for the base case.

For the induction step, suppose that there is some n € N such that for all inte-
gers j € Ng, the following assertion holds: for all integers £ € N<; and for all functions

O1y -y Ok, U1, .., € S(R), we have that

CI){;"V](’C)(¢17 cee 7¢k;E7 cee ,%)(ZE, ZL'/) = E(x/)w](k)[asla s 7¢k;527 cee 7@]?](3:)? V(.I',.Z'/) S Rz‘
(4.5.50)

We now prove (4.5.59) with j = n + 1. By the recursion relation (4.4.4) and the bilinearity

of the generalized trace, we have that

é:l
k k
= Tr,,.., (( 10, )W | 1) <®zm)
r=1 r=1
n—1
+RY Y Ty k(fs(Xl—Xul)(N oW > \®¢r (X)%)
m=104j=k
=: Term; j, + Termy . (4.5.60)

We first analyze Term; j. Since (—z'am)VVSJ“’ € L(S(RF), S'(R*)), it follows from the defini-

tion of the generalized partial trace that

k k
Term, ;, = (—id,) Try. & (\7\7;@ X o) (X ¢T|>. (4.5.61)



It follows from the induction hypothesis that

k k
(=i0s) Tra,... (Vv;’” X o) (Q zm) (2;2'
r=1 r=1
_ ((_z'ax>c1>v~vw(¢1, N T ,%)) (;2")
= 1 () (=0 w1, ..., Bs o, - ., Ui (2) (4.5.62)

with equality in the sense of tempered distributions on R?. Substituting (4.5.62)) into (4.5.61)),

we obtain that
Termy j, = ¢y (/) (—i0e)w P [¢1, .., Gks Vo, - - i) (). (4.5.63)

We next analyze Terms ;. By the computed action of the Hormander product §(X; —
XEH)(W%) ® Wfﬁm> given by (4.4.38) and the definition of <I>~(e) and &

wo o we have

that

= ®W§ﬁ)(¢l> cey ¢K;E7 s ,W)(l’ﬂ? )(I)vazm((ﬁﬁrla R ¢k;w€+17 cee ,%)(l‘,iﬂ) (4564)

in the sense of tempered distributions. Using the induction hypothesis for W and W

n—m,

respectively, we also have that
(I){;"V%)((bla cee ,¢€§Ea cee 7@)(:C7 xl)
o o o (4.5.65)
= i@V w1, G, W(2), V() €R?

and

PFo (Dr41s - - Ors Vet - - P (a5 2)

fnom. S (4.5.66)
= w5+1(‘r/)wn—m[¢€+lv ey (bkv W+27 te 71/%](95)7 V(ZL', .Z'/) € R2'
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Substituting the two preceding expressions into (4.5.64)), we find that

" :wl(x/)w€+1(x)w%)[¢la'-'7¢f;%7"'7¢£]( ) Wy~ m[¢€+17"'7¢k’;wé_+2a"'7%](37)‘

(4.5.67)
Hence,
Terms i (x; 2') (4.5.68)
n—1
=K Z Z ¢1($/)W+1($)w%)[¢1, LR ¢€;%7 v 7%](x)w£zjzm[¢ﬁ+lv <. 7¢k;w5_+27 S 7%](1')
m=1{+j=k

Combining our identities for Term; j and Termsy;, we obtain that

(Termy s, + Termy ) (z; 2")
= Yz /)(—' WP D1, drs o, U] ()
+’%Z Z 1/}1 1/)Z+1 Z)[qbl?"wgbﬁ;%u"'7%](‘r)w£z]2m[¢ﬁ+lwHud)k;l/}f_—&-?""?%](x)a

m=1{+j=k

with equality in S’'(R?). Now applying the recursive relation (4.5.2) for wfﬁzl (D1, ., O Way .. Ukl

we find that

(Termy ;. + Termy ;) (z;2') = Py (2w (b1, . .., s Oy - .. i) (), (4.5.69)

which completes the proof of the induction step for showing (4.5.56)).

We now use (4.5.56) to prove the adjoint assertion of the lemma. For f, g € S(R),

we have by definition of the generalized partial trace (see Proposition [3.2.4)) that

k k
<Tr2 ..... k (W* @) @ ¢r|)f,g>
= = S'(R)—S(R)
S'(RF)—S(RF)

(4.5.70)
r=2
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By Lemma [3.1.1],

We can rewrite

<w1!f>< Q:{) <§¢_>

S'RH-S®Y (4.5.72)

Now applying (4.5.56)) to this expression, we obtain that the right-hand side of (4.5.72))

equals

/IR;2 dxdx/q){;"v%’f) (ga ¢2> cee 777Dk;77 %7 cee 7%)('%.7 $/)¢1($/)¢1($)

= /RQ dxdxff(x')wﬁlk) [G, Vo ks Doy - o, O] ()01 () o (2)

_ /R doda! (Yl [g, s BRI () (), (4.5.73)

Next, using the Fubini-Tonelli theorem and applying Lemma in the z-integration, we
find that

E5T) = (il ) / UG . i B, B (@) ()
:(¢1]f>/d:cw o1, Uy Uk Pay e, B (1) (). (4.5.74)

Since f, g € S(R) were arbitrary, going back to the left-hand side of (4.5.70) and using the

uniqueness and properties of @ )., we conclude the pointwise in R? identity

By (D1 os b Or oo, D) (@i 2) = oy (2w, (B1, Uy o ks Gy, Bl (). (45.75)

)
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We next need to generalize (4.5.56|) and (4.5.75)) to arbitrary permutations 7 € S.

By definition of the notation

VA\;Elk‘()ﬂ(l) (k) T O Wv(f) on 1,

we have that for any ¢y, ..., ¢r € S(R),

W1ty (@ 67) = o W ®¢r o), (4.5.76)

.....

where the reader will recall from (3.3.28)) and (3.3.29) how a permutation acts on vectors

and functions, respectively. Setting f*) = ®f:1 ¢, we have by definition that

k
(f(k) o W_l)(gk) = f(k)(l}r—l(l), ce ,Iﬁ—l(k)) = H gbr(l‘ﬂ—l(r)). (4577)
r=1

Making the change of variable ' = 7~!(r), we see that

qur(l’wfl(r)) = H ¢TF(T')($T”) = (® qb”(?“))(ik)' (4578)

r’'=1

Therefore,

k k
—~ —
Tt (W 1) 18520000 (Drtil) = T <(7r o W) 1) 6r10) (R w)
=1 =1
(4.5.79)
as elements of Lg,,(S(R),S’(R)). Next, it follows from the characterizing property of the

generalized partial trace and the fact that we define a permutation to act on tempered

distribution by duality that

<Tr2 77777 k((woWﬁf)) |® o)) <®@/}e|> fa9>
= /=1

= (lf) <W5f) Q) dr(0), (9 Q) ¥) © 7r‘1> . (4.5.80)
51(RY)-S(RY)

S'(R)=S(R)
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Repeating the computation which yielded (4.5.78]), we find that

k “1()-1

ge@ib)or " =( Q) ®g® ® ) (4.5.81)

=2 =1 =r—1(1)+1

where per our notation convention, the tensor product on the right-hand side is to be inter-

preted as g ® ®]Z:2 Ur(e) if m(1) = 1. Thus,

k —l()
4.5.80) = (¢1]f) <W£Lk ® Dr(e), ( ® Pre) @ g ® ( ® 1/J7r(£ >
= =t 5/(RY)-S(RY)

l=n—1(1)+
. k m~H1)-1 k
= <T1‘2 ..... p| W !® Pr(ey) (1 ® ( Vr(r) ® G ( ® Uroy] | %(1)>
=1 =2 =r1(1)41

S'(R)=S(R)

By definition of @W(k this last expression equals

/'2 dxdxlq)wglk) (gbﬂ'(l)a <o 7¢ﬂ(k);a7 ¢ﬂ'(2)7 B 777Z)7r(7r*1(1)—1)7 g, ¢7T(7r*1(1)+1)7 <o 71/}7r(k:))(‘r7 CE,)f(x,)qﬁﬂ’(l) (I)
R

Applying the result we have just established for the identity permutation, recorded in
(4.5.56)), and using the Fubini-Tonelli theorem and Lemma [4.5.5, we obtain

/11@2 dzdz' Y1 (2)0E [Gr1)s - s D) V() -+ - s Pr(m-1(1)-1)s Gs Vr(ma1 (14105 - -+ » V(i) (T) F ()W) ()

= \/]1{2 d:cd:c'w [(bw cee 7¢7r(k);1/}7r—(2)7 cee 7w7r m=1(1 ww wfr (r=1(1)+1)5 - - - 7w7r k)]( )
X 1/11(36’)9(1?)f(1?')-

Since f, g € S(R) were arbitrary, we conclude that

éwikgﬁ(l) () (¢1) cee 7¢/€7 Ea s 7%) (ZL’, Il)
(k
= 1y (2') m)rtl(l [Pr(1)s - s Py Ur(@)s - - - s Vr(r-1(1)=1)s V(1) Ur(m-1(1)41) 5 - - - » U (i)} (), (z,2") € R%

(4.5.82)
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For the assertions about the adjoint, consider the expression

/2 dxdl‘/q)v"v%k),* (¢7T(1)7 ) ¢7r(k)7%7 1%(2)7 oo 7¢7r(7r*1(1)71)7 9, wﬂ(ﬂ*1(1)+1)7 o 7w7r(k))<xa .T/)f(x/>1/17r(1) ('I)
R
(4.5.83)

By (4.5.75)), we have
D0 (Dr(1)s -+ B k); V1 V(@) -+ s V(a1 (1)1 G Dn(m1(1)11)5 - - - » i) (25.2)

k), _
= 1/}1 (‘r,)wfm,i t[¢ﬂ(1)) ¢7T(2)7 R 7w7r(7r*1(1)71)7 g, ¢7T(7r*1(1)+1)7 R 71/J7r(k); ¢7r(2)) oo 7¢7r(/€)](‘r)
(4.5.84)

By the characterizing property of w i from Lemma 4.5.5, followed by a second application

of Lemma we have that

k),
/ dx ¢w(1)($)w£,i t[gbw(l)’ 1/}7r(2)’ oo wﬁ(w L(1)-1) 9, 1/}7r (m=1(1)+1)5 - - - uqu)w(k:); ¢7r(2)7 oo 7¢7r(/€)](‘r)
R

= / dx qbﬂ(l) (I)wT(ZJ)[d}ﬂ(l)a cee 7¢7r(7r 1(1)-1)> g, 1/% (m=H(1)+1)5 - - - vwﬂ'(k ¢7T(2 ¢ (k)](l’)
R

= / dx g('x)wi}z’fl(l)[wr(l)v v 777D7r (m=1(1)-1)>» ¢7r wﬂ o= 1(1)4+1)5 - - - 71/}7r (k) > ¢7r(2 .. 7¢7r(k)]<x)
R
(4.5.85)

By substituting (4.5.84]) into (4.5.83)), then using Fubini-Tonelli theorem and the preceding

identity, we conclude that

Dy (1, s br3 W1, - ) (52)

n,(w (1), (k))

o — S —
=1 (I')wi,ifl(l)[i/fn(n? o V(a1 (1)=1) Pr()s V(1 (1) 41)s - - > Vr(k)s Pr(2)s - - > P ()
(4.5.86)

point-wise in R?, which establishes the final claim and completes the proof. O

By taking the (1-particle) trace of the DVOs

k k k k
— k),*
Tra ok <W£,2W(1) ..... (k) ’® ) <® W|)7 Tro, ok (W( 2#(1) ..... (k) ‘® ) <® W‘)
=1 =1



and using the definition (4.5.23) of [T(Lk), we obtain the following corollary of Lemma :

Corollary 4.5.8. Let k,n € N. Then for any permutation © € Sy and any functions
O1y s Oy U1, .-, Uk € S(R), we have the identities

.....

4.6 The Involution: H, and I,

In this section, we prove Theorem We recall the definition of the trace func-
tionals

H,(T) = Tr(W,, - T, VI e &2 . (4.6.1)
The statement of the theorem is then the following:

Theorem 4.1.7 (Involution theorem). Let n,m € N. Then

{Hn, Hinte:. =0 on 8. (4.1.36)

As discussed in the introduction, we prove Theorem by showing that the Poisson
commutativity of the functionals #,, on the weak Poisson manifold (&} , A, {-, }e. ) is

equivalent to the Poisson commutativity of the functionals I, ,, on the weak Poisson manifold

(S(R; V), As v, {+ - }r2p). See (4.3.17), (4.3.19), and Proposition for definition and

properties of this manifold. Since the Poisson commutativity of the I;, is established in

Proposition [I.3.7] this equivalence will complete the proof of Theorem [4.1.7]

Establishing this equivalence relies on the detailed correspondence between the ob-

servable oo-hierarchies —tW,, and the multilinear forms w, which we have obtained in
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Section [4.5 the reduction to symmetric-rank-1 tensors described in Appendix [5 and the

demonstration of a Poisson morphism
bm (S<R; V)a AS,V, {'7 '}LQ,V) - (6207 Ao, {'7 }ngo)

We establish the existence of this Poisson morphism in the next subsection.

4.6.1 The Mixed State Poisson Morphism
Analogous to Theorem [3.1.12] from Chapter [3, which shows that there is a Poisson

morphism between (S(R), As, {-,-},2) and (&%, Ax, {*, }. ) given by

(o) = (16°%) (6" rerr, Vo € S(R) (4.6.2)

Theorem [4.1.8[ stated below demonstrates that we have a Poisson morphism ¢, between the

weak Poisson manifolds (S(R; V), Asy, {*; -} 12),) and (8%, Ax, {-, -}, ) given by

tm(7) = %( [S7°) (@5*1+ 165%) (67 Dren, Vv = %odiag(qzsl,@, 02,01) € S(R; V).
(4.6.3)

Theorem 4.1.8. The map vy is a Poisson morphism of (S(R; V), As v, {; -} 12) into (8%, A, {*, }ex )i

i.€., it is a smooth map with the property that

L;kn{'a '}Qﬁéo = {L:n'a L;'}L27va (4142)

where 1y, denotes the pullback of ty.

Before proceeding with the proof of Theorem[4.1.8| we first record the Gateaux deriva-
tive of the map ¢y, which is used in the proof of the theorem. The computation is an easy

exercise relying on multilinearity which we leave to the reader.
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Lemma 4.6.1 (Derivative of ty,). The Gateauzr derivative of the map iy is given by

1

k
b)) = 237 (16970 @ 661 @ 67 (651 + 165) (677 @ 691 © 67

a=1

+168%) (057 @ 062 @ 65+ |05 @ 36y © 6547 (67%1)

(4.6.4)
for every k € N, where
1 . — — 1 . S _
Y= EOdlag(¢17¢27 ¢27¢1)7 oy = §od1ag(§¢1,(5¢2, 5¢2,5¢1) € S(R;V)- (4-6-5)

We now turn the proof of Theorem [4.1.8

Proof of Theorem[{.1.8 The proof of this result proceeds similarly to the proof of Theo-
rem [3.1.12] from Chapter 3] Smoothness of ¢y, follows from its multilinear structure, therefore

it remains to check that

(i) thAx C Asy,
(i) - '}Qs;;o = {t by

We first prove assertion . Let F € A, and set f := F oty,. By the chain rule for
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the Gateaux derivative, we have that

df [7)(67) = dF [tm(7)](dim[7](077))

=iy ey g (dF[im()] P [7)(57) )
k=1
00 k
=5 > Tri (dF[Lm(w]““ > etV @dor @ 7" ) ®’f|>
k=1 a=1

k
o | dF (I 165%) (00" @001 @ 07

a=1

k
+ T | dF ()] ® 1D 05" @ 56y @ 65 ") <¢?k|>
a=1

k
+ Ty | dF [ ()I® [675) O 657V @ 6ga @ 05| |, (4.6.6)
a=1

where the ultimate equality follows from application of Lemma |4.6.1]

Next, observe that by Definition for the generalized trace and Definition

for the good mapping property, we have that

k
= <Z 67V @ 6y @ oy dF[Lm<v)]<’“>¢§’“>
a=1

= (001 [Vran) (4.6.7)

where ¢ps ), € S(R) is the necessarily unique Schwartz function coinciding with the antilinear
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functional

51 > <<Z(.) Rq ¢2ED

dF [tm(7)]® ?’“> ,5¢1>

T S®-S®) (4.6.8)
= <Z o @ oo @ o7 dF[Lm<v>]<’f>¢?’f>
a=1

and where the reader will recall the definition of the notation ®,, from (4.4.32)). By the same

reasoning,

where g  is the necessarily unique Schwartz function coinciding with the antilinear func-

tional

<Z<~> R 05

a=1

dF [Am(v)](’“)¢?’“> : (4.6.10)

Next, using that dF[tm(7)]* is skew-adjoint,

k
Try, (dF[amW“ > et @ den @6 <¢§’f\)

a=1

== <dF[Lm(7)] 2"

k
S oi V@ oo @ ¢1®"““")>
a=1

k
R OOURLL Y b

a=1

AF[tm(7)] ?’“>

= — (001 |Vrak)
= — (Yraxldgn) . (4.6.11)

By the same reasoning,

k
Try. 4 (dF[Lm(v)]““) > 65 @66, @ 955 <¢?k|> =~ (Wpialdds) . (4.6.12)

a=1
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Substituting identities (4.6.7)), (4.6.9), (4.6.11)), and (4.6.12)) into (4.6.6)), we find that

df [1m(7)](67) = %Z (601|Yr2k) + (0d2(r1 k) — (Vrarld001) — (Yr1kldd2))
k=1
= §(<5¢1|¢F,2> + (0d2|vp1) — (Vr2l|dd1) — (Vr1|d2)), (4.6.13)

where we have defined ¢p; = Zzozl Y1k and similarly for ¥ po. Note that these are well-
defined Schwartz functions since dF® is zero for all but finitely many k by assumption that
F € A, (recall that A, is generated by the set (4.1.16))). The preceding formula can be

rewritten as

df [tm (7)](07) = % trezgez (Jodiag(Vp,1, Yrg, Y2, Vp1)odiag(d¢2, 61, 61, 002)), (4.6.14)

where J = diag(i, —i, i, —i). Recalling definition (4.3.17)) for the symplectic form w2y, we
then see from (4.6.14]) that the symplectic gradient of f with respect to the form w2y, which

we denote by Vg f, is given by

1 . - R
Vi f(7) = Sodiag(Vr, Yra, Yra, Yra)- (4.6.15)
That the map
SR;V) = SR;V), = Vuf(v) (4.6.16)

is smooth follows from the fact that v depends smoothly on (¢g1,%r2), a consequence of

the good mapping property. This completes our verification of assertion .

