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This dissertation focuses on the study of nonlinear-Schrödinger-type equations as par-

tial differentiation equations (PDEs) arising as effective descriptions of systems of finitely

many interacting bosons. We approach this topic from two perspectives. The old perspective

consists of proving quantitative convergence in an appropriate function space of solutions

to the finite problem to a solution of an effective, limiting PDE, as the number of particles

tends to infinity. The new perspective consists of proving qualitative convergence of geomet-

ric structure, such as the properties of being an integrable and Hamiltonian system. Through

these two complementary perspectives, focusing on both quantitative and qualitative con-

vergence, we gain a deeper understanding of how field theories, both classical and quantum,

may be deformed to a new field theory, and of how this deformation may be reversed.
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Chapter 1

Introduction

1.1 The Cubic Nonlinear Schrödinger Equation

Hamiltonian partial differential equations (PDEs) are a ubiquitous class of equations

which arise as models of physical systems exhibiting at least one, and often several, conser-

vation laws. While the framework of finite-dimensional Hamiltonian systems was initially in-

troduced to formalize Newtonian mechanics, infinite-dimensional Hamiltonian systems have

since become a vast area of study, comprising an important class of models in diverse areas

such as fluid mechanics, plasma physics, and quantum many-body systems. Establishing

a comprehensive mathematical theory of infinite-dimensional Hamiltonian systems which

is rich enough to accommodate all the physical problems of interest seems beyond reach;

however, one can make mathematically rigorous sense of infinite-dimensional Hamiltonian

systems in many interesting cases, see for instance [16] and [2].

Integrable PDE are a special class of Hamiltonian PDE which, broadly speaking, can

be solved explicitly,1 for instance by the inverse scattering transform (IST) discovered by

Gardner, Greene, Kruskal and Miura [34] and its subsequent reformulation by Lax [51]. In

the years since these (and many other) landmark works, there has been much activity on

1Originally, the typical method employed to solve such systems was by method of “quadratures,” or, in
other words, integration.
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determining which equations, and more generally, systems, are or should be integrable and

the mathematical consequences of being integrable. The reader may acquire a sense for the

scope of this activity in the very nice survey [19] of Deift. Despite the lively, ongoing debate

[100] over the defining features of integrability, consensus holds that certain equations, such

as the Korteweg-de Vries (KdV) or one-dimensional cubic nonlinear Schrödinger equation

(NLS), should be integrable under any reasonable definition of the term.

Thus, a compelling example of an integrable, Hamiltonian PDE is the cubic nonlinear

Schrödinger equation (NLS) in one spatial dimension, which, together with its d-spatial-

dimensional analogues, is the subject of this dissertation:

i∂tφ+ ∆φ = 2κ|φ|2φ, (t, x) ∈ R× R, κ ∈ {±1}. (1.1.1)

The NLS is a ubiquitous model in physics for approximately describing propagation in dis-

persive media, which have the property that wave packets of different frequencies travel

at different velocities. The NLS arises in a myriad of contexts, ranging from Bose-Einstein

condensates to water waves to fiber optics. In this dissertation, we are interested in the phys-

ical setting of a quantum-mechanical system of bosons, which corresponds to Bose-Einstein

condensates.

1.2 Old Perspective: Derivation via Dynamics

Over recent years, many authors have sought how to understand the manner in which

the dynamics of the NLS arise as an effective equation. By effective equation, we mean that

solutions of the NLS equation approximate solutions to an underlying physical equation in

some topology in a particular asymptotic regime.

2



In the field of quantum many-body systems, the traditional understanding of a deriva-

tion of the NLS from the dynamics of the system of bosons has been as follows. For simplicity,

we shall sketch the derivation starting from the Lieb-Liniger (LL) model, which describes

a finite number of bosons in one dimension with two-body interactions governed by the δ

potential. Formally, the Hamiltonian for N bosons is given by

N∑
i=1

−∆i + c
∑

1≤i<j≤N

δ(Xi −Xj), (1.2.1)

where −∆i denotes the Laplacian in the i-th particle variable xi ∈ R, δ(Xi − Xj) denotes

multiplication by the distribution δ(xi−xj), and c ∈ R is the coupling constant determining

the strength of the interaction and whether it is repulsive (c > 0) or attractive (c < 0). The

LL model is named for Lieb and Liniger, who showed in the seminal works [54, 53] that when

considered on a finite interval [0, L] with periodic boundary conditions, the model is exactly

solvable by Bethe ansatz.2 While it was originally introduced as a toy quantum many-

body system, the LL model has since attracted interest from both the physics community

[70, 75, 23, 43, 55, 71, 22] and the mathematics community [56, 87] in modeling quasi-one-

dimensional dilute Bose gases which have been realized in laboratory settings [21, 81, 96, 27].

In applications, the number of particles N is large, ranging upwards from N ≈ 103

in the case of very dilute Bose-Einstein condensates. For large N , it is computationally

expensive to extract useful information about the time evolution of the system directly from

its wave function. Thus, one seeks to find an evolution equation, for which one can more

2Bethe ansatz refers to a method in the study of exactly solvable models originally introduced by Hans
Bethe to find exact eigenvalues and eigenvectors of the antiferromagnetic Heisenberg spin chain [11]. For
more on this technique and its applications, we refer the reader to the monograph [35].

3



efficiently extract information, that provides an effective description of the N -body system

for large values of N .

Accordingly, the goal of Chapter 2 of this dissertation is to rigorously obtain an

effective description of the dynamics of the LL model in the limit as the number of particles

tends to infinity. To obtain nontrivial dynamics in the limit, we consider the mean-field

scaling regime, where the coupling constant c in (1.2.1) is taken to be equal to 2κ/N , for

some κ ∈ R \ {0}, so that the Hamiltonian becomes

HN =
N∑
i=1

−∆i +
2κ

N

∑
1≤i<j≤N

δ(Xi −Xj). (1.2.2)

Note that the mean-field scaling is such that the free and interacting components of the

Hamiltonian HN are of the same order in N . By means of quadratic forms (see Section 2.3),

the expression (1.2.2) can be realized as a self-adjoint operator on the Hilbert space L2
sym(RN)

consisting of wave functions ΦN ∈ L2(RN) satisfying

ΦN(xπ(1), . . . , xπ(N)) = ΦN(x1, . . . , xN) almost everywhere, ∀π ∈ SN . (1.2.3)

By Stone’s theorem, the corresponding Schrödinger problem{
i∂tΦN = HNΦN

ΦN(0) = ΦN,0 ∈ L2
sym(RN)

(1.2.4)

has a unique global solution ΦN(t) = e−itHNΦN,0. Of particular interest are factorized initial

data ΦN,0 = φ⊗N0 , for φ0 ∈ L2(R) satisfying ‖φ0‖L2(R) = 1, which correspond to a system

where the N particles are all in the same initial state φ0. By rescaling spacetime, it suffices

to consider the case κ ∈ {±1}.

In general, factorization of the wave function ΦN is not preserved under the time

evolution due to the interaction between particles. However, it is reasonable to expect from

4



the factor of 1
N

in the potential term in (1.2.2) that the total potential experienced by

each particle is approximately described by an effective mean-field potential in the limit as

N →∞. Formally, we may expect that

ΦN ≈ φ⊗N as N →∞, (1.2.5)

for some φ : R× R→ C, in some sense to be made precise momentarily.

To find an equation satisfied by φ and to give rigorous meaning to the approximation

(1.2.5), we argue as follows. Let ΦN be the solution to the Schrödinger equation (1.2.4), and

consider the density matrix

ΨN := |ΦN〉 〈ΦN | (1.2.6)

associated to ΦN .3 This density matrix is the rank-one projection onto the state ΦN with

integral kernel

ΨN(t, xN ;x′N) = ΦN(t, xN)Φ(t, x′N), ∀xN , x′N ∈ RN , t ∈ R. (1.2.7)

For k ∈ {1, . . . , N}, we define the k-particle reduced density matrix γ
(k)
N associated to ΦN by

γ
(k)
N := Trk+1,...,N ΨN , (1.2.8)

where Trk+1,...,N denotes the partial trace over the coordinates (xk+1, . . . , xN). By con-

servation of mass for (1.2.4) (i.e. ‖ΦN(t)‖L2(RN ) = ‖ΦN,0‖L2(RN ) = 1), it follows that

Tr1,...,k(γ
(k)
N (t)) = 1 for every N ∈ N, k ∈ {1, . . . , N}, and t ∈ R. Using equation (1.2.4),

3Here and in the sequel, we use Dirac’s bra-ket notation: for f, g, h ∈ L2(Rd), the operator |f〉 〈g| :
L2(Rd)→ L2(Rd) is defined by ( |f〉 〈g|)h = 〈g|h〉L2 f . The integral kernel of |f〉 〈g| is f(x)g(x′).

5



one can show that {γ(k)
N }Nk=1 solve the coupled system of equations known as the Bogoliubov-

Born-Green-Kirkwood-Yvon hierarchy (BBGKY) hierarchy :

i∂tγ
(k)
N =

[
−∆k, γ

(k)
N

]
+

2κ

N

∑
1≤`<j≤k

[
δ(X` −Xj), γ

(k)
N

]

+
2(N − k)κ

N

k∑
j=1

Trk+1

([
δ(Xj −Xk+1), γ

(k+1)
N

])
,

(1.2.9)

where we have introduced the notation ∆k :=
∑k

i=1 ∆i and [·, ·] denotes the usual commutator

bracket. As N → ∞, the sequence {γ(k)
N }k∈N, where by convention γ

(k)
N := 0 for k > N ,

formally converges to a solution {γk}k∈N of the Gross-Pitaevskii (GP) hierarchy :

i∂tγ
(k) =

[
−∆k, γ

(k)
]

+ 2κ
k∑
j=1

Trk+1

([
δ(Xj −Xk+1), γ(k+1)

])
. (1.2.10)

If there is some function φ : R × R → C, such that the GP solution takes the form γ(k) =

|φ⊗k〉 〈φ⊗k| for every k ∈ N, it is an easy computation from (1.2.10) that φ solves the

one-dimensional (1D) cubic nonlinear Schrödinger (NLS) equation

(i∂t + ∆)φ = 2κ|φ|2φ, φ(0) = φ0. (1.2.11)

Thus, we formally refer to the 1D cubic NLS as the mean-field limit of the LL model. It

is quite interesting that just as the LL model is exactly solvable by Bethe ansatz, as we

commented above, the 1D cubic NLS is exactly solvable by the inverse scattering transform

[101, 28]. In Chapter 4, we consider the relationship between N -body exact solvability and

limiting exact solvability. See also the remarks at the end of Section 1.3.2.

Establishing the validity of the mean-field approximation to the Schrödinger problem

(1.2.4) consists of showing convergence of the k-particle reduced density matrices γ
(k)
N to

6



|φ⊗k〉 〈φ⊗k|, as N →∞, in trace norm:

∀k ∈ N, lim
N→∞

Tr1,...,k

∣∣∣γ(k)
N − |φ

⊗k〉 〈φ⊗k|
∣∣∣ = 0. (1.2.12)

We refer to (1.2.12) as convergence to the mean-field limit or, following terminology in the

kinetic theory literature, as propagation of chaos.

The mathematical investigation of the validity of the mean-field approximation for

the LL model was initiated by Adami, Bardos, Golse, and Teta [3]. The authors proceed by

the so-called BBGKY method, which was pioneered by Spohn [90] for the study of quantum

many-body systems. Namely, Adami et al. show that for each k ∈ N fixed, the sequence

{γ(k)
N }N∈N has a limit point γ(k) with respect to a topology weaker than trace norm. They

then show that the sequence {γ(k)}k∈N is a solution to the GP hierarchy (1.2.10) with initial

datum ( |φ⊗k0 〉 〈φ⊗k0 |)k∈N in a certain class akin to the Sobolev space H1. In order to conclude

their proof, they need to show that there can only be one such solution (i.e. prove uniqueness

for the GP hierarchy in the class under consideration), from which propagation of chaos

(1.2.12) follows. However, they could not prove this uniqueness, and to our knowledge, their

argument has yet to be completed. We remark that the BBGKY approach does not yield a

rate of convergence in (1.2.12) as N →∞ and |t| → ∞.

Several years later, Ammari and Breteaux [6] revisited the mean-field approximation

to the LL model from the perspective of quantum field theory. Inspired by the approach of

Rodnianski and Schlein [82], which in turn builds on earlier ideas of Hepp [39] and Ginibre

and Velo [36], the authors use the framework of second quantization and reformulate the

problem of mean-field limit for the Hamiltonian (1.2.2) in terms of the semiclassical limit

for a related Hamiltonian on the Fock space. Through a very technical argument involving

7



abstract non-autonomous Schrödinger equations, they construct a time-dependent quadratic

Hamiltonian which provides a semiclasical approximation for the evolution of coherent states.

Borrowing an argument from [82], they are able to show the convergence (1.2.12) from

their approximation result for coherent states. We note that the authors do not provide a

quantitative rate for the convergence (1.2.12) in terms of N and t.

In Chapter 2, we give a simple, quantitative proof of the validity of the mean-field

convergence (1.2.12). We defer a precise statement of our result (see Theorem 2.1.1) until

Section 2.1, so as to maintain the accessibility of the introduction. Our proof is inspired by

the method of Pickl [76, 77, 78] and Knowles and Pickl [46] and is based on an energy-type

estimate for a time-dependent functional which gives a weighted count of the number of

particles in the system at time t which are not in the state φ(t). To overcome difficulties

stemming from the singularity of the δ-potential, we introduce a new short-range approxi-

mation argument that exploits the Hölder continuity of the N -body wave function in a single

particle variable. In contrast to the previous work of Ammari and Breteaux [6], our simple

proof makes no use of second quantization and provides an explicit rate of convergence to

the mean-field limit.

1.3 New Perspective: Derivation via Geometry

1.3.1 Hamiltonian Structure

In contrast to the vast amounts of activity on the derivation of the dynamics of the

NLS, to the best of our knowledge, questions about the origins of the Hamiltonian struc-

ture of the NLS have remained unexplored. Indeed, continuing with our example from the

previous section, the N -body Schrödinger problem is well-known to admit a description as
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an infinite-dimensional Hamiltonian system, but we are unaware of work which mathemati-

cally demonstrates whether, and if so the manner in which, the Hamiltonian structure of the

NLS can be interpreted as a limit of the Hamiltonian structure of the N -body Schrödinger

problem.

This line of inquiry is not merely aesthetically pleasing. Since the Hamiltonian struc-

ture completely determines an equation’s behavior as a dynamical system, understanding

how the geometry arises from the underlying physical system is foundational for under-

standing how complex behavior is a limiting effect of the system in a specified scaling regime.

Furthermore, from the physics’ perspective of connecting field theories, both classical and

quantum, one often obtains a new field theory by deformation (e.g. first and second quan-

tization) of one Hamiltonian structure to another. Ideally, one would like to know that this

process is reversible, in the sense that a certain scaling limit recovers the initial structure.

See Remark 1.3.3 for further elaboration on this point.

The Hamiltonian formulation for the NLS has two components: the Hamiltonian func-

tional itself and an underlying phase space geometry provided by a weak Poisson manifold.4

More precisely, to give the Hamiltonian formulation of the NLS, we endow the d-dimensional

Schwartz space S(Rd) with the standard weak symplectic structure

ωL2(f, g) = 2 Im

{∫
Rd
dxf(x)g(x)

}
, ∀f, g ∈ S(Rd). (1.3.1)

Letting ∇s denote the symplectic L2 gradient, see Remark 3.3.12, the symplectic form ωL2

4We refer to Definition 3.3.1 and Definition 3.3.5 for definitions of a weak Poisson and weak symplectic
manifold, respectively.
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induces the canonical Poisson structure

{F,G}L2(·) := ωL2(∇sF (·),∇sG(·)), (1.3.2)

defined for F,G belonging to a certain sub-algebra AS ⊂ C∞(S(Rd);R), the precise descrip-

tion of which we postpone to Proposition 3.3.13. The solution of the NLS (1.3.7) is then

the flow associated to a Hamiltonian equation of motion on the infinite-dimensional weak

Poisson manifold (S(Rd),AS , {·, ·}L2). More precisely, (1.3.7) is equivalent to(
d

dt
φ

)
(t) = ∇sHNLS(φ(t)), (1.3.3)

where

HNLS(φ(t)) :=

∫
Rd
dx
(
|∇φ(t, x)|2 + κ|φ(t, x)|4

)
. (1.3.4)

The goal of Chapter 3 of this dissertation is to derive both the weak Poisson structure and

Hamiltonian functional constituting the Hamiltonian formulation of the NLS. Providing a

rigorous definition and derivation of the geometry will pose the bulk of the difficulty in this

work.

The methods we adopt are guided by the extensive research activity in recent years on

the derivation of NLS-type equations from the dynamics of interacting bosons, as discussed in

Section 1.2. There are a number of different approaches to this derivation problem beginning

with the aforementioned influential work of Hepp [39], later generalized by Ginibre and Velo

[36]. But the one which informs our strategy involves the BBGKY hierarchy introduced

in equation (1.2.9) (see also (3.1.4) below for the precise version considered in Chapter 3).

This approach was pioneered by Spohn [90] in the quantum context of the derivation of
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the Hartree equation in the mean field scaling regime.5 We mention the works of Adami,

Bardos, Golse, and Teta and Adami, Golse, and Teta [3, 4], who provided a derivation of

the one-dimensional cubic NLS via the BBGKY approach in an intermediate scaling regime

between the mean field and Gross-Pitaevskii regimes. We also mention in particular the

works of Erdös, Schlein, and Yau [24, 25, 26], who provided the first rigorous derivation

of the three-dimensional cubic NLS in the Gross-Pitaevskii scaling regime via the BBGKY

hierarchy, resolving what was a significant open problem. There is by now an extensive

body of work, spanning many years, on deriving the dynamics of the NLS from many-body

quantum systems. A thorough account of this history would take us too far afield from

our current goals, and consequently we are not mentioning many important contributions

in our very brief account. We instead refer the reader to [85] for a general survey and more

extensive review on the history of the derivation problem and to the more recent lecture

notes [84].

To appreciate some of the difficulties involved in our pursuit, it is important to note

that while the dynamics of a system of N -bosons is described by the linear Schrödinger

evolution of a wave function, such an equation is not amenable to taking the infinite-particle

limit directly since the wave functions for different particle numbers do not live in a common

topological space. Consequently, in order to take an infinite-particle limit, one performs

a non-linear transformation of the N -body wave functions and considers sequences of k-

particle marginal density matrices whose evolution is governed by the BBGKY hierarchy.

In particular, there is no clear link between the evolution of the N -particle wave function

and the NLS each as Hamiltonian dynamical systems. To complicate matters further, the

5See also the influential works of Lanford [49, 50] on the derivation of the Boltzmann equation.
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BBGKY hierarchy is no longer an evidently Hamiltonian flow.

At the cost of the added complication of working with the BBGKY hierarchy, the

aforementioned works on the derivation of the one-particle dynamics actually yield the fol-

lowing stronger result: the full dynamics of the interacting boson system governed by the

BBGKY hierarchy converges to dynamics described by the cubic GP hierarchy, which is an

infinite coupled system of partial differential equations for kernels6 (γ(k))∞k=1 of k-particle

density matrices, defined in (1.2.10) above. The connection to the NLS is then as follows:

the GP hierarchy admits a special class of factorized solutions given by

γ(k) := |φ⊗k〉 〈φ⊗k| , k ∈ N, (1.3.5)

where φ : I × Rd → C solves the cubic NLS

i∂tφ+ ∆φ = 2κ|φ|2φ, (t, x) ∈ R× Rd. (1.3.6)

One might conjecture that the BBGKY and GP hierarchies provide the required link

to understand the derivation of the geometry associated to the Hamiltonian formulation

of (1.3.7). In particular, it is natural to wonder whether the BBGKY and GP hierarchies

are Hamiltonian evolution equations posed on underlying weak Poisson manifolds of density

matrices,7 and whether the Poisson structure for the infinite-particle setting arises in the

infinite-particle limit from the Poisson structure for the N -body problem. To summarize,

one can pose the following questions:

6In this work, we follow the widespread convention of using the same notation for both the kernel and
the operator.

7We will in fact work on a Poisson manifold of density matrix hierarchies.
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Question 1.3.1. Can we connect the Hamiltonian structure of the many-body system with

that of the infinite-particle system in the following sense: can the GP hierarchy be realized

as a Hamiltonian equation of motion with associated functional HGP on some weak Poisson

manifold? Can the Poisson structure and Hamiltonian functional for the GP hierarchy be

derived in a suitable sense from a Poisson structure and Hamiltonian functional at N -particle

level?

In the current work, we answer these questions affirmatively and establish, for the

first time, a Hamiltonian formulation for the BBGKY and GP hierarchies, see Theorem 3.1.3

and Theorem 3.1.10 below, and a link between the underlying weak Poisson geometry and

Hamiltonian functionals in the finite- and infinite-particle settings, see Proposition 3.1.4.

Our geometric constructions will rely on a special type of weak Poisson structure,

namely a Lie-Poisson structure, on a space of density matrix∞-hierarchies, see Section 3.1.2

below. These constructions are motivated by the work of Marsden, Morrison, and Weinstein

[59] on the Hamiltonian structure of the classical BBGKY hierarchy, which relates to the

earlier works on the Hamiltonian structure for plasma systems discovered in Morrison and

Green [68], Morrison [66, 67], Marsden and Weinstein [61], Spencer and Kaufman [89],

and Spencer [88]. We refer to [57] for more discussion on the Hamiltonian formulation of

equations of motion for systems arising in plasma physics. Our geometric perspective for

the N -body Schrödinger equation is inspired by taking a “quantized” version of the work

of [59]. By adapting their work to the quantum setting, we obtain the formulae for the

Poisson structure for the (quantum) BBGKY hierarchy. Taking the infinite-particle limit,

which was not considered in [59], we obtain the formula for the Poisson structure we use in

the infinite-particle setting. We expect that our proofs can serve as a blueprint for deriving
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the Hamiltonian structure of more general infinite-particle equations arising from systems of

interacting classical and quantum particles.

Returning to the setting of the NLS, the fact that the GP hierarchy admits the

factorized solutions given by (1.3.5) tells us that the dynamics of the NLS are embedded

in those of the GP hierarchy. Given that the NLS is a Hamiltonian system and, with our

affirmative answer to Question 1.3.1, so is the GP hierarchy, one might ask if there exists

an embedding of the Hamiltonian structure such that the pullback of this embedding yields

the NLS Hamiltonian and phase space geometry from that of the GP. In other words, one

can pose the following question:

Question 1.3.2. Given our affirmative answer to the previous question, is there then a nat-

ural way to connect the Hamiltonian formulation of the GP hierarchy with the Hamiltonian

formulation of the NLS in such a manner so as to respect the geometric structure?

We provide an affirmative answer to this second question by showing, in Theo-

rem 3.1.12 below, that the natural embedding map taking one-particle functions to factorized

density matrices described in (1.3.5) is a Poisson morphism between the weak symplectic

manifold constituting the NLS phase space and the weak Poisson manifold8 constituting the

GP phase space. Moreover, the NLS Hamiltonian, see (1.3.4) below, is just the pullback of

the GP Hamiltonian under this embedding, see (3.1.30) below. In summary, the factorization

embedding pulls back the GP Hamiltonian structure to that of the NLS.

We claim that our work provides a new perspective on what it means to “derive” an

equation from an underlying physical problem. Indeed, to justify this assertion, we highlight

8We refer to Section 3.3 for definitions of Poisson morphism and weak Poisson manifold.
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some parallels between our results and the aforementioned works of Erdös et al. on the

derivation of solutions to the NLS equation from the N -body problem. In [24, 25, 26],

solutions to the BBGKY hierarchy with factorized or asymptotically factorized initial data

are shown to converge to solutions of the GP hierarchy as the number of particles tends to

infinity. The authors then show that solutions to the GP hierarchy in a certain Sobolev-type

space are unique.9 Thus, the solution to the NLS equation provides the unique solution to the

GP hierarchy starting from factorized initial data, thereby providing a rigorous derivation of

the dynamics of the NLS from (3.1.2). In the current work, we establish the existence of both

the underlying Lie algebra and Poisson structure associated to a Hamiltonian formulation

of the BBGKY hierarchy and prove that in the infinite-particle limit, these converge to a

(previously unobserved) Hamiltonian structure for the GP hierarchy. Moreover, the BBGKY

Hamiltonian, defined in (3.1.16), converges to the GP Hamiltonian. Finally, we demonstrate

that the Hamiltonian functional and phase space of the NLS can be obtained via the pullback

of the canonical embedding (3.1.38), thereby providing a derivation of the Hamiltonian

structure of the NLS.

Remark 1.3.1. We note that our work does not address any derivation of the dynamics

of the nonlinear Schrödinger equation from many-body quantum systems in the vein of the

aforementioned works by Erdös et al. [24, 25, 26]. Our current work is complementary

to those in the sense that it addresses geometric aspects of the connection of the NLS with

quantum many-body systems, answering questions which are of a different nature than those

about the dynamics.

9A new proof of this uniqueness result was later given by Chen et al. in [14].
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Remark 1.3.2. We view this work as part of broader program of understanding how qualita-

tive properties of PDE arise from underlying physical problems, in particular the importance

of the Hamiltonian formalism. Related to this program, we mention the works of Fröhlich,

Tsai, and Yau [32]; Fröhlich, Knowles, and Pizzo [29]; and Fröhlich, Knowles, and Schwarz

[31]. While these works concern quantization, mean field theory, and the dynamics of the

Hartree and Vlasov equations, the interpretation of these equations as infinite-dimensional

Hamiltonian systems and more generally the Hamiltonian perspective figures prominently in

these very interesting works. We also mention the works of Lewin, Nam, and Rougerie [52]

and Fröhlich, Knowles, Schlein, and Sohinger [30], which derive invariant Gibbs measures

for the NLS from many-body quantum systems, as we believe they are related in spirit to

this program.

Remark 1.3.3. As a final inspirational thought for this subsection, we share the suggestion

of Moshe Flato, which we learned of from [29], that new physical theories obtained in the

early 20th century developments of Quantum Mechanics, Special Relativity, and General

Relativity arise from “deformations of precursor theories”. Based on the results of Chapter 3,

we tentatively supplement Flato’s suggestion with the idea that the precursor theory should

be recoverable from the new physical theory through a limiting procedure.

1.3.2 Integrability

Even with the vast research on the implications of an equation’s integrability, such as

conserved quantities, solitons, or hidden symmetries, it remains unclear why equations which

are so physically relevant also happen to be integrable. Mathematical insight into this line

of inquiry would certainly deepen our understanding of the important models that comprise
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the extensive catalog of known integrable systems. In an article [12] on this very question,

Calogero advances his thesis that equations are integrable because they are scaling limits of

integrable (or conjecturally integrable) systems, which we refer to as progenitor models in

this discussion.

Inspired by Calogero’s suggestion, Chapter 4 of this dissertation considers aforemen-

tioned 1D cubic NLS

i∂tφ+ ∆φ = 2κ|φ|2φ, φ : R× R→ C, κ ∈ {±1}, (1.3.7)

which was shown by Zakharov and Shabat [101] to be exactly solvable by the IST (see also

[1, 99, 28]). We consider equation (1.3.7) from the viewpoint that it arises as a mean field

scaling limit from the progenitor LL model (recall (1.2.2) and (1.2.4)), which we discussed

in Section 1.2. Keeping with Calogero’s thesis, we conjecture that integrability of the NLS

is a consequence of the exact solvability of the underlying LL model, leading us to the ex-

pectation of some manifestation of integrability intrinsically at the level of the GP hierarchy

(1.2.10), for which we saw in (1.3.5) that the NLS corresponds to a special case. Accordingly,

Chapter 4 of this dissertation focuses on providing evidence for the GP hierarchy as a new

integrable system.

Given the aforementioned debate over the precise definition of an integrable PDE,

this work focuses on a particular type of integrability known as Liouville integrability. The

notion of a Liouville integrable Hamiltonian system was originally introduced in the 19th

century and refers to a finite-dimensional Hamiltonian system where there is a maximal

(in the sense of degrees of freedom) independent set of Poisson commuting integrals. In

the finite-dimensional setting, a Liouville completely integrable system, which satisfies some
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technical conditions, can be solved by so-called action angle variables, which allow for explicit

integration of the system.

The exact solvability of the one-dimensional cubic NLS by the IST was formally shown

in the aforementioned work [101] and was mathematically revisited by Beals and Coifman

[8, 9, 7, 10], Terng and Uhlenbeck [93, 94], Deift and Zhou [103, 102, 20], among others.

Liouville integrability is a particular consequence of this exact solvability, which asserts that

the Hamiltonian is one element of a countable sequence of functionals in nontrivial10 mutual

involution. More precisely, one recursively defines (see Appendix 1.2) a sequence of operators

wn : S(R)→ S(R),

{
w1[φ] := φ

wn+1[φ] := −i∂xwn[φ] + κφ̄
∑n−1

k=1 wk[φ]wn−k[φ].
(1.3.8)

Each wn generates a functional In : S(R)→ C by

In(φ) :=

∫
R
dxφ(x)wn[φ](x), ∀φ ∈ S(R), (1.3.9)

which is, in fact, real-valued (see Lemma 1.2.2). One can verify (see Appendix 1.3) that

{In, Im}L2(φ) = 0, ∀φ ∈ S(R), ∀n,m ∈ N, (1.3.10)

where the reader will recall from (1.3.1) the definition of the L2 Poisson bracket {·, ·}L2 .

Furthermore, the solution to the NLS (1.3.7) is the integral curve to the Hamiltonian

equation of motion associated to the third functional I3. That is,(
d

dt
φ

)
(t) = ∇sI3(φ(t)). (1.3.11)

10By nontrivial, we mean that these functionals are not all Casimirs for the Poisson structure (i.e. they
Poisson commute with any functional).
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In particular, if φ ∈ C∞([t0, t1];S(R)) is a classical solution to (1.3.7), then In(φ) is conserved

on the lifespan [t0, t1] of φ for every n ∈ N. Furthermore, each of the functionals In has an

associated equation of motion (
d

dt
φ

)
(t) = ∇sIn(φ(t)). (1.3.12)

Following the terminology of Faddeev and Takhtajan [28], we call (1.3.12) the n-th nonlinear

Schrödinger equation (nNLS). The n = 1, 2 equations are trivial, the n = 3 equation is the

NLS (1.3.7), and the n = 4 equation is the complex mKdV equation

∂tφ = ∂3
xφ− 6κ|φ|2∂xφ, κ ∈ {±1}. (1.3.13)

To our knowledge, the n-th nonlinear Schrödinger equations do not have specific names

for n ≥ 5. Together, the family of n-th nonlinear Schrödinger equations constitutes the

nonlinear Schrödinger hierarchy, as termed by Palais [74].

To set the stage for Chapter 4 of this dissertation, we begin by recalling from Sec-

tion 1.2 the progenitor LL model and its relation to the NLS. As we previously saw, the LL

model is the many-body problem

i∂tΦN = HNΦN , HN =
N∑
j=1

−∆xj +
2κ

(N − 1)

∑
1≤j<k≤N

δ(Xj −Xk), (1.3.14)

where ΦN ∈ L2
sym(RN), the coupling constant has been taken to be proportional to 1/N so

that we are in the mean field scaling regime. The value of κ ∈ {±1} determines whether

the system is repulsive (κ = 1) or attractive (κ = −1). Mathematical and physical interest

in (1.3.14) stems in large part from its remarkable property of being exactly solvable, mean-

ing we have explicit formulae for the eigenfunctions and spectrum of the Hamiltonian HN .
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Analogous to the free Schrödinger equation, one has an explicit distorted Fourier transform

associated to HN , which by solving an ordinary differential equation in the distorted Fourier

domain yields a formula for the solution to (1.3.14).

As we previously saw, the connection between the LL model and the NLS is via an

infinite particle limit by way of the GP hierarchy (1.2.10). In light of our previous discussion

on Liouville integrability of the NLS, we turn to our search for evidence of integrability at

the infinite-particle level. We note that this search necessitates a Hamiltonian formulation

of the GP hierarchy, for which we rely on the recent work of the authors [63, Theorem 2.10]

that shows that the GP hierarchy is the equation of motion on a weak Poisson manifold for

a Hamiltonian HGP . We formulate the following question:

Question 1.3.3. Does the one-dimensional cubic GP hierarchy possess an infinite sequence

of functionals {Hn}n∈N containing the Hamiltonian HGP for the GP hierarchy, which are in

nontrivial involution?

We provide an affirmative answer to Question 1.3.3 with our Theorem 4.1.7, evidenc-

ing Liouville integrability of the GP hierarchy. Note that an immediate consequence of the

affirmative answer to Question 1.3.3 is that the functionals Hn are conserved along the flow

of the GP hierarchy.

The functionals Hn which we construct are trace functionals associated to the family

of observable∞-hierarchies {−iWn}n∈N which belong to the Lie algebra G∞ defined in [63],

the definition of which we review in Proposition 3.1.7 below. Heuristically speaking, our

definition of these observable hierarchies proceeds by a quantization of the recursive formula

(1.3.8) for the one-particle nonlinear operators {wn}n∈N. More precisely, we observe that the
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functionals In defined in (1.3.9) are finite sums of multilinear forms whose arguments are

restricted to a single function φ ∈ S(R) and its complex conjugate φ ∈ S(R):

In(φ) =

N(n)∑
k=1

I(k)
n [φ, . . . , φ︸ ︷︷ ︸

k

;φ, . . . , φ︸ ︷︷ ︸
k

], N(n) ∈ N. (1.3.15)

A posteriori of our construction, we show that the k-particle component W
(k)
n of Wn = (W

(j)
n )j∈N

is the Schwartz kernel of each I
(k)
n .

To prove the Poisson commutativity of the functionals Hn with respect to the Poisson

structure underlying the GP hierarchy from [63], we simultaneously proceed at the level of

the GP hierarchy and at the level of the NLS equation. We combine a good understanding

of the multilinear structure of the In with a knowledge of the structure of bosonic density

matrices to show that Poisson commutativity of the Hn is equivalent to that of certain

functionals Ib,n defined in (4.1.40), which are associated to an integrable system generalizing

the NLS.11 We rewrite the NLS (1.3.7) as the system{
i∂tφ = −∆φ+ 2κφ2φ

i∂tφ = ∆φ− 2κφ
2
φ

, (1.3.16)

and relax the requirement that φ denotes the complex conjugate of φ (i.e. φ and φ are

independent coordinates on S(R)). We then show that the family {Ib,n}n∈N is mutually

involutive (see Proposition 1.3.7). By also showing that there is a Poisson morphism from

the phase space of (1.3.16)12 to the phase space of the GP hierarchy, we obtain the desired

11The inspiration for considering this system comes from a remark of Faddeev and Takhtajan [28, Remark
13, pg. 181].

12Strictly speaking, the domain of the morphism is a quotient space of the phase space of (1.3.16) with
the property that the elements are “self-adjoint”.
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conclusion. This equivalence we prove, recorded in (4.1.48) below, is quite interesting in its

own right and was not expected by the authors at the onset of this project.

Remark 1.3.4. In [64], the author’s four co-authors of the article [62], which is the basis of

Chapter 4 of this dissertation, identified an infinite sequence of conserved quantities for the

GP hierarchy, which agreed with the In defined in (1.3.9) when evaluated on factorized states.

At the time of [64], a Hamiltonian structure for the GP hierarchy had not been identified,

so it was premature to ask if the conservation of these quantities was a consequence of their

Poisson commuting with the GP Hamiltonian, let alone their being in mutual involution, as is

the case with the functionals In. The current work also provides a substantial generalization

of the previous work [64], in that the definition of the functionalsHn in [64] used the quantum

de Finetti theorems [42, 91, 52]. Indeed, these functionals are initially defined on factorized

states of the form in (1.3.5), and then their domain of definition is extended to statistical

averages of such factorized states by means of quantum de Finetti. In contrast, we now

establish that these functionals are defined on the entire GP phase space. In particular,

we construct Hn without any considerations of admissibility13 and without any recourse to

representation theorems, such as the quantum de Finetti theorems. In fact, admissibility

plays no role in this dissertation.

Following our affirmative answer to Question 1.3.3, one may wonder from a more

dynamical perspective, if there is a natural connection between the flows generated by the

Poisson commuting functionals Hn and other well-known one-particle equations. We are

thus motivated to address the following question:

13An infinite sequence of trace-class density matrices {γ(k)}k∈N is said to be admissible if γ(k) =
Trk+1(γ(k+1)).
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Question 1.3.4. Does each of the functionalsHn generate a Hamiltonian equation of motion

related to the n-th nonlinear Schrödinger equation (1.3.12) via factorized solutions in the

spirit of (1.3.5)?

Our Theorem 4.1.10 below provides an affirmative answer to Question 1.3.4, proving

that factorized solutions of the equation of motion with Hamiltonian Hn are of the form

(1.3.5), where now each factor solves the n-th NLS equation. In this sense, we establish that

the family comprised of the n-th GP hierarchies is the appropriate infinite-particle general-

ization of the nonlinear Schrödinger hierarchy. As with the proof of our involution result,

our proof of this factorization connection relies on a good understanding of the multilinear

structure underlying the In. We then use this understanding to find a formula for the sym-

plectic gradients ∇sIn, which together with a general formula for Hamiltonian vector fields

on the GP phase space allows us to arrive at the desired conclusion. We also include an

explicit computation of the fourth GP hierarchy in Section 4.7.3, which corresponds to the

complex mKdV equation (1.3.13).

We close this section by returning to the aforementioned thesis of Calogero with an

eye towards future work. As we previously commented, if Calogero’s thesis is correct for

the NLS, as we believe it is, then there should be some evidence of integrability at the level

of the GP hierarchy. Our work provides such evidence by showing that there is a family

of Poisson commuting functionals which encode the nonlinear Schrödinger hierarchy. Given

that our work in Chapter 2 mathematically demonstrates that the NLS (1.3.16) is the mean

field limit of the LL model (1.3.14), it is natural to ask if there exists a connection between

our functionals Hn together with the family of n-th GP hierarchies–and by implication
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the functionals In together with the nonlinear Schrödinger hierarchy–and the LL model.

Establishing this connection in rigorous mathematical terms seems a difficult but worthwhile

task. We believe that the core difficulty lies in understanding the connection between classical

and quantum field theories via the processes of quantization and mean field limit. This

connection figures prominently in the work of Fröhlich, Tsai, and Yau [33] and Frölich,

Knowles, and Pizzo [29] and references therein. We also mention the work [95], in which

Thacker posits a conjecture related to this line of inquiry, and the work [18], in which Davies

discusses the issues with naive quantization of classical approaches to integrability. We hope

that the work of our dissertation will inspire others to join us in elucidating these fascinating

connections.

1.4 Organization of the Dissertation

To conclude the introduction, we make some comments on the organization of the

dissertation. This dissertation is organized into four chapters, including the introduction,

drawing from three articles by the author [83, 63, 62], the latter two of which are co-authored

with Mendelson, Nahmod, Pavlović, and Staffilani. Chapter 2 focuses on a new proof of the

mean-field convergence of the Lieb-Liniger model to the 1D cubic NLS, as described in Sec-

tion 1.2. Chapter 3 focuses on the rigorous derivation of the Hamiltonian structure of the

cubic NLS in all dimensions from the Hamiltonian structure of the Schrödinger problem

for finitely many interacting bosons, as described in Section 1.3.1. Chapter 4 focuses on

the search for mathematical evidence of integrability of the cubic GP hierarchy in one di-

mension, in particular the construction of infinitely many Poisson commuting functionals,

as described in Section 1.3.2. For more detailed comments on the organization of each of
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Chapter 2, Chapter 3, and Chapter 4, we refer the reader to Section 2.1.2, Section 3.1.4, and

Section 4.1.3, respectively.

We have also included several appendices to make this dissertation as self-contained

as possible. The appendices are primarily intended to aid in the reading of Chapters 3 and 4.

Appendix 1 revisits the treatment in Faddeev and Takhtajan’s monograph [28] of the involu-

tion of the functionals In in the more general setting of the system (4.1.37). We were unable

to find a reference covering this generalization. Therefore, we provide a fairly thorough

presentation at the expense of a lengthy appendix. Appendix 2 contains some background

material on locally convex spaces, specifying certain choices which we make in the current

work, which in infinite dimensions can lead to non-equivalent definitions. Appendix 3 is

devoted to technical facts about distribution-valued operators and topological tensor prod-

ucts, which justify the manipulations used extensively in Chapters 3 and 4. Furthermore,

this appendix includes an elaboration on the good mapping property, in particular, some

technical consequences of it which are used in the body of Chapters 3 and 4. Appendix 4

contains technical material on products of distributions, specifically on when the product

of two distributions can be rigorously defined. Appendix 5 contains a quick review of some

facts from multilinear algebra on symmetric tensors, which we use to establish approximation

results for bosonic Schwartz functions and density matrices.
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Chapter 2

The Mean-Field Limit of the Lieb-Liniger Model

2.1 Statement of Main Result and Overview of Proof

2.1.1 Main Result and Its Proof

Having introduced the LL model and the problem of establishing the mean-field

approximation and having reviewed prior work on this problem in Section 1.2, we are now

prepared to state our main result. For notational convenience in this chapter, we change

units so that the parameter κ in Section 1.2 is replaced by 1
2
κ.

Theorem 2.1.1 (Main result). Let κ ∈ {±1}, and let φ0 ∈ H2(R) with ‖φ0‖L2(R) = 1. Then

there exists an absolute constant C > 0 such that for every N ∈ N and k ∈ {1, . . . , N},

Tr1,...,k

∣∣∣γ(k)
N (t)− |φ(t)⊗k〉 〈φ(t)⊗k|

∣∣∣ ≤ C
√
|t|k

(
‖φ0‖2

H1(R)

N1/3
+
‖φ0‖2

H2(R)

N1/2

)1/2

e
C‖φ0‖2

H2(R)
|t|
, ∀t ∈ R,

(2.1.1)

where γ
(k)
N is the k-particle reduced density matrix defined in (1.2.8) and φ is the unique

solution to the cubic NLS (1.2.11) in C0
t (R;H2

x(R)).1

Our Theorem 2.1.1 establishes the convergence to the mean-field limit (1.2.12) for

the LL model with an explicit rate of convergence which holds for arbitrary lengths of time

1It is textbook that the 1D cubic NLS is globally well-posed in the class C0
tH

2
x of functions which are

continuous in time values in H2(R). For instance, see [13] and [92].

26



in both the repulsive and attractive settings. The H2 regularity assumption on the initial

datum φ0 is consistent with the assumption of Ammari and Breteaux [6]. Additionally, an

examination of the argument in Section 2.4 and Section 2.5 shows that if we replace the

Hamiltonian HN in (1.2.2) with the “regularized Hamiltonian”

HN,σ :=
N∑
i=1

−∆i +
κ

N

∑
1≤i<j≤N

VN(Xi −Xj), κ ∈ {±1}, (2.1.2)

where V is a short-range potential satisfying certain regularity conditions and VN := NσV (Nσ·),

for some fixed σ ∈ (0,∞), then for any T > 0 fixed,

∀k ∈ N, lim
N→∞

sup
0≤|t|≤T

Tr
∣∣∣γ(k)
N,σ(t)− |φ(t)⊗k〉 〈φ(t)⊗k|

∣∣∣ = 0, (2.1.3)

where γ
(k)
N,σ is the k-particle reduced density matrix associated to the Schrödinger problem

obtained by replacing HN in (1.2.4) with HN,σ. One can extract a rate of convergence for

(2.1.3) which tends to the rate (2.1.1) as σ →∞.

We now comment on the proof of Theorem 2.1.1 and highlight the major difficulties

and differences from existing work. Inspired by the method of Pickl [76, 77, 78] and the

refinement of this method developed by Knowles and Pickl [46] for derivation of the Hartree

equation2 in the mean-field limit, our argument is based on an energy-type estimate for a

functional βN of the solution ΦN to equation (1.2.4), which gives a weighted count of the

number of “bad particles” in the system at time t which are not in the state φ(t), where φ

2A function φ : R × Rd satisfies the Hartree equation if (i∂t + ∆)φ = (V ∗ |φ|2)φ, where V is a chosen
locally integrable function. The cubic NLS (1.2.11) may be viewed as the special case of the Hartree equation
with V = δ.
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solves the cubic NLS (1.2.11). The functional βN takes the form

βN(t) :=
〈

ΦN(t)
∣∣∣n̂N(t)ΦN(t)

〉
L2(RN )

=
N∑
k=0

√
k

N
〈ΦN(t)|Pk(t)ΦN(t)〉L2(RN ) , ∀t ∈ R,

(2.1.4)

where ΦN is the solution to (1.2.4) and Pk(t) is the projector mapping a wave function

onto the subspace of L2
sym(RN) of functions corresponding to k of the particles not being in

the state φ(t). See (2.4.4) and more generally Section 2.4.1 for the precise definition and

properties of these projectors. The main estimate for βN is given by Proposition 2.1.2 below.

To state the proposition, we first introduce some notation. Let EΦ
N denote the energy per

particle of the N -body system (1.2.4), which is defined by

EΦ
N(t) :=

1

N
〈ΦN(t)|HNΦN(t)〉L2(RN ) = ‖∇1ΦN(t)‖2

L2(RN ) +
κ(N − 1)

2N
‖ tr1=2 ΦN(t)‖2

L2(RN−1),

(2.1.5)

where the ultimate equality follows from integration by parts and the symmetry (1.2.3). Let

Eφ denote the cubic NLS energy, which is defined by

Eφ(t) := ‖∇φ(t)‖2
L2(R) +

κ

2
‖φ(t)‖4

L4(R). (2.1.6)

Above, we have used the notation tri=j to denote the trace to the hyperplane {xN ∈ RN :

xi = xj}. Note that both EΦ
N and Eφ are independent of time by conservation of energy for

equations (1.2.4) and (1.2.11):

EΦ
N(t) = ‖∇1ΦN,0‖2

L2(RN ) +
κ(N − 1)

2N
‖ tr1=2 ΦN,0‖2

L2(RN−1), (2.1.7)

Eφ(t) = ‖∇φ0‖2
L2(R) +

κ

2
‖φ0‖4

L4(R). (2.1.8)
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Proposition 2.1.2 (Evolution of βN). Let κ ∈ {±1}. Then there exists an absolute constant

C > 0, such that for every N ∈ N, there exists a continuous function AN : [0,∞) → [0,∞)

such that

βN(t) ≤ AN(|t|)eC‖φ0‖
2
H2(R)

|t|
, ∀t ∈ R, (2.1.9)

where AN satisfies the bound

AN(t) ≤ βN(0) + C|t|

(
‖φ0‖2

H1(R)

N1/3
+
‖φ0‖2

H2(R)

N1/2
+ (EΦ

N − Eφ)‖φ0‖2
H1(R)

)
, ∀t ∈ R.

(2.1.10)

Remark 2.1.3. An examination of the argument in Section 2.5 for obtaining Theorem 2.1.1

from Proposition 2.1.2 shows that we have propagation of chaos for any sequence of initial

wave functions ΦN,0 ∈ L2
sym(RN) such that

lim
N→∞

βN(0) = 0 and lim
N→∞

EΦ
N − Eφ = 0. (2.1.11)

To prove Proposition 2.1.2, we proceed by a Gronwall-type argument. Differentiating

βN with respect to time and performing some simplications, we find that we need to estimate

the following three terms:

Term1 :=
〈

ΦN

∣∣∣p1p2

[
V φ

1 , n̂N

]
q1p2ΦN

〉
L2
xN

(RN )
, (2.1.12)

Term2 :=
〈

ΦN

∣∣∣q1p2

[
(N − 1)V12 −NV φ

2 , n̂N

]
q1q2ΦN

〉
L2
xN

(RN )
, (2.1.13)

Term3 := 〈ΦN |p1p2[(N − 1)V12, n̂N ]q1q2ΦN〉L2
xN

(RN ) , (2.1.14)

where we have used the notation V12 := δ(X1 − X2) and V φ
j := |φ(Xj)|2 and we remind

the reader that [·, ·] denotes the commutator. V12(q1q2ΦN) and V12(n̂Nq1q2ΦN), similarly

for the other terms, should be interpreted as elements of H−1(RN) and the inner product
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as a duality pairing. Here, pj is the rank-one projector |φ〉 〈φ| acting in the xj-variable,

and qj = 1N − pj, where 1N is the identity operator on L2(RN) (see Section 2.4.1 for more

details). As Term3 is the most difficult case in the analysis and where the existing arguments

in the literature break down, we focus on it.

By expanding the commuator in the definition of Term3 and using Lemma 2.4.7 to

shift the projectors Pk in the definition of n̂N (see Definition 2.4.4), we reduce to bounding

the expression ∣∣∣〈ΦN |p1p2V12q1q2ν̂NΦN〉L2
xN

(RN )

∣∣∣ , (2.1.15)

where ν̂N =
∑N

k=0 νN(k)Pk is a time-dependent operator on L2
sym(RN) such that the coeffi-

cients satisfy νN(k) . n−1
N (k). See (2.4.68) for the precise definition of νN and ν̂N . To obtain

an acceptable bound for our Gronwall argument, we need to produce an operator n̂N
2, so

that

n̂N
2ν̂N . n̂N . (2.1.16)

In [46], Knowles and Pickl had to contend with an expression similar to Term3 but

with a much more regular potential V , which satisfies certain integrability assumptions of

the form V ∈ Lp0 + L∞. In order to simplify the comparison, we assume that V ∈ Lp0 . To

deal with their analogue of (2.1.15), they split the potential into its “regular” and “singular”

parts by making an N -dependent decomposition of the form

Vreg := V 1{|V |≤Nσ}, Vsing := V 1{V |>Nσ}, (2.1.17)

where 1{·} denotes the indicator function for the set {·} and σ ∈ (0, 1) is a parameter to be

optimized at the end. For the singular part, they express the potential as the divergence of
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a vector field,

V = ∇ · ξ, (2.1.18)

and integrate by parts . Crucially, their integrability assumption implies that ξ ∈ L2(RN)

with L2 norm O(N−δ), for some δ > 0, which is necessary to close their estimate. For the

regular part, the important idea is to exploit the symmetry (1.2.3) of the wave function,

since the operator norm of p1p2V12q1q2 is much smaller on the bosonic subspace L2
sym(RN)

than on the full space L2(RN). As the argument is a bit involved, we only comment that it

importantly requires V 2
reg to be integrable.

For V = δ(x), Knowles and Pickl’s argument described above breaks down. While

we have the identity

δ(x) =
1

2
∇ sgn(x), (2.1.19)

the signum function is only in L∞, not in L2 as their singular-part argument requires. Ad-

ditionally, since δ is only a distribution, we cannot assign meaning to δ2 in the regular part

of their argument. In fact, the regular part of their argument is formally vacuous for the δ

potential.

To overcome the difficulties stemming from the lack of integrability of the δ po-

tential, we introduce a new short-range approximation argument as follows. We make an

N -dependent mollification of the potential by setting

Vσ(x) := NσṼ (Nσx), ∀x ∈ R, (2.1.20)

where σ ∈ (0, 1), 0 ≤ Ṽ ≤ 1, Ṽ ∈ C∞c (R) is even, and
∫
R dxṼ (x) = 1. By the triangle
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inequality, we have∣∣∣〈ΦN |p1p2V12q1q2ν̂NΦN〉L2
xN

(RN )

∣∣∣ ≤ ∣∣∣〈ΦN |p1p2(V12 − Vσ,12)q1q2ν̂NΦN〉L2
xN

(RN )

∣∣∣
+
∣∣∣〈ΦN |p1p2Vσ,12q1q2ν̂NΦN〉L2

xN
(RN )

∣∣∣ . (2.1.21)

Combining the scaling relation ∫
R
dx|x|1/2Vσ(x) ∼ N−σ/2 (2.1.22)

with fact that the wave function ΦN is 1
2
-Hölder-continuous in a single particle variable by

conservation of mass and energy together with Sobolev embedding (see Lemma 2.2.3), we

can estimate∣∣∣〈ΦN |p1p2(V12 − Vσ,12)q1q2ν̂NΦN〉L2
xN

(RN )

∣∣∣ . N−σ + ‖φ‖2

C
1/2
x (R)

‖φ‖2
H1
x(R)βN

+ ‖φ‖2

C
1/2
x (R)

‖∇1q1ΦN‖2
L2
xN

(RN ).
(2.1.23)

Note that by the Sobolev embedding H1(R) ⊂ C1/2(R) together with conservation of mass

and energy for the cubic NLS (1.2.11), we have that ‖φ‖
L∞t (R;C

1/2
x (R))

. ‖φ0‖H1(R). We can

estimate the second term in the right-hand side of (2.1.21) by proceeding similarly as to the

aforementioned Knowles-Pickl argument for the regular part Vreg of the potential. While

‖Vσ‖L2(R) ∼ Nσ/2, we are able to extract sufficient decay in N from other factors to absorb

this growth in N , provided we appropriately choose σ.

To close the proof of Proposition 2.1.2, we need to control the auxiliary quantity

‖∇1q1ΦN‖L2
xN

(RN ) in terms of βN and other quantities which tend to zero as N → ∞. The

desired control is given by Proposition 2.4.10. Our argument exploits the conservation of

mass and energy together with the identity (2.1.19) and integration by parts (cf. [46, Lemma

4.6]). Crucially, sgn ∈ L∞ so that the multiplication operator sgn(X1 −X2) is bounded on

L2(RN).
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Strictly speaking, we do not work in Section 2.4 directly with the wave function ΦN

and with the functional βN but rather with an approximation obtained by replacing the

Hamiltonian HN in the Schrödinger problem (1.2.4) with the mollified Hamiltonian

HN,ε :=
N∑
i=1

−∆i +
κ

N

∑
1≤i<j≤N

Vε(Xi −Xj), κ ∈ {±1}, (2.1.24)

where Vε := ε−1Ṽ (·/ε), for ε > 0 and Ṽ as above. This step is purely technical to deal

with issues of operator domains involved in differentiating the functional βN and to avoid

awkward notation involving distributions. Since HN,ε → HN , as ε → 0+, in norm-resolvent

sense (see Section 2.3.3), we are able to obtain Proposition 2.1.2 from an analogous estimate

for the mollified version of βN (see (2.4.19) and Proposition 2.4.9 and Proposition 2.4.10).

2.1.2 Organization of the Chapter

We now comment on the organization of the chapter. Section 2.2 is devoted to basic

notation and preliminary facts from functional analysis used extensively in the chapter. We

begin the section with an index (see Table 2.1) of the frequently used notation in the chapter.

Section 2.2.1 introduces the spaces of functions and distributions used in the body of the

chapter, and Section 2.2.2 contains some basic estimates for the traces of Sobolev functions,

which we use in Section 2.3 and Section 2.4.

Section 2.3 gives the rigorous construction of the self-adjoint operator HN correspond-

ing to the expression (1.2.2). The main result is Proposition 2.3.4. As the construction

proceeds by means of quadratic forms, we first review such forms in Section 2.3.1 and then

prove Proposition 2.3.4 in Section 2.3.2. We close the section by establishing a short-range

approximation to HN in Section 2.3.3, which is used in Section 2.4. While most of the results
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of Section 2.2 seem to be folklore in the math physics community and have appeared in other

forms elsewhere in the literature (for instance, see [6, Proposition 3.3] for a presentation in

terms of the Fock space formalism), we believe that our presentation is new.

In Section 2.4, we prove Proposition 2.1.2, which is the main estimate for the func-

tional βN and the main ingredient for the proof of Theorem 2.1.1. As this section constitutes

the bulk of the paper, we have divided it into several subsections corresponding to the steps in

the proof of Proposition 2.1.2. In Section 2.4.1, we introduce the time-dependent projectors

which underlie the definition of the functional βN . In Section 2.4.2, we approximate the func-

tional βN with a functional βN,ε obtained by regularizing the Hamiltonian HN (see (2.4.19))

and prove a preliminary estimate for βN,ε, which is Proposition 2.4.9. In Section 2.4.3, we

prove Proposition 2.4.10, which gives an estimate in terms of βN,ε for an auxiliary quantity

appearing in Proposition 2.4.9. In Section 2.4.4, we send the regularization parameter ε to

zero and obtain Proposition 2.1.2 from Proposition 2.4.9 and Proposition 2.4.10.

Lastly, in Section 2.5, we show how to obtain Theorem 2.1.1 from Proposition 2.1.2.

As the arguments used in this step are by now well-known, we only sketch the details.
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2.2 Preliminaries

We include Section 2.2, located at the end of the chapter, as a table of the notation

frequently used in the chapter with an explanation for the notation and/or a reference to

where the definition is given.

2.2.1 Function Spaces

Fix N ∈ N. We denote the Schwartz space on RN by S(RN) and the dual space of

tempered distributions on RN by S ′(RN). The subspace of S(RN) consisting of functions

with compact support is denoted by C∞c (RN). Given a Schwartz function Φ ∈ S(RN) and a

tempered distribution Υ ∈ S ′(RN), we denote their duality pairing by

〈Φ,Υ〉S(RN )−S′(RN ) := Υ(Φ). (2.2.1)

For 1 ≤ p ≤ ∞, we define Lp(RN) to be the usual Banach space of equivalence classes of

measurable functions Φ : RN → C with respect to the norm

‖Φ‖Lp(RN ) :=

(∫
RN
dxN |Φ(xN)|p

)1/p

(2.2.2)

with obvious modification when p =∞. We denote the inner product on L2(RN) by

〈Φ|Ψ〉L2(RN ) :=

∫
RN
dxNΦ(xN)Ψ(xN). (2.2.3)

Note that we use the physicist’s convention that the inner product is complex linear in the

second entry. For s ∈ R, we define the Sobolev space Hs(RN) to be the completion of the

space S(RN) with respect to the norm

‖Φ‖Hs(RN ) :=

(∫
RN
dξ

N
|F(Φ)(ξ

N
)|2
)1/2

, (2.2.4)
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where F denotes the Fourier transform defined via the convention

F(Φ)(ξ
N

) :=

∫
RN
dxNΦ(xN)e−ixN ·ξN . (2.2.5)

We can anti-isomorphically identify H−s(RN) with the dual of (Hs(RN))∗ by

〈Φ,Υ〉Hs(RN )−H−s(RN ) :=
〈
〈∇N〉−sΥ

∣∣〈∇N〉sΦ
〉
L2(RN )

, (2.2.6)

where 〈x〉 := (1 + |x|2)1/2 is the Japanese bracket and 〈∇N〉 is the Fourier multiplier with

symbol 〈ξ
N
〉. For γ ∈ (0, 1), we denote the Hölder norm on RN of exponent γ by

‖Φ‖Ċγ(RN ) := sup
x,y∈RN
x 6=y

|Φ(x)− Φ(y)|
|x− y|γ

, ‖Φ‖Cγ(RN ) := ‖Φ‖L∞(RN ) + ‖Φ‖Ċγ(RN ). (2.2.7)

Remark 2.2.1. In the sequel, we generally omit the underlying domain for norms (e.g. we

write ‖ · ‖Lp instead of ‖ · ‖Lp(RN )), as the domain will be clear from context. Similarly, we

omit the underlying domain for the inner product 〈·|·〉 and for the duality pairing 〈·, ·〉. To

avoid any confusion, we generally reserve upper-case Greek letters (e.g. Φ,Ψ) for functions or

distributions RN → C and lower-case Greek letters (e.g. ϕ, ψ) for functions or distributions

R→ C. To emphasize the variable with respect to which a norm is taken, we use a subscript

(e.g. C0
t , L2

x, or L2
xN

).

2.2.2 Some Trace Estimates

In this subsection, we establish some basic estimates pertaining to the trace of a

Sobolev function. We use these trace estimates for the rigorous construction of the LL

Hamiltonian (recall expression (1.2.2)) in Section 2.3 and in the proof of Proposition 2.1.2

in Section 2.4.
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For a Schwartz function Φ ∈ S(RN) and indices 1 ≤ i < j ≤ N , we let Φi=j denote

the restriction of Φ to the hyperplane {xN ∈ RN : xi = xj}. We recall from elementary

functional analysis that for any s > 1/2, there is a unique bounded linear map

tri=j : Hs(RN)→ Hs− 1
2 (RN−1), ‖ tri=j Φ‖

Hs− 1
2 (RN−1)

. ‖Φ‖Hs(RN ) (2.2.8)

with the property that for any Φ ∈ S(RN),

tri=j(Φ) = Φi=j. (2.2.9)

For the next lemma, we first recall the elementary distributional identity

δ(x) =
1

2
∇ sgn(x), ∀x ∈ R. (2.2.10)

Lemma 2.2.2 (H1 Trace estimate). Let N ∈ N. For any 1 ≤ i < j ≤ N ,∣∣∣〈tri=j Φ|tri=j Ψ〉L2(RN−1)

∣∣∣ ≤ 1

2

(
‖∇iΦ‖L2(RN )‖Ψ‖L2(RN ) + ‖Φ‖L2(RN )‖∇iΨ‖L2(RN )

)
, ∀Φ,Ψ ∈ H1(RN).

(2.2.11)

Consequently, if Φ ∈ H1(RN), then we can define δ(Xi −Xj)Φ := Φδ(Xi −Xj) ∈ H−1(RN)

by

〈Ψ, δ(Xi −Xj)Φ〉H1(RN )−H−1(RN ) := 〈tri=j Ψ, tri=j Φ〉L2(RN−1)−L2(RN−1), (2.2.12)

and

‖δ(Xi −Xj)Φ‖H−1(RN ) ≤ ‖Φ‖H1(RN ). (2.2.13)

Proof. By considerations of symmetry, it suffices to consider (i, j) = (1, 2). Let Φ,Ψ ∈

S(RN). Then by definition of the product distribution δ(X1−X2)Φ ∈ S ′(RN), we have that

〈Ψ, δ(X1 −X2)Φ〉S−S′ = 〈Ψ1=2,Φ1=2〉L2−L2 . (2.2.14)
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Substituting the distributional identity (2.2.10) into the left-hand side of the preceding equal-

ity and applying the definition of the distributional derivative together with the product rule,

we obtain that

〈Ψ1=2,Φ1=2〉L2−L2 = −1

2

(
〈∇1Ψ, sgn(X1 −X2)Ψ〉L2−L2 + 〈Ψ, sgn(X1 −X2)∇1Φ〉L2−L2

)
.

(2.2.15)

Taking absolute values of both sides, applying the triangle inequality, followed by Cauchy-

Schwarz, we obtain that

|〈Ψ1=2,Φ1=2〉L2−L2| ≤ 1

2
(‖∇1Ψ‖L2‖Φ‖L2 + ‖Ψ‖L2‖∇1Φ‖L2). (2.2.16)

The conclusion (2.2.11) then follows from density of S(RN) ⊂ H1(RN) and the continuity of

the map tr1=2 : H1(RN)→ H1/2(RN−1).

Next, given Φ ∈ H1(RN), we define the linear functional δ(X1−X2)Φ on H1(RN) by

extending the definition of the product distribution for Φ ∈ S(RN). Then by Cauchy-Schwarz

and the estimate (2.2.16),

sup
‖Ψ‖H1=1

|〈Ψ, δ(X1 −X2)Φ〉H1−H−1 | = sup
‖Ψ‖H1=1

|〈tr1=2 Ψ, tr1=2 Φ〉L2−L2 |

≤ sup
‖Ψ‖H1=1

1

2
(‖∇1Ψ‖L2‖Φ‖L2 + ‖Ψ‖L2‖∇1Φ‖L2)

≤ ‖Φ‖H1 , (2.2.17)

which by duality, implies the desired conclusion.

We also record here a partial Hölder continuity result for functions in H1(RN) used

in Section 2.4.
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Lemma 2.2.3 (Partial Hölder continuity). Let N ∈ N. For any i ∈ {1, . . . , N}, we have

the estimate

‖Φ‖
L2
(x1;i−1,xi+1;N )

(RN−1;Ċ
1/2
xi

(R))
≤ ‖∇iΦ‖L2(RN ), ∀Φ ∈ S(RN). (2.2.18)

Consequently, every element of H1(RN) has a modification belonging to L2
(x1;i−1,xi+1;N )(RN−1;C

1/2
xi (R)).

Proof. By considerations of symmetry, it suffices to consider i = 1. Let Φ ∈ S(RN), and fix

x2;N ∈ RN−1. Define the function

φx2;N : R→ C, φx2;N (x) := Φ(x, x2;N), ∀x ∈ R. (2.2.19)

Applying the fundamental theorem of calculus to φx2;N followed by Cauchy-Schwarz, we

obtain that

|φx2;N (x)− φx2;N (y)| ≤ |x− y|1/2‖∇φx2;N‖L2(R), ∀x, y ∈ R, (2.2.20)

which implies that ‖φx2;N‖Ċ1/2(R) ≤ ‖∇φx2;N‖L2(R). Therefore, we see from the Fubini-Tonelli

theorem that∫
RN−1

dx2;N‖φx2;N‖
2
Ċ1/2(R)

≤
∫
RN−1

dx2;N‖∇φx2;N‖
2
L2(R) = ‖∇1Φ‖2

L2(RN ). (2.2.21)

The conclusion of the proof then follows from the density of S(RN) ⊂ H1(RN).

2.3 Construction of the Hamiltonian HN

In this section, we give the rigorous construction of the Hamiltonian HN , which we

recall from (1.2.2) corresponds to the expression

N∑
i=1

−∆i +
κ

N

∑
1≤i<j≤N

δ(Xi −Xj), κ ∈ {±1}. (2.3.1)
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The construction requires some care due to the presence of the δ pair potential. The main

ingredients in the construction are the KLMN theorem, which we recall in Proposition 2.3.3

below, and the trace estimate of Lemma 2.2.2. Before proceeding to the construction, we need

to introduce some terminology from the theory of unbounded operators on Hilbert spaces.

Our presentation follows that of Reed and Simon [80, 79]. In what follows, (H, 〈·|·〉H) is a

separable complex Hilbert space.

2.3.1 Quadratic Forms

We begin with the definition of and basic facts about quadratic forms.

Definition 2.3.1 (Quadratic form). A quadratic form is a sesquilinear map q : Q(q) ×

Q(q) → C, where Q(q) is a dense subset of H called the form domain. If q(ϕ, ψ) = q(ψ, ϕ)

for all ϕ, ψ ∈ Q(q), then we say that q is symmetric. If q(ϕ, ϕ) ≥ 0 for every ϕ ∈ H, then we

say that q is positive, and if there exists a constant M > 0 such that q(ϕ, ϕ) ≥ −M‖ϕ‖2
H,

then we say that q is semibounded.3

Definition 2.3.2 (Closed quadratic forms). Let q : Q(q) × Q(q) → C be a semibounded

quadratic form with constant M > 0 such that

q(ψ, ψ) ≥ −M‖ψ‖2
H, ∀ψ ∈ Q(q). (2.3.2)

We say that q is closed if Q(q) is complete under the norm

‖ψ‖q :=
√
q(ψ, ψ) + (M + 1)‖ψ‖2

H, ∀ψ ∈ Q(q). (2.3.3)

3If the quadratic form q is semibounded, then it is in fact symmetric.
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If q is closed and D ⊂ Q(q) is dense in Q(q) with respect to the norm ‖ · ‖q, then we call D

a form core for q.

Let A be a self-adjoint operator on H. We define a subset of H by

Q(A) := {ψ ∈ H : ‖|A|1/2ψ‖H <∞}. (2.3.4)

We can then define the quadratic form q associated to A by setting Q(q) := Q(A) and

q : Q(q)×Q(q)→ C, q(ϕ, ψ) :=
〈
|A|1/2U∗ϕ

∣∣|A|1/2ψ〉H , ∀ϕ, ψ ∈ H, (2.3.5)

where A = U |A| is the polar decomposition for A (see [80, Theorem VIII.32]). In the sequel,

we agree to write 〈ϕ|Aψ〉H for the quadratic form associated to A, even though ψ ∈ Q(A)

may not belong to Dom(A). We hope this abuse of notation causes no confusion for the

reader.

We now are prepared to state the KLMN theorem.

Proposition 2.3.3 (KLMN theorem, [79, Theorem X.17]). Let A be a positive self-adjoint

operator on H with domain D(A). Suppose that β : Q(A) × Q(A) → C is a symmetric

quadratic form such that there exist constants a < 1 and b ∈ R so that

|β(ψ, ψ)| ≤ a 〈ψ|Aψ〉H + b 〈ψ|ψ〉H , ∀ψ ∈ D(A). (2.3.6)

Then there exists a unique self-adjoint operator C on H with Q(C) = Q(A) and

〈ϕ|Cψ〉H = 〈ϕ|Aψ〉H + β(ϕ, ψ), ∀ϕ, ψ ∈ Q(C). (2.3.7)

Moreover, C is bounded below by −b, and any domain of essential self-adjointness for A is

a form core for C.
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2.3.2 Existence of HN

We now use Proposition 2.3.3 and Lemma 2.2.2 to realize HN as a self-adjoint operator

on L2
sym(RN). Let ∆N :=

∑N
i=1 ∆i denote the Laplacian on RN . It is easy to check that

−∆N is a positive, self-adjoint operator on H2
sym(RN) and that Q(−∆N) = H1

sym(RN). We

then have the following proposition.