We now verify assertion using the formula (4.6.15)). By definition of the Hamil-
tonian vector field in |(P3)| of Definition together with Proposition [4.1.4] which gives a
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formula for the vector field Xg(tm(7)), we have that

{F, G}y (tn(1))

kg
k+j—1
DL 1([zzdabm S——eel

a=1 =1
(4.6.17)

It is then a short computation using the Schwartz kernel theorem and the definition of ¢y,

that

k+j5—1
ZdG tm (77 k+1 ..... k+-B—1,a,k+B,.., k+j—1)Lm(7)( Y

= 5 < |¢1 (k-1) b dG[Lm(’Y)](])((b(l@J)) <¢;®(k+j—1)| + |¢;®(k—1) Q dG[0m<7)](J)(¢é®])> <¢(1®(k+j—1)‘>’

(4.6.18)
where ¢* ) @% 4G 1 (7)]9 (657) is the element of S'(RF+-1) defined by
(62 & dGlum(1)]) ®j))@kﬂ-_l)
?(a_l)(%A) ?(k ® Lo+, k (Z dG Lm 9251 )(xk+1;k+ﬁfl7 xaa£k+ﬁ;k+jl)>a
(4.6.19)

and similarly for ¢3 " @G [1m(7)] D (657). Since dG|im(7)] has the good mapping property

by assumption that G € A.,, Remark and the definition of the generalized trace imply
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that for every 1 < a < k,

J
o, k+j—1<ZdG[Lm(7)]8c)+1 ..... kt-B—1,0k+B, .. k+j—1)Lm(7)(k+j_l)>
A=1

1 o— —Q oa— —Q
= 5 (16770 ® gy © 67 (65*1+ 165 © Yoy © 657) (654]),

(4.6.20)

where ¢ 1.5, Va2 € S(R) are the necessarily unique Schwartz functions satisfying

(Dlvey) = <Z ¢ @5 p3 Y dG[Lm(v>J<f‘>¢?j> (4.6.21)
B=1

(Dlvca,) = <Z ¢ @5 67" |dG 1w (7)) §j> . Vée SR (4.6.22)
B=1

By repeating the same arguments and now using that the skew-adjointness of dG|ty(7)]",

we also obtain that for every 1 < a < k,

J
Trpi1, ktj—1 (Z Lm(’7>(k+]71)dG[5m(’7)]Eja),kﬂ ,,,,, k+j—1)> )
(4.6.23

1 a— -« a— -«
= =5 (165 (657 ® 105 @ 65 % + 1659 (67 @ gy © 674 ).
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Substituting identities ) and (| into ( above, we find that

{F,G}es (tm(7))
— % i Try, s (dF[am(v)]““) (i |§kj $7 7V @1y ® 67" ) (657
p
+ |§kj 657 @ Yaa,; © 05 Y) <¢1®’f|)>
=
+ % i oy, (dF (Y (Z s <§kj 67V @ gy @ o7
poct
+|6F") é 35V @ v, @ ¢y Y \))
=
AF [1m(7)]® (Z 630 @ gy @ ¢;@<“>) >
po
+ <¢i®’“

<Z¢1 o 1)®¢G1]®¢®(k @) dF[Lm(fy)](k) é®k>

a=1

k

dF [t (7)]® (Z 65 @ Yoy ® 050 ) >

a=1

<Z ¢35 @ 4ga; @ gy dF[Lm<v>]<’“>¢?’“>, (4.6.24)

where the ultimate equality is immediate from the definition of the generalized trace. Re-

calling the definitions of ©p; ; and g in and (| -, respectively, we have that

k
<Z $7 ) @ e, @ gTEY dF[Lm(v)](’“>¢?’“> = (ba1lrar) (4.6.25)
a=1
k
<Z 05V @ gay; @ ¢y dF[Lm(v)]“‘“)cb?k> = (Va2 Vrik) - (4.6.26)
a=1
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Now using the skew-adjointness of dF [ty (7)]*), we find that

<§®de% <Z¢1al®¢c1]®¢1ka>>

—<Z o @ e @6 dF[Lm<v>1<k>¢§’f>
- <1Z;;k|¢c,1,j> : (4.6.27)
Similarly,
<¢?k AF [t (7)) * (zk:l ¢35 @ gy ® cb;@('“_a)) > = — (Wpislte,).  (4.6.28)
Hence, -
[F,Gle (ml %f}i (Vonaltra) + (oaslbrie) — (ranlions) — (Wrislbos)
= L (oalma) + Wealtbrs) — Ghraltbas) — (e lve)) (4.6.29)

where we have defined Y = > "7 Yy, for £ € {1,2}, and similarly for ¢c,. Note that
these are well-defined elements of S(R) since ¥, Ve, are identically zero for all but

finitely many k, j. By (4.6.15)), we know that

Vs,Vf(rY) - %Odiag(d}F,law_F,?a 1/JF,27¢_F,1)7 (4630)

1 .
Vivg(v) = §0dlag(¢c,1, Va2, Va2, Yar). (4.6.31)

Hence by recalling the definition (4.3.17)) for the symplectic form w;2 ), and Proposition m,
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then proceeding by direct computation, we find that

{f, g}L2,v<7)

=wrey(Vsy f(7), Vg (7))

= % / dx tr(c2®(c2 (dlag(la _ia i? _i)Odiag(wF,la @ZJ_F,% 7vDF,Qa r(/)_F,l)Odiag(d)G,% wG,la ¢G,17 wG,2)) ([E)
R

= (£.6.29). (4.6.32)

Therefore, we have shown that

{F, Gl (7)) = {f: 9} 120(0); (4.6.33)

completing the proof. O]

4.6.2 Relating the Functionals #,, and [,

We now use the analysis of Section to relate the functionals H,, defined in
(4.1.33), on the infinite-particle phase space & to the functionals I;,, defined in (4.1.40),
on the one-particle mixed-state phase space S(R;V), defined in (4.1.39).

Proposition 4.6.2. For every n € N, it holds that

Hin(tw()) = Ion(7y), Vv € S(R; V). (4.6.34)

Proof. Fix n € N and let v = %odiag(@,%, b2, é1), for é1,¢2 € S(R). Unpacking the
definition (4.1.33)) of H,,, the definition (4.1.32]) for W,,, and the bilinearity of the generalized

trace, we see that

o0

1A 1 ~ o
Halim(1)) = 7 20 75 20 Tt (Wiklaoyngon 1959 (051) + Toa (W 0y 1657 (071)

.....

K — R
+Try, ok (Wi,gm) ey 1977 ¢ ?ﬂ) + Ty Lk (Wn,zm) o [95°) <¢i®k|)-

..........

(4.6.35)
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By Corollary [4.5.8] we have the identities

< (k —xk
Tra i (W0 675 (6541) = 19674 3,™),
< (k —xk
Try, & (Wé,gﬂu) ..... i 1057) <¢®k|> = I (03" 1), (£6.36)
17 (k),* k ——xk o
Try ok <W7(L,27r(1) ..... w(k)) |¢?k> ( §k|> = In )( QXk;¢1 )
17 (k),* k
Tra (W 955 (0841) = 1901327
for every k € N and 7 € S;. Consequently, by Remark
1 & —xk —xk —xk —xk
Ho(tm(7)) = ZZ(L(P( by ) TP (o5F ) + I (95 o) + I (7R 6y ))
k=1
1/- . = — = —
=1 <In(¢la $2) + (P2, 1) + Ln(d1, d2) + L, (92, ¢1)>- (4.6.37)
By (T.2.26)), we know that the I,, have the involution property
L(f.9) =1I(g9. ),  Vf,g€SR). (4.6.38)
So, we obtain by the definition of I, in (4.1.40)) that
1/- L _
Hn(m(7)) = B (In(¢17 $2) + L (@2, ¢1)> = Iyn(7), (4.6.39)
as required. 0
4.6.3 Proof of Theorem [4.1.7] and Theorem [4.1.9]
The goal of this subsection is to complete the proof of Theorem 4.1.7}
Theorem 4.1.7 (Involution theorem). Let n,m € N. Then
{Hn, Hinte:. =0 on &L (4.1.36)
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As detailed in the introduction, we will establish Theorem by proving Theo-
rem [4.1.9, the statement of which we recall here.

Theorem 4.1.9 (Poisson commutativity equivalence). For any n,m € N,
{Ioms I} 2y (7) =0, Yy € S(R; V), (4.1.48)

if and only if
{HmHm}ngo(F) =0, VI e &7 . (4.1.49)

We refer to (4.1.40) for the definition of I ,. In light of Proposition which estab-
lishes the validity of (4.1.48]), Theorem is then an immediate corollary of Theorem [1.1.9]
Thus we focus on proving Theorem [£.1.9]

Proof of Theorem[{.1.9. The implication that
{HnaHm}@;o =0= {[bJH [bvm}L2,V =0
is a consequence of Theorem and Proposition [£.6.2] Indeed, the latter states that

Hn(bm(’}/)) = [b,n<7)a

and hence by Theorem [£.1.8 we have
{[b,m [b,m}m,v(w = {HmHm}ego (tm(7)) = 0.

To show the reverse implication, we first claim that it suffices to show that

{Hos Hinbor (D) =0, VT = (v )ier, ™ = S (1F7%) (01 + 192 (FEFD)s fis o € S(R).

(4.6.40)

N | —
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Indeed, for any k& € N, Corollary gives that finite linear combinations of the form

Ng

. %( 1) (0% + 192%) (f*)), a; €C, fj,9; € S(R), Ny €N (4.6.41)

j=1
are dense in gy (recall (4.1.14])). Since by definition &}_ is the topological direct product of
the gi (recall (4.1.15)), elements T' = (7*)) ey € &% of the form

[e%S) a k
7=1

where fjr, gjx € S(R) and aj, € C with a;;, = 0 for all but finitely many j € N, are dense

in &} . Now recalling the definition (4.1.17)) for the Poisson bracket {H,, Hm}e. and using

the bilinearity of the generalized trace, we need to show that for I' in the form of (4.6.42]),

0= {Hy Hur} o (D)

=33 G (W WS (1) (i + 1) )

k=1 j=1
= ap{Ha, Honge (1)), (4.6.43)
j=1
where
L=\ ke, 1Y = %(I Y (GSEL+ g5k (F5ED). (4.6.44)

Note that because [—iW,,, —in]g?o is zero for all but finitely many %, and for each fixed
k € N, a;;, is zero for all but finitely many j, it follows that there are only finitely many
nonzero terms in the double series above, and consequently, there are no issues of convergence.
(4.6.40) will imply that each summand in is zero, so by continuity of {Hy, Hin} .
and by density of elements of the form in &%, we arrive at the desired implication.
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Thus, we proceed to show (4.6.40)). Unpacking the definition of {#,,, Hm . (I'), we

see that
. : k
[Hons Hon e, (T) = 5 D7 Ty (=W, =Wl (155 (g8 + 195%) (F24)) (4.6.45)
For each k € N and X\ € C, consider the element 75y € S(R;V) defined by
1 —
’Yk:,)\ )= §od1ag(/\fk, )\gk, )\gk, )\fk) (4646)
Then by the assumption (4.1.48)) and Theorem m

0= {Ib,nv [b7m}L2,V('}/k,)\) = {%MHW}@;O (Lm('yk,/\))

=3 i (W, =W 8 (7))
j=1
= 5 DA T (=W, —iWalgL () (07 + o) (£7)
j=1
l
= 50x(A). (4.6.47)

pi is well-defined on C, since there are only finitely many indices j for which the summand

is nonzero. Since for any r € N,

0 = (0203 pi)(0) = 7! Ty, ([=Wo, =W &) (1FE) (971 4+ 1987) (FE7D), (4.6.48)

it follows that

Ty, (1= W, =Wl (1) 685+ 195%) (FED) = 0. (4.6.49)

-----

Therefore, each summand in the right-hand side of (4.6.45|) vanishes, yielding (4.6.40[). Thus,

the proof of Theorem [4.1.8|is complete. O]
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4.6.4 Nontriviality

In this subsection, we prove that the statement of Theorem is nontrivial in the
sense that the functionals H,, do not Poisson commute with every element of A.,. The proof

of this fact proceeds by a reduction to proving a one-particle result.

Proposition 4.6.3. For every n € N, there exists a functional F € A, and an element
I' e &% such that
{F, Hate: () #0. (4.6.50)

Proof. We proceed by contradiction and suppose that for every F € A., it holds that
{F,"n}s. =0 on & So by the Definition for the Hamiltonian vector field, we

have that
0={F, ”Hn}@;o(F) = dF[T](Xy, (T)). (4.6.51)

By duality, it follows that X3, = 0 on &% . In particular, for any pure state I' = ¢(¢), where
tis asin (4.6.2)) and ¢ € S(R), we have by Theorem [4.1.10| (to be proved in the next section)

that
X, ((8)V) = |9) (V,L(9)| + | VI (9)) (6] =0 € g} (4.6.52)

Taking the 1-particle trace of the right-hand side and using the characterization of the
symplectic gradient (see Definition [3.3.11]), we obtain that

0= dL[e](¢) = > 2kIM o™ 6™, (4.6.53)
k=1

where the ultimate equality follows by direct computation. However, (4.6.53|) is a contradic-

tion by Lemma [4.5.3] and therefore the proof is complete. n
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4.7 The Equations of Motion: nGP and nNLS

In this last section, we prove Theorem 4.1.10l Before recalling the statement of this
theorem, we first recall that for each n € N, the Hamiltonian functionals H,, are given by

the formula

H,(T) = Tr(W,, - I'), VI e &7, (4.7.1)
and the Hamiltonian equation of motion defined by the functional #H,, on & , which we have
called the n-th GP-hierarchy (nGP), is given by

d
—I'= Xy, (I 4.7.2

where Xy, is the Hamiltonian vector field associated to H,,.

Theorem 4.1.10 (Connection between (nGP) and (nNLS)). Let n € N. Let I C R be a
compact interval and let ¢ € C*°(I;S(R)) be a solution to the (nNLS) with lifespan I. If we
define

Pec™(1ey). T (16%) (6°),0 (4.151)

then I' is a solution to the (nGP).

Theorem [4.1.10] asserts that (nGP) admits a special class of factorized solutions of

the form
I'=(7")en, = |p®F) (¢%F], ¢ € C=(I;S(R)), (4.7.3)

where ¢ solves the n-th nonlinear Schrodinger equation (nNLS):
d
(Ecb) (t) =Vl (o(t), Viel, (4.7.4)
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and where V, is the symplectic gradient with respect to the L? standard symplectic structure
(recall Definition 3.3.11f and Remark [3.3.12)). We note that existence and uniqueness for the

(nNLS) equation in the class C*°(I;S(R)) follows from the inverse scattering results of

I8, 102, [103].

4.7.1 nGP Hamiltonian Vector Fields

We first relate the formula given by Proposition for the Hamiltonian vector field

X3, to the nonlinear operators w,. This connection underpins the proof of Theorem [4.1.10}

For n € N, Proposition gives

o0 ¢
Xy, (D) = Zj Troi, vt ( [Z (—1Wa) ae+1 ..... e+j—1)’7(£+j_1)] >, teN, I'ed&.
~ (4.7.5)
The main lemma is a formula for
¢
Trepr, e ( [Z(_iwn)gy{eﬂ ..... l4j—1)° 'Y(Hjl)] )
a=1

in the special case where y(“+7=1 is a mixed state, i.e.

(t+j-1) —

~ (|f®(€+j—1)> (g2EHI=D| 4 |g®UHI=D) <f®(€+j—1)|)7 frge S(R). (4.7.6)

N | —

Lemma 4.7.1. Let £,j € N. Suppose that vV s of the form (&.7.6). Then for any
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a € Ny and 8 € Nj, it holds that

(9) O45—1 )
Tros,. e <(ansa)(;H,...,z+571,a,e+ﬁ,...,z+jf1)7( K )> (2 zo)

1

- 1f®(€_1)(£a717£a+1;€>g®z(£2)
x (wiiia’f[f”;y*<j—l>]<xa> + Y gD, gw—m;?*“‘”](xa)) A
1 ®(£—-1) QO ( !
+ Zg (&a—l7£a+1;€)f (gé)

x (w19 7 wa) + TS (2O, g, 200570 (2,)
and

O+j—1 (4) .
Tropr, o1 (7( I )(ansa)(Z—&-l,...,é—i—,@—l,a,ﬁ—i—ﬁ,...,Z-i—j—l)) (243 )

1
= _g®z(gf)f®(£_1)(£;717Ela—i—l;ﬁ)

4
. i i, 1) = gy =x(5-1)
< (i1 g U (w) + 0 g O F 0 T @)) L 4

1
+ Zf“@z)g@“*”@;_l,zim;e)

(Wl T 7 ) + o O g g )

In all cases, equality holds in the sense of tempered distributions.

Proof. By considerations of symmetry, it suffices to consider the case a« = ¢. Then by

Proposition for the (¢ + j — 1)-particle extension, Proposition for the generalized
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partial trace, and the definition (4.4.74)) for W,, 4., we find that

(4)
TrHl,-..,ijl <Wn,sa,(f+1,...,€+671,£,Z+6,...,€+j71)’y

1

1 Tropr, erj—1 <W7(f)
1 x(7).%

+ = Trogr,erj1 (W(])’

_I_

7)s
+ g Trern - I(W (0Lt B=1 L0+, .