Proposition 2.3.4 (Existence of HN). Let N ∈ N, and let κ ∈ {±1}. Then there exists a

unique self-adjoint operator HN on L2
sym(RN) with form domain Q(HN) = H1

sym(RN) and

such that

〈Φ|HNΨ〉L2(RN ) = 〈Φ|−∆NΨ〉L2(RN )+
κ

N

∑
1≤i<j≤N

〈tri=j Φ|tri=j Ψ〉L2(RN−1) , ∀Φ,Ψ ∈ H1
sym(RN).

(2.3.8)

Moreover, HN is bounded from below by 0, if κ = 1, and − (N−1)
2

, if κ = −1, and any domain

of essential self-adjointness for ∆N is a form core for HN .

Proof. We want to use Proposition 2.3.3. To this end, we let

A := −∆N : H2
sym(RN)→ L2

sym(RN), (2.3.9)

and we define the quadratic form

β : Q(A)×Q(A)→ C, β(Φ,Ψ) :=
κ

N

∑
1≤i<j≤N

〈tri=j Φ|tri=j Ψ〉 , (2.3.10)

which is evidently symmetric. Using the symmetry of Φ,Ψ under exchange of particle labels,

we see that

β(Φ,Ψ) =
κ(N − 1)

2
〈tr1=2 Φ|tr1=2 Ψ〉 . (2.3.11)
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By Lemma 2.2.2 and Young’s inequality for products, we have that

|〈tr1=2 Φ|tr1=2 Φ〉| ≤ ‖∇1Φ‖L2‖Φ‖L2 ≤ 1

2

(
‖∇1Φ‖2

L2 + ‖Φ‖2
L2

)
. (2.3.12)

Since by another application of the symmetry of Φ,

〈Φ|−∆NΦ〉 = N‖∇1Φ‖2
L2 , (2.3.13)

we obtain that

|β(Φ,Φ)| ≤ 1

2
〈Φ|−∆NΦ〉+

(N − 1)

2
〈Φ|Φ〉 . (2.3.14)

The desired conclusion then follows from application of Proposition 2.3.3.

Remark 2.3.5. An examination of the proof of the KLMN theorem in [79] shows that the

domain of HN consists of all Φ ∈ H1
sym(RN) such that the distribution(

−∆N +
κ

N

∑
1≤i<j≤N

δ(Xi −Xj)

)
Φ ∈ H−1(RN) (2.3.15)

may be (uniquely) identified with an element Ψ ∈ L2
sym(RN), which we denote by HNΦ.

With a little more work, one can show that Dom(HN) consists of all functions

Φ ∈ H1
sym(RN) ∩H2

sym(RN \
⋃

1≤i<j≤N

{xN ∈ RN : xi = xj}) (2.3.16)

such that

lim
xi−xj=0+

(∇i −∇j)Φ− lim
xi−xj=0−

(∇i −∇j)Φ =
κ

2N
tri=j Φ. (2.3.17)

Note for 1 ≤ i < j ≤ N and almost every (x1;i−1, xi+1;j−1, xj+1;N) ∈ RN−2 fixed, ∇iΦ and

∇jΦ are continuous away from the hyperplane {xN ∈ RN : xi = xj} by Sobolev embedding.
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2.3.3 Approximation of HN

We close this section with some approximation results obtained from mollifying the

δ pair potential in the expression (1.2.2) for HN . These approximation results are used

extensively in Section 2.4.

More precisely, let Ṽ ∈ C∞c (R) be an even function such that 0 ≤ Ṽ ≤ 1,
∫
R dxṼ (x) =

1, and

Ṽ (x) =

{
1, |x| ≤ 1

4

0, |x| ≥ 1
2

. (2.3.18)

For ε > 0, set Vε(x) := ε−1V (x/ε). It is straightforward to check that the operator

HN,ε := −∆N +
κ

N

∑
1≤i<j≤N

Vε(Xi −Xj), κ ∈ {±1} (2.3.19)

is self-adjoint on H2
sym(RN). So by Stone’s theorem, HN,ε generates a strongly continuous

one-parameter unitary group {eitHN,ε}t∈R. We set Φε
N := e−itHN,εΦN,0, where ΦN,0 is the same

initial datum as in the Cauchy problem (1.2.4), so that Φε
N is the unique global solution in

C0
t (R;L2

xN
(RN)) to the Schrödinger equation{

i∂tΦ
ε
N = HN,εΦ

ε
N ,

Φε
N(0) = ΦN,0

. (2.3.20)

Given that Vε → δ in distribution, as ε→ 0, we expect that HN,ε → HN in some sense. The

sense in which this convergence holds is that of norm-resolvent convergence.

Definition 2.3.6 (Norm-resolvent convergence). Let {An}∞n=1 be a sequence of self-adjoint

operators on H. Then we say that An converges to A in norm-resolvent sense if Rλ(An)→

Rλ(A) in norm, for every λ with Imλ 6= 0, where Rλ denotes the resolvent.
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Lemma 2.3.7. Fix N ∈ N. We have that HN,ε → HN in norm-resolvent sense, as ε→ 0+.

Consequently, eitHN,ε → eitHN strongly, as ε→ 0+, uniformly on compact intervals of time.

Proof. Fix κ ∈ {±1}. The second assertion regarding convergence of unitary groups follows

from [44, Chapter 9, Theorem 2.16], so we focus on the first assertion. To show that HN,ε →

HN in norm-resolvent sense, it suffices by [79, Theorem VII.25] to show that

lim
ε→0+

‖HN,ε −HN‖H1→H−1 = 0, (2.3.21)

where ‖ · ‖H1→H−1 denotes the operator norm for maps H1(RN) → H−1(RN). To see that

(2.3.21) holds, we observe that for any Φ ∈ H1(RN),

(HN −HN,ε)Φ =
κ

N

∑
1≤i<j≤N

(δ(Xi −Xj)− Vε(Xi −Xj))Φ ∈ H−1(RN). (2.3.22)

Since H−1(RN) is isomorphic to (H1(RN))∗ and by considerations of symmetry, it suffices to

estimate∣∣〈Ψ, (δ(X1 −X2)− Vε(X1 −X2))Φ〉H1−H−1

∣∣
=

∣∣∣∣∫
RN−1

dx2;N(tr1=2 Ψ)(x2;N)(tr1=2 Φ)(x2;N)−
∫
RN
dxNVε(x1 − x2)Ψ(xN)Φ(xN)

∣∣∣∣ ,
for every Ψ ∈ H1(RN) with ‖Ψ‖H1 ≤ 1. By the density of S(RN) in H1(RN), we may assume

without loss of generality that Φ,Ψ are Schwartz. By Fubini-Tonelli,∫
RN
dxNVε(x1 − x2)Ψ(xN)Φ(xN) =

∫
RN−1

dx2;N

∫
R
dx1Vε(x1 − x2)Ψ(xN)Φ(xN), (2.3.23)

and since
∫
R dxVε(x) = 1, it follows from translation invariance of Lebesgue measure that∫

RN−1

dx2;N(tr1=2 Ψ)(x2;N)(tr1=2 Φ)(x2;N)

=

∫
RN−1

dx2;N

∫
R
dx1Vε(x1 − x2)Ψ(x2, x2;N)Φ(x2, x2;N).

(2.3.24)
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Using the algebra property of Hölder norms followed by the dilation invariance of Lebesgue

measure, we see that∣∣∣∣∫
R
dx1Vε(x1 − x2)

(
Ψ(x2, x2;N)Φ(x2, x2;N)−Ψ(x1, x2;N)Φ(x1, x2;N)

)∣∣∣∣
. ε1/2‖Ψ(·, x2;N)‖C1/2‖Φ(·, x2;N)‖C1/2 . (2.3.25)

Integrating both sides of the preceding inequality over RN−1 with respect to x2;N then ap-

plying Cauchy-Schwarz, we obtain that∫
RN−1

dx2;N

∣∣∣∣∫
R
dx1Vε(x1 − x2)

(
Ψ(x2, x2;N)Φ(x2, x2;N)−Ψ(x1, x2;N)Φ(x1, x2;N)

)∣∣∣∣
. ε1/2‖Ψ‖

L2
x2;N

C
1/2
x1

‖Φ‖
L2
x2;N

C
1/2
x1

. ε1/2‖Φ‖H1 , (2.3.26)

where the ultimate inequality follows from Lemma 2.2.3 and the assumption that ‖Ψ‖H1 ≤ 1.

We therefore conclude that

∣∣〈Ψ, (δ(X1 −X2)− Vε(X1 −X2))Φ〉H1−H−1

∣∣ . ε1/2‖Φ‖H1 , (2.3.27)

which implies that ‖δ(X1−X2)−Vε(X1−X2)‖H1→H−1 . ε1/2. It then follows from symmetry

that

lim sup
ε→0+

‖HN,ε −HN‖H1→H−1 . lim sup
ε→0+

Nε1/2 = 0, (2.3.28)

which completes the proof of the lemma.

We remark that one can also prove the desired norm-resolvent convergence by modi-

fying the argument from [5, Subsubsection I.3.2].
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2.4 Control of βN

2.4.1 Projectors

As the goal of Section 2.4 is to prove Proposition 2.1.2, we first define the projectors

underlying the definition of the functional βN in the statement of the proposition. Recall

that φ ∈ C0
t (R;H2

x(R)) is the unique solution to the cubic NLS (1.2.11) with initial datum

φ0 ∈ H2(R). We define the projectors

p(t) := |φ(t)〉 〈φ(t)| , q(t) := 1− p(t), ∀t ∈ R, (2.4.1)

where 1 denotes the identity operator on L2(R). For N ∈ N and j ∈ {1, . . . , N}, we define

pj := 1⊗j−1 ⊗ p⊗ 1⊗N−j, qj := 1N − pj = 1⊗j−1 ⊗ q ⊗ 1⊗N−j, (2.4.2)

where 1N = 1⊗N denotes the identity operator on L2(RN). Since 1 = p+ q, it follows that

1N = (p1 + q1) · · · (pN + qN), (2.4.3)

and therefore

1N =
N∑
k=0

Pk, Pk :=
∑

αN∈{0,1}N
|αN |=k

N∏
j=1

p
1−αj
j q

αj
j . (2.4.4)

We define Pk to be the zero operator on L2(RN) for k ∈ Z\{0, . . . , N}. Important properties

of the operators Pk are the following:

(i) Pk is an orthogonal projector on L2(RN);

(ii) Pk(L
2
sym(RN)) ⊂ L2

sym(RN);

(iii) PkPl = δklPk, where δkl is the Kronecker delta function;
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(iv) pj, qj commute with Pk, for any j ∈ {1, . . . , N} and k ∈ Z.

Remark 2.4.1. Since the function φ : R×R→ C underlying the definition of the projectors

pj, qj is time-dependent, the projector Pk is also time-dependent (i.e. Pk(t) is a projector on

L2
sym(RN) for each t ∈ R). For convenience, we do not emphasize the dependence on time

with our notation in the sequel.

Remark 2.4.2. In the sequel, we frequently use without comment the elementary fact that

pj, qj are self-adjoint and that we have the operator norm identities

‖pj‖L2
xN

(RN )→L2
xN

(RN ) = ‖qj‖L2
xN

(RN )→L2
xN

(RN ) = 1. (2.4.5)

Given a function f : Z→ C, we define the operator

f̂ :=
∑
k∈Z

f(k)Pk =
N∑
k=0

f(k)Pk. (2.4.6)

The reader may check that for f, g : Z → C, we have that f̂ g = f̂ ĝ. Furthermore, since

pj, qj, Pk commute, it follows that f̂ commutes with pj, qj, Pk. Additionally, if f, g are such

that f ≥ g. Then f̂ ≥ ĝ. Indeed, since Pk is an orthogonal projector,

〈Φ|̂(f − g)Φ〉 =
N∑
k=0

〈PkΦ|̂(f − g)PkΦ〉 ≥ 0, ∀Φ ∈ L2(RN). (2.4.7)

If f ≥ 0, then we agree to abuse notation by writing

f−1(k) :=
1

f(k)
1>0(k) and f̂−1 :=

∑
k∈Z

f−1(k)Pk (2.4.8)

with the convention that 0 · ∞ = 0.
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Remark 2.4.3. Since each Pk is time-dependent, as commented in Remark 2.4.1, the oper-

ator f̂ is also time-dependent. Out of convenience, we do not emphasize the dependence on

time with our notation in the sequel.

Definition 2.4.4. Given N ∈ N, we define the functions mN , nN : Z→ [0,∞) by

mN(k) :=
k

N
1≥0(k) and nN(k) :=

√
k

N
1≥0(k), ∀k ∈ Z. (2.4.9)

Letting ΦN denote the solution to the Schrödinger equation (1.2.4) and with the notation

introduced in (2.4.6), we define the time-dependent quantities

αN(t) := 〈ΦN(t)|m̂N(t)ΦN(t)〉L2(RN ) and βN(t) := 〈ΦN(t)|n̂N(t)ΦN(t)〉L2(RN ) , ∀t ∈ R.
(2.4.10)

Remark 2.4.5. Since
∑N

k=0 Pk = 1N , we have that

1

N

N∑
j=1

qj =
1

N

∑
k∈Z

N∑
j=1

qjPk. (2.4.11)

By unpacking the definition of Pk in (2.4.4), the reader can check that
∑N

j=1 qjPk = kPk,

which implies that

1

N

N∑
j=1

qj =
∑
k∈Z

k

N
Pk = m̂N . (2.4.12)

It then follows from the symmetry of the wave function ΦN under exchange of particle labels

that

αN(t) = 〈ΦN(t)|m̂N(t)ΦN(t)〉 =
1

N

N∑
i=1

〈ΦN(t)|qi(t)ΦN(t)〉 = 〈ΦN(t)|q1(t)ΦN(t)〉 , ∀t ∈ R.

(2.4.13)

We now record two technical lemmas from [46] pertaining to the operator m̂N , which

we frequently use in Section 2.4.
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Lemma 2.4.6 ([46, Lemma 3.9]). For any function f : Z→ [0,∞), the following hold:

(i)

‖f̂ 1/2q1ΦN‖2
L2
xN

=
〈

ΦN

∣∣∣f̂ q1ΦN

〉
L2
xN

=
〈

ΦN

∣∣∣f̂ m̂NΦN

〉
L2
xN

, (2.4.14)

(ii)

‖f̂ 1/2q1q2ΦN‖2
L2
xN

=
〈

ΦN

∣∣∣f̂ q1q2ΦN

〉
L2
xN

≤ N

N − 1

〈
ΦN

∣∣∣f̂ m̂N
2ΦN

〉
L2
xN

. (2.4.15)

Given n ∈ N, we define the shift operator

τn : CZ → CZ, (τnf)(k) := f(k + n), ∀k ∈ Z, f ∈ CZ. (2.4.16)

Lemma 2.4.7 ([46, Lemma 3.10]). Let r ∈ N, and let A(r) be a linear operator on L2
sym(Rr).

For i ∈ {1, 2}, let Qi be a projector of the form

Qi = #1 · · ·#r, (2.4.17)

where each # stands for either p or q. Define the linear operator A
(r)
1···r := A(r)⊗1N−r. Then

for any function f : Z→ C, we have that

Q1A
(r)
1···rf̂Q2 = Q1(̂τnf)A

(r)
1···rQ2, (2.4.18)

where n := n2 − n1 and ni is the number of factors q in Qi, for i ∈ {1, 2}.

2.4.2 Evolution of βN,ε

In this subsection, we would like to control the evolution of the quantity βN introduced

in Definition 2.4.4, thereby proving Proposition 2.1.2. As commented in Section 2.1.1 of the
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introduction, rather than work directly with βN , we work with the approximation βN,ε defined

in (2.4.19) below, which is obtained by replacing the N -body Hamiltonian HN constructed in

Proposition 2.3.4 with the mollified Hamiltonian HN,ε from Section 2.3.3. The motivation is

to justify some computations involving questions of operator domains and to avoid awkward

notation involving distributions.

Similarly to αN and βN , we define the time-dependent quantities αN,ε and βN,ε by

αN,ε(t) := 〈Φε
N(t)|m̂N(t)Φε

N(t)〉 and βN,ε(t) := 〈Φε
N(t)|n̂N(t)Φε

N(t)〉 , ∀t ∈ R,

(2.4.19)

where Φε
N is the solution to the regularized Schrödinger equation (2.3.20). As a corollary of

Lemma 2.3.7, we obtain that αN,ε → αN and βN,ε → βN uniformly on compact intervals on

time. This result is a consequence of the following more general lemma.

Lemma 2.4.8. Let T > 0, and let f : Z→ C be bounded. For N ∈ N and ε > 0, define the

functions ϑN , ϑN,ε : R→ C by

ϑN(t) :=
〈

Φε
N(t)

∣∣∣f̂(t)Φε
N(t)

〉
and ϑN,ε(t) :=

〈
ΦN(t)

∣∣∣f̂(t)ΦN(t)
〉
, ∀t ∈ R. (2.4.20)

Then for N fixed,

lim
ε→0+

sup
|t|≤T
|ϑN,ε(t)− ϑ(t)| = 0. (2.4.21)

Proof. First, observe from the definition (2.4.6) for f̂ that for any ΨN ∈ L2(RN),

‖f̂ΨN‖2
L2
xN

=
N∑
k=0

‖f(k)PkΨN‖2
L2
xN
≤ ‖f‖2

`∞

N∑
k=0

‖PkΨN‖2
L2
xN

= ‖f‖2
`∞‖ΨN‖2

L2
xN
, (2.4.22)
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which implies that ‖f̂‖L2
xN
→L2

xN
≤ ‖f‖`∞ . Now by definition, ΦN = e−itHNΦN,0 and Φε

N =

e−itHN,εΦN,0, so that by the triangle inequality and Cauchy-Schwarz,

|ϑN(t)− ϑN,ε(t)| =
∣∣∣〈e−itHNΦN,0

∣∣∣f̂(t)e−itHNΦN,0

〉
−
〈
e−itHN,εΦN,0

∣∣∣f̂(t)e−itHN,εΦN,0

〉∣∣∣
≤
(
‖e−itHNΦN,0‖L2 + ‖e−itHN,εΦN,0‖L2

)
‖f̂(t)(e−itHN − e−itHN,ε)ΦN,0‖L2

≤ 2‖f‖`∞‖(e−itHN − e−itHN,ε)ΦN,0‖L2 , (2.4.23)

where the ultimate inequality follows from the operator norm bound for f̂ , unitarity of

e−itHN and e−itHN,ε , and ‖ΦN,0‖L2 = 1. The desired conclusion is then immediate from

Lemma 2.3.7.

The goal of this subsection is to prove the following proposition. The reader will

recall that φ is the solution to the cubic NLS (1.2.11).

Proposition 2.4.9. Let κ ∈ {±1}. Then we have the estimate

β̇N,ε(t) .
‖φ(t)‖2

L∞(R)

N
+

1

Nσ
+
‖φ(t)‖2

L4(R)

N (1−σ)/2
+
‖φ(t)‖2

L∞(R)

N δ/2
+N

2(σ−1)+δ
2 + ε1/2‖φ(t)‖2

C1/2(R)

+ ‖φ(t)‖2
C1/2(R)‖φ(t)‖2

H1(R)βN,ε(t) +
(

1 + ‖φ(t)‖2
C1/2(R)

)
‖∇1q1(t)Φε

N(t)‖2
L2(RN ),

(2.4.24)

for every t ∈ R, uniformly in (ε, σ, δ) ∈ (0, 1)3 and N ∈ N.

Proof. By time-reversal symmetry, it is enough to consider t ≥ 0. Using that

φ ∈ C0
t (R;H2

x(R)) ∩ C1
t (R;L2

x(R)) and ΦN,0 ∈ H2(RN) = Dom(HN,ε) (2.4.25)

together with following the argument in [46, Subsubsection 3.3.2, pg. 113], we see that βN,ε

is differentiable with respect to t and its derivative β̇N,ε is given by

β̇N,ε = iκ

〈
Φε
N

∣∣∣∣∣
[

1

N

∑
1≤i<j≤N

Vε,ij −
N∑
i=1

V φ
i , n̂N

]
Φε
N

〉
L2
xN

, (2.4.26)
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where we have introduced the notation

Vε,ij := Vε(Xi −Xj) and V φ
i := |φ(Xi)|2. (2.4.27)

Using the symmetry of Φε
N and n̂N with respect to exchange of particle labels and the

decomposition 1N = (p1 + q1)(p2 + q2), then examining which terms cancel, we see that

β̇N,ε =
iκ

2

〈
Φε
N

∣∣∣[(N − 1)Vε,12 −NV φ
1 −NV

φ
2 , n̂N

]
Φε
N

〉
L2
xN

= Term1 + Term2 + Term3, (2.4.28)

where

Term1 := 2 Re

{
iκ
〈

Φε
N

∣∣∣p1p2

[
(N − 1)Vε,12 −NV φ

1 −NV
φ

2 , n̂N

]
q1p2Φε

N

〉
L2
xN

}
, (2.4.29)

Term2 := 2 Re

{
iκ
〈

Φε
N

∣∣∣q1p2

[
(N − 1)Vε,12 −NV φ

1 −NV
φ

2 , n̂N

]
q1q2Φε

N

〉
L2
xN

}
, (2.4.30)

Term3 := Re

{
iκ
〈

Φε
N

∣∣∣p1p2

[
(N − 1)Vε,12 −NV φ

1 −NV
φ

2 , n̂N

]
q1q2Φε

N

〉
L2
xN

}
. (2.4.31)

We proceed to estimate Term1, Term2, and Term3 individually. In the sequel, we drop the

subscript N , as the number of particles is fixed. For convenience, we also introduce the

notation

V φ
ε (x) := (Vε ∗ |φ|2)(x) and V φ

ε,j := (Vε ∗ |φ|2)(Xj), ∀j ∈ {1, . . . , N}. (2.4.32)

Note that by Young’s inequality and ‖Vε‖L1 = 1, we have the operator norm estimate

‖V φ
ε,j‖L2

xN
→L2

xN
≤ ‖φ‖2

L∞x
, ∀ε > 0, j ∈ {1, . . . , N}. (2.4.33)

Estimate for Term1 We first observe that since q1 commutes with V φ
2 , n̂ and p1, q1 are

orthogonal,〈
Φε
∣∣∣p1p2

[
NV φ

2 , n̂
]
q1p2Φε

〉
L2
xN

=

〈
Φε

∣∣∣∣∣∣p1q1︸︷︷︸
=0

p2

[
NV φ

2 , n̂
]
p2Φε

〉
L2
xN

= 0. (2.4.34)
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Since p2Vε,12p2 = V φ
ε,1p2, it follows that

|Term1| .
∣∣∣∣〈Φε

∣∣∣p1p2

[
(N − 1)V φ

ε,1 −NV
φ

1 , n̂
]
q1p2Φε

〉
L2
xN

∣∣∣∣
=

∣∣∣∣〈Φε
∣∣∣p1p2

(
(N − 1)V φ

ε,1 −NV
φ

1

)
(n̂− (̂τ−1n))q1p2Φε

〉
L2
xN

∣∣∣∣ , (2.4.35)

where the ultimate equality follows from an application of Lemma 2.4.7. Define the function

µ : Z→ R, µ(k) := N(n(k)− (τ−1n)(k)), ∀k ∈ Z, (2.4.36)

and observe that

µ(k) =

√
N√

k + 1≥0(k − 1)
√
k − 1

1≥0(k) ≤ n−1(k), ∀k ∈ Z. (2.4.37)

So by the triangle inequality,

|Term1| .
1

N

∣∣∣∣〈Φε
∣∣∣p1p2V

φ
ε,1µ̂q1p2Φε

〉
L2
xN

∣∣∣∣+

∣∣∣∣〈Φε
∣∣∣p1p2(V φ

ε,1 − V
φ

1 )µ̂q1p2Φε
〉
L2
xN

∣∣∣∣
≤ 1

N
‖V φ

ε,1µ̂q1Φε‖L2
xN

+ ‖(V φ
ε,1 − V

φ
1 )µ̂q1Φε‖L2

xN
, (2.4.38)

where the ultimate inequality follows from Cauchy-Schwarz and ‖Φε‖L2
xN

= 1. By transla-

tion invariance of Lebesgue measure and
∫
R dyVε(y) = 1, for any x ∈ R,

∣∣(Vε ∗ |φ|2)(x)− |φ(x)|2
∣∣ =

∣∣∣∣∫
R
dyVε(y)

(
|φ(x− y)|2 − |φ(x)|2

)∣∣∣∣ ≤ ∫
R
dyVε(y)|y|1/2‖|φ|2‖

Ċ
1/2
x
≤ ε1/2‖φ‖2

C
1/2
x

(2.4.39)

where the ultimate inequality follows from dilation invariance of Lebesgue measure and the

algebra property of C
1/2
x . Hence,

‖(Vε ∗ |φ|2)− |φ|2‖L∞x ≤ ε1/2‖φ‖2

C
1/2
x

=⇒ ‖V φ
ε,1 − V

φ
1 ‖L2

xN
→L2

xN
≤ ε1/2‖φ‖2

C
1/2
x
. (2.4.40)
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Using the preceding operator norm estimate together with (2.4.33), we obtain that

(2.4.38) ≤

(
‖φ‖2

L∞x

N
+ ε1/2‖φ‖2

C
1/2
x

)
‖µ̂q1Φε‖L2

xN
.
‖φ‖2

L∞x

N
+ ε1/2‖φ‖2

C
1/2
x
, (2.4.41)

where the ultimate inequality follows from the bound (2.4.37) for µ and an application of

Lemma 2.4.6(i) together with recalling that n̂2 = m̂. Thus, we conclude that

|Term1| .
‖φ‖2

L∞x

N
+ ε1/2‖φ‖2

C
1/2
x
. (2.4.42)

Estimate for Term2 Arguing similarly as in (2.4.34), we see that〈
Φε
∣∣∣q1p2

[
V φ

1 , n̂
]
q1q2Φε

〉
L2
xN

= 0. (2.4.43)

Therefore,

2 |Term2| =
∣∣∣∣〈Φε

∣∣∣q1p2

[
(N − 1)Vε,12 −NV φ

2 , n̂
]
q1q2Φε

〉
L2
xN

∣∣∣∣
=

∣∣∣∣∣
〈

Φε

∣∣∣∣q1p2

(
(N − 1)

N
Vε,12 − V φ

2

)
µ̂q1q2Φε

〉
L2
xN

∣∣∣∣∣
≤
∣∣∣〈Φε|q1p2Vε,12µ̂q1q2Φε〉L2

xN

∣∣∣︸ ︷︷ ︸
=:Term2,1

+

∣∣∣∣〈Φε
∣∣∣q1p2V

φ
2 µ̂q1q2Φε

〉
L2
xN

∣∣∣∣︸ ︷︷ ︸
=:Term2,2

, (2.4.44)

where to obtain the penultimate equality have used Lemma 2.4.7 and introduced the nota-

tion µ from (2.4.36) and to obtain the ultimate equality we have used the triangle inequality.

We first consider Term2,2. By Cauchy-Schwarz together with the estimate (2.4.33),

Term2,2 ≤ ‖q1Φε‖L2
xN
‖p2V

φ
2 µ̂q1q2Φε‖L2

xN
≤ ‖q1Φε‖L2

xN
‖φ‖2

L∞x
‖µ̂q1q2Φε‖L2

xN
. (2.4.45)

By Remark 2.4.5 and Lemma 2.4.6(ii), respectively, together with the µ bound (2.4.37), we

have that

‖q1Φε‖L2
xN
≤
√
αε ≤

√
βε and ‖µ̂q1q2Φε‖L2

xN
.
√
βε. (2.4.46)
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Therefore,

Term2,2 . ‖φ‖2
L∞x
βε. (2.4.47)

We now consider Term2,1. It follows from the distributional identity (2.2.10) and the fact

that δ ∗ Vε = Vε that

Vε =
1

2
(∇ sgn ∗Vε) =

1

2
∇(sgn ∗Vε). (2.4.48)

We introduce the notation Xε,12 := 1
2
(sgn ∗Vε)(X1 −X2). By Young’s inequality, ‖Vε‖L1 =

‖ sgn ‖L∞ = 1, so that

‖Xε,12‖L2
xN
→L2

xN
≤ 1

2
. (2.4.49)

Therefore, we find from integrating by parts and applying the product rule and triangle

inequality that

Term2,1 ≤
∣∣∣〈∇1q1p2Φε|Xε,12µ̂q1q2Φε〉L2

xN

∣∣∣+
∣∣∣〈Φε|q1p2Xε,12∇1µ̂q1q2Φε〉L2

xN

∣∣∣ =: Term2,1,1 + Term2,1,2.

(2.4.50)

By Cauchy-Schwarz and the estimate (2.4.49),

Term2,1,1 ≤ ‖∇1q1p2Φε‖L2
xN
‖µ̂q1q2Φε‖L2

xN
, (2.4.51)

so by application of the second estimate of (2.4.46) and ‖p2‖L2
xN
→L2

xN
= 1,

Term2,1,1 . ‖∇1q1Φε‖L2
xN

√
βε. (2.4.52)

Next, we write 1 = p1 + q1 and use the triangle inequality to obtain

Term2,1,2 ≤
∣∣∣〈p2q1Φε|Xε,12p1∇1µ̂q1q2Φε〉L2

xN

∣∣∣+
∣∣∣〈p2q1Φε|Xε,12q1∇1µ̂q1q2Φε〉L2

xN

∣∣∣ . (2.4.53)

By Lemma 2.4.7, we have the operator identity

p1∇1µ̂q1 = p1(̂τ1µ)∇1q1. (2.4.54)
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Hence, ∣∣∣〈p2q1Φε|Xε,12p1∇1µ̂q1q2Φε〉L2
xN

∣∣∣ ≤ ‖Xε,12p2q1Φε‖L2
xN
‖p1(̂τ1µ)∇1q1q2Φε‖L2

xN

≤ ‖q1Φε‖L2
xN
‖(̂τ1µ)∇1q1q2Φε‖L2

xN
. (2.4.55)

By Remark 2.4.5, ‖q1Φε‖L2
xN
≤
√
βε. Now using the µ bound (2.4.37), we have that

(τ1µ)(k) . n−1(k + 1) . n−1(k), ∀k ∈ Z. (2.4.56)

Combining this estimate with the symmetry of Φε under permutation of particle labels, we

find that

‖(̂τ1µ)∇1q1q2Φε‖L2
xN

.
√
〈∇1q1Φε|n̂−2∇1q1q2Φε〉L2

xN

=

√√√√ 1

N − 1

N∑
i=2

〈∇1q1Φε|qin̂−2∇1q1Φε〉L2
xN

. (2.4.57)

Since the projector q1 commutes with n̂−2 and n̂−2 ≥ 0, we have that

〈
∇1q1Φε

∣∣q1n̂
−2∇1q1

〉
L2
xN

=
〈
q1∇1q1Φε

∣∣n̂−2q1∇1q1Φε
〉
L2
xN

≥ 0, (2.4.58)

so that by Remark 2.4.5 and the identity n2 = m,√√√√ 1

N − 1

N∑
i=2

〈∇1q1Φε|qin̂−2∇1q1Φε〉L2
xN

.

√√√√ 1

N

N∑
i=1

〈∇1q1Φε|qin̂−2∇1q1Φε〉L2
xN

=
√
〈∇1q1Φε|n̂−2n̂2∇1q1Φε〉L2

xN

= ‖∇1q1Φε‖L2
xN
. (2.4.59)

After a little bookkeeping, we find that∣∣∣〈p2q1Φε|Xε,12p1∇1µ̂q1q2Φε〉L2
xN

∣∣∣ .√βε‖∇1q1Φε‖L2
xN
. (2.4.60)

58



Again by Lemma 2.4.7, we have the operator identity

q1∇1µ̂q1 = q1µ̂∇1q1, (2.4.61)

and proceeding similarly as immediately above, we find that∣∣∣〈p2q1Φε|Xε,12q1∇1µ̂q1q2Φε〉L2
xN

∣∣∣ .√βε‖∇1q1Φε‖L2
xN
, (2.4.62)

and therefore

Term2,1,2 . ‖∇1q1Φε‖L2
xN

√
βε. (2.4.63)

Together the estimate (2.4.52) for Term2,1,1, we obtain that

Term2,1 . ‖∇1q1Φε‖L2
xN

√
βε. (2.4.64)

Collecting the estimates (2.4.64) for Term2,1 and (2.4.47) for Term2,2, we conclude that

Term2 . ‖φ‖2
L∞x
βε + ‖∇1q1Φε‖L2

xN

√
βε. (2.4.65)

Estimate for Term3 We now consider Term3, which is the most difficult portion of the

analysis. We first note that by arguing similarly as in (2.4.34), we see that

p1p2

[
V φ

1 , n̂
]
q1q2 = 0 = p1p2

[
V φ

2 , n̂
]
q1q2, (2.4.66)

where the reader will recall the notation V φ
j introduced in (2.4.27). Therefore,

|Term3| .
∣∣∣〈Φε|p1p2[(N − 1)Vε,12, n̂]q1q2Φε〉L2

xN

∣∣∣
=
N − 1

N

∣∣∣∣〈Φε
∣∣∣p1p2NVε,12

(
n̂− (̂τ−2n

)
q1q2Φε

〉
L2
xN

∣∣∣∣ , (2.4.67)
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where the ultimate equality follows from unpacking the commutator and applying Lemma 2.4.7.

Analogously to the function µ defined in (2.4.36), we define the function

ν : Z→ R, ν(k) := N(n(k)− (τ−2n)(k)), ∀k ∈ Z. (2.4.68)

It is a straightforward computation from the definition of n in Definition 2.4.4 that

ν(k) =
2
√
N√

k + 1≥2(k)
√
k − 2

1≥0(k), ∀k ∈ Z, (2.4.69)

which implies that

ν(k) . n−1(k), ∀k ∈ Z. (2.4.70)

We now introduce an approximation of the pair potential Vε as follows. Define Vσ(x) :=

NσṼ (Nσx), where σ ∈ (0, 1) is a parameter to be specified momentarily and Ṽ is as in

Section 2.3.3. We convolve Vε with Vσ to define

Vε,σ := Vε ∗ Vσ and Vε,σ,ij := Vε,σ(Xi −Xj), ∀1 ≤ i < j ≤ N. (2.4.71)

By the triangle inequality,∣∣∣〈Φε|p1p2Vε,12ν̂q1q2Φε〉L2
xN

∣∣∣ ≤ ∣∣∣〈Φε|p1p2(Vε,12 − Vε,σ,12)ν̂q1q2Φε〉L2
xN

∣∣∣︸ ︷︷ ︸
=:Term3,1

+
∣∣∣〈Φε|p1p2Vε,σ,12ν̂q1q2Φε〉L2

xN

∣∣∣︸ ︷︷ ︸
=:Term3,2

.

(2.4.72)

Observe that by moving p1p2 over to the first entry of the inner product, writing out the
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convolution implicit in Vε,σ,12, and using the Fubini-Tonelli theorem, we have that

〈Φε|p1p2Vε,σ,12ν̂q1q2Φε〉L2
xN

=

∫
R
dyVσ(y)

∫
R2

dx1;2Vε(x1 − x2 − y)

∫
RN−2

dx3;N

(
(p1p2Φε)(ν̂q1q2Φε)

)
(x1, x2, x3;N)

=

∫
R
dyVσ(y)

∫
R2

dx1;2Vε(x1 − x2 − y)

∫
RN−2

dx3;N

((
(p1p2Φε)(ν̂q1q2Φε)

)
(x1, x2, x3;N)

−
(

(p1p2Φε)(ν̂q1q2Φε)
)

(x1, x2 + y, x3;N)
)

+

∫
R
dyVσ(y)

∫
R2

dx1;2Vε(x1 − x2 − y)

∫
RN−2

dx3;N

(
(p1p2Φε)(ν̂q1q2Φε)

)
(x1, x2 + y, x3;N).

(2.4.73)

By translation invariance of Lebesgue measure applied in the x2-coordinate, we have that

for any y ∈ R,∫
R2

dx1;2Vε(x1 − x2 − y)

∫
RN−2

dx3;N

(
(p1p2Φε)(ν̂q1q2Φε)

)
(x1, x2 + y, x3;N)

=

∫
R2

dx1;2Vε(x1 − x2)

∫
RN−2

dx3;N

(
(p1p2Φε)(ν̂q1q2Φε)

)
(x1, x2, x3;N)

= 〈Φε|p1p2Vε,12ν̂q1q2Φε〉L2
xN

, (2.4.74)

where the ultimate equality follows from using the Fubini-Tonelli theorem and the self-

adjointness of p1p2. Since
∫
R dyVσ(y) = 1, we conclude that∫

R
dyVσ(y)

∫
R2

dx1;2Vε(x1 − x2 − y)

∫
RN−2

dx3;N

(
(p1p2Φε)(ν̂q1q2Φε)

)
(x1, x2 + y, x3;N)

= 〈Φε|p1p2Vε,12ν̂q1q2Φε〉L2
xN

.

(2.4.75)

Next, we have by definition of the Hölder norm in the x2-coordinate that

sup
x2∈R

∣∣∣((p1p2Φε)(ν̂q1q2Φε)
)

(x1, x2, x3;N)−
(

(p1p2Φε)(ν̂q1q2Φε)
)

(x1, x2 + y, x3;N)
∣∣∣

≤ ‖
(

(p1p2Φε)(ν̂q1q2Φε)
)

(x1, ·, x3;N)‖
Ċ

1/2
x2

|y|1/2

≤ ‖(p1p2Φε)(x1, ·, x3;N)‖
C

1/2
x2

‖(ν̂q1q2Φε)(x1, ·, x3;N)‖
C

1/2
x2

|y|1/2, (2.4.76)
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for every y ∈ R and almost every (x1, x3;N) ∈ RN−1, where the ultimate inequality follows

from the fact C1/2 is an algebra. So by the Fubini-Tonelli theorem, followed by using the

translation and dilation invariance of Lebesgue measure and then Cauchy-Schwarz, we find

that∫
R
dyVσ(y)

∫
R2

dx1;2Vε(x1 − x2 − y)

∫
RN−2

dx3;N

∣∣∣((p1p2Φε)(ν̂q1q2Φε)
)

(x1, x2, x3;N)

−
(

(p1p2Φε)(ν̂q1q2Φε)
)

(x1, x2 + y, x3;N)
∣∣∣

≤
∫
RN−1

dx1dx3;N

(
‖(p1p2Φε)(x1, ·, x3;N)‖

C
1/2
x2

‖(ν̂q1q2Φε)(x1, ·, x3;N)‖
C

1/2
x2

×
(∫

R
dy|y|1/2Vσ(y)

∫
R
dx2Vε(x1 − x2 − y)

)
︸ ︷︷ ︸

.N−σ/2

)

. N−σ/2‖p1p2Φε‖
L2
x2;N

C
1/2
x1

‖ν̂q1q2Φε‖
L2
x2;N

C
1/2
x1

, (2.4.77)

where in the ultimate inequality we use the symmetry of Φε to swap x1 and x2 in order

to ease the burden of notation. By Fubini-Tonelli, Cauchy-Schwarz, and the normalization

‖φ‖L2
x

= 1, we have the estimate

‖p1p2Φε‖
L2
x2;N

C
1/2
x1

≤ ‖φ‖
C

1/2
x
‖p2Φε‖L2

xN
≤ ‖φ‖

C
1/2
x
, (2.4.78)

where the ultimate inequality follows from the normalization ‖Φε‖L2
xN

= 1. By Lemma 2.2.3

and the H1/2+ ⊂ L∞ Sobolev embedding,

‖ν̂q1q2Φε‖
L2
x2;N

C
1/2
x1

. ‖ν̂q1q2Φε‖L2
x2;N

H1
x1

. ‖ν̂q1q2Φε‖L2
xN

+ ‖∇1ν̂q1q2Φε‖L2
xN
, (2.4.79)

where the ultimate inequality follows from splitting the H1
x norm and Fubini-Tonelli. Using

the ν estimate (2.4.70), Lemma 2.4.6(ii), and the identity m̂ = n̂2, we see that

‖ν̂q1q2Φε‖L2
xN

.
√
〈Φε|n̂−2m̂2Φε〉L2

xN

=
√
〈Φε|m̂Φε〉L2

xN

=
√
αε ≤

√
βε. (2.4.80)
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Next, inserting the decomposition ∇1 = p1∇1 + q1∇1 and applying the triangle inequality,

‖∇1ν̂q1q2Φε‖L2
xN
≤ ‖p1∇1ν̂q1q2Φε‖L2

xN
+ ‖q1∇1ν̂q1q2Φε‖L2

xN
. (2.4.81)

Since p1∇1 = −( |φ〉 〈∇φ|)1,

‖p1∇1ν̂q1q2Φε‖L2
xN
≤ ‖∇φ‖L2

x
‖ν̂q1q2Φε‖L2

xN
. ‖∇φ‖L2

x

√
βε, (2.4.82)

where the ultimate inequality follows from the estimate (2.4.80). By Lemma 2.4.7 followed

by using the ν estimate (2.4.70),

‖q1∇1ν̂q1q2Φε‖L2
xN

= ‖q1ν̂∇1q1q2Φε‖L2
xN

.
√
〈∇1q1Φε|q2n̂−2∇1q1Φε〉L2

xN

, (2.4.83)

and arguing as for the estimate (2.4.59), we find that the right-hand side is . ‖∇1q1Φε‖L2
xN

.

Therefore,

‖ν̂q1q2Φε‖
L2
x2;N

C
1/2
x1

.
(
1 + ‖∇φ‖L2

x

)√
βε + ‖∇1q1Φε‖L2

xN
. ‖φ‖H1

x

√
βε + ‖∇1q1Φε‖L2

xN
.

(2.4.84)

Collecting the estimates (2.4.78) and (2.4.84), we see that

N−σ/2‖p1p2Φε‖
L2
x2;N

C
1/2
x1

‖ν̂q1q2Φε‖
L2
x2;N

C
1/2
x1

. N−σ/2‖φ‖
C

1/2
x

(
‖φ‖H1

x

√
βε + ‖∇1q1Φε‖L2

xN

)
. N−σ + ‖φ‖2

C
1/2
x
‖φ‖2

H1
x
βε + ‖φ‖2

C
1/2
x
‖∇1q1Φε‖2

L2
xN
,

(2.4.85)

where the ultimate line follows from Young’s inequality for products.

After a little bookkeeping, we conclude that

|Term3,1| . N−σ + ‖φ‖2

C
1/2
x
‖φ‖2

H1
x
βε + ‖φ‖2

C
1/2
x
‖∇1q1Φε‖2

L2
xN
, (2.4.86)

leaving us with Term3,2.
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For Term3,2, we borrow an idea from [46] and introduce a partition of unity as follows. Let

χ(1), χ(2) : Z→ [0,∞) be the two functions respectively defined by

χ(1)(k) := 1≤N1−δ(k), χ(2)(k) := 1− χ(1)(k) = 1>N1−δ(k), ∀k ∈ Z. (2.4.87)

where δ ∈ (0, 1) will be optimized at the end. Trivially, we have that χ(j) ∈ {0, 1}Z, so

that (χ(j)(k))2 = χ(j)(k), and χ(1)(k) + χ(2)(k) = 1. We insert this decomposition into the

expression for Term3,2 and use the triangle inequality to obtain

|Term3,2| ≤
∣∣∣∣〈Φε

∣∣∣p1p2Vε,σ,12ν̂χ̂(1)q1q2Φε
〉
L2
xN

∣∣∣∣︸ ︷︷ ︸
=:Term3,2,1

+

∣∣∣∣〈Φε
∣∣∣p1p2Vε,σ,12ν̂χ̂(2)q1q2Φε

〉
L2
xN

∣∣∣∣︸ ︷︷ ︸
=:Term3,2,2

.

(2.4.88)

We consider Term3,2,1 and Term3,2,2 separately.

For Term3,2,1, we want to use the fact that the operator norm of p1p2Vε,σ,12q1q2 is much

smaller on the bosonic subspace L2
sym(RN) than on the full space L2(RN). Accordingly, we

symmetrize the expression p2Vε,σ,12q2 to write

Term3,2,1 =
1

N − 1

∣∣∣∣∣∣
〈

Φε

∣∣∣∣∣
N∑
i=2

p1piVε,σ,1iqiq1χ̂(1)ν̂q1Φε

〉
L2
xN

∣∣∣∣∣∣
≤ 1

N − 1
‖

N∑
i=2

χ̂(1)qiq1Vε,σ,1ipip1Φε‖L2
xN
‖ν̂q1Φε‖L2

xN
. (2.4.89)

where the ultimate line follows from Cauchy-Schwarz. We claim that ‖ν̂q1Φε‖L2
xN

. 1.

Indeed, by the ν bound (2.4.70) and Lemma 2.4.6(i),

‖ν̂q1Φε‖L2
xN

=
√
〈Φε|ν̂2q1Φε〉L2

xN

.
√
〈Φε|n̂−2m̂Φε〉L2

xN

= 1, (2.4.90)
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since n̂2 = m̂ and ‖Φε‖L2
xN

= 1. Now expanding the L2
xN

norm and using that χ̂(1)
2

= χ̂(1),

we see that

‖
N∑
i=2

χ̂(1)qiq1Vε,σ,1ipip1Φε‖L2
xN

=

√√√√ N∑
i,j=2

〈
Φε

∣∣∣p1piVε,σ,1iq1qiχ̂(1)q1qjVε,σ,1jpjp1Φε
〉
L2
xN

≤

√√√√ N∑
i=2

〈
Φε

∣∣∣p1piVε,σ,1iq1qiχ̂(1)q1qiVε,σ,1ipip1Φε
〉
L2
xN︸ ︷︷ ︸

=:
√
B

+

√ ∑
2≤i 6=j≤N

〈
Φε

∣∣∣p1piVε,σ,1iq1qiχ̂(1)q1qjVε,σ,1jpjp1Φε
〉
L2
xN︸ ︷︷ ︸

=:
√
A

,

(2.4.91)

where the ultimate inequality follows from the embedding `1/2 ⊂ `1. Therefore,

Term3,2,1 .
1

N − 1

(√
B +

√
A
)
. (2.4.92)

We first consider B, which is the easy term. Since ‖q1qiχ̂(1)q1qi‖L2
xN
→L2

xN
≤ 1,

B ≤
N∑
i=2

‖Vε,σ,1ip1piΦ
ε‖2
L2
xN

=
N∑
i=2

〈
Φε
∣∣p1piV

2
ε,σ,1ip1piΦ

ε
〉
L2
xN

. (2.4.93)

Now by examination of the integral kernel of p1piV
2
ε,σ,1ip1pi,

p1piV
2
ε,σ,1ip1pi =

(∫
R2

dy1dyiV
2
ε,σ(y1 − yi)|φ(y1)|2|φ(yi)|2

)
p1pi = ‖|φ|2(V 2

ε,σ ∗ |φ|2)‖L1
x
p1pi,

(2.4.94)

and by Cauchy-Schwarz followed by Young’s inequality,

‖|φ|2(V 2
ε,σ ∗ |φ|2)‖L1

x
≤ ‖φ‖2

L4
x
‖V 2

ε,σ ∗ |φ|2‖L2
x
≤ ‖Vε,σ‖2

L2︸ ︷︷ ︸
≤Nσ

‖φ‖4
L4
x
. (2.4.95)
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It then follows from ‖Φε‖L2
xN

= 1 that

B ≤ (N − 1)Nσ‖φ‖4
L4
x
. (2.4.96)

We proceed to consider A. We first make a further decomposition of A by using that

(χ(1))2 = χ(1) and then applying Lemma 2.4.7 in order to obtain

A =
∑

2≤i 6=j≤N

〈
Φε
∣∣∣p1piVε,σ,1iq1qiχ̂(1)χ̂(1)qjq1Vε,σ,1jpjp1Φε

〉
L2
xN

=
∑

2≤i 6=j≤N

〈
Φε
∣∣∣p1piqj ̂(τ2χ(1))Vε,σ,1iq1Vε,σ,1j ̂(τ2χ(1))qipjp1Φε

〉
L2
xN

=
∑

2≤i 6=j≤N

〈
Φε
∣∣∣p1piqj ̂(τ2χ(1))Vε,σ,1,iVε,σ,1j ̂(τ2χ(1))qipjp1Φε

〉
L2
xN︸ ︷︷ ︸

=:A1

−
∑

2≤i 6=j≤N

〈
Φε
∣∣∣p1piqj ̂(τ2χ(1))Vε,σ,1ip1Vε,σ,1j ̂(τ2χ(1))qipjp1Φε

〉
L2
xN︸ ︷︷ ︸

=:A2

, (2.4.97)

where the ultimate equality follows from writing q1 = 1− p1.

For A1, we have by the triangle inequality and self-adjointness of ̂(τ2χ(1))qj that

|A1| ≤
∑

2≤i 6=j≤N

∣∣∣∣〈 ̂(τ2χ(1))qjΦ
ε
∣∣∣p1piVε,σ,1iVε,σ,1jpjp1

̂(τ2χ(1))qiΦ
ε
〉
L2
xN

∣∣∣∣ . (2.4.98)

Using that Vε,σ ≥ 0 and commutativity of point-wise multiplication operators, we can write

Vε,σ,1iVε,σ,1j = (Vε,σ,1iVε,σ,1j)
1/2(Vε,σ,1iVε,σ,1j)

1/2 (2.4.99)

and then use Cauchy-Schwarz to obtain∣∣∣∣〈 ̂(τ2χ(1))qjΦ
ε
∣∣∣p1piVε,σ,1iVε,σ,1jpjp1

̂(τ2χ(1))qiΦ
ε
〉
L2
xN

∣∣∣∣ ≤ ‖(Vε,σ,1iVε,σ,1j)1/2p1pi ̂(τ2χ(1))qjΦ
ε‖L2

xN

× ‖(Vε,σ,1iVε,σ,1j)1/2pjp1
̂(τ2χ(1))qiΦ

ε‖L2
xN
.

(2.4.100)
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From Young’s inequality for products and the symmetry of Φε under permutation of particle

labels, we then find that

(2.4.98) ≤
∑

2≤i 6=j≤N

〈
Φε
∣∣∣ ̂(τ2χ(1))qjp1piVε,σ,1iVε,σ,1jp1piqj ̂(τ2χ(1))Φε

〉
L2
xN

. (2.4.101)

Next, by computation of its integral kernel, we see that

piVε,σ,1iVε,σ,1jpi = pi(Vε,σ ∗ |φ|2)1Vε,σ,1j, (2.4.102)

and

(p1(Vε,σ ∗ |φ|2)1Vε,σ,1jp1) = p1

(
Vε,σ ∗ (|φ|2(Vε,σ ∗ |φ|2))

)
j
. (2.4.103)

By Young’s inequality with ‖Vε,σ‖L1 = 1, followed by Hölder’s inequality, and then another

application of Young’s, we have that

‖
(
Vε,σ ∗ (|φ|2(Vε,σ ∗ |φ|2))

)
‖L∞x ≤ ‖φ‖

2
L∞x
‖Vε,σ ∗ |φ|2‖L∞x ≤ ‖φ‖

4
L∞x
, (2.4.104)

which implies that

‖p1piVε,σ,1iVε,σ,1jp1pi‖L2
xN
→L2

xN
≤ ‖φ‖4

L∞x
. (2.4.105)

Applying this last estimate to the right-hand side of (2.4.101) and the symmetry of Φε, we

obtain that

|A1| . ‖φ‖4
L∞x

∑
2≤i 6=j≤N

‖ ̂(τ2χ(1))qjΦ
ε‖2
L2
xN
≤ N2‖φ‖4

L∞x
‖ ̂(τ2χ(1))q1Φε‖2

L2
xN
≤ N2‖φ‖4

L∞x
‖ ̂(τ2χ(1))n̂Φε‖2

L2
xN
,

(2.4.106)

where the ultimate inequality follows by application of Lemma 2.4.6(i) to the factor ‖ ̂(τ2χ(1))q1Φε‖L2
xN

.

In order to estimate the last expression, we claim that

(τ2χ
(1))(k)n(k) ≤ N−δ/2, ∀k ∈ {0, . . . , N}. (2.4.107)
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Indeed, recalling from (2.4.87) that χ(1) = 1≤N1−δ , where δ ∈ (0, 1), we see that

(τ2χ
(1))(k)n(k) = 1≤N1−δ(k + 2)1≥0(k)

√
(k + 2)− 2

N
≤ 1≤N1−δ(k)

√
N1−δ

N
− 2

N
, (2.4.108)

from which the claim follows. Applying this estimate to the right-hand side of (2.4.106)

leads to the conclusion

|A1| . N2−δ‖φ‖4
L∞x
. (2.4.109)

Now using the identity

p1Vε,σ,1ip1Vε,σ,1jp1 = p1(Vε,σ ∗ |φ|2)i(Vε,σ ∗ |φ|2)j, (2.4.110)

which follows from examination of the integral kernel, and arguing similarly as for A1, we

find that

|A2| ≤ ‖Vε,σ ∗ |φ|2‖2
L∞x

∑
2≤i 6=j≤N

‖qj ̂(τ2χ(1))Φε‖L2
xN
‖qi ̂(τ2χ(1))Φε‖L2

xN
. N2−δ‖φ‖4

L∞x
.

(2.4.111)

Thus, we conclude from (2.4.109) and (2.4.111) that

|A| . N2−δ‖φ‖4
L∞x
. (2.4.112)

To conclude the estimate for Term3,2,1 defined in (2.4.88) above, we insert the estimate

(2.4.96) for B and the estimate (2.4.112) for A into the right-hand side of (2.4.92), obtaining

Term3,2,1 .
1

N − 1

(√
(N − 1)Nσ‖φ‖4

L4
x

+
√
N2−δ‖φ‖4

L∞x

)
.
‖φ‖2

L4
x

N (1−σ)/2
+
‖φ‖2

L∞x

N δ/2
. (2.4.113)

It remains for us to estimate Term3,2,2, which we recall from (2.4.88) is defined by

Term3,2,2 =

∣∣∣∣〈Φε
∣∣∣p1p2Vε,σ,12ν̂χ̂(2)q1q2Φε

〉
L2
xN

∣∣∣∣ . (2.4.114)
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Writing ν̂ = ν̂1/2ν̂1/2 and using the same symmetrization trick as above, we find that

Term3,2,2 =
1

N − 1

∣∣∣∣∣∣
〈

Φε

∣∣∣∣∣
N∑
i=2

p1piVε,σ,1iqiq1χ̂(2)ν̂1/2ν̂1/2Φε

〉
L2
xN

∣∣∣∣∣∣
≤ 1

N − 1
‖ν̂1/2q1Φε‖L2

xN

√√√√ N∑
i,j=2

〈
Φε

∣∣∣p1piVε,σ,1iq1qiχ̂(2)ν̂q1qjVε,σ,1jpjp1Φε
〉
L2
xN

,

(2.4.115)

where the ultimate inequality follows by Cauchy-Schwarz and expanding the L2
xN

norm of

the second factor. By the ν estimate (2.4.70) together with Lemma 2.4.6(i),

‖ν̂1/2q1Φε‖L2
xN

=
√
〈Φε|ν̂q1Φε〉L2

xN

.
√
〈Φε|n̂−1q1Φε〉L2

xN

.
√
βε. (2.4.116)

Thus, splitting the sum
∑

i,j =
∑

i +
∑

i 6=j in the second factor of (2.4.115) and applying

the embedding `1/2 ⊂ `1, we obtain that

Term3,2,2 ≤
√
βε

N − 1

(√
A+
√
B
)
, (2.4.117)

where

B :=
N∑
i=2

〈
Φε
∣∣∣p1piVε,σ,1iq1qiχ̂(2)ν̂Vε,σ,1ipip1Φε

〉
L2
xN

, (2.4.118)

A :=
∑

2≤i 6=j≤N

〈
Φε
∣∣∣p1piVε,σ,1iq1qiχ̂(2)ν̂qjVε,σ,1jpjp1Φε

〉
L2
xN

. (2.4.119)

Note that in contrast to the inequality (2.4.92) for Term3,2,1, we have a factor of
√
βε in the

right-hand side of inequality (2.4.117).

We first dispense with the easy case B. We recall from (2.4.87) that χ(2) = 1>N1−δ , which

together with the ν bound (2.4.70) implies the estimate

χ(2)(k)ν(k) . 1>N1−δ(k)n−1(k) = 1>N1−δ(k)

√
N

k
< N δ/2, ∀k ∈ Z. (2.4.120)
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Therefore, we have the L2
xN

operator norm estimate

‖q1qiχ̂(2)ν̂‖L2
xN
→L2

xN
. N δ/2, ∀i ∈ {1, . . . , N}, (2.4.121)

which implies that

B . N δ/2

N∑
i=2

‖Vε,σ,1ip1piΦ
ε‖2
L2
xN

= (N − 1)N δ/2‖Vε,σ,12p1p2Φε‖2
L2
xN
, (2.4.122)

where the ultimate identity follows from the symmetry of Φε. Since by Cauchy-Schwarz

and Young’s inequality,

p1p2V
2
ε,σ,12p1p2 = ‖|φ|2(V 2

ε,σ ∗ |φ|2)‖L1
x
p1p2 . Nσ‖φ‖4

L4
x
p1p2, (2.4.123)

where we also use ‖Vε,σ‖2
L2 . Nσ, we conclude that

B . N1+ δ
2

+σ‖φ‖4
L4
x
. (2.4.124)

For the hard case A, we again use Lemma 2.4.7 as in (2.4.97) to write A = A1 +A2, where

A1 :=
∑

2≤i 6=j≤N

〈
Φε

∣∣∣∣p1piqj ̂(τ2χ(2))(̂τ2ν)
1/2

Vε,σ,1iVε,σ,1j ̂(τ2χ(2))(̂τ2ν)
1/2

qipjp1Φε

〉
L2
xN

,

(2.4.125)

A2 := −
∑

2≤i 6=j≤N

〈
Φε

∣∣∣∣p1piqj ̂(τ2χ(2))(̂τ2ν)
1/2

Vε,σ,1ip1Vε,σ,1j ̂(τ2χ(2))
1/2

(̂τ2ν)
1/2

qipjp1Φε

〉
L2
xN

.

(2.4.126)

For A1, we use that Vε,σ ≥ 0 to apply Cauchy-Schwarz and exploit the symmetry of Φε

under exchange of particle labels in order to obtain

|A1| ≤
∑

2≤i 6=j≤N

∣∣∣∣∣
〈

Φε

∣∣∣∣qj ̂(τ2χ(2))(̂τ2ν)
1/2

p1piVε,σ,1iVε,σ,1jpip1
̂(τ2χ(2))(̂τ2ν)

1/2

qjΦ
ε

〉
L2
xN

∣∣∣∣∣ .
(2.4.127)
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Using the L2
xN

operator norm estimate (2.4.105), we conclude that

|A1| . ‖φ‖4
L∞x

∑
2≤i 6=j≤N

‖ ̂(τ2χ(2))(̂τ2ν)
1/2

q1Φε‖2
L2
xN︸ ︷︷ ︸

≤
〈

Φε
∣∣∣(̂τ2ν)q1Φε

〉
L2
xN

. N2‖φ‖4
L∞x
〈Φε|n̂Φε〉L2

xN

= N2‖φ‖4
L∞x
βε,

(2.4.128)

where the penultimate inequality follows from the ν estimate (2.4.70) together with Lemma 2.4.6(i)

and the ultimate equality is by definition of βε (recall (2.4.19)). Next, using the operator

identity (2.4.110) and arguing similarly as for A2 in the case of χ(1), we also obtain the

estimate

|A2| . N2‖φ‖4
L∞x
βε, (2.4.129)

leading us to conclude that

|A| . N2‖φ‖4
L∞x
βε. (2.4.130)

Inserting the estimates (2.4.124) for B and (2.4.130) for A into the right-hand side of

(2.4.117), we find from the normalization ‖φ‖L2
x

= 1 and Young’s inequality for products

that

Term3,2,2 .

√
βε

N − 1

(
N‖φ‖2

L∞x

√
βε +N

1+σ
2

+ δ
4‖φ‖2

L4
x

)
. ‖φ‖2

L∞x
βε +N

2(σ−1)+δ
2 . (2.4.131)

Collecting the estimates (2.4.113) for Term3,2,1 and (2.4.131) for Term3,2,2, we find that

|Term3,2| . N
σ−1
2 ‖φ‖2

L4
x

+N−
δ
2‖φ‖2

L∞x
+ ‖φ‖2

L∞x
βε +N

2(σ−1)+δ
2 . (2.4.132)

Now inserting the estimates (2.4.86) for Term3,1 and (2.4.132) for Term3,2 into the right-
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hand side of (2.4.72), we conclude that

|Term3| . N−σ + ‖φ‖2

C
1/2
x
‖φ‖2

H1
x
βε + ‖φ‖2

C
1/2
x
‖∇1q1Φε‖2

L2
xN

+N
σ−1
2 ‖φ‖2

L4
x

+N−
δ
2‖φ‖2

L∞x
+ ‖φ‖2

L∞x
βε +N

2(σ−1)+δ
2

. N−σ + ‖φ‖2

C
1/2
x
‖φ‖2

H1
x
βε + ‖φ‖2

C
1/2
x
‖∇1q1Φε‖2

L2
xN

+N
σ−1
2 ‖φ‖2

L4
x

+N−
δ
2‖φ‖2

L∞x
+N

2(σ−1)+δ
2 .

(2.4.133)

where the ultimate line follows from the trivial C
1/2
x ⊂ L∞x embedding and the fact ‖φ‖2

H1
x
≥

1.

We are now prepared to conclude the proof of the proposition. After a bookkeeping

of the estimates (2.4.42) for Term1, (2.4.65) for Term2, and (2.4.133) for Term3, we find that

β̇ε .
‖φ‖2

L∞x

N
+ ε1/2‖φ‖2

C
1/2
x

+ ‖φ‖2
L∞x
βε + ‖∇1q1Φε‖L2

xN

√
βε +

1

Nσ
+ ‖φ‖2

C
1/2
x
‖φ‖2

H1
x
βε

+ ‖φ‖2

C
1/2
x
‖∇1q1Φε‖2

L2
xN

+
‖φ‖2

L4
x

N (1−σ)/2
+
‖φ‖2

L∞x

N δ/2
+N

2(σ−1)+δ
2 .

(2.4.134)

The desired conclusion now follows from Young’s inequality for products, ‖φ‖L2
x

= 1, and

some algebra.

2.4.3 Control of ‖∇1q1ΦN‖L2

Before we can pass to the limit ε → 0+ to remove the regularization of the LL

Hamiltonian, we need to control the auxiliary quantity ‖∇1q1Φε
N‖L2

xN
appearing in the right-

hand side of (2.4.134). To this end, we first introduce the energy per particle of the solution

Φε
N to equation (2.3.20):

EΦε

N :=
1

N
〈Φε

N |HN,εΦ
ε
N〉L2

xN
(RN ) = ‖∇1ΦN,0‖2

L2(RN ) +
κ(N − 1)

2N
〈ΦN,0|Vε,12ΦN,0〉L2(RN ) ,

(2.4.135)
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where the ultimate equality follows from conservation of energy, unpacking the definition

(2.3.19) of HN,ε, and exploiting the symmetry of Φε. We recall from (2.1.8) that the energy

of the solution φ to the cubic NLS (1.2.11) is given by

Eφ = ‖∇φ‖2
L2
x(R) +

κ

2
‖φ‖4

L4
x(R) = ‖∇φ0‖2

L2(R) +
κ

2
‖φ0‖4

L4(R). (2.4.136)

The reader will remember that κ ∈ {±1} denotes the sign of the interaction (i.e. repulsive or

attractive). The goal of this subsection is to prove the following proposition, which controls

‖∇1q1Φε
N‖2

L2
xN

in terms of βε, N , and (EΦε

N − Eφ).

Proposition 2.4.10 (Control of ‖∇1q1ΦN‖2
L2). Let κ ∈ {±1}. Then we have the estimate

‖∇1q1(t)Φε
N(t)‖2

L2(RN ) . EΦε

N − Eφ + ε1/2‖φ(t)‖2
C1/2(R) + ‖φ(t)‖H2(R)βε(t) +

‖φ(t)‖H2(R)√
N

,

(2.4.137)

for every t ∈ R, uniformly in ε > 0 and N ∈ N.

Proof. As before, we drop the subscript N , as the number of particles is fixed throughout

the proof. We introduce two parameters κ1 ∈ (0, 1) and κ2 > 0, the precise values of

which we shall specify momentarily. Using the decomposition 1 = p1p2 + (1 − p1p2) and

the normalizations ‖Φε‖L2
xN

= 1 = ‖φ‖L2
x
, together with some algebraic manipulation of the

quantities (2.4.135) and (2.4.136), we arrive at the identity

(1− κ1)‖∇1(1− p1p2)Φε‖2
L2
xN

= EΦε − Eφ +
6∑
i=1

Termi, (2.4.138)
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where

Term1 := −‖∇1p1p2Φε‖2
L2
xN

+ ‖∇φ‖2
L2
x
, (2.4.139)

Term2 := −κ2 〈Φε|p1p2Φε〉L2
xN

+ κ2, (2.4.140)

Term3 := −κ(N − 1)

2N
〈Φε|p1p2Vε,12p1p2Φε〉L2

xN

+
κ

2
‖φ‖4

L4
x
, (2.4.141)

Term4 := −2 Re
{
〈∇1(1− p1p2)Φε|∇1p1p2Φε〉L2

xN

}
, (2.4.142)

Term5 := −κ(N − 1)

N
Re
{
〈Φε|(1− p1p2)Vε,12p1p2Φε〉L2

xN

}
, (2.4.143)

Term6 := −κ(N − 1)

2N
‖V 1/2

ε,12(1− p1p2)Φε‖2
L2
xN
− κ1‖∇1(1− p1p2)Φε‖2

L2
xN
− κ2‖(1− p1p2)Φε‖2

L2
xN
.

(2.4.144)

We keep the termEΦε−Eφ. We want to obtain upper bounds for the moduli of Term1, . . . ,Term5,

and we want to show that Term6 ≤ 0 provided that we appropriately choose κ1, κ2 depending

on κ.

Estimate for Term1 Since ∇1p1 = ( |∇φ〉 〈φ|)1, it follows from 1 = ‖Φε‖L2
xN

that

Term1 = ‖∇φ‖2
L2
x

(
1− 〈Φε|p1p2Φε〉L2

xN

)
= 〈Φε|(1− p1p2)Φε〉L2

xN

. (2.4.145)

Since 1−p1p2 = q1p2 + q2p1 + q1q2, it follows from Remark 2.4.5 and the triangle inequality

that

〈Φε|(1− p1p2)Φε〉L2
xN

≤ 3αε . βε, (2.4.146)

leading us to conclude that

Term1 . ‖∇φ‖2
L2
x
βε. (2.4.147)

Estimate for Term2 Using the identity κ2‖Φε‖2
L2
xN

= κ2 and the estimate (2.4.146), we find

that

Term2 = κ2 〈Φε|(1− p1p2)Φε〉L2
xN

. κ2βε. (2.4.148)
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Estimate for Term3 First, observe that

p1p2V12p1p2 = ‖φ‖4
L4
x
p1p2 and p1p2Vε,12p1p2 = ‖|φ|2(Vε ∗ |φ|2)‖L1

x
p1p2. (2.4.149)

So by the triangle inequality,

|Term3| ≤
1

2

∣∣∣〈Φε|p1p2(Vε,12 − V12)p1p2Φε〉L2
xN

∣∣∣+
‖φ‖4

L4
x

2

∣∣∣∣−(N − 1)

N
〈Φε|p1p2Φε〉L2

xN

+ 1

∣∣∣∣ .
(2.4.150)

Since ‖Φε‖2
L2
xN

= 1, the second term in the right-hand side equals

‖φ‖4
L4
x

2

∣∣∣∣ 1

N
〈Φε|p1p2Φε〉L2

xN

+ 〈Φε|(1− p1p2)Φε〉L2
xN

∣∣∣∣ . ‖φ‖4
L4
x

(
1

N
+ βε

)
, (2.4.151)

where the ultimate inequality follows from the triangle inequality, 〈Φε|p1p2Φε〉 ≤ ‖Φε‖2
L2
xN

=

1, and the estimate (2.4.146). Again using that ‖Φε‖L2
xN

= 1, we see that the first term in

the right-hand side of (2.4.150) is bounded by

1

2
‖|φ|2

(
(Vε ∗ |φ|2)− |φ|2

)
‖L1

x
. ‖φ‖2

C
1/2
x
ε1/2, (2.4.152)

which follows from the estimate (2.4.40) and ‖φ‖L2
x

= 1. Therefore,

Term3 . ε1/2‖φ‖2

C
1/2
x

+ ‖φ‖4
L4
x

(
1

N
+ βε

)
. (2.4.153)

Estimate for Term4 By using the decomposition 1− p1p2 = q1p2 + q2p1 + q1q2, the triangle

inequality, and the fact that [q2,∇1] = 0 = q2p2, we see that

|Term4| .

∣∣∣∣∣∣∣〈∇1q1p2Φε|∇1p1p2Φε〉L2
xN

+ 〈∇1q2p1Φε|∇1p1p2Φε〉L2
xN︸ ︷︷ ︸

=0

+ 〈∇1q1q2Φε|∇1p1p2Φε〉L2
xN︸ ︷︷ ︸

=0

∣∣∣∣∣∣∣
=
∣∣∣〈q1Φε|(−∆1)p1p2Φε〉L2

xN

∣∣∣
=
∣∣∣〈n̂−1/2q1Φε

∣∣n̂1/2(−∆1)p1p2Φε
〉
L2
xN

∣∣∣ , (2.4.154)
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where the penultimate equality follows from integration by parts and the ultimate equal-

ity from writing 1 = n̂−1/2n̂1/2. The reader will recall the definitions of n and n̂ from

Definition 2.4.4. By Cauchy-Schwarz and q2
1 = q1,∣∣∣〈n̂−1/2q1Φε

∣∣n̂1/2(−∆1)p1p2Φε
〉
L2
xN

∣∣∣ ≤ ‖n̂−1/2q1Φε‖L2
xN
‖q1n̂

1/2(−∆1)p1p2Φε‖L2
xN

≤
√
βε‖q1n̂

1/2(−∆1)p1p2Φε‖L2
xN
, (2.4.155)

where the ultimate line follows from applying Lemma 2.4.6(i) to the first factor in the

right-hand side of the first line. By Lemma 2.4.7, we have the operator identity

q1n̂
1/2(−∆1)p1 = q1(−∆1)(̂τ1n)

1/2

p1 = q1(−∆1)p1(̂τ1n)
1/2

. (2.4.156)

So writing q1 = 1 − p1 and using the triangle inequality together with the operator norm

estimates

‖(−∆1)p1‖L2
xN
→L2

xN
≤ ‖∆φ‖L2

x
and ‖p1(−∆1)p1‖L2

xN
→L2

xN
≤ ‖∇φ‖2

L2
x
, 4 (2.4.157)

we find that

‖q1n̂
1/2(−∆1)p1p2Φε‖L2

xN
≤ ‖(−∆1)p1(̂τ1n)

1/2

p2Φε‖L2
xN

+ ‖p1(−∆1)p1(̂τ1n)
1/2

p2Φε‖L2
xN

≤
(
‖∆φ‖L2

x
+ ‖∇φ‖2

L2
x

)
‖(̂τ1n)

1/2

Φε‖L2
xN
, (2.4.158)

where we eliminate p2 using ‖p2‖L2
xN
→L2

xN
= 1. Using the embedding `1/2 ⊂ `1, we see that

(τ1n)(k) =

√
k + 1

N
1≥0(k + 1) ≤

√
k

N
1≥0(k) +

1√
N

= n(k) +
1√
N
, ∀k ∈ Z. (2.4.159)

4This is the only place in this work where the H2 regularity assumption is strictly needed.
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By another application of `1/2 ⊂ `1 together with ‖Φε‖L2
xN

= 1,

‖(̂τ1n)
1/2

Φε‖L2
xN
≤
√
βε +N−1/4. (2.4.160)

Using Young’s inequality for products and interpolation of Hs spaces with ‖φ‖L2
x

= 1, we

obtain that

|Term4| .
(
‖∆φ‖L2

x
+ ‖∇φ‖2

L2
x

)√
βε

(√
βε +N−1/4

)
. ‖φ‖H2

x

(
βε +N−1/2

)
. (2.4.161)

Estimate for Term5 Using the decomposition 1− p1p2 = p1q2 + p2q1 + q1q2 together with

the triangle inequality and the symmetry of Φε under exchange of particle labels, we have

that

|Term5| .
∣∣∣〈Φε|p1p2Vε,12q1p2Φε〉L2

xN

+ 〈Φε|p1p2Vε,12q2p1Φε〉L2
xN

+ 〈Φε|p1p2Vε,12q1q2Φε〉L2
xN

∣∣∣
.
∣∣∣〈Φε|p1p2Vε,12q1p2Φε〉L2

xN

∣∣∣︸ ︷︷ ︸
=:Term5,1

+
∣∣∣〈Φε|p1p2Vε,12q1q2Φε〉L2

xN

∣∣∣︸ ︷︷ ︸
=:Term5,2

, (2.4.162)

For Term5,1, we note from an examination of its integral kernel that

p1p2Vε,12q1p2 = p1p2V
φ
ε,1q1, (2.4.163)

where we use the notation V φ
ε,1 introduced in (2.4.32). Now writing 1 = n̂−1/2n̂1/2, we find

that

Term5,1 =

∣∣∣∣〈Φε
∣∣∣p1p2V

φ
ε,1n̂

1/2n̂−1/2q1Φε
〉
L2
xN

∣∣∣∣
=

∣∣∣∣∣
〈

Φε

∣∣∣∣p1p2(̂τ1n)
1/2

V φ
ε,1n̂

−1/2q1Φε

〉
L2
xN

∣∣∣∣∣
≤ ‖p1p2(̂τ1n)

1/2

Φε‖L2
xN
‖V φ

ε,1n̂
−1/2q1Φε‖L2

xN
, (2.4.164)
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where the penultimate line follows from an application of Lemma 2.4.7 and the ultimate

line follows from Cauchy-Schwarz. Applying the operator norm identity ‖pj‖L2→L2 = 1

together with the estimate (2.4.160) to the first factor in (2.4.164), we obtain that

Term5,1 .
(√

βε +N−1/4
)
‖V φ

ε,1n̂
−1/2q1Φε‖L2

xN
. (2.4.165)

Now since ‖V φ
ε,1‖L2

xN
→L2

xN
≤ ‖φ‖2

L∞x
, we find that

‖V φ
ε,1n̂

−1/2q1Φε‖L2
xN
≤ ‖φ‖2

L∞x
‖n̂−1/2q1Φε‖L2

xN
≤ ‖φ‖2

L∞x

√
βε. (2.4.166)

where the ultimate equality follows from Lemma 2.4.6(i) and the trivial fact that n̂2 = m̂.

Using the embedding `1/2 ⊂ `1, we conclude that

Term5,1 . ‖φ‖2
L∞x

√
βε

(√
βε +N−1/4

)
. ‖φ‖2

L∞x

(
βε +N−1/2

)
. (2.4.167)

For Term5,2, we use, as in the proof of Proposition 2.4.9, the distributional identity (2.2.10)

to write Vε,12 = (∇1Xε,12), where Xε,12 := 1
2
(Vε ∗ sgn)(X1 −X2). Thus,

Term5,2 =
∣∣∣〈Φε|p1p2(∇1Xε,12)q1q2Φε〉L2

xN

∣∣∣
=
∣∣∣〈Φε

∣∣p1p2(∇1Xε,12)n̂n̂−1q1q2Φε
〉
L2
xN

∣∣∣
=

∣∣∣∣〈Φε
∣∣∣p1p2(̂τ2n)(∇1Xε,12)n̂−1q1q2Φε

〉
L2
xN

∣∣∣∣
=

∣∣∣∣〈(̂τ2n)p1p2Φε
∣∣∣(∇1Xε,12)n̂−1q1q2Φε

〉
L2
xN

∣∣∣∣ , (2.4.168)

where the penultimate line follows from an application of Lemma 2.4.7. Now integrating

by parts and then applying the product rule and triangle inequality, we obtain that∣∣∣∣〈(̂τ2n)p1p2Φε
∣∣∣(∇1Xε,12)n̂−1q1q2Φε

〉
L2
xN

∣∣∣∣ ≤ ∣∣∣∣〈∇1(̂τ2n)p1p2Φε
∣∣∣Xε,12n̂

−1q1q2Φε
〉
L2
xN

∣∣∣∣
+

∣∣∣∣〈(̂τ2n)p1p2Φε
∣∣∣Xε,12∇1n̂

−1q1q2Φε
〉
L2
xN

∣∣∣∣
=: Term5,2,1 + Term5,2,2. (2.4.169)
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We first dispense with the easy case Term5,2,1. By Cauchy-Schwarz and using the operator

norm estimates

‖∇1p1‖L2
xN
→L2

xN
≤ ‖∇φ‖L2

x
and ‖Xε,12‖L2

xN
→L2

xN
≤ 1

2
, (2.4.170)

we obtain that

Term5,2,1 ≤ ‖∇φ‖L2
x
‖(̂τ2n)Φε‖L2

xN
‖n̂−1q1q2Φε‖L2

xN
. (2.4.171)

By arguing similarly as for the estimates (2.4.159) and (2.4.160), we find that

‖(̂τ2n)Φε‖L2
xN

.
√
βε +

1√
N
, (2.4.172)

and by applying Lemma 2.4.6(ii), we have that

‖n̂−1q1q2Φε‖L2
xN

.
√
βε. (2.4.173)

Thus, we conclude that

Term5,2,1 . ‖∇φ‖L2
x

(
βε +

1

N

)
. (2.4.174)

For the hard case Term5,2,2, we first use Cauchy-Schwarz and (2.4.170) to obtain

Term5,2,2 ≤ ‖(̂τ2n)p1p2Φε‖L2
xN
‖∇1n̂

−1q1q2Φε‖L2
xN

.
(√

βε +N−1/2
)
‖∇1n̂

−1q1q2Φε‖L2
xN
, (2.4.175)

where the second line follows from applying the estimate (2.4.172) to the first factor in

the right-hand side of the first line. For the remaining factor ‖∇1n̂
−1q1q2Φε‖L2

xN
, we write

1 = p1 + q1 and use the triangle inequality to obtain

‖∇1n̂
−1q1q2Φε‖L2

xN
≤ ‖p1∇1n̂

−1q1q2Φε‖L2
xN

+ ‖q1∇1n̂
−1q1q2Φε‖L2

xN
. (2.4.176)
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Since ‖p1∇1‖L2
xN
→L2

xN
≤ ‖∇φ‖L2

x
, it follows that

‖p1∇1n̂
−1q1q2Φε‖L2

xN
≤ ‖∇φ‖L2

x
‖n̂−1q1q2Φε‖L2

xN
. ‖∇φ‖L2

x

√
βε, (2.4.177)

where the ultimate inequality follows from applying Lemma 2.4.6(ii) and n̂2 = m̂. Next,

observe that by Lemma 2.4.7, q1∇1n̂
−1q1 = q1n̂

−1∇1q1, which implies that

‖q1∇1n̂
−1q1q2Φε‖L2

xN
≤ ‖n̂−1∇1q1q2Φε‖L2

xN
=
√
〈∇1q1Φε|q2n̂−2∇1q1Φε〉L2

xN

, (2.4.178)

where the ultimate equality follows from the fact that q2 commutes with n̂−2∇1q1 and

q2
2 = q2. By the symmetry of Φε with respect to permutation of particle labels and the

operator identity

1

N − 1

N∑
i=2

qin̂
−2 ≤

(
N

N − 1

)
m̂n̂−2 . 1, (2.4.179)

which follows from Remark 2.4.5, we see that

〈
∇1q1Φε

∣∣q2n̂
−2∇1q1Φε

〉
L2
xN

=
1

N − 1

N∑
i=2

〈
∇1q1Φε

∣∣qin̂−2∇1q1Φε
〉
L2
xN

. ‖∇1q1Φε‖2
L2
xN
.

(2.4.180)

Hence,

‖q1∇1n̂
−1q1q2Φε‖L2

xN
. ‖∇1q1Φε‖L2

xN
. (2.4.181)

We therefore conclude from another application of Young’s inequality that

Term5,2,2 . ‖∇φ‖L2
x

(
βε +N−1

)
+
(√

βε +N−1/2
)
‖∇1q1Φε‖L2

xN
. (2.4.182)

Collecting the estimate (2.4.174) for Term5,2,1 and the estimate (2.4.182) for Term5,2,2, we

find that

Term5,2 . ‖∇φ‖L2
x

(
βε +N−1

)
+
(√

βε +N−1/2
)
‖∇1q1Φε‖L2

xN
. (2.4.183)
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Together with the estimate (2.4.167) for Term5,1, we conclude that

|Term5| . ‖φ‖2
L∞x

(
βε +N−1/2

)
+ ‖∇φ‖L2

x

(
βε +N−1

)
+
(√

βε +N−1/2
)
‖∇1q1Φε‖L2

xN
.

(2.4.184)

Estimate for Term6 We want to show that Term6 ≤ 0. We assume here that κ = −1;

otherwise, it is trivial that Term6 ≤ 0 and we can take κ2 = 0. By the same argument used

to prove Lemma 2.2.2,

‖V 1/2
ε,12(1− p1p2)Φε‖2

L2
xN
≤ ‖∇1(1− p1p2)Φε‖L2

xN
‖(1− p1p2)Φε‖L2

xN
, (2.4.185)

and by Young’s inequality for products,

(N − 1)

2N
‖∇1(1−p1p2)Φε‖L2

xN
‖(1−p1p2)Φε‖L2

xN
≤ κ1‖∇1(1−p1p2)Φε‖2

L2
xN

+
(N − 1)2

4N2κ1

‖(1−p1p2)Φε‖2
L2
xN
.

(2.4.186)

We choose κ2 > 1/(2κ1). Then,

Term6 =
(N − 1)

2N
‖V 1/2

ε,12(1− p1p2)Φε‖2
L2
xN
− κ1‖∇1(1− p1p2)Φε‖2

L2
xN
− κ2‖(1− p1p2)Φε‖2

L2
xN

≤
(

(N − 1)2

4N2κ1

− κ2

)
‖(1− p1p2)Φε‖2

L2
xN

≤ 0, (2.4.187)

as desired.

Having estimated the terms Term1, . . . ,Term6, we can now complete the proof of

the proposition. Combining estimate (2.4.147) for Term1, (2.4.148) for Term2, (2.4.153) for

Term3, (2.4.161) for Term4, and (2.4.184) for Term5, we see that there exists an absolute
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constant C > 0 such that

(1− κ1)‖∇1(1− p1p2)Φε‖2
L2
xN
≤
(
EΦε − Eφ

)
+ C

(
ε1/2‖φ‖2

C
1/2
x

+
(√

βε +N−1/2
)
‖∇1q1Φε‖L2

xN

)
+ C

((
‖φ‖2

L∞x
+ ‖φ‖H2

x

)
N−1/2 +

(
‖∇φ‖L2

x
+ ‖φ‖4

L4
x

)
N−1

)
+ Cβε

(
‖∇φ‖2

L2
x

+ κ21{−1}(κ) + ‖φ‖H2
x

+ ‖φ‖2
L∞x

+ ‖∇φ‖L2
x

+ ‖φ‖4
L4
x

)
.

(2.4.188)

Note that by using Sobolev embedding, the interpolation property of Hs norms, and the

normalization ‖φ‖L2
x

= 1, we can simplify the right-hand side of (2.4.188) to

(1− κ1)‖∇1(1− p1p2)Φε‖2
L2
xN
≤
(
EΦε − Eφ

)
+ C‖φ‖H2

x

(
N−1/2 + βε

)
+ C

(
ε1/2‖φ‖2

C
1/2
x

+
(√

βε +N−1/2
)
‖∇1q1Φε‖L2

xN

)
,

(2.4.189)

for some larger absolute constant C > 0. To close the proof of the lemma, we want to obtain

a lower bound for the left-hand side of (2.4.189) in terms ‖∇1q1Φε‖2
L2
xN

. To this end, we note

that

1− p1p2 = p1 + q1 − p1p2 = p1q2 + q1, (2.4.190)

so that by the triangle inequality and the fact that q2 commutes with ∇1,

‖∇1q1Φε‖L2
xN
≤ ‖∇1(1− p1p2)Φε‖L2

xN
+ ‖∇1p1q2Φε‖L2

xN
. (2.4.191)

Since ‖∇1p1‖L2
xN
→L2

xN
≤ ‖∇φ‖L2

x
, it follows that

‖∇1p1q2Φε‖L2
xN
≤ ‖∇φ‖L2

x
‖q2Φε‖L2

xN
≤ ‖∇φ‖L2

x

√
βε, (2.4.192)

where the ultimate inequality follows from Remark 2.4.5 and αε ≤ βε. Therefore,

‖∇1(1− p1p2)Φε‖2
L2
xN
≥
(
‖∇1q1Φε‖L2

xN
− ‖∇φ‖L2

x

√
βε

)2

≥
3‖∇1q1Φε‖2

L2
xN

4
− 15‖∇φ‖2

L2
x
βε,

(2.4.193)
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where the ultimate inequality follows from application of Young’s inequality for products.

Inserting the preceding lower bound into the inequality (2.4.189) and rearranging, we find

that

3

4
‖∇1q1Φ‖2

L2
xN
≤ EΦε − Eφ

1− κ1

+
C

1− κ1

(
ε1/2‖φ‖2

C
1/2
x

+
(√

βε +N−1/2
)
‖∇1q1Φε‖L2

xN

)
+
C‖φ‖H2

x

1− κ1

(
N−1/2 + βε

)
+ 15‖∇φ‖2

L2
x
βε.

(2.4.194)

By Young’s inequality for products,

C

1− κ1

‖∇1q1Φε‖L2
xN

(√
βε +N−1/2

)
≤ 4C2

(1− κ1)2

(
βε +

1

N

)
+

1

4
‖∇1q1Φε‖2

L2
xN
, (2.4.195)

The desired conclusion now follows after some algebra.

2.4.4 Proof of Proposition 2.1.2

We now use the results of the previous subsections to pass to the limit ε → 0+ and

obtain an inequality for βN , thereby proving Proposition 2.1.2.

Proof of Proposition 2.1.2. Applying Proposition 2.4.10 to factors ‖∇1q1Φε
N‖L2

xN
appearing

in the right-hand side of the inequality given by Proposition 2.4.9 and using the majorization

‖φ‖2
H1
x
≤ ‖φ‖H2

x
together with a bit of algebra, we obtain the point-wise estimate

β̇N,ε .
‖φ‖2

L∞x

N
+ ε1/2‖φ‖2

C
1/2
x

+
(1 + ‖φ‖2

C
1/2
x

)‖φ‖H2
x√

N
+

1

Nσ
+
‖φ‖4

L4
x

N (1−σ)/2
+
‖φ‖2

L∞x

N δ/2
+N

2(σ−1)+δ
2

+
(

1 + ‖φ‖2

C
1/2
x

)
‖φ‖H2

x
βN,ε +

(
1 + ‖φ‖2

C
1/2
x

)(
EΦε

N − Eφ + ε1/2‖φ‖2

C
1/2
x

)
.

(2.4.196)

We now optimize the choice of δ, σ ∈ (0, 1). We choose δ, σ ∈ (0, 1) such that

1− σ = δ and σ =
1− σ

2
, (2.4.197)
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which, after some algebra, implies that (δ, σ) = (2/3, 1/3). Inserting this choice of (δ, σ) into

the right-hand side of inequality (2.4.196) and using Sobolev embedding together with the

interpolation property of the Hs norm, we obtain

β̇N,ε .
‖φ‖2

H2
x√

N
+
‖φ‖2

H1
x

N1/3
+ ‖φ‖2

H2
x
βN,ε +

(
1 + ‖φ‖2

C
1/2
x

)(
EΦε

N − Eφ + ε1/2‖φ‖2

C
1/2
x

)
. (2.4.198)

Integrating both sides of the preceding inequality over the interval [0, t] and applying

the fundamental theorem of calculus, we obtain that

βN,ε(t) ≤ βN,ε(0) + C

∫ t

0

ds‖φ(s)‖2
H2βN,ε(s)

+ C

∫ t

0

ds

(
‖φ(s)‖2

H2√
N

+
‖φ(s)‖2

H1

N1/3
+
(
1 + ‖φ(s)‖2

C1/2

)(
EΦε

N − Eφ + ε1/2‖φ(s)‖2
C1/2

))
,

(2.4.199)

where C > 0 is an absolute constant. So applying the Gronwall-Bellman inequality, specifi-

cally [73, Theorem 1.3.1], we find that

βN,ε(t) ≤ AN,ε(t) exp

(
C

∫ t

0

ds‖φ(s)‖2
H2

)
, ∀t ≥ 0, (2.4.200)

where AN,ε : [0,∞)→ [0,∞) is the function defined by

AN,ε(t) := βN,ε(0)+C

∫ t

0

ds

(
‖φ(s)‖2

H2√
N

+
‖φ(s)‖2

H1
x

N1/3
+
(
1 + ‖φ(s)‖2

C1/2

)(
EΦε

N − Eφ + ε1/2‖φ(s)‖2
C1/2

))
,

(2.4.201)

for every t ≥ 0.

We now send ε → 0+. By Lemma 2.4.8, we have that βε,N(t) → βN(t), as ε → 0+,

uniformly on compact intervals of time. Recalling the definition of the energy per particle

EΦε

N and the cubic NLS energy Eφ from (2.4.135) and (2.4.136), respectively, we see that

EΦε

N − Eφ = ‖∇1ΦN,0‖2
L2(RN ) +

κ(N − 1)

2N
〈ΦN,0|Vε,12ΦN,0〉L2(RN ) − ‖∇φ0‖2

L2(R) − ‖φ0‖4
L4(R).

(2.4.202)
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It follows from the proof of Lemma 2.3.7 that Vε,12ΦN,0 → V12ΦN,0 in H−1(RN) as ε → 0+.

Therefore,

lim
ε→0+

EΦε

N − Eφ = EΦ
N − Eφ, (2.4.203)

where EΦ
N is the energy per particle of the solution ΦN to equation (1.2.4) introduced in

(2.1.5), so that

AN,ε(t)→ βN(0)+C

∫ t

0

ds

(
‖φ(s)‖2

H2√
N

+
‖φ(s)‖2

H1
x

N1/3
+
(
EΦ
N − Eφ

)(
1 + ‖φ(s)‖2

C1/2

))
=: AN(t),

(2.4.204)

as ε → 0+, locally uniformly. Using the higher conservation laws of the 1D cubic NLS (see

[28, Chapter I]),5 we have that the Hk norms of φ are bounded (up to an absolute constant)

by ‖φ0‖Hk , for any k ∈ N0. Thus, there exists an absolute constant C ′ ≥ C such that

AN(t) ≤ βN(0) + C ′t

(
‖φ0‖2

H2√
N

+
‖φ0‖2

H1

N1/3
+ ‖φ0‖2

H1

(
EΦ
N − Eφ

))
, ∀t ≥ 0. (2.4.205)

Now taking the limit as ε → 0+ of the inequality (2.4.200) and using Lemma 2.4.8 once

more, we obtain that

βN(t) ≤ AN(t) exp
(
C ′‖φ0‖2

H2t
)
, ∀t ≥ 0. (2.4.206)

Comparison with the statement of Proposition 2.1.2 completes the proof of the proposition.

5In fact, Koch and Tataru [47] have shown that there exist conserved quantities for the 1D cubic NLS
corresponding to the Hs norm, for any s > − 1

2 . See also the work [45] of Killip, Visan, and Zhang for a
similar result for the case − 1

2 < s < 0.
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2.5 Proof of Theorem 2.1.1

In this last section, we show how Proposition 2.1.2 implies Theorem 2.1.1. As the

implication is well-known, we only sketch the details. We first recall two technical lemmas

from [46].

Lemma 2.5.1 ([46, Lemma 2.1]). Let k ∈ N, and let {γ(j)}kj=1 be a sequence of nonnegative,

trace-class operators on L2
sym(Rj), for j ∈ {1, . . . , k}, with unit trace and such that

Trj+1 γ
(j+1) = γ(j), ∀j ∈ {1, . . . , k − 1}. (2.5.1)

Let ϕ ∈ L2(R) satisfy ‖ϕ‖L2 = 1. Then

1−
〈
ϕ⊗k

∣∣γ(k)ϕ⊗k
〉
≤ k

(
1−

〈
ϕ
∣∣γ(1)ϕ

〉)
. (2.5.2)

Lemma 2.5.2 ([46, Lemma 2.3]). Let k ∈ N, and let γ(k) be a nonnegative self-adjoint

trace-class operator on L2
sym(Rk) with unit trace (i.e. a density matrix). Let ϕ ∈ L2(R) with

‖ϕ‖L2 = 1. Then

1−
〈
ϕ⊗k

∣∣γ(k)ϕ⊗k
〉
≤ Tr1,...,k

∣∣γ(k) − |ϕ⊗k〉 〈ϕ⊗k|
∣∣ ≤√8(1− 〈ϕ⊗k|γ(k)ϕ⊗k〉). (2.5.3)

Proof of Theorem 2.1.1. For k ∈ {1, . . . , N}, let γ
(k)
N = Tr1,...,k( |ΦN〉 〈ΦN |) denote the k-

particle reduced density matrix of the N -body system, where ΦN is the solution to the

Schrödinger equation (1.2.4). Let φ be the solution to the 1D cubic NLS (1.2.11). It is

straightforward from the definition of partial trace that〈
φ
∣∣∣γ(1)
N φ
〉
L2
x

=
〈
ΦN

∣∣(( |φ〉 〈φ|)⊗ 1⊗N−1
)
ΦN

〉
L2
xN

= 〈ΦN |p1ΦN〉L2
xN

, (2.5.4)
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which implies by Remark 2.4.5 that

1−
〈
φ
∣∣∣γ(1)
N φ
〉
L2
x

= 〈ΦN |q1ΦN〉L2
xN

= αN . (2.5.5)

Since αN ≤ βN , Proposition 2.1.2 implies that there is an absolute constant C > 0 such that

1−
〈
φ(t)

∣∣∣γ(1)
N (t)φ(t)

〉
≤
(
βN(0) + C|t|

(
‖φ0‖2

H1

N1/3
+
‖φ0‖2

H2

N1/2
+ ‖φ0‖2

H1

(
EΦ
N − Eφ

)))
eC‖φ0‖

2
H2 |t|,

(2.5.6)

for every t ∈ R. Since ΦN,0 = φ⊗N0 , we see from unpacking Definition 2.4.4 for βN that

βN(0) =
〈
φ⊗N0

∣∣∣n̂N(0)φ⊗N0

〉
=

N∑
k=0

√
k

N

〈
φ⊗N0

∣∣Pk(0)φ⊗N0

〉
, (2.5.7)

where the reader will recall the definition of the projector Pk from (2.4.4). For k ∈ {1, . . . , N},

the terms in the definition of Pk(0) contain a projector qj(0) = (1 − |φ0〉 〈φ0|)j, for some

j ∈ {1, . . . , N}, which is orthogonal to the state φ⊗N0 . Thus,

Pk(0)φ⊗N0 = 0, ∀k ∈ {1, . . . , N}, (2.5.8)

which together with the identity (2.5.7) implies that βN(0) = 0. Additionally, using the

normalization ‖φ0‖L2 = 1 and Fubini-Tonelli, we have that

EΦ
N − Eφ = ‖∇1φ

⊗N
0 ‖2

L2(RN ) +
(N − 1)κ

2N
‖|φ0|φ0 ⊗ φ⊗(N−2)

0 ‖2
L2(RN−1) − ‖∇φ0‖2

L2(R) −
κ

2
‖φ0‖4

L4(R)

= − κ

2N
‖φ0‖4

L4(R). (2.5.9)

Now by application of Lemma 2.5.1, Lemma 2.5.2, and the Ḣ
1/4
x ⊂ L4

x Sobolev embedding,

the inequality (2.5.6) implies that there is an absolute constant C ′ ≥ C, such that for any

k ∈ N fixed,

Tr1,...,k

∣∣∣γ(k)
N (t)− |φ(t)⊗k〉 〈φ(t)⊗k|

∣∣∣ ≤ (8kC ′|t|
(
‖φ0‖2

H1

N1/3
+
‖φ0‖2

H2

N1/2

)
eC‖φ0‖

2
H2 |t|

)1/2

, ∀t ∈ R.

(2.5.10)

Thus, the proof of Theorem 2.1.1 is complete.
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Symbol Definition

A . B, A ∼ B There are absolute constants C1, C2 > 0 such that A ≤ C1B or C2B ≤ A ≤ C1B
xk, xi;i+k (x1, . . . , xk), (xi, . . . , xi+k), where xj ∈ R for j ∈ {1, . . . , k} or j ∈ {i, . . . , i+ k}
dxk, dxi;i+k dx1 · · · dxk, dxi · · · dxi+k
N, N0 natural numbers, natural numbers inclusive of zero
SN symmetric group on N elements
C∞c (RN ) smooth, compactly supported functions on RN
S(RN ) Schwartz space on RN
S ′(RN ) tempered distributions on RN
Lp(RN ), ‖ · ‖Lp standard p-integrable function space: see (2.2.2)
Hs(RN ), ‖ · ‖Hs standard L2-based Sobolev function space: see (2.2.4)
Cγ(RN ), ‖ · ‖Cγ standard Hölder-continuous function space: see (2.2.7)
sym subscript which denotes functions symmetric under permutation of coordinates

〈·|·〉 L2(RN ) inner product with physicist’s convention: 〈f |g〉 :=
∫
RN dxNf(xN )g(xN )

〈·, ·〉 duality pairing
〈·| |·〉 Dirac’s bra-ket notation: see footnote 3

A
(k)
i1···ik subscript denotes that the operator on L2(RN ) acts in the variables (xi1 , . . . , xik)

φ⊗k k-fold tensor product of φ with itself realized as φ⊗k(xk) =
∏k
i=1 φ(xi), xk ∈ Rk

Tr1,...,N trace on L2(RN )
Trk+1,...,N partial trace on L2(RN ) over xk+1, . . . , xN coordinates
1, 1N identity operator on L2(R) and on L2(RN )
ΦN , Φε

N solution to Schrödinger problem (1.2.4) and to regularized problem (2.3.20)
φ solution to cubic NLS (1.2.11)
HN , HN,ε LL Hamiltonian and regularized LL Hamiltonian: see (1.2.2) and (2.3.19)
p(t), q(t) rank-one projector |φ(t)〉 〈φ(t)| and 1− |φ(t)〉 〈φ(t)|: see (2.4.1)
pj , qj projectors 1⊗j−1 ⊗ p⊗ 1N−j , 1⊗j−1 ⊗ q ⊗ 1N−j : see (2.4.2)
Pk projector onto subspace of k particles not in the state φ(t): see (2.4.4)

f̂ , f̂−1 operator L2(RN ) → L2(RN ) defined by f̂ :=
∑N

k=0 f(k)Pk, for f : Z → C: see
(2.4.6)

nN ,mN n̂N , m̂N functions Z→ C and operators L2(RN )→ L2(RN ): see Definition 2.4.4
µ, ν µ̂, ν̂ functions Z→ C and operators L2(RN )→ L2(RN ): see (2.4.36) and (2.4.68)
αN , βN time-dependent functionals of solution φ to (1.2.11) and ΦN to (1.2.4): see Defini-

tion 2.4.4
τn shift operator on CZ: see (2.4.16)
tri=j trace of a function to hyperplane {xN ∈ RN : xi = xj}: see (2.2.8)

∆k Laplacian on Rk: ∆k :=
∑k

i=1 ∆i

[·, ·] commutator bracket: [A,B] := AB −BA

Table 2.1: Notation
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Chapter 3

A Rigorous Derivation of the Hamiltonian Structure of

the Nonlinear Schrödinger Equation1

3.1 Statements of Main Results and Blueprint of Proofs

We now state precisely and outline the proofs of our three main results: Theo-

rem 3.1.3, Theorem 3.1.10, and Theorem 3.1.12. The first two results provide the affirmative

answer to Question 1.3.1, establishing the BBGKY hierarchy and GP hierarchy, respectively,

as Hamiltonian flows. Theorem 3.1.12 provides the link between the Hamiltonian structure

for the GP hierarchy and the Hamiltonian structure for the nonlinear Schrödinger equation,

answering Question 1.3.2. Our approach to answering these questions is to meticulously build

a formalism, step-by-step, which renders the desired conclusions quite intuitive in hindsight.

We recall the N -body Schrödinger equation, BBGKY hierarchy, and limiting GP

hierarchy to set the stage for our discussion of the geometry below. It will be useful going

forward to fix the following notation: for d ≥ 1, we denote the point (x1, . . . , xN) ∈ RdN by

xN . We let Ss(RdN) be the subspace of S(RdN) of Schwartz functions which are symmetric

1This chapter is based on an article published prior to the final submission of this dissertation (see
reference [63] for the bibliographic information). The article is an equal collaboration with D. Mendelson,
A.R. Nahmod, N. Pavlović, and G. Staffilani.
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in their arguments, that is, for any π ∈ SN 2 we have

Φ(xπ(1), . . . , xπ(N)) = Φ(x1, . . . , xN), xN ∈ RdN . (3.1.1)

We call Ss(RdN) the bosonic Schwartz space, see Definition 3.3.24 for more details.

Consider the N -body Schrödinger equation

i∂tΦN = HNΦN , ΦN ∈ Ss(RdN) (3.1.2)

where HN is the N -body Hamiltonian

HN :=
N∑
j=1

(−∆xj) +
2κ

N − 1

∑
1≤i<j≤N

VN(Xi −Xj), κ ∈ {±1}. (3.1.3)

The pair interaction potential has the form VN = NdβV (Ndβ·), where β ∈ (0, 1), V is an

even nonnegative function in C∞c (Rd) with
∫
R dxV (x) = 1, and VN(Xi − Xj) denotes the

operator which is multiplication by VN(xi − xj).

The N -body density matrix, associated to the wave function ΦN ∈ Ss(RdN) is given

by

ΨN := |ΦN〉 〈ΦN | ∈ L(S ′s(RdN),Ss(RdN)), 3

and the reduced density matrix hierarchy

(γ
(k)
N )Nk=1 := (Trk+1,...,N(ΨN))Nk=1

2SN is the symmetric group of order N .
3L(S ′s(RdN ),Ss(RdN )) denotes the space of continuous linear maps from symmetric tempered distribu-

tions to symmetric Schwartz functions.
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solves the quantum BBGKY hierarchy

i∂tγ
(k)
N =

[
−∆xk

, γ
(k)
N

]
+

2κ

N − 1

∑
1≤i<j≤k

[
VN(Xi −Xj), γ

(k)
N

]

+
2κ(N − k)

N − 1

k∑
i=1

Trk+1

([
VN(Xi −Xk+1), γ

(k+1)
N

])
, 1 ≤ k ≤ N − 1

=
[
−∆xk

, γ
(k)
N

]
+

2κ

N − 1

∑
1≤i<j≤k

[
VN(Xi −Xj), γ

(k)
N

]
, k = N,

(3.1.4)

where we have introduced the notation ∆xk
:=
∑k

j=1 ∆xj .

The GP hierarchy is formally obtained from the BBGKY hierarchy (3.1.4) by letting

N → ∞. More precisely, a time-dependent family of density matrix ∞-hierarchies Γ(t) =

(γ(t)(k))∞k=1 solves the GP hierarchy if

i∂tγ
(k) = −

[
∆xk

, γ(k)
]

+ 2κBk+1γ
(k+1), ∀k ∈ N (3.1.5)

with κ ∈ {±1} and

Bk+1γ
(k+1) :=

k∑
j=1

(
B+
j;k+1 −B

−
j;k+1

)
γ(k+1), (3.1.6)

where

(
B+
j;k+1γ

(k+1)
)
(t, xk;x

′
k) :=

∫
R2d

dxk+1dx
′
k+1δ(xk+1 − x′k+1)δ(xj − xk+1)γ(k+1)(t, xk+1;x′k+1)

(3.1.7)

with an analogous definition for B−j;k+1 with δ(xj − xk+1) replaced by δ(x′j − xk+1). When

κ = 1, we say that the hierarchy is defocusing and for κ = −1, we say that the hierarchy is

focusing (in analogy with the defocusing and focusing NLS, respectively).

As we outlined in the introduction, our first main results establish that the BBGKY

hierarchy (3.1.4) and the GP hierarchy (3.1.5) are Hamiltonian flows on appropriate weak
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Lie-Poisson manifolds. To do this, we need to define a suitable phase space for the Hamil-

tonian evolution in both the finite- and infinite-particle settings. In particular, we need to

construct certain Lie-Poisson manifolds of density matrix hierarchies, and we outline this

construction in the next subsection. We will also establish that the procedure described

above for obtaining the BBGKY hierarchy from the N -body Schrödinger equation can be

given by the composition of several natural Poisson maps, thereby establishing the existence

of a natural Poisson morphism which maps the N -body Schrödinger equation to the BBGKY

hierarchy.

3.1.1 Construction of the Lie algebra GN and Lie-Poisson manifold G∗N

For each k ∈ N, we let

gk := {A(k) ∈ L(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)},

endowed with the subspace topology of L(Ss(Rk),S ′s(Rk)). We define a Lie algebra (gk, [·, ·]gk),

with Lie bracket defined by

[
A(k), B(k)

]
gk

:= k
[
A(k), B(k)

]
, (3.1.8)

where the right-hand side denotes the usual commutator bracket. We refer to elements of gk

as k-particle bosonic observables. For N ∈ N, we then define the locally convex direct sum

GN :=
N⊕
k=1

gk, (3.1.9)

and we refer to elements of GN as observable N-hierarchies.

To define a Lie bracket on the space GN , we consider the following natural embedding
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maps. For N ∈ N and k ∈ N≤N , there exists a smooth map

εk,N : gk → gN , (3.1.10)

which embeds a k-particle bosonic observable in the space of N -particle bosonic operators

so as to have the filtration property

[ε`,N(g`), εj,N(gj)]gN ⊂ εmin{`+j−1,N},N
(
gmin{`+j−1,N}

)
⊂ gN . (3.1.11)

Using this filtration property and the injectivity of the maps εk,N , we can now endow GN

with a Lie algebra structure by defining the bracket

[A,B]
(k)
GN

:=
∑

1≤`,j≤N
min{`+j−1,N}=k

ε−1
k,N

([
ε`,N
(
A(`)

)
, εj,N

(
B(j)

)]
gN

)
, k ∈ {1, . . . , N}. (3.1.12)

Furthermore, the maps {εk,N}Nk=1 induce a Lie algebra homomorphism

ιε,N : GN → gN , ιε,N(AN) :=
N∑
k=1

εk,N(A
(k)
N ), ∀AN = (A

(k)
N )k∈N≤N . (3.1.13)

In other words, ιε,N maps an observable N -hierarchy to an N -body bosonic observable. In

Section 3.4, we will establish several properties of the embedding map, which ultimately

enable us to prove the following result.

Proposition 3.1.1. (GN , [·, ·]GN ) is a Lie algebra in the sense of Definition 3.3.14.

Next, we define the real topological vector space

G∗N :=
{

ΓN = (γ
(k)
N )Nk=1 ∈

N∏
k=1

L(S ′s(Rdk),Ss(Rdk)) : (γ
(k)
N )∗ = γ

(k)
N

}
, (3.1.14)
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and we refer to elements of G∗N as density matrix N-hierarchies. Let AH,N be the algebra

with respect to point-wise product generated by the functionals in the set

{F ∈ C∞(G∗N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗N ;R) : F (·) ≡ C ∈ R}.

We can define a Lie-Poisson structure on G∗N , given by

{F,G}G∗N (ΓN) := iTr
(
[dF [ΓN ], dG[ΓN ]]GN · ΓN

)
, ∀ΓN ∈ G∗N , (3.1.15)

where F,G ∈ AH,N .

To construct the weak Lie-Poisson manifold G∗N , a good heuristic to keep in mind

is that density matrices are dual to skew-adjoint operators. The superscript ∗, however,

does not denote the literal functional analytic dual, but rather denotes a space in weakly

non-degenerate pairing with GN . The fact that we only have weak non-degeneracy means

that we will be unable to appeal to classical results on Lie-Poisson structures, see for in-

stance Proposition 3.3.20 below, and instead we will proceed by direct proof to establish the

following result.

Proposition 3.1.2. (G∗N ,AH,N , {·, ·}G∗N ) is a weak Poisson manifold.

To establish that the BBGKY hierarchy is a Hamiltonian flow on this weak Poisson

manifold, we need to prescribe the BBGKY Hamiltonian functional

HBBGKY,N(ΓN) := Tr(WBBGKY,N · ΓN), (3.1.16)

where −iWBBGKY,N is the observable 2-hierarchy defined by

WBBGKY,N := (−∆x, κVN(X1 −X2), 0, . . .). (3.1.17)
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We can now state the following theorem, which establishes that the BBGKY hi-

erarchy admits a Hamiltonian formulation and lays the groundwork for our answering of

Question 1.3.1.

Theorem 3.1.3. Let I ⊂ R be a compact interval. Then ΓN = (γ
(k)
N )Nk=1 ∈ C∞(I;G∗N) is a

solution to the BBGKY hierarchy (3.1.4) if and only if

d

dt
ΓN = XHBBGKY,N (ΓN), (3.1.18)

where XHBBGKY,N is the unique vector field defined by HBBGKY,N (see Definition 3.3.1) with

respect to the weak Poisson structure (G∗N ,AH,N , {·, ·}G∗N ).

3.1.2 Derivation of the Lie algebra G∞ and Lie-Poisson manifold G∗∞

Having established the necessary framework at the N -body level, we are now prepared

to address the infinite-particle limit of our constructions. Via the natural inclusion map, one

has GN ⊂ GM for M ≥ N . Hence, one has a natural limiting algebra4 given by

F∞ :=
∞⋃
N=1

GN =
∞⊕
k=1

gk. (3.1.19)

By embedding GN into this limiting algebra, the rather complicated Lie bracket [·, ·]GN
converges pointwise to a much simpler Lie bracket.

We let Symk denote the k-particle bosonic symmetrization operator, see Defini-

tion 3.3.30, and we let [·, ·]1 be a certain separately continuous, bilinear map, the precise

definition of which we defer to Section 3.4. We establish the following result.

4This discussion could be formulated more precisely in terms of co-limits of topological spaces ordered
by inclusion.
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Proposition 3.1.4. Let N0 ∈ N. For A = (A(k))k∈N, B = (B(k))k∈N ∈ GN0, we have that

lim
N→∞

[A,B]GN = C = (C(k)k∈N, (3.1.20)

where

C(k) :=
∑
`,j≥1

`+j−1=k

Symk

([
A(`), B(j)

]
1

)
, (3.1.21)

in the topology of F∞.

The topological vector space given in (3.1.19) is too small to capture the generator of

the GP Hamiltonian, defined in (3.1.29) below. Indeed, the 2-particle component VN(X1 −

X2) of the N -body Hamiltonian HN given in (3.1.3) converges to the distribution-valued

operator5 δ(X1 −X2) as N → ∞. The operator −iδ(X1 −X2) does not belong to g2 since

it does not map Ss(R2d) to itself.

Since we will need our Lie algebra G∞ to contain the generator of the GP Hamil-

tonian functional, this necessitates an underlying topological vector space which includes

distribution-valued operators (DVOs). The inclusion of DVOs introduces technical difficul-

ties in the definition of the bracket [·, ·]1. As we will see, the definition of the bracket [·, ·]1,

involves compositions of distribution-valued operators in one coordinate, which in general is

not possible. Consequently, we need to find a setting in which we can give meaning to such

a composition, thus motivating our introduction of the good mapping property :

Definition 3.1.5 (Good mapping property). Let i ∈ N. We say that an operator A(i) ∈

L(S(Rdi),S ′(Rdi)) has the good mapping property if for any α ∈ N≤i, the continuous bilinear

5Not to be confused with operator-valued distribution.
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map

S(Rdi)× S(Rdi)→ S ′(Rd)⊗̂S(Rd)

(f (i), g(i)) 7→
∫
Ri−1

dx1 . . . dxα−1dxα+1 . . . dxiA
(i)(f (i))(x1, . . . , xi)g

(i)(x1, . . . , xα−1, x
′
α, xα+1, . . . , xi),

may be identified with a continuous bilinear map S(Rdi)× S(Rdi)→ S(R2d).6

Here and throughout this chapter, an integral should be interpreted as a distributional

pairing, unless specified otherwise. We will denote by Lgmp(S(Rdi),S ′(Rdi)) the subset of

L(S(Rdi),S ′(Rdi)) of operators with the good mapping property.

Remark 3.1.6. It is evident that Lgmp(S(Rdi),S ′(Rdi)) is closed under linear combinations

and therefore a subspace. Note that here and throughout we endow L(S(Rdi),S ′(Rdi)) with

the topology of uniform convergence on bounded sets, and we endow Lgmp with the subspace

topology. To see that Lgmp is a proper subspace of L, consider the multiplication operator

δ(X2) ∈ L(S(R2d),S ′(R2d)).

The formula for the limiting Lie bracket given in Proposition 3.1.4 has a greatly

simplified form compared to the N -body bracket [·, ·]GN due to the vanishing of the higher

“contraction commutators”. Moreover, as we prove in Appendix 3.3, the good mapping

property gives an appropriate definition to the bracket
[
A(i), B(j)

]
1

as a well-defined element

of Lgmp(S(Rdk),S ′(Rdk)). Hence, we can take advantage of the good mapping property and

extend the limiting formula from Proposition 3.1.4 to a map on a much larger real topological

6We use ⊗̂ to denote the completion of the tensor product in either the projective or injective topology
(which coincide). See Section 3.3.3 for furhter discussion.
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vector space G∞ given by the locally convex direct sum

G∞ :=
∞⊕
k=1

gk,gmp, gk,gmp := {A(k) ∈ Lgmp(Ss(Rdk),S ′s(Rdk)) : A(k) = −(A(k))∗}. (3.1.22)

We refer to the elements of G∞ as observable∞-hierarchies, and the elements of gk,gmp

as k-particle bosonic observables. The verification of the Lie algebra axioms then proceeds

by direct computation, and we are able to establish the following result.

Proposition 3.1.7. (G∞, [·, ·]G∞) is a Lie algebra in the sense of Definition 3.3.14.

Analogously to the N -body setting, our second step is the dual problem of building

a weak Lie-Poisson manifold (G∗∞,A∞, {·, ·}G∗∞). If we were in the finite-dimensional setting

or a “nice” infinite-dimensional setting, such as G∗∞ being a Fréchet space and G∞ being its

predual, then this step would follow from standard results (see Section 3.3.2). While G∗∞ is

Fréchet, the predual of G∗∞ is

{
A = (A(k))k∈N ∈

∞⊕
k=1

L(Ss(Rdk),S ′s(Rdk) : (A(k))∗ = −A(k)
}
, (3.1.23)

which is too large a space for the Lie bracket [·, ·]G∞ to be well-defined. Therefore, the

standard procedure for obtaining a Lie-Poisson manifold from a Lie algebra can only serve

as inspiration.

We define the real topological vector space

G∗∞ :=
{

Γ = (γ(k))k∈N ∈
∞∏
k=1

L(S ′s(Rdk),Ss(Rdk)) : γ(k) = (γ(k))∗ ∀k ∈ N
}
, (3.1.24)

where the topology is the product topology. Using the isomorphism

L(S ′s(Rdk),Ss(Rdk)) ∼= Ss,s(Rdk × Rdk), (3.1.25)
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the elements of G∗∞, which we call density matrix ∞-hierarchies, are infinite sequences of

k-particle integral operators with Schwartz class kernels K(xk;x
′
k), which are separately

invariant under permutation in the xk and x′k coordinates.

Let A∞ be the algebra with respect to point-wise product generated by functionals

in the set

{F ∈ C∞(G∗∞;R) : F (·) = iTr(A·), A ∈ G∞} ∪ {F ∈ C∞(G∗∞;R) : F (·) ≡ C ∈ R}.
(3.1.26)

We will observe later that, importantly, our choice ofA∞ contains the observable∞-hierarchy

−iWGP , which generates the GP Hamiltonian.

As in the finite-particle setting, the Lie algebra structure on G∞ canonically induces

a Poisson structure on G∗∞. This canonical Poisson structure, which is called a Lie-Poisson

structure, is defined by the Poisson bracket

{F,G}G∗∞(Γ) := iTr
(
[dF [Γ], dG[Γ]]G∞ · Γ

)
, ∀Γ ∈ G∗∞, (3.1.27)

where F,G ∈ C∞(G∗∞;R) are functionals in the unital7 sub-algebra A∞ and we identify the

Gâteaux derivatives dF [Γ], dG[Γ] as observable ∞-hierarchies via the trace pairing iTr(·).

We will ultimately establish the following result, which provides the underlying geometric

structure required to address Question 1.3.1.

Proposition 3.1.8. (G∗∞,A∞, {·, ·}G∗∞) is a weak Poisson manifold.

Define the Gross-Pitaevskii Hamiltonian functional

HGP : G∗∞ → R (3.1.28)

7i.e. containing a multiplicative identity
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by

HGP (Γ) := −Tr1

(
∆x1γ

(1)
)

+ Tr1,2

(
δ(X1 −X2)γ(2)

)
, Γ = (γ(k))k∈N ∈ G∗∞, (3.1.29)

where Tr1,...,j denotes the j-particle generalized trace, see Appendix 3.2 for definition and

discussion. Then we can rewrite HGP as

HGP (Γ) = Tr(WGP · Γ), WGP := (−∆x1 , δ(X1 −X2), 0, . . .), (3.1.30)

which one should compare with (3.1.16).

Remark 3.1.9. Note that −iWGP is an observable∞-hierarchy, that is, an element of G∞.

Since we have the convergence −iWBBGKY,N → −iWGP in G∞, as N →∞, it follows that

HBBGKY,N → HGP in C∞(G∗∞;R) endowed with the topology of uniform convergence on

bounded sets.

We now state our next main result, which addresses the final component of Ques-

tion 1.3.1:

Theorem 3.1.10 (Hamiltonian structure for GP). Let I ⊂ R be a compact interval. Then

Γ ∈ C∞(I;G∗∞) is a solution to the GP hierarchy (3.1.5) if and only if(
d

dt
Γ

)
(t) = XHGP (Γ(t)), ∀t ∈ I, (3.1.31)

where XHGP is the unique Hamiltonian vector field defined by HGP with respect to the weak

Poisson structure (G∗∞,A∞, {·, ·}G∗∞).

Remark 3.1.11. The result of Theorem 3.1.10 extends, with an almost identical proof, to

the Hartree hierarchy, and it seems likely that this result should also extend to the quintic
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GP hierarchy [15] and other variants which account for higher-order particle interactions

[98].

We now give a geometric formulation of the procedure by which one obtains the

BBGKY hierarchy from the N -body Schrödinger equation. The results described below will

be proved in Section 3.4.3. To record the Hamiltonian structure for the N -body Schrödinger

equation, we equip the bosonic Schwartz space Ss(RdN) with the standard symplectic struc-

ture and define the Hamiltonian functional

HN(ΦN) :=
1

N

∫
RdN

dxNΦN(xN)(HNΦN)(xN), ∀ΦN ∈ Ss(RdN). (3.1.32)

Then the Schrödinger equation (3.1.2) can be viewed as a Hamiltonian flow on this weak sym-

plectic manifold. We can endow the space L(S ′s(RdN),Ss(RdN)) of bosonic density matrices

with a weak Poisson structure by defining

{F,G}N := iTr1,...,N

(
[dF [ΨN ], dG[ΨN ]]gNΨN

)
, ∀ΨN ∈ L(S ′s(RdN),Ss(RdN)), (3.1.33)

where dF and dG denote the Gâteaux derivatives, see Definition 2.1.4, of F and G, which

are smooth real-valued functionals with suitably regular Gâteaux derivatives. Then the

Poisson bracket {·, ·}N is a Lie-Poisson bracket induced by the Lie algebra of N -body bosonic

observables with Lie bracket given by [·, ·]gN .

There is a canonical map from N -body wave functions to N -body density matrices

given by

ιDM,N : Ss(RdN)→ L(S ′s(RdN),Ss(RdN)), ιDM,N(ΦN) := |ΦN〉 〈ΦN | . (3.1.34)

We will show in Proposition 3.4.27 that

ιDM,N : (Ss(RdN), {·, ·}L2,N)→ (L(S ′s(RdN),Ss(RdN)), {·, ·}N),
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is a Poisson morphism8 and consequently maps solutions of the Schrödinger equation (3.1.2)

to solutions of the von Neumann equation

i∂tΨN = [HN ,ΨN ], (3.1.35)

where the right-hand side denotes the usual commutator. Defining the Hamiltonian func-

tional

HN(ΨN) :=
1

N
Tr1,...,N(HNΨN), ∀ΨN ∈ L(S ′s(RdN),Ss(RdN)), (3.1.36)

the von Neumann equation (3.1.35) can be viewed as a Hamiltonian equation of motion on the

weak Poisson manifold (L(S ′s(RdN),Ss(RdN)), {·, ·}N). We will prove in Proposition 3.4.29

that the dual of the map ιε,N given in (3.1.13) induces a canonical morphism of Poisson

manifolds, which is precisely the reduced density matrix map, given by

ιRDM,N = ι∗ε,N : g∗N → G∗N , ιRDM,N(ΨN) := (Trk+1,...,N(ΨN))Nk=1 =: (γ
(k)
N )Nk=1, (3.1.37)

which maps solutions of the von Neumann equation to solutions of the quantum BBGKY

hierarchy.

3.1.3 The Connection with the NLS

We will now tie together our main results and state the result which provides an

affirmative answer to Question 1.3.2. We connect the GP hierarchy to the cubic NLS, each

as infinite-dimensional Hamiltonian systems, through the canonical embedding

ι : S(Rd)→ G∗∞, φ 7→ ( |φ⊗k〉 〈φ⊗k|)k∈N. (3.1.38)

8We recall {·, ·}L2,N = N{·, ·}L2 , and see (1.3.2) for a definition of {·, ·}L2 . We also note that the
co-domain of this map will be replaced by the appropriate space of N -body density matrices.
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Although ι is rather trivial in terms of the simplicity of its definition, and for this reason

we sometimes refer to ι as the trivial embedding, it has the important property of being a

Poisson morphism (see Definition 3.3.7 below).

Theorem 3.1.12. The map ι is a Poisson morphism of (S(Rd),AS , {·, ·}L2) into (G∗∞,A∞, {·, ·}G∗∞),

i.e. it is a smooth map such that

{F ◦ ι, G ◦ ι}L2(φ) = {F,G}G∗∞(ι(φ)), ∀φ ∈ S(Rd), (3.1.39)

for all functionals F,G ∈ A∞.

We conclude by discussing why the results described in this section provide “a rigorous

derivation of the Hamiltonian structure of the NLS”. It is a quick computation to show that

the pullback of the GP Hamiltonian (3.1.30) under the map ι, denoted by ι∗HGP , equals the

NLS Hamiltonian (1.3.4),9 that is

ι∗HGP = HNLS. (3.1.40)

Hence, Theorem 3.1.12, Theorem 3.1.10 and (3.1.40) ultimately demonstrate that the Hamil-

tonian functional and phase space of the NLS can be obtained via the pullback of the canon-

ical embedding (3.1.38). Together with the results of Section 3.4.3, which provide a geomet-

ric correspondence between the N -body Schrodinger equation and the BBGKY hierarchy,

and Proposition 3.1.4, which enables us to take the infinite-particle limit of our geomet-

ric constructions at the N -body level, this provides a rigorous derivation of the Hamiltonian

structure of the NLS from the Hamiltonian formulation of the N -body Schrödinger equation.

9In particular, as a corollary of Theorem 3.1.10 and Theorem 3.1.12, we obtain the well-known fact that
if φ(t) is a solution to the cubic NLS (1.3.7), then Γ(t) := ι(φ(t)) is a solution to the GP hierarchy (3.1.5).
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3.1.4 Organization of the Chapter

Section 3.3 is devoted to preliminary material on weak Poisson manifolds modeled on

locally convex spaces, Lie algebras, and tensor products. The reader familiar with infinite-

dimensional Poisson manifolds and Lie algebras may wish to skip the first two subsections

upon first reading and instead consult them as necessary during the reading of Section 3.4

and Section 3.5.

In Section 3.4, we build the requisite Lie algebra structure for GN and weak Lie-

Poisson structure for G∗N , thereby proving Proposition 3.1.1 and Proposition 3.1.2. Sec-

tion 3.4.1 contains the Lie algebra construction, and Section 3.4.2 contains the dual Lie-

Poisson construction. Lastly, in Section 3.4.3, we show that the familiar maps of forming

a density matrix from a wave function and taking the sequence of reduced density matri-

ces of a density matrix have geometric content. Namely, we prove Proposition 3.4.27 and

Proposition 3.4.29, which assert that these maps are Poisson morphisms.

In Section 3.5, we build the requisite Lie algebra structure for G∞ and weak Lie-

Poisson structure for G∗∞, thereby proving Proposition 3.1.7 and Proposition 3.1.8. The

section is broken up into several subsections. Section 3.5.2 is devoted the Lie algebra con-

struction, and Section 3.5.3 is devoted to the dual Lie-Poisson construction. Finally, we will

prove Theorem 3.1.12 in Section 3.5.4.

Lastly, in Section 3.6, we prove our Hamiltonian flows results Theorem 3.1.3 and The-

orem 3.1.10, which assert that the BBGKY and GP hierarchies, respectively, are Hamiltonian

flows on the weak Lie-Poisson manifolds constructed in the previous sections.

Remark 3.1.13. In Section 3.4, Section 3.5, and Section 3.6, we will fix the dimension to be
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one for simplicity, but we emphasize that our results hold independently of the dimension.

3.2 Notation

3.2.1 Index of Notation

At the end of the chapter, we include Table 3.1 as a notational guide for the various

symbols which appear in this chapter. In this table, we either provide a definition of the

notation or a reference for where the symbol is defined. When definitions for these objects

may have appeared in the introduction, we will give references to where they first appear in

subsequent sections.

3.3 Preliminaries

3.3.1 Weak Poisson Structures and Hamiltonian Systems

The classical notion of Poisson structure, as can be found in [60], is ill-suited outside

the Hilbert or Banach manifold setting due to the fact that for a given smooth, locally

convex manifold M , not every functional in C∞(M,R), the space of smooth, real-valued

functionals on M , need admit a Hamiltonian vector field. Since we will need to work with

Fréchet manifolds, an alternative theory is needed. We opt for the notion of a weak Poisson

structure due to Neeb et al. [69].

We recall that a unital subalgebra A ⊆ C∞(M ;R) contains constant functions and

is closed under pointwise multiplication.

Definition 3.3.1 (Weak Poisson manifold). A weak Poisson structure on M is a unital

subalgebra A ⊂ C∞(M ;R) and a bilinear map {·, ·} : A × A → A satisfying the following

properties:
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(P1) The bilinear map {·, ·}, is a Lie bracket and satisfies the Leibnitz rule

{F,GH} = {F,G}H +G{F,H}, ∀F,G,H ∈ A. (3.3.1)

We call {·, ·} a Poisson bracket.

(P2) For all m ∈ M and v ∈ TmM satisfying dF [m](v) = 0 for all F ∈ A, we have that

v = 0.

(P3) For every H ∈ A, there exists a smooth vector field XH on M satisfying

XHF = {F,H}, ∀F ∈ A.10 (3.3.2)

We call XH the Hamiltonian vector field associated to H.

If properties (P1) - (P3) are satisfied, then we call the triple (M,A, {·, ·}) a weak Poisson

manifold.

We now record some observations from [69] about the definition of a weak Poisson

structure.

Remark 3.3.2. (P2) implies that the Hamiltonian vector field XH associated to some H ∈ A

is uniquely determined by the relation

{F,H}(m) = (XHF )(m) = dF [m](XH(m)), ∀F ∈ A. (3.3.3)

10In the left-hand side of identity (3.3.2), we use the notation XH to denote the vector field identified as
a derivation.
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Indeed, if XH,1 and XH,2 are two smooth vector fields satisfying the preceding relation, then

the smooth vector X̃H := XH,1 −XH,2 satisfies

dF [m](X̃H(m)) = 0, ∀F ∈ A, (3.3.4)

for all m ∈M , which by (P2) implies that X̃H ≡ 0.

Remark 3.3.3. For all F,G,H ∈ A, we have that

[XF , XG]H = {{H,G}, F} − {{H,F}, G}

= {H, {G,F}}

= X{G,F}H. (3.3.5)

Hence, by Remark 3.3.2, [XF , XG] = X{G,F} for F,G ∈ A. Additionally, the Leibnitz rule

for {·, ·} implies the identity

XFG = FXG +GXF , ∀F,G ∈ A. (3.3.6)

Remark 3.3.4. If A ⊂ C∞(M ;R) is a unital sub-algebra which satisfies properties (P1)

and (P2) of Definition 3.3.1, then (3.3.6) implies that the subspace

{H ∈ A : XH exists as in (P3)} (3.3.7)

is a sub-algebra of A with respect to pointwise product. Hence, it suffices to verify property

(P3) for a generating subset A0 ⊂ A.

We note that unlike in the finite-dimensional setting, a symplectic form ω : V ×V → R

on an infinite-dimensional locally convex space V need not represent every continuous linear
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functional via ω(·, v), for some v ∈ V . If the form does satisfy such a Riesz-representation-

type condition, we call a symplectic form ω strong, otherwise, we call ω weak. Analogously,

a 2-form ω on a smooth locally convex manifold M is strong (resp. weak) if all forms

ωp : TpM × TpM → R, for p ∈M , are strong (resp. weak).

Definition 3.3.5 (Weak symplectic manifold). Let M be a smooth locally convex manifold,

and let X (M) denote smooth vector fields on M . A weak symplectic manifold is a pair

(M,ω) consisting of a smooth manifold M and a closed non-degenerate 2-form ω on M .

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector

fields on M by

ham(M,ω) := {X ∈ X (M) : ∃H ∈ C∞(M ;R) s.t. ω(X, ·) = dH}. (3.3.8)

Similarly, we denote the larger Lie algebra of symplectic vector fields on M by

sp(M,ω) := {X ∈M : LXω = 0}, (3.3.9)

where LX denotes the Lie derivative with respect to the vector field X.

With this definition in hand, we see that one has the desired implication analogous

to the finite dimensional setting, namely that weak symplectic manifolds canonically lead to

weak Poisson manifolds.

Remark 3.3.6 (Weak symplectic ⇒ weak Poisson). Let (M,ω) be a weak symplectic man-

ifold. Let

A := {H ∈ C∞(M ;R) : ∃XH ∈ X (M) s.t. ω(XH , ·) = dH}, (3.3.10)
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then

{·, ·} : A×A → A, {F,G} := ω(XF , XG) = dF [XG] = XGF (3.3.11)

defines a Poisson bracket on A satisfying properties (P1) and (P3). If we additionally have

that for each m ∈M and all v ∈ TmM , the condition

ω(X(m), v) = 0, ∀X ∈ ham(M,ω) (3.3.12)

implies that v = 0, then property (P2) is also satisfied. Consequently, the triple (M,A, {·, ·})

is a weak Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Poisson

structures. This leads to the notion of a Poisson mapping, alternatively Poisson morphism.

Definition 3.3.7 (Poisson map). Let (Mj,Aj, {·, ·}j), for j = 1, 2, be weak Poisson mani-

folds. We say that a smooth map ϕ : M1 → M2 is a Poisson map, or morphism of Poisson

manifolds, if ϕ∗A2 ⊂ A1 and

ϕ∗{F,G}2 = {ϕ∗F, ϕ∗G}1, ∀F,G ∈ A2. (3.3.13)

Remark 3.3.8. In [69], the authors define a Poisson morphism

ϕ : (M1,A1, {·, ·}1)→ (M2,A2, {·, ·}2)

with the requirement that ϕ∗A2 = A1. We drop this requirement in our Definition 3.3.7.

As an example, we demonstrate that the Schwartz space S(Rk) is a weak, but not

strong, symplectic manifold. The following analysis also holds for the bosonic Schwartz space

Ss(Rk) mutatis mutandis, which will be important for our applications in the sequel.
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We equip the space S(Rk) with a real pre-Hilbert inner product by defining

〈f |g〉Re := 2 Re

{∫
Rk
dxkf(xk)g(xk)

}
. (3.3.14)

The operator J : S(Rk)→ S(Rk) defined by J(f) := if defines an almost complex structure

on (S(Rk), 〈·|·〉Re), leading to the standard L2 symplectic form

ωL2(f, g) := 〈Jf |g〉Re = 2 Im

{∫
Rk
dxkf(xk)g(xk)

}
, ∀f, g ∈ S(Rk). (3.3.15)

Proposition 3.3.9. (S(Rk), ωL2) is a weak symplectic manifold.

Proof. S(Rk) is trivially a smooth manifold modeled on itself. Moreover, it is evident from

its definition that ωL2 is bilinear, alternating, and closed. To see that ωL2 is non-degenerate,

let f ∈ S(Rk) and suppose that

ωL2(f, g) = 0 ∀g ∈ S(Rk). (3.3.16)

It then follows tautologically that Im{〈f |g〉} = 0. Replacing g by ig, we obtain that

Re{〈f |g〉} = 0, which implies that 〈f |f〉 = 0, hence f = 0.

Now given a functional F ∈ C∞(S(Rk);R), the Gâteaux derivative dF [f ] at the point

f ∈ S(Rk) defines a tempered distribution. We consider the case when dF [f ] can be identified

with a Schwartz function via the inner product 〈·|·〉Re. The next lemma follows by the

Lebesgue lemma11 and the same argument used to prove non-degeneracy in Proposition 3.3.9.

11We use the name Lebesgue lemma to refer to the result that if u1, u2 are two locally integrable functions
such that u1 = u2 in distribution, then u1 = u2 point-wise almost everywhere.
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Lemma 3.3.10 (Uniqueness of gradient). Let F ∈ C∞(S(Rk);R) and f ∈ S(Rk). Suppose

that there exist g1, g2 ∈ S(Rk) such that

〈g1|δf〉Re = dF [f ](δf) = 〈g2|δf〉Re , ∀δf ∈ S(Rk). (3.3.17)

Then g1 = g2.

Definition 3.3.11 (Real L2 gradient). We define the real L2 gradient of F ∈ C∞(S(Rk);R)

at the point f ∈ S(Rk), denoted by ∇F (f), to be the unique element of S(Rk) (if it exists)

such that

dF [f ](δf) = 〈∇F (f)|δf〉Re , ∀δf ∈ S(Rk). (3.3.18)

We say that F has a real L2 gradient if ∇F : S(Rk)→ S(Rk) is a smooth map.

Remark 3.3.12. Since the Hamiltonian vector field of XF , if it exists, is defined by the

relation

dF [f ](δf) = ωL2(XF (f), δf), (3.3.19)

and since XF is unique by the fact that S(Rk) is dense in S ′(Rk), we see that XF (f) =

−i∇F (f). In the sequel, we will use the notation ∇sF := XF , which we refer to as the

symplectic L2 gradient.

We now use Remark 3.3.6 to show that the symplectic form ωL2 , which we recall is

defined in (1.3.1), canonically induces an L2 Poisson structure on S(Rk).

Proposition 3.3.13. Define a subset AS ⊂ C∞(S(Rk);R) by

AS :=
{
H : ∇sH ∈ C∞(S(Rk);S(Rk))

}
, (3.3.20)

111



and define a bracket {·, ·}L2 on AS ×AS by

{F,G}L2 := ωL2(∇sF,∇sG). (3.3.21)

Then (S(Rk),AS , {·, ·}L2) is a weak Poisson manifold.

Proof. By Remark 3.3.6, we only need to check that for every fixed g ∈ S(Rk), the condition

ωL2(X(f), g) = 0, ∀X ∈ ham(S(Rk), ωL2) (3.3.22)

implies that g = 0 ∈ S(Rk). Since ham(S(Rk), ωL2) contains the constant vector fields

X(·) ≡ f0, for any fixed f0 ∈ S(Rk), we see that by taking X(f) := ig for all f ∈ S(Rk),

that the condition (3.3.22) implies that

0 = ω(ig, g) = −2 Im

{∫
Rk
dxk(ig)(xk)g(xk)

}
= 2‖g‖2

L2(Rk). (3.3.23)

Hence, g = 0, completing the proof.

3.3.2 Some Lie Algebra Facts

In this subsection, we collect some facts about Lie algebras for easy referencing. We

outline a canonical construction of a Poisson structure on the dual of a Lie algebra, which is

known as a Lie-Poisson structure. Furthermore, we will outline a construction of hierarchies

of Lie algebras which will serve as an inspiration for our construction of the Lie algebra G∞.

We refer the reader to [60, 59] for more background and details.

We begin by recording the definition of a Lie algebra for subsequent reference in our

proofs.
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Definition 3.3.14 (Lie algebra). A Lie algebra is a locally convex space g over the field

F ∈ {R,C} together with a separately continuous binary operation [·, ·] : g × g → g called

the Lie bracket, which satisfies the following properties:

(L1) [·, ·] is bilinear.

(L2) [x, x] = 0 for all x ∈ g.

(L3) [·, ·] satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (3.3.24)

for all x, y, z ∈ g.

Remark 3.3.15. Usually (see, for instance, [72]), a Lie bracket is required to be continuous,

as opposed to separately continuous. We drop this requirement in this work, due to functional

analytic difficulties.

Definition 3.3.16 (Nondegenerate pairings). Let V and W be topological vector spaces

over the field F, and let

〈·|·〉 : V ×W → F

be a bilinear pairing between V and W . We say that the pairing is V -nondegenerate (respec-

tively, W -nondegenerate) if the map V → W ∗, x 7→ 〈x|·〉 (respectively, W → V ∗, y 7→ 〈·|y〉)

is an isomorphism. If the pairing is both V - and W -nondegenerate, then we say that the

pairing is nondegenerate.