= SN D @ (T s (WY,

n7(£+177€+ﬂ_17€1£+ﬁ77

4

1 =10

Z Trf+l,.--,€+j—l (Wn],(eﬂ,...,e+571,e,£+ﬁ,...,
1

4

<e+j—1)>
E+-1)) (g®(E+i=D) |>

) | (=) <g®(£+j—1)|>

1) ‘g®(f—i—j—1)> <f®(€+j—1) ‘>

B(E+j-1)y ( pO(E+i-D) |>

L+5—1) |9

B LB+1,.,9) |f®j> <9®j|)

(4.7.9)

T (WO i 1) (971))

L1
1

where the ultimate equality follows from the tensor product structure.

permutation m € S; defined by
a+1,
=<1

a,

m(a)

Y

so that we can then write

wU

and similarly for the adjoint. Using the notation ®4

similarly for the adjoint, we have that
on 19} (g™]) (@ 2/
(f’ "7f;§7""§)(

7)
oy, (WW( o

= dxw
W (1), ()

‘g®(z—1)> <f®(f—1)| ® (Trz,...,j (Wv(lj)(

R

)
n7(27"'75717ﬁ+17"'7j)

) + TIIQ’._J‘ (W

x') + P50+

2,...8,1,8+1,....5) ‘9®j> <f®j|>

9°7) (7°71))

We introduce the

n7(27"'a57175+17"'7j)

1<a<p—-1

a=p ;

f+1<a<y
w ()

= W tx(1),.n(3))

4)
W (e, (3))

W

J

(f,--

n (7(1)yeeym(5))
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(4.7.10)

(4.7.11)

introduced in (4.5.50)), and

O aniy 1) (6] (i)
S g,

) (x5 2")
(4.7.12)



Try (Wg%w(l) ,,,,, ﬂ(j)) 9%) ) )+ Try, (W,(f,i;f(l) ..... () 9%7) <f®j|> (z;2")
D . f )z ") + Py N S A 1€
Wm0 gifs oo )lwsa) W) (9 9:1 Do)

(4.7.13)
in the sense of tempered distributions on R2. Next, applying Lemma [4.5.7, we obtain that
for m(1) = 1 it holds that

E712) = g(x') (wgﬂ 9,709 () + w97, gxw—w;?*”‘”](:c)), (4.7.14)

and

= 7@ (wP1g 7V @) + 0l g, 400570 (@), (47.15)

while if 7(1) # 1, we have

q ) T -1) f j—m— T (-1
@712) = g(x’)< njzrt—l(l [, 5" (G-1) ](33) _|_w7(j73Tt_1(1)[gx( W= f gxG 1(1))’fx J ](x))7
(4.7.16)

and

. R i1 . — _ . _ _ .
@713) = f(x')(wg;il(l),[g”;fm () + w2t [T, g, fre ) g ”](fﬂ))-
(4.7.17)

Since 7~1(1) = 8 by definition of the permutation 7, we obtain (4.7.7) after a little book-

keeping.

To obtain - from (4.7.7), observe that the self-adjointness of WT(«L ta and (-1

implies the Schwartz kernel identity

W () 0+5— .
Tr5+1 ..... l+j—1 ( n,sa,(l+1,....0+8—1,a,0+0,..., €+j—1)7( + 1)> (£27 Eg) (4 7 18)
_ 2451 Vv(j) . o
= Trop e (7( =Y n,5a,(0+1,...,0+8—1,0,0+8,..., é+j—1)) (24; 29)-
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Substituting (4.7.7) into the left-hand side of the preceding identity yields the desired con-

clusion. O

We conclude this subsection by recording the required formula of the Hamiltonian

vector field X3, which follows from the previous lemma and some algebraic manipulations.

Lemma 4.7.2. Suppose that T' = (|¢®%) (¢®*|)ren, for some ¢ € S(R). Then for any

n € N, we have the Schwartz kernel identity

X, (D) (me; ;)

522 |¢®(Z 2 <¢®€ 2 |( Lo—15 a+1€a ,a 15 a+1£)

x (&(%)Z(wﬁgfw 3] £ g1, G, 665, a*“‘”])ua)
p=1
—¢<xa>2( A ”]+wggt[szsxw—”,?b,¢<f‘-ﬁ>;$*“‘”]><x;>>

B=1

(4.7.19)

for every ¢ € N.

Proof. We use the formula (4.7.5) and recalling definition (4.1.32)) for W,,, we obtain that

a=1

00 L
1 | (4.7.20)
— E - E E w (t+5-1)
= —1 4 (] — 1)' TI'Z+1 ..... < [ n,sa,(r(eo),w(l+1),...,71({+8-1))’ v ! ] > )

where here, S; denotes the symmetric group on the set {a,¢ +1,...,¢ + j —1}. We can

decompose S; by

S; = U {reS;: 7 a)=r}=5;,. (4.7.21)

re{al+1,...0+j—1}
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Note that each set in the partition has cardinality (j—1)!. It is a straightforward computation

using the bosonic symmetry of y(+7=1 that

() f '_1
Preea... “j‘l([wn{sa«w(a»w(Hl) ..... -y 1 )D

B Tre+1 ..... l+j—1 Wflj)sa (o, +1,.. 045—1) ’Y(Z+j71)i| ) ) r=uw
Troprerjm Wg)sa,(ﬁ—l—l,...,r,a,r—l—l ..... t+j—1) V(Hj_l)] )7 re{l+1,....0+j—1}

(4.7.22)

Using these observations and applying Lemma 4.7.1] to (4.7.20]), we obtain the Schwartz

kernel identity

oo 4
4~7-20=—izz Trepr,. e+j—1([Wf~ila,(z+1 ..... C+B—1,0,048, ..., é+j—1)’7(£+]_1)])(£€;£2)

. o /L
2
:_522 |¢®f 1> <¢®£ 1)|(—a 17_a+1£7—:1 1 oz—l—lf)

7j=1 a=1
J
- ), . x(i—1 ), N = .oy 7x(i-1)
x <¢<x;>2<w£’,£f[¢“;¢*“ N+ w)[ex0-0, 6, 6x0-9); 5" ])(wa)
p=1
J
» - 1
- ¢(xa>z(w£{};[¢w;¢*‘ R G R )])< a>>
p=1
(4.7.23)
This yields the desired formula. ]

4.7.2 Proof of Theorem 4.1.10]
In this subsection, we prove Theorem [4.1.10]
Proof of Theorem [[.1.10. Fix n € N. We would like to establish that T' = (|¢®*) (¢®*|)ren,

where ¢ € C°(I; S(R)), satisfies

d
—I'= Xy, (I’ 4.7.24
T = X, (D), (1724
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i.e. I' is a solution to the n-th GP hierarchy, if

d

i.e. ¢ is a solution to the n-th NLS. By the Leibnitz rule,

d

@ & d d
et _ (a—1) - (l—a) ¢ Y4 (a—1) - (l—a)
(dtr) =2 17 0 o @ oPT) (6] + 167 (0700 @ Grow gl

(4.7.26)

Substituting equation (4.7.25)) into the right-hand side of the preceding equality, we obtain
that

) ¢
(%p) — Z ’¢®(a71) ® ngﬂ(@ ® ¢®(£fa)> <¢®ZH_ ’¢®e> <¢®(a71) & stn(¢) ® (b@(g,a)‘ .
a=1

(4.7.27)

Now the reader will recall that VI, is the symplectic gradient with respect to the form wy2

and by (4.5.40) is given by the formula

V.0 =23 {Z (wﬁi)ﬁ’%xw-%a <0950 ] 4 w09 c‘bx“_n]) } |

B=1

i=1

(4.7.28)
Substituting identity (4.7.28)) into the right-hand side of (4.7.27)) and comparing the resulting
expression with the formula (4.7.19) given by Lemma yields the desired conclusion. [

4.7.3 An Example: the Fourth GP Hierarchy

We conclude this section with an example computation of one the n-th GP hierarchies.
Specifically, we explicitly compute the equation of motion for the fourth GP hierarchy, which

is the next one after the usual GP hierarchy (the third one in our terminology). In light of
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our Theorem [4.1.10, the fourth GP hierarchy corresponds to the complex mKdV equation
019 = 02 — 6K|¢|*0u b, k€ {£1}. (4.7.29)

Example 4.7.3 (Fourth GP hierarchy). We first recall from Example that the

3K1

W, = ((—z‘am)?’, —7(@“ + 02,)86(X1 — X5),0, .. > (4.7.30)

Substituting (4.7.30]) into the right-hand side of the (4.1.50)), using Lemma |3.5.10| and the

fact that dH[I')Y) = —iWY once again, the fourth GP equation, written in operator form,

simplifies to

Q
Il
—
<
Il
—
ki
—

¢
- 1 Hyw) ) 0+1 +1)y7(2)
=t Z (W4,(a)7( )+ )W4,(a) + Trega (W4,(a,1z+1)7( & )W4,(a,e+1))
2 2

where we recall that the subscript notation is used to specify the variables on which the Wg )

operators act. By direct computation, this expression simplifies to yield

1
0T = (07, + O = 65 (Bl 1 (00, TY) + B (00,7Y)), (4.731)

a=1
which is the fourth GP hierarchy, and which can readily be seen to yield (4.7.29)) for factorized

solutions.
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Symbol

Definition

L O Ltk

dzxy or di;; .y,

N or Ny

Ngi or Nzi

Sk

C>®(RF) or D(R¥)
S(RF) or Ss(R¥)
S(RF; V)

S'(RF) or S(RF)
D/ (RF)

L(E,F)

dF

VorV, Vsy, Vic

VIaVLVQaVQ

)
A, (k)

Symy,(f)

Symy,(A®), Sym(A)
By, By

¢®% or ¢><k

wr2, Wr2y, W2y

As, Asy, Asc

{'7 '}LQ’ {" '}LQ,Vv {'? '}LQ,
(6007 ['7 ‘]600)

(62;07-/4007 {'7 }Qﬁgo)

—

1N
Tryyr,..

N

(X1,...,x) or (Tiy ..., Titk)

dxy---dxy or dx; - - - dzriyg

natural numbers or natural numbers inclusive of zero

{neN:n<itor{neN:n>i}

symmetric group on k elements

smooth, compactly supported functions on R*

Schwartz space or bosonic Schwartz space on R¥: Definition [3.3.24

Schwartz functions on R* with values in V: ([#.1.39), (#.3.12)

tempered distributions or bosonic tempered distributions on R*

distributions on R¥

continuous linear maps between locally convex spaces E and F

the Gateaux derivative of F': Definition

the real or symplectic L? gradients: Definition and Remark

Proposition Proposition

variational derivatives: , (14.3.26|)

conjugation of an operator by a permutation: see

symmetrization operator for functions: Definition [3.3.23]

symmetrization operator for operators: Definition @

contraction operators:

k-fold tensor or cartesian product of ¢ with itself: (3.3.64) or (3.3.65)

L? symplectic forms: (3.3.15)), (£.3.17)), (4.3.29)

see ([3.3.20)), (4.3.19)), (4.3.32
. L? Poisson brackets: (3.3.21)), (4.3.21), (#.3.33)

Lie algebra of observable co-hierarchies: see discussion around Proposi-

tion

Lie-Poisson manifold of density matrix co-hierarchies: and dis-

cussion around Proposition

recursive functions: , (4.5.31])

k-particle component of wy: ; partial transposes of wﬁlk):

Lemma

involutive functionals: ([1.3.9)), (4.1.38]), (4.1.40)

the unsymmetrized operators: (4.1.24])

the self-adjoint operators:

the bosonic, self-adjoint operators:

the n-th Hamiltonian functional:

generalized trace: Definition

generalized partial trace: Proposition

wave front set of a distribution u: Definition [4.0.]

Table 4.1: Notation
303




Appendix

304



Appendix 1

The 1D NLS as an Integrable System

In this appendix, we sketch the proof that the 1-particle functionals I,, are involution
with respect to the Poisson bracket {-,-};.. We generalize the presentation to allow for
the case where the two Schwartz functions ¢, are independent, since this is the actual
1-particle result that we use in Section Hence, rather than considering the scalar NLS

equation (1.3.7)), we consider the system

(10r + A)ihy = 26971,
(10 — D)y = —2“@031/11 ’

Our presentation will proceed at a high level, following the exposition in [28, Chapter I

ke {£1}. (1.0.1)

and Chapter III]; however, the reader may consult Chapter I, §7 and Chapter III, §4 of
the aforementioned reference to fill in any omitted analytic details. We also consider the
L-periodic case rather than entire real line. The extension to the latter case follows from
truncation and periodization to fundamental domain [—L, L], application of the periodic

result, and then passage to the limit L — oo.

1.1 Transition and Monodromy Matrices

We start by fixing some notation. For L > 0, we let T} denote the domain [—L, L]
with periodic boundary conditions and C*°(Ty) the space of smooth functions on Ty. Equiv-

alently, C>°(Tp) is the space of smooth functions on the real line whose derivatives of all
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order are 2L-periodic. Given a (C* ® C?)-valued functional My, y,) on C*°(Ty), we define
T — M

My, o) = Mgy (1.1.1)

where the complex conjugate of the matrix is taken entry-wise. Evidently, the { operation

is involutive.

The system ([1.0.1)) is a compatibility condition for the overdetermined system of

equations

atF(wl,wz)(t= Z, /\) = ‘/(¢1,¢2)<t> T, )\)le’w)(t, x, >‘> 7

where F{y, 4,) is a spacetime C?-valued column vector and Uy, y,) and Viy, 4,) are A-dependent

{axF(wl,wg)(ta z, )‘) = U(¢1,¢2)<t7 €, )‘)F(%,%)(t? Z, )\)’ (1_1 2)

2 X 2 matrices given by

0 I /1 0
Uwr )N = Vo i) + AU Uiy = Vi (wl %2) , U= o (0 _1) (1.1.3)

and

‘/(1/11@2)()‘) = %,(¢1,¢2) + /\‘/17(1#171112) + >‘2‘/27

. K —0, (1.1.4)
%7(1#171/12) = l\/E (\/_wle V2 ) ) ‘/1,(1111,1112) = _UO,(d)sz)a Vo = —Uj.

axwl - \/Ewl %

In the preceding and following material, A plays the role of an auxiliary spectral parameter.

It will be convenient going forward to introduce notation for the 2 x 2 Pauli matrices:

o 01 L 0 —1 . 1 0 . O'1+i0'2 . Ul—iO'Q
g1 = 1 0/ O9 = i 0 , O3 .= 0o -1/ Oy = —2 , O0_ = —2 .

(1.1.5)

Written using U and V, the compatibility condition for the system (|1.1.2)) is then

U 2) — O Vi o) T [Unn)s Vi i) ] = 0 (1.1.6)
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point-wise in A. In the sequel, we will omit the subscript (¢1,2), which shows that the
matrices are really matrix-valued functionals evaluated at a specific point, except when
invoking the dependence is necessary. We hope that this omission will not result in any

confusion on the reader’s part.

There is a geometric interpretation to in terms of local connection coefficients
in the vector bundle R? x C%. Equation then says that the (U, V)-connection has zero
curvature. For this reason, is often called the zero curvature representation in the
literature. We will not emphasize this geometric aspect in the appendix, as it does not play

a role for us.

Now fix a time tg and consider the auziliary linear problem
0. F = Ul(ty,xz,\)F. (1.1.7)

The object of interest associated to (|1.1.7)) is the monodromy matrixz, which is the matrix of
parallel transport along the contour ¢t = ¢y, —L < x < L positively oriented:
L
Tr(\, to) =eXp (/L dzU (z, to, A)), (1.1.8)
where exp denotes the path-ordered exponential. By using the superposition principle for
parallel transport and the fact that parallel transport along a closed curve is trivial, one can

show that the monodromy matrices are conjugate for different values of t. Consequently, the

For A € L>®°(T;C" ® C"), the path-ordered exponential of A is defined by

exp (/_L dzA(z)> :2/—2 dz, /_L dxn,1-~~/$2 dzy A(zy,) - Az). (1.1.9)

—-L
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trace of the monodromy matrix is constant in time:
tl"(c2 ,_Z—'L(/\7 tQ) = tl"(c2 TL()\, t1>, \V/th ty € R, (1110)

where trce denotes the 2 x 2 matrix trace. Furthermore, one can show that the choice of
fundamental domain [—L, L] in the definition ([1.1.8]) is immaterial to computing the trace.
We conclude that

FL()\> = tr(CQ TL(/\) (1111)
is a generating function for the conservation laws of ((1.0.1)).

More generally, we have the transition matriz, which is the matrix of parallel transport
from y to x along the z-axis:

T(z,y,\) =exp (/w dzU(z, A)). (1.1.12)

Y

The monodromy matrix is then the special case of the transition matrix obtained by setting
(x,y) = (L,—L). From the definition ([1.1.12)), it is immediate that the transition matrix

satisfies the Cauchy problem

{&ET(J:, v, \) = Uz, T (2,9, \)

: (1.1.13)
T(z,y, )]sy = Ic2

where I¢2 is the identity matrix on C2. T'(z,y, \) is a smooth function of (z,y) and is also

analytic in A due to the analyticity of U(z, A) and the initial datum. By using that fyx = — fy

xT

in (1.1.12)), we see that T'(z,y, \) also satisfies the ODE

Additionally, the transition matrix has several elementary properties, which we record with

the following lemma.
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Lemma 1.1.1. The following properties hold:
(i) T(z, 2, \T(z,y,A) = T(z,y, A),
(ii) T(x,y, ) =Ty, x,A),

(i1i) dete2T(z,y,\) = 1.

Proof. Properties and are straightforward, and we leave them to the reader. For
property , the reader will recall Jacobi’s formula that for any n x n matrix A(t),

éédetcn@A(n)::tmcn(adj@A(w)Q{%fz), (1.1.15)

where adj(A(t)) is the adjugate of A(t) (i.e. the transpose of the cofactor matrix of A(t)).
Fixing y, A and applying Jacobi’s formula to T'(x,y, A) with independent variable z instead
of ¢t and also using the equation (1.1.13), we find that detcz(7'(z,y,A)) is a solution to the

Cauchy problem

dudetca(T(x,y,N)) = tres (adj(T (e, y, \)U (2, VT (2, V), L)
detC2 (T<$7 Y, >‘>) |z:y =1
Since
. _ T22 (ZL’, Y, /\) _TlQ('ra Y, )‘)
adJ (T<:U7 Y, )‘)) - (_T21 (I’, Y, )\) TH(I', Y, )\) ) (1117)
it follows by direct computation that
T(x,y,Nadj(T(x,y,\)) = detc2(T(z,y, \)) I dce. (1.1.18)

So by the cyclicity and linearity of trace, detcz(7'(z,y, A)) is the unique constant solution to

the Cauchy problem

{@da@ummwxn) = detea (T, 4, \)) trez (U (2, y, N e2) = 0

, 1.1.19
detez (T(2,y,\))|a=y =1 ( )
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where we use that U(zx,y, \) is trace-less. Thus, the proof of is complete. O]

It is evident from its definition ((1.1.3|) that

Uy (1, A) = 90Uy i (2, M), (1.1.20)
where
=1
o= {Ul’ ) : (1.1.21)
o9, KkK=—1

where £ is the defocusing/focusing parameter in ((1.0.1)) and o7, 05 are the Pauli matrices in
(1.1.5). The transition matrix also satisfies an important involution relation leading to the

special structure of the matrix T'(z, y, A), which we isolate in the next lemma.