Definition 3.3.17 (dual space g∗). Let (g, [·, ·]) be a Lie algebra. We say that a topological

vector g∗ is a dual space to g if there exists a pairing 〈·|·〉 : g×g∗ → F which is nondegenerate.
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Example 3.3.18. If g is a reflexive Fréchet space, for instance the Schwartz space S(Rd),

then taking g∗ to be the topological dual of g equipped with the strong dual topology, the

standard duality pairing

g× g∗ → F : 〈x|ϕ〉 = ϕ(x)

is nondegenerate.

A consequence of the existence of a dual space g∗ for a Lie algebra g is the exis-

tence of functional derivatives, which is crucial to proving that the Lie-Poisson bracket in

Proposition 3.3.20 below is well-defined.

Lemma 3.3.19 (Existence of functional derivatives). Let g be a Lie algebra, and let g∗

be dual to g with respect to the nondegenerate pairing 〈·|·〉g−g∗. For any functional F ∈

C1(g∗;F), there exists a unique element δF
δµ
∈ g such that〈

δF

δµ

∣∣∣∣δµ〉
g−g∗

= dF [µ](δµ), µ, δµ ∈ g∗. (3.3.25)

Proof. Let µ ∈ g∗. The Gâteaux derivative of F at µ denoted dF [µ] and defined in Defini-

tion 2.1.4 is a continuous linear functional on g∗. Hence by the nondegeneracy of the pairing,

there exists a unique element δF
δµ
∈ g such that〈

δF

δµ

∣∣∣∣δµ〉
g−g∗

= dF [µ][δµ], δµ ∈ g∗.

We now have the necessary ingredients to define the canonical Poisson structure on

the dual space g∗, which we call the Lie-Poisson structure, following Marsden and Weinstein

[58].
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Proposition 3.3.20 (Lie-Poisson structure). Let (g, [·, ·]g) be a Lie algebra, such that the

Lie bracket is continuous, and let g∗ be dual to g with respect to the non-degenerate pairing

〈·|·〉g−g∗. Define the Lie-Poisson bracket

{·, ·} : C∞(g∗;F)× C∞(g∗;F)→ C∞(g∗;F) (3.3.26)

by

{F,G}(µ) :=

〈[
δF

δµ
,
δG

δµ

]
g

∣∣∣∣∣µ
〉

g−g∗
, µ ∈ g∗. (3.3.27)

Then (C∞(g∗;F), {·, ·}) is a Lie algebra.

Remark 3.3.21. Note that in the statement of Proposition 3.3.20, we require that the Lie

bracket [·, ·]g be continuous, not merely separately continuous as in Definition 3.3.14. Since

the Lie brackets we consider in Section 3.4 and Section 3.5 are only separately continuous,

we do not use Proposition 3.3.20 directly, and therefore we have omitted the proof of it. We

emphasize, though, that the construction of the proposition inspires our constructions in the

sequel.

3.3.3 Bosonic Functions, Operators and Tensor Products

We denote the symmetric group on k letters by Sk. For a permutation π ∈ Sk, we

define the map π : Rk → Rk by

π(xk) := (xπ(1), . . . , xπ(k)). (3.3.28)

For a complex-valued, measurable function f : Rk → C, we define the map

(πf)(xk) := (f ◦ π)(xk) = f(xπ(1), . . . , xπ(k)). (3.3.29)
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We denote the pairing of a tempered distribution u ∈ S ′(Rk) with a Schwartz function

f ∈ S(Rk) by

〈u, f〉S′(Rk)−S(Rk). (3.3.30)

Throughout, we will use an integral to represent the pairing of a distribution and a test

function. For 1 ≤ p ≤ ∞, we use the notation Lp(Rk) to denote Banach space of p-integrable

functions with norm ‖ · ‖Lp(Rk). In particular, when p = 2, we denote the L2 inner product

by

〈f |g〉 :=

∫
Rk
dxkf(xk)g(xk). (3.3.31)

Note that we use the physicist’s convention that the inner product is complex linear in the

second entry. Similarly, for u ∈ S ′(Rk) and f ∈ S(Rk), we use the notation 〈u|f〉 to denote

〈u|f〉 := 〈u, f̄〉S′(Rk)−S(Rk). (3.3.32)

Alternatively, the right-hand side may be taken as the definition of the tempered distribution

ū.

Definition 3.3.22. We say that a measurable function f : Rk → C is symmetric or bosonic

if

π(f) = f (3.3.33)

for all permutations π ∈ Sk.

Definition 3.3.23. We define the symmetrization operator Symk on the space of measurable

complex-valued functions by

Symk(f)(xk) :=
1

k!

∑
π∈Sk

(πf)(xk). (3.3.34)

By duality, we can extend the symmetrization operator to S ′(Rk).
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Definition 3.3.24 (Symmetric Schwartz space). For k ∈ N, let Ss(Rk) denote the subspace

of S(Rk) consisting of Schwartz functions f with the property that

f(xπ(1), . . . , xπ(k)) = f(xk), (xk) ∈ Rk (3.3.35)

for all permutations π ∈ Sk.

Definition 3.3.25 (Symmetric tempered distribution). We say that a tempered distribution

u ∈ S ′(Rk) is symmetric or bosonic if for all permutations π ∈ Sk,

〈u, πg〉S′(Rk)−S(Rk) = 〈u, g〉S′(Rk),S(Rk), (3.3.36)

for all g ∈ S(Rk). We denote the subspace of symmetric tempered distributions by S ′s(Rk).

Remark 3.3.26. It is straightforward to check that Symk is a continuous operator S(Rk)→

Ss(Rk) and S ′(Rk) → S ′s(Rk). Furthermore, a measurable function f is bosonic if and only

if f = Symk(f).

Lemma 3.3.27. We have the identification

S ′s(Rk) ∼= (Ss(Rk))′. (3.3.37)

Proof. Let ` ∈ (Ss(Rk))′. For all f ∈ Ss(Rk), we have that

`(f) = `(π(f)), π ∈ Sk. (3.3.38)

Hence,

`(f) =
1

k!

∑
π∈Sk

`(π(f)) = `(Symk(f)). (3.3.39)

Since Symk is a continuous linear operator on S(Rk), it follows that `◦Symk ∈ S ′(Rk). Since

Symk(π(f)) = Symk(f) for any permutation π ∈ Sk, it follows that ` ◦ Symk is permutation

invariant, hence an element of S ′s(Rk).
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Given two locally convex spaces E and F , we denote the space of continuous linear

maps E → F by L(E;F ). We topologize L(E;F ) with the topology of bounded convergence.

For our purposes, we will typically have E,F ∈ {S(Rk),Ss(Rk),S ′(Rk),S ′s(Rk)}.

Remark 3.3.28. In the special case where E = F = S(Rk), we will write L̃(S(Rk),S(Rk))

to denote the vector space L(S(Rk),S(Rk)) equipped with the subspace topology induced

by L(S(Rk),S ′(Rk)). The same statement holds with the Schwartz space replaced by the

bosonic Schwartz space.

In the case that E = S(Rd) and F = S ′(Rd), the bounded topology is generated by

the seminorms

‖A‖R := sup
f,g∈R

|〈Af, g〉S′(Rd)−S(Rd)|, ∀A ∈ L(S(Rd),S ′(Rd)), (3.3.40)

where R ranges over the bounded subsets of S(Rd). An identical statement holds with all

spaces replaced by their symmetric counterparts. We topologize S ′(RN) with the strong dual

topology, which is the locally convex topology generated by the seminorms of the form

‖f‖B := sup
ϕ∈B

∣∣∣∣∫
RN
dxNf(xN)ϕ(xN)

∣∣∣∣ , (3.3.41)

where B ranges over the family of all bounded subsets of S(RN). Note that since S(RN)

is a Montel space, bounded subsets are precompact. An identical statement holds with all

spaces replaced by their symmetric counterparts.

Definition 3.3.29 (Symmetric wave functions). For k ∈ N, let L2
s(Rk) denote the subspace

of L2(Rk) consisting of functions f which are bosonic a.e.
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For A ∈ L(S(Rk),S ′(Rk)) and τ ∈ Sk, we define

A(τ(1),...,τ(k)) := τ ◦ A ◦ τ−1. (3.3.42)

Definition 3.3.30. Given A ∈ L(S(Rk),S ′(Rk)), we define its bosonic symmetrization

Symk(A) by

Symk(A) :=
1

k!

∑
π∈Sk

A(π(1),...,π(k)). (3.3.43)

Definition 3.3.31 (Bosonic operators). Let k ∈ N. We say that an operator A : S(Rk) →

S ′(Rk) is bosonic or permutation invariant if A maps Ss(Rk) into S ′s(Rk).

The analogue of Remark 3.3.26 holds for the symmetrization of operators in that

symmetrized operators are indeed operators on the bosonic Schwartz space.

Lemma 3.3.32. Let k ∈ N. If A(k) ∈ L(S(Rk),S ′(Rk)), then

Symk(A
(k)) ∈ L(Ss(Rk),S ′s(Rk)). (3.3.44)

Proof. It suffices to show that for any k-particle operator A(k) ∈ L(S(Rk),S ′(Rk)) and any

permutation σ ∈ Sk, it holds that∫
Rk
dxk
(
Symk(A

(k))f
)
(xk)g(σ−1(xk)) =

∫
Rk
dxk
(
Symk(A

(k))f
)
(xk)g(xk) (3.3.45)

for all f ∈ Ss(Rk) and for all g ∈ S(Rk). To this end, observe that∫
Rk
dxk
(
Symk(A

(k))f
)
(xk)g(xσ−1(1), . . . , xσ−1(k))

=

∫
Rk
dxk

(
1

k!

∑
π∈Sk

(
A

(k)
(π(1),...,π(k))f

)
(xk)

)
g(xσ−1(1), . . . , xσ−1(k)). (3.3.46)
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By definition (3.3.42), we have

A
(k)
(π(1),...,π(k))f = πA(k)(π−1f). (3.3.47)

Therefore,

1

k!

∑
π∈Sk

∫
Rk
dxk

(
A

(k)
(1,...,k)(π

−1f)
)

(xπ(1), . . . , xπ(k))g(xσ−1(1), . . . , xσ−1(k))

=
1

k!

∑
π∈Sk

∫
Rk
dxk
(
A(k)(π−1f)

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k))

=
1

k!

∑
π∈Sk

∫
Rk
dxk
(
A(k)f

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k)), (3.3.48)

where, recalling (3.3.29), the second line follows from a change of variable and the third

line follows from the assumption that f is symmetric with respect to permutation of the

coordinates. Since for any fixed σ ∈ Sk, π 7→ π−1σ−1 defines a bijection of the group Sk, it

follows from a change of summation index that

1

k!

∑
π∈Sk

∫
Rk
dxk
(
A(k)f

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k))

=
1

k!

∑
π̃∈Sk

∫
Rk
dxk
(
A(k)f

)
(xk)g(xπ̃(1), . . . , xπ̃(k))

=
1

k!

∑
π̃∈Sk

∫
Rk
dxk
(
A(k)(π̃f)

)
(xπ̃−1(1), . . . , xπ̃−1(k))g(xk)

=

∫
Rk
dxk
(
Symk(A

(k))f
)
(xk)g(xk), (3.3.49)

where the penultimate line follows from the assumption that f is symmetric and a change

of variable. This concludes the proof.

The following technical lemma will be useful in the sequel. For definitions and dis-

cussion of the generalized trace, see Definition 3.2.1.
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Lemma 3.3.33. Let k ∈ N, and let γ(k) ∈ L(S ′s(Rk),Ss(Rk)) and A(k) ∈ L(S(Rk),S ′(Rk)).

Then for any permutation τ ∈ Sk, we have that

Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))γ

(k)
)

= Tr1,...,k

(
A(k)γ(k)

)
. (3.3.50)

Proof. Let τ ∈ Sk. Now let

γ(k) =
∞∑
j=1

λj |fj〉 〈gj| (3.3.51)

be a decomposition for γ(k), where
∑∞

j=1 |λj| ≤ 1, and {fj}∞j=1, {gj}∞j=1 are sequences tending

to zero in Ss(Rk). In particular, the partial sums

N∑
j=1

λj |fj〉 〈gj| −−−→
N→∞

γ(k) in L(S ′s(Rk),Ss(Rk)). (3.3.52)

Since the map

Tr1,...,k

(
A

(k)
(τ(1),...,τ(k)·

)
: L(S ′(Rk),S(Rk))→ C, (3.3.53)

is continuous and the inclusion Ss(Rk) ⊂ S(Rk) is trivially continuous, it follows that

Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))γ

(k)
)

= lim
N→∞

Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))

( N∑
j=1

λj |fj〉 〈gj|
))

= lim
N→∞

N∑
j=1

λj Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))( |fj〉 〈gj|)

)
= lim

N→∞

N∑
j=1

λj

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
. (3.3.54)

Since fj and gj are both bosonic, we have by definition of the notation A
(k)
(τ(1),...,τ(k)) in (3.3.42)

that 〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
=
〈
τ−1(gj)

∣∣A(k)(τ−1(fj))
〉

=
〈
gj
∣∣A(k)fj

〉
, ∀j ∈ N. (3.3.55)
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Therefore,

lim
N→∞

N∑
j=1

λj

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
= lim

N→∞

N∑
j=1

λj
〈
gj
∣∣A(k)fj

〉
= lim

N→∞
Tr1,...,k

(
A(k)

( N∑
j=1

λj |fj〉 〈gj|
))

= Tr1,...,k

(
A(k)γ(k)

)
, (3.3.56)

where in order to obtain the ultimate equality, we again use the continuity of the functional

Tr1,...,k

(
A(k)·

)
and the convergence of the partial sums.

We define the usual contraction operator Bi;j appearing in the literature on derivation

of quantum many-body systems.

Definition 3.3.34 (The contractions operator Bi;j). Let k ∈ N. For integers 1 ≤ i, j ≤ k

with i 6= j, we define the continuous linear operators operators

B±i;j : L(S ′(Rk+1),S(Rk+1))→ L(S ′(Rk),S(Rk)) (3.3.57)

by defining the Schwartz kernel of B+
i;j(γ

(k+1)) by the formula

B+
i;j(γ

(k+1))(xk;x
′
k) :=

∫
R
dyδ(xi − y)γ(k+1)(x1;j−1, y, xj;k;x

′
1;j−1, y, x

′
j;k),

for all (xk, x
′
k) ∈ R2k. Similarly, we define the Schwartz kernel of B−i;j(γ

(k+1)) by the formula

B−i;j(γ
(k+1))(xk;x

′
k) :=

∫
R
dyδ(x′i − y)γ(k+1)(x1;j−1, y, xj;k;x

′
1;j−1, y, x

′
j;k),

for all (xk, x
′
k) ∈ R2k We define the continuous linear operator

Bi;j : L(S ′s(Rk+1),Ss(Rk+1))→ L(S ′s(Rk),Ss(Rk))
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by

Bi;j := B+
i;j −B−i;j. (3.3.58)

Given two locally convex spaces E and F , we denote an12 algebraic tensor product

of E and F consisting of finite linear combinations

n∑
j=1

λjej ⊗ fj, ej ∈ E, fj ∈ F (3.3.59)

by E⊗F . We note that since the spaces we deal with in this chapter are nuclear, the topolo-

gies of the injective and projective tensor products coincide. Hence, we can unambiguously

write E⊗̂F to denote the completion of E⊗F under either of the aforementioned topologies.

Given locally convex spaces Ej and Fj for j = 1, 2 and linear maps T : E1 → E2 and

S : F1 → F2, and a tensor product

B : E1 × E2 → E1 ⊗ E2, (3.3.60)

the notation T ⊗ S denotes the unique linear map T ⊗ S : E1 ⊗ F1 → E2 × F2 such that

(T ⊗ S) ◦B = T × S. (3.3.61)

Note that the existence of such a unique map is guaranteed by the universal property of the

tensor product.

When E and F are subspaces of measurable functions on Rm and Rn respectively,

and e ∈ E and f ∈ F , we let e⊗ f denote the function

e⊗ f : Rm × Rn → C, (e⊗ f)(xm;x′n) := e(xm)f(x′n), (3.3.62)

12The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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which induces a bilinear map E×F → E⊗F . Similarly, if E ′ and F ′ are the duals of spaces

of test functions E and F , for instance E ′ = ∆′(Rm) and F ′ = ∆′(Rn), we let u⊗ v denote

the unique distribution satisfying

(u⊗ v)(e⊗ f) = u(e) · v(f). (3.3.63)

Finally, if φ : Rm → C is a measurable function, we use the notation φ⊗k, for k ∈ N, to

denote the measurable function φ⊗k : Rmk → C defined by

φ⊗k(xm,1, . . . , xm,k) :=
k∏
`=1

φ(xm,`), (3.3.64)

and we use the notation φ×k to denote the measurable function φ×k : Rm → Ck

φ×k(xm) := (φ(xm), . . . , φ(xm)). (3.3.65)

3.4 Geometric Structure for the N-Body Problem

In this section we establish proofs of the results stated in Section 3.1.1.

3.4.1 Lie Algebra GN of Finite Hierarchies of Quantum Observables

We begin by defining a Lie algebra gk of k-body observables. We have some freedom

to choose our definition of this Lie algebra, provided that our choice is large enough to

include the Hamiltonian of the N -body problem yet small enough so that operations such

as composition and taking adjoints are well-defined. We find that continuous linear maps

from the bosonic Schwartz space to itself forms a convenient choice.

For k ∈ N, define

gk := {A(k) ∈ L̃(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)}, (3.4.1)
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where we recall that L̃(Ss(Rk),S ′s(Rk)) is defined in Remark 3.3.28. Let

[·, ·]gk : gk × gk → gk

be the usual commutator bracket scaled by a factor of k:

[A,B]gk := k[A,B] = k(AB −BA). (3.4.2)

Note that the commutator is well-defined since the space L(Ss(Rk),Ss(Rk)) is closed under

composition. We refer to the elements of gk as k-body observables.

The first goal of this subsection is to verify that (gk, [·, ·]gk) is a Lie algebra in the

sense of Definition 3.3.14. Namely, we prove the following proposition.

Proposition 3.4.1. (gk, [·, ·]gk) is a Lie algebra in the sense of Definition 3.3.14

Proof. That [·, ·]gk is algebraically a Lie bracket is immediate from the fact that the com-

mutator satisfies properties (L1), (L2), and (L3). Therefore, it remains to verify that the

commutator is separately continuous with respect to the topology on gk. By symmetry,

it suffices to show that for fixed A(k) ∈ gk, the map B(k) 7→ A(k)B(k) is continuous on

L̃(Ss(Rk),Ss(Rk)), which amounts to showing that for any bounded subset R ⊂ Ss(Rk),

there exists a bounded subset R̃ ⊂ Ss(Rk), such that

sup
f,g∈R

∣∣〈g∣∣A(k)B(k)f
〉∣∣ . sup

f,g∈R̃

∣∣〈g∣∣B(k)f
〉∣∣ . (3.4.3)

Now note that
〈
g
∣∣A(k)B(k)f

〉
=
〈
(A(k))∗g

∣∣B(k)f
〉
. Since (A(k))∗ = −A(k), it follows from

the continuity of A(k) that (A(k))∗(R) it a bounded subset of Ss(Rk). Choosing R̃ = R ∪

(A(k))∗(R) completes the proof.
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We next introduce some combinatorial notation used frequently in the sequel. For

N ∈ N and k ∈ N≤N , let PN
k denote the collection of k-tuples (j1, . . . , jk) with k distinct

elements drawn from the set N≤N . Given an element (j1, . . . , jk) ∈ PN
k , let (m1, . . . ,mN−k)

denote the increasing arrangement of N≤N \ {j1, . . . , jk}. We denote by πj1···jk ∈ SN the

permutation

π(a) :=

{
i, a = ji for i ∈ N≤k
k + i, a = mi for i ∈ N≤N−k

. (3.4.4)

Our first lemma defines a continuous linear map εk,N which allows us to regard a k-

particle observable as an N -particle observable. This map εk,N is crucial to the definition of

the Lie bracket between two observable N -hierarchies and by duality, to the Poisson bracket

of two density matrix N -hierarchies.

For A(k) ∈ L(Ss(Rk),Ss(Rk)), N ∈ N with 1 ≤ k ≤ N , and (j1, . . . , jk) ∈ PN
k we can

define the operator

A
(k)
(j1,...,jk) ∈ L(Ss(RN),S(RN)) (3.4.5)

which acts only on the variables {j1, . . . , jk} by defining

A
(k)
(1,...,k) = A(k) ⊗ IdN−k

and setting

A
(k)
(j1,...,jk) = π−1

j1···jk ◦ A
(k)
(1,...,k) ◦ πj1···jk . (3.4.6)

We establish some properties of such operators, which we call k-particle extensions, in Propo-

sition 3.3.1. These k-particle extensions are used to define a map εk,N . We will show first, in

the following lemma, that εk,N have the desired mapping properties, and then subsequently

that the εk,N are injective, and hence they are proper embeddings of the space gk into gN .
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Remark 3.4.2. Although A(k) is a priori only defined on the proper subspace Ss(Rk) ⊂

S(Rk), this operator admits an extension to the space S(Rk) since we may always consider

A(k)◦Symk. We agree going forward to abuse notation by identifying A(k) with this extension.

Consequently, we may regard A
(k)
(j1,...,jk) ∈ L(S(RN),S(RN)). As the reader will see, though,

all our constructions are independent of the choice of extension.

Lemma 3.4.3. For integers 1 ≤ k ≤ N , there is a continuous linear map

εk,N : L(Ss(Rk),S ′s(Rk))→ L(Ss(RN),S ′s(RN)) (3.4.7)

defined by

εk,N(A(k)) := Ck,N
∑

(j1,...,jk)∈PNk

A
(k)
(j1,...,jk), (3.4.8)

where

Ck,N :=

(
k!

(
N

k

))−1

=
1

N · · · (N − k + 1)
.13 (3.4.9)

Moreover, if A(k) ∈ L(Ss(Rk),Ss(Rk)), then εk,N(A(k)) ∈ L(Ss(RN),Ss(RN)), and if A(k) is

skew-adjoint, then εk,N(A(k)) is skew-adjoint. In particular, εk,N(gk) ⊂ gN .

Proof. Fix 1 ≤ k ≤ N . From Proposition 3.3.1, it follows that if A(k) ∈ L(Ss(Rk),S ′s(Rk)),

then εk,N(A(k)) as given in (3.4.8) is a well-defined element of L(Ss(RN),S ′s(RN)) and the map

εk,N is linear. Furthermore, it follows from Lemma 3.3.2 that skew-adjointness is preserved.

So it remains for us to show that

εk,N(L(Ss(Rk),Ss(Rk))) ⊂ L(Ss(RN),Ss(RN)) (3.4.10)

and that εk,N is continuous.

13Note that Ck,N = 1/|PNk |.
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• Consider the assertion (3.4.10). By properties of tensor product and the continuity of

A(k), it follows that A
(k)
(1,...,k) = A(k)⊗̂IdN−k is a continuous map of Ss(Rk) ⊗ S(RN−k) to

itself, and hence that

A
(k)
(j1,...,jk) : Ss(RN)→ S(RN)

is a continuous map follows directly from (3.4.6). We thus need to show that εk,N(A(k))(f)

is bosonic.

Let π ∈ SN . It is straightforward from the definition of A
(k)
(j1,...,jk) and (3.3.29) that, for any

test function f ∈ Ss(RN), we have

πA
(k)
(j1,...,jk)(f) = A

(k)
(π(j1),...,π(jk))(πf) = A

(k)
(π(j1),...,π(jk))(f), (3.4.11)

where the ultimate equality follows from f being bosonic. Since SN induces a left group

action on PN
k , it follows that

∑
(j1,...,jk)∈PNk

A
(k)
(j1,...,jk) =

∑
(j1,...,jk)∈PNk

A
(k)
(π(j1),...,π(jk)) (3.4.12)

on Ss(Rk), which implies together with (3.4.11) that

πεk,N(A(k))(f) = Ck,N
∑

(j1,...,jk)∈PNk

πA
(k)
(j1,...,jk)(f) = εk,N(A(k))(f), (3.4.13)

as desired.

• Now we will prove the assertion that εk,N is continuous. Let RN be a bounded subset of

Ss(RN). We need to show that there exists a bounded subset Rk ⊂ Ss(Rk) such that

sup
f (N),g(N)∈RN

∣∣〈g(N)
∣∣εk,N(A(k))f (N)

〉∣∣ . sup
f (k),g(k)∈Rk

∣∣〈g(k)
∣∣A(k)f (k)

〉∣∣ . (3.4.14)
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Using the fact that there are finitely many terms in the definition of εk,N and that the finite

union of bounded subsets is again a bounded subset, it suffices to show that, for RN as

above and any tuple (j1, . . . , jk) ∈ PN
k , there exists a bounded subset R(j1,...,jk) ⊂ S(Rk),

such that

sup
f (N),g(N)∈RN

∣∣∣〈g(N)
∣∣∣A(k)

(j1,...,jk)f
(N)
〉∣∣∣ . sup

f (k),g(k)∈R(j1,...,jk)

∣∣〈g(k)
∣∣A(k)f (k)

〉∣∣ , (3.4.15)

since then the desired bounded subset Rk ⊂ Ss(Rk) is obtained by taking

Rk := Symk

 ⋃
j
k
∈PNk

R(j1,...,jk)

.
Now (3.4.15) is a consequence of the fact that

L(Ss(Rk),S ′s(Rk)) 7→ L(Ss(Rk)⊗̂S(RN−k),S ′(RN)), A(k) 7→ A(k) ⊗ IdN−k (3.4.16)

is continuous, (3.4.6), and the fact that for any j
k
∈ PN

k , the map πj1...jk defined by (3.4.4)

and duality is a continuous endomorphism of S ′(RN).

We next show that the maps εk,N are injective. This property is crucial as we will

ultimately construct our Lie bracket on the hierarchy algebra by embedding elements of the

sequence into the ambient algebra gN , taking the bracket in gN , and then identifying the

output as an embedded element of gk, for some k ∈ N≤N .

Lemma 3.4.4 (Injectivity of εk,N). For integers 1 ≤ k ≤ N , the map εk,N : gk → gN is

injective. Consequently, εk,N has a well-defined inverse on its image, which we denote by

ε−1
k,N .
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Proof. Fix 1 ≤ k ≤ N . We will show the contrapositive statement: if A(k) 6= 0, then

εk,N(A(k)) 6= 0.

We introduce a parameter n ∈ N0, with n < k. We say that A(k) has property Pn if

the following holds: there exists f, g1, . . . , gk−n ∈ S(R) such that

A(k)

(
Symk

(
f⊗k−n ⊗

n⊗
a=1

ga

))
6= 0, (3.4.17)

where the tensor product is understood as vacuous when n = 0. We define the integer nmin

by

nmin := max{min{n ∈ N<k : A(k) has property Pn}, k}.14 (3.4.18)

Note that we must have nmin < k, else, by definition of property Pn, we would then have

that for all g1, . . . , gk ∈ S(R),

A(k)(Symk(g1 ⊗ · · · ⊗ gk)) = 0. (3.4.19)

By linearity and continuity of A(k) together with density of finite linear combinations of

symmetric pure tensors in Ss(Rk), (3.4.19) implies that A(k) ≡ 0, which is a contradiction.

To avoid notation confusion, we first dispense with the trivial case nmin = 0. The

definition of property P0 implies that there exists an element f ∈ S(R) such that A(k)(f⊗k) 6=

0. It then follows trivially from the definition of each summand A
(k)
(j1,...,jk) in the definition of

εk,N(A(k)) that

εk,N(A(k))(f⊗N) 6= 0 ∈ S ′s(RN). (3.4.20)

14We adopt the convention that the minimum of the empty set is∞, and therefore we take the maximum
with k to ensure that nmin is finite.
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We now consider the case 1 ≤ nmin < k. The definition of property Pnmin
implies that

there exist elements f, g1, . . . , gnmin
∈ S(R) such that

A(k)

(
Symk

(
f⊗k−nmin ⊗

nmin⊗
a=1

ga

))
6= 0 ∈ S ′s(Rk). (3.4.21)

Define an element h(N) ∈ Ss(RN) by

h(N) := SymN

(
f⊗k−nmin ⊗ (

nmin⊗
a=1

ga)⊗ f⊗N−k
)
. (3.4.22)

We claim that εk,N(A(k))(h(N)) 6= 0 ∈ S ′s(RN). Indeed, unpacking the definition of εk,N(A(k))

and SymN , we have

εk,N(A(k))(h(N)) = Ck,N
∑
j
k
∈PNk

A
(k)
(j1,...,jk)

(∑
π∈SN

π(f⊗k−nmin ⊗ (

nmin⊗
a=1

ga)⊗ f⊗N−k)
)
. (3.4.23)

We first examine the interior sum. For each j
k
∈ PN

k , we can partition SN into the sets

Sj
k
,r := {π ∈ SN : |{π(k − nmin + 1), . . . , π(k)} ∩ {j1, . . . , jk}| = r} (3.4.24)

for r = 0, . . . , nmin. We write∑
π∈SN

π(f⊗k−nmin ⊗ (

nmin⊗
a=1

ga)⊗ f⊗N−k) =

nmin∑
r=0

∑
π∈Sj

k
,r

π(f⊗k−nmin ⊗ (

nmin⊗
a=1

ga)⊗ f⊗N−k). (3.4.25)

By symmetry considerations, we may suppose that (j1, . . . , jk) = (1, . . . , k). It is a short

counting argument that for each r ∈ {0, . . . , nmin}, we have that∑
π∈S(1,...,k),r

π(f⊗k−nmin ⊗ (

nmin⊗
a=1

ga)⊗ f⊗N−k)

= C(k, nmin, r, N)
∑

`nmin
∈Pnmin

nmin

Symk

(
f⊗k−r ⊗

r⊗
a=1

g`a

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g`a)⊗ f⊗N−nmin−k+r

)
,

(3.4.26)
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where C(k, nmin, r, N) is another combinatorial factor depending on the data (k, nmin, r, N).

Each term

Symk

(
f⊗k−r ⊗

r⊗
a=1

g`a

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g`a)⊗ f⊗N−nmin−k+r

)
(3.4.27)

is an element of Ss(Rk)⊗̂Ss(RN−k), and therefore (3.4.27) belongs to the domain of A
(k)
(1,...,k).

Now by definition of nmin, we have that for each r ∈ {0, . . . , nmin − 1} that

A
(k)
(1,...,k)

(
Symk

(
f⊗k−r ⊗

r⊗
a=1

g`a

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g`a)⊗ f⊗N−nmin−k+r

))

= A(k)

(
Symk(f

⊗k−r ⊗
r⊗

a=1

g`a)

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g`a)⊗ f⊗N−nmin−k+r

)
= 0 ∈ S ′s(Rk)⊗̂Ss(RN−k).

When r = nmin, we have that

A
(k)
(1,...,k)

(
Symk(f

⊗k−nmin ⊗
nmin⊗
a=1

g`a)⊗ f⊗N−k)
)

= A(k)

(
Symk(f

⊗k−nmin ⊗
nmin⊗
a=1

ga)

)
⊗ f⊗N−k

is a non-zero element of S ′s(Rk)⊗̂Ss(RN−k) by choice of the elements f, g1, . . . , gnmin
∈ S(R).

Consequently, for a possibly different combinatorial factor C ′(k,N), we conclude that

εk,N(A(k))(h(N)) = C(k,N)′ SymN

(
A(k)

(
Symk(f

⊗k−nmin ⊗
nmin⊗
a=1

ga)

)
⊗ f⊗N−k

)
(3.4.28)

is a nonzero element of S ′s(RN), completing the proof of the lemma.

We next show that the bracket [·, ·]gN respects the hierarchy in the sense that

[ε`,N(g`), εj,N(gj)]gN ⊂ εmin{`+j−1,N},N(gmin{`+j−1,N}) ⊂ gN . (3.4.29)
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This filtration or gradation property is crucial to our definition of the hierarchy Lie bracket

in the sequel.

Before proving Lemma 3.4.7 below, we introduce some contraction and commutator-

type notation used in the proof and in the sequel. Consider integers N ∈ N, `, j ∈ N≤N , k :=

min{`+ j − 1, N} and r ≥ 1 satisfying appropriate conditions. Let A(`) ∈ L(Ss(R`),Ss(R`))

and B(j) ∈ L(Ss(Rj),Ss(Rj)). We define the r-fold contractions

A(`) ◦r B(j) := A
(`)
(1,...,`)

( ∑
αr∈P `r

B
(j)
(αr,`+1,...,`+j−r)

)
∈ L(Ss(Rk),S ′(Rk)) (3.4.30)

B(j) ◦r A(`) := B
(j)
(1,...,j)

( ∑
αr∈P

j
r

A
(`)
(αr,j+1,...,j+`−r)

)
∈ L(Ss(Rk),S ′(Rk)). (3.4.31)

Note that the compositions are well-defined since

∑
αr∈P `r

B
(j)
(αr,`+1,...,`+j−r) and

∑
αr∈P

j
r

A
(`)
(αr,j+1,...,j+`−r) (3.4.32)

have targets which are symmetric under permutation in the first ` and j coordinates, respec-

tively. We then set

[
A(`), B(j)

]
r

:=

(
j

r

)
A(`) ◦r B(j) −

(
`

r

)
B(j) ◦r A(`). (3.4.33)

The motivation for the combinatorial factors in (3.4.33) will become clear from the proof of

Lemma 3.4.7 below.

Remark 3.4.5. We may also proceed term-by-term to define (3.4.30) and (3.4.31) by consid-

ering an extensions of A(`) and B(j) to L(S(R`),S(R`)) and L(S(Rj),S(Rj)), so that A
(`)
(1,...,`)

and B
(j)
(1,...,j) are then elements of L(S(Rk),S(Rk)). The choice of extensions is immaterial

by the target symmetry of operators with which the extensions are right-composed.
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In the sequel, we will need a technical lemma concerning the separate continuity of

the binary operation ◦r. The proof of this result is quite similar to that of (the more general)

Lemma 3.5.1 below, so we omit the proof.

Lemma 3.4.6. Let `, j, k,N ≥ 1 be integers such that `, j ≤ N and min{`+ j − 1, N} = k.

Let r be an integer such that r0 ≤ r ≤ min{`, j}, where

r0 := max{1,min{`, j} − (N −max{`, j})}. (3.4.34)

Then the bilinear map

(·) ◦r (·) : L̃(S(R`),S(R`))× L̃(S(Rj),S(Rj))→ L̃(S(Rk),S(Rk)) (3.4.35)

is separately continuous.15

Lemma 3.4.7 (Filtration of hierarchy). Let N ∈ N and let 1 ≤ `, j ≤ N . Then for any

A(`) ∈ g` and B(j) ∈ gj, there exists a unique C(k) ∈ gk, for k := min{` + j − 1, N}, such

that [
ε`,N(A(`)), εj,N(B(j))

]
gN

= εk,N(C(k)). (3.4.36)

15We recall that L̃(S(Rk),S(Rk) denotes the space L(S(Rk),S(Rk)) of continuous linear maps from
Schwartz space to itself equipped with the subspace topology induced by L(S(Rk),S ′(Rk)).
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Proof. By definition,[
ε`,N(A(`)), εj,N(B(j))

]
gN

= NC`,NCj,N

 ∑
m`∈PN`

A
(`)
(m1,...,m`)

( ∑
nj∈PNj

B
(j)
(n1,...,nj)

)
−
∑
nj∈PNj

B
(j)
(n1,...,nj)

( ∑
m`∈PN`

A
(`)
(m1,...,m`)

)
= NC`,NCj,N

min{`,j}∑
r=1

( ∑
m`∈PN`

A
(`)
(m1,...,m`)

( ∑
nj∈PNj

|{m1,...,m`}∩{n1,...,nj}|=r

B
(j)
(n1,...,nj)

)

−
∑
nj∈PNj

B
(j)
(n1,...,nj)

( ∑
m`∈P

N
`

|{m1,...,m`}∩{n1,...,nj}|=r

A
(`)
(m1,...,m`)

))
.

(3.4.37)

Without loss of generality, suppose that ` ≥ j. We consider the case ` + j − 1 ≤ N . For

each integer 1 ≤ r ≤ j, we have by the Sj-invariance of the operator B(j) that∑
nj∈PNj

|{m1,...,m`}∩{n1,...,nj}|=r

B
(j)
(n1,...,nj)

=

(
j

r

) ∑
nj∈PNj

{n1,...,nr}⊂{m1,...,m`}
{nr+1,...,nj}∩{m1,...,m`}=∅

B
(j)
(n1,...,nj)

. (3.4.38)

Similarly, by the S`-invariance of the operator A(`), we have that∑
m`∈P

N
`

|{n1,...,nj}∩{m1,...,m`}|=r

A
(`)
(m1,...,m`)

=

(
`

r

) ∑
m`∈P

N
`

{m1,...,mr}⊂{n1,...,nj}
{mr+1,...,m`}∩{n1,...,nj}=∅

A
(`)
(m1,...,m`)

. (3.4.39)

Upon relabeling the summation, we see that

(3.4.37) = NC`,NCj,N

min{`,j}∑
r=1

∑
p
`+j−r∈P

N
`+j−r

((
j

r

)
A

(l)
(p1,...,pl)

( ∑
1≤`1,...,`r≤`
|{`1,...,`r}|=r

B
(j)
(p`1 ,...,p`r ,p`+1,...,p`+j−r)

)

−
(
`

r

)
B

(j)
(p1,...,pj)

( ∑
1≤j1,...,jr≤j
|{j1,...,jr}|=r

A
(`)
(pj1 ,...,pjr ,pj+1,...,pj+`−r)

))
.

(3.4.40)
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If r = 1, then the summand of (3.4.40) equals

NC`,NCj,N
∑
p
k
∈PNk

jA
(`)
(p1,...,p`)

(∑̀
α=1

B
(j)
(pα,p`+1,...,pk)

)
− `B(`)

(p1,...,p`)

( j∑
α=1

A
(`)
(pα,pj+1,...,pk)

)
= NC`,NCj,N

∑
p
k
∈PNk

j(A(`) ◦1 B
(j))(p1,...,pk) − `(B(j) ◦1 A

(`))(p1,...,pk)

= εk,N

(
NC`,NCj,N

Ck,N
Symk

(
j(A(`) ◦1 B

(j))− `(B(j) ◦1 A
(`))
))
. (3.4.41)

Now suppose that r > 1. Observe that

∑
p
`+j−r∈P

N
`+j−r

((
j

r

)
A

(`)
(p1,...,p`)

( ∑
1≤`1,...,`r≤`
|{`1,...,`r}|=r

B
(j)
(p`1 ,...,p`r ,p`+1,...,p`+j−r)

)

−
(
`

r

)
B

(j)
(p1,...,pj)

( ∑
1≤j1,...,jr≤j
|{j1,...,jr}|=r

A
(`)
(pj1 ,...,pjr ,pj+1,...,pj+`−r)

)) (3.4.42)

cannot be immediately identified as an embedded element of gk because the summation is

not over tuples p
k
∈ PN

k . Indeed, we are missing k − (` + j − r) = r − 1 coordinates.

To address this issue, we observe that we can write p
k
∈ PN

k as p
k

= (p
`+j−r, qr−1

), where

p
`+j−r ∈ P

N
`+j−r and

q
r−1
∈ (N≤N \ {p1, . . . , p`+j−r})r−1, with |{q1, . . . , qr−1}| = r − 1. (3.4.43)

For each p
`+j−r ∈ P

N
`+j−r, the number of (r− 1)-cardinality subsets of N≤N \ {p1, . . . , p`+j−r}

is (
N − `− j + r

r − 1

)
.

Since there are (r − 1)! ways of permuting r − 1 distinct elements, we conclude that for
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p
`+j−r ∈ P

N
`+j−r,

|{q
r−1
∈ (N≤N \ {p1, . . . , p`+j−r})r−1 : |{q1, . . . , qr−1}| = r − 1}| =

(
N − `− j + r

r − 1

)
(r − 1)!

=
r−1∏
m=1

(N − k +m),

(3.4.44)

where we use that `+ j − 1 = k. Hence, the summand of (3.4.40) equals

NC`,NCj,N∏r−1
m=1(N − k +m)

∑
p
k
∈PNk

((
j

r

)
A

(`)
(p1,...,p`)

(∑
lr∈P `r

B
(j)
(p`1 ,...,p`r ,pr+1,...,p`+j−r)

)

−
(
`

r

)
B

(j)
(p1,...,pj)

(∑
j
r
∈P jr

A
(`)
(pj1 ,...,pjr ,pj+1,...,pj+`−r)

))
,

(3.4.45)

and by definition, we obtain that this expression equals

εk,N

(
NC`,NCj,N

Ck,N
∏r−1

m=1(N − k +m)
Symk

((
j

r

)
A(`) ◦r B(j) −

(
`

r

)
B(j) ◦r A(`)

))
. (3.4.46)

Now suppose that `+ j − 1 > N . Then proceeding as above, we see that r ≥ 1 must

in fact satisfy the lower bound

r ≥ min{`, j} − (N −max{`, j}) =: r0. (3.4.47)

Combining these results, we conclude that[
ε`,N(A(`)), εj,N(B(j))

]
gN

= εk,N

(
Symk

(
N∑
r=r0

NC`,NCj,N

Ck,N
∏r−1

m=1(N − k +m)

((
j

r

)
A(`) ◦r B(j) −

(
`

r

)
B(j) ◦r A(`)

))
,

(3.4.48)

which concludes the proof of the lemma.
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We now have all the technical lemmas needed to define the Lie algebra GN of observ-

able N -hierarchies. For N ∈ N, let GN denote the locally convex direct sum

GN :=
N⊕
k=1

gk, (3.4.49)

where we recall that

gk = {A(k) ∈ L̃(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)}. (3.4.50)

We define a bracket on AN = (A
(k)
N )k∈N≤N , BN = (B

(k)
N )k∈N≤N ∈ GN by

[AN , BN ]GN := CN = (C
(k)
N )k∈N≤N , (3.4.51)

where

C
(k)
N :=

∑
1≤`,j≤N

min{`+j−1,N}=k

ε−1
k,N

([
ε`,N(A

(`)
N ), εj,N(B

(j)
N )
]
gN

)
. (3.4.52)

It remains for us to check that GN together with its bracket is actually a Lie algebra in

the sense of Definition 3.3.14, as we have so claimed above. Before doing so, we collect a result

which will be useful in the sequel. Namely, that as a byproduct of the proof Lemma 3.4.7,

we have the following explicit formula for the Lie bracket [AN , BN ]GN for two observable

N -hierarchies, which is quite useful for computations.

Proposition 3.4.8 (Formula for [AN , BN ]
(k)
GN

). Let N ∈ N, and let AN = (A
(k)
N )k∈N≤N , BN =

(B
(k)
N )k∈N≤N be observable N-hierarchies. Then for integers 1 ≤ k ≤ N , we have that

[AN , BN ]
(k)
GN

=
∑

1≤`,j≤N
min{`+j−1,N}=k

Symk

(min{`,j}∑
r=r0

C`jkrN

[
A

(`)
N , B

(j)
N

]
r

)
, (3.4.53)
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where

C`jkrN :=
NC`,NCj,N

Ck,N
∏r−1

m=1(N − k +m)
, 16 r0 := max{1,min{`, j} − (N −max{`, j})},

(3.4.54)

and where [·, ·]r is defined in (3.4.33).

We now establish Proposition 3.1.1, which is our first main result of this section.

Proposition 3.1.1. (GN , [·, ·]GN ) is a Lie algebra in the sense of Definition 3.3.14.

Proof of Proposition 3.1.1. There are two parts to the verification: an algebraic part and an

analytic part.

• We first consider the algebraic part, which amounts to checking bilinearity, anti-symmetry,

and the Jacobi identity. The first two properties are obvious from the definition of GN .

For the third property, let AN , BN , CN ∈ GN . We need to show that

[
AN , [BN , CN ]GN

]
GN

+
[
CN , [AN , BN ]GN

]
GN

+
[
BN , [CN , AN ]GN

]
GN

= 0. (3.4.55)

Since εk,N is injective, it suffices to show that εk,N applied to the left-hand side of the

preceding identity equals the zero element of gN . We only present the details when the

component index satisfies 1 ≤ k < N and leave verification of the remaining k = N case

as an exercise to the reader. Using the definition of the Lie bracket and bilinearity, we

16Recall that C`,N = 1/|PN` |.
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have the identities

εk,N

([
AN , [BN , CN ]GN

](k)

GN

)
=

∑
j1+j2−1=k

[
εj1,N(A

(j1)
N ), εj2,N([BN , CN ]

(j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑
j3+j4−1=j2

[
εj1,N(A

(j1)
N ),

[
εj3,N(B

(j3)
N ), εj4,N(C

(j4)
N )

]
gN

]
gN

=
∑

`1+`2+`3=k+2

[
ε`1,N(A

(`1)
N ),

[
ε`2,N(B

(`2)
N ), ε`3,N(C

(`3)
N )

]
gN

]
gN

,

εk,N

([
CN , [AN , BN ]GN

](k)

GN

)
=

∑
j1+j2−1=k

[
εj1,N(C

(j1)
N ), εj2,N([AN , BN ]

(j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑
j3+j4−1=j2

[
εj1,N(C

(j1)
N ),

[
εj3,N(A

(j3)
N ), εj4,N(B

(j4)
N )

]
gN

]
gN

=
∑

`1+`2+`3=k+2

[
ε`3,N(C

(`3)
N ),

[
ε`1,N(A

(`1)
N ), ε`2,N(B

(`2)
N )

]
gN

]
gN

,

εk,N

([
BN , [CN , AN ]GN

](k)

GN

)
=

∑
j1+j2−1=k

[
εj1,N(B

(j1)
N ), εj2,N([CN , AN ]

(j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑
j3+j4−1=j2

[
εj1,N(B

(j1)
N ),

[
εj3,N(C

(j3)
N ), εj4,N(A

(j4)
N )

]
gN

]
gN

=
∑

`1+`2+`3=k+2

[
ε`2,N(B

(`2)
N ),

[
ε`3,N(C

(`3)
N ), ε`1,N(A

(`1)
N )

]
gN

]
gN

.

Since [·, ·]gN is a Lie bracket and therefore satisfies the Jacobi identity, it follows that for

fixed integers 1 ≤ `1, `2, `3 ≤ N ,

0 =

[
ε`1,N(A

(`1)
N ),

[
ε`2,N(B

(`2)
N ), ε`3,N(C

(`3)
N )

]
gN

]
gN

+

[
ε`3,N(C

(`3)
N ),

[
ε`1,N(A

(`1)
N ), ε`2,N(B

(`2)
N )

]
gN

]
gN

+

[
ε`2,N(B

(`2)
N ),

[
ε`3,N(C

(`3)
N ), ε`1,N(A

(`1)
N )

]
gN

]
gN

.

(3.4.56)
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Hence,

εk,N

([
AN , [BN , CN ]GN

](k)

GN
+
[
CN , [AN , BN ]GN

](k)

GN
+
[
BN , [CN , AN ]GN

](k)

GN

)
= 0 ∈ gN .

(3.4.57)

• We now consider the analytic part, which amounts to checking the separate continuity of

[·, ·]GN . Using the anti-symmetry of the bracket, it suffices to show that for AN ∈ GN

fixed, the map

GN → GN , BN 7→ [AN , BN ]GN (3.4.58)

is continuous. Moreover, it suffices to show that for each k ∈ N≤N , the map

GN → gk, BN 7→ [AN , BN ]
(k)
GN

is continuous.

Let (BN,a)a∈A, whereBN,a = (B
(k)
N,a)k∈N≤N , be a net in GN converging toBN = (B

(k)
N )k∈N≤N ∈

GN . By the continuity of the projection maps GN → gk for each k ∈ N≤N , we have that

(B
(k)
N,a)a∈A is a net in gk converging to B

(k)
N ∈ gk.

Unpacking the definition of [AN , BN,a]
(k)
GN

and using the continuity of the Symk operator

and the operations of addition and scalar multiplication, together with the fact there are

only finitely many terms, it suffices to show that for any integers 1 ≤ `, j ≤ N satisfying

min{`+ j − 1, N} = k, any integer r0 ≤ r ≤ min{`, j}, we have the net convergence[
A

(`)
N , B

(j)
N,a

]
r
→
[
A

(`)
N , B

(j)
N

]
r

(3.4.59)

in L̃(Ss(Rk),S(Rk)). But this convergence is a consequence of Lemma 3.4.6, thus com-

pleting the proof.

141



3.4.2 Lie-Poisson Manifold G∗N of Finite Hierachies of Density Matrices

In this subsection, we define the Lie-Poisson manifold g∗N of N -body density matrices

and the Lie-Poisson manifold G∗N of density matrix N -hierarchies. A good heuristic to keep

in mind is that density matrices are dual to skew-adjoint operators. We remind the reader

that the superscript ∗ does not denote the literal functional analytic dual of gN (respectively,

GN) as a topological vector space, but rather a space in weakly non-degenerate pairing with

gN (respectively, GN).

To begin with, we define the real topological vector space

g∗N := {ΨN ∈ L(S ′s(RN),Ss(RN)) : Ψ∗N = ΨN} (3.4.60)

endowed with the subspace topology.

Remark 3.4.9. Our definition of g∗N is quite natural as it is isomorphic to the strong dual

of gN . The proof of this fact is quite similar to that of Lemma 3.5.8 shown below.

We now define a suitable unital sub-algebra ADM,N ⊂ C∞(g∗N ;R) of admissible func-

tionals to build a weak Poisson structure for g∗N .

Definition 3.4.10. Let ADM,N be the algebra with respect to point-wise product generated

by the functionals in

{F ∈ C∞(g∗N ;R) : F (·) = iTr1,...,N(A(N)·), A(N) ∈ gN} ∪ {F ∈ C∞(g∗N ;R) : F (·) = C ∈ R}.

(3.4.61)

In words, ADM,N is the algebra (under point-wise product) generated by the constants

and the image of gN under the canonical embedding into (g∗N)∗.
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We record the following result, whose proof we omit since it is similar to and simpler

than that of Proposition 3.1.8, which will be used in Section 3.4.3 below.

Proposition 3.4.11. (g∗N ,ADM,N , {·, ·}g∗N ) is a weak Poisson manifold.

Before proceeding, it will be useful to record the following lemma regarding the dual

of g∗N . In particular, we note that the dual of g∗N is not isomorphic to gN .

Lemma 3.4.12 (Dual of g∗N). The topological dual of g∗N , denoted by (g∗N)∗ and endowed

with the strong dual topology, is isomorphic to

{A(N) ∈ L(Ss(RN),S ′s(RN)) : (A(N))∗ = −A(N)}, (3.4.62)

equipped with the subspace topology induced by L(Ss(RN),S ′s(RN)), via the canonical bilinear

form

iTr1,...,N(A(N)ΨN), ΨN ∈ g∗N . (3.4.63)

Proof. The proof follows from the duality L(Ss(RN),S ′s(RN))) ∼= L(S ′s(RN),Ss(RN))∗ to-

gether with a polarization-type argument. We leave the details to the reader.

Remark 3.4.13. The previous lemma implies that, given a functional F ∈ C∞(g∗N ;R) and

a point ΨN ∈ g∗N , we may identify the continuous linear functional dF [ΨN ], given by the

Gâteaux derivative of F at the point ΨN , as a skew-adjoint element of L(Ss(RN),S ′s(RN)).

We will abuse notation and denote this element by dF [ΨN ]. Moreover, as we will see below,

it is a small computation using the generating structure of ADM,N that dF [ΨN ] ∈ gN .

143



We next define the Lie-Poisson manifold of density matrix N -hierarchies. To begin,

define the real topological vector space

G∗N :=
{

ΓN = (Γ
(k)
N )k∈N≤N ∈

N∏
k=1

L(S ′s(Rk),Ss(Rk)) : γ
(k)
N = (γ

(k)
N )∗ ∀k ∈ N

}
(3.4.64)

endowed with the subspace product topology. We first note that our definition of G∗N is

quite natural, as it is isomorphic to the topological dual of GN , a fact we prove in the next

lemma.

Lemma 3.4.14 (Dual of GN). The topological dual of GN , denoted by (GN)∗ and endowed

with the strong dual topology, is isomorphic to G∗N .

Proof. Using the isomorphism(
L̃(Ss(Rk),Ss(Rk))

)∗ ∼= (L(Ss(Rk),S ′s(Rk))
)∗

= L(S ′s(Rk),Ss(Rk)), ∀k ∈ N, (3.4.65)

which follows from the proof of Lemma 3.4.2 together with the duality of direct sums and

direct products, see for instance [41, Proposition 2 in §14, Chapter 3], we have that(
N⊕
k=1

L̃(Ss(Rk),Ss(Rk))

)∗
∼=︸︷︷︸

=:Φ′

N∏
k=1

L(S ′s(Rk),Ss(Rk)), (3.4.66)

via the canonical trace pairing

(AN ,ΓN) 7→ iTr(AN · ΓN).

Thus elements of (GN)∗ may be identified with functionals iTr(·ΓN), and so to prove the

lemma, we will show that the map

Φ : G∗N → (GN)∗, ΓN 7→ iTr(·ΓN), (3.4.67)
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is bijective and that both Φ and Φ−1 are continuous.

First, we show surjectivity of Φ. Given any functional F ∈ (GN)∗, we need to find

some density matrix N -hierarchy ΓN ∈ G∗N such that

F (AN) = iTr(AN · ΓN). (3.4.68)

To accomplish this task, we define a functional

F̃ ∈

(
N⊕
k=1

L̃(Ss(Rk),Ss(Rk))

)∗
(3.4.69)

by the formula

F̃ (AN) :=
1

2
F (AN − A∗N)− i

2
F ((AN − A∗N)) +

1

2
F (i(AN + A∗N))− i

2
F (i(AN + A∗N)).

(3.4.70)

By the canonical dual trace pairing, there exists a unique

ΓN ∈
N∏
k=1

L(S ′s(Rk),Ss(Rk))

such that

F̃ (AN) = iTr(AN · ΓN), ∀AN ∈
N⊕
k=1

L̃(Ss(Rk),Ss(Rk)). (3.4.71)

Evaluating F̃ on AN ∈ GN , that is assuming AN = −A∗N , we obtain from (3.4.70) that

(1− i)F (AN) = iTr(AN · ΓN), (3.4.72)

and adding this expression to its conjugate implies that

2F (AN) = i
(

Tr(AN · ΓN)− Tr(AN · ΓN)
)
.
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Since

(AN · ΓN)(k) = A
(k)
N γ

(k)
N ∈ L(S ′s(Rk),Ss(Rk)), ∀k ∈ N≤N ,

its trace exists in the usual sense of an operator on a separable Hilbert space. Furthermore,

the adjoint of A
(k)
N γ

(k)
N as a bounded linear operator on L2

s(Rk), denoted by (A
(k)
N γ

(k)
N )∗, belongs

to L(S ′s(Rk),S(Rk)). A short computation using the skew- and self-adjointness of A
(k)
N and

γ
(k)
N , respectively, shows that

(A
(k)
N γ

(k)
N )∗ = −γ(k)

N A
(k)
N ,

where we abuse notation by lettingA
(k)
N also denote the extension to an element of L(S ′s(Rk),S ′s(Rk)).

Consequently, we are justified in writing

Tr1,...,k

(
A

(k)
N γ

(k)
N

)
= Tr1,...,k

(
(A

(k)
N γ

(k)
N )∗

)
= −Tr1,...,k

(
γ

(k)
N A

(k)
N

)
= −Tr1,...,k

(
A

(k)
N γ

(k)
N

)
,

where the ultimate equality follows from an approximation of A
(k)
N and the cyclicity of trace.

Therefore,

Γ̃N =
1

2
(ΓN + Γ∗N) (3.4.73)

is the desired density matrix N -hierarchy. Injectivity of Φ follows from the polarization

identity by considering elements of GN of the form

A
(k)
N,k0

=

{
i |f (k0)〉 〈f (k0)| , k = k0

0, otherwise
, (3.4.74)

where k0 ∈ N≤N and f (k0) ∈ Ss(Rk0). Hence Φ is bijective.

Next, we claim that both Φ and Φ−1 are continuous. Since G∗N is a Fréchet space,

it suffices by the open mapping theorem to show that Φ is continuous. Let ιGN denote the

canonical inclusion map

GN ⊂
N⊕
k=1

L̃(Ss(Rk),Ss(Rk)), (3.4.75)

146



which is continuous by definition of the subspace topology, with adjoint

ι∗GN :

(
N⊕
k=1

L̃(Ss(Rk),Ss(Rk))

)∗
→ (GN)∗, (3.4.76)

and let ιG∗N denote the canonical inclusion map

G∗N ⊂
N∏
k=1

L(S ′s(Rk),Ss(Rk)), (3.4.77)

which is also continuous by definition of the subspace topology. Then we can write

Φ = ι∗GN ◦ (Φ′)−1 ◦ ιG∗N , (3.4.78)

where Φ′ is the canonical isomorphism described in (3.4.66). Since ι∗GN is continuous, as can

be checked directly or by appealing to the corollary of Proposition 19.5 in [97], it follows

that Φ is the composition of continuous maps, completing the proof of the claim.

We now need to establish the existence of a Poisson structure for G∗N . As before, we

choose a unital sub-algebra AH,N ⊂ C∞(G∗N ;R), generated by trace functionals and constant

functionals, to be the algebra of admissible functionals.

Definition 3.4.15. Let AH,N be the algebra with respect to point-wise product generated

by the functionals in

{F ∈ C∞(G∗N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗N ;R) : F (·) ≡ C ∈ R}.

(3.4.79)

Remark 3.4.16. Our definition of AH,N is not canonical in the sense that one may include

additional functionals in it. However, since we are really only interested in trace functionals,

we will not do so in this work.
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Remark 3.4.17. The structure of AH,N will be frequently used in the following way: it will

suffice to verify various identities for finite products of trace functionals and constant func-

tionals. Moreover, by Remark 3.4.18 below and the Leibnitz rule for the Gâteaux derivative,

it will often suffice to check identities on trace functionals.

Remark 3.4.18. By the linearity of the trace and the definition of the Gâteaux derivative,

a trace functional has constant Gâteaux derivative. Similarly, a constant functional has zero

Gâteaux derivative.

To define the Lie-Poisson bracket on AH,N ×AH,N using the Lie bracket [·, ·]GN con-

structed in Section 3.4.1, we need the following identification of continuous linear functionals

with skew-adjoint operators, given via the canonical trace pairing. We note, in particular,

that (G∗N)∗ is not isomorphic to GN .

Lemma 3.4.19 (Dual of G∗N). The topological dual of G∗N , denoted by (G∗N)∗ and endowed

with the strong dual topology, is isomorphic to

G̃N :=
{
AN ∈

N⊕
k=1

L(Ss(Rk),S ′s(Rk)) : (A
(k)
N )∗ = −A(k)

N

}
. (3.4.80)

Proof. We omit the proof as it proceeds quite similarly to that of Lemma 3.4.14.

We continue to abuse notation by using dF [ΓN ] to denote both the continuous linear

functional and the element of G̃N . We are now prepared to introduce the Lie-Poisson bracket

{·, ·}G∗N on AH,N ×AH,N .
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Definition 3.4.20. Let N ∈ N. For F,G ∈ AH,N , we define

{F,G}G∗N (ΓN) := iTr
(
[dF [ΓN ], dG[ΓN ]]GN · ΓN

)
=

N∑
k=1

iTr1,...,k

(
[dF [ΓN ], dG[ΓN ]]

(k)
GN
γ

(k)
N

)
,

(3.4.81)

for ΓN = (γ
(k)
N )k∈N≤N ∈ G∗N .

We now turn to the second main goal of this subsection, that is, proving Proposi-

tion 3.1.2, the statement of which we repeat here for the reader’s convenience.

Proposition 3.1.2. (G∗N ,AH,N , {·, ·}G∗N ) is a weak Poisson manifold.

We begin with the following technical lemma for the functional derivative of {·, ·}G∗N .

Lemma 3.4.21. Suppose that Gj ∈ AH,N is a trace functional Gj(ΓN) = iTr(dGj[0] · ΓN)

for j = 1, 2. Then for all ΓN ∈ G∗N , the Gâteaux derivative d{G1, G2}G∗N [ΓN ] at the point

ΓN may be identifed with the element

[dG1[0], dG2[0]]GN ∈ GN (3.4.82)

via the canonical trace pairing. If G1 is a trace functional and G2 = G2,1G2,2 is the product

of two trace functionals in AH,N , then d{G1, G2}G∗N [ΓN ] may be identified with

G2,1(ΓN)[dG1[0], dG2,2[0]]GN +G2,2(ΓN)[dG1[0], dG2,1[0]]GN (3.4.83)

for all ΓN ∈ G∗N via the canonical trace pairing.

Proof. The first assertion follows readily from the definition of {G1, G2}G∗N . To see the second

assertion, observe that by the Leibnitz rule for the Gâteaux derivative and the bilinearity of

the bracket [·, ·]r,[
dG1[ΓN ](`), dG2[ΓN ](j)

]
r

= G2,1(ΓN)
[
dG1[0](`), dG2,2[0](j)

]
r

+G2,2(ΓN)
[
dG1[0](`), dG2,1[0](j)

]
r
.
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Hence using Proposition 3.4.8 and introducing the notation

C`jkrN :=
NC`,NCj,N

Ck,N
∏r−1

m=1(N − k +m)
, r0 := max{1,min{`, j}−(N−max{`, j})}, (3.4.84)

we obtain that

[dG1[ΓN ], dG2[ΓN ]]
(k)
GN

=
∑

1≤`,j≤N
min{`+j−1,N}=k

Symk

(min{`,j}∑
r=r0

C`jkrN
[
dG1[ΓN ](`), dG2[ΓN ](j)

]
r

)

= G2,1(ΓN)
∑

1≤`,j≤N
min{`+j−1,N}=k

Symk

(min{`,j}∑
r=r0

C`jkrN
[
dG1[0](`), dG2,2[0](j)

]
r

)

G2,2(ΓN)
∑

1≤`,j≤N
min{`+j−1,N}=k

Symk

(min{`,j}∑
r=r0

C`jkrN
[
dG1[0](`), dG2,1[0](j)

]
r

)
= G2,1(ΓN)[dG1[0], dG2,2[0]](k)

GN
+G2,2(ΓN)[dG1[0], dG2,1[0]](k)

GN
, (3.4.85)

where the ultimate equality follows from another application of Proposition 3.4.8.

We divide our proof of Proposition 3.1.2 into several lemmas. We first show that

{·, ·}G∗N is well-defined and is a Lie bracket satisfying the Leibnitz rule.

Lemma 3.4.22. The formula

{F,G}G∗N (ΓN) := iTr
(
[dF [ΓN ], dG[ΓN ]]GN · ΓN

)
, ∀ΓN ∈ G∗N (3.4.86)

defines a map AH,N ×AH,N → AH,N which satisfies property (P1) in Definition 3.3.1.

Proof. We first show that for F,G ∈ AH,N , one has {F,G}G∗N ∈ AH,N . Recall that AH,N

is generated by constant functionals and trace functionals, hence using the Leibnitz rule,
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bilinearity of [·, ·]GN , and the linearity of the trace, it suffices to consider the case where F,G

are both trace functionals. Indeed, elements of AH,N are finite linear combinations of finite

products of trace functionals and constant functionals, hence using that the derivative of

constant functionals is zero, upon applying the Leibnitz rule, the elements of the product

which are not differentiated can be treated as scalars when evaluated at a point ΓN and

hence can be pulled out of the Lie bracket and then out of the trace by bilinearity.

When F,G are both trace functionals, dF [ΓN ] and dG[ΓN ] are constant in ΓN by

Remark 3.4.18, hence

{F,G}G∗N (ΓN) = iTr
(
[dF [0], dG[0]]GN · ΓN

)
, ∀ΓN ∈ G∗N . (3.4.87)

So, we only need to show that the right-hand side defines an element of AH,N . Since dF [0]

and dG[0] both belong to GN , it follows from Proposition 3.1.1 that [dF [0], dG[0]]GN ∈ GN .

Hence, {F,G}G∗N ∈ AH,N , which completes the proof of the claim.

Bilinearity and anti-symmetry of {·, ·}G∗N are immediate from the bilinearity and anti-

symmetry of [·, ·]GN , so it remains to verify the Jacobi identity. Let F,G,H ∈ AH,N . As we

argued above, it suffices to consider the case where G and H are trace functionals and F is

a product of two trace functionals, that is, F = F1F2, where F1, F2 ∈ AH,N are such that

Fj(ΓN) = iTr(dFj[0] · ΓN), ∀ΓN ∈ G∗N , j = 1, 2. (3.4.88)
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Thus, we need to show that for all ΓN ∈ G∗N ,

0 =
{
F, {G,H}G∗N

}
G∗N

(ΓN) +
{
G, {H,F}G∗N

}
G∗N

(ΓN) +
{
H, {F,G}G∗N

}
G∗N

(ΓN)

= iTr

([
dF [ΓN ], d{G,H}G∗N [ΓN ]

]
GN
· ΓN

)
+ iTr

([
dG[ΓN ], d{H,F}G∗N [ΓN ]

]
GN
· ΓN

)
+ iTr

([
dH[ΓN ], d{F,G}G∗N [ΓN ]

]
GN
· ΓN

)
. (3.4.89)

We show the desired equality by direct computation:

First, since dF [ΓN ] = F1(ΓN)dF2[0] + F2(ΓN)dF1[0], where we use that F1 and F2

have constant Gâteaux derivatives by Remark 3.4.18, it follows from the linearity of the

trace that

iTr

([
dF [ΓN ], d{G,H}G∗N [ΓN ]

]
GN
· ΓN

)
= iF1(ΓN) Tr

([
dF2[0], d{G,H}G∗N [ΓN ]

]
GN
· ΓN

)
+ iF2(ΓN) Tr

([
dF1[0], d{G,H}G∗N [ΓN ]

]
GN
· ΓN

)
= iF1(ΓN) Tr

([
dF2[0], [dG[0], dH[0]]GN

]
GN
· ΓN

)
+ iF2(ΓN) Tr

([
dF1[0], [dG[0], dH[0]]GN

]
GN
· ΓN

)
,

(3.4.90)

where we use Lemma 3.4.21 to obtain the ultimate equality.

Next, since F is a product of two trace functionals, we have by Lemma 3.4.21 that

d{H,F}G∗N [ΓN ] = F1(ΓN)[dH[0], dF2[0]]GN + F2(ΓN)[dH[0], dF1[0]]GN , ∀ΓN ∈ G∗N .

(3.4.91)
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Hence by bilinearity of the Lie bracket and linearity of the trace,

iTr

([
dG[ΓN ], d{H,F}G∗N [ΓN ]

]
GN
· ΓN

)
= iF1(ΓN) Tr

([
dG[0], [dH[0], dF2[0]]GN

]
GN
· ΓN

)
+ iF2(ΓN) Tr

([
dG[0], [dH[0], dF1[0]]GN

]
GN
· ΓN

)
.

(3.4.92)

Finally, similarly to the preceding case,

d{F,G}G∗N [ΓN ] = F1(ΓN)[dF2[0], dG[0]]GN + F2(ΓN)[dF1[0], dG[0]]GN , (3.4.93)

and therefore,

iTr

([
dH[ΓN ], d{F,G}G∗N [ΓN ]

]
GN
· ΓN

)
= iF1(ΓN) Tr

([
dH[0], [dF2[0], dG[0]]GN

]
GN
· ΓN

)
+ iF2(ΓN) Tr

([
dH[0], [dF1[0], dG[0]]GN

]
GN
· ΓN

)
.

(3.4.94)

Combining the preceding identities, we obtain that

iTr

([
dF [ΓN ], d{G,H}G∗N [ΓN ]

]
GN
· ΓN

)
+ iTr

([
dG[ΓN ], d{H,F}G∗N [ΓN ]

]
GN
· ΓN

)
+ iTr

([
dH[ΓN ], d{F,G}G∗N [ΓN ]

]
GN
· ΓN

)
= iF1(ΓN) Tr

(([
dF2[0], [dG[0], dH[0]]GN

]
GN

+
[
dG[0], [dH[0], dF2[0]]GN

]
GN

+
[
dH[0], [dF2[0], dG[0]]GN

]
GN

)
· ΓN

)
+ iF2(ΓN) Tr

(([
dF1[0], [dG[0], dH[0]]GN

]
GN

+
[
dG[0], [dH[0], dF1[0]]GN

]
GN

+
[
dH[0], [dF1[0], dG[0]]GN

]
GN

)
· ΓN

)
= 0, (3.4.95)

where the ultimate equality follows from the fact that both lines in the penultimate equality

vanish by virtue of the Jacobi identity of the Lie bracket [·, ·]GN .
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Finally, we claim that {·, ·}G∗N satisfies the Leibnitz rule:

{FG,H}G∗N (ΓN) = G(ΓN){F,H}G∗N (ΓN) + F (ΓN){G,H}G∗N (ΓN), ∀ΓN ∈ G∗N . (3.4.96)

Since d(FG)[ΓN ] = F (ΓN)dG[ΓN ] + G(ΓN)dF [ΓN ] by the Leibnitz rule for the Gâteaux

derivative, we see that

{FG,H}G∗N (ΓN) = iTr
(
[d(FG)[ΓN ], dH[ΓN ]]GN · ΓN

)
= iF (ΓN) Tr

(
[dG[ΓN ], dH[ΓN ]]GN · ΓN

)
+ iG(ΓN) Tr

(
[dF [ΓN ], dH[ΓN ]]GN · ΓN

)
= F (ΓN){G,H}G∗N (ΓN) +G(ΓN){F,H}G∗N (ΓN), (3.4.97)

where the penultimate equality follows by bilineariy of the Lie bracket and linearity of the

trace and the ultimate equality follows from the definition of the Poisson bracket.

We next verify that AH,N satisfies the non-degeneracy property (P2).

Lemma 3.4.23. AH,N satisfies property (P2) in Definition 3.3.1.

Proof. Let ΓN ∈ G∗N and v ∈ TΓNG
∗
N , and note that TΓNG

∗
N = G∗N . Suppose that

dF [ΓN ](v) = 0 for all F ∈ AH,N . We will show that v = 0.

Consider functionals of the form Ff,k0(·) := iTr(AN,k0·),

A
(k)
N,k0

:=

{
−i |f (k0)〉 〈f (k0)| , k = k0

0, otherwise
, (3.4.98)

for k0 ∈ N≤N and f (k0) ∈ Ss(Rk0). By Remark 3.4.18, we have dFf,k0 [ΓN ](·) = Ff,k0(·), so if

v = (v(k))k∈N≤N ∈ G∗N is as above, we have by definition of the trace that

Ff,k0(v) =
〈
v(k0)f (k0)

∣∣f (k0)
〉

= 0. (3.4.99)
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Since v(k) extends uniquely to a bounded operator on L2
s(Rk) and Ss(Rk) is dense in L2

s(Rk),

it follows from a standard polarization argument that v(k) = 0 for all k ∈ N≤N , which

completes the proof.

Lastly, we show the existence of a unique Hamiltonian vector XH for H ∈ AH,N with

respect to the Poisson structure {·, ·}G∗N . With this last (most difficult) step, the proof of

Proposition 3.1.2 will be complete.

Lemma 3.4.24. (G∗N ,AH,N , {·, ·}G∗N ) satisfies property (P3) in Definition 3.3.1. Further-

more, if H ∈ AH,N , then we have the following formula for the Hamiltonian vector field

XH :

XH(ΓN)(`) =
N∑
j=1

min{`,j}∑
r=r0

C ′`jkrN Tr`+1,...,k

 ∑
αr∈P `r

dH[ΓN ]
(j)
(αr,`+1,...,min{`+j−r,k}), γ

(k)
N

,
(3.4.100)

where

k := min{`+ j − 1, N}, r0 := max{1,min{`, j} − (N −max{`, j})}

and where

C ′`jkrN :=

(
j

r

)
NC`,NCj,N

Ck,N
∏r−1

m=1(N − k +m)
,

for C`,N , Ck,N as in (3.4.9).

Proof. Given F,H ∈ AH,N , we first identify a candidate vector field XH by directly com-

puting {F,H}G∗N . Once we have found the candidate and verified its smoothness as a map

G∗N → G∗N , the proof is complete by the uniqueness guaranteed by Remark 3.3.2.
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By definition of the Poisson bracket on G∗N , we have that

{F,H}G∗N (ΓN) = iTr
(
[dF [ΓN ], dH[ΓN ]]GN · ΓN

)
= i

N∑
k=1

Tr1,...,k

(
[dF [ΓN ], dH[ΓN ]]

(k)
GN
γ

(k)
N

)
, (3.4.101)

for ΓN = (γ
(k)
N )Nk=1 ∈ G∗N . Using the linearity of the Symk operator, we have by the formula

from Proposition 3.4.8 that

[dF [ΓN ], dH[ΓN ]]
(k)
GN

=
∑

1≤`,j≤N
min{`+j−1,N}=k

min{`,j}∑
r=r0

C`jkrN Symk

([
dF [ΓN ](`), dH[ΓN ](j)

]
r

)
,

and

Symk

([
dF [ΓN ](`), dH[ΓN ](j)

]
r

)
= Symk

((
j

r

)
dF [ΓN ]

(`)
(1,...,`)

( ∑
αr∈P `r

dH[ΓN ]
(j)
(αr,`+1,...,`+j−r)

))

− Symk

((
`

r

)
dH[ΓN ]

(j)
(1,...,j)

( ∑
αr∈P

j
r

dF [ΓN ]
(`)
(αr,j+1,...,j+`−r)

))
,

where we have used the combinatorial notation C`jkrN defined in (3.4.84). Recall from

Remark 3.4.5 that we are justified in writing

dH[ΓN ]
(j)
(1,...,j)

( ∑
αr∈P

j
r

dF [ΓN ]
(`)
(αr,j+1,...,j+`−r)

)
=
∑
αr∈P

j
r

dH[ΓN ]
(j)
(1,...,j)dF [ΓN ]

(`)
(αr,j+1,...,j+`−r).

(3.4.102)

Let (m1, . . . ,mj−r) be the increasing arrangement of the set N≤j \{α1, . . . , αr}. Defining the

permutation τ ∈ Sk by the formula

τ(a) :=


i, a = αi for 1 ≤ i ≤ r

a− j + r, j + 1 ≤ a ≤ j + `− r
`+ i, a = mi for 1 ≤ i ≤ j − r
a, otherwise

, (3.4.103)
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we find that for each αr ∈ P j
r fixed,(

dH[ΓN ]
(j)
(1,...,j)dF [ΓN ]

(`)
(αr,j+1,...,j+`−r)

)
(τ(1),...,τ(k))

= dH[ΓN ]
(j)
(1,...,r,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`).

(3.4.104)

Since the Symk operator is Sk-invariant, it then follows that

Symk

(
dH[ΓN ]

(j)
(1,...,j)dF [ΓN ]

(`)
(αr,`+1,...,`+j−r)

)
= Symk

(
dH[ΓN ]

(j)
(1,...,r,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)

)
.

(3.4.105)

Consequently, using that |P j
r | =

(
j
r

)
r!, we obtain that

Symk

((
`

r

)
dH[ΓN ]

(j)
(1,...,j)

( ∑
αr∈P

j
r

dF [ΓN ]
(`)
(αr,j+1,...,j+`−r)

))

=

(
`

r

)(
j

r

)
r! Symk

(
dH[ΓN ]

(j)
(1,...,r,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)

)
.

(3.4.106)

Now given αr ∈ P `
r , let (m1, . . . ,m`−r) be the increasing arrangement of the set N≤` \

{α1, . . . , αr}. We recycle notation to define a new permutation τ ∈ Sk by

τ(i) :=


αi, 1 ≤ i ≤ r

mi−r, r + 1 ≤ i ≤ `

i, otherwise

. (3.4.107)

Then

Symk

((
dH[ΓN ]

(j)
(1,...,r,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)

)
(τ(1),...,τ(k))

)
= Symk

(
dH[ΓN ]

(j)
(αr,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)

)
,

(3.4.108)

where we can “undo” the permutation τ ’s effect on dF [ΓN ]
(`)
(1,...,`) by its S`-invariance. Using

that |P `
r | =

(
`
r

)
r!, we obtain that(

`

r

)(
j

r

)
r! Symk

(
dH[ΓN ]

(j)
(1,...,r,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)

)
=

(
j

r

) ∑
αr∈P `r

Symk

(
dH[ΓN ]

(j)
(αr,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)

)
.

(3.4.109)
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Substituting the preceding identity into the expression Tr1,...,k([dF [ΓN ], dH[ΓN ]]
(k)
GN
γ

(k)
N ) and

using Lemma 3.3.33 to eliminate the Symk operator, we obtain that

iTr1,...,k

(
[dF [ΓN ], dH[ΓN ]]

(k)
GN
γ

(k)
N

)
= i

∑
min{`+j−1,N}=k

min{`,j}∑
r=r0

C`jkrN

(
j

r

) ∑
αr∈P `r

(
Tr1,...,k

(
dF [ΓN ]

(`)
(1,...,`)dH[ΓN ]

(j)
(αr,`+1,...,`+j−r)γ

(k)
N

)

− Tr1,...,k

(
dH[ΓN ]

(j)
(αr,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)γ

(k)
N

))
.

(3.4.110)

Since dH[ΓN ]
(j)
(αr,`+1,...,`+j−r) is skew-adjoint and therefore by duality extends to an element

in L(S ′s(Rk),S ′(Rk)), it follows from the cyclicity property of Proposition 3.2.3(iii) that

Tr1,...,k

(
dH[ΓN ]

(j)
(αr,`+1,...,`+j−r)dF [ΓN ]

(`)
(1,...,`)γ

(k)
N

)
= Tr1,...,k

(
dF [ΓN ]

(`)
(1,...,`)(γ

(k)
N dH[ΓN ]

(j)
(αr,`+1,...,`+j−r))

)
.

(3.4.111)

Since

dH[ΓN ]
(j)
(αr,`+1,...,`+j−r)γ

(k)
N , γ

(k)
N dH[ΓN ]

(j)
(αr,`+1,...,`+j−r) ∈ L(S ′s(Rk),S(Rk)), (3.4.112)

the usual partial trace Tr`+1,...,k of each of these operators exists and defines an element of

L(S ′s(R`),S(R`)). Moreover, since dH[ΓN ](j) and γ
(k)
N are skew- and self-adjoint, respectively,

these partial traces are self-adjoint.

Returning to the expression iTr
(
[dF [ΓN ], dH[ΓN ]]GN · ΓN

)
and interchanging the or-
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der of the k and ` summations, we see that

N∑
k=1

iTr1,...,k

(
[dF [ΓN ], dH[ΓN ]]

(k)
GN
γ

(k)
N

)
= i

N∑
`=1

N∑
j=1

min{`,j}∑
r=r0

C ′
ljk̃rN

(
Tr1,...,`

(
dF [ΓN ](`)

( ∑
αr∈P `r

Tr`+1,...,k̃

(
dH[ΓN ]

(j)

(αr,`+1,...,min{`+j−r,k̃})γ
(k̃)
N

)))

− Tr1,...,`

(
dF [ΓN ](`)

( ∑
αr∈P `r

Tr`+1,...,k̃

(
γ

(k̃)
N dH[ΓN ]

(j)

(αr,`+1,...,min{`+j−r,k̃})

))))
,

where

k̃ := min{`+ j − 1, N}, (3.4.113)

C ′
`jk̃rN

:=
NC`,NCj,N

Ck̃,N
∏r−1

m=1(N − k̃ +m)

(
j

r

)
. (3.4.114)

Note that since γ
(k̃)
N admits a decomposition

γ
(k̃)
N =

∞∑
m=1

λm |f (k̃)
m 〉 〈f (k̃)

m | , (3.4.115)

where
∑∞

m=1 |λm| ≤ 1 and f
(k̃)
m , g

(k̃)
m converge to zero in Ss(Rk̃), we see that

Tr`+1,...,k̃

(
γk̃NdH[ΓN ]

(j)

(αr,`+1,...,min{`+j−r,k̃})

)
=

∞∑
m=1

λm

〈
f (k̃)
m

∣∣∣dH[ΓN ]
(j)

(αr,`+1,...,min{`+j−r,k̃})f
(k̃)
m

〉
,

(3.4.116)

which is independent of the choice of extension of dH[ΓN ](j) to domain S(Rj) by the per-

mutation invariance of each f
(k̃)
m . Furthermore, the operator

∑
αr∈P `r

Tr`+1,...,k̃

(
γ

(k̃)
N dH[ΓN ]

(j)

(αr,`+1,...,min{`+j−r,k̃})

)
(3.4.117)
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is invariant under the S` action, since P `
r is invariant under the S` group action. Hence, it

maps into Ss(R`), and its left-composition with dF [ΓN ](`) is well-defined.

Using the bilinearity of the generalized trace, we obtain the candidate Hamiltonian

vector field

XH(ΓN)(`) :=
N∑
j=1

min{`,j}∑
r=r0

C ′
`jk̃rN

∑
αr∈P `r

(
Tr`+1,...,k̃

(
dH[ΓN ]

(j)

(αr,`+1,...,min{`+j−r,k̃})γ
(k̃)
N

)

− Tr`+1,...,k̃

(
γ

(k̃)
N dH[ΓN ]

(j)

(αr,`+1,...,min{`+j−r,k̃})

))
.

(3.4.118)

We now verify that XH , as defined above, is a smooth map G∗N → G∗N , so that we may

conclude the proof by Remark 3.4.18. We claim that the right-hand side of the preceding

identity defines a continuous linear (hence, smooth) map

G∗N →
N⊕
k=1

L(S ′s(Rk),Ss(Rk)). (3.4.119)

Linearity is obvious, and the map is continuous from

G∗N →
N⊕
k=1

L(S ′s(Rk),S(Rk))

by Proposition 3.2.4. That we may replace the target S(Rk) by the bosonic subspace Ss(Rk)

is a consequence of the following facts: P `
r is invariant under the S` group action, dH[ΓN ](j) is

Sj-invariant, and γ
(k̃)
N is a fortiori S`-invariant. The self-adjointness of XH(ΓN)(`) follows from

the skew- and self-adjointness of dH[ΓN ](j) and γ
(k̃)
N , respectively, and the adjoint properties

of the generalized partial trace.
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3.4.3 Density Matrix Maps as Poisson Morphisms

We close this section with the observations that the well-known operations of forming

a density matrix out of a wave function and forming an N -hierarchy of reduced density

matrices from an N -body density matrix respect the geometric structure we have developed,

in the sense that these operations define Poisson morphisms.

We first define the density matrix map or ket-bra map from N -body bosonic wave

functions to N -body bosonic density matrices.

Definition 3.4.25 (Density matrix map). We define the density matrix map or ket-bra map

by

ιDM,N : Ss(RN)→ g∗N ιDM,N(ΦN) := |ΦN〉 〈ΦN | = ΦN ⊗ ΦN . (3.4.120)

It is easy to verify that ιDM,N is a smooth map from Ss(RN) to g∗N . We now show

that the density matrix map is a Poisson map. To prove this property, we recall from Defi-

nition 3.3.7 the requirement that ι∗DM,NADM,N ⊂ AS . If F is smooth, then the smoothness

of ιDM,N implies by the chain rule that f = F ◦ ιDM,N ∈ C∞(Ss(RN);R). However, it is not

a priori clear that f ∈ AS , where we recall that AS ⊂ C∞(S(RN);R) is defined by

AS :=
{
H : ∇sH ∈ C∞(S(RN);S(RN))

}
, (3.4.121)

In the sequel, we will use the notation AS,N to make the dependence on N explicit.

Lemma 3.4.26. Let N ∈ N. For any F ∈ ADM,N , the functional f := F ◦ ιDM,N ∈

C∞(Ss(RN);R) belongs to AS,N . Furthermore,

∇sf(ΦN) = dF [ιDM,N(ΦN)](ΦN), ∀ΦN ∈ Ss(RN), (3.4.122)

where we identify dF [ιDM,N(ΦN)] as a skew-adjoint operator by Remark 3.4.13.
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Proof. Observe from the chain rule that for ΦN , δΦN ∈ Ss(RN),

df [ΦN ](δΦN) = dF [ιDM,N(ΦN)](dιDM,N [ΦN ](δΦN))

= dF [ιDM,N(ΦN)](|ΦN〉 〈δΦN |+ |δΦN〉 〈ΦN |), (3.4.123)

where we use the elementary computation

dιDM,N [ΦN ](δΦN) = |ΦN〉 〈δΦN |+ |δΦN〉 〈ΦN | . (3.4.124)

Identifying the functional dF [ιDM,N(ΦN)](·) with a skew-adjoint DVO given by dF [ιDM,N(ΦN)]

as in Remark 3.4.13, we have that

dF [ιDM,N(ΦN)](|ΦN〉 〈δΦN |+ |δΦN〉 〈ΦN |) = iTr1,...,N(dF [ιDM,N(ΦN)](|ΦN〉 〈δΦN |+ |δΦN〉 〈ΦN |))

= i 〈δΦN |dF [ιDM,N(ΦN)]ΦN〉+ i 〈ΦN |dF [ιDM,N [ΦN ]δΦN〉 .

Since dF [ιDM,N(ΦN)] is skew-adjoint, the preceding expression equals

i 〈δΦN |dF [ιDM,N(ΦN)]ΦN〉 − i 〈dF [ιDM,N(ΦN)]ΦN |δΦN〉 = −2 Im 〈δΦN |dF [ιDM,N(ΦN)]ΦN〉

= ωL2(dF [ιDM,N(ΦN)]ΦN , δΦN).

We claim that the map ΦN 7→ dF [ιDM,N(ΦN)]ΦN is a smooth map of Ss(RN) to itself, which

justifies our preceding manipulations. Indeed, suppose first that F ∈ ADM,N is a trace

functional. Then dF [ιDM,N(ΦN)] = dF [0], and therefore the claim follows since dF [0] is a

continuous linear map of Ss(RN) to itself by definition of ADM,N . The general case then

follows by the Leibnitz rule for the Gâteaux derivative. Therefore, the functional f has

symplectic L2 gradient

∇sf(ΦN) = dF [ιDM,N(ΦN)]ΦN ,

and ∇sf is a smooth map of Ss(RN) to itself, which implies that f ∈ AS,N .
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We recall from (1.3.2) the definition for {·, ·}L2 , and we consider the rescaled Poisson

bracket

{·, ·}L2,N := N{·, ·}L2 . (3.4.125)

Proposition 3.4.27. Let N ∈ N. Then

ιDM,N : (Ss(RN),AS,N , {·, ·}L2,N)→ (g∗N ,ADM,N , {·, ·}g∗N ) (3.4.126)

is a Poisson map.

Proof. As observed above, the smoothness of ιDM,N is evident, and by Lemma 3.4.26, F ◦

ιDM,N ∈ AS,N for any F ∈ ADM,N . Hence, it remains for us to show that for all F,G ∈

ADM,N ,

{F ◦ ιDM,N , G ◦ ιDM,N}L2,N(ΦN) = {F,G}g∗N ◦ ιDM,N(ΦN), ∀ΦN ∈ Ss(RN). (3.4.127)

For convenience, we introduce the notation f := F ◦ ιDM,N and g := G ◦ ιDM,N . We first

consider the expression {f, g}L2,N(ΦN). Observe that by definition of the Poisson bracket

{·, ·}L2,N ,

{f, g}L2,N(ΦN) = NωL2(∇sf(ΦN),∇sg(ΦN))

= 2N Im 〈dF [ιDM,N(ΦN)]ΦN |dG[ιDM,N(ΦN)]ΦN〉 . (3.4.128)

Now using the skew-adjointness of dG[ιDM,N(ΦN)] and dF [ιDM,N(ΦN)], we conclude that the

last expression equals

iN(〈ΦN |dF [ιDM,N(ΦN)dG[ιDM,N(ΦN)]ΦN〉 − 〈ΦN |dG[ιDM,N(ΦN)]dF [ιDM,N(ΦN)]ΦN〉)

= iTr1,...,N

(
[dF [ιDM,N(ΦN)], dG[ιDM,N(ΦN)]]gN |ΦN〉 〈ΦN |

)
= {F,G}g∗N ◦ ιDM,N(ΦN), (3.4.129)
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which is exactly what we wanted to show.

We next show that there is a linear homomorphism of Lie algebras GN → gN induced

by the embeddings {εk,N}k∈N≤N . We will then combine this fact with a duality argument to

prove that the reduced density matrix operation is a Poisson mapping

(g∗N ,ADM,N , {·, ·}g∗N )→ (G∗N ,AH,N , {·, ·}G∗N ). (3.4.130)

Proposition 3.4.28. For any N ∈ N, the map

ιε,N : GN → gN , ιε,N(AN) :=
N∑
k=1

εk,N(A
(k)
N ), (3.4.131)

is a continuous linear homomorphism of Lie algebras.

Proof. Continuity and linearity are evident from the continuity and linearity of the maps

εk,N (recall Lemma 3.4.3). To show that ιsum,N is a homomorphism of Lie algebras, we need

to show that for any

AN = (A
(k)
N )k∈N≤N , BN = (B

(k)
N )k∈N≤N ∈ GN , (3.4.132)

we have that

ιε,N
(
[AN , BN ]GN

)
= [ιε,N(AN), ιε,N(BN)]gN . (3.4.133)

Consider the left-hand side expression. By the definition of the map ιε,N , the definition

164



of the Lie bracket [·, ·]GN from (3.4.52), and Lemma 3.4.7, we obtain that

ιε,N
(
[AN , BN ]GN

)
=

N∑
k=1

εk,N

(
[AN , BN ]

(k)
GN

)
=

N∑
k=1

εk,N(C
(k)
N )

=
N∑
k=1

∑
1≤`,j≤N

min{`+j−1,N}=k

[
ε`,N(A

(`)
N ), εj,N(B

(j)
N )
]
gN
.

Using the partition

{(`, j) ∈ (N≤N)2} =
N⋃
k=1

{(`, j) ∈ (N≤N)2 : min{`+ j − 1, N} = k}, (3.4.134)

we see that

N∑
k=1

∑
1≤`,j≤N

min{`+j−1,N}=k

[
ε`,N(A

(`)
N ), εj,N(B

(j)
N )
]
gN

=
N∑
`=1

N∑
j=1

[
ε`,N(A

(`)
N ), εj,N(B

(j)
N )
]
gN
. (3.4.135)

By the definition of the map ιε,N and the bilinearity of Lie brackets, we observe that

N∑
`=1

N∑
j=1

[
ε`,N(A

(`)
N ), εj,N(B

(j)
N )
]
gN

= [ιε,N(AN), ιε,N(BN)]gN , (3.4.136)

which completes the proof.

Finally, we show that there is a canonical Poisson mapping of g∗N → G∗N given by

taking the sequence of reduced density matrices.

Proposition 3.4.29 (RDM Map is Poisson). The map ιRDM,N : g∗N → G∗N given by

ιRDM,N(ΨN) := ΓN = (γ
(k)
N )k∈N≤N , γ

(k)
N := Trk+1,...,N(ΨN) (3.4.137)

is a Poisson map.
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To prove Proposition 3.4.29, we will show that ιRDM,N is the dual of the map ιsum,N ,

which, by Proposition 3.4.28, we know is a continuous linear homomorphism of Lie algebras.

We then appeal to the following general result, the statement of which we have taken from

[60, Proposition 10.7.2].

Lemma 3.4.30. Let (g, [·, ·]g) and (h, [·, ·]h) be Lie algebras. Let α : g→ h be a linear map.

Then the map α is a homomorphism of Lie algebras if and only if its dual map α∗ : h∗ → g∗

is a (linear) Poisson map.

Proof of Proposition 3.4.29. As stated above, we want to show that the reduced density

matrix ιRDM,N is the dual of the map

ιε,N : GN → gN , AN = (A
(1)
N , . . . , A

(N)
N ) 7→

N∑
k=1

εk,N(A
(k)
N ). (3.4.138)

Indeed, observe that for ΨN ∈ g∗N and AN = (A
(k)
N )k∈N≤N ∈ GN , we see from unpacking the

definition of ιε,N and using the bilinearity of the generalized trace that

ι∗ε,N(ΨN)(AN) = iTr1,...,N(ιε,N(AN)ΨN) =
N∑
k=1

iTr1,...,N

(
εk,N(A

(k)
N )ΨN

)
. (3.4.139)

Unpacking the definition (3.4.8) of the map εk,N(A
(k)
N ) and using the bilinearity of the gen-

eralized trace again, we see that

N∑
k=1

iTr1,...,N

(
εk,N(A

(k)
N )ΨN

)
=

N∑
k=1

∑
p
k
∈PNk

iCk,N Tr1,...,N

(
A

(k)
N,(p1,...,pk)ΨN

)
. (3.4.140)

Hence using that ΨN is bosonic and Lemma 3.3.33, we have that

Tr1,...,N

(
A

(k)
N,(p1,...,pk)ΨN

)
= Tr1,...,N

(
A

(k)
N,(1,...,k)ΨN

)
= Tr1,...,k

(
A

(k)
N Trk+1,...,N(ΨN)

)
= Tr1,...,k

(
A

(k)
N γ

(k)
N

)
, (3.4.141)
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where the ultimate equality follows by definition of γ
(k)
N . Since |PN

k | = 1/Ck,N , we conclude

that

ι∗ε,N(ΨN)(AN) =
N∑
k=1

iTr1,...,k

(
A

(k)
N γ

(k)
N

)
= iTr(AN · ιRDM,N(ΨN)), (3.4.142)

which completes the proof of the proposition.

3.5 Geometric Structure for Infinity Hierarchies

In this section, we compute the limit of the N -body Lie algebra (GN , [·, ·]GN ) as

N →∞. We then show that in this limit, the higher-order contractions appearing in formula

(3.4.53) vanish. Consequently, the domain of definition of the Lie bracket may be enlarged,

for which we construct the Lie algebra (G∞, [·, ·]G∞) of observable ∞-hierarchies and dually,

the weak Lie-Poisson manifold (G∗∞,A∞, {·, ·}G∗∞) of density matrix ∞-hierarchies.

3.5.1 The Limit of GN as N →∞

In order to pass from the N -particle setting to the ∞-particle setting, we first study

the limit of the Lie algebra (GN , [·, ·]GN ) as N →∞.

Via the natural inclusion map, we can identify GN as the subspace of the locally

convex direct sum

F∞ :=
∞⋃
N=1

GN =
∞⊕
k=1

gk (3.5.1)

consisting of elements A = (A(k))k∈N, where A(k) = 0 for k ≥ N + 1. In our next result,

Proposition 3.1.4, we establish a formula for the limiting bracket structure for G∞.

Proposition 3.1.4. Let N0 ∈ N. For A = (A(k))k∈N, B = (B(k))k∈N ∈ GN0, we have that

lim
N→∞

[A,B]GN = C = (C(k)k∈N, (3.1.20)
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where

C(k) :=
∑
`,j≥1

`+j−1=k

Symk

([
A(`), B(j)

]
1

)
, (3.1.21)

in the topology of F∞.

Proof. Let k ∈ N. For M � k, we have by Proposition 3.4.8 and the linearity of the map

εk,N that

∑
`,j≥1

`+j−1=k

ε−1
k,M

([
ε`,M(A(`)), εj,M(B(j))

]
gM

)

=
∑
`,j≥1

`+j−1=k

Symk

min{`,j}∑
r=1

MC`,MCj,M

Ck,M
∏r−1

a=1(M − k + a)

[
A(`), B(j)

]
r


=

∑
`,j≥1

`+j−1=k

Symk

(
MC`,MCj,M

Ck,M

[
A(`), B(j)

]
1

)

+
∑
`,j≥1

`+j−1=k

Symk

min{`,j}∑
r=2

MC`,MCj,M

Ck,M
∏r−1

a=1(M − k + a)

[
A(`), B(j)

]
r


=: Term1,M + Term2,M . (3.5.2)

We first consider Term1,M . Since

lim
M→∞

MC`,MCj,M
Ck,M

= lim
M→∞

M
∏k

a=1(M + 1− a)

(
∏`

a=1(M + 1− a))(
∏j

a=1(M + 1− a))
= lim

M→∞

Mk+1

M `+j
= 1,

we see that

Term1,M →
∑

`,j≥1;`+j−1=k

Symk

([
A(`), B(j)

]
1

)
, (3.5.3)

as M →∞, in gk.
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We next consider Term2,M . Let 2 ≤ r ≤ min{`, j}. Since

lim
M→∞

MC`,NCj,M

Ck,M
∏r−1

a=1(M − k + a)
= lim

M→∞

M
∏k

a=1(M + 1− a)

(
∏`

a=1(M + 1− a))(
∏j

a=1(M + 1− a))(
∏r−1

a=1(M − k + a))

= lim
M→∞

Mk+1

M `+j+r−1

= lim
M→∞

M1−r

= 0, (3.5.4)

we see that

Symk

(
MC`,MCj,M

Ck,M
∏r−1

a=1(M − k + a)

[
A(`), B(j)

]
r

)
→ 0, (3.5.5)

as M →∞, in gk. Summing over the ranges 2 ≤ r ≤ min{`, j} and `+ j− 1 = k, for a total

of finitely many terms, we conclude that

Term2,M → 0, (3.5.6)

as M →∞, in gk, proving the result.

3.5.2 The Lie Algebra G∞ of Observable ∞-Hierarchies

As mentioned in the introduction, the simplified form of [·, ·]G∞ allows us to take

advantage of the good mapping property and extend this bracket to a map on a much

larger real topological vector space, which we redefine G∞ to be, to obtain a Lie algebra of

observable ∞-hierarchies. We rigorously construct this extension now.

We define gk,gmp to be

gk,gmp := {A(k) ∈ Lgmp(Ss(Rk),S ′s(Rk)) : A(k) = −(A(k))∗}. (3.5.7)
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In words, gk,gmp is the real, locally convex space consisting of skew-adjoint elements of

Lgmp(Ss(Rk),S ′s(Rk)). We will hereafter refer to the elements of gk,gmp as k-particle or k-

body observables. We define the locally convex direct sum

G∞ :=
∞⊕
k=1

gk,gmp. (3.5.8)

We refer to the elements of G∞ as observable ∞-hierarchies. For

A = (A(k))k∈N, B = (B(k))k∈N ∈ G∞,

we define

[A,B]G∞ := C = (C(k))k∈N,

C(k) := Symk

( ∑
`,j≥1

`+j−1=k

[
A(`), B(j)

]
1

)
, (3.5.9)

where Symk denotes the bosonic symmetrization operator defined in Section 3.3, which we

recall is given by

Symk(A
(k)) :=

1

k!

∑
π∈Sk

A
(k)
(π(1),...,π(k)), A

(k)
(π(1),...,π(k)) = π ◦ A(k)

1,...,k ◦ π
−1 (3.5.10)

and where
[
A(`), B(j)

]
1

is given according to (3.4.33) by[
A(`), B(j)

]
1

= jA(`) ◦1 B
(j) − `B(j) ◦1 A

(`)

= jA
(`)
(1,...,`)

(∑̀
α=1

B
(j)
(α,`+1,...,`+j−1)

)
− `B(j)

( j∑
α=1

A
(`)
(α,j+1,...,j+`−1)

)
.

(3.5.11)

The main goal of this section is to establish the existence of a Lie algebra of observable

∞-hierarchies, namely, to prove Proposition 3.1.7:

Proposition 3.1.7. (G∞, [·, ·]G∞) is a Lie algebra in the sense of Definition 3.3.14.
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The construction follows closely our N -body approach in Section 3.4; however, there

are new technical difficulties that have to be considered. Indeed, G∞ contains more singular

objects than GN , and we have to heavily exploit the good mapping property in order to

handle this issue. We remind the reader the enlarged definition of G∞, as opposed to simply

the union of the GN , is necessary to accommodate the observable∞-hierarchy −iWGP which

generates the GP Hamiltonian functional.

We first need to establish that the Lie bracket given by (3.5.9) is well-defined on G∞.

To this end, we must begin by giving meaning to the composition

A
(`)
(1,...,`)

(∑̀
α=1

B
(j)
(α,`+1,...,`+j−1)

)
(3.5.12)

as an operator in L(S(Rk),S ′(Rk)), for which it will be convenient to proceed term-wise

by extending A(`) and B(j) to operators defined on the entire space S(R`) and S(Rj),

respectively, as described in Remark 3.4.5.17 For general A(`) ∈ L(S(R`),S ′(R`)) and

B(j) ∈ L(S(Rj),S ′(Rj)), such a composition may not be well-defined, see Remark 3.3.3,

and hence we appeal to the good mapping property of Definition 3.1.5 to give meaning to

(3.5.12). It will be useful in the sequel to observe that the definition of the good mapping

property says the following: let A(`) ∈ L(S(R`),S ′(R`)) and (f (`), g(`)) ∈ S(R`)×S(R`), and

for fixed x′α ∈ R, consider the distribution in S ′(R) defined by

φ 7→
〈
A(`)f (`),

(
φ⊗α g(`)(·, x′α, ·)

)〉
S′(R`)−S(R`), (3.5.13)

where (
φ⊗α g(`)(·, x′α, ·)

)
(y
`
) := φ(yα)g(`)(y

1;α−1
, x′α, yα+1;`

), y
`
∈ R`. (3.5.14)

17We will see later that the choice of extension is immaterial.
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Then A(`) ∈ Lgmp(S(R`),S ′(R`)) if the element of S(R;S ′(R))18 defined by

x′α 7→
〈
A(`)f (`), (·)⊗α g(`)(·, x′α, ·)

〉
S′(R`)−S(R`), (3.5.15)

may be identified with a (necessarily unique) Schwartz function Φ(f (`), g(`)) in S(R2) by

〈
A(`)f (`), φ⊗α g(`)(·, x′α, ·)

〉
S′(R`)−S(R`) =

∫
R
dxαΦ(f, g)(xα, x

′
α)φ(xα), x′α ∈ R, (3.5.16)

and the assignment Φ : S(R`)× S(R`)→ S(R2) is continuous.

Lemma 3.5.1 (◦βα contraction). Let i, j ∈ N, let k := i+ j − 1, and let (α, β) ∈ N≤i ×N≤j.

Then there exists a bilinear map, continuous in the first entry,

◦βα : L(S(Ri),S ′(Ri))× Lgmp(S(Rj),S ′(Rj))→ L(S(Rk),S ′(Rk)), (3.5.17)

such that A(i) ◦βα B(j) corresponds to

A(i) ◦βα B(j) = A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k), (3.5.18)

when A(i) ∈ L(S(Ri),S(Ri)) and B(j) ∈ L(S(Rj),S(Rj)) or A(i) ∈ L(S(Ri),S ′(Ri)) and

B(j) ∈ L(S ′(Rj),S ′(Rj)). If we replace the domain space L(S(Ri),S ′(Ri)) for the first entry

by Lgmp(S(Ri),S ′(Ri)), then the bilinear map

◦βα : Lgmp(S(Ri),S ′(Ri))× Lgmp(S(Rj),S ′(Rj))→ Lgmp(S(Rk),S ′(Rk)) (3.5.19)

is continuous in the first entry.

18Given a Hausdorff locally convex space E, we let S(Rd;E) denote the space of functions f ∈ C∞(Rd;E)
such that for each pair of d-dimensional polynomials P and Q with complex coefficients, the union⋃
x∈Rd{P (x)Q(∂x)f(x)} is contained in a bounded subset of E. We endow S(Rd;E) with the topology

of uniform convergence of the functions P (x)Q(∂x)f(x), for all P and Q.
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Remark 3.5.2. Using this lemma and bosonic symmetry, we note that we can rewrite our

definition of [·, ·]1 from (3.4.33) using the contractions ◦βα as follows: Let i, j ∈ N and set

k := i+ j − 1. We extend [·, ·]1 to be the bilinear, continuous in the first entry, map

[·, ·]1 : Lgmp(S(Ri),S ′(Ri))× Lgmp(S(Rj),S ′(Rj))→ Lgmp(S(Rk),S ′(Rk))

(A(i), B(j)) 7→
i∑

α=1

j∑
β=1

A(i) ◦βα B(j) −B(j) ◦αβ A(i),
(3.5.20)

for ◦βα and ◦αβ as in Lemma 3.5.1.

Proof of Lemma 3.5.1. We first show that for fixed f ∈ S(Rk), there is a well-defined element

(A(i) ◦βα B(j))(f) ∈ S ′(Rk) (3.5.21)

corresponding to

A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k)(f). (3.5.22)

Let g ∈ S(Rk). Now it follows from the assumption that B(j) has the good mapping property

and Remark 3.3.4 that the bilinear map

(f̃ , g̃) 7→
〈
B

(j)
(2,...,β,1,β+1,...,j)(f̃(xα−1, ·, xα+1;i, ·)), (·)⊗ g̃(x′i, ·)

〉
S′(Rj)−S(Rj)

, (3.5.23)

which is a priori a bilinear continuous map

S(Rk)× S(Rk)→ S(xα−1,xα+1;i,x
′
i)

(Rα−1 × Ri−α × Ri;S ′xα(R)), (3.5.24)

is identifiable with a unique smooth map

ΦB(j),α,β : S(Rk)× S(Rk)→ S(xi;x
′
i)

(R2i). (3.5.25)
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Since we have the canonical isomorphism

L(S(Ri),S ′(Ri)) ∼= S ′(R2i) (3.5.26)

by the Schwartz kernel theorem, we therefore define the composition (3.5.21) by

〈(A(i) ◦βα B(j))f, g〉S′(Rk)−S(Rk) :=
〈
KA(i) ,ΦB(j),α,β(f, g)t

〉
S′(R2i)−S(R2i)

, (3.5.27)

where

ΦB(j),α,β(f, g)t(xi;x
′
i) = ΦB(j),α,β(f, g)(x′i;xi), (xi, x

′
i) ∈ R2i.

Hence, taking (3.5.27) as the definition of (3.5.21) for f ∈ S(Rk), we have defined an

evidently linear map

A(i) ◦βα B(j) : S(Rk)→ S ′(Rk). (3.5.28)

The continuity of this map follows from its definition as a composition of continuous maps.

Bilinearity of ◦βα in A(i) and B(j) is obvious. Moreover, it is clear that if B(j) has the good

mapping property, then A(i) ◦βα B(j) has the good mapping property. Lastly, the reader

can check from the distributional Fubini-Tonelli theorem that our definition of A(i) ◦βα B(j)

coincides with the composition (3.5.22) in the cse where A(i) ∈ L(S(Ri),S(Ri)) and B(j) ∈

L(S(Rj),S(Rj)) or A(i) ∈ L(S(Ri),S ′(Ri)) and B(j) ∈ L(S ′(Rj),S ′(Rj)).

We now prove that the map

(·) ◦βα (·) : L(S(Ri),S ′(Ri))× Lgmp(S(Rj),S ′(Rj))→ Lgmp(S(Rk),S ′(Rk)) (3.5.29)

is continuous in the first entry, that is, for fixed B(j) ∈ Lgmp(S(Ri),S ′(Ri)), the map

L(S(Ri),S ′(Ri))→ Lgmp(S(Rk),S ′(Rk)), A(i) 7→ A(i) ◦βα B(j) (3.5.30)
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is continuous. By considerations of symmetry, it suffices to consider the case (α, β) = (1, 1).

To this end, it suffices to show that given a bounded subset R(k) ⊂ S(Rk), there exists a

bounded subset R(i) ⊂ S(Ri) such that

sup
f (k),g(k)∈R(k)

∣∣〈(A(i) ◦1
1 B

(j))f (k)
∣∣g(k)

〉∣∣ . sup
f (i),g(i)∈R(i)

∣∣〈A(i)f (i)
∣∣g(i)

〉∣∣ . (3.5.31)

To see how to obtain the desired seminorm, first observe that

∣∣〈(A(i) ◦1
1 B

(j))f (k)
∣∣g(k)

〉∣∣ =
∣∣∣〈KA(i) ,ΦB(j),1,1(f (k), g(k))t

〉
S′(R2i)−S(R2i)

∣∣∣
=
∣∣Tr1,...,i

(
A(i)ΦB(j),1,1(f (k), g(k))

)∣∣ , (3.5.32)

where the ultimate equality follows from the definition of the generalized trace (recall Defi-

nition 3.2.1) and we commit an abuse of notation by using ΦB(j),1,1(f (k), g(k)) to denote the

operator in L(S ′(Ri),S(Ri)) defined by this integral kernel. Since R(k) is bounded, the im-

age ΦB(j),1,1(R(k)×R(k)) is a bounded subset of S(R2i) ∼= L(S ′(Ri),S(Ri)), and since A(i) is

continuous, it follows that

sup
γ(i)∈Φ

B(j),1,1
(R(k)×R(k))

∣∣Tr1,...,i

(
A(i)γ(i)

)∣∣ <∞. (3.5.33)

Hence, there exists an element γ
(i)
0 ∈ ΦB(j),1,1(R(k) ×R(k)) such that∣∣∣Tr1,...,i

(
A(i)γ

(i)
0

)∣∣∣ ≥ 1

2
sup

γ(i)∈Φ
B(j),1,1

(R(k)×R(k))

∣∣Tr1,...,i

(
A(i)γ(i)

)∣∣ . (3.5.34)

Since each element of S(R2i) can be written as
∑∞

`=1 λ`f
(i)
` ⊗ g

(i)
` , where

∑∞
`=1 |λ`| ≤ 1, and

f
(i)
` , g

(i)
` are sequences in S(Ri) converging to zero, we see from the separate continuity of
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the generalized trace that∣∣∣Tr1,...,i

(
A(i)γ

(i)
0

)∣∣∣ ≤ ∞∑
`=1

|λ`|
∣∣∣Tr1,...,i

(
A(i)(f

(i)
0,` ⊗ g

(i)
0,`)
)∣∣∣

≤ sup
f (i),g(i)∈{f (i)

0,`′ ,g
(i)

0,`′}
∞
`′=1

∣∣〈A(i)f (i), g(i))〉S′(Ri)−S(Ri)
∣∣ . (3.5.35)

We claim that {f (i)
0,` , g

(i)
0,`}∞`=1 is a bounded subset of S(Ri), which then completes the proof.

Indeed, this follows readily from the fact that f
(i)
0,` , g

(i)
0,` converge to zero.

Remark 3.5.3. If we restrict the domain of the map ◦βα to the space

Lgmp,∗(S(Ri),S ′(Ri))× Lgmp,∗(S(Rj),S ′(Rj))

consisting of distribution-valued operators satisfying the good mapping property such that

their adjoints also satisfy the good mapping property, which we endow with the subspace

topology, then it follows by duality that ◦βα is separately continuous on this space.

Remark 3.5.4. If B(j) ∈ Lgmp(Ss(Rj),S ′s(Rj)), then it follows from bosonic symmetry that

for any (α, β) ∈ N≤i × N≤j,

A(i) ◦βα B(j) = A(i) ◦1
α B

(j). (3.5.36)

Remark 3.5.5. If A(i) ∈ L(Ss(Ri),S ′(Ri)) and B(j) ∈ Lgmp(Ss(Rj),S ′s(Rj)), then given two

extensions A
(i)
1 , A

(i)
2 ∈ L(S(Ri),S ′(Ri)) of A(i), we claim that

i∑
α=1

A
(i)
1 ◦1

α B
(j) =

i∑
α=1

A
(i)
2 ◦1

α B
(j) ∈ L(Ss(Rk),S ′(Rk)). (3.5.37)

Indeed, for f ∈ Ss(Rk), g ∈ S(Rk), we have that

i∑
α=1

〈g, (A(i)
1 ◦1

α B
(j))f〉S(Rk)−S′(Rk) =

i∑
α=1

〈
K
A

(i)
1
,ΦB(j),α,1(f, g)t

〉
S′(R2i)−S(R2i)

. (3.5.38)
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Since each ΦB(j),α,1(f, g) ∈ S(R2i) and f ∈ Ss(Rk), we see that

i∑
α=1

ΦB(j),α,1(f, g)(π(xi);x
′
i) =

i∑
α=1

ΦB(j),α,1(f, g)(xi;x
′
i), (xi, x

′
i) ∈ R2i, (3.5.39)

for any permutation π ∈ Si. Consequently, for fixed x′i ∈ Ri, the function
∑i

α=1 ΦB(j),α,1(f, g)(·, x′i)

belongs to Ss(Ri) on which the two extensions A
(i)
1 and A

(i)
2 agree. It then follows from the

Schwartz kernel theorem that〈
K
A

(i)
1
,

(
i∑

α=1

ΦB(j),α,1(f, g)

)t〉
S′(R2i)−S(R2i)

=

〈
K
A

(i)
2
,

(
i∑

α=1

ΦB(j),α,1(f, g)

)t〉
S′(R2i)−S(R2i)

,

(3.5.40)

and therefore

i∑
α=1

〈g, (A(i)
1 ◦1

α B
(j))f〉S(Rk)−S′(Rk) =

i∑
α=1

〈g, (A(i)
2 ◦1

α B
(j))f〉S(Rk)−S′(Rk), (3.5.41)

which establishes our claim.

By Lemma 3.5.1,

A(`) ◦βα B(j) ∈ Lgmp(S(Rk),S ′(Rk)), for `+ j − 1 = k. (3.5.42)

Hence, by definition of the bracket [·, ·]1 and Remark 3.5.2,∑
`,j≥1

`+j−1=k

[
A(`), B(j)

]
1
∈ Lgmp(Ss(Rk),S ′(Rk)). (3.5.43)

Thus it remains to show two properties: first that the symmetrization of an operator pre-

serves the good mapping property, which will then establish that C(k) ∈ Lgmp(Ss(Rk),S ′s(Rk)),

where C(k) is defined according to (3.5.9), and second that C(k) is skew-adjoint. We begin

with the following lemma which establishes the desired property of the symmetrization op-

erators.
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Lemma 3.5.6. If A = (A(k))k∈N ∈
⊕∞

k=1 Lgmp(S(Rk),S ′(Rk)), then

Sym(A) ∈
∞⊕
k=1

Lgmp(Ss(Rk),S ′s(Rk)).

Proof. It suffices to show that for each k ∈ N, if A(k) ∈ Lgmp(S(Rk),S ′(Rk)), then

Symk(A
(k)) ∈ Lgmp(Ss(Rk),S ′s(Rk)).

Let α ∈ N≤k. We need to show that the map

Ss(Rk)× Ss(Rk)→ S(R;S ′(R))

(f (k), g(k)) 7→
〈
Symk(A

(k))(f (k)), (·)⊗α g(·, x′α, ·)
〉
S′(Rk)−S(Rk)

(3.5.44)

may be identified with a continuous map Ss(Rk) × Ss(Rk) → S(R2). By definition of the

Symk operator and bilinearity of the distributional pairing, we have that

〈
Symk(A

(k))f (k), (·)⊗α g(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

=
1

k!

∑
π∈Sk

〈
A

(k)
(π(1),...,π(k))f

(k), (·)⊗α g(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

. (3.5.45)

By definition of the notation A
(k)
(π(1),...,π(k)) = π ◦ A(k)

1,...,k ◦ π−1, we have that〈
A

(k)
(π(1),...,π(k))f

(k), (·)⊗α g(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

=
〈
A(k)(f (k) ◦ π−1) ◦ π, (·)⊗α g(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

=
〈
A(k)(f (k)) ◦ π, (·)⊗α g(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

, (3.5.46)

where the ultimate equality follows from the assumption f (k) ∈ Ss(Rk). Let φ ∈ S(R) be a

test function. Then by definition of the permutation of a distribution,

〈
A(k)(f (k)) ◦ π, φ⊗α g(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), (φ⊗α g(k)(·, x′α, ·)) ◦ π−1

〉
S′(Rk)−S(Rk)

.

(3.5.47)
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Observing that

((φ⊗αg(k)(·, x′α, ·))◦π−1)(xk) = g(k)(xπ−1(1), . . . , xπ−1(α−1), x
′
α, xπ−1(α+1), . . . , xπ−1(k))φ(xπ−1(α)), xk ∈ Rk,

(3.5.48)

upon setting j := π−1(α) and using the bosonic symmetry of g(k), we obtain that

((φ⊗αg(k)(·, x′α, ·))◦π−1)(xk) = g(k)(xj−1, x
′
α, xj+1;k)φ(xj) = (φ⊗j g(k)(·, x′α, ·))(xk). (3.5.49)

Since A(k) has the good mapping property, we have that

〈
A(k)f (k), φ⊗j g(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

=
〈
ΦA(k),j(f

(k), g(k))(·, x′α), φ
〉
S′(R)−S(R)

, (3.5.50)

where ΦA(k),j : S(Rk)× S(Rk)→ S(R2) is a continuous bilinear map. Since Ss(Rk) continu-

ously embeds (trivially) in S(Rk) and since α ∈ N≤k was arbitrary, we conclude that (3.5.45)

is identifiable with a finite sum of continuous bilinear maps Ss(Rk)× Ss(Rk)→ S(R2), and

the proof of the lemma is complete.

Finally, to conclude our proof that the Lie bracket is well-defined, we only need

to verify that C(k) defined according to (3.5.9) is skew-adjoint. This is a consequence of

Remark 3.5.2, Remark 3.5.5, and the following lemma.

Lemma 3.5.7. Let i, j ∈ N, and define k := i + j − 1. Let A(i) ∈ Lgmp(S(Ri),S ′(Ri))

and B(j) ∈ Lgmp(S(Rj),S ′(Rj)) be skew-adjoint distribution-valued operators. Then for any

(α, β) ∈ N≤i × N≤j,

(A(i) ◦βα B(j))∗ = (B(j) ◦αβ A(i))(i+1,...,i+β−1,α,i+β,...,k,1,...,i) ∈ Lgmp(S(Rk),S ′(Rk)). (3.5.51)
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Proof. By considerations of symmetry, it suffices to consider the case where (α, β) = (1, 1).

Recalling the definition of the adjoint of a distribution-valued operator, see Lemma 3.1.1,

we need to show that 〈
(B(j) ◦1

1 A
(i))(1,i+1,...,k,2,...,i)g, f̄

〉
S′(Rk)−S(Rk)

= 〈(A(i) ◦1
1 B

(j))f, g〉S′(Rk)−S(Rk),
(3.5.52)

for any f, g ∈ S(Rk). By Lemma 3.3.2,

A
(i)
(1,...,i) and B

(j)
(1,i+1,...,k)

are both skew-adjoint elements of Lgmp(S(Rk),S ′(Rk)). Now by density of linear combina-

tions of pure tensors, linearity, and the continuity of the operators A
(i)
(1,...,i), B

(j)
(1,i+1,...,k), and

A(i) ◦1
1 B

(j), it suffices to consider the expression

〈(A(i) ◦1
1 B

(j))f, g〉S′(Rk)−S(Rk) (3.5.53)

in the case where f, g ∈ S(Rk) are pure tensors of the form

f =
k⊗
a=1

fa and g =
k⊗
a=1

ga, (3.5.54)

respectively, where f1, . . . , fk, g1, . . . , gk ∈ S(R). Recalling the definition (3.5.27) for A(i) ◦1
1

B(j), we have that

〈(A(i) ◦1
1 B

(j))f, ḡ〉S′(Rk)−S(Rk) =
〈
KA(i) ,ΦB(j),1,1(f, ḡ)t

〉
S′(R2i)−S(R2i)

.

An examination of the ΦB(j)(f, ḡ) together with the tensor product structure of f and g
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reveals that

ΦB(j),1,1(f, ḡ)(xi;x
′
i) = (

i⊗
a=2

fa)︸ ︷︷ ︸
=:f (i−1)

(x2;i) (
i⊗

a=1

ga)︸ ︷︷ ︸
=:g(1)⊗g(i−1)

(x′i)

×

〈
B(j)

(
f1 ⊗

k⊗
a=i+1

fa

)
, (·)⊗

k⊗
a=i+1

ga

〉
S′(Rj)−S(Rj)

(x1).

(3.5.55)

Since B(j) has the good mapping property, it follows that the element of S ′x1(R) defined by

the second factor in the right-hand side of (3.5.55) is in fact an element of S(R), which we

denote by

φB(j),1

(
f1 ⊗

k⊗
a=i+1

fa,
k⊗

a=i+1

ga

)
=: φB(j),1(f (j), g(j−1)). (3.5.56)

Thus, using (3.5.56) and (3.5.55), we can write

ΦB(j),1,1(f, ḡ)(xi;x
′
i) = φB(j),1(f (j), g(j−1))(x1)f (i−1)(x2;i)g

(1)(x′1)g(i−1)(x′2;i), (xi, x
′
i) ∈ R2i,

(3.5.57)

and 〈
KA(i) ,ΦB(j),1,1(f, ḡ)t

〉
S′(R2i)−S(R2i)

=
〈
A(i)
(
φB(j),1(f (j), g(j−1))⊗ f (i−1)

)
, g(1) ⊗ g(i−1)

〉
S′(Ri)−S(Ri)

(3.5.58)

by the Schwartz kernel theorem. Since A(i) is skew-adjoint, we have that this last expression

equals

−
〈
A(i)
(
g(1) ⊗ g(i−1)

)
, φB(j),1(f (j), g(j−1))⊗ f (i−1)

〉
S′(Ri)−S(Ri)

. (3.5.59)

Now since A(i) also has the good mapping property by assumption, the element of S ′x1(R)

defined by

−
〈
A(i)
(
g(1) ⊗ g(i−1)

)
, (·)⊗ f (i−1)

〉
S′(Ri)−S(Ri)

(3.5.60)
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is identifiable with a unique element of Sx1(R), which we denote by

− φA(i),1(g(1) ⊗ g(i−1), f (i−1)). (3.5.61)

Using (3.5.61), we see that

(3.5.59) = −
∫
R
dxφA(i),1(g(1) ⊗ g(i−1), f (i−1))(x)φB(j),1(f (j), g(j−1))(x). (3.5.62)

After unpacking the definition of the Schwartz function φB(j),1(f (j), g(j−1)) given in (3.5.55)

and (3.5.56), it follows that

(3.5.62) =
〈
B(j)f (j), φA(i),1(g(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)

〉
S′(Rj)−S(Rj)

=
〈
B(j)

(
φA(i),1(g(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)

)
, f (j)

〉
S′(Rj)−S(Rj)

=

〈
KB(j) ,

((
φA(i),1(g(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)

)
⊗ f (j)

)t〉
S′(R2j)−S(R2j)

, (3.5.63)

where we use the skew-adjointness of B(j) to obtain the penultimate equality and the

Schwartz kernel theorem to obtain the ultimate equality.

Our goal now is to show that(
φA(i),1(g(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)

)
⊗ f (j)(xj;x

′
j)

= ΦA(i),1,1(g ◦ π, f̄ ◦ π)(xj;x
′
j)

(3.5.64)

where π ∈ Sk is the permutation

π(a) =


1, a = 1

a+ j − 1, 2 ≤ a ≤ i

a− i+ 1, i+ 1 ≤ a ≤ k.

(3.5.65)

With (3.5.64), we then have by definition of the composite distribution B(j) ◦1
1 A

(i), see

(3.5.27), and the notation

(B(j) ◦1
1 A

(i))(1,i+1,...,k,2,...,i),

182



see Proposition 3.3.1, that

(3.5.63) =
〈
KB(j) ,ΦA(i),1,1(g ◦ π, f̄ ◦ π)t

〉
S′(R2j)−S(R2j)

=
〈
(B(j) ◦1

1 A
(i))(g ◦ π), f̄ ◦ π

〉
S′(Rk)−S(Rk)

=
〈
(B(j) ◦1

1 A
(i))(1,i+1,...,k,2,...,i)g, f̄

〉
S′(Rk)−S(Rk)

, (3.5.66)

which is exactly what we needed to show.

Turning to (3.5.64), observe that

(g ◦ π)(xk) = g(x1, xj+1, . . . , xk, x2, . . . , xj) = g1(x1)(
i⊗

a=2

ga)(xj+1;k)(
k⊗

a=i+1

ga)(x2;j), (3.5.67)

and similarly for (f̄ ◦ π). By the same analysis as in (3.5.55), it then follows that

ΦA(i),1,1(g ◦ π, f̄ ◦ π)(xj;x
′
j) = (

k⊗
a=i+1

ga)(x2;j)(
k⊗

a=i+1

fa)(x
′
2;j)f1(x′1)

×

〈
A(i)(

i⊗
a=1

ga), (·)⊗
i−1⊗
a=2

fa

〉
S′(Ri)−S(Ri)

(x1)

= φA(i),1(g(1) ⊗ g(i−1), f (i−1))(x1)g(j−1)(x2;j)f
(j)(x′j), (3.5.68)

as desired.

We now turn to the proof of Proposition 3.1.7.

Proof of Proposition 3.1.7. We first verify the Lie bracket properties (L1)-(L3) in Defini-

tion 3.3.14. Bilinearity and anti-symmetry are immediate from the linearity of the bosonic

symmetrization Sym operator, see (3.3.43) above, and the bilinearity and anti-symmetry of

the bracket [·, ·]1.
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To verify the Jacobi identity

[A, [B,C]](k) + [C, [A,B]](k) + [B, [C,A]](k) = 0, (3.5.69)

we use our convergence result Proposition 3.1.4 together with the fact that [·, ·]GN is a Lie

bracket by Proposition 3.1.1. Let A,B,C ∈ G∞, where A = (A(k))k∈N, B = (B(k))k∈N, C =

(C(k))k∈N. Note that since G∞ is a direct sum, there exists an N0 ∈ N such that A(k) =

B(k) = C(k) = 0 for k ≥ N0. Now by mollifying and truncating the Schwartz kernels of the

k-particle components A(k), B(k), C(k), we obtain approximating sequences

An1
:= (A(k)

n1
)k∈N, Bn2

:= (B(k)
n2

)k∈N, Cn3
:= (C(k)

n3
)k∈N ∈ G∞ ∩

∞⊕
k=1

L(S ′s(Rk),Ss(Rk))

(3.5.70)

such that for all (n1, n2, n3) ∈ N3, A
(k)
n1 = B

(k)
n2 = C

(k)
n3 = 0 ∈ gk,gmp for k ≥ N0. In particular,

An1 , Bn2 , Cn3 ∈ GM for any integer M ≥ N0. Now for such M , we know from the Jacobi

identity for [·, ·]GM that

[
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

= 0 ∈ GM ⊂ G∞.

(3.5.71)

Consequently, for fixed (n1, n2, n3) ∈ N3, we obtain from Proposition 3.1.4 that

0 = lim
M→∞

([
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

)
=
[
An1 , [Bn2 , Cn3 ]G∞

]
G∞

+
[
Cn3 , [An1 , Bn2 ]G∞

]
G∞

+
[
Bn2 , [Cn3 , An1 ]G∞

]
G∞
. (3.5.72)

Next, using three applications of the separate continuity of the bracket [·, ·]G∞ established
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below, we have that

[
A, [B,C]G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
An1 , [Bn2 , Cn3 ]G∞

]
G∞
, (3.5.73)[

C, [A,B]G∞
]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
Cn3 , [An1 , Bn2 ]G∞

]
G∞
, (3.5.74)[

B, [C,A]G∞
]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
Bn2 , [Cn3 , An1 ]G∞

]
G∞
. (3.5.75)

Summarizing our computations, we have shown that

0 = lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
M→∞

([
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

)
=
[
A, [B,C]G∞

]
G∞

+
[
C, [A,B]G∞

]
G∞

+
[
B, [C,A]G∞

]
G∞
, (3.5.76)

which completes the proof of the Jacobi identity.

Finally, we check that the map [·, ·]G∞ is separately continuous. By linearity, it suffices

to show that for each fixed `, j ∈ N and fixed α ∈ N≤`, the binary operation ◦1
α is separately

continuous as a map

◦1
α : g`,gmp × gj,gmp → Lgmp,∗(S(Rk),S ′(Rk)) (3.5.77)

where k := ` + j − 1 and where the space Lgmp,∗(S(Rk),S ′(Rk)) consists of distribution-

valued operators satisfying the good mapping property such that their adjoints also satisfy

the good mapping property, endowed with the subspace topology. This property follows from

Remark 3.5.3 together with the fact that the adjoints of elements in g`,gmp and gj,gmp also

satisfy the good mapping property by skew-adjointness. Thus, the proof of the proposition

is complete.
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3.5.3 The Lie-Poisson Manifold G∗∞ of Density Matrix ∞-Hierarchies

In this subsection, we define the Poisson structure on G∗∞, which will be used in the

sequel in order to establish Hamiltonian properties of the GP hierarchy. Since many of the

proofs from Section 3.4.2 carry over with trivial modification, as they do not make use of

the good mapping property, we focus instead in this section on the parts of the construction

which require the good mapping property. To begin, we define the real topological vector

space

G∗∞ := {Γ = (γ(k))k∈N ∈
∞∏
k=1

L(S ′s(Rk),Ss(Rk)) : γ(k) = (γ(k))∗ ∀k ∈ N}, (3.5.78)

endowed with the product topology.19 Analogous to Lemma 3.4.14, it holds that G∗∞ is

isomorphic to the dual of (G∞)∗.

Lemma 3.5.8 (Dual of G∞). The topological dual of G∞, denoted by (G∞)∗ and endowed

with the strong dual topology, is isomorphic to G∗∞.

We now need to established the existence of a Poisson structure on G∗∞. We start by

specifying a unital sub-algebra of C∞(G∗∞;R).

Definition 3.5.9. Let A∞ be the algebra with respect to point-wise product generated by

functionals in

{F ∈ C∞(G∗∞;R) : F (·) = iTr(A·), A ∈ G∞} ∪ {F ∈ C∞(G∗∞;R) : F (·) ≡ C ∈ R}.
(3.5.79)

19We remark that G∗∞ is the projective limit of the spaces {G∗N}N∈N directed with respect to reverse
inclusion.
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In other words, A∞ is the algebra (under point-wise product) generated by constants

and the image of G∞ under the canonical embedding into (G∗∞)∗. We note that our previous

remarks Remark 3.4.16, Remark 3.4.17, Remark 3.4.18 carry over with AH,N replaced by

A∞.

We now wish to define the Lie-Poisson bracket {·, ·}G∗∞ on A∞ × A∞ using the Lie

bracket constructed in Section 3.5.2. In order to so, we first need an identification of contin-

uous linear functionals as skew-adjoint operators, which follows from Lemma 3.4.19.

Lemma 3.5.10 (Dual of G∗∞). The topological dual of G∗∞, denoted by (G∗∞)∗ and endowed

with the strong dual topology, is isomorphic to

G̃∞ := {A ∈
∞⊕
k=1

L(Ss(Rk),S ′s(Rk)) : (A(k))∗ = −A(k)}, (3.5.80)

equipped with the subspace topology induced by
⊕∞

k=1 L(Ss(Rk),S ′s(Rk)), via the canonical

bilinear form

iTr(A · Γ) = i
∞∑
k=1

Tr1,...,k(A
(k)γ(k)), Γ = (γ(k))k∈N ∈ G∗∞. (3.5.81)

Remark 3.5.11. The previous lemma implies that, given a smooth real-valued functional F :

G∗∞ → R and a point Γ ∈ G∗∞, we may identify the continuous linear functional dF [Γ], given

by the Gâteaux derivative of F at Γ, as a skew-adjoint element of
⊕∞

k=1 L(Ss(Rk),S ′s(Rk)).

We will abuse notation by denoting this element by dF [Γ] = (dF [Γ](k))k∈N.

We are now prepared to introduce the Lie-Poisson bracket {·, ·}G∗∞ on A∞ ×A∞.

Definition 3.5.12. For F,G ∈ A∞, we define

{F,G}G∗∞(Γ) := iTr
(
[dF [Γ], dG[Γ]]G∞ · Γ

)
, ∀Γ ∈ G∗∞. (3.5.82)

187



Remark 3.5.13 (Existence of Casimirs). The functional F (Γ) := Tr1(γ(1)) is a Casimir20 for

the Poisson bracket {·, ·}G∗∞ . Consequently, the Poisson bracket {·, ·}G∗∞ is not canonically

induced by a symplectic structure on G∗∞.

We now turn to our ultimate goal of this subsection, that is, proving the following:

Proposition 3.1.8. (G∗∞,A∞, {·, ·}G∗∞) is a weak Poisson manifold.

Properties (P1) and (P2) in Definition 3.3.1 for weak Poisson manifolds are readily

proved using the same arguments in the proofs of Lemma 3.4.22 and Lemma 3.4.23, re-

spectively, together with the following technical result, which in turn follows from the same

argument as in Lemma 3.4.21. We omit the details of the verification of these properties.

Lemma 3.5.14. Suppose that Gj ∈ A∞ is a trace functional Gj(Γ) = iTr(dGj[0] · Γ) for

j = 1, 2. Then for all Γ ∈ G∗∞, the Gâteaux derivative d{G1, G2}G∗∞ [Γ] at the point Γ may

be identified with the element

[dG1[0], dG2[0]]G∞ ∈ G∞ (3.5.83)

via the canonical trace pairing. If G1 is a trace functional and G2 = G2,1G2,2 is the product

of two trace functionals in A∞, then d{G1, G2}G∗∞ [Γ] may be identified with

G2,1(Γ)[dG1[0], dG2,2[0]]G∞ +G2,2(Γ)[dG1[0], dG2,1[0]]G∞ (3.5.84)

for all Γ ∈ G∗∞ via the canonical trace pairing.

20i.e. it Poisson commutes with every functional in A∞.
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Property (P3) is more delicate: to show that the Hamiltonian vector field is well-

defined, we have to exploit the good mapping property. Analogous to the proof of Propo-

sition 3.1.7, rather than prove directly the well-definedness of the Hamiltonian vector field,

we can use our earlier investment of work in proving Lemma 3.4.24, which gives an explicit

formula for the N -body vector field, together with our convergence result Proposition 3.1.4

and an approximation argument.

Lemma 3.5.15. (G∗∞,A∞, {·, ·}G∗∞) satisfies property (P3) in Definition 3.3.1. Furthermore,

if H ∈ A∞, then we have the following formula for the Hamiltonian vector field XH :

XH(Γ)(`) =
∞∑
j=1

j Tr`+1,...,`+j−1

([∑̀
α=1

dH[Γ]
(j)
(α,`+1,...,`+j−1), γ

(`+j−1)

])
. (3.5.85)

Proof. Let F,H ∈ A∞. In order to find a candidate Hamiltonian vector field, we compute

{F,H}G∗∞ using an approximation to reduce to the case where F and G belong to AH,N ,

for all N sufficiently large, together with the N -hierarchy Hamiltonian vector field result

Lemma 3.4.24 and our convergence result Proposition 3.1.4. Once we have found a candidate,

we then verify that the vector field is a smooth map G∗∞ → G∗∞, which then completes the

proof by the uniqueness guaranteed by Remark 3.3.2.

By definition of A∞, the functionals F and H are finite linear combinations of finite

products of trace functionals generated by elements in G∞:

F (Γ) =

MF∑
a=1

Ca,F

Ma,F∏
b=1

iTr(Ab,F · Γ), H(Γ) =

MH∑
a=1

Ca,H

Ma,H∏
b=1

iTr(Ab,H · Γ), (3.5.86)

where MF ,MH ,Ma,F ,Ma,H ∈ N, Ca,F , Ca,H ∈ R, and Ab,F = (A
(k)
b,F )k∈N, Ab,H = (A

(k)
b,H)k∈N ∈

G∞. Additionally, since G∞ is a direct sum, there exists an integer N0 ∈ N such that for
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each 1 ≤ a ≤MF and 1 ≤ b ≤Ma,F ,

A
(k)
b,F = 0 ∈ gk,gmp, ∀1 ≤ k ≤ N0 (3.5.87)

and similarly for A
(k)
b,H . So by mollifying and truncating the Schwartz kernels of each

A
(k)
b,F , A

(k)
b,H , we obtain approximating sequencesAn,b,F := (A

(k)
n,b,F )k∈N andAn,b,H := (A

(k)
n,b,H)k∈N,

such that

An,b,F , An,b,H ∈ G∞ ∩
∞⊕
k=1

L(S ′s(Rk),Ss(Rk)), (3.5.88)

An,b,F → Ab,F , and An,b,H → Ab,H in G∞ as n→∞. In particular, each An,b,F , An,b,H ∈ GM

for every integer M ≥ N0. Now using the approximants An,b,F and An,b,H , we can define

sequences (Fn)n∈N and (Hn)n∈N of functionals in A∞ by

Fn(Γ) :=

MF∑
a=1

Ca,F

Ma,F∏
b=1

iTr(An,b,F · Γ), Hn(Γ) :=

MH∑
a=1

Ca,H

Ma,H∏
b=1

iTr(An,b,H · Γ), (3.5.89)

such that Fn(Γ) → F (Γ) and Hn(Γ) → H(Γ) as n → ∞ uniformly on bounded subsets of

G∗∞. Lastly, note that by the Leibnitz rule for the Gâteaux derivative,

dFn[Γ], dHn[Γ] ∈ GM , ∀M ≥ N0 (3.5.90)

and dFn[Γ]→ dF [Γ] and dHn[Γ]→ dH[Γ] in
⊕∞

k=1 L(Ss(Rk),S ′s(Rk)), as n→∞, uniformly

on bounded subsets of G∗∞.