Lemma 1.1.2. T(z,y, \) has the involution property

UT(wl,wz)(xa Y, 5‘)0 = T(twaQ) (I7 Y, >\) (1.1.22)

Consequently, we can write the monodromy matriz Ty, p, »,(\) as

(1.1.23)

AL, (¢1,92) (A) Sgn("{)bTL,(wl p2) (5‘)
bL7(¢17¢2)(A) aTL,(lz;l,z/;Q)()‘) 7

TL,(¢1,¢2)(>‘) = (

where aL(wwg)(A) = aL,(%,E)()‘) and analogously for bTL,(m,wg)'

Proof. Since the Cauchy problem (1.1.13)) has a unique solution and o2 = I¢2, it suffices to

show that the matrix

T ) (@, 9, A) = 0T, (2,9, N)o (1.1.24)

is a solution of (|1.1.13)).
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It is evident from T{y, y») (%, Y, A)|s=y = Ic2 and o? = I¢2 that the initial condition
holds. Now using that 0, commutes with left- (and right-) multiplication by a constant

matrix and complex conjugation, we find that

Oa Tt ) (@9, N) = 00Tz, 5 (@, 9, Mo

= oUgzon (@, N g ) (@4, Ao

= oUl, (@ NT], L (@9, Mo, (1.1.25)

(1,2

where the penultimate equality follows from application of (|1.1.13)) with (¢, 19) replaced by
(12, 11) and the ultimate equality follows from the definition of the dagger superscript. Since
0% = Ic2, we can use the associativity of matrix multiplication together with the identity

(1.1.20)) to write

f BNYal Ny — T By T BY
O.U(dllﬂbz) (2, )\)T(%,%)(x’ Y Ao = (aU(%ﬂZJz)(x’ A)0> (O-T(ﬁ)l,wz)(x’ Y )\)U>

= U(wlﬂ/)z)(xu )‘)T(tb1,¢2)($7 Y, A), (1126)

which is exactly what we needed to show.

We now show the second assertion concerning the structure of the monodromy matrix.
We only present the details in the case k = 1 and leave the kK = —1 case as an exercise for

the reader. Writing

11 12
T(¢1,1112) (:L“, Y )\) T(w1,w2)(x’ Y, )\)> , (1.1.27)

Twhw)(w’ W)= <T(21;1,¢2) (z,y, ) T(Q@fl,wz)@’ Y, M)

we see from direct computation that

) 0 1\ (T p @y, A) T, u (@9, )
O—T x, ,)\ g = (¢17¢2) rIr (¢1’w2) RS
(i) (74 2) (1 0> (Tﬁ,wz)(“”’y’ A Ty (2,9, A

22 21 3\
_ (T(wl,w)(“” U A Ly ) (@9, A)) . (1.1.28)

~—

12 11
T(wl,wz) (m7 Y, )‘) T(¢1,¢2) (:L“, Y, )‘)
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Now by the involution property (|1.1.22)) and the definition of T(tm, ) WE see that

11 12
(T(T/Jzﬂlfl) (:L‘7 Y, )‘> T(%7E) (l’, Y, /\)) _ TT

21 22 (wl,wz)(x’ Y A)
T(%7a) (IE, ya )‘) T(%’E) ($a y7 A)

22 21
_(Twwg(%yw Twl,w)(fc’y’p), (1.1.29)

12 N 11
T(¢1,¢2)(x7 Y, )‘) T(q/)m/;z)(x’ Y, )\)

Evaluating this identity at (z,y) = (L, —L) and defining
ar, @) A) = T iy Ny 0L @ram)(A) = T7 sy 0y (N, (1.1.30)
we obtain the desired conclusion. O

Remark 1.1.3. Since the transition matrix is an entire function of A, it follows that the
functions ar, (p, p.), aL(wh%), bL, (1 ab2) bL(%,wQ) are entire functions as well. In fact, they are
of exponential type L. Moreover, the unimodularity property for the transition matrix

implies the normalization condition
AL, @) Nl 1 g A = sen(£)bL (2 (MB] (V) =1, AER. (1.1.31)

We close this subsection with an alternative way to see that the trace of the mon-
odromy matrix, which we called F r(A) in (1.1.11)), is conserved in time. By differentiating
both sides of equation (|1.1.13)) with respect to time and performing some algebraic manip-

ulation, one finds that
AT (L2, 9, )) = V(t, 2, VT (2,5, A) — T(t, 2,9, NV (£, 3, \) (1.1.32)

Since V' is 2L-periodic and therefore V (¢, L, \) = V (¢, —L, ), it follows that the monodromy

matrix satisfies the von Neumann equation

OTr(t,\) = [V, L, \), Tr(t, V). (1.1.33)
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Since differentiation commutes with the trace and the trace of a commutator is zero, it
follows that
O tre2(TL(t, A)) = 0. (1.1.34)

1.2 Integrals of Motion

We now use an asymptotic expansion for the generating functional Fi()\) (recall
(1.1.11))) to identify conserved quantities for the system (1.0.1). We start by finding a gauge

transformation that reduces the transition matrix to diagonal form exp Z(z,y, \):
T(z,y,\) = (Iez + W(z,\) exp(Z(z,y, X)) (Iez + W (y, X)) ", (1.2.1)

where W and Z are off-diagonal and diagonal matrices, respectively. We will see that W

and Z have the large real A asymptotic expansions

W, (x T —y)Ao 2 Zn(,y, A
Wz, )~ x(z A Z(fv,y,A)AJ%JFZ%, (1.2.2)
n=1

n=1
where the reader will recall the Pauli matrix o3 from (1.1.5). Here and throughout the

appendix, the asymptotic should be interpreted as follows: for any k € N,

k

o(I\F) = su Wi(x,\) —
= WG =S 250
(1.2.3)
(Z’ — y)>\03 Zn(xaya )‘)
+ su Z(x,y ) — ———— -y ———
N R
as |A| = oo on the real line, where || - || denotes any matrix norm.

Proceeding formally to identify the relevant equations, we substitute ([1.2.1)) into the
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transition matrix differential equation ({1.1.13) and use the Leibnitz rule to obtain that
U(w, NIz + W(x, ) exp(Z(x,y, \)) (e + W (y, 1)~
= 0,W (s, \) exp(Z (2,9, ) (Ies + W (y, 1)) (1.2.4)

+ (](C2 + W(‘T7 )‘))axz(mv Y, )‘) GXp(Z(ﬁ, Y, /\))(I(CQ + W(ya )\))*17

which can be manipulated to yield
Uz, N)(Ic2 + W(z, X)) = 0. W (x, A) + (T2 + W(z, N))0:Z (x,y, A). (1.2.5)

Recalling from (|1.1.3) that U(z, X\) = Up(2)+ AUy, where Uy is off-diagonal and U, is diagonal,
and decomposing both sides of ([1.2.5)) into off-diagonal and diagonal parts, we find that W

and Z satisfy the coupled system of equations

{axw L WO,Z = Uy + \ULW

(1.2.6)
0.2 = UgW + \U;
Substituting the second equation into the first one and using that U; anticommutes with W,

we find that W satisfies the matrix Riccati equation

One can rewrite as an integral equation and use the fixed-point method to show
that has a smooth solution on T; for sufficiently large A depending on the data
(Iollrerpys 1@l oo (ryys L), with the asymptotic expansion (1.2.2). We can then solve for Z
subject to the initial condition Z(x,y, A)|,=, = Oc2 by

ANz —y)

o3 + /gg dz Up(z2)W (2, A). (1.2.8)

In particular, the asymptotic expansion of Z is then determined by the asymptotic expansion
for W. W and Z satisfy (1.2.1)) since both the left-hand side and right-hand side of the

equation (|1.2.1)) are solutions to the same Cauchy problem, which has a unique solution.
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Next, substituting the expansion y ~ W;,(Lx) into equation (|1.2.7)), we find that the

coefficients W, (z) satisfy the recursion relation

Wi(z) = —ioyUp() :i\/ﬁ( (() | —wé@:)),

Wi (2) :¢03< +2Wk W w(z ))

Evidently, the matrices W, (x) are 2L-periodic and are polynomials of the derivatives of

(1.2.9)

Uo(z). By equation ([1.2.7) for W and the continuity method together with the equation
(1.2.8)) for Z, one can show that the asymptotic (1.2.2]) holds. In the next lemma, we record
an important involution property of the W,,. As before with U, we include the subscripts

(11, 19) in the sequel to denote the underlying dependence.

Lemma 1.2.1. For every n € N, it holds that W,, is off-diagonal and

W ) (8) = OWa (i) (2) 0, (1.2.10)

where o is as in (L.1.21). Additionally, Wy, (4, ws)(x) has the form

z\/E< 0 —WIL,(%W)(@), (1.2.11)

Wn, (1h1,392) (x) 0

where the functions wy, (y, v, (x) satisfy the recursion relation

(wlwz( ) wl( )

, - (1.2.12)
Wi 1,y ) () = = 80010 () + K02 (2) D Wk 5y ) (L)W iy ) ()-
k=1

Proof. We prove the lemma by strong induction on n using the recursion formula ({1.2.9).

The base case n = 1 follows from

Ug (1, wz)( ) UUO,(wl,wz)(fU)U (1.2.13)
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and the fact that o anti-commutes with o3.

For the induction step, suppose that for some n € N, the involution relation holds for
all k € No,,_;. Multiplying (1.2.9) by o on the left and right and using that 0® = I¢2, we
find that

O-Wn+1,(¢1,¢2)(x)o-

n—1
= 1003 <5an,(w1,w2) (@) + > Wi br.0) (@) Uo, ) () Wi (0,0) ($)> o

k=1

n—1
= —ioy (Ox(UWn,(wl,wg)(x)U) + Z(UWk,(wl,wz)(w)a)(O’Uo,(wl,wg)(x)ff)(UWnk,(zm,wg)(x)g))
k=1

_ T T t T
R (aanv(%,%bz)(x) - Z Wk7(¢1,¢2)(x)UOa(wlﬂlJQ)(x)Wn—k7(¢17¢2)(x)> ’ (1.2.14)
k=1

where we again use (1.2.13)) and the anti-commutativity of o and o3 to obtain the penultimate
equality and the induction hypothesis to obtain the ultimate equality. Since (io3)" = —io3
and the { operation is a homomorphism of algebras which commutes with differentiation,
is proved. Since Wy (4, s - - - » W, (41 02) are off-diagonal, it it follows from some basic
algebra and the diagonality and off-diagonality of o3 and Uy, respectively, that Wi, 1y )

is off-diagonal. Thus, the proof of the induction step is complete.

Now since W, (4, ,4,) is off-diagonal, it takes the form

0

w12
(LY 12 21 .
W ) 0 2)) ’ W () W, ) € O (TL), (1.2.15)
n,(Y1,%2

Wn,(wlywz) = ( 0

which by direct computation implies that

0 sgn(li)wzl
O'Wn g = m(¥1.42) ) 1.2.16
(102) <sgn(/€)wi,2(w1,wz> ! | |
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Now the involution relation (|1.2.10]) implies the equality
21 12,
( 012 Sgl'l(/f)wn,(dilﬂliﬂ) — WT (niba) = 21? W, (41 452) ) (1.2.17)
Sgn("i)wm(%,w& O e wn,(¢1,w2) 0

Therefore, defining wy, (4, 4z) = Wiy, 4,/ (iV/K), We can write Wi, (s, y,) in the form

ot
Wn,(%,d&) = Z\/E ( 0 wn’(wl’W)(x)) , (1.2.18)

wN,(wl,%)(x) 0

where by (|1.2.9)), the functions wy, (y, y,) () satisfy the recursion relation

W1, (41,92) (CE) =1 ('I)a

(1.2.19)
w”+1:(¢1,¢2)( r) = —idywy, (1/11,1#2) ) + raba(z Zwk wl,wz wn—k7(¢17w2)($)'

Thus, the proof of the lemma is complete. n

By using the equation ((1.2.7)), one can also show that Wy, 4,)(x, A) satisfies the same

involutive property as W,,. So we can write

W(1/117w2)(x7 A) = Z‘\/E<7“U(1ZJ1,1/12)($7 Ao- — wzrwl,zpz)(xv 5‘)0+) ) (1.2.20)

where o are defined in (L.1.5) and where w(y, 4,) has the large real lambda asymptotic

expansion

— W () ,w)
Wiepy o) (T, A) v Y —EHERES (1.2.21)
n=1
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Using equation ((1.2.8)) for Zy, 4,)(z,y, A) and evaluating (z,y) = (L, —L), we find that

ZL»(%JZ)Q)()‘) = Z(il}lﬂbz)(L? —L, )‘)

AL

L
=03+ /LdzU(wl,wg)(Z)W(wl,w2>(Z>/\)

N (_ZS\L /(\)L> +/L o (\/_181(2) \/E%Q(Z)) (iﬁw(wlo,wz)(Z7A) _i\/ﬁwg%’zpz)(Z’A))

[ —IAL+ ik f dzha (2) W, ey (2, A) 0
B 0 INL — ik 1) depn (2)w],, (2, 0)
(1.2.22)

Evaluating both sides of equation (1.2.1)) at (z,y) = (L, —L), we find that the monodromy

matrix 77, () has the representation

T = ([‘CQ + W) (L A>) eXp(ZL,(wl,@(A)) (ICQ + W (=L )‘)>_1
(1.2.23)

We now turn to finding a formula for the generating function Fy,(\) (recall (I.1.11))
in terms of the functions w and w'. We first have an important involution property for the

entries of Z1 ().

Lemma 1.2.2. For every (1, 1) € S(R)? and X € R sufficiently large so that Wy, 73y (5 A)

exists, it holds that

L L ; L
/_Ld:me( D), (1)) = /_Ldazzpl(m)w(whw)(a:,)\):/_Ldm/zl( D), 50 ().
(1.2.24)
In particular, if for every n € N, we define
~ PR L —_ JR—
L (1, 1h2) = /L dws(€)w,, (5 (), Y(1,4) € S(R)?, (1.2.25)
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then

L1, 2) = L (2, 01). (1.2.26)

Proof. Since detcz (17, 77(A)) = 1 by the unimodularity property Lemma and

1

(LCQ + W am (L )\)> — Tes + Wiy gy (L, N) (1.2.27)

by the 2L-periodicity of W (-, A), it follows from the multiplicative property of determinant

that
1= detea (T, 1y, 33y (V) = detes (exp ZL,(%%)()\)). (1.2.28)
Now for any matrix A € C" ® C", Jacobi’s formula implies the trace identity
detcn (e) = exp(tren A). (1.2.29)
Hence,
1= exp(tre2 Zy, g, ) (V) ) = 1 = tres Zp, 5y (N) = 0, (1.2.30)

So by identity ((1.2.22)), we obtain that

L L T I
/_L dripa(z)w iy, 75) (@, A) = /_L dx@bl(x)w(wh%)(:r,)\) = /Ldmbl(as)w(wzm)(:v, A). (1.2.31)

where the ultimate equality follows by definition of the { superscript. Substituting the
asymptotic expansions for wy, 75)(®, A) and w,, 75 (x,A) into the left-hand and
right-hand sides of the preceding equation, respectively, and using the definition for
I,(11,12) and I, (15,11 ), the second assertion follows as well. ]

Lemma 1.2.3. For every (¢1,1;) € S(R)? and X € R sufficiently large as in Lemma

it holds that

L

Fr(n, s \) = QCOS(—)\L + /<;/

—L

dx%(:c)w(%%) (x, )\)) : (1.2.32)
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where Fy, is defined in (1.1.11)).

Proof. Since the trace is invariant under unitary transformation and Wiy 52) 18 2L-periodic,

we have that

ﬁL<w17 %, )\) = tr@z TL7(¢17%) ()\) = trcz exp (ZLv(Tﬁl:%) ()\)) y (1233)

so we have reduced to considering the right-hand side expression.

Using that Z; ,, 7;)() is diagonal and applying formula (1.2.22) and Lemma m,
we find that
. S
—iAL + ik f_L d$¢2($)w(¢1,%) (x, \) 0 )

Z (A = D
Lv(wmﬂz)( ) ( 0 IAL — ik f_LL d$¢2($)w(w17%)<$7 A))
(1.2.34)

it follows that the exponential of Z L,(¢17%)()‘) is the diagonal matrix with the entries given

by the exponential of the entries of Z;(\). Using the elementary trigonometric identity

e” + e = 2cos(z), z €C, (1.2.35)
we then obtain that
L —
trez exp (ZL’(%’%)()\)) = 2cos (—)\L + /{/ drhe(z)w y, 77 (7, )\)) : (1.2.36)
-L
which completes the proof of the lemma. n

Remark 1.2.4. By Lemma [1.1.2] we have the involution relation

tre2 Ty, 5y (N) = tree (UTL ( wl%)(ﬂ)a) =t T (V) = tres (TLV(W@(XD, (1.2.37)
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where we use the cyclicity of trace and 02 = Iz to obtain the penultimate equality. Conse-

quently, we have that
FL(tr, a3 A) = Fr(th, Y13 A). (1.2.38)
Consequently, if we take twice the real part of F(1y, 1)g; \),

Frre(t1, U2} ) = QRG{FL(%,%; A)}, Y (11, 19, A) € C(TL)? x C, (1.2.39)

then we obtain from (|1.2.32)) that

L
Frre(¢1,12; X)) = 2 cos (—)\L + li/ dm/zg(x)w(wh%)(a:, )\))
T ’ (1.2.40)
+ 2cos <—)\L + /-4:/ dzpy (x)w iy, 70 (2, )\)> :
—L
Similarly, if we take twice the imaginary part of Fp (1)1, a; \),
FL,Im(wh%; )‘> = QIm{FL(wL%)}7 (1241)
then we have that
E— L —
Frim (Y1125 \) = —i (2 cos<—)\L + /i/ drho(z)w y, 77 (2, )\)>
- (1.2.42)

L
—2cos (—XL + K/L dx%(x)w(w%a) (x,X))) :

Moreover, we can regard Fp ge(-,-;A) and Fp (-, -3 A), respectively, as restrictions of the
complex functionals of four variables to the subspace 17 = 11,15 = 105. More precisely, for

fixed A € C, define complex-valued functionals on C*(T)* by
FL,RG(¢17 wia 77Z)27 1/11) A) = FL(¢17 ¢§7 )\) + FL(¢2) ¢I7X)7

_ _ - _ (1.2.43)
FL,IIH(¢17 wiv ¢27¢I; A) = _1<FL(¢17 ¢Qa )‘) - FL(¢2,¢I§ A))7
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so that
Frre(¥1, %2, ) = Frre(W1, o, 12,115 \)
Fr (01, %35 A) = Frim(11, g, 12,015 A).

Consequently, F7, ge(A) and F7 1, (A) extend with an abuse of notation to well-defined smooth

(1.2.44)

functionals on the space C*°(T; V) (recall the space of matrices V in (4.3.12))) given by

{FL,Re(’Y; )\) = FL,Re(¢l>%? >\)7

1 — _
Do ’ v =5 d Y ) I 9 1245
FL,Im(’Y; )\) = FL,Im(¢17 ¢27 )\) v 20 lag<¢1 ¢2 ¢2 (bl) ( )

which belong to the admissible algebra As ), provided that F, e As c, a result we postpone

until the next subsection. By the same reasoning, the functionals

() = & (L. 2) + Lol )

= %/_LL dx (@(m)wm(m@) (z) + ¢1($)wn,(¢2,a) ($)>> Vy = %odiag(@,@, ¢2,a)>

(1.2.46)
where the subscript b is to denote the dependence on two inputs, extend to smooth functionals
on C*°(Ty; V) which belong to As . This latter admissibility can be verified using the results
of Section [.5.2] Note that by Lemma [[.2.2] the functionals I, are real-valued.

1.3 Poisson Commutativity

In this last subsection of the appendix, we show that the functionals [, defined in
are in involution with respect to the Poisson bracket {-,-};,, defined in Proposi-
tion We obtain this result by first showing that the generating functionals Fy,(\), F1, (1),
for A, i € C, are in involution with respect to the Poisson bracket {-,-} > .. The reader will

recall that the F;, was defined in (T.1.11)) above.
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Given two complex-valued functionals F, G on C°°(Ty)? satisfying the conditions of

Remark [4.3.6, we recall their Poisson bracket is defined by

L

; dr(V1F (11, 92) VoG (1, 102) — VoI (¥1,192) ViG (Y1, ¢2)) (),
(1.3.1)

{F, G}L2,<c(¢17¢2) - _i/

where V; and V3 denote the variational derivatives defined in (4.3.1). Now let A and B be

two complex-matrix-valued functionals on C°°(Ty)2. We introduce the notation

L
{A§B}L2,C(¢l) ¢2) = _l/ d‘T(V1A<¢1a 77Z)2) ® VQB(¢17 ¢2) - VQA(@/JM 77Z}2) ® VlB(¢17 ¢2))(I)7
-L
(1.3.2)
where our identification of the tensor product is the 4 x 4 matrix
(A®B)]k,mn = Aijkna j,m,k,n € {1,2}, (133)
so that
{AQ?B}LQ,(Cjk’mn = {Ajm7 Bkn}L27(C- (134)

Remark 1.3.1. An observation important for our identities in the sequel is that the notation

{%} admits an obvious extension to general n X n matrices.

The reader may check that the above tensor Poisson bracket notation has the following

properties:

Skew-symmetry

{A®B},2c = —P{B%A} 2P, (1.3.5)

where P is the permutation matrix in C>®@C? defined by P(£®n) = n®¢, for £,n € C2
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Leibnitz rule
{A9BC} 2 c = {A9B}2 c(le2 ® O) + (Ie2 @ B){AYC} e c, (1.3.6)

Jacobi identity

0= {ABYC}2c}r2c+ PisPos{C{AYB} 2 ¢} 12 c PosPrs : )
1.3.7
+ PigPio{ BS{CSA} 2 c } 12, c PraPis,
where P; is the permutation matrix in (C?)®® which swaps the " and j element of

a tensor & ® & ® &3, for i, j € {1,2,3}.

Remark 1.3.2. The reader can also check that P is idempotent (i.e. P? = I¢2) and
P(A® B) = (B® A)P, for any 2 x 2 matrices A, B.

With the above notation in hand, we proceed to compute Poisson brackets. Let us
consider Uy, 4,)(2, A) from (|1.1.3)) as a functional of (11,,), for fixed (z, ). For the reader’s

benefit, we recall that

A A
U(¢1,1/)2)(x7 )\) = 2—2_03 + Uo(iL‘) = 2—2,0'3 + \/E(’QDQ(.CE)U.;. + Qﬂl(ﬂf)d_), (138)
where Uy(x) is defined in ([1.1.3)). The first objective is to prove the following lemma which

gives the so-called fundamental Poisson brackets.

Lemma 1.3.3 (Fundamental Poisson brackets). For any (\, 1) € C?, we have the distribu-

tional (on T2 ) identity
{U(Ia A)?U(y) M)}LQ,(C = _[T()‘ - M)? U(l’, /\) ® I(C2 + I(C2 ® U(ya M)]é(x - y>, (139)

where (A — p) = —ﬁpﬁ

2This matrix r is called an r-matriz in the integrable systems literature and is a central object in the
study of such systems.
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Proof. We recall the (classical) canonical commutation relations

{W1(2), 1)} ¢ = {2(@), 2(y)} 20 = 0, {¥1(2), ¥2(y) } o ¢ = —i0(x — ), (1.3.10)

which should be interpreted in the sense of tempered distributions on T%. It then follows

from that
(VlU(CU,)\))(Q/Jl,wg) = \/EO',&E, (VQU(.T, )\))(’(/11,"(#2) = \/EO'Jréw, (1311)

where ¢, is the Dirac mass centered at the point z. Hence,

Uz, )SU(y, p) fr2,c (1, 12)

= —1 Ldz((le(-T s M) (W1, 2) (VU (y, 1)) (b1, ¥2) = (VU (@, A)) (€1, 1h2) (ViU (y, 1)) (41, 402)) (2)
K/Ldzé z—2)0(z—y)lo-®oL —0, ®0_)

= —ikd(x —y)(0o- oy —0, ®o_).

One can check from the commutation relations for the Pauli matrices defined in (|1.1.5]) that

1 1
o_® Oy — 04 Ro_ = §[P, 03 & I(CQ] = —§[P, [(C2 & 0'3]. (1312)
Therefore,
_ TRA TR
iklo_.®o, —0, ®0o_) = )\_H(a_®0+—0+®0_)— )\_H(U_®a+—0+®a_)
K A 1

= — —|P. 1 —|P, I . 1.3.13
(R fal + AP s o) (1313)

Now recalling the definition of U(z,A) in (1.3.8) and that P commutes with the tensor

Uo(z) @ Ic2 + Ic2 @ U () by the symmetry of the latter, we obtain the desired conclusion. [
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The importance of the fundamental Poisson brackets is that they yield a formula for
the Poisson brackets between the entries of the transition matrices T'(z,y, A) and T'(z,y, ),

regarded as matrix-valued functionals, as the next lemma shows.

Lemma 1.3.4. For fized —L <y <z < L and (\, u) € C?, regard T(x,y,\) as the C>® C3-
matriz valued functional C>®(T1)? defined by (¥1,12) = Ty ) (T, 4, A) and similarly for
T(z,y,p). Then it holds that

{T(:L’, Y )\)@T(QZ, Y, N)}LQ,(C = _[T()‘ - M)? T<x7 Y )‘) ® T(QZ, Y, N)] (1314>

Proof. We use the differential equations and for the transition matrix in
order to prove the lemma. Since the (a,b) entry of the matrix-valued functional T'(x,y, \)
depends on (11,1) through the entries of the matrix-valued functional U(z, \) it follows
from the definition of the Poisson bracket {-,-} r2c reviewed in (1.3.1) and the chain rule

that
{0,y 0, T, y, 1) } o o (01, 40)
:/yx/ywdde,(VUjk()\)T“b(x’y,/\)(iﬂl’@DQ))(Z){UJIC(Z’)\>’Uﬂm(zl’ﬂ)}L27C(¢h¢2) (13.15)
X (W gem T (@, y, 1) (1, 402))(2),

where Vywo)T®(z,y, A) and Ve T (x,y, 1) are the variational derivatives uniquely

defined by (a priori in the sense of distributions)
dTab(x7 Y, )\) [wb ¢2] (6Ujk()\)) = / dZ<VUjk()\)Tab(x7 Y, )\> (wla 1/}2)>(Z)6U]k<27 )\)7
-L

AT, y, p)[th1, 2] (U™ () = /L dz(V gom (T (w, y, 12) (W1, 902)) (2) 05U (2, ).
(1.3.16)
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In (|1.3.15)), we use the convention of Einstein summation, so the summation over repeated
indices is implicit.

We now seck a formula for Vu) T (z,y, ) and Ve, T*(x,y, ). To find such
a formula, we take the Gateaux derivative of both sides of (1.1.13]) at the point U(-, A) in
the direction 6U(+, ) to obtain the equation

{5 2dT (z,y, \)[U(, )](6U (-, A)) = Uz, N)dT (z, y, MU (-, M](0U(:, X)) + 0U (2, )T (2, y, A),

dT(x,y, )[U(-, M](OU (-, A) o=y = Lc2.
(1.3.17)

The reader can check by direct computation that the solution to this equation is given by
y
Examining identity ((1.3.18]) entry-wise, we have that

dT(z,y, VU, V(U (-, \)) = / dzT (2,5, \)OU* (2, )T (z,y, ),
! (1.3.19)
AT,y U NIEUCN) = [T o )60 ()T ),

y
which upon comparison with (|1.3.16|) yields the identity

nghw)(m,y, )\)T(Ii’hw)(z,y, A), —-L<y<z<z<lL 7

0, otherwise

(VUJk Ta (x7y7>‘)(¢17¢2))(z) = {

T(ifl 1/)2)(;1:, y,u)T(’ZZiw)(z’, y,p), —L<y<zZ<ax<lL
0, otherwise

(VU/fm(,\)TCd@ayaﬂ)(¢1,¢2))(z) {
(1.3.20)

Substituting the identity ([1.3.20]) into (|1.3.15)), we find that
{T(’I’ Y, /\)‘?T(l’, Y, M)}LQ,C(¢17 ¢2)

= / / dZdZ/(T(T/JhTZ&)(’I’Zv)‘) ®T(#’lﬂ/&)(x?z:,::u)){(](zv)‘)@U(z/7ﬂ)}L2,C(wla¢2) (1321)
Y Y

X (T(lﬂl,lbz)(z: Y, )\)?T(Tl}th)(Z/’ Y, M))
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Using the formula given by Lemma [1.3.3] we obtain that the right-hand equals

B / dZ(T(?/Jlﬂh)(x? 2y )‘) ® T(wl,%)(‘r? 2y :U’)) [T()‘ - M)v U('Zv >‘) ® Ic2 + Ic2 ® U('Zv :LL)]
Yy

X (T ) (2,95 A) @ Ty ) (2,9, 1))
(1.3.22)

We now claim that the integrand is the partial derivative with respect to z of

(T@/’lﬂ/&)(x’ 2 )‘) ® T(¢1,¢2) ('737 Z, M))T()‘ - /L) (T(¢1,¢2)(Za Y, )‘) ® T(¢1,¢2)(Za Y, U))? (1'3'23>

which then completes the proof. Indeed, the reader may verify this is the case by direct
computation using the Leibnitz rule and the equations (|1.1.13]) and (|1.1.14]) for the transition
matrix. So upon application of the fundamental theorem of calculus and using the initial

condition T'(z, y, A)|z=y = Ic2, we obtain the desired conclusion. ]

We next check that the functional Fy(\) defined in (T.1.11)), is admissible (i.e. it
belongs to Ag ¢ defined in (4.3.32))). This admissibility will then imply that FL ge(A) and

Frim(A) defined in (1.2.39) and (|1.2.41)), respectively, belong to Asy defined in (4.3.19).

First, observe that by taking the direction
SU(2,\) = VE(6¢2(2)oy + 0 (2)0-) (1.3.24)
in (|1.3.18]), we find that

(VlT(xv Y, )‘) (¢17 @2))(2) = \/ET(wsz)(l'? Z, )\>0-—T(¢1,1/12)(Z7 Y, )‘)7

(VQT(ZE, Y, )‘) (%01, @2))(2) = \/ET(%#)Q)(I'? Z, )‘)U+T(¢1,¢2)(Za Y, )‘)7
for z € [y, x], and zero for z € (=L, L) \ (y,x). Letting + — L* and y — L~, we find that

(VlTL(/\) (wla wQ))(Z) - \/ET(whwz)(L’ 2y )\)O'_T(wth)(Z, _L7 /\)7

(VQTL(/\) (¢1, ¢2))(z) = \/ET(w1,¢2)<L’ 2 >‘)0+T(¢1,¢2)(z7 —L, /\)

(1.3.25)

(1.3.26)
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Note that VT, (X)(1,v2), V5TL(A)(¢1,19) are smooth in (—L, L) but discontinuous at
the boundary, and consequently do no belong to C*(Ty) (i.e. TL(A) is not an admissible
functional). However, if we take the 2 x 2 matrix trace of both sides of the preceding identities
and use that the variational derivative commutes with the trace together with the cyclicity
of trace, we obtain that the resulting expressions extend smoothly periodically to the entire

real line. We summarize the preceding discussion with the following lemma.

Lemma 1.3.5. For any A € C, [} € Asc. Consequently, Frre(N), FrLim(A) € Asy.

We now show that traces Ep()\), Fi(u), for fixed u, A € C, are in involution with
respect to the Poisson bracket {-, -} r2c- They key ingredient of this result is the identity of

Lemma [1.3.4] for the Poisson brackets between the entries of the transition matrices.

Lemma 1.3.6. For any A\, u € C, we have that
{FL(\), Fr(p)} e =0 (1.3.27)

Proof. Applying Lemma [1.3.4] we have that

[’I"(/\ - :u)’ T(Tlil,wz)(xa Y, /\) ® T(Tplﬂ/&) (I, Y, M)}
L (1.3.28)
= / dz(ViT'(2,y,\) @ VaT'(2,y, ) — VoI (2,9, A) @ V1T (2, y, n)) (b1, $2)(2).
-L
Taking the 4 x 4 matrix trace trezge2 of both sides and using that the trace of a commutator

is zero together with the algebraic identity
tr(c2®(cZ (A ® B) = trCQ (A) tI'(CQ (B), (1329)
for any 2 x 2 matrices A, B, we obtain that

0—_ /L dz (Vi (tre2 (T (2, y, M) Va tre2 (T (2, y, 1)) (61, 62) (2) (1.3.30)

—(Vatrea(T(z,y,\) Vi tre2 (T(z, y, 1)) (1, 62)(2)) ,
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where we also use that the trace commutes with the variational derivative. Now using
the continuity in (z,y) of the integrand, we can let + — L~ and y — —L" and use that
tre2 (T (N)) = FL(A) by definition (T.1.11) and tre2 (7% (1)) = Fi(i) to obtain the desired

conclusion. O

Now we show that the functionals I, defined in ([1.2.46) are mutually involutive
with respect to the Poisson structure on C*°(Ty;V). We begin by defining the generating

functional

pr(d1, d2; \) = arccos(%FL(qﬁl,@; A)), Y(p1, pg, N) € C°(T)? x C, (1.3.31)

where we take the principal branch of the function arccos. We first want to show that

{ﬁL(A)aﬁL(M)}Lac(%,@) =0, V(¢1, ¢2) € C=(Ty)?, (1.3.32)
for A\, u € R with sufficiently large modulus, which requires us to compute the variational

derivatives of pr(\), pr(p).

Recall from ([1.2.32)) that

L
%FL(gbl,%; A) = cos (—/\L + /{/ dx%(x)w(d)h@)(:p, )\)) (1.3.33)
L

We want to show that we can choose \ so that the cos in the right-hand side of the preceding
equation is at positive distance from +1 for all (¢1, ¢2) in a closed ball of C*(T}). To this

end, we know from Appendix that given (¢1, ¢s) € C°°(T)?, we can choose

A= Apullzrryy, 11l oo cryys |@2llLrersys @2l oo (ry), L) € R
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with sufficiently large modulus so that there exists w ¢17£)()\) in (|1.2.20]) with the asymptotic
expansion (|1.2.21)). Consequently, for any k£ € N, we have that

k
Hw(m@)()‘)HLw(m) < w(qﬁl@)(,\) — Z # ) ;n
=t L(T;) n=l
k - Hwk,(dn,%)HLOO(TL)
—of|al)+ 3 Ml .

n=1
where the implicit constant in o(|A|¥) depends only the data ||02 7 ¢;|| 1o (r,) for n € Nejiy

and j € {1,2}. By the analysis of Section [4.5.1]

k
1wy 0 3 ooy Sk D105 d1ll oo ry) + 1052l Lo (ry))- (1.3.35)

n=0

Hence,

L
[ a0 < 220l oy W=
1

> (10261l pory) + 1102 6ol ooz, ) - (1.3.36)

n=0

2L

<
~A

Thus, given € > 0, we can choose A € R with sufficiently large modulus depending the data
(Ev L, Ha:?(ijL"o(TL))a V(n,j) € {07 1} X {17 2}7

so that
< €. (1.3.37)

L
‘/_L da:%(x)w(m@)(x, A)

Also choosing A so that mingez{|\L — k7|} > 2¢, we conclude that given R > 0,

min
kez

L
km — AL + /-41/ dagy(x)wy, 55/(2, )\)’} >0>0 (1.3.38)
—L
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for all ¢1, o € C(Ty) with [|0261 | re(ry)s |00 ¢2| 1o(r,) < R, for n € {0,1}. For such

choice of A, we have that

L
pr(dr, 2 ) = —AL+/~6/ drgo(2)wiy, (2, ), ¢, 92 € CF(Ty), (1.3.39)

for all ¢, € C*°(Ty) with max{||0%¢1||re(r,), @2l } < R, n € {0,1}. Moreover,
for such ¢y, ¢,, we can use the chain rule without concern over the singularity of arccos(z)

at z = £1 to compute the variational derivatives py, finding

—-1/2

(V1pL (V) (¢1, 62) = % 1- <w> (V1F(N)(¢1, 62),

e (1.3.40)

(Vap())(60,32) = 5 1—<M> (VaF())(n, ).