Now by separate continuity of the Lie bracket [·, ·]G∞ and the separate continuity of

the generalized trace (see Proposition 3.2.3), we obtain from the definition of {·, ·}G∗∞ that

{F,H}G∗∞(Γ) = iTr
(
[dF [Γ], dH[Γ]]G∞ · Γ

)
= i lim

n1→∞
lim
n2→∞

Tr
(
[dFn1 [Γ], dHn2 [Γ]]G∞ · Γ

)
= lim

n1→∞
lim
n2→∞

{Fn1 , Hn2}G∗∞(Γ), (3.5.91)
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for each Γ ∈ G∗∞. Since

dFn1 [Γ](k) = dHn2 [Γ](k) = 0 ∈ gk,gmp, ∀k ≥ N0, (n1, n2) ∈ N2, Γ ∈ G∗∞, (3.5.92)

it follows from an examination of the definition of [dFn1 [Γ], dHn2 [Γ]]G∞ that

[dFn1 [Γ], dHn2 [Γ]]
(k)
G∞

= 0 ∈ gk,gmp, ∀k ≥ 2N0 + 1, (n1, n2) ∈ N2, Γ ∈ G∗∞. (3.5.93)

Therefore, if Γ = (γ(k))k∈N ∈ G∗∞, then letting ΓM := (γ(k))Mk=1 be the projection onto an

element of G∗M , for M ≥ 2N0 + 1, we see that

Tr
(
[dFn1 [Γ], dHn2 [Γ]]G∞ · Γ

)
= Tr

(
[dFn1 [Γ], dHn2 [Γ]]G∞ · Γ2N0+1

)
= Tr

(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]G∞ · Γ2N0+1

)
. (3.5.94)

For each (n1, n2) ∈ N2, we have by Proposition 3.1.4 and the separate continuity of the

generalized trace that

Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]G∞ · Γ2N0+1

)
= lim

M→∞
Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM · Γ2N0+1

)
.

(3.5.95)

For M � 2N0+1, we have by Lemma 3.4.24 that

iTr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM · Γ2N0+1

)
= {Fn1 , Hn2}G∗M (Γ2N0+1)

=

N0∑
`=1

iTr1,...,`

(
dFn1 [Γ2N0+1](`)XHn2 ,G

∗
M

(Γ2N0+1)(`)
)
,

(3.5.96)

where

XHn2 ,G
∗
M

(Γ2N0+1)(`)

=
M∑
j=1

min{`,j}∑
r=r0

C ′`jkrM Tr`+1,...,k

 ∑
αr∈P `r

dHn2 [Γ2N0+1]
(j)
(αr,`+1,...,min{`+j−r,k}), γ

(k)
2N0+1

 (3.5.97)
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and where

k := min{`+ j − 1,M}, r0 := max{1,min{`, j} − (M −max{`, j})}, (3.5.98)

and

C ′`jkrM :=

(
j

r

)
MC`,MCj,M

Ck,M
∏r−1

m=1(M − k +m)
. (3.5.99)

Since dFn1 [Γ2N0+1](`) = 0 ∈ g` and dHn2 [Γ2N0+1](j) = 0 ∈ gj, for `, j ≥ N0, we see upon

substituting the right-hand side of (3.5.97) into (3.5.96) that, for any M ≥ 2N0 + 1, only

pairs (`, j) satisfying `+ j − 1 ≤M give a nonzero contribution to the resulting expression.

Similarly, only pairs (`, j) such that r0 = 1 give a nonzero contribution to (3.5.96). Therefore,

we may write

XHn2 ,G
∗
M

(Γ2N0+1)(`)

=
M∑
j=1

min{`,j}∑
r=1

C ′`jkrM Tr`+1,...,`+j−1

 ∑
αr∈P `r

dHn2 [Γ2N0+1]
(j)
(αr,`+1,...,`+j−r), γ

(`+j−1)
2N0+1

.
(3.5.100)

By the analysis from the proof of Proposition 3.1.4, we have that

lim
M→∞

C ′`jkrM =

{
j, r = 1

0, 2 ≤ r ≤ min{`, j}
. (3.5.101)

Since the summands in (3.5.100) are zero for j ≥ N0, it then follows that

XHn2 ,G
∗
M

(Γ2N0+1)(`) g∗`−−−−→
M→∞

∞∑
j=1

j Tr`+1,...,`+j−1

([∑̀
α=1

dHn2 [Γ2N0+1]
(j)
(α,`+1,...,`+j−1), γ

(`+j−1)
2N0+1

])
︸ ︷︷ ︸

=:XHn2 ,G
∗∞ (Γ2N0+1)(`)

.

(3.5.102)
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The preceding convergence result implies, by the separate continuity of the generalized trace,

that for fixed (n1, n2) ∈ N2,

lim
M→∞

N0∑
`=1

iTr1,...,`

(
dFn1 [Γ2N0+1](`)XHn2 ,G

∗
M

(Γ2N0+1)(`)
)

=

N0∑
`=1

iTr1,...,`

(
dFn1 [Γ2N0+1](`)XHn2 ,G

∗
∞(Γ2N0+1)(`)

)
.

(3.5.103)

Recalling from (3.5.92) that dHn2 [Γ2N0+1](j) = dHn2 [Γ](j), for all j ∈ N, and

γ
(`+j−1)
2N0+1 = γ(`+j−1), for `+ j − 1 ≤ 2N0 + 1,

by definition of the projection Γ2N0+1, we obtain that

XHn2 ,G
∗
∞(Γ2N0+1)(`) =

∞∑
j=1

j Tr`+1,...,`+j−1

([∑̀
α=1

dHn2 [Γ]
(j)
(α,`+1,...,`+j−1), γ

(`+j−1)

])
︸ ︷︷ ︸

=:XHn2
(Γ)(`)

, (3.5.104)

for ` ∈ N≤N0 . Similarly, by (3.5.92), dFn1 [Γ2N0+1](`) = dFn1 [Γ](`), and so we have that

N0∑
`=1

iTr1,...,`

(
dFn1 [Γ2N0+1](`)XHn2 ,G

∗
∞(Γ2N0+1)(`)

)
=

N0∑
`=1

iTr1,...,`

(
dFn1 [Γ](`)XHn2

(Γ)(`)
)
.

(3.5.105)

We now proceed to the analysis of the iterative limits n2 →∞ followed by n1 →∞.

Since

dHn2 [Γ]→ dH[Γ]

in G∞, as n2 →∞, it follows from Proposition 3.3.1 and the universal property of the tensor

product that the (`+ j − 1)-particle extensions

dHn2 [Γ]
(j)
(α,`+1,...,`+j−1) −→ dH[Γ]

(j)
(α,`+1,...,`+j−1), (3.5.106)
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in Lgmp(S(R`+j−1),S ′(R`+j−1)) as M → ∞. for Γ ∈ G∗∞ fixed. The continuity of the com-

mutator bracket, the good mapping property, and the separate continuity of the generalized

trace imply that

XHn2
(Γ) −→ XH(Γ). (3.5.107)

in
∏∞

k=1 L(S ′s(Rk),Ss(Rk)) as n2 → ∞. Moreover, the continuity of the adjoint operation

(see Lemma 3.1.1) and the self-adjointness of XHn2
(Γ) imply that XH(Γ) is self-adjoint,

hence an element of G∗∞. We note that writing XH(Γ) is a slight abuse of notation since we

have not yet verified that XH satisfies all of the desired properties, but this limit, XH , will

be our candidate Hamiltonian vector field from the statement of the lemma.

For each n1 ∈ N fixed, the separate continuity of the generalized trace and the fact

that dFn1 [Γ](`) = 0, for ` ≥ N0, then implies

lim
n2→∞

iTr
(
dFn1 [Γ] ·XHn2

(Γ)
)

= iTr(dFn1 [Γ] ·XH(Γ)). (3.5.108)

Since dFn1 [Γ] → dF [Γ] in G∞, as n1 → ∞, by construction of the approximations Fn1 ,

another application of the separate continuity of the generalized trace yields

lim
n1→∞

iTr(dFn1 [Γ] ·XH(Γ)) = iTr(dF [Γ] ·XH(Γ)). (3.5.109)

After a little bookkeeping, we have shown that for every Γ ∈ G∗∞,

{F,G}G∗∞(Γ) = lim
n1→∞

lim
n2→∞

lim
M→∞

iTr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM · Γ2N0+1

)
= lim

n1→∞
lim
n2→∞

lim
M→∞

iTr
(
dF [Γ2N0+1] ·XHn2 ,GM

(Γ2N0+1)
)

= lim
n1→∞

lim
n2→∞

iTr
(
dFn1 [Γ] ·XHn2

(Γ)
)

= iTr(dF [Γ] ·XH(Γ)). (3.5.110)
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We now verify that XH is a smooth map G∗∞ → G∗∞ in order to conclude by Re-

mark 3.3.2. It remains only to check the smoothness property. If H is a trace functional,

then since dH[Γ](j) = dH[0](j) satisfies the good mapping property, the desired conclusion is

immediate. The general case then follows by the Leibnitz rule for the Gâteaux derivative,

since constant functionals and trace functionals generate A∞.

3.5.4 The Poisson Morphism ι : S(R)→ G∗∞

We now turn to the proof of Theorem 3.1.12. We recall that we are considering the

map

ι : S(R)→ G∗∞, ι(φ) :=
(
|φ⊗k〉 〈φ⊗k|

)
k∈N, (3.5.111)

which sends a 1-particle wave function to a density matrix ∞-hierarchy. We recall the

definition

AS =
{
H : ∇sH ∈ C∞(S(R);S(R))

}
⊂ C∞(S(R);R).

and we restate Theorem 3.1.12 here for the reader’s convenience.

Theorem 3.1.12. The map ι is a Poisson morphism of (S(Rd),AS , {·, ·}L2) into (G∗∞,A∞, {·, ·}G∗∞),

i.e. it is a smooth map such that

{F ◦ ι, G ◦ ι}L2(φ) = {F,G}G∗∞(ι(φ)), ∀φ ∈ S(Rd), (3.1.39)

for all functionals F,G ∈ A∞.

We recall that although we set d = 1 in the proof, it works in any dimension. To

prove Theorem 3.1.12, we will need the following technical result which gives a formula for

the Gâteaux derivative of ι.
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Lemma 3.5.16 (Formula for dι). Let φ, ψ ∈ S(R). Then for all k ∈ N,

dι[φ](ψ)(k) =
k∑

m=1

|φ⊗(m−1) ⊗ ψ ⊗ φ⊗(k−m)〉 〈φ⊗k|+
k∑

m=1

|φ⊗k〉 〈φ⊗m−1 ⊗ ψ ⊗ φ⊗(k−m)| .

(3.5.112)

Proof. The desired formula follows readily from the product rule.

Remark 3.5.17. We record here the observation that for φ ∈ S(R) fixed, each sum in

(3.5.112) has co-domain L(S ′s(Rk),Ss(Rk)). We will use this observation throughout the

proof of Theorem 3.1.12 below.

Proof of Theorem 3.1.12. Smoothness of ι follows readily from Lemma 3.5.16 and induction

on k, therefore, it remains to check that

(i) ι∗A∞ ⊂ AS ,

(ii) ι∗{·, ·}G∗∞ = {ι∗·, ι∗·}S(R).

We prove assertion (i). Let F ∈ A∞. We need to show that f := F ◦ ι ∈ AS , that is,

we need to show the symplectic L2 gradient of f exists and is a smooth S(R)-valued map.

To this end, observe that by the chain rule, for any φ, δφ ∈ S(R), we have

df [φ](δφ) = dF [ι(φ)](dι[φ](δφ))

= iTr(dF [ι(φ)] · dι[φ](δφ))

= i
∞∑
k=1

Tr1,...,k

(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
, (3.5.113)

where the penultimate equality follows from the identification of dF [ι(φ)] as an element of

G̃∞, the bi-dual of G∞, via the canonical trace pairing and the ultimate equality follows
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from the definition of the dot product. Now applying Lemma 3.5.16 and the bilinearity of

the generalized trace, we see that

Tr1,...,k

(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
= Tr1,...,k

(
dF [ι(φ)](k)

(
k∑

m=1

|φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)〉 〈φ⊗k|

))

+ Tr1,...,k

(
dF [ι(φ)](k)

(
k∑

m=1

|φ⊗k〉 〈φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)|

))

=

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

+

〈
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
,

(3.5.114)

where the ultimate equality is just applying the definition of the generalized trace. Since

dF [ι(φ)](k) is skew-adjoint, we have that〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

= −

〈
dF [ι(φ)](k)φ⊗k

∣∣∣∣∣
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

〉
.

(3.5.115)

Since dF [ι(φ)](k) satisfies the good mapping property, the preceding expression can be written

as−〈ψF,k|δφ〉, where ψF,k ∈ S(R) is the unique Schwartz function coinciding with the bosonic

tempered distribution 〈
k∑

α=1

(·)⊗α φ⊗(k−1)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
, (3.5.116)

and we recall the notation (·)⊗α φ⊗(k−1) introduced in (3.5.14). Similarly,〈
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
= 〈δφ|ψF,k〉 . (3.5.117)
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Therefore, we have shown that〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

+

〈
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
= 2i Im{〈δφ|ψF,k〉}

= iωL2(δφ, ψF,k) (3.5.118)

and consequently by (3.5.113), (3.5.114), (3.5.118) and bilinearity

i

∞∑
k=1

Tr1,...,k

(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
= −

∞∑
k=1

ωL2(δφ, ψF,k) = ωL2(ψF , δφ), (3.5.119)

where we have defined ψF :=
∑∞

k=1 ψF,k and used the anti-symmetry of ωL2 to obtain the

ultimate equality. Note that moving the summation inside the second entry of ωL2 is justified

by the bilinearity of the symplectic form since dF [ι(φ)](k) = 0 for all but finitely many k, by

assumption that F ∈ A∞ and the generating structure of A∞. Consequently, ψF,k ≡ 0 for

all but finitely many k. We conclude that

df [φ](δφ) = ωL2(ψF , δφ), (3.5.120)

and hence, recalling the definition of the symplectic L2 gradient in Remark 3.3.12, we have

that

∇sf(φ) = ψF ∈ S(R). (3.5.121)

Lastly, using the identity (3.5.121), we prove assertion (ii). By definition of the

Hamiltonian vector field XG(ι(φ)) in (P3) together with Lemma 3.5.15, which gives a formula
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for XG(ι(φ)), we have that for F,G ∈ A∞,

{F,G}G∗∞(ι(φ))

= dF [ι(φ)](XG(ι(φ)))

= i
∞∑
k=1

Tr1,...,k

(
dF [ι(φ)](k)

∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1

dG[ι(φ)]
(j)
(α,k+1,...,k+j−1), ι(φ)(k+j−1)

]))
.

(3.5.122)

Observe that

dG[ι(φ)]
(j)
(α,k+1,...,k+j−1)ι(φ)(k+j−1) = |φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j)〉 〈φ⊗(k+j−1)| , (3.5.123)

where φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j) is the tempered distribution in S ′(Rk+j−1) defined by(
φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j)

)
(xk+j−1)

:= φ⊗(α−1)(xα−1)φ⊗(k−α)(xα+1;k)dG[ι(φ)](j)(xα, xk+1;k+j−1).
(3.5.124)

Since dG[ι(φ)](j) has the good mapping property by assumption G ∈ A∞, it follows from

Remark 3.3.4 and the definition of the generalized partial trace that

Trk+1,...,k+j−1

(
dG[ι(φ)]

(j)
(α,k+1,...,k+j−1)ι(φ)(k+j−1)

)
= |φ⊗(α−1) ⊗ ψG,j,α ⊗ φ⊗(k−α)〉 〈φ⊗k| ,

(3.5.125)

where ψG,j,α ∈ S(R) is the unique Schwartz function such that

〈δφ|ψG,j,α〉 =
〈
δφ⊗α φ⊗(j−1)

∣∣dG[ι(φ)](j)(φ⊗j)
〉
, ∀δφ ∈ S(R). (3.5.126)

Moreover, since dG[ι(φ)](j)(φ⊗j) ∈ S ′s(Rj), it follows from Lemma 3.3.27 that

〈
δφ⊗α φ⊗(j−1)

∣∣dG[ι(φ)](j)(φ⊗j)
〉

=
〈
δφ⊗α′ φ⊗(j−1)

∣∣dG[ι(φ)](j)(φ⊗j)
〉
, (3.5.127)
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for any 1 ≤ α, α′ ≤ j, and therefore ψG,j,α = ψG,j,α′ . Hence,

Trk+1,...,k+j−1

(
dG[ι(φ)]

(j)
(α,k+1,...,k+j−1)ι(φ)(k+j−1)

)
=

1

j
|φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)〉 〈φ⊗k| ,

(3.5.128)

where ψG,j is defined the same as ψF,k above, except with (F, k) replaced by (G, j). By

completely analogous reasoning together with the skew-adjointness of dG[ι(φ)](j), we also

obtain that

Trk+1,...,k+j−1

(
ι(φ)(k+j−1)dG[ι(φ)]

(j)
(α,k+1,...,k+j−1)

)
= −1

j
|φ⊗k〉 〈φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)| ,

(3.5.129)

Substituting the identities (3.5.128) and (3.5.129) into (3.5.122), we obtain the expression

i
∞∑
k=1

Tr1,...,k

(
dF [ι(φ)](k)

( ∞∑
j=1

k∑
α=1

|φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)〉 〈φ⊗k|

+ |φ⊗k〉 〈φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)|
))

= i
∞∑
j=1

∞∑
k=1

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

)〉

+

〈
k∑

α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉

= −2
∞∑
j=1

∞∑
k=1

Im

{〈
k∑

α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉}

= −2
∞∑
j=1

∞∑
k=1

Im{〈ψG,j|ψF,k〉}, (3.5.130)

where the penultimate equality follows from the skew-adjointness of dF [ι(φ)](k) and the

ultimate equality follows from the definition of ψF,k. Since ψF,k = ψG,j ≡ 0 for all but
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finitely many j, k, we are justified in writing

− 2
∞∑
j=1

∞∑
k=1

Im{〈ψG,j|ψF,k〉} = −2 Im{〈ψG|ψF 〉}, (3.5.131)

where ψF is defined as above and ψG :=
∑∞

j=1 ψG,j is defined completely analogously. Re-

calling (3.3.15) for the definition of ωL2 and identity (3.5.121) for the symplectic gradient,

we obtain that

− 2 Im{〈ψG|ψF 〉} = ωL2(∇sf(φ),∇sg(φ)). (3.5.132)

After a little bookkeeping, we realize that we have shown that

{F,G}G∗∞(ι(φ)) = ωL2(∇sf(φ),∇sg(φ)). (3.5.133)

Since the symplectic form ωL2 canonically induces the Poisson bracket {·, ·}L2 through

{f, g}L2(φ) = ωL2(∇sf(φ),∇sg(φ)), (3.5.134)

the proof of assertion (ii) is complete.

3.6 GP Hamiltonian Flows

In this last section, we prove Theorem 3.1.3 and its limiting version Theorem 3.1.10.

3.6.1 BBGKY Hamiltonian Flow

For the reader’s benefit, we recall that the BBGKY Hamiltonian HBBGKY,N is the

trace functional given by

HBBGKY,N(ΓN) = Tr(WBBGKY,N · ΓN), (3.6.1)
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where

WBBGKY,N = (−∆x, κVN(X1 −X2), 0, . . .), (3.6.2)

with κ and VN as in (3.1.3). We also recall here the statement of Theorem 3.1.3.

Theorem 3.1.3. Let I ⊂ R be a compact interval. Then ΓN = (γ
(k)
N )Nk=1 ∈ C∞(I;G∗N) is a

solution to the BBGKY hierarchy (3.1.4) if and only if

d

dt
ΓN = XHBBGKY,N (ΓN), (3.1.18)

where XHBBGKY,N is the unique vector field defined by HBBGKY,N (see Definition 3.3.1) with

respect to the weak Poisson structure (G∗N ,AH,N , {·, ·}G∗N ).

We now proceed to proving Theorem 3.1.3. Since by Lemma 3.4.24, we have the

formula

XHBBGKY,N (ΓN)(`)

=
N∑
j=1

min{`,j}∑
r=r0

C ′`jkrN Tr`+1,...,k

 ∑
αr∈P `r

dHBBGKY,N [ΓN ]
(j)
(αr,`+1,...,min{`+j−r,k}), γ

(k)
N

, (3.6.3)

where

k := min{`+ j − 1, N}, r0 := max{1,min{`, j} − (N −max{`, j})}, (3.6.4)

and

C ′`jkrN :=
NC`,NCj,N

Ck,N
∏r−1

m=1(N − k +m)

(
j

r

)
,

our task reduces to simplifying the expression in the right-hand side of (3.6.3).

To this end, we first need a formula for the Gâteaux derivative dHBBGKY,N ofHBBGKY,N

and its identification with an observable N -hierarchy via the canonical trace pairing. Indeed,
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let N ∈ N. Then for any ΓN = (γ
(k)
N )Nk=1 ∈ G∗N , we have that

dHBBGKY,N [ΓN ](δΓN) = Tr(WBBGKY,N · δΓN), ∀δΓN ∈ G∗N . (3.6.5)

Therefore, dHBBGKY,N [ΓN ] = dHBBGKY,N [0] is uniquely identifiable with the observable

2-hierarchy −iWBBGKY,N . As a consequence, we see that

dHBBGKY,N [ΓN ]
(j)
(αr,`+1,...,min{`+j−r,k}) = 0 (3.6.6)

for 3 ≤ j ≤ N . Therefore, by (3.6.3), we have

XHBBGKY,N (ΓN)(`) = −iC ′`1`1N
∑̀
α=1

[
(−∆x1)(α), γ

(`)
N

]
− iκ

min{`,2}∑
r=r0

C ′`2krN
∑
αr∈P `r

Tr`+1,...,k

([
(VN(X1 −X2))(αr,`+1,...,min{`+2−r,k}), γ

(k)
N

])
=: Term1,` + Term2,`. (3.6.7)

We first consider Term1,`. Note that (−∆x)(α) = −∆xα . Now unpacking the definition

of the normalizing constant C ′`1`1N , we find that

C ′`1`1N =
NC`,NC1,N

C`,N
= NC1,N = 1, (3.6.8)

where the ultimate equality follows from the fact that C1,N = 1/|PN
1 | = 1/N . Hence,

Term1,` = −i
∑̀
α=1

[
−∆xα , γ

(`)
N

]
. (3.6.9)

We next consider Term2,`. We divide into cases based on the values of ` ∈ {1, . . . , N}.

• If ` = 1, then

Term2,1 = −iκC ′1221N Tr2

([
(VN(X1 −X2)(1,2), γ

(2)
N

])
, (3.6.10)
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where we use that k = 2. Since (VN(X1 −X2))(1,2) = VN(X1 −X2), it follows that

Term2,1 = −iκC ′1221N Tr2

([
VN(X1 −X2), γ

(2)
N

])
. (3.6.11)

Unpacking the definition of the constant C ′1221N , we see that

C ′1221N =
NC1,NC2,N

C2,N

(
2

1

)
= 2NC1,N = 2, (3.6.12)

hence,

Term2,1 = −2iκTr2

([
VN(X1 −X2), γ

(2)
N

])
. (3.6.13)

• If 2 ≤ ` ≤ N − 1, then

r0 = max{min{`, 2} − (N −max{`, 2}), 1} = max{2− (N − `), 1} = 1 (3.6.14)

and therefore

Term2,` = −iκ
2∑
r=1

C ′`2(`+1)rN

∑
αr∈P `r

Tr`+1

([
VN(X1 −X2)(αr,`+1), γ

(`+1)
N

])
, (3.6.15)

where we use that k = `+ 1. If r = 1, then∑
α1∈P `1

Tr`+1

([
VN(X1 −X2)(α1,`+1), γ

(`+1)
N

])
=
∑̀
α=1

Tr`+1

([
VN(Xα −X`+1), γ

(`+1)
N

])
,

(3.6.16)

and recalling (3.4.9), we have

C ′`2(`+1)1N =
NC`,NC2,N

C`+1,N

(
2

1

)
=

2(N − `)
(N − 1)

. (3.6.17)

If r = 2, then min{`+ 2− r, k} = `, which per our notation implies that∑
αr∈P `r

Tr`+1

([
VN(X1 −X2)(αr,`+1), γ

(`+1)
N

])
=

∑
(α1,α2)∈P `2

Tr`+1

([
(VN(X1 −X2)(α1,α2), γ

(`+1)
N

])
.

(3.6.18)

204



Since α1, α2 ∈ N≤` and VN(X1 −X2)(α1,α2) = VN(Xα1 −Xα2), we have that

Tr`+1

([
(VN(X1 −X2)(α1,α2), γ

(`+1)
N

])
=
[
VN(Xα1 −Xα2), γ

(`)
N

]
. (3.6.19)

Now since k = `+ 1, it follows from our computation in (3.6.17) that

C ′`2(`+1)2N =
NC`,NC2,N

C`+1,N(N − k + 1)

(
2

2

)
=

1

N − 1
. (3.6.20)

Since VN(Xα1 −Xα2) = VN(Xα2 −Xα1) by the evenness of the potential V , it follows

that

∑
α2∈P `2

[
VN(Xα1 −Xα2), γ

(`)
N

]
=

2

N − 1

∑
1≤α1<α2≤`

[
VN(Xα1 −Xα2), γ

(`)
N

]
. (3.6.21)

After a little bookkeeping, we obtain that

Term2,` = −iκ2(N − `)
N − 1

∑̀
α=1

Tr`+1

([
VN(Xα −X`+1), γ

(`+1)
N

])
− iκ 2

N − 1

∑
1≤α1<α2≤`

[
VN(Xα1 −Xα2), γ

(`)
N

]
.

(3.6.22)

• Lastly, if ` = N , then

r0 = max{min{N, 2} − (N −max{N, 2}), 1} = 2. (3.6.23)

Moreover, k = N , so that

Term2,N = −iκC ′N2N2N

∑
α2∈PN2

[
(VN(X1 −X2))(α2), γ

(N)
N

]
. (3.6.24)

Since

C ′N2N2N =
NCN,NC2,N

CN,N

(
2

2

)
=

1

N − 1
, (3.6.25)
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we can again use the evenness of the potential V to conclude that

Term2,N = − 2iκ

N − 1

∑
1≤α1<α2≤N

[
VN(Xα1 −Xα2), γ

(N)
N

]
. (3.6.26)

Putting our case analysis together, we obtain

XHBBGKY,N (ΓN)(1) = −i
[
−∆x1 , γ

(1)
N

]
− 2iκTr2

([
VN(X1 −X2), γ

(2)
N

])
, (3.6.27)

while for 2 ≤ ` ≤ N − 1 we have

XHBBGKY,N (ΓN)(`) = −i
∑̀
α=1

[
−∆xα , γ

(`)
N

]
− 2iκ

N − 1

∑
1≤α1<α2≤`

[
VN(Xα1 −Xα2), γ

(`)
N

]
− 2iκ(N − `)

N − 1

∑̀
α=1

Tr`+1

([
VN(Xα −X`+1), γ

(`+1)
N

])
,

(3.6.28)

and finally

XHBBGKY,N (ΓN)(N) = −i
N∑
α=1

[
−∆xα , γ

(`)
N

]
− 2iκ

N − 1

∑
1≤α1<α2≤N

[
VN(Xα1 −Xα2), γ

(N)
N

]
,

(3.6.29)

which we see, upon comparison with (3.1.4), are precisely the equations for solutions to the

BBGKY hierarchy, thus completing the proof.

3.6.2 GP Hamiltonian Flow

In this subsection, we prove Theorem 3.1.10. For the reader’s benefit, we recall that

the GP Hamiltonian HGP is the trace functional given by

HGP (Γ) := Tr(WGP · Γ), Γ ∈ G∗∞; WGP = (−∆x, κδ(X1 −X2), 0, . . .). (3.6.30)

We recall the statement of the theorem.
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Theorem 3.1.10 (Hamiltonian structure for GP). Let I ⊂ R be a compact interval. Then

Γ ∈ C∞(I;G∗∞) is a solution to the GP hierarchy (3.1.5) if and only if(
d

dt
Γ

)
(t) = XHGP (Γ(t)), ∀t ∈ I, (3.1.31)

where XHGP is the unique Hamiltonian vector field defined by HGP with respect to the weak

Poisson structure (G∗∞,A∞, {·, ·}G∗∞).

The proof is similar to the proof that the BBGKY hierarchy is a Hamiltonian equation

of motion, and Theorem 3.1.10 may be viewed as the N → ∞ limit of Theorem 3.1.3. In

Chapter 4, we will obtain Theorem 3.1.10 for the 1D cubic GP hierarchy as part of a more

general theorem which connects the Hamiltonian structure of an infinte coupled system of

linear equations, which we call the n-th GP hierarchy, to the Hamiltonian structure of the

n-th equation of the nonlinear Schrödinger hierarchy, which is of fundamental interest in

the study of the NLS as an integrable system (see, for instance, the survey of Palais [74]).

The GP hierarchy under consideration here then corresponds to the n = 3 equation of the

aforementioned family of equations.

We now proceed to proving Theorem 3.1.10. Recalling equation (3.1.5) for the GP

hierarchy, we need to show that

XHGP (Γ)(k) = −i
([
−∆xk

, γ(k)
]

+ 2κBk+1γ
(k+1)

)
, k ∈ N, (3.6.31)

for any Γ = (γ(k)) ∈ G∗∞, which we do by direct computation.

Let Γ ∈ G∗∞. By application of Lemma 3.5.15 to HGP together with the identification

dHGP [Γ] = −iWGP , (3.6.32)
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which is immediate from the fact that HGP is a trace functional, we know that

XHGP (Γ)(k) =
∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1

dHGP [Γ]
(j)
(α,k+1,...,k+j−1), γ

(k+j−1)

])
. (3.6.33)

Since −iW(j)
GP = 0 ∈ gj,gmp, for j ≥ 3, we see from (3.6.30) that the formula for XHGP (Γ)

simplifies to

XHGP (Γ)(k) = −i
k∑

α=1

(
(−∆x1)(α)γ

(k) − γ(k)(−∆x1)(α)

)
− i2κ

k∑
α=1

Trk+1

(
δ(X1 −X2)(α,k+1)γ

(k+1)
)
− Trk+1

(
γ(k+1)δ(X1 −X2)(α,k+1)

)
,

(3.6.34)

for k ∈ N.

Since (−∆x1)(α) = −∆xα and ∆xk
=
∑k

α=1 ∆xα by definition, it follows that

− i
k∑

α=1

(
(−∆x1)(α)γ

(k) − γ(k)(−∆x1)(α)

)
= −i

[
−∆xk

, γ(k)
]
. (3.6.35)

Since δ(X1 − X2)(α,k+1) = δ(Xα − Xk+1), it follows from Proposition 3.2.4 for the

generalized partial trace that Trk+1(δ(Xα −Xk+1)γ(k+1)) is the element of L(S ′s(Rk),S(Rk))

with Schwartz kernel∫
R
dxk+1δ(xα − xk+1)γ(k+1)(xk+1;x′k, xk+1) = γ(k+1)(xk, xα;x′k, xα) = B+

α;k+1γ
(k+1)(xk;x

′
k).

(3.6.36)

Similarly, Trk+1(γ(k+1)δ(Xα −Xk+1)) is the operator with Schwartz kernel∫
R
dx′k+1δ(x

′
α − xk+1)γ(k+1)(xk, x

′
k+1;x′k+1) = γ(k+1)(xk, x

′
α;x′k, x

′
α) = B−α;k+1γ

(k+1)(xk;x
′
k).

(3.6.37)
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Since Bk+1 =
∑k

α=1B
+
α;k+1 −B

−
α;k+1 by definition, we conclude that

− 2κi
k∑

α=1

Trk+1

(
δ(X1 −X2)(α,k+1)γ

(k+1)
)
− Trk+1

(
γ(k+1)δ(X1 −X2)(α,k+1)

)
= −2κiBk+1γ

(k+1).

(3.6.38)

After a little bookkeeping, we see that we have shown (3.6.31), thus completing the

proof of Theorem 3.1.10.
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Symbol Definition

(xk), xk (x1, . . . , xk)
xm1;mk

(xm1 , . . . , xmk)

xi;i+k (xi, . . . , xi+k)

dxk dx1 · · · dxk
dxi;i+k dxi · · · dxi+k
N≤i or N≥i {n ∈ N : n ≤ i} or {n ∈ N : n ≥ i}
Sk symmetric group on k elements
S(Rk),S ′(Rk) Schwartz space on Rk and tempered distributions on Rk
D′(Rk) distributions on Rk
Ss(Rk),S ′s(Rk) symmetric Schwartz space, Definition 3.3.24, and symmetric tempered

distributions
L(E;F ) continuous linear maps between locally convex spaces E and F

L̃(S(Rk),S(Rk)) L(S(Rk),S(Rk)) equipped with the subspace topology induced by
L(S(Rk),S ′(Rk))

L̃(Ss(Rk),Ss(Rk)) analogous to previous definition
dF the Gâteaux derivative of F , Definition 2.1.4
∇ or ∇s the real or symplectic L2 gradients, Definition 3.3.11 and Remark 3.3.12
A(π(1),...,π(k)) conjugation of an operator by a permutation, see (3.3.42)

Sym(f) symmetrization operator for functions, Definition 3.3.23
Sym(A) symmetrization operator for operators, Definition 3.3.30
L2
s(Rk) symmetric wave functions, Definition 3.3.29

B±i;j , Bi;j contraction operators, Definition 3.3.34

φ⊗k k-fold tensor of φ with itself, (3.3.64)
ωL2 symplectic form on L2(Rk), (3.3.15)
AS see Proposition 3.3.13 and (3.3.20)
{·, ·}L2 Poisson bracket on L2(Rk), (3.3.21)

A
(k)
(j1,...,jk) k-particle extension, (3.4.5)

gk locally convex space of k-body bosonic observables, (3.4.1)
(GN , [·, ·]GN ) Lie algebra of observable N -hierarchies, (3.4.49)
◦r r-fold contraction, (3.4.30)
(G∗N ,A∞, {·, ·}G∗N ) Lie-Poisson manifold of density matrix N -hierarchies, (3.4.64)

gk,gmp locally convex space of k-body observables satisfying the good mapping
property, (3.5.7)

(G∞, [·, ·]G∞) Lie algebra of observable ∞-hierarchies, (3.5.8) and (3.5.9)

◦βα contraction operator, Lemma 3.5.1
(G∗∞,A∞, {·, ·}G∗∞) Lie-Poisson manifold of density matrix ∞-hierarchies, (3.5.78), Defini-

tion 3.5.9 and (3.5.82)
Tr1,...,N generalized trace, Definition 3.2.1
Trk+1,...,N generalized partial trace, Proposition 3.2.4

Table 3.1: Notation
210



Chapter 4

Poisson Commuting Energies for a System of Infinitely

Many Bosons1

4.1 Statement of Main Results and Blueprint of Proofs

We provide an outline and discussion of the main results of this chapter and their

proofs. We begin by recalling in Section 4.1.1 several of the main geometric results from

Chapter 3 which are needed in the current chapter.

4.1.1 Review of Chapter 3

As we saw in Chapter 3, a major soure of difficulty is the construction of an infinite-

dimensional Lie algebra of observable ∞-hierarchies and its dual weak Lie-Poisson mani-

fold of density matrix ∞-hierarchies, which together form the geometric foundation of the

Hamiltonian formulation of the GP hierarchy. The analytic difficulties in this definition stem

primarily from the fact that the GP Hamiltonian HGP = H3 is the trace functional associ-

ated to a distribution-valued operator (DVO).2 The natural Lie bracket for such operators

requires composition of two operators in a given particle coordinate. Such a definition is not

possible in general since the composition of two DVOs may be ill-defined. Overcoming these

1This chapter is based on an equal collaboration with D. Mendelson, A.R. Nahmod, N. Pavlović, and G.
Staffilani.

2Not to be confused with operator-valued distributions in quantum field theory.
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difficulties necessitated the identification of a property for DVOs which we termed the good

mapping property, whose definition we recall here.

Definition 4.1.1 (Good mapping property). Let ` ∈ N. We say that an operator A(`) ∈

L(S(R`),S ′(R`)) has the good mapping property if for any α ∈ N≤`, the continuous bilinear

map

S(R`)× S(R`)→ Sx′α(R;S ′xα(R))

(f (`), g(`)) 7→
∫
R`−1

dx1 . . . dxα−1dxα+1 . . . dx`A
(`)(f (`))(x1, . . . , x`)g

(`)(x1, . . . , xα−1, x
′
α, xα+1, . . . , x`),

may be identified with a continuous bilinear map S(R`)× S(R`)→ S(R2).3

The good mapping property has the following important consequence: let (α, β) ∈

N≤` × N≤j, and let A(`) ∈ L(S(R`),S ′(R`)) and B(j) ∈ L(S(Rj),S ′(Rj)) have the good

mapping property. If k := `+ j − 1, then the bilinear map

S(Rk)2 → S(xα−1,xα+1;`,x
′
`)

(Rα−1 × R`−α × R`;S ′xα(R))

(f (k), g(k)) 7→


〈
B

(j)
(1,...,j)(f

(k)(xα−1, ·, xα+1;`, ·)), (·)⊗ g(k)(x′`, ·)
〉
S′(Rj)−S(Rj)

, β = 1〈
B

(j)
(2,...,β,1,β+1,...,j)(f

(k)(xα−1, ·, xα+1;`, ·)), (·)⊗ g(k)(x′`, ·)
〉
S′(Rj)−S(Rj)

, β 6= 1

(4.1.1)

may be identified with a unique smooth bilinear map

ΦB(j),α,β : S(Rk)× S(Rk)→ S(x`,x
′
`)

(R2`) (4.1.2)

3Here and throughout this chapter, an integral involving a distribution should be understood as a dis-
tributional pairing unless specified otherwise.
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via∫
R
dxαΦB(j),α,β(f (k), g(k))(x`;x

′
`)φ(xα)

=


〈
B

(j)
(1,...,j)(f

(k)(xα−1, ·, xα+1;`, ·)), φ⊗ g(k)(x′`, ·)
〉
S′(Rj)−S(Rj)

, β = 1〈
B

(j)
(2,...,β,1,β+1,...,j)(f

(k)(xα−1, ·, xα+1;`, ·)), φ⊗ g(k)(x′`, ·)
〉
S′(Rj)−S(Rj)

, β 6= 1,

(4.1.3)

for any φ ∈ S(R) and (x1;α−1, xα+1;`, x
′
`) ∈ R2`−1. Here, the subscript (2, . . . , β, 1, β +

1, . . . , j) is to be interpreted in the sense of the subscript notation in (4.1.13) (see also

Proposition 3.3.1).4 Hence, by the Schwartz kernel theorem isomorphism

L(S(Rk),S ′(Rk)) ∼= S(R2k), (4.1.4)

we can define the following composition as an element

(A(`) ◦βα B(j)) ∈ L(S(Rk),S ′(Rk)) (4.1.5)

by

〈
(A(`) ◦βα B(j))f (k), g(k)

〉
S′(Rk)−S(Rk)

:=
〈
KA(`) ,Φt

B(j),α,β(f (k), g(k))
〉
S′(R2k)−S(R2k)

, (4.1.6)

where KA(`) denotes the Schwartz kernel of A(`) and Φt
B(j),α,β

(f (k), g(k)) denotes the transpose

of ΦB(j),α,β(f (k), g(k)) defined by

Φt
B(j),α,β(f (k), g(k))(xj;x

′
j) := ΦB(j),α,β(f (k), g(k))(x′j;xj), ∀(xj, x′j) ∈ R2j. (4.1.7)

Note that A(`) ◦βα B(j) coincides with the composition

A
(`)
(1,...,`)B

(j)
(`+1,...,`+β−1,α,`+β,...,k) (4.1.8)

4So as to avoid a cumbersome consideration of cases in the sequel, we will not distinguish between the
β = 1 and β 6= 1 cases going forward.
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when the latter is defined. We let Lgmp(S(R`),S ′(R`)) denote the subset of L(S(R`),S ′(R`))

of elements with the good mapping property, and Lgmp,∗(S(R`),S ′(R`)) denote the further

subset of elements which are skew-adjoint (see Lemma 3.1.1 and Definition 3.1.3 for the

definitions of adjoint and skew-adjoint for a DVO). We established in Lemma 3.5.1 and Re-

mark 3.5.3 that the composition

(·) ◦βα (·) : Lgmp,∗(S(R`),S ′(R`))× Lgmp,∗(S(Rj),S ′(Rj))→ Lgmp,∗(S(Rk),S ′(Rk)) (4.1.9)

is a separately continuous, bilinear map.

With the composition map (·) ◦βα (·) in hand, we proceed to reviewing the main

geometric actors from Chapter 3. We recall that

gk,gmp := {A(k) ∈ Lgmp(Ss(Rk),S ′s(Rk)) : (A(k))∗ = −A(k)}, (4.1.10)

where Ss(Rk) is the subspace of S(Rk) consisting of functions invariant under permutation

of coordinates (see Definition 3.3.24), and

G∞ :=
∞⊕
k=1

gk,gmp (4.1.11)

endowed with the locally convex topology. We equip G∞ with a Lie bracket given by

[A,B]G∞ = C = (C(k))k∈N

C(k) := Symk

( ∑
`,j≥1;`+j−1=k

∑̀
α=1

j∑
β=1

(
(A(`) ◦βα B(j))− (B(j) ◦αβ A(`))

))
, 5

(4.1.12)

where Symk denotes the bosonic symmetrization operator given by

Symk(A
(k)) :=

1

k!

∑
π∈Sk

A
(k)
(π(1),...,π(k)), A

(k)
(π(1),...,π(k)) = π ◦ A(k) ◦ π−1. (4.1.13)

5Strictly speaking, a priori it is not the operators A(`) and B(j) that appear in the right-hand side,
but instead extensions Ã(`) ∈ Lgmp(S(R`),S ′(R`)) and B̃(j) ∈ Lgmp(S(Rj),S ′(Rj)). The right-hand side is
independent of the choice of extension, as shown in Remark 3.5.5, and therefore we will not comment on
this technical point in the sequel.
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Proposition 4.1.2 (Proposition 3.1.7). (G∞, [·, ·]G∞) is a Lie algebra.

Next, we recall the definition of the weak Lie-Poisson manifold (G∗∞,A∞, {·, ·}G∗∞),

which is the phase space underlying the GP hierarchy. We define the real topological vector

space

g∗k :=
{
γ(k) ∈ L(S ′s(Rk),Ss(Rk)) : γ(k) = (γ(k))∗

}
(4.1.14)

and define the topological direct product

G∗∞ :=
∞∏
k=1

g∗k. (4.1.15)

Attached to G∗∞ is the admissible algebra of functionals A∞ defined to be the real algebra

with respect to point-wise product generated by functionals in the set

{F ∈ C∞(G∗∞;R) : F (·) = iTr(W·), W ∈ G∞} ∪ {F ∈ C∞(G∗∞;R) : F (·) ≡ C ∈ R}.
(4.1.16)

Most importantly, our choice of A∞ contains the trace functionals associated to the ob-

servable ∞-hierarchies {−iWn}∞n=1. We can then define the Poisson bracket of functionals

F,G ∈ A∞ by

{F,G}G∗∞(Γ) = iTr
(
[dF [Γ], dG[Γ]]G∞ · Γ

)
, ∀Γ ∈ G∗∞. (4.1.17)

In the right-hand side of (4.1.17), we identify the Gâteaux derivatives dF [Γ] and dG[Γ],

which are a priori continuous linear functionals, as elements of G∞. This identification is

possible thanks to the definition of A∞ and the next lemma, which characterizes the dual of

G∗∞.
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Lemma 4.1.3 (Lemma 3.5.8). The topological dual of G∗∞, denoted by (G∗∞)∗ and endowed

with the strong dual topology, is isomorphic to

G̃∞ := {A ∈
∞⊕
k=1

L(Ss(Rk),S ′s(Rk)) : (A(k))∗ = −A(k)}, (4.1.18)

equipped with the subspace topology induced by
⊕∞

k=1 L(Ss(Rk),S ′s(Rk)), via the canonical

bilinear form

iTr(A · Γ) = i
∞∑
k=1

Tr1,...,k(A
(k)γ(k)), ∀Γ = (γ(k))k∈N ∈ G∗∞, A = (A(k))k∈N ∈ G̃∞.

(4.1.19)

In Chapter 3, classical results on the existence of a Lie-Poisson manifold associated

to a Lie algebra were unavailable to us due to functional analytic difficulties, such as the fact

that G∞ ( G̃∞. Nevertheless, we verified directly that our choices for G∗∞, A∞, and {·, ·}G∗∞
satisfy the weak Poisson axioms of Definition 3.3.1, thereby establishing the following result.

Proposition 4.1.4 (Proposition 3.1.8 and Lemma 3.5.15). (G∗∞,A∞, {·, ·}G∗∞) is a weak

Poisson manifold. Furthermore, for any F ∈ A∞, the Hamiltonian vector field XF is given

by the formula

XF (Γ)(`) =
∞∑
j=1

j Tr`+1,...,`+j−1

([∑̀
α=1

dH[Γ]
(j)
(α,`+1,...,`+j−1), γ

(`+j−1)

])
, ` ∈ N, Γ ∈ G∗∞,

(4.1.20)

where the extension dH[Γ]
(j)
(α,`+1,...,`+j−1) is defined via Proposition 3.3.1.

4.1.2 Statement of Main Results

Having reviewed the results from Chapter 3 presently germane, we are now prepared

to state the main results of the current work. We previously introduced the GP hierarchy in
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(1.2.10), which we recall now. We say that a sequence of time-dependent kernels (γ(k))k∈N

of k-particle density matrices is a solution to the GP hierarchy if

i∂tγ
(k) = −

[
∆xk

, γ(k)
]

+ 2κBk+1(γ(k+1)), k ∈ N, (4.1.21)

with κ ∈ {±1}, and

Bk+1(γ(k+1)) =
k∑
j=1

(
B+
j;k+1 −B

−
j;k+1

)
(γ(k+1)), (4.1.22)

where for every (xk, x
′
k) ∈ R2k,

B+
j;k+1(γ(k+1))(t, xk;x

′
k) := γ(k+1)(t, xk, xj;x

′
k, xj),

B−j;k+1(γ(k+1))(t, xk;x
′
k) := γ(k+1)(t, xk, x

′
j;x
′
k, x

′
j).

(4.1.23)

When κ = 1, we say that the hierarchy is defocusing and for κ = −1, we say that the

hierarchy is focusing (in analogy with the defocusing and focusing NLS, respectively).

To address Question 1.3.3, we must first establish the existence of an infinite sequence

of observable∞-hierarchies {−iWn}n∈N ∈ G∞ by a recursion argument inspired by that for

the operators wn in (1.3.8). Due to analytic difficulties, once again stemming primarily from

the need to consider the composition of DVOs, we proceed in three steps.

The first step consists of constructing an element

W̃n ∈
∞⊕
k=1

L(S(Rk),S ′(Rk))

by the recursive formula

W̃1 := E1 = (Id1, 0, . . .)

W̃
(k)
n+1 := (−i∂x1)W̃(k)

n + κ

n−1∑
m=1

∑
`,j≥1;`+j=k

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
, ∀k ∈ N,

(4.1.24)
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Note the structural similarity between this recursion and the one for the operators wn stated

in (1.3.8). While the DVO W̃
(`)
m ⊗ W̃

(j)
n−m is well-defined by the universal property of the

tensor product, the composition

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(4.1.25)

is a priori purely formal, since evaluation on a Schwartz function leads to products of dis-

tributions, in particular products of δ functions and their higher-order derivatives. Thus,

the challenge is to give meaning to this composition. The key property which allow us to

make sense of the composition is that if we formally expand the recursion, we will only find

products such as δ(x1− x2)δ(x2− x3), which is well-defined as the Lebesgue measure on the

hyperplane {xk ∈ Rk : x1 = x2 = x3}. To systematically handle the products of distribu-

tions, we use the wave front set and a useful criterion of Hörmander for the multiplication

of distributions (see Proposition 4.0.14 and more generally, Appendix 4).

A priori, Hörmander’s criterion only yields that the product of two tempered dis-

tributions is a distribution, not necessarily tempered, which is problematic since we work

exclusively with tempered distributions. Moreover, we wish any definition of the composition

(4.1.25) to satisfy the property〈
δ(X1 −X`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (`) ⊗ f (j)), g(`) ⊗ g(j)

〉
S′(Rk)−S(Rk)

=

∫
R
dx Φ

W̃
(`)
m

(f (`), g(`))(x, x)Φ
W̃

(j)
n−m

(f (j), g(j))(x, x),
(4.1.26)

where

Φ
W̃

(`)
m

: S(R`)2 → S(R2), Φ
W̃

(j)
n−m

: S(Rj)2 → S(R2) (4.1.27)

218



are the necessarily unique maps identifiable with

S(R`)2 → Sx′(R;S ′x(R)) (f (`), g(`)) 7→
〈
W̃(`)

m f
(`), (·)⊗ g(`)(x′, ·)

〉
S′(R`)−S(R`)

,

S(Rj)2 → Sx′(R;S ′x(R)) (f (j), g(j)) 7→
〈
W̃

(j)
n−mf

(j), (·)⊗ g(j)(x′, ·)
〉
S′(Rj)−S(Rj)

(4.1.28)

via ∫
R
dxΦ

W̃
(`)
m

(f (`), g(`))(x;x′)φ(x) =
〈
W̃(`)

m f
(`), φ⊗ g(`)(x′, ·)

〉
S′(R`)−S(R`)

,∫
R
dxΦ

W̃
(j)
n−m

(f (j), g(j))(x;x′)φ(x) =
〈
W̃

(j)
n−mf

(j), φ⊗ g(j)(x′, ·)
〉
S′(Rj)−S(Rj)

,

(4.1.29)

for any φ ∈ S(R).

We ensure that this is achieved thanks once more to the good mapping property of

Definition 4.1.1. Indeed, proceeding inductively and exploiting the recursion formula and

the induction hypothesis that

W̃1, . . . ,W̃n ∈
∞⊕
k=1

Lgmp(S(Rk),S ′(Rk))

together with some Fourier analysis, we show that the composition (4.1.25) is exactly what

we think it should be, namely, the unique distribution in D′(Rk) satisfying (4.1.26), which

can then be shown to be tempered. Moreover, by further appealing to the good mapping

property and the universal property of the tensor product, we can show that the composition

(4.1.25) indeed belongs to Lgmp(S(Rk),S ′(Rk)). The preceding discussion is summarized by

the following proposition.

Proposition 4.1.5. For each n ∈ N, there exists an element

W̃n ∈
∞⊕
k=1

Lgmp(S(Rk),S ′(Rk))

defined according to the recursive formula (4.1.24), where the composition (4.1.25) is well-

defined in the sense of Proposition 4.0.14.
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Since we are interested in the action of the elements W̃n on density matrices, which are

self-adjoint, the second step in the construction is to make each W̃n self-adjoint in the sense

of Definition 3.1.3. By the involution property of the adjoint operation (see Lemma 3.1.1),

the DVO

Wn,sa :=
1

2

(
W̃n + W̃∗

n

)
(4.1.30)

is a self-adjoint element of L(S(Rk),S ′(Rk)). Since we want to preserve the good mapping

property throughout each step of the construction, the challenge is to show that W̃∗
n also

has the good mapping property. Naively taking the adjoint of the recursive formula (4.1.24),

we should formally have that

W̃
(k),∗
n+1 “ = ” W̃(k),∗

n (−i∂x1) + κ
n−1∑
m=1

∑
`,j≥1;`+j=k

(
W̃(`),∗

m ⊗ W̃
(j),∗
n−m

)
δ(X1 −X`+1). (4.1.31)

While the expression on the right-hand side is, a priori, meaningless,6 by inducting on the

statement that W̃∗
1, . . . ,W̃

∗
n−1 having the good mapping property and exploiting duality,

the recursion for W̃n, and the good mapping property for W̃n, we are able to prove that the

W̃∗
n have the good mapping property, as desired.

The third, final, and easiest step of the construction is to symmetrize the Wn,sa, so

that we obtain an ∞-hierarchy which belongs to G∞. The motivation is that we always

restrict to permutation-invariant test functions, reflecting the bosonic nature of the under-

lying physics. To obtain a formula for Wn from Wn,sa is straightforward. We record this

definition in the following proposition:

6Among other issues, we note that for f (k) ∈ S(Rk), the tempered distribution δ(x1 − x`+1)f (k) does

not belong to the domain of W̃
(`),∗
m ⊗ W̃

(j),∗
n−m,
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Proposition 4.1.6. For each n ∈ N,

− iWn := −i Sym(Wn,sa) = − i
2

(
Sym

(
W̃n

)
+ Sym

(
W̃∗

n

))
∈ G∞, (4.1.32)

where Sym is a bosonic symmetrization operator, the definition of which is given in Defini-

tion 3.3.30.

Having constructed the ∞-hierarchies {−iWn}∞n=1, we define trace functionals Hn ∈

A∞ by

Hn(Γ) := Tr(Wn · Γ), Γ ∈ G∗∞. (4.1.33)

Since the functionals In are generated by the operators wn, much in the same manner as

the trace functionals Hn are generated by the Wn, our next task is to relate Wn to the

one-particle nonlinear operators wn defined in (1.3.8). Doing so necessitates understanding

the action of the k-particle components W̃
(k)
n and W̃

(k),∗
n on pure tensors of the form

|φ1 ⊗ · · · ⊗ φk〉 〈ψ1 ⊗ · · · ⊗ ψk| , φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R). (4.1.34)

To make this connection precise for the arguments in Section 4.7, our strategy is to replace

the nonlinear operator wn with a multilinear operator by generalizing the recursion (1.3.8).

See Section 4.5.1 for more details. As most of the results in Section 4.5 are of a technical

nature, and perhaps not so enlightening at this stage, we mention only the following re-

sult, which connects Hn to the functionals In and can be obtained as an easy corollary of

Proposition 4.6.2:

Hn(Γ) = In(φ), ∀Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N, φ ∈ S(R). (4.1.35)

Next, we turn to establishing the involution statement of Question 1.3.3, which we

record in the following theorem:
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Theorem 4.1.7 (Involution theorem). Let n,m ∈ N. Then

{Hn,Hm}G∗∞ ≡ 0 on G∗∞. (4.1.36)

To prove Theorem 4.1.7, we proceed on both the one-particle and infinite-particle

fronts. We prove that there is an equivalence between the involution of the functionals

Hn and the involution of certain real-valued functionals Ib,n, defined in (4.1.40) below, on

a weak Poisson manifold of mixed states. We find this equivalence, explicitly stated in

Theorem 4.1.9 below, quite interesting its own right. We now provide some details of the

proof of this equivalence.

On the one-particle front, we relax (1.3.7) to a system{
i∂tφ1 = −∆φ1 + 2κφ2

1φ2,

i∂tφ2 = ∆φ2 − 2κφ2
2φ1

, (4.1.37)

where φ1, φ2 : R × R → C. We study (4.1.37) as an integrable system on a complex weak

Poisson manifold (S(R2),AS,C, {·, ·}L2,C), see Proposition 4.3.5 for the precise definition of

this manifold, by revisiting in detail the treatment of the NLS (1.3.7) in [28]. Specifically,

we show that there are functionals

Ĩn(φ1, φ2) :=

∫
R
dxφ2(x)wn,(φ1,φ2)(x), ∀(φ1, φ2) ∈ S(R)2, n ∈ N, (4.1.38)

where wn,(φ1,φ2)(x) satisfies a similar recursion formula to the wn, see (1.2.12), such that Ĩ3 is

the Hamiltonian for NLS system (4.1.37), and such that the Ĩn commute on (S(R2),AS,C, {·, ·}L2,C).

Since we are ultimately interested in real, not complex, weak Poisson manifolds, we

pass to another weak Poisson manifold of mixed states, (S(R;V),AS,V , {·, ·}L2,V), where the
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space S(R;V) consists of Schwartz functions γ taking values in the space V of self-adjoint,

off-diagonal 4× 4 complex matrices:

γ =
1

2
odiag(φ1, φ2, φ2, φ1) =

1

2


0 0 0 φ1

0 0 φ2 0
0 φ2 0 0

φ1 0 0 0

 , φ1, φ2 ∈ S(R). (4.1.39)

We refer to (4.3.17), (4.3.19), and Proposition 4.3.2 for the precise definition and properties

of this weak Poisson manifold.

We use the Ĩn to define real-valued functionals Ib,n ∈ AS,V on the manifold (S(R;V),AS,V , {·, ·}L2,V)

via the formula

Ib,n(γ) :=
1

2

(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
, (4.1.40)

and we show in Proposition 1.3.7 that the family {Ib,n}n∈N is in mutual involution with

respect to the Poisson bracket {·, ·}L2,V . As we do not feel the results described in this

paragraph are the primary contribution of this work, but nevertheless believe they may be

of independent interest to the community, we have placed them in Appendix 1 and not the

main body of the chapter.

On the infinite-particle front, we first demonstrate that there is a Poisson morphism

ιm : (S(R;V),AS,V , {·, ·}L2,V)→ (G∗∞,A∞, {·, ·}G∗∞)

ιm(γ) :=
1

2

(
|φ⊗k1 〉 〈φ⊗k2 |+ |φ⊗k2 〉 〈φ⊗k1 |

)
k∈N, γ =

1

2
odiag(φ1, φ2, φ2, φ1).

(4.1.41)

The subscript m signifies that ιm produces a mixed state element of G∗∞.

Theorem 4.1.8. The map ιm is a Poisson morphism of (S(R;V),AS,V , {·, ·}L2,V) into (G∗∞,A∞, {·, ·}G∗∞);

i.e., it is a smooth map with the property that

ι∗m{·, ·}G∗∞ = {ι∗m·, ι∗m·}L2,V , (4.1.42)
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where ι∗m denotes the pullback of ιm.

Theorem 4.1.8 is a generalization of Theorem 3.1.12 from Chapter 3 and, in fact,

recovers this previous theorem since Proposition 4.3.2 demonstrates that there is also a

Poisson morphism

ιpm : (S(R),AS , {·, ·}L2)→ (S(R;V),AS,V , {·, ·}L2,V), φ 7→ 1

2
odiag(φ, φ, φ, φ), (4.1.43)

and the composition of Poisson morphisms is again a Poisson morphism.

The motivation for Theorem 4.1.8 is the following. Since

Ib,n(γ) = Hn(ιm(γ)), ∀γ ∈ S(R;V) (4.1.44)

by Proposition 4.6.2, and since {Ib,n, Ib,m}L2,V ≡ 0 on S(R;V), for any n,m ∈ N, by Propo-

sition 1.3.7, Theorem 4.1.8 implies that

0 = {Hn,Hm}G∗∞(ιm(γ)) =
1

2

∞∑
k=1

iTr1,...,k

(
[−iWn,−iWm]

(k)
G∞

(
|φ⊗k1 〉 〈φ⊗k2 |+ |φ⊗k2 〉 〈φ⊗k1 |

))
.

(4.1.45)

Note that only finitely many terms in the above summation are nonzero. Next, we use a

scaling argument to show that (4.1.45) implies that each of the summands in the right-hand

side of (4.1.45) are identically zero:

i

2
Tr1,...,k

(
[−iWn,−iWm]

(k)
G∞

(
|φ⊗k1 〉 〈φ⊗k2 |+ |φ⊗k2 〉 〈φ⊗k1 |

))
= 0, ∀φ1, φ2 ∈ S(R), k ∈ N.

(4.1.46)

The intuition is that if a polynomial is identically zero then all of its coefficients are zero.

By unpacking the definition of the Poisson bracket {Hn,Hm}G∗∞ , (4.1.46) yields

{Hn,Hm}G∗∞(Γ) = 0, ∀Γ =
1

2

(
|φ⊗kk,1〉 〈φ

⊗k
k,2|+ |φ

⊗k
k,2〉 〈φ

⊗k
k,1|
)
k∈N, (4.1.47)
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where φk,1, φk,2 ∈ S(R) for every k ∈ N. By then using an approximation argument from

Appendix 5 involving symmetric-rank-1 approximations (see Corollary 5.0.24) together with

the continuity of {Hn,Hm}G∗∞ , we obtain from (4.1.47) that Poisson commutativity of the

Ib,n implies the Poisson commutativity of Hn. The reverse implication is a straightforward

consequence of Theorem 4.1.8. Summarizing the preceding discussion, we have the following

equivalence result:

Theorem 4.1.9 (Poisson commutativity equivalence). For any n,m ∈ N,

{Ib,n, Ib,m}L2,V(γ) = 0, ∀γ ∈ S(R;V), (4.1.48)

if and only if

{Hn,Hm}G∗∞(Γ) = 0, ∀Γ ∈ G∗∞. (4.1.49)

In light of Proposition 1.3.7, which asserts the validity of (4.1.48), we then obtain

Theorem 4.1.7 from Theorem 4.1.9, thus answering Question 1.3.3.

Having resolved Question 1.3.3, we turn to answering Question 1.3.4. For each n ∈ N,

we define the n-th GP hierarchy (nGP) to be the Hamiltonian equation of motion generated

by the functional Hn with respect to the Poisson structure on G∗∞:(
d

dt
Γ

)
= XHn(Γ), (4.1.50)

where XHn is the unique Hamiltonian vector field defined by Hn. See (P3) of Definition 3.3.1

for the definition of the Hamiltonian vector field. We generalize the fact that solutions to

the NLS generate a special class of factorized solutions to the GP hierarchy by proving that

the same correspondence is true for the (nNLS) and (nGP). Thus, we are led to our final

main theorem, providing an affirmative answer to Question 1.3.4.
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Theorem 4.1.10 (Connection between (nGP) and (nNLS)). Let n ∈ N. Let I ⊂ R be a

compact interval and let φ ∈ C∞(I;S(R)) be a solution to the (nNLS) with lifespan I. If we

define

Γ ∈ C∞(I;G∗∞), Γ :=
(
|φ⊗k〉 〈φ⊗k|

)
k∈N, (4.1.51)

then Γ is a solution to the (nGP).

Remark 4.1.11. In Chapter 3, we defined the Gross-Pitaevskii Hamiltonian functional HGP

by

HGP (Γ) := Tr1

(
−∆x1γ

(1)
)

+ κTr1,2

(
δ(X1 −X2)γ(2)

)
, ∀Γ = (γ(k))k∈N ∈ G∗∞. (4.1.52)

In particular, HGP = H3, and in the one-dimensional case, we recover Theorem 3.1.10 from

Chapter 3, which asserts that the GP hierarchy (4.1.21) is the Hamiltonian equation of

motion on (G∗∞,A∞, {·, ·}G∗∞) induced by HGP .

Remark 4.1.12. Theorem 4.1.10 does not assert that the factorized solution ( |φ⊗k〉 〈φ⊗k|)k∈N

is the unique solution to the n-th GP hierarchy starting from factorized initial data, only

that it is a particular solution. More generally, Theorem 4.1.10 makes no assertion about

the uniqueness of solutions to the (nGP) in the class C∞(I;G∗∞). While the (nNLS) are

known to be globally well-posed in the Schwartz class by the work of Beals and Coifman [8]

and Zhou [102], unconditional uniqueness of the n-th GP hierarchy in the class C∞(I;G∗∞),

for some compact interval I, is an open problem, the resolution of which we do not address

in this work.

To prove Theorem 4.1.10, we need to show that the n-th GP Hamiltonian vector field
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XHn can be written as

XHn(Γ)(k) =
k∑

α=1

(
|φ⊗(α−1) ⊗∇sIn(φ)⊗ φ(k−α)〉 〈φ⊗k|+ |φ⊗k〉 〈φ⊗(α−1) ⊗∇sIn(φ)⊗ φ(k−α)|

)
,

(4.1.53)

for Γ as in the statement of Theorem 4.1.10. We remind the reader that ∇sIn denotes the

symplectic gradient of In with respect to the form ωL2 , see Definition 3.3.11. To establish

the identity (4.1.53), we use a formula from Section 4.5.2 for ∇sIn, which is in terms of

the Gâteaux derivatives of the nonlinear operators wn. Combining this formula with the

computation of XHn(Γ) for factorized Γ (see Lemma 4.7.2), which extensively uses the good

mapping property of the generators of the Hn (i.e. −iWn), we obtain (4.1.53) and hence

the desired conclusion.

4.1.3 Organization of the Chapter

We close Section 4.1 by commenting on the organization of the chapter. In Sec-

tion 4.3, we introduce several extensions of the weak Poisson manifold (S(Rk),AS , {·, ·}L2)

from Section 3.3.1. We have omitted a review of calculus in the locally convex setting, tensor

products, Lie algebras, and general weak symplectic/Poisson manifolds, as a review of these

subjects is contained in Section 3.3.

In Section 4.4, we construct our observable ∞-hierarchies −iWn, thereby proving

Proposition 4.1.6. The section is divided into three subsections corresponding to each stage

of the construction: the preliminary version, followed by the self-adjoint version, followed by

the final bosonic, self-adjoint version.

Section 4.5 is devoted to analyzing the correspondence between the wn and the Wn

and the consequences of this correspondence. Section 4.5.1 contains the “multilinearization”
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of the wn. Section 4.5.2 contains the proof of a formula for the symplectic gradients of the In.

Section 4.5.3 connects the multilinearizations of the wn from Section 4.5.1 with the partial

traces of the Wn.

In Section 4.6, we prove our involution result, Theorem 4.1.7, in addition to the main

auxiliary results involved in the proof of this theorem, which might be of independent inter-

est. This section is broken down into four subsections in order to make the presentation more

modular. Section 4.6.1 contains the proof of the Poisson morphism result, Theorem 4.1.8.

Section 4.6.2 connects the infinite-particle functionals Hn to the one-particle functions Ib,n

via the Poisson morphism of Theorem 4.1.8 and the correspondence results of Section 4.5.3.

Section 4.6.3 contains the proofs of the Poisson commutativity equivalence result, Theo-

rem 4.1.9, and the involution result, Theorem 4.1.7. Lastly, Section 4.6.4 contains the proof

of Proposition 4.6.3, which asserts that there is at least one functional which does not Poisson

commute with a given Hn.

In the last section, Section 4.7, of the chapter, we prove our n-th GP/n-th NLS

correspodence result, Theorem 4.1.10. Section 4.7.1 is devoted to the computation of the

Hamiltonian vector fields of the Hn evaluated on factorized states, and Section 4.7.2 is

devoted to the proof of Theorem 4.1.10. To close the section, we compute in Section 4.7.3

the fourth GP hierarchy, which corresponds to the complex mKdV equation.

4.2 Notation

4.2.1 Index of Notation

We include Table 4.1, located at the end of the chapter, as a guide for the frequently

used symbols in this work. In this table, we either provide a definition of the notation or a
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reference for where the symbol is defined.

4.3 Preliminaries

We need several examples of weak Poisson/symplectic manifolds in this work. An

example we discussed at length in Section 3.3.1 is the Schwartz space S(Rk), as well as its

bosonic counterpart Ss(Rk). However, we shall also need several generalizations of these

examples. We begin with some comments on variational derivatives.

Remark 4.3.1 (Variational derivatives). For functionals F,G ∈ C∞(S(Rk);R) having a

special form discussed below, there is a computationally more convenient way to express

their symplectic gradients and Poisson bracket in terms of variational derivatives. Given a

smooth functional F̃ : S(Rk)2 → C, we define the variational derivatives ∇1F̃ and ∇2̄F̃ by

the property7

dF̃ [φ1, φ2](δφ1, δφ2) =

∫
Rk
dxk

(
∇1F̃ (φ1, φ2)δφ1 + ∇2̄F̃ (φ1, φ2)δφ2

)
(xk), ∀(φ1, φ2), (δφ1, δφ2) ∈ S(Rk)2.

(4.3.1)

The reader can verify that the variational derivatives, if they exist, are unique.

Let F,G ∈ C∞(S(Rk);R). Suppose that

F (φ) = F̃ (φ, φ), F̃ ∈ C∞(S(Rk)2;C), (4.3.2)

where F̃ satisfies the conditions

F̃ (φ1, φ2) = F̃ (φ2, φ1), ∇1F̃ , ∇2̄F̃ ∈ C∞(S(Rk)2;S(Rk)), (4.3.3)

7Our notation for variational derivatives is nonstandard. In the calculus of variations literature, one
typically finds δf

δφ1
and δf

δφ2
instead of ∇1f(φ1, φ2) and ∇2̄(φ1, φ2), respectively. We prefer our notation as

it emphasizes the nature of the variational derivatives as vector fields. The motivations for the seemingly
odd use of the subscript 2̄, as opposed to just 2, will become clear later in this subsection.
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and similarly for G and G̃. Then we claim that F,G ∈ AS and their Poisson bracket {F,G}L2

may be rewritten as

{F,G}L2(φ) = −i
∫
R
dx
(
∇1F̃ (φ, φ)∇2̄G̃(φ, φ)−∇2̄F̃ (φ, φ)∇1G̃(φ, φ)

)
(x). (4.3.4)

Indeed, observe that

dF̃ [φ1, φ2](δφ1, δφ2) = lim
ε→0

F̃ (φ1 + εδφ1, φ2 + εδφ2)− F̃ (φ1, φ2)

ε

= lim
ε→0

F̃ (φ2 + εδφ2, φ1 + εδφ1)− F̃ (φ2, φ1)

ε

= dF̃ [φ2, φ1](δφ2, δφ1)

=

∫
Rk
dxk

(
∇1F̃ (φ2, φ1)δφ2 + ∇2̄F̃ (φ2, φ1)δφ1

)
(xk), (4.3.5)

where the ultimate equality follows by definition of the variational derivatives. Since

dF̃ [φ1, φ2](δφ1, δφ2) =

∫
Rk
dxk

(
∇1F̃ (φ1, φ2)δφ1 + ∇2̄F̃ (φ1, φ2)δφ2

)
(xk), (4.3.6)

we conclude by uniqueness of variational derivatives that

∇1F̃ (φ1, φ2) = ∇2̄F̃ (φ2, φ1), ∇2̄F̃ (φ1, φ2) = ∇1F̃ (φ2, φ1). (4.3.7)

Now recalling the definition of the symplectic gradient, we have that

ωL2(∇sF (φ), ψ) = dF [φ](ψ)

= dF̃ [φ, φ](ψ, ψ)

=

∫
Rk
dxk

(
∇1F̃ (φ, φ)ψ + ∇2̄F̃ (φ, φ)ψ

)
(xk)

= 2 Re

{∫
Rk
dxk∇1F̃ (φ, φ)(xk)ψ(xk)

}
, (4.3.8)
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where the ultimate equality follows from the relations (4.3.7). By uniqueness of the sym-

plectic gradient, we conclude that

∇sF (φ) = −i∇1F̃ (φ, φ) = −i∇2̄F̃ (φ, φ) =
1

2

(
i∇1F̃ (φ, φ)− i∇2̄F̃ (φ, φ)

)
. (4.3.9)

Since the right-hand side of the preceding identity defines an element of C∞(S(Rk);S(Rk)),

we obtain that F ∈ AS . Now we can rewrite the Poisson bracket as

ωL2(∇sF (φ),∇sG(φ)) = 2 Im

{∫
Rk
dxk

(
i∇1F̃ (φ, φ)i∇1G̃(φ, φ)

)
(xk)

}
= −i

∫
Rk
dxk

(
∇1F̃ (φ, φ)∇1G̃(φ, φ)−∇1F̃ (φ, φ)∇1G̃(φ, φ)

)
(xk)

= −i
∫
Rk
dxk

(
∇1F̃ (φ, φ)∇2̄G̃(φ, φ)−∇2̄F̃ (φ, φ)∇1G̃(φ, φ)

)
(xk),

(4.3.10)

where the ultimate equality follows from the relations (4.3.7).