2

where by Lemmall.3.5| the variational derivatives of F(\) are elements of C°(C>(Ty)2; C>°(Ty)).
Recalling the definition (4.3.33) for the Poisson bracket {-, -} . ¢, we then find that for ap-
propriate A\, yu € R,

)}z c(91,62)

A), Pr(
N ) o N\ —1/2
( B FL ¢17¢27 )) ) (1 <FL(¢17¢2;N)> )
2

((V1FL ) (01, 82) (Vo (1)) (61, 62) = (VaFL(N) (61, 62) (V1 FL (1)) (@1, 6) ) (2)
B . 2 -1/2 5 . 92 —-1/2
_ %1 (1 B <FL(¢15¢2;/\)> ) (1 B (FL(Gblé%;M)) ) {ﬁL(A>7ﬁL(“)}L27C(¢1’%)
=0,

where the ultimate equality follows from an application of Lemma [1.3.6]
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We now use ((1.3.32) to prove the mutual involution of the functionals Ij,,,.

Proposition 1.3.7. For any n,m € N, it holds that
{Ib,n7 [bvm}Lz,V =0 on COO(TL, V) (1341)

Proof. Fix n,m € N, and let v = %odiag(gbl,%, b2, 01) € C=(T; V). Let us first introduce
some notation that will simplify the computations in the sequel. Define and

(1 A) = pr(or, do; A) + o, d15A),  V(1,A) € C(T1; V) x C, (1.3.42)

where we recall that py, is defined in (1.3.31). Note that it is tautological that p; is the
restriction of a complex-valued functional on C*°(T)?*, which by an abuse of notation we

write as
pr(@1, @3, P2, 615 A) = Ppr(o1, ¢3; A) + Dr@2, ¢15 M), b1, b1, P2, 3 € C(Tr). (1.3.43)

Now for v € C(Tp;V), we have by the variational derivative formulation of the

Poisson bracket {pr(A), pr(i)} 2 (recall (4.3.28)) and ([1.3.43) that

{p(A); pr(p)} p2.(7)

/dz (Vipr(N)(Vapr(p) — (Vapr(N)(Vipr () (61, 62, d2, é1)(2)

L

~

h

dz((Vapr (V) (Vipr (i) = (Vipr(N)(Vapr (1)) (61, 62, 62, 61)(2)

%S

dz((Vipr (A (Vapr(p) — (Vapr(A\)(Vipr (i) (1, d2)(2)

L

» dz((V1p(N)(Vapr(p) — (Vapr(A)(Vipn(w)) (¢2, 61)(2). (1.3.44)

\
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Recalling Remark for the variational derivative formulation of the Poisson bracket

{,-} 2.0 We can rewrite the right-hand side of the preceding equality to obtain that

{pL(N), pL(i)} 2 (1) = {BLN), DL (1)} 12,0 (01, 82) + {DL(N), PL(10) } 2 o (D2, 01).  (1.3.45)

Given R > 0, for all v € C®(T; V) with [|02v| re(r,) < R, for n € {0,1}, we can choose
A, o € R arbitrarily large to apply (|1.3.32), yielding that both terms in the right-hand side

of the preceding equality are zero. Hence,

{p(A), pL()}p2 () = 0. (1.3.46)

Now by the formula ([1.3.39) for pr(A) and the large real A asymptotic expansion

(1.2.21) for w,, 7;)(A), we see that

Pr(d1, @23 A) ~ —AL + K Zf L) g Zl’“ ¢1’¢2, (1.3.47)

Ak
k=1

where the ultimate equality follows from the definition (T.2.25) for I,. Taking the variational

derivatives of both sides of the preceding identity, we find that

VipL(¢r, da; A) ~ HZ M, Viapr(f1, ¢2; A) ~ RZ Vé[’“(fl’ ¢2). (1.3.48)
k=1

p Nk — A
Substituting the asymptotic expansions (|1.3.48)) into (|1.3.44]), we see that
0 ={pc(A),pr(1)} 12y
. 2 > - _ 7 - 7 -
~ iy / 4z (V1161 52) Val (61, 5) — Vali(o1, 32 Vi L (01.) ) (2

kjl

— K’ ZM / dZ Vlfk(¢2,¢1) m@—szsz@%fj(@@) (2)

k,j=1

N g

B Z A Log, I} 2 (7)

o : (1.3.49)

k,j=1
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where the ultimate equality follows from Remark and the definition (1.2.46]) of the
functionals [,,. By the uniqueness of coefficients of asymptotic expansions, we conclude

that {Iyx, lp;};2,, = 0 on C*(T; V), completing the proof of the proposition. O
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Appendix 2

Locally Convex Spaces

2.1 Calculus on Locally Convex Spaces

The following material is intended as a crash course on calculus in the setting of
locally convex topological vector spaces. Since we are in general not dealing with Banach
spaces or Banach manifolds, the usual notion of the Fréchet derivative is not suitable for
our purposes. Indeed, the prototypical example we ask the reader to keep in mind is the

Schwartz space S(R).

One main issue posed by this more general setting is that there are several inequivalent
notions of the derivative for maps between locally convex spaces. Here, we use the definition
which is typically called the Gateaux derivative, which has the property that C! maps are
continuous/| and hence enables us to regard the derivative of a smooth real-valued functional

f at a point x € X, which we denote by df[z], as an element of the topological dual X*.

The following material can be found in lecture notes by Milnor [65]. Many of the
definitions we record are standard, but we include them for completeness. The proofs are

omitted, but can be found in [38].

IFor a notion of smoothness which allows for maps to be smooth but not continuous, we refer the reader
to the monograph [48§].
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Definition 2.1.1 (Topological vector space). A real or complex topological vector space (tvs)
X is a vector space over a field K € {R,C} with a topology 7 which is Hausdorff and such

that the operations of addition
+: X xX =X, (x,y) —z+y (2.1.1)

and scalar multiplication

S Kx X — X, (A, z) = \x (2.1.2)
are continuous (the domains are equipped with the product topology).

Definition 2.1.2 (Locally convex space). A tvs X is said to be locally convez if every

neighborhood U > 0 contains a neighborhood U’ 5 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type

result.

Proposition 2.1.3 (Hahn-Banach). If X is locally convez, then given two distinct vectors

x,y € X, there exists a continuous K-linear map € : X — K with {(x) # {(y).

Definition 2.1.4 (Gateaux derivative). Let X and Y be locally convex R-tvs, let X, C X
and Yy C Y be open sets, and let f: Xqg — Y be a continuous map. Given a point x € X
and a direction v € X, we define the directional derivative or Gateaux derivative of f at x

in the direction v to be the vector

, (2.1.3)

if this limit exists. We call the map f. : X — Y the derivative of f at the point x. We use

the notation df [z](v) == f'(x;v).
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Definition 2.1.5 (C! Gateaux map). Let Xy, Yy, and f be as above. The map f : Xy — Y}

is C1if f'(x;v) exists for all z € X, v € X and is continuous as a map
[ Xox X =Y, (2.1.4)
where the domain is equipped with the product topology.

The Gateaux derivative f. of a map f between two locally convex spaces may fail
to be linear in the direction v. However, C' smoothness is enough to ensure linearity in
the direction variable. We always work with C* functionals (see Definition [2.1.7)), so the

requisite C'! smoothness is not problematic for our purposes.
Proposition 2.1.6 (Linearity of derivative). If f is C1, then for all xy fized, the map
X =Y, v (o 0) (2.1.5)

18 linear.

Having defined the derivative and C! regularity, we can inductively define higher-

order derivatives and regularity.

Definition 2.1.7 (Higher derivatives). The map f : Xy — Y is C? Gateaur if f is a C!

Gateaux map and for each v; € X fixed, the map
Xo =Y, z = f(z;0) (2.1.6)

is C'! with Gateaux derivative

lim f(x + tvg;vy) — f(x;09)
t—0 t

(2.1.7)

338



depending continuously on (z;vy,v9) € Xy X X x X equipped with the product topology. If
this limit exists, we call it the second Gateaux derivative of f at x in the directions vy, vy
and denote it by f”(x;v1,ve). We inductively define C” maps Xy — Yp. If a map is C" for

every r € N, then we say that f is a C* map or alternatively, smooth map.

Proposition 2.1.8 (Symmetry and r-linearity of f;gg)) If for r € N, the map f is C", then
for each fized xy € Xy, the map
Xx---xX =Y, (U1, ... 00) = D (zos 01, ..., 0p) (2.1.8)

T

1s r-linear and symmetric, i.e. for any permutation ™ € S,

f(’“)(mo; Vr(1)s - - > Un(r)) = £ (X301, -+, V). (2.1.9)

Proposition 2.1.9 (Composition). If f : Xg — Yy and g : Yo — Zy are C" maps, then
gof : Xog — Zy is C" and the derivative of (g o f) at the point x € Xq is the map
g}(w)ofg’c:X—>Z.

2.2 Smooth Locally Convex Manifolds

In this subsection, we use the calculus reviewed in the preceding subsection to intro-
duce the basics of smooth manifolds modeled on locally convex topological vector spaces,
which is needed for the construction of the Lie-Poisson manifold structure in Section B.5
Much of the theory parallels the finite-dimensional setting, where the model space R? is now
replaced by an arbitrary, possibly infinite-dimensional locally convex tvs. Consequently,
many of the definitions below will be familiar to the reader with a minimal knowledge of
differential topology, but we record them for completeness. As in the last subsection, we

closely follow [65] in our presentation.
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Definition 2.2.1 (Smooth manifold). A smooth manifold modeled on a locally convex space
V' consists of a regular, Hausdorff topological space M together with a collection of homeo-

morphisms ¢, : V, — M, satisfying the following properties:

(M1) V,, C V is open.
(M2) M, C M is open and |, M, = M.

(M3) go/gl 0 Yot (M, N Mg) — wgl(Ma N Mp) is a smooth map between open subsets of
V. We refer to the maps ¢, as local coordinate systems on M and the maps ¢_! as

coordinate charts.

Remark 2.2.2. We will sometimes say that the manifold M is a Fréchet manifold if the

locally convex model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we

can define the notion of a smooth map between manifolds.

Definition 2.2.3 (Smooth map). If M; and M, are smooth manifolds modeled on locally
convex spaces V; and V5, respectively, then a continuous function f : My — Ms is smooth if

the composition
P50 f 0 Par o (Mo N [ (Mag)) = Vo (2.2.1)

is smooth whenever f(M;,) N Mg # (0. We say that f is a diffeomorphism if it is bijective

and both f and f~! are smooth.

Definition 2.2.4 (Submanifold). A subset N of a smooth locally convex manifold M is a

submanifold if for each m € N, there exists a chart (M,, ¢, ') about the point m, such that
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o (M, N N) =} (M,) N W, where W is a closed subspace of the space V on which M is

modeled.

Remark 2.2.5. The submanifold N is smooth locally convex manifold modeled on W. In-

deed, the reader may check that the maps ¢, |v,aw : VaNW — M,NN are homeomorphisms

which satisfy properties [((M1)|- [(M3)]

In this work, we use the kinematic definition of tangent vectors (i.e. equivalence
classes of smooth curves), as opposed to the operational definition (i.e. derivations). While
these two definitions are equivalent in the finite-dimensional setting, they are in general

inequivalent in the infinite-dimensional setting.

Definition 2.2.6 (Tangent space). Let ¢, : V, — M, be a local coordinate system on
M with oy € M,. Let p1,po : I — M be smooth maps on an open interval I C R with
pi(0) = x¢ for i = 1,2. We say that p; ~ ps if and only if

d

d
£(¢;1 o p1)li=0 = %(9021 © p2) li=o- (2.2.2)

The reader may verify that ~ defines an equivalence relation on smooth curves p: I — M
with p(0) = . The set of all such equivalence classes is called the tangent space at x,

denoted by T,,M.

Definition 2.2.7 (Tangent bundle). We define the tangent bundle T'M as a set by

]_[ T, M.

zeM

We define a smooth locally convex structure on 7'M modeled on V x V' by the local coordinate
systems

Yo : Vax V= TM, CTM, (2.2.3)
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where 1, (u,v) is defined to be the equivalence class containing the smooth curve t —
©Yo(u + tv) through the point ¢,(u) € M. The reader may verify that 1, maps {u} x V

isomorphically onto the tangent space T, () M.

Definition 2.2.8 (Derivative). Let M; and My be smooth locally convex manifolds. A

smooth map f : M; — M, induces a continuous map
fo: ToMy = TpyMa,  [pa] = [f opi (2.2.4)
called the derivative of f at x. Together, the maps f. induce a smooth map
fo : TMy — TMs,, (z,v) = (f(2), fL(v)) (2.2.5)
which maps T, M; linearly into T’(,) M.

Definition 2.2.9 (Smooth vector field). A smooth vector field on M is a smooth map
X : M — TM such that X(z) € T, M. We denote the vector space of smooth vector fields
on M by X(M).
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Appendix 3

Distribution-Valued Operators

We review and develop some properties of distribution-valued operators (DVOs),
that is, elements of £(S(R¥), S’(R¥)), which are used extensively in this work. Most of these
properties are a special case of a more general theory involving topological tensor products

of locally convex spaces for which we refer the reader to [86, [41], 97] for further reading.

3.1 Adjoint

In this section, we record some properties of the adjoint of a DVO as well as some
properties of the map taking a DVO to its adjoint. The proofs follow more or less readily

from the definition and standard arguments, and are left to the reader.

Lemma 3.1.1 (Adjoint map). Let k € N, and let A® € L(S(R¥),S'(R¥)). Then there is a
unique map (A®)* € L(S(R*), S'(R¥)) such that

<(A<k>)*g<’f),ﬁ> A(k>f<k>,ﬁ> vk g™ e S(RF). (3.1.1)

S/(RF)—S(RF) - < S'(RF)—S(RK)’

Furthermore, the adjoint map
x: L(S(RF), S'(RY)) — L(S(RF),S'(RF)),  A®) — (A®) (3.1.2)

18 a continuous involution.
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Additionally, for B®) € L(S'(RF), S'(R¥)), there exists a unique linear map in (B®)* €
L(S(RF), S(R¥)) such that

- <B("‘)u(k), g® V(g™ u®)) € S(RF) x S'(RY),

(3.1.3)

(u®, (BW)7g®) ) ,
S'(RF)—S(RF) S'(RF)—S(R¥)

Moreover, the adjoint map
1 L(S'(RF), S'(R¥)) — L(S(RY), S(R*)) (3.1.4)
1S a continuous involution.

The next lemma is useful for computing the adjoint of the composition of maps. We

omit the proof, which is standard.
Lemma 3.1.2. Let A® ¢ £L(S(RF),S'(R*)) and B®) € L(S'(R*),S'(R¥)). Then
(BR AR = (AW (BW)*, (3.1.5)

Definition 3.1.3 (Self- and skew-adjoint). Given k € N, we say that an operator A% €
L(S(RF),S'(R¥)) is self-adjoint if (A®))* = AR Similarly, we say that A®) € L(S(R¥), S'(R¥))
is skew-adjoint if (A®))* = —A®),

Remark 3.1.4. Note that if A® € L£(S(R*),S'(R*)) is an operator mapping S(R*) —
L%*(R¥), then our definition of self-adjoint does not coincide with the usual Hilbert space
definition for densely defined operators, but instead with the definition of a symmetric op-

erator.

344



3.2 Trace and Partial Trace

In this section, we generalize the trace of an operator on a separable Hilbert space
to the DVO setting. First, we record some remarks to motivate our definition. Since the
operator |f) (g|, where f,g € L*(RY), has trace equal to (f|g), we might try to generalize
the notion of trace to pure tensors of the form f ® u, where u € S'(RY) and f € S(RY), by
defining

Try ~(f @u) = (u, fls@mv)-s@v) (3.2.1)
and hope to extend this definition to S(RY)®S'(RY) through linearity, continuity, and

density. However, the evaluation map
S(RY) x S'(RY) = C, (f,u) = (u, fls@n)-s@ny, (3:2.2)

is not continuous, but only separately continuous, preventing us from appealing to the uni-
versal property of the tensor product to guarantee the existence of a unique generalized
trace

N SRMRS'(RY) — C (3.2.3)

.....

satisfying (3.2.1)).

Nonetheless, by viewing the trace as a bilinear map and using the canonical isomor-
phisms
LSRY), S'(RY)) =2 S'(R*™) and L(S'(RY),S(RY)) = S(R*Y), (3.2.4)
we can uniquely define the generalized trace of the right-composition of an operator in
L(S(RY),S'(RY)) with an operator in L(S'(RY), S(RY)) through the pairing of their Schwartz

kernels. More precisely,

Ty, v (AN YNy = (A (v 5, gony g meny (3.2.5)
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is, with an abuse of notation, the distributional pairing of the Schwartz kernel of A™), which
belongs to S’(R?V), with the Schwartz kernel of the transpose of () , which belongs to
S(R?N). Equivalently, for each fixed AN) € £(S(RY), S'(RY)), the Schwartz kernel theorem

implies the existence of a unique linear map £(S'(RY), S(RY)) — C, such that

Tri..nv (A™M(f ® 9)) = (AN f, 9) s @) —s@m) (3.2.6)
for all f,g € S(RY).

Definition 3.2.1 (Generalized trace). We define

-----

(3.2.7)

-----

Remark 3.2.2. The reader can check that if AY) € £(S(RY), S'(RY)) and yV) € £(S'(RY), S(RY))

(N)then our definition of the generalized

are such that AN ~(W) ig a trace-class operator p
trace of AN~ (V) coincides with the usual definition of the trace of p™) as an operator on

the Hilbert space L*(RY).

We now establish some properties of the generalized trace which are reminiscent of

properties of the usual trace encountered in functional analysis.

Proposition 3.2.3 (Properties of generalized trace). Let AN) € L(S(RY), S (RY)), and let
AN e L(S'(RN),S(RN)). The following properties hold:

(1) Tri_ n is separately continuous.

L(y(N)t is the operator f — Jan dziy (@l zn) f2hy).
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(ii) We have the following identity:

Tri v (AM)* ) = Try v (AN (yW)#). (3.2.8)

..........

.....

N (A™ (M MY, (3.2.9)

..........

Proof. Assertion|(i)|follows from the separate continuity of the distributional pairing (-, -) s/@2v)—s@2n).-

To prove assertion it suffices by density of finite linear combinations of pure
tensors together with bilinearity and separate continuity of the generalized trace to consider
the case where /") = f(N) @ ¢™) for fN) ¢V) ¢ S(RY). By definition of the generalized

trace,

Trl ~~~~~ N((‘A(N))*(f(N) ® g(N))) = <(A(N)>*f(N)7 g(N)>S/(RN)_S(RN)7 (3210)

and by definition of the adjoint in Lemma [3.1.1},

(N)y* £(N) (N) — (A W>
(A f O g0 o vy sy <A 9, D) sy (3.2.11)

Since (y))* = g™) @ f(V), the desired conclusion then follows from another application of

the definition of the generalized trace.

To prove assertion , we note that since
BWM AWM ¢ £(SRY), S'RY)),  AWBWM e £(S'(RY), S(RY)), (3.2.12)

all expressions are well-defined. As before, it suffices to consider the case where V) =
N @ g™ for fV) ) ¢ S(RY). The proof then follows readily using the involution

property of the adjoint and the definition of generalized trace. O
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We now extend the partial trace map to our setting using our bilinear perspective.

Proposition 3.2.4 (Generalized partial trace). Let N € N and let k € {0,..., N—1}. Then

there exists a unique bilinear, separately continuous map

N L(SRY), S (RY)) x L(S'(RY), S(RY)) — L(S(RF), S'(RY)), (3.2.13)

~~~~~

which satisfies

Tryr,. N (A(N)(f(N) ® Q(N))) = /Nlc d£k+1;N(A(N)f(N))(Zk>£k+1;N)9(N) (Q’&kﬂw)-
(3.2.14)
for all AN) € L(S(RN),S'(RN)), and fOV), g™) € S(RY). That is,

(Trpsa,.., N(A(N)(f(m ® 9<N)))¢(k)’ ¢(k)>s’(Rk)—s(Rk)

(3.2.15)

S'(RN)—S(RN)’

for all ™ *) € S(RF).

Remark 3.2.5. Our notation Try, . n implies a partial trace over the variables with indices

-----

belonging to the index set {i : k+1 <i < N}. To alleviate some notational complications,
we will use the convention that if the index set of the partial trace is empty, we do not take

a partial trace.

Proof. We first show uniqueness. Fix N € N and k& € {0,...,N — 1}. Fix AW ¢

L(S(RN),S'(RY)). Suppose that there are two maps Tryyi .y and ”/F;kﬂ ~ satisfying

77777

(3.2.14)). Since every element vV) € £L(S'(RY), S(RY)) is of the form

~~~~~

J

k —k) k —k
F M =30 P @ N @ g @ gV R, (3.2.16)
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where {\;}jeny € ¢! and f}k), ](k) and f;Nﬁk),gJ(»ka) are sequences converging to zero in
S(RF) and S(RY~*), respectively. Since the partial sums converge in £(S'(RY), S(RY)), we

have by separate continuity that

Try1,.. N (A(N)W(N)) = Z AjTrpga, N (A(N) (f;k) 0%y f;N_k) 0%y gj(k) 0y 9§N_k))>

j=1
- Z /\jﬁk—l—l ..... N (A(N) (f;k) ® f;N—k) ® g]('k) ® g](-N_k)>>
J=1
= Trpp, v (A1), (3.2.17)

which completes the proof of uniqueness.

We now prove existence. Let N,k and AN be fixed as above. For f*) ¢*) ¢ S(RF)
and V) € L(S'(RY), S(RY)), we define the integral kernel

K ) g0y (s ) = g™ () /Rk dy AN (zyiy, 2 Py, (y, ) € RV
(3.2.18)
It is evident that Kyw j0 v € S (R%Y). Moreover, it is straightforward to check that the

trilinear map

S(R") x S(RF) x S(R*) — S(R*Y), (f(k),g(k),’y(N)) = K ) k) () (3.2.19)

(V) to denote the Schwartz kernel as

is continuous, where we abuse notation by using ~
well as the operator. Therefore by the Schwartz kernel theorem and the fact that AN) €

L(S(RN),S(RY)) by assumption, for fixed f* € S(RF), the map

k (k) ¢
S(R") = C, g = <KA(N)>Kf(k)’g(k)7,y(N)>S/(R2N)S(RQN) (3.2.20)
defines an element of S'(R*) and the map
S(Rk’) — S’(Rk), f(k) > <KA(N>7K;(k)7"’y(N)>S’(]R2N)—S(R2N) (3.2.21)
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-----

(Trisa,.., N(A(N)’Y(N))f(k)vg(k)>$’(Rk)_S(Rk) = <KA(N)7 K g0 ) (3.2.22)

>5/(R2N)—5(R2N)’
which is evidently bilinear in (A®) (M),
It remains for us to prove separate continuity. Implicit in our work in the preceding

paragraph is continuity in the second entry for fixed AN). Continuity in the first entry for

fixed 7V € L(S'(RY), S(RY)) then follows by duality. O

3.3 Contractions and The “Good Mapping Property”

Given AW € £(S(R?),S'(R?)), an integer k > 4, and a cardinality-i subset {{1,...,4;} C
N<, we want to define to an operator acting only on the variables associated to {4, ..., ¢;}.

We have the following result.

Proposition 3.3.1 (k-particle extensions). There exists a unique AEZ

-----

which satisfies

AEZ ..... ei)(f1®--.®fk)(£k) = A@(fel@-..®fgi)($g1,...,xei)-( H fg(fljg)) (3.3.1)

N \{£1,....0;}

in the sense of tempered distributions.

Proof. We first consider the case (¢1,...,¢;) = (1,...,7). By the universal property of the

tensor product, there exists a unique continuous linear map

A =AY @ I SRHGS(RMT) — (RGBS (R, (3.3.2)

.....
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satisfying

AR (D@ g% ) (@) = AD(FD) (2,)g" N zy),  VfESRY), g€ SRN). (3.3.3)
For the general cases where (¢y,...,0;) # (1,...,1), we set
AEQ ,,,,, gy =m0 Aﬁ) ,,,,, Hom, (3.3.4)

where m € Sy, is any permutation such that n(¢;) = j for 7 € Ng; and we let 7 act on
measurable functions by (3.3.29) and on distributions by duality. Let (¢;,...,¢; ;) denote
the increasing ordering of the elements of the set Ney \ {¢1,...,¢;}. Then for test functions

flv"'vfkaglv"'agk GS(R)7 we have

k k
<(7r—1 o AE? ..... ) © w)(® fo), ® gg>
S’ (RP)—S(R?)

(=1 (=1
% k—i k
= <A(z)(® fo,) @ Q) fer: (X 95) © 7T>
Jj=1 Jj=1 Jj=1 S/ (RF)—S(RF)
i A k—i k—i
(R ®u) (R Q)
Jj=1 Jj=1 S'(R1)—S(R?) Jj=1 Jj=1 S/(RF—1)—S(Rk—1)

= <A(i)(® fej)7®9zj> I Gadsm-se: (3.3.5)
j=1 j=1

S'(RH)—S(Ré)  JEN<k\{l1,bi}

where the penultimate equality follows from the definition of the tensor product of two
distributions. By the density of finite linear combinations of pure tensors in S(RF), it
follows from the preceding equality that our definition (3.3.42)) is independent of the choice

of permutation 7 € Sy, satistying m(¢;) = j for every j € Ng;. H

An important property of the above k-particle extension is that it preserves self- and

skew-adjointness.
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Lemma 3.3.2. Let i € N, let k € Ns;, and let AD € L(S(RF),S'(RY)) be self-adjoint (resp

......

self-adjoint (resp. skew-adjoint).

Proof. Replacing A% by iA® it suffices to consider the self-adjoint case. By considerations
of symmetry, it suffices to consider the case (¢1,...,¢;) = (1,...,4). The desired conclusion

then follows from the fact that

< AE?,...,Z-)( FO @ [0y

9 g(k:—i)> _ <Af(i)‘g(i)> <f(k—i)}g(k—i)>
_ <f(i)|A(i)g(i)> <f(k—i)‘g(k—i)>

:<f<i>® oA i)(g<z’>®g<k—z’>)>, (3.3.6)

for all (f@, fk=0 g0 ¢k=D) € (S(R?) x S(R**))?, linearity, and density of linear combina-

tions of such pure tensors in S(R¥). O

Now let 4,5 € N, let k =i+ j — 1, and let (a, 5) € N; x N¢;. To construct a Lie

bracket in Section |3.5.2] we need to give meaning to the composition
k) (3.3.7)
as an operator in £(S(R*), §'(R¥)), when A® € L(S(R?),S'(R?)) and BY) € L(S(R7),S'(R)).

Remark 3.3.3. Without further conditions on A® or BY), the composition (3.3.7) may not
be well-defined. Indeed, consider the operator A € £(S(R?),S'(R?)) defined by

Af =0of,  Vfe€SR?, (3.3.8)
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where dp denotes the Dirac mass about the origin in R%. Then for f,g € S(R),

/Rd%(Af@)(fBb 22)g% (@, 2) = (0)g(0)f (x1)g(x))do(x1) € S'(R) ® S(R).  (3.3.9)

It is easy to show that fdy € S'(R) does not coincide with a Schwartz function.

This issue leads us to a property we call the good mapping property. The intuition for
the good mapping property is the basic fact from distribution theory that the convolution
of a distribution of compact support with a Schwartz function is again a Schwartz function.

We recall the definition of the good mapping property here.

Remark 3.3.4. By tensoring with identity, we see that if A®) has the good mapping prop-

-----

3.4 The Subspace L,,,(S(RF),S'(R¥))

In this section, we expand more on L, (S(R¥), S'(R¥)) as a topological vector sub-

space of L(S(RF), S'(R¥)) and more on the identification of its topological dual.

Lemma 3.4.1. L,,,,(S(R*),S'(R*)) is a dense subspace of L(S(R¥), S'(R¥)).

Proof. We first show density, beginning by recalling that Lg,,(S(R¥),S'(R¥)) is endowed
with the subspace topology induced by £(S(R¥), S'(R¥)). Let A®) € £(S(RF),S’(R¥)), and
let K 4 € S'(R*) denote the Schwartz kernel of A®). Since S(R?*) is dense in S'(R%),

given any bounded subset & C S(R?*) and € > 0, there exists K. € S(R?*) such that

sup <KA(k) - Km,a K>3/(R2k)_8(R2k) < €. (3.4.1)
KeR
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Since the integral operator defined by the kernel Ky, is a continuous endomorphism of
S(RF), it belongs to Ly, (S(R¥),S’(R¥)). Since any bounded subset & C S(R¥) induces a
bounded subset R C S(R?*) by

R=6R6={fxg: f,gc &}, (3.4.2)

we conclude that given any € > 0 and bounded subset & C S(R¥), there exists an element

Agl € L(S'(R¥), S(R*)) such that

sup ‘<(A(k) — A f’g>‘ <e (3.4.3)

Since the preceding seminorms generate the topology for £(S(RF),S'(R¥)), the proof of

density is complete. O

Using the preceding lemma, we can show that the strong dual of the subspace
L ymp(S(R?), S§'(R¥)) is isomorphic to the space of linear operators with Schwartz-class ker-

nels.
Lemma 3.4.2. The space Lgym,(S(R*),S'(R*))* endowed with the strong dual topology is

isomorphic to L(S'(R*), S(RF)).

Proof. Since the canonical embedding ¢ : £,,,,(S(R¥), S'(R¥)) — L(S(R*), S'(R¥)) is tauto-

logically continuous, the adjoint map
o L(S(RY), ' (RF))* = Lymp(S(RF), S'(RF))* (3.4.4)

is continuous. Now since L,,,,(S(R¥), S'(R)) is dense in L(S(R¥), §'(R¥)), any linear func-
tional

0 € Loymp(S(RF), S'(RF))* (3.4.5)
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extends to a unique element ¢ € £(S(R¥), S’(R¥))* by the Hahn-Banach theorem. Hence, ¢*

is a continuous bijection. Since the domain of the canonical isomorphism
d: L(S'(RY), S(RY)) = L(S(RF),S'(RF))* (3.4.6)

is a Fréchet space, it follows from the open mapping theorem that +*o® is an isomorphism. [J
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Appendix 4

Products of Distributions

In this appendix, we review some basic facts from microlocal analysis about the wave
front set of a distribution and its application to proving the well-definedness of the product
of two distributions, as used in Section 4.4.1, We mostly follow the exposition in Chapter

VIII of [40], but refer the reader to Chapter IX, §10 of [79] for a more pedestrian treatment.

Definition 4.0.3 (Singular support). Let u € D'(R*). We say that = € R* is a regular point
of w if and only if there exists an open neighborhood U > z and a function f : U — C which

is C'*° on U, such that

(U, O) pr(wr)—DwRE) = /Rk f(z)p(x)dx, V¢ € C>(R*) with supp(¢) C U. (4.0.1)

We call the set

R*\ {z € R": z is a regular point for u} (4.0.2)

the singular support of u, denoted by sing supp(u).

Remark 4.0.4. It is evident that singsupp(u) C supp(u). Since the set of regular points is
open (any other point in the neighborhood U above also belongs to the singular support), it

follows that sing supp(u) is a closed subset of supp(u).

The singular support is useful for establishing the well-definedness of a product of

distributions uv via localization, as the next proposition shows.
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Proposition 4.0.5. Let u,v € D'(R¥), and suppose that singsupp(u) N singsupp(v) = 0.
Then there is a unique w € D'(R¥) such that the following holds:

1 x ¢ sing supp(v) and v = f wn a neighborhood of x, where f & , then w = fu
If i d f hborhood of here f € C>®(RF), th f

i a neighborhood of x.

(ii) If x & singsupp(u) and u = g in a neighborhood of x, where g € C°°(R¥), then w = gv

in a neighborhood of x.
Proof. See Theorem 1X.42 in [79]. O

Next, we introduce the wave front set of a distribution. While the singular support
captures the location of the singularities of a distribution, the wave front set also contains

information about the directions of the high frequencies that cause these singularities.

Definition 4.0.6 (Wave front set). Let u € D'(R¥). We say that a point (2r.€,) € RF x
(R*\ {0}) is a regular directed point for u if and only if there exist radii e,,e¢ > 0 and a

function ¢ € C°(R*) which is identically one on the open ball B(z,¢,), such that
@(Agk)‘ ST+, V0 € B, &) x [0,00), VN € N (4.0.3)

We define the wave front set of u to be the complement in R¥ x (R \ {0}) of the set of

regular directed points:

WEF(u) == (R* x (R"\ {0}))\{(gk,§k) c RFx(R"\{0}) : (24, €,) is a regular directed point for u}.
(4.0.4)

357



Remark 4.0.7. In [40], Hormander uses a definition of the wave front set of a distribution
u, which is seemingly different from our Definition More precisely, for any x; € R* and
¢ € C=(R¥), such that ¢(z;) # 0, he defines the set X(¢u) consisting of all §, € R*\ {0}

having no conic neighborhood U such that

- -N

Gu(E,)| Sn (1 n y§k|) , V&, €U VYNEN. (4.0.5)
He then defines the set ¥, (u) by

S, (1) = () 2(du), ¢ € CZ(RY) s.t. ¢(z,) # 0. (4.0.6)
¢

Hormander’s definition of the wave front set of u, which we denote by \/N\f‘(u), is then given
by

W) = {(g,€,) € R x (R¥\ {0}) : €, € %, ()}, (4.0.7
It follows from Lemma m below that WF(u) = WF(u) (ie. the two definitions are

equivalent).

We record some properties of the wave front set.

Lemma 4.0.8. If u € D'(R¥) and g € C(R¥), then WF(gu) C WF(u). Similarly, if
u € §'(R*) and g € S(R¥), then WF (gu) C WF(u).

Proposition 4.0.9. Let u € D'(R¥).
(a) WF(u) is a closed subset of R* x (RF\ {0}).
(b) For each x; € R*, the set
WE, (u) = {¢, € R\ {0} : (21,§,) € WF(u)} (4.0.8)

18 a cone.
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(c) If v € D'(R¥), then
WF(u +v) € WF(u) UWF(v). (4.0.9)

() singsupp(u) = {z, € B - WF, (u) # 0},
(e) If v e D'(RY), then

WF(u®v) C (WF(u) x WF(v))U((supp(u) x {0}) x WF(v))U(WF (u) x (supp(v) x {0})).
(4.0.10)

(f) Ifu e S'(R),v e S'(R) and w € S(R™Y) then
WF((u®v)w) C WF(u ® ).

Proof. Properties @ - are quick consequences of the definition of the wave front set. For
[(d)} see Theorem IX.44 in [79]. For property [(e)| see Theorem 8.2.9 in [40]. Property
follows from Lemma [£.0.8 O

In our proof of Lemma |4.4.1, we will need the following result.
Lemma 4.0.10 (Wave front set of 6(z; — x;)). Let k € N, and let i < j € N<y. Then
WF((zi—25)) = {(z;,€,) € R*(R"\{0}) : 25 = xj, &+& =0, and & =0 VI € Ngp\{i, j}}.

Proof. By symmetry, it suffices to consider the case (i,7) = (1,2). Since d(x; — x2) has
singular support in the hyperplane {z; = z,} C R, it follows from Proposition {4.0.9(d)| that

@kék) € WF(d(z1 — x2)) implies that x; = z.
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Now suppose that (z;,£,) € R* x (R*\ {0}) and & + & # 0. We claim that such a

point is a regular directed point for 6(x; —x2) (i.e. it does not belong to the wave front set).

Indeed, let ¢ € C°(R¥) be such that ¢(x;) # 0. Then

F(b(n — 2)9)(€)) = /

- ngkgO(yQ,gzk)e_i(§i+€é)y2+§;;k.g3;k7 \vlé;c c Rk (4011>

Rk

Since ¢ is Schwartz class, repeated integration by parts in Yor yields

F(8(zy — 1:2)%0)@;)‘ Sy (1 +E+ &)+ ygg;k|)_N, VN € Ny. (4.0.12)

We consider two cases based on the values of & and &.

L.

I1.