In the sequel, all of the functionals we consider will satisfy the requirements (4.3.3).

Consequently, we will pass between the variational derivative formulation (4.3.4) and the

symplectic gradient formulation of the Poisson bracket without comment.

To motivate our next extension of the weak Poisson manifold (S(Rk),AS , {·, ·}L2), we

observe that we can identify a one-particle wave function φ with the pure state

|φ〉 〈φ| .

We can define a real topological vector space of pure states by considering the space of

Schwartz functions taking values in the space of self-adjoint, off-diagonal 2 × 2 complex

matrices: (
0 φ

φ 0

)
. (4.3.11)
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The natural generalization of a pure state is a mixed state,

1

2
( |φ1〉 〈φ2|+ |φ2〉 〈φ1|),

and we can define a real topological vector space of mixed states as follows: let V denote the

real vector space of self-adjoint, off-diagonal 4× 4 matrices of the form

1

2
odiag(a, b, b, a), a, b ∈ C. (4.3.12)

We let S(Rk;V) denote the space of Schwartz functions taking values in the space V . Ele-

ments of S(Rk;V) have the form

γ(xk) =
1

2
odiag(φ1(xk), φ2(xk), φ2(xk), φ1(xk)), ∀xk ∈ Rk, φ1, φ2 ∈ S(Rk). (4.3.13)

We can define a real pre-Hilbert inner product on S(Rk;V) by

〈γ1|γ2〉Re,V := 2

∫
Rk
dxk trC2⊗C2(γ1(xk)γ2,swap(xk)), ∀γ1, γ2 ∈ S(Rk;V), (4.3.14)

where trC2⊗C2 denotes the 4× 4 matrix trace and

γ2,swap =
1

2
odiag(φ2, φ1, φ1, φ2), γ2 =

1

2
odiag(φ1, φ2, φ2, φ1). (4.3.15)

The matrix left-multiplication operator

J : S(Rk;V)→ S(Rk;V), J = diag(i,−i, i,−i) (4.3.16)

defines an almost complex structure. We can then define a symplectic form ωL2,V by

ωL2,V(γ1, γ2) := 〈Jγ1|γ2,swap〉Re,V . (4.3.17)
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Analogous to Proposition 3.3.13, we have that (S(Rk;V), ωL2,V) is a weak symplectic mani-

fold. Moreover, the obvious map

ιpm : S(Rk)→ S(Rk;V), φ 7→ 1

2
odiag(φ, φ, φ, φ) (4.3.18)

is a symplectomorphism. Additionally, if we denote the symplectic gradient with respect to

the form ωL2,V by ∇s,V , then one can show that if we define

AS,V := {F ∈ C∞(S(Rk;V);R) : ∇s,VF ∈ C∞(S(Rk;V),S(Rk;V))}, (4.3.19)

and let {·, ·}L2,V be the Poisson bracket canonically induced by the form ωL2,V , then the

triple

(S(Rk;V),AS,V , {·, ·}L2,V) (4.3.20)

is a weak Poisson manifold. We summarize the preceding discussion with the following

proposition.

Proposition 4.3.2. (S(Rk;V), ωL2,V) is a weak symplectic manifold, and (S(Rk;V),AS,V , {·, ·}L2,V)

is a weak Poisson manifold, where

{F,G}L2,V(γ) := ωL2,V(∇s,VF (γ),∇s,VG(γ)). (4.3.21)

Furthermore, the map ιpm is a symplectomorphism; i.e., it is a smooth map such that

ι∗pmωL2,V = ωL2 , (4.3.22)

where ι∗pm denotes the pullback of ιpm, so that

ιpm : (S(Rk),AS , {·, ·}L2)→ (S(Rk;V),AS,V , {·, ·}L2,V) (4.3.23)

is a Poisson morphism.
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Remark 4.3.3. Remark 4.3.1 carries over to the setting of S(Rk;V). More precisely, suppose

F ∈ C∞(S(Rk;V);R) is such that

F (γ) = F̃ (φ1, φ2, φ2, φ1), γ =
1

2
odiag(φ1, φ2, φ2, φ1) ∈ S(Rk;V), (4.3.24)

where F̃ ∈ C∞(S(Rk)4;C), is such that

∇1F̃ , ∇2̄F̃ , ∇2F̃ , ∇1̄F̃ ∈ C∞(S(Rk)4;S(Rk)), (4.3.25)

where the four variational derivatives are uniquely defined by

dF̃ [φ1, φ2̄, φ2, φ1̄](δφ1, δφ2̄, δφ2, δφ1̄)

=

∫
Rk
dxk

((
∇1F̃ δφ1 + ∇2̄F̃ δφ2̄ + ∇2F̃ δφ2 + ∇1̄F̃ δφ1̄

)
(φ1, φ2̄, φ2, φ1̄)

)
(xk),

(4.3.26)

and F̃ has the involution property

F̃ (φ1, φ2̄, φ2, φ1̄) = F̃ (φ1̄, φ2, φ2̄, φ1). (4.3.27)

Then F ∈ AS,V . Additionally, if F,G are two such functionals, then their Poisson bracket

may be rewritten as

{F,G}L2,V(γ) = −i
∫
Rk
dxk

(
∇1F̃ (γ)∇2̄G̃(γ)−∇2̄F̃ (γ)∇1G̃(γ

)
(xk)

− i
∫
Rk
dxk

(
∇2F̃ (γ)∇1̄G̃(γ)−∇1̄F̃ (γ)∇2G̃(γ)

)
(xk),

(4.3.28)

where we identify γ with the 4-tuple (φ1, φ2, φ2, φ1) for the sake of more compact notation.

In the sequel, all the functionals on S(Rk;V) we consider satisfy the conditions of

the remark. Consequently, we will pass between the variational derivative and symplectic

gradient formulations for the Poisson bracket without comment.
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Lastly, we make heavy use of a “complexified” version of the weak symplectic manifold

(S(Rk), ωL2). More precisely, consider the cartesian product S(Rk)2 and define a complex-

valued map

ωL2,C(f
2
, g

2
) :=

∫
Rk
dxk trC2(JCf 2

g
2
)(xk), (4.3.29)

where

f
2

=

(
0 f1

f2 0

)
, g

2
=

(
0 g1

g2 0

)
∈ S(Rk)2, (4.3.30)

trC2 denotes the 2 × 2 matrix trace, and JC is the left-matrix multiplication operator

diag(i,−i). Here, we identify a Schwartz function taking values in the space of off-diagonal

2× 2 matrices with an element of S(Rk)2 in the obvious manner.

Remark 4.3.4. Note that if f
2

= odiag(f, f) and g
2

= odiag(g, g), for f, g ∈ S(Rk), then

ωL2,C(f
2
, g

2
) = i

∫
Rk
dxk
(
fg − fg

)
(xk) = 2 Im

{∫
Rk
dxkf(xk)g(xk)

}
= ωL2(f, g). (4.3.31)

Proposition 4.3.5. Define a subset AS,C ⊂ C∞(S(Rk)2;C) by

AS,C :=
{
H ∈ C∞(S(Rk);C) : ∇s,CH ∈ C∞(S(R)2;S(R)2)

}
, (4.3.32)

and define a bracket {·, ·}L2,C by

{F,G}L2,C := ωL2,C(∇s,CF,∇s,CG). (4.3.33)

Then (S(Rk)2,AS,C, {·, ·}L2,C) is a weak Poisson manifold.

Remark 4.3.6. As before, if F,G ∈ C∞(S(Rk)2;C) satisfy the condition (4.3.3), then

F,G ∈ AS,C and

{F,G}L2,C(φ1, φ2) = −i
∫
Rk
dxk
(
∇1F (φ1, φ2)∇2̄G(φ1, φ2)−∇2̄F (φ1, φ2)∇1G(φ1, φ2)

)
(xk).

(4.3.34)
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Remark 4.3.7. All the Schwartz space examples given in this subsection have their 2L-

periodic analogues, where S(Rk) is replaced by C∞(TkL). We will need the periodic examples

in Appendix 1.

4.4 The Construction: Defining the Wn

We now define the operators Wn giving rise to the Hamiltonian functionals Hn. As

detailed in Section 4.1, in order to construct the operators Wn, we proceed incrementally.

4.4.1 Step 1: Preliminary Definition of Operators

Let

W̃1 = (W̃
(k)
1 )k∈N ∈

∞⊕
k=1

Lgmp(S(Rk),S ′(Rk)), W̃1 := E1, (4.4.1)

where we recall that

Ej = (E
(k)
j )k∈N ∈

∞⊕
k=1

Lgmp(S(Rk),S ′(Rk)), E
(k)
j := Idk δjk, (4.4.2)

where Idk is the identity operator in L(S(Rk),S ′(Rk)) and δjk is the Kronecker delta function.

We regard Ej as the jth coordinate element of
⊕∞

k=1 L(S(Rk),S ′(Rk)). It is clear that these

operators satisfy the good mapping property.

We would like to recursively define

W̃n+1 = (W̃
(k)
n+1)k∈N ∈

∞⊕
k=1

Lgmp(S(Rk),S ′(Rk)) (4.4.3)

by the formula

W̃
(k)
n+1 := −i∂x1W̃(k)

n + κ
n−1∑
m=1

∑
`,j≥1;`+j=k

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
, k ∈ N, (4.4.4)
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where we regard the multiplier operator −i∂x1 as a k-particle operator by tensoring with the

identity in the X2, . . . , Xk coordinates. Similarly, we regard the multiplication δ(X1−X`+1)

as k-particle operator simply by tensoring with the identity in the X2, . . . , X`, X`+2, . . . , Xk

coordinates.

Our aim is then two-fold. First, we need to make sense of the definition (4.4.4). At first

glance, the right-hand side of (4.4.4) is purely formal, since for n ≥ 4, the sum will contain

products of δ functions. However, as we will prove in the next lemma, the operators in (4.4.4)

are well-defined elements of Lgmp(S(Rk),S ′(Rk)). Intuitively, this is because the products

in (4.4.4) never contain delta functions with identical arguments, such as δ2(X1 − X2).

Subsequently, we will show that all but finitely many terms in the recursion are non-zero,

which justifies our use of the direct sum notation. Thus, we are led to Proposition 4.1.5, the

statement of which we recall below.

Proposition 4.1.5. For each n ∈ N, there exists an element

W̃n ∈
∞⊕
k=1

Lgmp(S(Rk),S ′(Rk))

defined according to the recursive formula (4.1.24), where the composition (4.1.25) is well-

defined in the sense of Proposition 4.0.14.

We begin the proof of Proposition 4.1.5 with establishing the recursion (4.4.4).

Lemma 4.4.1 (Rigorous recursion). For every k, n ∈ N, the distribution-valued operator

W̃
(k)
n is an element of Lgmp(S(Rk),S ′(Rk)) and satisfies the following:

237



(R1) There exists a finite subset A
(k)
n ⊂ Nk

0 of multi-indices such that

W̃(k)
n f (k) =

∑
αk∈A

(k)
n

uαk,n∂
αk
xk
f (k), ∀f (k) ∈ S(Rk), (4.4.5)

where uαk,n ∈ S
′(Rk).

(R2) For every αk ∈ A
(k)
n , either

Case 1 WF(uαk,n) = ∅, or

Case 2 WF(uαk,n) 6= ∅ and satisfies the non-vanishing pair property:

(xk, ξk) ∈WF(uαk,n) =⇒ ∃`, j ∈ N≤k s.t. ` < j and both ξ` 6= 0 and ξj 6= 0.

(4.4.6)

Remark 4.4.2. In other words, (R1) means that W̃
(k)
n can be written as a linear combi-

nation of terms, where each term consists of a differential operator left-composed with a

distributional multiplication operator. The motivation for the non-vanishing pair property

is to exploit the fact that the products of delta functions in (4.4.4) do not have the same

arguments.

Proof of Lemma 4.4.1. We prove the assertion by strong induction on n ≥ 1. The base case,

namely that the claims hold for n = 1, is clear. Next, let n ≥ 1 and suppose that for every

k ∈ N, we have that

W̃
(k)
1 , . . . ,W̃(k)

n ∈ Lgmp(S(Rk),S ′(Rk)) (4.4.7)

are defined according to (4.4.1) and (4.4.4) and satisfy the properties (R1) and (R2). We will

show that for any k ∈ N, the observable W̃
(k)
n+1 is a well-defined element of Lgmp(S(Rk),S ′(Rk))

and satisfies the properties (R1) and (R2). We organize our argument into several steps:
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Step I: We first prove (R1). If A
(k)
n ⊂ Nk

0 is a finite subset of multi-indices such that

W̃(k)
n f (k) =

∑
αk∈A

(k)
n

uαk,n∂
αk
xk
f (k), ∀f (k) ∈ S(Rk), (4.4.8)

where uαk,n ∈ S
′(Rk), then by the product rule,

(−i∂x1)W̃(k)
n f (k) =

∑
αk∈A

(k)
n

(
(−i∂x1uαk,n)∂αkxk f

(k) − iuαk,n∂x1∂
αk
xk
f (k)
)
, ∀f (k) ∈ S(Rk).

(4.4.9)

Let A
(`)
m and A

(j)
n−m be finite subsets of N`

0 and Nj
0, respectively, such that

W̃(`)
m f

(`) =
∑

α`∈A
(`)
m

uα`,m∂
α`
x`
f (`), ∀f (`) ∈ S(R`) (4.4.10)

W̃
(j)
n−mf

(j) =
∑

αj∈A
(j)
n−m

uαj ,n−m∂
αj
xj f

(j), ∀f (j) ∈ S(Rj), (4.4.11)

where uα`,m ∈ S
′(R`) and uαj ,n−m ∈ S

′(Rj). Define the set

A(k)
n,m := A(`)

m × A
(j)
n−m ⊆ N`

0 × Nj
0 (4.4.12)

so that(
W̃(`)

m ⊗ W̃
(j)
n−m

)
f (k) =

∑
(α`,αj)∈A

(k)
n,m

(
uα`,m ⊗ uαj ,n−m

)(
∂α`x` ⊗ ∂

αj
xj

)
f (k), ∀f (k) ∈ S(Rk).

(4.4.13)

Hence, to prove the claim, it suffices to show that

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(4.4.14)
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is well-defined in L(S(Rk),S ′(Rk)), and that for all f (k) ∈ S(Rk), (4.4.14) admits the repre-

sentation(
δ(X1 −X`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

))
f (k) =

∑
(α`,αj)∈A

(k)
n,m

δ(x1−x`+1)
(
uα`,m ⊗ uαj ,n−m

)(
∂α`x` ⊗ ∂

αj
xj

)
f (k),

(4.4.15)

where δ(x1 − x`+1)(uα`,m ⊗ uαj ,n−m) is well-defined in S ′(Rk). We will do this in two steps:

• First, we will show that (4.4.14) admits the representation (4.4.15) for all f (k) ∈ S(Rk),

and that δ(x1 − x`+1)(uα`,m ⊗ uαj ,n−m) ∈ D′(Rk) in the Hörmander product sense of

Proposition 4.0.14.

• Second, we will show that the products are, in fact, tempered distributions.

To show that the product of distributions

δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (k)) (4.4.16)

is well-defined in D′(Rk) for every f (k) ∈ S(Rk), it suffices by Hörmander’s criterion (Propo-

sition 4.0.14) to show that

(xk, ξk) ∈WF(δ(x1 − x`+1)) =⇒ (xk,−ξk) /∈WF
((

W̃(`)
m ⊗ W̃

(j)
n−m

)
f (k)
)
. (4.4.17)

By Lemma 4.0.10, which computes the wave front set of δ(x1 − x`+1), we need to show that

if ξ1 6= 0, then

((x1, x2;`, x1, x`+2;k), (ξ1, 02;`,−ξ1, 0`+2;k)) /∈WF
((

W̃(`)
m ⊗ W̃

(j)
n−m

)
f (k)
)
. (4.4.18)
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Since for any (α`, αj) ∈ A
(k)
n,m and for any g(k) ∈ S(Rk), we have the inclusion

WF
((
uα`,m ⊗ uαj ,n−m

)
g(k)
)
⊂WF

(
uα`,m ⊗ uαj ,n−m

)
, (4.4.19)

by Proposition 4.0.9(f), it follows from Proposition 4.0.9(c) and (4.4.13) that

WF
((

W̃(`)
m ⊗ W̃

(j)
n−m

)
f (k)
)
⊂

⋃
(α`,αj)∈A

(k)
n,m

WF
(
uα`,m ⊗ uαj ,n−m

)
, ∀f (k) ∈ S(Rk).

(4.4.20)

Now by Proposition 4.0.9(e), we have that

WF
(
uα`,m ⊗ uαj ,n−m

)
⊂
(

WF
(
uα`,m

)
×WF

(
uαj ,n−m

))
∪
(
supp

(
uα`,m

)
× {0`}

)
×WF

(
uαj ,n−m

)
∪WF

(
uα`,m

)
×
(

supp
(
uαj ,n−m

)
× {0j}

)
.

(4.4.21)

Note that we abuse notation with the cartesian products on the right-hand side of the

preceding inclusion in the following sense: we denote an element of WF(uα`,m)×WF(uαj ,n−m)

by

(x`, x`+1;k, ξ`, ξ`+1;k
), (4.4.22)

where

(x`, ξ`) ∈WF(uα`,m), (x`+1;k, ξ`+1;k
) ∈WF(uαj ,n−m)

and similarly for elements of (supp(uα`,m)×{0`})×WF(uαj ,n−m) and WF(uα`,m)×(supp(uαj ,n−m)×

{0j}). We now consider three cases based on the values of the sets WF(uα`,m) and WF(uαj ,n−m).

(i) Suppose that WF
(
uα`,m

)
and WF

(
uαj ,n−m

)
are both empty. Then it follows readily

from (4.4.21) that

WF
(
uα`,m ⊗ uαj ,n−m

)
= ∅, (4.4.23)

and so (4.4.18) is satisfied.
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(ii) Without loss of generality, suppose that WF
(
uαj ,n−m

)
= ∅ and that WF

(
uα`,m

)
6= ∅

and satisfies the non-vanishing pair property. Then by (4.4.21), we have

WF
(
uα`,m ⊗ uαj ,n−m

)
⊂WF

(
uα`,m

)
×
(

supp
(
uαj ,n−m

)
× {0j}

)
. (4.4.24)

Observe that the set on the right-hand side does not contain an element of the form

((x1, x2;`, x1, x`+2;k), (ξ1, 02;`,−ξ1, 0`+2;k)), ξ1 6= 0. (4.4.25)

since WF(uα`,m) is nonempty and satisfies the non-vanishing pair property.

(iii) Suppose that both WF
(
uα`,m

)
and WF

(
uαj ,n−m

)
are both nonempty and satisfy the

non-vanishing pair property. Then if (xk, ξk) ∈ WF
(
uα`,m ⊗ uαj ,n−m

)
, one of three

sub-cases must occur:

1. ξ
`

= 0 and there exists l1, l2 ∈ {`+ 1, . . . , `+ j} such that ξl1 6= 0 and ξl2 6= 0.

2. ξ
`+1;k

= 0 and there exists l1, l2 ∈ {1, . . . , `} such that ξl1 6= 0 and ξl2 6= 0.

3. ξ
`
6= 0, ξ

`+1;k
6= 0, and there exist l1, l2 ∈ {1, . . . , `} and l3, l4 ∈ {`+1, . . . , k} such

that ξl1 6= 0, ξl2 6= 0, ξl3 6= 0 and ξl4 6= 0.

Any of these three sub-cases guarantees (4.4.18).

To summarize, we have shown that

((x1, x2;`, x1, x`+2;k), (ξ1, 02;`,−ξ1, 0`+2;k)) /∈
⋃

(α`,αj)∈A
(k)
n,m

WF
(
uα`,m ⊗ uαj ,n−m

)
, (4.4.26)

and therefore

δ(x1 − x2)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (k)) (4.4.27)
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is defined in D′(Rk) according to Proposition 4.0.14, proving the first claim.

We now show that this Hörmander product is tempered:

δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (k)) ∈ S ′(Rk), ∀f (k) ∈ S ′(Rk). (4.4.28)

Since by the inductive hypothesis, W̃
(`)
m and W̃

(j)
n−m satisfy the good mapping property

of Definition 4.1.1 (and we refer to Appendix 3.3 for more details on the good mapping

property), there exist unique continuous bilinear maps

Φ
W̃

(`)
m ,α

: S(R`)2 → S(xα,x′α)(R2), Φ
W̃

(j)
n−m,β

: S(Rj)2 → S(xβ ,x
′
β)(R2), α ∈ N≤`, β ∈ N≤j

(4.4.29)

identifiable with the maps

S(R`)2 → Sx′α(R;S ′xα(R)), (f (`), g(`)) 7→
〈
W̃(`)

m f
(`), (·)⊗α g(`)(·, x′α, ·)

〉
S′(R`)−S(R`)

,

S(Rj)2 → Sx′β(R;S ′xβ(R)), (f (j), g(j)) 7→
〈
W̃(j)

m f (j), (·)⊗β g(j)(·, x′β, ·)
〉
S′(Rj)−S(Rj)

,

(4.4.30)

via ∫
R
dxαΦ

W̃
(`)
m ,α

(f (`), g(`))(xα;x′α)φ(xα) =
〈
W̃(`)

n f
(`), φ⊗α g(`)(·, x′α, ·)

〉
S′(R`)−S(R`)

,∫
R
dxβΦ

W̃
(j)
n−m,β

(f (j), g(j))(xβ;x′β)φ(xβ) =
〈
W̃

(j)
n−mf

(j), φ⊗β g(j)(·, x′β, ·)
〉
S′(Rj)−S(Rj)

,

(4.4.31)

for φ ∈ S(R), respectively. Above, the notation (·) ⊗α g(`)(·, x′α, ·) and (·) ⊗β g(j)(·, x′β, ·) is

defined by(
φ⊗α g(`)(·, x′α, ·)

)
(y
α
) := φ(yα)g(`)(y

1;α−1
, x′α, yα+1;`

), ∀y
`
∈ R`(

φ⊗β g(j)(·, x′β, ·)
)
(y
β
) := φ(yβ)g(j)(y

1;β−1
, x′β, yβ+1;j

), ∀y
j
∈ Rj

, ∀φ ∈ S(R).

(4.4.32)
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Now given f (k), g(k) ∈ S(Rk), we see that

(x`, x
′
`) 7→ Φ

W̃
(j)
n−m,1

(f (k)(x`, ·), g(k)(x′`, ·)) ∈ S(x`,x
′
`)

(R2`;S(y1,y′1)(R2)). (4.4.33)

Thus, we can define a map Ψ
W̃

(j)
n−m,1

: S(Rk)2 → S(R2(`+1))

Ψ
W̃

(j)
n−m,1

(f (k), g(k))(x`+1;x′`+1)

:= Φ
W̃

(j)
n−m,1

(f (k)(x`, ·), g(k)(x′`, ·))(x`+1;x′`+1), ∀(x`+1, x
′
`+1) ∈ R2(`+1),

(4.4.34)

which is bilinear and continuous. Now since Φ
W̃

(`)
m ,1

: S(R`)2 → S(R2) is bilinear and

continuous, the universal property of the tensor product and the identification of S(R2`) ∼=

S(R`)⊗̂S(R`) implies that there exists a unique continuous linear map

Φ̄
W̃

(`)
m ,1

: S(R2`)→ S(R2), (4.4.35)

with the property that

Φ
W̃

(`)
m ,1

(f (`), g(`)) = Φ̄
W̃

(`)
m ,1

(f (`) ⊗ g(`)), ∀f (`), g(`) ∈ S(R`). (4.4.36)

Hence, the function

Φ̄
W̃

(`)
m,1,1

(
Ψ

W̃
(j)
n−m,1

(f (k), g(k))(·, x`+1; ·, x′`+1)
)

(x1;x′1), ∀(x1, x`+1, x
′
1, x
′
`+1) ∈ R4

defines an element of S(R4), and moreover,

S(Rk)2 → S(R4),

(f (k), g(k)) 7→ Φ̄
W̃

(`)
m,1,1

(
Ψ

W̃
(j)
n−m,1

(f (k), g(k))(·, x`+1; ·, x′`+1)
)

(x1;x′1), ∀(x1, x`+1, x
′
1, x
′
`+1) ∈ R4

(4.4.37)

is a continuous bilinear map. Thus, we may define a functional uf (k) on S(Rk) by

〈uf (k) , g(k)〉S′(Rk)−S(Rk)

:=

∫
R2

dx1dx`+1δ(x1 − x`+1)Φ̄
W̃

(`)
m ,1

(
Ψ

W̃
(j)
n−m,1

(f (k), g(k))(·, x`+1; ·, x`+1)
)

(x1;x1), ∀g(k) ∈ S(Rk).

(4.4.38)
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This functional uf (k) is evidently linear, and it follows from the continuity of Φ̄
W̃

(`)
m ,1

and

Ψ
W̃

(j)
n−m,1

that it is continuous S(Rk)→ C, hence a tempered distribution. Furthermore, we

claim that the map

S(Rk)→ S ′(Rk), f (k) 7→ 〈uf (k) , ·〉S′(Rk)−S(Rk) (4.4.39)

satisfies the good mapping property. Indeed, replacing f (k), g(k) with πf (k), πg(k), for any

π ∈ Sk, it suffices to verify this assertion for the case α = 1 in Definition 4.1.1. Additionally,

it suffices by the universal property of the tensor product and the Schwartz kernel theorem

isomorphism S(Rk) ∼= S(R`)⊗̂S(Rj) to show that there is a (necessarily unique) continuous,

multilinear map

Φu :
(
S(R`)× S(Rj)

)2 → S(R2),

such that for f (`), g(`) ∈ S(R`) and f (j), g(j) ∈ S(Rj),∫
R
dxΦu(f

(`), f (j), g(`), g(j))(x;x′)φ(x)

= 〈uf (`)⊗f (j) , φ⊗ (g(`) ⊗ g(j))(x′, ·)〉S′(Rk)−S(Rk), ∀φ ∈ S(R), x′ ∈ R.
(4.4.40)

Now for any φ ∈ S(R), the bilinearity of Φ
W̃

(j)
n−m,1

implies

Φ
W̃

(j)
n−m,1

(
(f (`) ⊗ f (j))(x`, ·), (φ⊗ (g(`) ⊗ g(j))(x′, ·))(x′`, ·)

)
(x`+1;x′`+1)

= f (`)(x`)φ(x′1)g(`)(x′, x′2;`)ΦW̃
(j)
n−m,1

(
f (j), g(j)

)
(x`+1;x′`+1), ∀(x`+1, x

′
`+1, x

′) ∈ R2`+3.

(4.4.41)

Hence,

Ψ
W̃

(j)
n−m,1

(
f (`) ⊗ f (j), φ⊗ (g(`) ⊗ g(j))(x′, ·)

)
(x`+1;x′`+1)

= f (`)(x`)φ(x′1)g(`)(x′, x′2;`)ΦW̃
(j)
n−m,1

(f (j), g(j))(x`+1;x′`+1), ∀(x`+1, x
′
`+1) ∈ R2(`+1).

(4.4.42)
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For x′ ∈ R and φ ∈ S(R), define the function g̃
(`)
x′,φ ∈ S(R`) by

g̃
(`)
x′,φ(x′`) := φ(x′1)g(`)(x′, x′2;`), ∀x′` ∈ R`, (4.4.43)

so that we can write

Ψ
W̃

(j)
n−m,1

(
f (`) ⊗ f (j), φ⊗ (g(`) ⊗ g(j))(x′, ·)

)
(x`+1;x′`+1)

= (f (`) ⊗ g̃(`)
x′,φ)(x`;x

′
`)ΦW̃

(j)
n−m,1

(f (j), g(j))(x`+1;x′`+1), ∀(x`+1, x
′
`+1) ∈ R2(`+1).

(4.4.44)

Therefore, using identity (4.4.44) and the linearity of the map Φ̄
W̃

(`)
m ,1

, we see that

Φ̄
W̃

(`)
m ,1

(
Ψ

W̃
(j)
n−m,1

(
f (`) ⊗ f (j), φ⊗ (g(`) ⊗ g(j))(x′, ·)

)
(·, x`+1; ·, x′`+1)

)
(x1;x′1)

= Φ
W̃

(j)
n−m,1

(f (j), g(j))(x`+1;x′`+1)Φ̄
W̃

(`)
m ,1

(
f (`) ⊗ g̃(`)

x′,φ

)
(x1;x′1)

= Φ
W̃

(j)
n−m,1

(f (j), g(j))(x`+1;x′`+1)Φ
W̃

(`)
m ,1

(f (`), g̃
(`)
x′,φ)(x1;x′1), (4.4.45)

where the ultimate equality follows from the property (4.4.36). Recalling the definition

(4.4.38) for uf (k) , we obtain that

〈
uf (`)⊗f (j) , φ⊗ (g(`) ⊗ g(j))(x′, ·)

〉
S′(Rk)−S(Rk)

=

∫
R2

dx1dx`+1δ(x1 − x`+1)Φ̄
W̃

(`)
m ,1

(
Ψ

W̃
(j)
n−m,1

(
f (`) ⊗ f (j), φ⊗ (g(`) ⊗ g(j))(x′, ·)

)
(·, x`+1; ·, x`+1)

)
(x1;x1)

=

∫
R2

dx1dx`+1δ(x1 − x`+1)Φ
W̃

(j)
n−m,1

(f (j), g(j))(x`+1;x`+1)Φ
W̃

(`)
m ,1

(f (`), g̃
(`)
x′,φ)(x1;x1)

=

∫
R
dxΦ

W̃
(j)
n−m,1

(f (j), g(j))(x;x)Φ
W̃

(`)
m ,1

(f (`), g̃
(`)
x′,φ)(x;x)

=
〈
W̃(`)

m f
(`),Φ

W̃
(j)
n−m,1

(f (j), g(j))|y=y′ g̃
(`)
x′,φ

〉
S′(R`)−S(R`)

,

where Φ
W̃

(j)
n−m,1

(f (j), g(j))|y=y′ denotes the restriction to the hyperplane {(y, y′) : y = y′} ⊂ R2

and the ultimate equality follows from the definition of Φ
W̃

(`)
m ,1

in (4.4.29). Unpacking the
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definition of g̃
(`)
x′,φ from (4.4.43) and applying the definition of Φ

W̃
(`)
m ,1

once more, we conclude

that 〈
W̃(`)

m f
(`),Φ

W̃
(j)
n−m,1

(f (j), g(j))|y=y′ g̃
(`)
x′,φ

〉
S′(R`)−S(R`)

=
〈
W̃(`)

m f
(`), (φΦ

W̃
(j)
n−m,1

(f (j), g(j))|y=y′)⊗ g(`)(x′, ·)
〉
S′(R`)−S(R`)

=

∫
R
dxΦ

W̃
(`)
m ,1

(f (`), g(`))(x;x′)φ(x)Φ
W̃

(j)
n−m,1

(f (j), g(j))(x;x). (4.4.46)

Therefore, the desired map Φu is given by

Φu(f
(`), f (j), g(`), g(j))(x;x′) := Φ

W̃
(`)
m ,1

(f (`), g(`))(x;x′)Φ
W̃

(j)
n−m,1

(f (j), g(j))(x;x), (4.4.47)

which is evidently multilinear and continuous (S(R`)× S(Rj))2 → S(R2) being the compo-

sition maps. Thus, the proof that f (k) 7→ uf (k) has the good mapping property is complete.

Lastly, we claim that uf (k) coincides with the Hörmander product

δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (k))

defined above via Proposition 4.0.14. To prove the claim, we rely on the uniqueness criterion

for the product. We set

g(k) := g(1) ⊗ g(`−1) ⊗ g̃(1) ⊗ g(j−1), φ(k) := φ(1) ⊗ φ(`−1) ⊗ φ̃(1) ⊗ φ(j−1) (4.4.48)

for g(1), g̃(1), φ(1), φ̃(1) ∈ S(R), g(`−1), φ(`−1) ∈ S(Ri−1), and g(j−1), φ(j−1) ∈ S(Rj−1). By

density of linear combinations of tensor products, it suffices to show that

〈F(g(k)2
uf (k)), φ

(k)〉S′(Rk)−S(Rk) = 〈F(g(k)δ(x1−x`+1))∗F(g(k)(W̃(`)
m ⊗W̃

(j)
n−m)(f (k))), φ(k)〉S′(Rk)−S(Rk),

(4.4.49)
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since pointwise equality then follows from the localization lemma (see Chapter 2, §2 of [40])

together with the continuity of the Fourier transforms involved. This is then an exercise,

the details of which we leave to the reader, relying on the good mapping property and the

distributional Plancherel theorem.

Step II: The property (R2) is readily established by the arguments in the previous step

and the fact that A
(k)
n,m defined in (4.4.12) has finite cardinality, it then follows from another

application of Proposition 4.0.9(c) that either

WF
(
W̃

(k)
n+1f

(k)
)

= ∅

or

WF
(
W̃

(k)
n+1f

(k)
)
6= ∅ and satisfies the non-vanishing pair property.

Step III: Next, we show that the map f (k) 7→ W̃
(k)
n+1f

(k) satisfies the good mapping property

for every k ∈ N. Since differentiation is a continuous endomorphism of S ′(Rk), it is immediate

from the induction hypothesis that

− i∂x1W̃(k)
n ∈ Lgmp(S(Rk),S ′(Rk)). (4.4.50)

Since Lgmp(S(Rk),S ′(Rk)) is a vector space, it remains to show that

f (k) 7→ δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (k)) (4.4.51)

satisfies the good mapping property for every `, j ∈ N with ` + j = k and m ∈ N≤n−1. But

this follows from Step II, where we showed that uf (k) defined in (4.4.38) coincides with the

Hörmander product in the right-hand side of (4.4.51) and that the DVO f (k) 7→ uf (k) defined

in (4.4.38) has the good mapping property.
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Step IV: Finally, we show that

W̃(k)
n : S(Rk)→ S ′(Rk)

is a continuous map. As argued before, it suffices to show that the map

(f (`), f (j)) 7→ δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (`) ⊗ f (j)) (4.4.52)

is a continuous bilinear map S(R`)×S(Rj)→ S ′(Rk). Bilinearity is obvious. For continuity,

suppose that (f
(`)
r , f

(j)
r ) → 0 ∈ S(R`) × S(Rj) as r → ∞. We need to show that for any

bounded subset R of S(Rk),

lim
r→∞

sup
g(k)∈R

∣∣∣〈δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)
(f (`)
r ⊗ f (j)

r ), g(k)〉S′(Rk)−S(Rk)

∣∣∣ = 0. (4.4.53)

But this follows from our analysis proving the good mapping property of the map f (k) 7→ uf (k)

in Step II.

We now turn to showing that only finitely many components of W̃n are nonzero for

a given n ∈ N. This property justifies our use of the direct sum notation.

Lemma 4.4.3. For all n ∈ N, we have

W̃
(k)
2n = 0 ∈ L(S(Rk),S ′(Rk)) k ∈ N≥n+1, (4.4.54)

and

W̃
(k)
2n+1 = 0 ∈ L(S(Rk),S ′(Rk)), k ∈ N≥n+2. (4.4.55)

Proof. We prove the lemma by strong induction on n. We first establish the base case n = 1.

It follows from the recursion (4.4.4) that

W̃2 = −i∂x1E1. (4.4.56)
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Since E
(k)
1 = 0 for k ≥ 2, it follows that W̃

(k)
2 = 0 for k ≥ 2. To see that W̃

(k)
3 = 0 for k ≥ 3,

observe that

(−i∂x1)W̃
(k)
2 = 0 ∈ L(S(Rk),S ′(Rk)), (4.4.57)

since W̃
(k)
2 = 0. If k ≥ 3 and `, j ∈ N satisfy `+ j = k, then max{`, j} ≥ 2. Since W̃

(m)
1 = 0

for m ≥ 2, we obtain that

W̃
(`)
1 ⊗ W̃

(j)
1 = 0 ∈ L(S(Rk),S ′(Rk)), (4.4.58)

which implies that δ(X1 −X`+1)
(
W̃

(`)
1 ⊗ W̃

(j)
1

)
= 0.

We now proceed to the inductive step. Let n ∈ N≥2 and suppose that for all integers

m ∈ N≤n,

W̃
(k)
2m = 0 ∈ L(S(Rk),S ′(Rk)), ∀k ∈ N≥m+1 (4.4.59)

W̃
(k)
2m+1 = 0 ∈ L(S(Rk),S ′(Rk)), ∀k ∈ N≥m+2. (4.4.60)

We now need to show that these identities hold with m = n+ 1. We first handle the case of

even indices. Specifically, we show that

W̃
(k)
2(n+1) = 0 ∈ L(S(Rk),S ′(Rk)), k ∈ N≥n+2.

Observe that if k ≥ n+ 2, then by the induction hypothesis, W̃
(k)
2(n+1)−1 = 0 and therefore

− i∂x1W̃
(k)
2(n+1)−1 = 0 ∈ L(S(Rk),S ′(Rk)). (4.4.61)

We now consider the Hörmander product terms

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
2n+1−m

)
, `+ j = k (4.4.62)
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arising in the recursion relation (4.4.4) for W̃
(k)
2(n+1). By symmetry, it suffices to consider the

following case: if m is odd (i.e. m = 2r + 1 for some r ∈ N0) then 2n + 1 −m is even (i.e.

2n+ 1−m = 2r′ for some r′ ∈ N), and we can write n = r+ r′. By the induction hypothesis

W̃(`)
m = 0, ∀` ∈ N≥r+2 (4.4.63)

W̃
(j)
2n+1−m = 0, ∀j ∈ N≥r′+1. (4.4.64)

If k ≥ n + 2 = r + r′ + 2, then either ` ≥ r + 2 or j ≥ r′ + 1, since if both ` ≤ r + 1 and

j ≤ r′, then

k = `+ j ≤ r + r′ + 1. (4.4.65)

Thus,

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
2n+1−m

)
= 0 ∈ L(S(Rk),S ′(Rk)), (4.4.66)

and so it follows from the recursion relation (4.4.4) that W̃
(k)
2(n+1) = 0 ∈ L(S(Rk),S ′(Rk)) for

k ≥ n+ 2.

We next handle the case of odd indices, namely we show that

W̃
(k)
2(n+1)+1 = 0 ∈ L(S(Rk),S ′(Rk)), k ≥ n+ 3. (4.4.67)

As before, observe that if k ≥ n+ 3, then

(−i∂x1)W̃
(k)
2(n+1) = 0 ∈ L(S(Rk),S ′(Rk)) (4.4.68)

by the result of the preceding paragraph. Now consider the Hörmander product terms

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
2n+2−m

)
(4.4.69)

in the recursion relation (4.4.4) for W̃
(k)
2(n+1)+1. We consider two cases:
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C1. Suppose m is odd (i.e. m = 2r + 1 for some r ∈ N0). Then 2n + 2 −m is odd (i.e.

2n+2−m = 2r′+1 for some r′ ∈ N0), and we can write 2(n+1)+1 = 2(r+r′+1)+1.

If k ≥ (r + r′ + 1) + 2, then either ` ≥ r + 2 or j ≥ r′ + 2, since if both ` ≤ r + 1 and

j ≤ r′ + 1, we have that

k = `+ j ≤ (r + r′ + 1) + 1. (4.4.70)

Hence applying the induction hypothesis to obtain W̃
(`)
m = 0 or W̃

(j)
2n+2−m = 0, respec-

tively, we conclude that

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
2n+2−m

)
= 0 ∈ L(S(Rk),S ′(Rk)). (4.4.71)

C2. Suppose m is even (i.e. m = 2r for some r ∈ N). Then 2n + 2 − m is even (i.e.

2n + 2−m = 2r′ for some r′ ∈ N), and we can write 2n + 2 = 2(r + r′). Once again,

if k ≥ r + r′ + 1, then either ` ≥ r + 1 or j ≥ r′ + 1, since if ` ≤ r and j ≤ r′, then

k = `+ j ≤ r + r′. (4.4.72)

Hence, we obtain again that

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
2n+2−m

)
= 0 ∈ L(S(Rk),S ′(Rk)). (4.4.73)

by the induction hypothesis.

In now follows from the recursion relation (4.4.4) that W̃
(k)
2(n+1)+1 = 0 ∈ L(S(Rk),S ′(Rk))

for k ≥ n+ 3, completing the proof of the inductive step.
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4.4.2 Step 2: Defining Self-Adjoint Operators

Our goal is now to define the self-adjoint elements Wn,sa, proving the following:

Proposition 4.4.4. For each n ∈ N, there exists an element

Wn,sa ∈
∞⊕
k=1

Lgmp,∗(S(Rk),S ′(Rk)),

given by

Wn,sa :=
1

2

(
W̃n + W̃∗

n

)
. (4.4.74)

Remark 4.4.5. Recall that

(W̃∗
n)(k) := W̃(k),∗

n .

is the adjoint operator defined in Lemma 3.1.1.

It follows readily from Lemma 3.1.1 that

Wn,sa ∈
∞⊕
k=1

L(S(Rk),S ′(Rk))

and is self-adjoint. Thus, in order to prove Proposition 4.4.4, we only need to verify each

Wn,sa satisfies the good mapping property, for which it suffices by linearity and the fact that

each W̃
(k)
n ∈ Lgmp(S(Rk),S ′(Rk)) to prove that

W̃(k),∗
n ∈ Lgmp(S(Rk),S ′(Rk)), ∀k ∈ N. (4.4.75)

Using the recursion (4.4.4), the linearity of the adjoint operation, and the fact that(
−i∂x1W̃(k)

n

)∗
= W̃(k),∗

n (−i∂x1) ∈ Lgmp(S(Rk),S ′(Rk)) (4.4.76)
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by Lemma 3.1.2, we just need to show that(
δ(X1 −X`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

))∗
∈ Lgmp(S(Rk),S ′(Rk)) (4.4.77)

for any m ∈ N≤n−1 and `, j ∈ N satisfying ` + j = k. We prove this assertion by another

induction argument.

Lemma 4.4.6. Let n ∈ N≥2, and suppose that W̃∗
1, . . . ,W̃

∗
n−1 ∈

⊕∞
k=1 Lgmp(S(Rk),S ′(Rk)).

Then (4.4.77) holds.

Proof. Let k ∈ N. Given f (k) ∈ S(Rk), we define the tempered distribution vf (k) by

g(k) 7→
〈
f (k)
∣∣∣δ(X1 −X`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

)
g(k)
〉
, (4.4.78)

where the composition δ(X1 − X`+1)(W̃
(`)
m ⊗ W̃

(j)
n−m) is well-defined by Lemma 4.4.1. It is

easy to check that the map

S(Rk)→ S ′(Rk), f (k) 7→ vf (k) (4.4.79)

is a continuous linear map, so it remains for us to verify the good mapping property. As in

the proof of Lemma 4.4.1, it suffices to show that for any α ∈ N≤k, the map

(S(R`)× S(Rj))2 → Sx′α(R;S ′xα(R))

(f (`), f (j), g(`), g(j)) 7→
〈
vf (`)⊗f (j)

∣∣(·)⊗α (g(`) ⊗ g(j))(·, x′α, ·)
〉
, x′α ∈ R.

(4.4.80)

may be identified with a (necessarily unique) continuous map (S(R`) × S(Rj))2 → S(R2),

which is antilinear in the f (`), f (j) variables and linear in the g(`), g(j) variables. The reader

will recall that the notation ⊗α is defined in (4.4.32). To simplify the presentation, we will

assume α ≤ `. The case ` < α ≤ k follows mutatis mutandis. Moreover, by replacing
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f (`), g(`) with πf (`), πg(`), for π ∈ S`, we may assume that α = 1. For any φ ∈ S(R), we have

by the distributional Fubini-Tonelli theorem that,

〈〈
vf (`)⊗f (j)

∣∣(·)⊗ (g(`) ⊗ g(j))(x′1, ·)
〉
, φ
〉
S′(R)−S(R)

=
〈
vf (`)⊗f (j)

∣∣φ⊗ (g(`) ⊗ g(j))(x′1, ·)
〉

=
〈
f (`) ⊗ f (j)

∣∣∣δ(x1 − x`+1)
(
W̃(`)

m ⊗ W̃
(j)
n−m

)(
φ⊗ g(`)(x′1, ·)⊗ g(j)

)〉
=
〈
δ(x1 − x`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

)(
φ⊗ g(`)(x′1, ·)⊗ g(j)

)
, f (`) ⊗ f (j)

〉
S′(Rk)−S(Rk)

. (4.4.81)

Using the identifications of (4.4.31) and the action of the DVO δ(X1−X`+1)(W̃
(`)
m ⊗W̃

(j)
n−m)

given by (4.4.38) in Step II of the proof of Lemma 4.4.1, we find that

(4.4.81) =

∫
R
dx1Φ

W̃
(j)
n−m,1

(g(j), f (j))(x1;x1)Φ
W̃

(`)
m ,1

(φ⊗ g(`)(x′1, ·), f (`))(x1;x1)

=
〈
f (`)Φ

W
(j)
n−m,1

(g(j), f (j))|y=y′

∣∣∣W̃(`)
m

(
φ⊗ g(`)(x′1, ·)

)〉
=
〈
W̃(`),∗

m

(
f (`)Φ

W
(j)
n−m,1

(g(j), f (j))|y=y′

)∣∣∣φ⊗ g(`)(x′1, ·)
〉
, (4.4.82)

where the ultimate equality follows from the definition of the adjoint of a DVO, see Lemma 3.1.1.

As before, the notation |y=y′ denotes restriction to the hyperplane {(y, y′) : y = y′} ⊂ R2.

By the induction hypothesis, W̃
(`),∗
m possesses the good mapping property. Therefore, for

any α ∈ N≤`, we can uniquely identify the map

S(R`)2 → Sx′α(R;S ′xα(R)), (f̃ (`), g̃(`)) 7→
〈
W̃(`),∗

m f̃ (`), (·)⊗α g̃(`)(·, x′α, ·)
〉
S′(R`)−S(R`)

(4.4.83)

with a continuous bilinear map

Φ
W̃

(`),∗
m ,α

: S(R`)2 → S(xα,x′α)(R2)∫
R
dxαΦ

W̃
(`),∗
m ,α

(f̃ (`), g̃(`))(xα;x′α)φ(xα) =
〈
W̃(`),∗

m f̃ (`), φ⊗α g̃(`)(·, x′α, ·)
〉
S′(R`)−S(R`)

, φ ∈ S(R).

(4.4.84)
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Hence,

(4.4.82) =
〈
W̃

(`),∗
m

(
f (`)Φ

W
(j)
n−m,1

(g(j), f (j))|y=y′

)
, φ⊗ g(`)(x′1, ·)

〉
S′(R`)−S(R`)

=

∫
R
dx1Φ

W̃
(`),∗
m ,1

(f (`)Φ
W

(j)
n−m,1

(g(j), f (j))|y=y′ , g(`))(x1;x′1)φ(x1)

=

∫
R
dx1Φ

W̃
(`),∗
m ,1

(f (`)Φ
W

(j)
n−m,1

(g(j), f (j))|y=y′ , g(`))(x1;x′1)φ(x1). (4.4.85)

Defining the map

(f (`), f (j), g(`), g(j)) 7→ Φ
W̃

(`),∗
m ,1

(f (`)Φ
W

(j)
n−m

(g(j), f (j))|y=y′ , g(`)) (4.4.86)

yields the desired conclusion, being the composition of continuous maps, antilinear in the

f (`), f (j) variables, and linear in the g(`), g(j) variables.

Since the base case W̃
(k),∗
1 ∈ Lgmp(S(Rk),S ′(Rk)) for every k ∈ N is trivial, the lemma

and the remarks preceding it imply the Proposition 4.4.4.

4.4.3 Step 3: Bosonic Symmetrization

We now modify the definition of the operators Wn,sa from the previous subsection in

order to obtain a bosonic operator which generates the same trace functional as Wn,sa when

evaluated on elements of G∗∞. As an immediate consequence of Lemma 3.3.32, we obtain

Proposition 4.1.6, completing the main objective of Section 4.4. We conclude this subsection

by explicitly computing W3 and W4.
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Example 4.4.7 (Computation of W3). From the recursion (4.4.4), we have that

W̃
(k)
3 = (−i∂x1)W̃

(k)
2 + κ

∑
`+j=k

δ(X1 −X`+1)
(
W̃

(`)
1 ⊗ W̃

(j)
1

)

=


(−i∂x1)2, k = 1

κδ(X1 −X2)Id2 = κδ(X1 −X2), k = 2

0k, k ≥ 3.

(4.4.87)

Since the components W̃
(k)
3 are already self-adjoint and bosonic, it follows that

W3 = W̃3 =
(
(−i∂x1)2, κδ(X1 −X2), 03, . . .

)
. (4.4.88)

Example 4.4.8 (Computation of W4). Similarly, from the recursion (4.4.4), we have that

W̃
(k)
4 = (−i∂x1)W̃

(k)
3 + κ

2∑
m=1

∑
`+j=k

δ(X1 −X`+1)
(
W̃(`)

m ⊗ W̃
(j)
3−m

)
. (4.4.89)

If k = 1, then

W̃
(1)
4 = (−i∂x1)W̃

(1)
3 = (−i∂x1)3 = W

(1)
4 , (4.4.90)

since (−i∂x1)3 is self-adjoint and bosonic. If k = 2, then

W̃
(2)
4 = (−i∂x1)W̃

(2)
3 + κδ(X1 −X2)

(
W̃

(1)
1 ⊗ W̃

(1)
2

)
+ κδ(X1 −X2)

(
W̃

(1)
2 ⊗ W̃

(1)
1

)
= κ((−i∂x1)δ(X1 −X2) + δ(X1 −X2)(Id1 ⊗ (−i∂x)) + δ(X1 −X2)((−i∂x)⊗ Id1))

= −iκ(∂x1δ(X1 −X2) + δ(X1 −X2)(∂x1 + ∂x2)). (4.4.91)

The term −iδ(X1 −X2)(∂x1 + ∂x2) is evidently bosonic, and it is self-adjoint since

[∂x1 + ∂x2 , δ(X1 −X2)] = 0.
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For the term −i∂x1δ(X1 −X2), Lemma 3.1.2 implies that the adjoint is given by −iδ(X1 −

X2)∂x1 , and therefore

κ

2
Sym2((−i∂x1)δ(X1 −X2) + δ(X1 −X2)(−i∂x1))

=
κ

4
((−i∂x1 − i∂x2)δ(X1 −X2) + δ(X1 −X2)(−i∂x1 − i∂x2))

=
κ

2
(−i∂x1 − i∂x2)δ(X1 −X2), (4.4.92)

where we use that δ is an even distribution and again that [∂x1 + ∂x2 , δ(X1 −X2)] = 0. We

conclude that

W
(2)
4 =

3κ

2
(−i∂x1 − i∂x2)δ(X1 −X2). (4.4.93)

Finally, it is evident that W
(k)
4 = 0k for k ≥ 3.

4.5 The Correspondence: Wn and wn

4.5.1 Multilinear Forms wn

In this subsection, we analyze the structure of the nonlinear operators wn as sums of

restricted multilinear forms. For each k ∈ N, we define a (2k − 1)-C-linear operator

w(k)
n : S(R)k × S(R)k−1 → S(R), (φ1, . . . , φk;ψ2, . . . , ψk) 7→ w(k)

n [φ1, . . . , φk;ψ2, . . . , ψk],

(4.5.1)
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recursively by

w
(k)
1 [φ1, . . . , φk;ψ2, . . . , ψk] := φ1δk1,

w
(k)
n+1[φ1, . . . , φk;ψ2, . . . , ψk]

= (−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk]

+ κ
n−1∑
m=1

∑
`,j≥1;`+j=k

ψ`+1w
(`)
m [φ1, . . . , φ`;ψ2, . . . , ψ`]w

(j)
n−m[φ`+1, . . . , φk;ψ`+2, . . . , ψk],

(4.5.2)

where δk1 denotes the usual Kronecker delta. The next lemma establishes several important

structural properties of the wn, including that w
(k)
n is identically zero for all but finitely many

k ∈ N.

Lemma 4.5.1 (Properties of w
(k)
n ). The following properties hold:

• For each odd n ∈ N, w
(k)
n ≡ 0 for k > n+1

2
and for k ≤ n+1

2
we have

w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk] =

∑
(αk,α

′
k−1

)∈N2k−1
0

|αk|+|α
′
k−1
|=n−1−2(k−1)

an,(αk,α′k−1)(
k∏
r=1

∂αrx φr)(
k∏
r=2

∂α
′
r

x ψr),

(4.5.3)

where an,(αk,α′k−1) ∈ R.

• For each even n ∈ N, w
(k)
n ≡ 0 for k > n

2
and for k ≤ n

2
we have

w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk] = i

∑
(αk,α

′
k−1

)∈N2k−1
0

|αk|+|α
′
k−1
|=n−1−2(k−1)

an,(αk,α′k−1)(
k∏
r=1

∂αrx φr)(
k∏
r=2

∂α
′
r

x ψr),

(4.5.4)

where an,(αk,α′k−1) ∈ R.
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Proof. We prove the lemma by strong induction on n. We begin with the base case n = 1.

That (4.5.3) holds for n = 1 is tautological. For the induction step, suppose that there

exists some n ∈ N such that either (4.5.3) or (4.5.4) holds for every odd or even j ∈ N≤n,

respectively. We consider two cases based on whether n is even or odd.

Consider the even index case. We first show that w
(k)
n ≡ 0 for k > n

2
. Since n− 1 is

odd, the induction hypothesis implies that

(−i∂x)w(k)
n−1 ≡ 0, k >

n

2
. (4.5.5)

Now suppose that `, j ∈ N are such that `+ j = k and

w(`)
m ⊗ w

(j)
n−1−m 6≡ 0, (4.5.6)

where 1 ≤ m ≤ n− 2. By symmetry, it suffices to consider when m is odd and n− 1−m is

even. By the induction hypothesis,

w(`)
m ≡ 0, ` >

m+ 1

2
and w

(j)
n−1−m ≡ 0, j >

n− 1−m
2

. (4.5.7)

Consequently, we must have that

k = `+ j ≤ m+ 1

2
+
n− 1−m

2
=
n

2
. (4.5.8)

It then follows from the recursion (4.5.2) that w
(k)
n ≡ 0 for k > n

2
.

Next we establish the asserted expansion formula. By the induction hypothesis,

w
(k)
n−1[φ1, . . . , φk;ψ2, . . . , ψk] =

∑
(αk,α

′
k−1

)∈N2k−1
0

|αk|+|α
′
k−1
|=n−2−2(k−1)

an−1,(αk,α
′
k−1)(

k∏
r=1

∂αrx φr)(
k∏
r=2

∂α
′
r

x ψr),

(4.5.9)
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where the coefficients an−1,(αk,α
′
k−1) are real. Hence by the Leibnitz rule, we can define real

coefficients bn,(αk,αk−1) such that

− i∂xw(k)
n−1[φ1, . . . , φk;ψ2, . . . , ψk] = i

∑
(αk,α

′
k−1

)∈N2k−1
0

|αk|+|α
′
k−1
|=n−1−2(k−1)

bn,(αk,αk−1)(
k∏
r=1

∂αrx φr)(
k∏
r=2

∂α
′
r

x ψr).

(4.5.10)

Similarly, for m ∈ N≤n−2 and `, j ∈ N, the induction hypothesis implies that

w(`)
m [φ1, . . . , φ`;ψ2, . . . , ψ`] =



∑
(α`,α

′
`−1

)∈N2`−1
0

|α`|+|α
′
`−1
|=m−1−2(`−1)

am,(α`,α′`−1)(
∏̀
r=1

∂αrx φr)(
∏̀
r=2

∂α
′
r

x ψr), m odd,

i
∑

(α`,α
′
`−1

)∈N2`−1
0

|α`|+|α
′
`−1
|=m−1−2(`−1)

am,(α`,α′`−1)(
∏̀
r=1

∂αrx φr)(
∏̀
r=2

∂α
′
r

x ψr), m even

(4.5.11)

and

w
(j)
n−1−m[φ`+1,...,φk ;ψ`+2, . . . , ψk]

=



i
∑

(αj,α
′
j−1

)∈N2j−1
0

|αj |+|α′j−1
|=n−2−m−2(j−1)

an−1−m,(αj ,α′j−1)(
k∏

r=`+1

∂αrx φr)(
k∏

r=`+2

∂α
′
r

x ψr), m odd

∑
(αj,α

′
j−1

)∈N2j−1
0

|αj |+|α′j−1
|=n−2−m−2(j−1)

an−1−m,(αj ,α′j−1)(
k∏

r=`+1

∂αrx φr)(
k∏

r=`+2

∂α
′
r

x ψr), m even

,
(4.5.12)

where an−1−m,(α`,α′`−1), an−1−m,(αj ,α′j−1) ∈ R. For `+ j = k and (α`, α
′
`−1), (αj, α

′
j−1) as in the

summations above, the multi-index

(α`, αj, α
′
`−1, α

′
j−1) ∈ N2k−2

0

satisfies

|(α`, αj)|+ |(α′`−1, α
′
j−1)| = m−1−2(`−1)+n−2−m−2(j−1) = n−1−2(k−1). (4.5.13)
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Consequently, we can define real coefficients cn,(αk,α′k−1) such that

n−1∑
m=1

ψ`+1w
(`)
m [φ1, . . . , φ`;ψ2, . . . , ψj]w

(j)
n−1−m[φ`+1, . . . , φk;ψ`+2, . . . , ψk]

= i
∑

(αk,α
′
k−1

)∈N2k−1
0

|αk|+|α
′
k−1
|=n−1−2(k−1)

cn,(αk,α′k−1)(
k∏
r=1

∂αrx φr)(
k∏
r=2

∂α
′
r

x ψr).
(4.5.14)

Defining

an,(αk,α′k−1) := bn,(αk,α′k−1) + cn,(αk,α′k−1), (4.5.15)

and summing (4.5.10) and (4.5.14) shows that (4.5.4) holds.

Next, consider the odd index case. To establish that w
(k)
n ≡ 0 for k > n+1

2
, we have

by our previous discussion in the even case, that

− i∂xw(k)
n−1 = 0, k >

n− 1

2
. (4.5.16)

Suppose that `, j ∈ N are such that `+ j = k and

w(`)
m ⊗ w

(j)
n−1−m 6≡ 0, (4.5.17)

where 1 ≤ m ≤ n−2. If m is odd, then n−1−m is odd, and so by the induction hypothesis,

w(`)
m ≡ 0, ` >

m+ 1

2
and w

(j)
n−1−m ≡ 0, j >

n−m
2

. (4.5.18)

Consequently, we must have that

k = `+ j ≤ m+ 1

2
+
n−m

2
=
n+ 1

2
. (4.5.19)

Similarly, if m is even, then n− 1−m is even, and so by the induction hypothesis

w(`)
m ≡ 0, ` >

m

2
and w

(j)
n−1−m ≡ 0, j >

n−m− 1

2
. (4.5.20)
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Consequently, we must have that

k = `+ j ≤ m

2
+
n−m− 1

2
=
n− 1

2
. (4.5.21)

It now follows from the recursion (4.5.2) that w
(k)
n ≡ 0 for k > n+1

2
. Repeating the proof

mutatis mutandis from the n even case, we see that w
(k)
n has the representation (4.5.3). Thus,

the proof of the induction step is complete.

We establish now some notation we will use here and in the sequel. For k, n ∈ N, we

define densities

P (k)
n [φ1, . . . , φk;ψ1, . . . , ψk] := ψ1w

(k)
n [φ1, . . . , φk;ψ2, . . . , ψk] ∈ S(R), (4.5.22)

and we define

I(k)
n [φ1, . . . , φk;ψ1, . . . , ψk] :=

∫
R
dxP (k)

n [φ1, . . . , φk;ψ1, . . . , ψk](x). (4.5.23)

It is clear from Lemma 4.5.1, that P
(k)
n : S(R)2k → S(R) is a 2k-C-linear, continuous map,

and thus I
(k)
n : S(R)2k → C is a 2k-C-linear, continuous map. For k ∈ N, we recall the

notation φ×k from (3.3.65) to denote the measurable function φ×k : Rm → Ck

φ×k(xm) := (φ(xm), . . . , φ(xm)), (4.5.24)

and similarly for ψ×k.

Remark 4.5.2. It is clear from the recursion (4.5.2) that

In(φ) =
∞∑
k=1

I(k)
n [φ×k;φ

×k
], ∀φ ∈ S(R), (4.5.25)

where In is as defined in (1.3.9).
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Remark 4.5.2 and the structure result Lemma 4.5.1 allow us to give a proof of the

seemingly obvious fact that the functionals In are not constant on S(R). We obtain this fact

as a consequence of a more general lemma. Note that since In(0) = 0, the nonconstancy of

In is equivalent to In 6≡ 0.

Lemma 4.5.3. Let n ∈ N, and let c = {ck}k∈N ⊂ C such that c1 6= 0. Define the map

In,c : S(R)→ C, In,c(φ) :=
∞∑
k=1

ckI
(k)
n [φ×k;φ

×k
], ∀φ ∈ S(R). (4.5.26)

Then In,c 6≡ 0.

Proof. Assume the contrary. Then for any λ ∈ C, we find from the 2k-complex linearity of

the functionals I
(k)
n that

0 = In,c(λφ) =
∞∑
k=1

ckI
(k)
n [(λφ)×k; (λφ)

×k
] =

∞∑
k=1

ck|λ|2kI(k)
n [φ×k;φ

×k
], ∀φ ∈ S(R).

(4.5.27)

Now fix φ ∈ S(R) and define a function

ρφ,c : C→ C, ρφ,c(λ) :=
∞∑
k=1

ck|λ|2kI(k)
n [φ×k;φ

×k
], (4.5.28)

which is well-defined and smooth since I
(k)
n ≡ 0 for all but finitely many indices k. Now

observe that

0 = (∂λ∂λρφ,c)(0) = c1I
(1)
n [φ;φ] = c1

∫
R
dx φ(x)(−i∂x)n−1φ(x). (4.5.29)

Choosing φ ∈ S(R) to be a function whose Fourier transform φ̂ satisfies 0 ≤ φ̂ ≤ 1,

φ̂(ξ) =

{
1, 2 ≤ ξ ≤ 3

0, ξ ≤ 1, ξ ≥ 4
, (4.5.30)

we obtain a contradiction from Plancherel’s theorem, since c1 6= 0 by assumption.
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4.5.2 Variational Derivatives

In this subsection, we show that the functionals In satisfy the conditions of Re-

mark 4.3.1 and explicitly compute their symplectic gradients. To this end, we record here a

recursive formula for the functions wn,(ψ1,ψ2), which generalizes the recursive formula (1.3.8)

for wn, given by

w1,(ψ1,ψ2)(x) = ψ1(x)

wn+1,(ψ1,ψ2)(x) = −i∂xwn,(ψ1,ψ2)(x) + κψ2(x)
n−1∑
m=1

wm,(ψ1,ψ2)(x)wn−m,(ψ1,ψ2)(x)
, (4.5.31)

and we refer to (1.2.19) for more details. We define Ĩn : S(R)2 → C by

Ĩn(ψ1, ψ2) :=

∫
R
dxψ2(x)wn,(ψ1,ψ2)(x), ∀(ψ1, ψ2) ∈ S(R)2. (4.5.32)

Remark 4.5.4. By comparing the recursion (4.5.31) to the recursion (4.5.2), we see that

wn,(ψ1,ψ2) =
∞∑
k=1

w(k)
n [ψ×k1 ;ψ

×(k−1)
2 ] (4.5.33)

and consequently

Ĩn(ψ1, ψ2) =
∞∑
k=1

I(k)
n [ψ×k1 ;ψ×k2 ]. (4.5.34)

We now use the multilinear w
(k)
n introduced in the previous subsection in order to

compute the variational derivatives, defined in (4.3.1), of the functions Ĩn. We first dis-

pense with a technical lemma asserting the existence of a partial transpose for the w
(k)
n in

C∞(S(R)2k−1;S(R)). The proof follows from the structural formula of Lemma 4.5.1 and

integration by parts; we leave the details to the reader.
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Lemma 4.5.5. Let n, k ∈ N. Then for 1 ≤ j ≤ k, there exists a unique partial transpose

w
(k),t
n,j ∈ C∞(S(R)2k−1;S(R)), such that for every δφ ∈ S(R) and φ1, . . . , φk, ψ2, . . . ψk ∈ S(R)

we have ∫
R
dxδφ(x)w

(k),t
n,j [φ1, . . . , φk;ψ2, . . . , ψk](x)

=

∫
R
dxφj(x)w(k)

n [φ1, . . . , φj−1, δφ, φj+1, . . . , φk;ψ2, . . . , ψk](x),

(4.5.35)

Similarly, for 2 ≤ j ≤ k, there exists a unique partial transpose w
(k),t
n,j′ ∈ C∞(S(R)2k−1;S(R)),

such that for every δψ ∈ S(R) and φ1, . . . , φk, ψ2, . . . ψk ∈ S(R) we have∫
R
dxδψ(x)w

(k),t
n,j′ [φ1, . . . , φk;ψ2, . . . , ψk](x)

=

∫
R
dxψj(x)w(k)

n [φ1, . . . , φk;ψ2, . . . , ψj−1, δψ, ψj+1, . . . , ψk](x).

(4.5.36)

For convenience of notation, we define w
(k),t
n,1′ ∈ C∞(S(R)2k−1;S(R)) by

w
(k),t
n,1′ [φ1, . . . , φk;ψ2, . . . , ψk] := w(k)

n [φ1, . . . , φk;ψ2, . . . , ψk]. (4.5.37)

We may now proceed to establish formulae for the variational derivatives of the Ĩn.

Lemma 4.5.6. For n ∈ N, we have that

∇1Ĩn(φ, ψ) =
∞∑
k=1

k∑
j=1

w
(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)], (4.5.38)

∇2̄Ĩn(φ, ψ) =
∞∑
k=1

k∑
j=1

w
(k),t
n,j′ [φ×k;ψ×(k−1)] (4.5.39)
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for every (φ, ψ) ∈ S(R)2. In particular,

∇sIn(φ) = −i
∞∑
k=1

k∑
j=1

w
(k),t
n,j [φ×(j−1), φ, φ×(k−j);φ

×(k−1)
]

= −i
∞∑
k=1

k∑
j=1

w
(k),t
n,j′ [φ×k;φ

×(k−1)
]

= − i
2

∞∑
k=1

k∑
j=1

(
w

(k),t
n,j [φ×(j−1), φ, φ×(k−j);φ

×(k−1)
] + w

(k),t
n,j′ [φ×k;φ

×(k−1)
]

)
.

(4.5.40)

Proof. Fix a point (φ, ψ) ∈ S(R)2. Unpacking the definition of Ĩn and using the chain rule

for the Gâteaux derivative, we obtain that

dĨn[φ, ψ](δφ, δψ) =
∞∑
k=1

k∑
j=1

(∫
R
dxP (k)

n [φ×(j−1), δφ, φ×(k−j);ψ×k](x)

+

∫
R
dxP (k)

n [φ×k;ψ×(j−1), δψ, ψ×(k−j)](x)

)
.