If sgn(&2) = sgn(&1), then
€1 + &o| = max{|&i], [}, (4.0.13)

which implies that
—N -N
(1+1a+el+g,l)  sv(1+igl) (4.0.14)
Hence, if ¢ > 0 is sufficiently small so that sgn(£]) = sgn(&)) for all §;€ € B(,.¢), then

F(o(a — 22)0)0)] S (1+ A]§k|>_N, Ve € B, ¢), A€ [0,00). (40.15)

If sgn(&y) = —sgn(&y), then without loss of generality suppose that [£;] > [£2|. Then

for ¢ > 0 sufficiently small, we have that there exists 6 € (0,1) such that

% >0, Ve eB(E, ). (4.0.16)
1

So by the reverse triangle inequality,

-N -N
(1+Ag + &+ Ng, ) Sov (1+AE]) . VE € BlE,2), Ae[0,00).
(4.0.17)
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Now suppose that (ik’ék) e R x (R*\ {0}), & + & =0, and €, #0¢€ RF2. We
claim that such a point is a regular directed point. We consider two cases based on the

magnitude of [&,| relative to [€, |-
L If [&] <€, , | then for € > 0 sufficiently small,

-N -N
(1+ Mg +al+ Mg, l) Sy (1+XE]) T, Vg € B9, Ae0,00).
(4.0.18)

IL If |6 > |€,, |, then for £ > 0 sufficiently small, there exists 6 € (0,1) such that

IS
ﬁ >0, Ve € B0 (4.0.19)
1
Hence, |
, & e
&1 = =+ 2 (Il + g, (4.0.20)

which implies that
/ —-N —-N !
(1 + >\|§3;k|) <o (1 + )\|§k|> . V& €B(,.), A€ [0,00).  (40.21)
Thus, we have shown that
WF(0(z1—22)) C {(2,€,) € REX(R*\{0}) : 21 = x5, &+E =0, and €, = 0} (4.0.22)

For the reverse inclusion, we claim that (z;, (=&, &2, 05,,)) € RF x (RF\ {0}) is not a regular
directed point for d(xq; — z3). Indeed, this claim follows from observing that for a bump

function ¢ € C°(R*) about z,, we have that for all A € [0, 00),

“F<5(x1 _'IQ)QO)(_)\éEQ’)\gQ?Q?;;k)‘ = /Rk ) d£2;k§0($2,£2;k). (4023)

O
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We now seek to systematically give meaning to the product of distributions and, in
particular, preserve the property that the Fourier transform maps products to convolution.
We accomplish this task with a useful criterion due to Hérmander—one which we make heavy
use of in Section [.4}-for how to “canonically” define the product of two distributions. Before

stating Hormander’s result, we need a few technical preliminaries.

For a closed cone I' C R x (R \ {0}), define the set
Di(R¥) := {u € D'(R*) : WF(u) C T'}. (4.0.24)

Lemma 4.0.11. u € D'(R*) belongs to DR(RF) if and only if for every ¢ € C(R¥) and

every closed cone V C RF satisfying

I'N (supp(¢) x V) =0, (4.0.25)
we have that
sup [€,[V](u)(§,)] <o0, YN eN. (4.0.26)
£,V
Proof. See Lemma 8.2.1 in [40)]. O

It is clear that Dp(R") is a subspace of D'(R*). We say that a sequence {u;}32, in
D (R¥) and u € Dp(R¥), we say that u; — u in DR(R¥) as j — oo if u; — u in the weak-*
topology on D’'(R¥) and for every N € N,

— —

s 6,17 1Gw(E,) ~ Gu) g = 0. (40.27)

as j — oo, for every ¢ € C®(RF) and closed cone V' C R¥ such that (4.0.25) holds.

The next lemma shows that C>°(R¥) is sequentially dense in the space Dj(IR¥).
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Lemma 4.0.12. For every u € Di(R¥), there exists a sequence u; € C2(R¥) such that

u; — u in Dp(RF).
Proof. See Theorem 8.2.3 in [40]. O

Lemma 4.0.13. Let m,n € N and let f : R™ — R"™ be a C* map. Define the set of normals
of the map f by
Ny ={(f(z,),n ) € R* xR": f'(z,)"n =0}, (4.0.28)

where f'(x, )T denotes the transpose of the matriz f'(z,,). Then the pullback distribution

f*u can be defined in one and only one way for all uw € D'(R™) with
Ny NWF(u) =0 (4.0.29)

so that f*u=wo f, when u € C°(R"™) and for any closed conic subset I' C R™ x (R™\ {0})

satisfying T' N Ny = 0, we have a continuous map f* : Dp(R") = Dy (R™), where
FT = {2 @)™ ) s (fl@,)in,) € T}, (4.0.30)
In particular, for every u € D'(R") satisfying , we have that
WEF(f*u) C f* WF(u). (4.0.31)

Proof. See Theorem 8.2.4 in [40]. O

We are now prepared to state Hormander’s criterion for the existence of the product

of two distributions.
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Proposition 4.0.14 (Hérmander’s criterion). Let uy, us € D'(RF), and suppose that

WF (u1)&WF (us) = {(z},§,) € R*x (RF\{0}) 1§, = §1,k+§2,k’ @kéj,k) € WF(u;) forj=1,2}
(4.0.32)
does not contain an element of the form (x;,0). Then the product uyuy can be defined as the

pullback of the tensor product u; @ us by the diagonal map d : R¥ — R?*. Moreover,

We refer to this definition of the product uijus as the Hormander product.
Proof. See Theorem 8.2.10 in [40]. O

Sometimes it is easy to make an ansatz for an explicit formula for the product of two
distributions, for example 6(x; — 22)d(z9 — x3). The next lemma is useful for verifying that

the ansatz indeed coincides with the product distribution defined by Proposition [4.0.14]

Lemma 4.0.15. Let u,v € D'(R*). Then there exists at most one distribution w € D'(R¥)
such that for every x, € R¥, there exists ¢ € C®(R¥) which is = 1 on B(xy,€), for some

e > 0, and such that for every §k € R¥,
Flou) - F(p)(§, —-) € L'(R"), (4.0.34)

the map
R* — C, €, (F(ou) * F(ov))(€,) (4.0.35)

18 polynomially bounded, and

Flo*w)(E,) = (27T)_k/2/ dn, F(¢u)(n,)F(pv)(€, —n,)- (4.0.36)

RF
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Proof. We first claim that for any ¢ € C2°(RF),

Fho*w)(€,) = 2m) 2 (F () * F(puz))(€,) = (2m) M (F(gua) * F(oua))(E,),
(4.0.37)

for all § . € R* where the integrals defining the convolutions converge absolutely for § . fixed.

Indeed, since @/Z)\ is Schwartz and F(¢?w) is analytic,

Fludw)(€,) = (2m) 2 / dn, F(6)(E, — 1) F(*w)(n,)

Rk

=0 [ an e, - n)( [ dnF o, - d)Few))
(4.0.38)

where the integrals are absolutely convergent. Hence, by the Fubini-Tonelli theorem,
[ an i - n)( [ anFen, - f)Fens)
- [ agFeu ) ([ anFwie - n)Fen, - 1).

By the translation invariance of the Lebesgue measure,

(4.0.39)

[ anF @~ n)F o), — ) = [ Ay FWE ~ 1, — ) F (G,
= (F() » Flom) (€, ~ 1)

= 2m)*?F(pour) (€, — ), (4.0.40)

where the ultimate equality follows from Fourier inversion. Therefore,

) [ F o)) ([ anFoE, - n)Fow), - 1)) = (Floow) s Flouw)(E,)
(4.0.41)

By symmetry, we have also shown that
F@o*w)(€,) = (Flow) * F(Pousz))(€,). (4.0.42)

365



Now suppose that wy, wy € D’ (Rk) are two distributions such that there exist ¢, ¢ €
C>(R*) so that

F(ptun) = (F(prur) % F(prus)) (4.0.43)

F(dows) = (Flpauy) x F(pous)), (4.0.44)

where the integrals defining the convolutions are absolutely convergent for fixed § ., and there

exists N1, Ny € Ny so that

—-N; B
igﬂ%@ /Rk i, ‘F (drun)(§, —m,)F (¢1U2)(ﬂk)’ < 00 (4.0.45)
— Ny B

Then by ,
-F(Qﬁ%(bgwl) = (27T)7k/2]:(¢2) * —7:(<Z52¢%w1) = (277)49/2-7:(@) * (F(prur) * F(pr19aua))
= (27) *2F(poprun) * Flpodrus),  (4.0.47)

where the ultimate equality is justified since F(¢9) is a Schwartz function and the fact that

there exists some N € N so that

sup (€,) " /Rk dn, ‘f(%ul)(ék — ) F(dr1¢2uz)(n, )| < o0, (4.0.48)

. ERF
which is a consequence of (4.0.45)). Similarly,

F(iaws) = (2m) 2 F(¢r¢gur) x F(raus), (4.0.49)

which shows that F(¢2¢3w;) = F(d2¢2w,). By a localization argument (see, for instance,
Theorem 2.2.1 in [40]), it follows that w; = wy in D'(R*), completing the proof of the

lemma. OJ
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Lastly, we record some basic properties of the product of two distributions, when it

exists.

Proposition 4.0.16 (Properties of product). The following properties hold:

(a) If f € DR*) and u € D'(R¥), then the usual definition of the fu coincides with
Proposition [{.0.1)

(b) Ifu,v,w € D'(R*) and the products uwv, (uwv)w, vw, and u(vw) all exists, then u(vw) =

(wv)w. Furthermore, if uv exists, then vu also exists and uv = vu.

(c) If u,v € D'(R¥) have disjoint singular supports, then uv exists and is given by the
product distribution guaranteed by Proposition [{.0.5,

(d) If u,v € D'(R*) and uv exists, then supp(uv) C supp(u) N supp(v).

Proof. See Theorem 1X.43 in [79]. O
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Appendix 5

Multilinear Algebra

In this appendix, we review some useful facts from multilinear algebra about sym-
metric tensors, which we make use of to prove Theorem [4.1.7] Throughout this appendix, V'
denotes a finite-dimensional complex vector space unless specified otherwise. For concrete-
ness, the reader can just take V = C%, where d is the dimension of V. For more details and
the omitted proofs, we refer the reader to [37] and [I7], in particular the latter for a concise,

pedestrian exposition.

Let n € N, and let V> — V®" be an algebraic n-fold tensor productﬂ for V. Now
given any n-linear map 7' : V*" — W, where W is another complex finite-dimensional vector
space, the universal property of the tensor product asserts that there exists a unique linear

map T : V& — W, such that the following diagram commutes

Vxn V(X)n

N i (5.0.1)

w

In particular, given any permutation m € S,, there is a unique map 7 : V®" — V®" with

the property that

TV ® - @ Up) = Ur(1) ® *+* @ VUn(n), Yui,...,v, € V. (5.0.2)

!The reader will recall that the tensor product is only defined up to unique isomorphism.
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Using these maps 7, we can define the symmetrization operator Sym, on V" by
1 — n
Sym,, (u) = ] Z 7(u), Vue V@ (5.0.3)
7T€Sn

and define what it means for a tensor to be symmetric.

Definition 5.0.17 (Symmetric tensor). We say that u € V" is symmetric if Sym,,(u) = u.
Equivalently, 7(u) = u for every © € S,. We let Sym,,(V®"), alternatively @’V or V&,

denote the subspace of V" consisting of symmetric tensors.

Remark 5.0.18. If {e;,...,e4} is a basis for V, then {e; ® -+ ® ejn}?l is a basis for

yeesJn=1
Ve so that dim(V®") = d". Similarly, {Sym,(e;, ® --- ® €;,) i<ji<.<ju<d 18 a basis for

Vs so that dim(V®:) = (d+n,1).

n

We now claim that any element of V®: is uniquely identifiable with an element of
Clx1, ..., Z4ln, the space of homogeneous polynomials of degree n in d variables. Indeed, fix
a basis {e1,...,eq} for V, so that {Sym,(ej, ® - -- ®¢e;,) h1<jy<.<jn<a is a basis for V¥, By

mapping

Sym,(e;, @ -+ ®e;,) > xft-xgt = 257, (5.0.4)

where o, is the multi-index defined by
o= 0;(ji).  Vj €N, (5.0.5)
i=1

where §; is the discrete Dirac mass centered at j, one obtains a linear map from V& —

Clx1, ..., Z4ln. One can show this map is, in fact, an isomorphism. Consequently, if

u= Y .5, Sm,(e, @ ®ej,) (5.0.6)

1<j1 <+ <jn<d
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is an element of V=, then u is uniquely identifiable with the element F' € Clxy, ..., z4],
given by

Fle)= Y g™ (5.0.7)

1< < <gn<d

where we write a( ln) to emphasize that a, is intended as a function of j ~according to the
rule (5:03).

There is a useful bilinear form on C|xy, . .., 24, defined as follows: if F, G € Clxy, ..., Zq4]s
are respectively given by
F(z,) = Z " Ao, Tq" G(z,) = Z " by 25 (5.0.8)
=d 3 g, ..., o0q) FTd0 =d 3 ag, ... o) 40
ayl=n a,l=n

then we define

(F,G)= > (ah " ’ad> o, Da, (5.0.9)

logl=n
The form (-,-), which is evidently symmetric, has the important property of nonde-

generacy, as the next lemma shows.
Lemma 5.0.19 (Nondegeneracy). The symmetric bilinear form (-,-) : Clzy, ..., 2q]n X

Clxy, ..., z4ln — C is nondegenerate: if (F,G) =0 for all G € Clzy,...,x4)n, then F = 0.

When G is of the form G(z,;) = (Biz1 + -+ + Bawg)"™ (i.e. an n'™ power of a linear

form), then the next lemma provides an explicit formula for (F, G).

Lemma 5.0.20. If G(z;) = (Biz1 + -+ + Bazwa)”, where 8, € C4, then for every F €
Clxy, ..., Taln, we have that

(F,G) = F(8,). (5.0.10)
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We now use Lemma [5.0.20] to prove the existence of a special decomposition for

elements of V®:. We have included a proof as it is a nice argument.

Lemma 5.0.21 (Symmetric rank-1 decomposition). For anyu € V®= there exists an integer
N €N, coefficients {a;}}.; C C, and elements {v;})_; C'V, such that

N

u= Zajv?". (5.0.11)

j=1
Proof. Let W C V®: denote the set of elements which admit a decomposition of the form
(5.0.11). Evidently, W is a subspace of V®:. Fix a basis {ey,...,eq} for V. If v = Bie; +

-+ -+ B4eq, then one can check that under the isomorphism given by (5.0.7)), v®" is uniquely

identifiable with the polynomial

(Bray + - -+ + Baxa)",

i.e. an n'" power of a linear form. Consequently, W is isomorphic to the span of n'* powers

of linear forms in Clzy, ..., z4,.

Assume for the sake of a contradiction that W is a proper subspace, so that the
orthogonal complement W+ with respect to the form (-,-) is nontrivial. Then it follows
from the embedding of W C Cl[xzy,...,x4), that there exists a nonzero polynomial F €
Clz1, ..., x4]n, such that (F,G) = 0 for every G € W. Lemma then implies that

F(3 d) = 0 for every 3, € C?, which contradicts that I is a nonzero polynomial. O

Remark 5.0.22. Since Lemma [5.0.21] asserts that a decomposition of the form (}5.0.11))
always exists, one can define the symmetric rank of an element v € V® by the minimal

integer N. Evidently, a tensor of the form v®" has symmetric rank 1. Although we will not
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need the notion of symmetric rank in this work, we will refer to the decomposition ((5.0.11))

as a symmetric-rank-1 decomposition.

As an application of the symmetric-rank-1 tensor decomposition, we now show an

approximation result for bosonic Schwartz functions (i.e. elements of S,(R%)).

Lemma 5.0.23. Let f € S(R?). Then given € > 0 and a Schwartz seminorm N, there

exist N € N, elements {fi}Y.; C S(R), and coefficients {a;}\; C C, such that

N
N(f -y aif?d) <e. (5.0.12)
=1

In other words, finite linear combinations of symmetric-rank-1 tensor products are dense in

Sy(RY).

. d
Proof. Fix f € 8s(R?%), e > 0, and seminorm N. Since S;(R?) 2 @ S(R), there exists an

integer M € N, elements {g;;} 1zi<e C S(R), and coefficients {a;}1<j<p C C, such that

1<5EM
M d
./\/<f - Z a; Sym, <® gi])) <e. (5.0.13)
j=1 i=1
Define the complex vector space
V i=spanc{g; : 1 <i<d, 1<j< M}, (5.0.14)

which is evidently finite-dimensional. For each j € N<);, consider the symmetric tensor

d
Symd <® g’U) < V®g. (5015)

i=1
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By Lemma [5.0.21] there exists an integer N; € N, elements {fjg}évzjl C V, coefficients

{a;0}7, C C, such that

d N;
Symyg <® gij) = Z ajéf;?d- (5.0.16)
=1

i=1
Consequently,
M d M N
2 a;Symy <® g“) =D el (5.0.17)
j=1 i=1 j=1 =1
so upon substitution of this identity into ([5.0.13)), we obtain the desired conclusion. [

As a corollary of Lemma [5.0.23] we obtain the following decomposition for elements

in £(S,(RY), Ss(R7)).

Corollary 5.0.24. Let 9 € L£(S'(R?),S,(R?)). Then given ¢ > 0 and a Schwartz semi-
norm N, there exists N € N, elements { f;, g;}}*; C S(R), and coefficients {a;}Y., C C, such

that
N

=1

Proof. Fix v ¢ £(S'(R9),S,(R?%)), € > 0, and seminorm N Since
L(S,(R?), S,(R?)) = S,(RY)&S,(RY),

there exists an integer N, elements {f;, 5 }Y, C Sy(R%), and coefficients {a;}, c C, such

that N
N(W” Y afi® gZ) <e. (5.0.19)

=1

For each ¢ € Ncy, Lemma [5.0.23] implies that there exist integers N; ¢, V; , € N, elements

(i} {gw}jvzf C S(R), and coefficeints {aij7f}jy:i’{, {aij,g}jy;’f C C, such that

j=1>
Ni, s Nig
_ . i ;
fi= Zaijvffi? , 9i = Zaij,gg;‘? : (5.0.20)
J=1 j=1
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By setting coefficients equal to zero, we may assume without loss of generality that N; ; =

N;g = M € N, for every @ € Ncy. So by the bilinearity of tensor product, we obtain the

decomposition
N N M
Z a;f; ® gi = Z Z aiaz‘j,faz'j',gf;?d ® gf?fi. (5.0.21)
i=1 i=1 jj—1

Substitution of this identity into (5.0.19) and relabeling/re-indexing of the summation yields

the desired conclusion. O
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