(4.5.41)

Since

P (k)
n [φ×(j−1), δφ, φ×(k−j);ψ×k] = ψw(k)

n [φ×(j−1), δφ, φ×(k−j);ψ×(k−1)] (4.5.42)

and

P (k)
n [φ×k;ψ×(j−1), δψ, ψ×(k−j)] =

{
δψw

(k)
n [φ×k;ψ×(k−1)], j = 1

ψw
(k)
n [φ×k;ψ×(j−2), δψ, ψ×(k−j)], 2 ≤ j ≤ k

, (4.5.43)

upon application of Lemma 4.5.5, we see that∫
R
dxP (k)

n [φ×(j−1), δφ, φ×(k−j);ψ×k](x)

=

∫
R
dxδφ(x)w

(k),t

n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)](x)

(4.5.44)

and ∫
R
dxP (k)

n [φ×k;ψ×(j−1), δψ, ψ×(k−j)](x) =

∫
R
dxδψ(x)w

(k),t

n,j′ [φ×k;ψ×(k−1)](x). (4.5.45)
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Substituting (4.5.44) and (4.5.45) into (4.5.41), we arrive at the identity

dĨn[φ, ψ](δφ, δψ) =
∞∑
k=1

k∑
j=1

(∫
R
dxδφ(x)w

(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)](x)

+

∫
R
dxδψ(x)w

(k),t
n,j′ [φ×k;ψ×(k−1)](x)

)
.

(4.5.46)

Using that there are only finitely many indices k yielding a nonzero contribution by Lemma 4.5.1,

we can move the summations inside the integral to conclude that

dĨn[φ, ψ](δφ, δψ) =

∫
R
dxδφ(x)

(
∞∑
k=1

k∑
j=1

w
(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)](x)

)

+

∫
R
dxδψ(x)

(
∞∑
k=1

k∑
j=1

w
(k),t
n,j′ [φ×k;ψ×(k−1)](x)

)
,

(4.5.47)

which yields the desired formula for the variational derivatives in light of (4.3.1).

To see the second assertion for the symplectic gradient ∇sIn(φ), we recall that from

the fact that In(φ) = Ĩn(φ, φ), Remark 4.3.1, and (4.3.9) that we have the the identity

∇sIn(φ) = −i∇1Ĩn(φ, φ) = −i∇2̄Ĩn(φ, φ).

Substituting the identities for ∇1Ĩn(φ, φ),∇2̄Ĩn(φ, φ) into the right-hand side of the previous

equality completes the proof.

4.5.3 Partial Trace Connection of Wn to wn

We next connect the linear DVOs W̃
(k)
n constructed in Section 4.4 to the multilinear

Schwartz-valued operators w
(k)
n constructed in Section 4.5.1. We note that since the definition

of the Wn is fairly straightforward given the definition of W̃n, it will suffice to establish these

connections for the latter operators.
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It will be important to remember the following consequence of the fact that W̃
(k)
n

satisfies the good mapping property: the generalized partial trace

Tr2,...,k

(
W̃(k)

n |
k⊗
`=1

φ`〉 〈
k⊗
`=1

ψ`|

)
, (4.5.48)

which is a priori the element of L(S(R),S ′(R)) given by the property〈
Tr2,...,k

(
W̃(k)

n |
k⊗
`=1

φ`〉 〈
k⊗
`=1

ψ`|

)
φ, ψ

〉
S′(R)−S(R)

=

〈
W̃(k)

n

k⊗
`=1

φ`, ψ ⊗

〈
k⊗
`=1

ψ`, φ

〉
S′x1 (R)−Sx1 (R)

〉
S′(Rk)−S(Rk)

= 〈ψ1|φ〉

〈
W̃(k)

n

k⊗
`=1

φ`, ψ ⊗
k⊗
`=2

ψ`

〉
S′(Rk)−S(Rk)

, (4.5.49)

for every φ, ψ ∈ S(R), is in fact uniquely identifiable with the element in S(R2) which we

denote by

Φ
W̃

(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)

via 〈
Tr2,...,k

(
W̃(k)

n |
k⊗
`=1

φ`〉 〈
k⊗
`=1

ψ`|

)
f, g

〉
S′(R)−S(R)

=

∫
R2

dxdx′Φ
W̃

(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)f(x′)g(x).

(4.5.50)

Moreover, the map

S(R)2k → S(R2), (φ1, . . . , φk, ψ1, . . . , ψk) 7→ Φ
W̃

(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk) (4.5.51)

is continuous. The objective of the next lemma is to obtain a formula for Φ
W̃

(k)
n

in terms of

w
(k)
n .
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Lemma 4.5.7. Let k, n ∈ N. Then the following properties hold:

• For any π ∈ Sk with π(1) = 1, we have that for all (x, x′) ∈ R2,

Φ
W̃

(k)
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k)
n [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(k)](x),

(4.5.52)

and

Φ
W̃

(k),∗
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w
(k),t
n,1 [φ1, ψπ(2), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x).

(4.5.53)

• For any π ∈ Sk with π(1) 6= 1, we have that for all (x, x′) ∈ R2,

Φ
W̃

(k)
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w
(k),t

n,π−1(1)′ [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), ψπ(1), ψπ(π−1(1)+1), . . . , ψπ(k)](x),

(4.5.54)

and

Φ
W̃

(k),∗
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w
(k),t

n,π−1(1)[ψπ(1), . . . , ψπ(π−1(1)−1), φπ(1), ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x),

(4.5.55)

Proof. We will begin by establishing the first claim for the identity permutation, that is, for

each k ∈ N and for any φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R), we have that

Φ
W̃

(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x), ∀(x, x′) ∈ R2.

(4.5.56)

By Lemma 4.4.3, it suffices to prove (4.5.56) by induction on

{(k, n) ∈ N2 : k ≤ n}. (4.5.57)
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We begin with the base case, (k, n) = (1, 1). Since W̃
(1)
1 = Id1 ∈ L(S(R),S ′(R)), we have

the Schwartz kernel identity(
W̃

(1)
1 |φ1〉 〈ψ1|

)
(x1;x′1) = φ1(x1)ψ1(x′1) = ψ1(x′1)w

(1)
1 [φ1](x1), ∀(x1, x

′
1) ∈ R2, (4.5.58)

which proves (4.5.56) for the base case.

For the induction step, suppose that there is some n ∈ N such that for all inte-

gers j ∈ N≤n the following assertion holds: for all integers k ∈ N≤j and for all functions

φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R), we have that

Φ
W̃

(k)
j

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′) = ψ1(x′)w
(k)
j [φ1, . . . , φk;ψ2, . . . , ψk](x), ∀(x, x′) ∈ R2.

(4.5.59)

We now prove (4.5.59) with j = n + 1. By the recursion relation (4.4.4) and the bilinearity

of the generalized trace, we have that

Tr2,...,k

(
W̃

(k)
n+1 |

k⊗
`=1

φ`〉 〈
k⊗
`=1

ψ`|

)

= Tr2,...,k

(
(−i∂x1)W̃(k)

n |
k⊗
r=1

φr〉 〈
k⊗
r=1

ψr|

)

+ κ
n−1∑
m=1

∑
`+j=k

Tr2,...,k

(
δ(X1 −X`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

)
|
k⊗
r=1

φr〉 〈
k⊗
r=1

ψr|

)
=: Term1,k + Term2,k. (4.5.60)

We first analyze Term1,k. Since (−i∂x1)W̃
(k)
n ∈ L(S(Rk),S ′(Rk)), it follows from the defini-

tion of the generalized partial trace that

Term1,k = (−i∂x) Tr2,...,k

(
W̃(k)

n |
k⊗
r=1

φr〉 〈
k⊗
r=1

ψr|

)
. (4.5.61)
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It follows from the induction hypothesis that

(−i∂x) Tr2,...,k

(
W̃(k)

n |
k⊗
r=1

φr〉 〈
k⊗
r=1

ψr|

)
(x;x′)

=
(

(−i∂x)ΦW̃
(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)
)

(x;x′)

= ψ1(x′)(−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x) (4.5.62)

with equality in the sense of tempered distributions on R2. Substituting (4.5.62) into (4.5.61),

we obtain that

Term1,k = ψ1(x′)(−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x). (4.5.63)

We next analyze Term2,k. By the computed action of the Hörmander product δ(X1−

X`+1)
(
W̃

(`)
m ⊗ W̃

(j)
n−m

)
given by (4.4.38) and the definition of Φ

W̃
(`)
m

and Φ
W̃

(j)
n−m

we have

that

Tr2,...,k

(
δ(X1 −X`+1)

(
W̃(`)

m ⊗ W̃
(j)
n−m

)
|
k⊗
r=1

φr〉 〈
k⊗
r=1

ψr|

)
(x;x′)

= Φ
W̃

(`)
m

(φ1, . . . , φ`;ψ1, . . . , ψ`)(x;x′)Φ
W̃

(j)
n−m

(φ`+1, . . . , φk;ψ`+1, . . . , ψk)(x;x) (4.5.64)

in the sense of tempered distributions. Using the induction hypothesis for W̃
(`)
m and W̃

(j)
n−m,

respectively, we also have that

Φ
W̃

(`)
m

(φ1, . . . , φ`;ψ1, . . . , ψ`)(x;x′)

= ψ1(x′)w(`)
m [φ1, . . . , φ`;ψ2, . . . , ψ`](x), ∀(x, x′) ∈ R2

(4.5.65)

and

Φ
W̃

(j)
n−m

(φ`+1, . . . , φk;ψ`+1, . . . , ψk](x;x′)

= ψ`+1(x′)w
(j)
n−m[φ`+1, . . . , φk;ψ`+2, . . . , ψk](x), ∀(x, x′) ∈ R2.

(4.5.66)
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Substituting the two preceding expressions into (4.5.64), we find that

(4.5.64) = ψ1(x′)ψ`+1(x)w(`)
m [φ1, . . . , φ`;ψ2, . . . , ψ`](x)w

(j)
n−m[φ`+1, . . . , φk;ψ`+2, . . . , ψk](x).

(4.5.67)

Hence,

Term2,k(x;x′) (4.5.68)

= κ

n−1∑
m=1

∑
`+j=k

ψ1(x′)ψ`+1(x)w(`)
m [φ1, . . . , φ`;ψ2, . . . , ψ`](x)w

(j)
n−m[φ`+1, . . . , φk;ψ`+2, . . . , ψk](x).

Combining our identities for Term1,k and Term2,k, we obtain that

(Term1,k + Term2,k)(x;x′)

= ψ1(x′)(−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x)

+ κ
n−1∑
m=1

∑
`+j=k

ψ1(x′)ψ`+1(x)w(`)
m [φ1, . . . , φ`;ψ2, . . . , ψ`](x)w

(j)
n−m[φ`+1, . . . , φk;ψ`+2, . . . , ψk](x),

with equality in S ′(R2). Now applying the recursive relation (4.5.2) for w
(k)
n+1[φ1, . . . , φk;ψ2, . . . , ψk],

we find that

(Term1,k + Term2,k)(x;x′) = ψ1(x′)w
(k)
n+1[φ1, . . . , φk;ψ2, . . . , ψk](x), (4.5.69)

which completes the proof of the induction step for showing (4.5.56).

We now use (4.5.56) to prove the adjoint assertion of the lemma. For f, g ∈ S(R),

we have by definition of the generalized partial trace (see Proposition 3.2.4) that〈
Tr2,...,k

(
W̃(k),∗

n |
k⊗
r=1

φr〉 〈
k⊗
r=1

ψr|

)
f, g

〉
S′(R)−S(R)

= 〈ψ1|f〉

〈
W̃(k),∗

n

k⊗
r=1

φr, g ⊗
k⊗
r=2

ψr

〉
S′(Rk)−S(Rk)

.

(4.5.70)
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By Lemma 3.1.1,〈
W̃(k),∗

n

k⊗
r=1

φr, g ⊗
k⊗
r=2

ψr

〉
S′(Rk)−S(Rk)

=

〈
W̃

(k)
n (g ⊗

k⊗
r=2

ψr),
k⊗
r=1

φr

〉
S′(Rk)−S(Rk)

. (4.5.71)

We can rewrite

〈ψ1|f〉

〈
W̃

(k)
n (g ⊗

k⊗
r=2

ψr),
k⊗
r=1

φr

〉
S′(Rk)−S(Rk)

=

〈
Tr2,...,k

(
W̃

(k)
n |g ⊗

k⊗
r=2

ψr〉 〈f ⊗
k⊗
r=2

φr|

)
ψ1, φ1

〉
S′(R)−S(R)

.

(4.5.72)

Now applying (4.5.56) to this expression, we obtain that the right-hand side of (4.5.72)

equals ∫
R2

dxdx′Φ
W̃

(k)
n

(g, ψ2, . . . , ψk; f, φ2, . . . , φk)(x;x′)ψ1(x′)φ1(x)

=

∫
R2

dxdx′f(x′)w
(k)
n [g, ψ2, . . . , ψk;φ2, . . . , φk](x)ψ1(x′)φ1(x)

=

∫
R2

dxdx′f(x′)w
(k)
n [g, ψ2, . . . , ψk;φ2, . . . , φk](x)ψ1(x′)φ1(x). (4.5.73)

Next, using the Fubini-Tonelli theorem and applying Lemma 4.5.5 in the x-integration, we

find that

(4.5.73) = 〈ψ1|f〉
∫
R
dxw

(k),t
n,1 [φ1, ψ2, . . . , ψk;φ2, . . . , φk](x)g(x)

= 〈ψ1|f〉
∫
R
dxw

(k),t
n,1 [φ1, ψ2, . . . , ψk;φ2, . . . , φk](x)g(x). (4.5.74)

Since f, g ∈ S(R) were arbitrary, going back to the left-hand side of (4.5.70) and using the

uniqueness and properties of Φ
W

(k),∗
n

, we conclude the pointwise in R2 identity

Φ
W

(k),∗
n

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′) = ψ1(x′)w
(k),t
n,1 [φ1, ψ2, . . . , ψk;φ2, . . . , φk](x). (4.5.75)
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We next need to generalize (4.5.56) and (4.5.75) to arbitrary permutations π ∈ Sk.

By definition of the notation

W̃
(k)
n,(π(1),...,π(k)) := π ◦ W̃(k)

n ◦ π−1,

we have that for any φ1, . . . , φk ∈ S(R),

W̃
(k)
n,(π(1),...,π(k))(

k⊗
r=1

φr) = π ◦ W̃(k)
n ((

k⊗
r=1

φr) ◦ π−1), (4.5.76)

where the reader will recall from (3.3.28) and (3.3.29) how a permutation acts on vectors

and functions, respectively. Setting f (k) :=
⊗k

r=1 φr, we have by definition that

(f (k) ◦ π−1)(xk) = f (k)(xπ−1(1), . . . , xπ−1(k)) =
k∏
r=1

φr(xπ−1(r)). (4.5.77)

Making the change of variable r′ = π−1(r), we see that

k∏
r=1

φr(xπ−1(r)) =
k∏

r′=1

φπ(r′)(xr′) = (
k⊗
r=1

φπ(r))(xk). (4.5.78)

Therefore,

Tr2,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |⊗

k
`=1φ`〉 〈⊗k`=1ψ`|

)
= Tr2,...,k

((
π ◦ W̃(k)

n

)
|
k⊗
`=1

φπ(`)〉 〈
k⊗
`=1

ψ`|

)
(4.5.79)

as elements of Lgmp(S(R),S ′(R)). Next, it follows from the characterizing property of the

generalized partial trace and the fact that we define a permutation to act on tempered

distribution by duality that〈
Tr2,...,k

((
π ◦ W̃(k)

n

)
|
k⊗
`=1

φπ(`)〉 〈
k⊗
`=1

ψ`|

)
f, g

〉
S′(R)−S(R)

= 〈ψ1|f〉

〈
W̃(k)

n

k⊗
`=1

φπ(`), (g ⊗
k⊗
`=2

ψ`) ◦ π−1

〉
S′(Rk)−S(Rk)

. (4.5.80)
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Repeating the computation which yielded (4.5.78), we find that

(g ⊗
k⊗
`=2

ψ`) ◦ π−1 = (

π−1(1)−1⊗
`=1

ψπ(`))⊗ g ⊗ (
k⊗

`=π−1(1)+1

ψπ(`)), (4.5.81)

where per our notation convention, the tensor product on the right-hand side is to be inter-

preted as g ⊗
⊗k

`=2 ψπ(`) if π(1) = 1. Thus,

(4.5.80) = 〈ψ1|f〉

〈
W̃(k)

n

k⊗
`=1

φπ(`), (

π−1(1)−1⊗
`=1

ψπ(`))⊗ g ⊗ (
k⊗

`=π−1(1)+1

ψπ(`))

〉
S′(Rk)−S(Rk)

=

〈
Tr2,...,k

W̃(k)
n |

k⊗
`=1

φπ(`)〉 〈ψ1 ⊗ (

π−1(1)−1⊗
`=2

ψπ(`))⊗ g ⊗ (
k⊗

`=π−1(1)+1

ψπ(`)|

f, ψπ(1)

〉
S′(R)−S(R)

.

By definition of Φ
W̃

(k)
n

, this last expression equals∫
R2

dxdx′Φ
W̃

(k)
n

(φπ(1), . . . , φπ(k);ψ1, ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x;x′)f(x′)ψπ(1)(x).

Applying the result we have just established for the identity permutation, recorded in

(4.5.56), and using the Fubini-Tonelli theorem and Lemma 4.5.5, we obtain∫
R2

dxdx′ψ1(x′)w(k)
n [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x)f(x′)ψπ(1)(x)

=

∫
R2

dxdx′w
(k),t

n,π−1(1)′ [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), ψπ(1), ψπ(π−1(1)+1), . . . , ψπ(k)](x)

× ψ1(x′)g(x)f(x′).

Since f, g ∈ S(R) were arbitrary, we conclude that

Φ
W

(k)
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w
(k),t

n,π−1(1)′ [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), ψπ(1), ψπ(π−1(1)+1), . . . , ψπ(k)](x), (x, x′) ∈ R2.

(4.5.82)
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For the assertions about the adjoint, consider the expression∫
R2

dxdx′Φ
W̃

(k),∗
n

(φπ(1), . . . , φπ(k);ψ1, ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x;x′)f(x′)ψπ(1)(x).

(4.5.83)

By (4.5.75), we have

Φ
W̃

(k),∗
n

(φπ(1), . . . , φπ(k);ψ1, ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x;x′)

= ψ1(x′)w
(k),t
n,1 [φπ(1), ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x).

(4.5.84)

By the characterizing property of w
(k),t
n,1 from Lemma 4.5.5, followed by a second application

of Lemma 4.5.5, we have that∫
R
dx ψπ(1)(x)w

(k),t
n,1 [φπ(1), ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x)

=

∫
R
dx φπ(1)(x)w

(j)
n [ψπ(1), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x)

=

∫
R
dx g(x)w

(k),t

n,π−1(1)[ψπ(1), . . . , ψπ(π−1(1)−1), φπ(1), ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x).

(4.5.85)

By substituting (4.5.84) into (4.5.83), then using Fubini-Tonelli theorem and the preceding

identity, we conclude that

Φ
W

(k),∗
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w
(k),t

n,π−1(1)[ψπ(1), . . . , ψπ(π−1(1)−1), φπ(1), ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x)

(4.5.86)

point-wise in R2, which establishes the final claim and completes the proof.

By taking the (1-particle) trace of the DVOs

Tr2,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |

k⊗
`=1

φ`〉 〈
k⊗
`=1

ψ`|

)
, Tr2,...,k

(
W̃

(k),∗
n,(π(1),...,π(k)) |

k⊗
`=1

φ`〉 〈
k⊗
`=1

ψ`|

)
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and using the definition (4.5.23) of I
(k)
n , we obtain the following corollary of Lemma 4.5.7:

Corollary 4.5.8. Let k, n ∈ N. Then for any permutation π ∈ Sk and any functions

φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R), we have the identities

Tr1,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |⊗

k
`=1φ`〉 〈⊗k`=1ψ`|

)
= I(k)

n [φπ(1), . . . , φπ(k);ψπ(1), . . . , ψπ(k)], (4.5.87)

Tr1,...,k

(
W̃

(k),∗
n,(π(1),...,π(k)) |⊗

k
`=1φ`〉 〈⊗k`=1ψ`|

)
= I

(k)
n [ψπ(1), . . . , ψπ(k);φπ(1), . . . , φπ(k)]. (4.5.88)

4.6 The Involution: Hn and Ib,n

In this section, we prove Theorem 4.1.7. We recall the definition of the trace func-

tionals

Hn(Γ) := Tr(Wn · Γ), ∀Γ ∈ G∗∞. (4.6.1)

The statement of the theorem is then the following:

Theorem 4.1.7 (Involution theorem). Let n,m ∈ N. Then

{Hn,Hm}G∗∞ ≡ 0 on G∗∞. (4.1.36)

As discussed in the introduction, we prove Theorem 4.1.7 by showing that the Poisson

commutativity of the functionals Hn on the weak Poisson manifold (G∗∞,A∞, {·, ·}G∗∞) is

equivalent to the Poisson commutativity of the functionals Ib,n on the weak Poisson manifold

(S(R;V),AS,V , {·, ·}L2,V). See (4.3.17), (4.3.19), and Proposition 4.3.2 for definition and

properties of this manifold. Since the Poisson commutativity of the Ib,n is established in

Proposition 1.3.7, this equivalence will complete the proof of Theorem 4.1.7.

Establishing this equivalence relies on the detailed correspondence between the ob-

servable ∞-hierarchies −iWn and the multilinear forms wn which we have obtained in

278



Section 4.5, the reduction to symmetric-rank-1 tensors described in Appendix 5, and the

demonstration of a Poisson morphism

ιm : (S(R;V),AS,V , {·, ·}L2,V)→ (G∗∞,A∞, {·, ·}G∗∞).

We establish the existence of this Poisson morphism in the next subsection.

4.6.1 The Mixed State Poisson Morphism

Analogous to Theorem 3.1.12 from Chapter 3, which shows that there is a Poisson

morphism between (S(R),AS , {·, ·}L2) and (G∗∞,A∞, {·, ·}G∗∞) given by

ι(φ) := ( |φ⊗k〉 〈φ⊗k|)k∈N, ∀φ ∈ S(R) (4.6.2)

Theorem 4.1.8 stated below demonstrates that we have a Poisson morphism ιm between the

weak Poisson manifolds (S(R;V),AS,V , {·, ·}L2,V) and (G∗∞,A∞, {·, ·}G∗∞) given by

ιm(γ) :=
1

2
( |φ⊗k1 〉 〈φ⊗k2 |+ |φ⊗k2 〉 〈φ⊗k1 |)k∈N, ∀γ =

1

2
odiag(φ1, φ2, φ2, φ1) ∈ S(R;V).

(4.6.3)

Theorem 4.1.8. The map ιm is a Poisson morphism of (S(R;V),AS,V , {·, ·}L2,V) into (G∗∞,A∞, {·, ·}G∗∞);

i.e., it is a smooth map with the property that

ι∗m{·, ·}G∗∞ = {ι∗m·, ι∗m·}L2,V , (4.1.42)

where ι∗m denotes the pullback of ιm.

Before proceeding with the proof of Theorem 4.1.8, we first record the Gâteaux deriva-

tive of the map ιm, which is used in the proof of the theorem. The computation is an easy

exercise relying on multilinearity which we leave to the reader.
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Lemma 4.6.1 (Derivative of ιm). The Gâteaux derivative of the map ιm is given by

dιm[γ](δγ)(k) =
1

2

k∑
α=1

(
|φ⊗(α−1)

1 ⊗ δφ1 ⊗ φ⊗k−α1 〉 〈φ⊗k2 |+ |φ⊗k2 〉 〈φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1 |

+ |φ⊗k1 〉 〈φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ⊗(k−α)

2 |+ |φ⊗(α−1)
2 ⊗ δφ2 ⊗ φ⊗(k−α)

2 〉 〈φ⊗k1 |
)
,

(4.6.4)

for every k ∈ N, where

γ =
1

2
odiag(φ1, φ2, φ2, φ1), δγ =

1

2
odiag(δφ1, δφ2, δφ2, δφ1) ∈ S(R;V). (4.6.5)

We now turn the proof of Theorem 4.1.8.

Proof of Theorem 4.1.8. The proof of this result proceeds similarly to the proof of Theo-

rem 3.1.12 from Chapter 3. Smoothness of ιm follows from its multilinear structure, therefore

it remains to check that

(i) ι∗mA∞ ⊂ AS,V ,

(ii) ι∗m{·, ·}G∗∞ = {ι∗m·, ι∗m·}L2,V .

We first prove assertion (i). Let F ∈ A∞, and set f := F ◦ ιm. By the chain rule for
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the Gâteaux derivative, we have that

df [γ](δγ) = dF [ιm(γ)](dιm[γ](δγ))

= i
∞∑
k=1

Tr1,...,k

(
dF [ιm(γ)](k)dιm[γ](δγ)(k)

)
=
i

2

∞∑
k=1

Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1 〉 〈φ⊗k2 |

)

+ Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k2 〉 〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1 |

)

+ Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ⊗(k−α)

2 〉 〈φ⊗k1 |

)

+ Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k1 〉 〈

k∑
α=1

φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ⊗(k−α)

2 |

)
, (4.6.6)

where the ultimate equality follows from application of Lemma 4.6.1.

Next, observe that by Definition 3.2.1 for the generalized trace and Definition 4.1.1

for the good mapping property, we have that

Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k2 〉 〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1 |

)

=

〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k2

〉
= 〈δφ1|ψF,2,k〉 , (4.6.7)

where ψF,2,k ∈ S(R) is the necessarily unique Schwartz function coinciding with the antilinear
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functional

δφ1 7→

〈〈
k∑

α=1

(·)⊗α φ⊗(k−1)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k2

〉
, δφ1

〉
S′(R)−S(R)

:=

〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k2

〉 (4.6.8)

and where the reader will recall the definition of the notation ⊗α from (4.4.32). By the same

reasoning,

Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k1 〉 〈

k∑
α=1

φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ⊗(k−α)

2 |

)
= 〈δφ2|ψF,1,k〉 , (4.6.9)

where ψF,1,k is the necessarily unique Schwartz function coinciding with the antilinear func-

tional 〈
k∑

α=1

(·)⊗α φ⊗(k−1)
2

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k1

〉
. (4.6.10)

Next, using that dF [ιm(γ)](k) is skew-adjoint,

Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1 〉 〈φ⊗k2 |

)

= −

〈
dF [ιm(γ)]φ⊗k2

∣∣∣∣∣
k∑

α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1

〉

= −

〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ⊗(k−α)

1

∣∣∣∣∣dF [ιm(γ)]φ⊗k2

〉
= −〈δφ1|ψF,2,k〉

= −〈ψF,2,k|δφ1〉 . (4.6.11)

By the same reasoning,

Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ⊗(k−α)

2 〉 〈φ⊗k1 |

)
= −〈ψF,1,k|δφ2〉 . (4.6.12)
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Substituting identities (4.6.7), (4.6.9), (4.6.11), and (4.6.12) into (4.6.6), we find that

df [ιm(γ)](δγ) =
i

2

∞∑
k=1

(〈δφ1|ψF,2,k〉+ 〈δφ2|ψF,1,k〉 − 〈ψF,2,k|δφ1〉 − 〈ψF,1,k|δφ2〉)

=
i

2
(〈δφ1|ψF,2〉+ 〈δφ2|ψF,1〉 − 〈ψF,2|δφ1〉 − 〈ψF,1|δφ2〉), (4.6.13)

where we have defined ψF,1 :=
∑∞

k=1 ψF,1,k and similarly for ψF,2. Note that these are well-

defined Schwartz functions since dF (k) is zero for all but finitely many k by assumption that

F ∈ A∞ (recall that A∞ is generated by the set (4.1.16)). The preceding formula can be

rewritten as

df [ιm(γ)](δγ) =
1

2
trC2⊗C2

(
Jodiag(ψF,1, ψF,2, ψF,2, ψF,1)odiag(δφ2, δφ1, δφ1, δφ2)

)
, (4.6.14)

where J = diag(i,−i, i,−i). Recalling definition (4.3.17) for the symplectic form ωL2,V , we

then see from (4.6.14) that the symplectic gradient of f with respect to the form ωL2,V , which

we denote by ∇s,Vf , is given by

∇s,Vf(γ) =
1

2
odiag(ψF,1, ψF,2, ψF,2, ψF,1). (4.6.15)

That the map

S(R;V)→ S(R;V), γ 7→∇s,Vf(γ) (4.6.16)

is smooth follows from the fact that γ depends smoothly on (ψF,1, ψF,2), a consequence of

the good mapping property. This completes our verification of assertion (i).

We now verify assertion (ii) using the formula (4.6.15). By definition of the Hamil-

tonian vector field in (P3) of Definition 3.3.1 together with Proposition 4.1.4, which gives a
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formula for the vector field XG(ιm(γ)), we have that

{F,G}G∗∞(ιm(γ))

= dF [ιm(γ)](XG(ιm(γ))

=
∞∑
k=1

iTr1,...,k

(
dF [ιm(γ)](k)

(
∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1

dG[ιm(γ)]
(j)
(α,k+1,...,k+j−1), ιm(γ)(k+j−1)

])))

By the bosonic symmetry of dG[ιm(γ)](j),

∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1

dG[ιm(γ)]
(j)
(α,k+1,...,k+j−1), ιm(γ)(k+j−1)

])

=
∞∑
j=1

Trk+1,...,k+j−1

([
k∑

α=1

j∑
β=1

dG[ιm(γ)]
(j)
(k+1,...,k+β−1,α,k+β,...,...,k+j−1), ιm(γ)(k+j−1)

])
.

(4.6.17)

It is then a short computation using the Schwartz kernel theorem and the definition of ιm

that

j∑
β=1

dG[ιm(γ)]
(j)
(k+1,...,k+β−1,α,k+β,...,k+j−1)ιm(γ)(k+j−1)

=
1

2

(
|φ⊗(k−1)

1 ⊗α dG[ιm(γ)](j)(φ⊗j1 )〉 〈φ⊗(k+j−1)
2 |+ |φ⊗(k−1)

2 ⊗α dG[ιm(γ)](j)(φ⊗j2 )〉 〈φ⊗(k+j−1)
1 |

)
,

(4.6.18)

where φ
⊗(k−1)
1 ⊗α dG[ιm(γ)](j)(φ⊗j1 ) is the element of S ′(Rk+j−1) defined by(

φ
⊗(k−1)
1 ⊗α dG[ιm(γ)](j)(φ⊗j1 )

)
(xk+j−1)

:= φ
⊗(α−1)
1 (xα−1)φ

⊗(k−α)
1 (xα+1;k)

(
j∑

β=1

dG[ιm(γ)](j)(φ⊗j1 )(xk+1;k+β−1, xα, xk+β;k+j−1)

)
,

(4.6.19)

and similarly for φ
⊗(k−1)
2 ⊗αdG[ιm(γ)](j)(φ⊗j2 ). Since dG[ιm(γ)] has the good mapping property

by assumption that G ∈ A∞, Remark 3.3.4 and the definition of the generalized trace imply
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that for every 1 ≤ α ≤ k,

Trk+1,...,k+j−1

(
j∑

β=1

dG[ιm(γ)]
(j)
(k+1,...,k+β−1,α,k+β,...,k+j−1)ιm(γ)(k+j−1)

)

=
1

2

(
|φ⊗(α−1)

1 ⊗ ψG,1,j ⊗ φ⊗(k−α)
1 〉 〈φ⊗k2 |+ |φ

⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2 〉 〈φ⊗k1 |
)
,

(4.6.20)

where ψG,1,j, ψG,2,j ∈ S(R) are the necessarily unique Schwartz functions satisfying

〈φ|ψG,1,j〉 =

〈
j∑

β=1

φ⊗β φ⊗(j−1)
2

∣∣∣∣∣dG[ιm(γ)](j)φ⊗j1

〉
(4.6.21)

〈φ|ψG,2,j〉 =

〈
j∑

β=1

φ⊗β φ⊗(j−1)
1

∣∣∣∣∣dG[ιm(γ)]φ⊗j2

〉
, ∀φ ∈ S(R). (4.6.22)

By repeating the same arguments and now using that the skew-adjointness of dG[ιm(γ)](j),

we also obtain that for every 1 ≤ α ≤ k,

Trk+1,...,k+j−1

(
j∑

β=1

ιm(γ)(k+j−1)dG[ιm(γ)]
(j)
(α,k+1,...,k+j−1)

)

= −1

2

(
|φ⊗k1 〉 〈φ

⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2 |+ |φ⊗k2 〉 〈φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1 |
)
.

(4.6.23)
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Substituting identities (4.6.20) and (4.6.23) into (4.6.17) above, we find that

{F,G}G∗∞(ιm(γ))

=
i

2

∞∑
k=1

Tr1,...,k

(
dF [ιm(γ)](k)

(
∞∑
j=1

|
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1 〉 〈φ⊗k2 |

+ |
k∑

α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2 〉 〈φ⊗k1 |

))

+
i

2

∞∑
k=1

Tr1,...,k

(
dF [ιm(γ)](k)

(
∞∑
j=1

|φ⊗k2 〉 〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1 |

+ |φ⊗k1 〉 〈
k∑

α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2 |

))

=
i

2

∞∑
j=1

∞∑
k=1

〈
φ⊗k2

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1

)〉

+

〈
φ⊗k1

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2

)〉

+

〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k2

〉

+

〈
k∑

α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k1

〉
, (4.6.24)

where the ultimate equality is immediate from the definition of the generalized trace. Re-

calling the definitions of ψF,1,k and ψF,2,k in (4.6.7) and (4.6.9), respectively, we have that〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k2

〉
= 〈ψG,1,j|ψF,2,k〉 , (4.6.25)〈

k∑
α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k1

〉
= 〈ψG,2,j|ψF,1,k〉 . (4.6.26)
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Now using the skew-adjointness of dF [ιm(γ)](k), we find that〈
φ⊗k2

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1

)〉

= −

〈
k∑

α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ⊗(k−α)

1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k2

〉
= −〈ψF,2,k|ψG,1,j〉 . (4.6.27)

Similarly,〈
φ⊗k1

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ⊗(k−α)

2

)〉
= −〈ψF,1,k|ψG,2,j〉 . (4.6.28)

Hence,

{F,G}G∗∞(ιm(γ)) =
i

2

∞∑
j=1

∞∑
k=1

〈ψG,1,j|ψF,2,k〉+ 〈ψG,2,j|ψF,1,k〉 − 〈ψF,2,k|ψG,1,j〉 − 〈ψF,1,k|ψG,2,j〉

=
i

2
(〈ψG,1|ψF,2〉+ 〈ψG,2|ψF,1〉 − 〈ψF,2|ψG,1〉 − 〈ψF,1|ψG,2〉), (4.6.29)

where we have defined ψF,` :=
∑∞

k=1 ψF,`,k, for ` ∈ {1, 2}, and similarly for ψG,`. Note that

these are well-defined elements of S(R) since ψF,`,k, ψG,`,j are identically zero for all but

finitely many k, j. By (4.6.15), we know that

∇s,Vf(γ) =
1

2
odiag(ψF,1, ψF,2, ψF,2, ψF,1), (4.6.30)

∇s,Vg(γ) =
1

2
odiag(ψG,1, ψG,2, ψG,2, ψG,1). (4.6.31)

Hence by recalling the definition (4.3.17) for the symplectic form ωL2,V and Proposition 4.3.2,

287



then proceeding by direct computation, we find that

{f, g}L2,V(γ)

= ωL2,V(∇s,Vf(γ),∇s,Vg(γ))

=
1

2

∫
R
dx trC2⊗C2

(
diag(i,−i, i,−i)odiag(ψF,1, ψF,2, ψF,2, ψF,1)odiag(ψG,2, ψG,1, ψG,1, ψG,2)

)
(x)

= (4.6.29). (4.6.32)

Therefore, we have shown that

{F,G}G∗∞(ιm(γ)) = {f, g}L2,V(γ), (4.6.33)

completing the proof.

4.6.2 Relating the Functionals Hn and Ib,n

We now use the analysis of Section 4.5.3 to relate the functionals Hn, defined in

(4.1.33), on the infinite-particle phase space G∗∞ to the functionals Ib,n, defined in (4.1.40),

on the one-particle mixed-state phase space S(R;V), defined in (4.1.39).

Proposition 4.6.2. For every n ∈ N, it holds that

Hn(ιm(γ)) = Ib,n(γ), ∀γ ∈ S(R;V). (4.6.34)

Proof. Fix n ∈ N and let γ = 1
2
odiag(φ1, φ2, φ2, φ1), for φ1, φ2 ∈ S(R). Unpacking the

definition (4.1.33) of Hn, the definition (4.1.32) for Wn, and the bilinearity of the generalized

trace, we see that

Hn(ιm(γ)) =
1

4

∞∑
k=1

1

k!

∑
π∈Sk

Tr1,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |φ

⊗k
1 〉 〈φ⊗k2 |

)
+ Tr1,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |φ

⊗k
2 〉 〈φ⊗k1 |

)
+ Tr1,...,k

(
W̃

(k),∗
n,(π(1),...,π(k)) |φ

⊗k
1 〉 〈φ⊗k2 |

)
+ Tr1,...,k

(
W̃

(k),∗
n,(π(1),...,π(k)) |φ

⊗k
2 〉 〈φ⊗k1 |

)
.

(4.6.35)
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By Corollary 4.5.8, we have the identities

Tr1,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |φ

⊗k
1 〉 〈φ⊗k2 |

)
= I(k)

n (φ×k1 ;φ2
×k

),

Tr1,...,k

(
W̃

(k)
n,(π(1),...,π(k)) |φ

⊗k
2 〉 〈φ⊗k1 |

)
= I(k)

n (φ×k2 ;φ1
×k

),

Tr1,...,k

(
W̃

(k),∗
n,(π(1),...,π(k)) |φ

⊗k
1 〉 〈φ⊗k2 |

)
= I

(k)
n (φ×k2 ;φ1

×k
),

Tr1,...,k

(
W̃

(k),∗
n,(π(1),...,π(k)) |φ

⊗k
2 〉 〈φ⊗k1 |

)
= I

(k)
n (φ×k1 ;φ2

×k
).

(4.6.36)

for every k ∈ N and π ∈ Sk. Consequently, by Remark 4.5.4,

Hn(ιm(γ)) =
1

4

∞∑
k=1

(
I(k)
n (φ×k1 ;φ2

×k
) + I(k)

n (φ×k2 ;φ1
×k

) + I
(k)
n (φ×k2 ;φ1

×k
) + I

(k)
n (φ×k1 ;φ2

×k
)

)
=

1

4

(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1) + Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
. (4.6.37)

By (1.2.26), we know that the Ĩn have the involution property

Ĩn(f, g) = Ĩn(g, f), ∀f, g ∈ S(R). (4.6.38)

So, we obtain by the definition of Ib,n in (4.1.40) that

Hn(ιm(γ)) =
1

2

(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
= Ib,n(γ), (4.6.39)

as required.

4.6.3 Proof of Theorem 4.1.7 and Theorem 4.1.9

The goal of this subsection is to complete the proof of Theorem 4.1.7:

Theorem 4.1.7 (Involution theorem). Let n,m ∈ N. Then

{Hn,Hm}G∗∞ ≡ 0 on G∗∞. (4.1.36)
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As detailed in the introduction, we will establish Theorem 4.1.7 by proving Theo-

rem 4.1.9, the statement of which we recall here.

Theorem 4.1.9 (Poisson commutativity equivalence). For any n,m ∈ N,

{Ib,n, Ib,m}L2,V(γ) = 0, ∀γ ∈ S(R;V), (4.1.48)

if and only if

{Hn,Hm}G∗∞(Γ) = 0, ∀Γ ∈ G∗∞. (4.1.49)

We refer to (4.1.40) for the definition of Ib,n. In light of Proposition 1.3.7 which estab-

lishes the validity of (4.1.48), Theorem 4.1.7 is then an immediate corollary of Theorem 4.1.9.

Thus we focus on proving Theorem 4.1.9.

Proof of Theorem 4.1.9. The implication that

{Hn,Hm}G∗∞ ≡ 0 =⇒ {Ib,n, Ib,m}L2,V ≡ 0

is a consequence of Theorem 4.1.8 and Proposition 4.6.2. Indeed, the latter states that

Hn(ιm(γ)) = Ib,n(γ),

and hence by Theorem 4.1.8, we have

{Ib,n, Ib,m}L2,V(γ) = {Hn,Hm}G∗∞(ιm(γ)) = 0.

To show the reverse implication, we first claim that it suffices to show that

{Hn,Hm}G∗∞(Γ) = 0, ∀Γ = (γ(k))k∈N, γ
(k) =

1

2

(
|f⊗kk 〉 〈g

⊗k
k |+ |g

⊗k
k 〉 〈f

⊗k
k |
)
, fk, gk ∈ S(R).

(4.6.40)
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Indeed, for any k ∈ N, Corollary 5.0.24 gives that finite linear combinations of the form

Nk∑
j=1

aj
2

(
|f⊗kj 〉 〈g⊗kj |+ |g⊗kj 〉 〈f⊗kj |

)
, aj ∈ C, fj, gj ∈ S(R), Nk ∈ N (4.6.41)

are dense in g∗k (recall (4.1.14)). Since by definition G∗∞ is the topological direct product of

the g∗k (recall (4.1.15)), elements Γ = (γ(k))k∈N ∈ G∗∞ of the form

γ(k) =
∞∑
j=1

ajk
2

(
|f⊗kjk 〉 〈g

⊗k
jk |+ |g

⊗k
jk 〉 〈f

⊗k
jk |
)
, k ∈ N, (4.6.42)

where fjk, gjk ∈ S(R) and ajk ∈ C with ajk = 0 for all but finitely many j ∈ N, are dense

in G∗∞. Now recalling the definition (4.1.17) for the Poisson bracket {Hn,Hm}G∗∞ and using

the bilinearity of the generalized trace, we need to show that for Γ in the form of (4.6.42),

0 = {Hn,Hm}G∗∞(Γ)

=
∞∑
k=1

∞∑
j=1

iajk
2

Tr1,...,k

(
[−iWn,−iWm]

(k)
G∞

(
|f⊗kjk 〉 〈g

⊗k
jk |+ |g

⊗k
jk 〉 〈f

⊗k
jk |
))

=
∞∑
j=1

ajk{Hn,Hm}G∗∞(Γj), (4.6.43)

where

Γj = (γ
(k)
j )k∈N, γ

(k)
j :=

1

2

(
|f⊗kjk 〉 〈g

⊗k
jk |+ |g

⊗k
jk 〉 〈f

⊗k
jk |
)
. (4.6.44)

Note that because [−iWn,−iWm]
(k)
G∞

is zero for all but finitely many k, and for each fixed

k ∈ N, ajk is zero for all but finitely many j, it follows that there are only finitely many

nonzero terms in the double series above, and consequently, there are no issues of convergence.

(4.6.40) will imply that each summand in (4.6.43) is zero, so by continuity of {Hn,Hm}G∗∞
and by density of elements of the form (4.6.42) in G∗∞, we arrive at the desired implication.

291



Thus, we proceed to show (4.6.40). Unpacking the definition of {Hn,Hm}G∗∞(Γ), we

see that

{Hn,Hm}G∗∞(Γ) =
i

2

∞∑
k=1

Tr1,...,k

(
[−iWn,−iWm]

(k)
G∞

(
|f⊗kk 〉 〈g

⊗k
k |+ |g

⊗k
k 〉 〈f

⊗k
k |
))

(4.6.45)

For each k ∈ N and λ ∈ C, consider the element γk,λ ∈ S(R;V) defined by

γk,λ :=
1

2
odiag(λfk, λgk, λgk, λfk) (4.6.46)

Then by the assumption (4.1.48) and Theorem 4.1.8,

0 = {Ib,n, Ib,m}L2,V(γk,λ) = {Hn,Hm}G∗∞(ιm(γk,λ))

=
∞∑
j=1

iTr1,...,j

(
[−iWn,−iWm]

(j)
G∞
ιm(γk,λ)

(j)
)

=
i

2

∞∑
j=1

|λ|2j Tr1,...,j

(
[−iWn,−iWm]

(j)
G∞

( |f⊗jk 〉 〈g
⊗j
k |+ |g

⊗j
k 〉 〈f

⊗j
k |)

)
=:

i

2
ρk(λ). (4.6.47)

ρk is well-defined on C, since there are only finitely many indices j for which the summand

is nonzero. Since for any r ∈ N,

0 = ((∂λ∂λ)
rρk)(0) = r! Tr1,...,r

(
[−iWn,−iWm]

(r)
G∞

( |f⊗rk 〉 〈g
⊗r
k |+ |g

⊗r
k 〉 〈f

⊗r
k |)

)
, (4.6.48)

it follows that

Tr1,...,k

(
[−iWn,−iWm]

(k)
G∞

( |f⊗kk 〉 〈g
⊗k
k |+ |g

⊗k
k 〉 〈f

⊗k
k |)

)
= 0. (4.6.49)

Therefore, each summand in the right-hand side of (4.6.45) vanishes, yielding (4.6.40). Thus,

the proof of Theorem 4.1.8 is complete.
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4.6.4 Nontriviality

In this subsection, we prove that the statement of Theorem 4.1.7 is nontrivial in the

sense that the functionals Hn do not Poisson commute with every element of A∞. The proof

of this fact proceeds by a reduction to proving a one-particle result.

Proposition 4.6.3. For every n ∈ N, there exists a functional F ∈ A∞ and an element

Γ ∈ G∗∞ such that

{F,Hn}G∗∞(Γ) 6= 0. (4.6.50)

Proof. We proceed by contradiction and suppose that for every F ∈ A∞, it holds that

{F,Hn}G∗∞ ≡ 0 on G∗∞. So by the Definition 3.3.1(P3) for the Hamiltonian vector field, we

have that

0 = {F,Hn}G∗∞(Γ) = dF [Γ](XHn(Γ)). (4.6.51)

By duality, it follows that XHn ≡ 0 on G∗∞. In particular, for any pure state Γ = ι(φ), where

ι is as in (4.6.2) and φ ∈ S(R), we have by Theorem 4.1.10 (to be proved in the next section)

that

XHn(ι(φ))(1) = |φ〉 〈∇sIn(φ)|+ |∇sIn(φ)〉 〈φ| = 0 ∈ g∗1. (4.6.52)

Taking the 1-particle trace of the right-hand side and using the characterization of the

symplectic gradient (see Definition 3.3.11), we obtain that

0 = dIn[φ](φ) =
∞∑
k=1

2kI(k)
n [φ×k;φ

×k
], (4.6.53)

where the ultimate equality follows by direct computation. However, (4.6.53) is a contradic-

tion by Lemma 4.5.3, and therefore the proof is complete.
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4.7 The Equations of Motion: nGP and nNLS

In this last section, we prove Theorem 4.1.10. Before recalling the statement of this

theorem, we first recall that for each n ∈ N, the Hamiltonian functionals Hn are given by

the formula

Hn(Γ) := Tr(Wn · Γ), ∀Γ ∈ G∗∞ (4.7.1)

and the Hamiltonian equation of motion defined by the functional Hn on G∗∞, which we have

called the n-th GP-hierarchy (nGP), is given by

d

dt
Γ = XHn(Γ), (4.7.2)

where XHn is the Hamiltonian vector field associated to Hn.

Theorem 4.1.10 (Connection between (nGP) and (nNLS)). Let n ∈ N. Let I ⊂ R be a

compact interval and let φ ∈ C∞(I;S(R)) be a solution to the (nNLS) with lifespan I. If we

define

Γ ∈ C∞(I;G∗∞), Γ :=
(
|φ⊗k〉 〈φ⊗k|

)
k∈N, (4.1.51)

then Γ is a solution to the (nGP).

Theorem 4.1.10 asserts that (nGP) admits a special class of factorized solutions of

the form

Γ = (γ(k))k∈N, γ(k) := |φ⊗k〉 〈φ⊗k| , φ ∈ C∞(I;S(R)), (4.7.3)

where φ solves the n-th nonlinear Schrödinger equation (nNLS):(
d

dt
φ

)
(t) = ∇sIn(φ(t)), ∀t ∈ I, (4.7.4)
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and where ∇s is the symplectic gradient with respect to the L2 standard symplectic structure

(recall Definition 3.3.11 and Remark 3.3.12). We note that existence and uniqueness for the

(nNLS) equation in the class C∞(I;S(R)) follows from the inverse scattering results of

[8, 102, 103].

4.7.1 nGP Hamiltonian Vector Fields

We first relate the formula given by Proposition 4.1.4 for the Hamiltonian vector field

XHn to the nonlinear operators wn. This connection underpins the proof of Theorem 4.1.10.

For n ∈ N, Proposition 4.1.4 gives

XHn(Γ)(`) =
∞∑
j=1

j Tr`+1,...,`+j−1

([∑̀
α=1

(−iWn)
(j)
(α,`+1,...,`+j−1), γ

(`+j−1)

])
, ` ∈ N, Γ ∈ G∗∞.

(4.7.5)

The main lemma is a formula for

Tr`+1,...,`+j−1

([∑̀
α=1

(−iWn)
(j)
(α,`+1,...,`+j−1), γ

(`+j−1)

])

in the special case where γ(`+j−1) is a mixed state, i.e.

γ(`+j−1) =
1

2

(
|f⊗(`+j−1)〉 〈g⊗(`+j−1)|+ |g⊗(`+j−1)〉 〈f⊗(`+j−1)|

)
, f, g ∈ S(R). (4.7.6)

Lemma 4.7.1. Let `, j ∈ N. Suppose that γ(`+j−1) is of the form (4.7.6). Then for any
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α ∈ N≤` and β ∈ N≤j, it holds that

Tr`+1,...,`+j−1

(
(Wn,sa)

(j)
(`+1,...,`+β−1,α,`+β,...,`+j−1)γ

(`+j−1)
)

(x`;x
′
`)

=
1

4
f⊗(`−1)(xα−1, xα+1;`)g

⊗`(x′`)

×
(
w

(j),t
n,β′ [f

×j; g×(j−1)](xα) + w
(j),t
n,β [g×(β−1), f , g(j−β); f

×(j−1)
](xα)

)
+

1

4
g⊗(`−1)(xα−1, xα+1;`)f

⊗`(x′`)

×
(
w

(j),t
n,β′ [g

×j; f
×(j−1)

](xα) + w
(j),t
n,β [f×(β−1), g, f×(j−β); g×(j−1)](xα)

)
, (4.7.7)

and

Tr`+1,...,`+j−1

(
γ(`+j−1)(Wn,sa)

(j)
(`+1,...,`+β−1,α,`+β,...,`+j−1)

)
(x`;x

′
`)

=
1

4
g⊗`(x`)f

⊗(`−1)(x′α−1, x
′
α+1;`)

×
(
w

(j),t
n,β′ [f

×j; g×(j−1)](x′α) + w
(j),t
n,β [g×(β−1), f , g×(j−β); f

×(j−1)
](x′α)

)
+

1

4
f⊗`(x`)g

⊗(`−1)(x′α−1, x
′
α+1;`)

×
(
w

(j),t
n,β′ [g

×j; f
×(j−1)

](x′α) + w
(j),t
n,β [f×(β−1), g, f×(j−β); g×(j−1)](x′α)

)
. (4.7.8)

In all cases, equality holds in the sense of tempered distributions.

Proof. By considerations of symmetry, it suffices to consider the case α = `. Then by

Proposition 3.3.1 for the (`+ j − 1)-particle extension, Proposition 3.2.4 for the generalized
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partial trace, and the definition (4.4.74) for Wn,sa, we find that

Tr`+1,...,`+j−1

(
W

(j)
n,sa,(`+1,...,`+β−1,`,`+β,...,`+j−1)γ

(`+j−1)
)

=
1

4
Tr`+1,...,`+j−1

(
W̃

(j)
n,(`+1,...,`+β−1,`,`+β,...,`+j−1) |f

⊗(`+j−1)〉 〈g⊗(`+j−1)|
)

+
1

4
Tr`+1,...,`+j−1

(
W̃

(j),∗
n,(`+1,...,`+β−1,`,`+β,...,`+j−1) |f

⊗(`+j−1)〉 〈g⊗(`+j−1)|
)

+
1

4
Tr`+1,...,`+j−1

(
W̃

(j)
n,(`+1,...,`+β−1,`,`+β,...,`+j−1) |g

⊗(`+j−1)〉 〈f⊗(`+j−1)|
)

+
1

4
Tr`+1,...,`+j−1

(
W̃

(j),∗
n,(`+1,...,`+β−1,`,`+β,...,`+j−1) |g

⊗(`+j−1)〉 〈f⊗(`+j−1)|
)

=
1

4
|f⊗(`−1)〉 〈g⊗(`−1)| ⊗

(
Tr2,...,j

(
W̃

(j)
n,(2,...,β,1,β+1,...,j) |f

⊗j〉 〈g⊗j|
)

+ Tr2,...,j

(
W̃

(j),∗
n,(2,...,β,1,β+1,...,j) |f

⊗j〉 〈g⊗j|
))

+
1

4
|g⊗(`−1)〉 〈f⊗(`−1)| ⊗

(
Tr2,...,j

(
W̃

(j)
n,(2,...,β,1,β+1,...,j) |g

⊗j〉 〈f⊗j|
)

+ Tr2,...,j

(
W̃

(j),∗
n,(2,...,β,1,β+1,...,j) |g

⊗j〉 〈f⊗j|
))

,

(4.7.9)

where the ultimate equality follows from the tensor product structure. We introduce the

permutation π ∈ Sj defined by

π(a) :=


a+ 1, 1 ≤ a ≤ β − 1

1, a = β

a, β + 1 ≤ a ≤ j

, (4.7.10)

so that we can then write

W̃
(j)
n,(2,...,β,1,β+1,...,j) = W̃

(j)
n,(π(1),...,π(j)) (4.7.11)

and similarly for the adjoint. Using the notation Φ
W̃

(j)
n,(π(1),...,π(j))

introduced in (4.5.50), and

similarly for the adjoint, we have that

Tr2,...,j

(
W̃

(j)
n,(π(1),...,π(j)) |f

⊗j〉 〈g⊗j|
)

(x;x′) + Tr2,...,j

(
W̃

(j),∗
n,(π(1),...,π(j)) |f

⊗j〉 〈g⊗j|
)

(x;x′)

= Φ
W̃

(j)
n,(π(1),...,π(j))

(f, . . . , f ; g, . . . , g)(x;x′) + Φ
W̃

(j),∗
n,(π(1),...,π(j))

(f, . . . , f ; g, . . . , g)(x;x′)

(4.7.12)
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and

Tr2,...,j

(
W̃

(j)
n,(π(1),...,π(j)) |g

⊗j〉 〈f⊗j|
)

(x;x′) + Tr2,...,j

(
W̃

(j),∗
n,(π(1),...,π(j)) |g

⊗j〉 〈f⊗j|
)

(x;x′)

= Φ
W̃

(j)
n,(π(1),...,π(j))

(g, . . . , g; f, . . . , f)(x;x′) + Φ
W̃

(j),∗
n,(π(1),...,π(j))

(g, . . . , g; f, . . . , f)(x;x′)

(4.7.13)

in the sense of tempered distributions on R2. Next, applying Lemma 4.5.7, we obtain that

for π(1) = 1 it holds that

(4.7.12) = g(x′)

(
w(j)
n [f×j; g×(j−1)](x) + w

(j),t
n,1 [f, g×(j−1); f

×(j−1)
](x)

)
, (4.7.14)

and

(4.7.13) = f(x′)
(
w(j)
n [g×j; f

×(j−1)
](x) + w

(j),t
n,1 [g, f×(j−1); g×(j−1)](x)

)
, (4.7.15)

while if π(1) 6= 1, we have

(4.7.12) = g(x′)

(
w

(j),t

n,π−1(1)′ [f
×j; g×(j−1)](x) + w

(j),t

n,π−1(1)[g
×(π−1(1)−1), f , g×(j−π−1(1)); f

×(j−1)
](x)

)
,

(4.7.16)

and

(4.7.13) = f(x′)
(
w

(j),t

n,π−1(1)′ [g
×j; f

×(j−1)
](x) + w

(j),t

n,π−1(1)[f
(π−1(1)−1), g, f×(j−π−1(1)); g×(j−1)](x)

)
.

(4.7.17)

Since π−1(1) = β by definition of the permutation π, we obtain (4.7.7) after a little book-

keeping.

To obtain (4.7.8) from (4.7.7), observe that the self-adjointness of W
(j)
n,sa and γ(`+j−1)

implies the Schwartz kernel identity

Tr`+1,...,`+j−1

(
W

(j)
n,sa,(`+1,...,`+β−1,α,`+β,...,`+j−1)γ

(`+j−1)
)

(x′`;x`)

= Tr`+1,...,`+j−1

(
γ(`+j−1)W

(j)
n,sa,(`+1,...,`+β−1,α,`+β,...,`+j−1)

)
(x`;x

′
`).

(4.7.18)
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Substituting (4.7.7) into the left-hand side of the preceding identity yields the desired con-

clusion.

We conclude this subsection by recording the required formula of the Hamiltonian

vector field XHn which follows from the previous lemma and some algebraic manipulations.

Lemma 4.7.2. Suppose that Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N, for some φ ∈ S(R). Then for any

n ∈ N, we have the Schwartz kernel identity

XHn(Γ)(`)(x`;x
′
`)

= − i
2

∞∑
j=1

∑̀
α=1

|φ⊗(`−1)〉 〈φ⊗(`−1)| (xα−1, xα+1;`;x
′
α−1, x

′
α+1;`)

×

(
φ(x′α)

j∑
β=1

(
w

(j),t
n,β′ [φ

×j;φ
×(j−1)

] + w
(j),t
n,β [φ×(β−1), φ, φ(j−β);φ

×(j−1)
]

)
(xα)

−φ(xα)

j∑
β=1

(
w

(j),t
n,β′ [φ

×j;φ
×(j−1)

] + w
(j),t
n,β [φ×(β−1), φ, φ(j−β);φ

×(j−1)
]

)
(x′α)

)
(4.7.19)

for every ` ∈ N.

Proof. We use the formula (4.7.5) and recalling definition (4.1.32) for Wn, we obtain that

XHn(Γ)(`)(x`;x
′
`)

= −i
∞∑
j=1

1

(j − 1)!

∑
π∈Sj

Tr`+1,...,`+−1

([∑̀
α=1

W
(j)
n,sa,(π(α),π(`+1),...,π(`+β−1)), γ

(`+j−1)

])
,

(4.7.20)

where here, Sj denotes the symmetric group on the set {α, ` + 1, . . . , ` + j − 1}. We can

decompose Sj by

Sj =
⋃

r∈{α,`+1,...,`+j−1}

{π ∈ Sj : π−1(α) = r} =: Sj,r. (4.7.21)
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Note that each set in the partition has cardinality (j−1)!. It is a straightforward computation

using the bosonic symmetry of γ(`+j−1) that

Tr`+1,...,`+j−1

([
W

(j)
n,sa,(π(α),π(`+1),...,π(`+j−1)), γ

(`+j−1)
])

=

Tr`+1,...,`+j−1

([
W

(j)
n,sa,(α,`+1,...,`+j−1), γ

(`+j−1)
])
, r = α

Tr`+1,...,`+j−1

([
W

(j)
n,sa,(`+1,...,r,α,r+1,...,`+j−1), γ

(`+j−1)
])
, r ∈ {`+ 1, . . . , `+ j − 1}

.

(4.7.22)

Using these observations and applying Lemma 4.7.1 to (4.7.20), we obtain the Schwartz

kernel identity

(4.7.20) = −i
∞∑
j=1

∑̀
α=1

j∑
β=1

Tr`+1,...,`+j−1

([
W

(j)
n,sa,(`+1,...,`+β−1,α,`+β,...,`+j−1), γ

(`+j−1)
])

(x`;x
′
`)

= − i
2

∞∑
j=1

∑̀
α=1

|φ⊗(`−1)〉 〈φ⊗(`−1)| (xα−1, xα+1;`;x
′
α−1, x

′
α+1;`)

×

(
φ(x′α)

j∑
β=1

(
w

(j),t
n,β′ [φ

×j;φ
×(j−1)

] + w
(j),t
n,β [φ×(β−1), φ, φ×(j−β);φ

×(j−1)
]

)
(xα)

− φ(xα)

j∑
β=1

(
w

(j),t
n,β′ [φ

×j;φ
×(j−1)

] + w
(j),t
n,β [φ×(β−1), φ, φ×(j−β);φ

×(j−1)
]

)
(x′α)

)
.

(4.7.23)

This yields the desired formula.

4.7.2 Proof of Theorem 4.1.10

In this subsection, we prove Theorem 4.1.10.

Proof of Theorem 4.1.10. Fix n ∈ N. We would like to establish that Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N,

where φ ∈ C∞(I;S(R)), satisfies

d

dt
Γ = XHn(Γ), (4.7.24)
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i.e. Γ is a solution to the n-th GP hierarchy, if

d

dt
φ = ∇sIn(φ), (4.7.25)

i.e. φ is a solution to the n-th NLS. By the Leibnitz rule,(
d

dt
Γ

)(`)

=
∑̀
α=1

|φ⊗(α−1) ⊗ d

dt
φ⊗ φ⊗(`−α)〉 〈φ⊗`|+ |φ⊗`〉 〈φ⊗(α−1) ⊗ d

dt
φ⊗ φ⊗(`−α)| .

(4.7.26)

Substituting equation (4.7.25) into the right-hand side of the preceding equality, we obtain

that(
d

dt
Γ

)(`)

=
∑̀
α=1

|φ⊗(α−1) ⊗∇sIn(φ)⊗ φ⊗(`−α)〉 〈φ⊗`|+ |φ⊗`〉 〈φ⊗(α−1) ⊗∇sIn(φ)⊗ φ⊗(`−α)| .

(4.7.27)

Now the reader will recall that ∇sIn is the symplectic gradient with respect to the form ωL2

and by (4.5.40) is given by the formula

∇sIn(φ) = − i
2

∞∑
j=1

{
j∑

β=1

(
w

(j),t
n,β [φ×(β−1), φ, φ×(j−β);φ

×(j−1)
] + w

(j),t
n,β′ [φ

×j;φ
×(j−1)

]

)}
.

(4.7.28)

Substituting identity (4.7.28) into the right-hand side of (4.7.27) and comparing the resulting

expression with the formula (4.7.19) given by Lemma 4.7.2 yields the desired conclusion.

4.7.3 An Example: the Fourth GP Hierarchy

We conclude this section with an example computation of one the n-th GP hierarchies.

Specifically, we explicitly compute the equation of motion for the fourth GP hierarchy, which

is the next one after the usual GP hierarchy (the third one in our terminology). In light of
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our Theorem 4.1.10, the fourth GP hierarchy corresponds to the complex mKdV equation

∂tφ = ∂3
xφ− 6κ|φ|2∂xφ, κ ∈ {±1}. (4.7.29)

Example 4.7.3 (Fourth GP hierarchy). We first recall from Example 4.4.8 that the

W4 =

(
(−i∂x1)3,−3κi

2
(∂x1 + ∂x2)δ(X1 −X2), 0, . . .

)
. (4.7.30)

Substituting (4.7.30) into the right-hand side of the (4.1.50), using Lemma 3.5.10 and the

fact that dH[Γ](j) = −iW(j)
n once again, the fourth GP equation, written in operator form,

simplifies to

∂tγ
(`) =

∑̀
α=1

2∑
j=1

j∑
β=1

Tr`,...,`+j−1

(
(−iW(j)

4 )(`+1,...,`+β−1,α,`+β,...,`+j−1)γ
(`+j−1)

)
− Tr`+1,...,`+j−1

(
γ(`+j−1)(−iW(j)

4 )(`+1,...,`+β−1,α,`+β,...,`+j−1)

)
= −i

∑̀
α=1

(
W

(1)
4,(α)γ

(`) + γ(`)W
(1)
4,(α) + Tr`+1

(
W

(2)
4,(α,`+1)γ

(`+1) − γ(`+1)W
(2)
4,(α,`+1)

)
+ Tr`+1

(
W

(2)
4,(`+1,α)γ

(`+1) − γ(`+1)W
(2)
4,(`+1,α)

))
,

where we recall that the subscript notation is used to specify the variables on which the W
(j)
n

operators act. By direct computation, this expression simplifies to yield

∂tγ
(`+1) =

∑̀
α=1

(∂3
xα + ∂3

x′α
)γ(`) − 6κ

(
B+
α;`+1(∂xαγ

(`+1)) +B−α;`+1(∂x′αγ
(`+1))

)
, (4.7.31)

which is the fourth GP hierarchy, and which can readily be seen to yield (4.7.29) for factorized

solutions.
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Symbol Definition

xk or xi;i+k (x1, . . . , xk) or (xi, . . . , xi+k)

dxk or dxi;i+k dx1 · · · dxk or dxi · · · dxi+k
N or N0 natural numbers or natural numbers inclusive of zero
N≤i or N≥i {n ∈ N : n ≤ i} or {n ∈ N : n ≥ i}
Sk symmetric group on k elements
C∞c (Rk) or D(Rk) smooth, compactly supported functions on Rk
S(Rk) or Ss(Rk) Schwartz space or bosonic Schwartz space on Rk: Definition 3.3.24
S(Rk;V) Schwartz functions on Rk with values in V: (4.1.39), (4.3.12)
S ′(Rk) or S ′s(Rk) tempered distributions or bosonic tempered distributions on Rk
D′(Rk) distributions on Rk
L(E,F ) continuous linear maps between locally convex spaces E and F
dF the Gâteaux derivative of F : Definition 2.1.4
∇ or ∇s, ∇s,V , ∇s,C the real or symplectic L2 gradients: Definition 3.3.11 and Remark 3.3.12,

Proposition 4.3.2, Proposition 4.3.5
∇1,∇1̄,∇2,∇2̄ variational derivatives: (4.3.1), (4.3.26)

A
(k)
(π(1),...,π(k)) conjugation of an operator by a permutation: see (3.3.42)

Symk(f) symmetrization operator for functions: Definition 3.3.23

Symk(A
(k)), Sym(A) symmetrization operator for operators: Definition 3.3.30

B±i;j , Bi;j contraction operators: (4.1.22) (4.1.23)

φ⊗k or φ×k k-fold tensor or cartesian product of φ with itself: (3.3.64) or (3.3.65)
ωL2 , ωL2,V , ωL2,V L2 symplectic forms: (3.3.15), (4.3.17), (4.3.29)
AS , AS,V , AS,C see (3.3.20), (4.3.19), (4.3.32)
{·, ·}L2 , {·, ·}L2,V , {·, ·}L2,C L

2 Poisson brackets: (3.3.21), (4.3.21), (4.3.33)

(G∞, [·, ·]G∞) Lie algebra of observable ∞-hierarchies: see discussion around Proposi-
tion 4.1.2

(G∗∞,A∞, {·, ·}G∗∞) Lie-Poisson manifold of density matrix ∞-hierarchies: (4.1.17) and dis-
cussion around Proposition 4.1.4

wn, wn,(ψ1,ψ2) recursive functions: (1.3.8), (4.5.31)

w
(k)
n ; w

(k),t
n,j , w

(k),t
n,j′ k-particle component of wn: (4.5.2); partial transposes of w

(k)
n :

Lemma 4.5.5

In, Ĩn, Ib,n involutive functionals: (1.3.9), (4.1.38), (4.1.40)

W̃n the unsymmetrized operators: (4.1.24)
Wn,sa the self-adjoint operators: (4.4.74)
Wn the bosonic, self-adjoint operators: (4.1.32)
Hn the n-th Hamiltonian functional: (4.1.33)
Tr1,...,N generalized trace: Definition 3.2.1
Trk+1,...,N generalized partial trace: Proposition 3.2.4
WF (u) wave front set of a distribution u: Definition 4.0.6

Table 4.1: Notation
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Appendix 1

The 1D NLS as an Integrable System

In this appendix, we sketch the proof that the 1-particle functionals In are involution

with respect to the Poisson bracket {·, ·}L2 . We generalize the presentation to allow for

the case where the two Schwartz functions ψ, ψ̄ are independent, since this is the actual

1-particle result that we use in Section 4.6. Hence, rather than considering the scalar NLS

equation (1.3.7), we consider the system{
(i∂t + ∆)ψ1 = 2κψ2

1ψ2

(i∂t −∆)ψ2 = −2κψ2
2ψ1

, κ ∈ {±1}. (1.0.1)

Our presentation will proceed at a high level, following the exposition in [28, Chapter I

and Chapter III]; however, the reader may consult Chapter I, §7 and Chapter III, §4 of

the aforementioned reference to fill in any omitted analytic details. We also consider the

L-periodic case rather than entire real line. The extension to the latter case follows from

truncation and periodization to fundamental domain [−L,L], application of the periodic

result, and then passage to the limit L→∞.

1.1 Transition and Monodromy Matrices

We start by fixing some notation. For L > 0, we let TL denote the domain [−L,L]

with periodic boundary conditions and C∞(TL) the space of smooth functions on TL. Equiv-

alently, C∞(TL) is the space of smooth functions on the real line whose derivatives of all
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order are 2L-periodic. Given a (C2 ⊗ C2)-valued functional M(ψ1,ψ2) on C∞(TL), we define

M †
(ψ1,ψ2)

:= M(ψ2,ψ1) (1.1.1)

where the complex conjugate of the matrix is taken entry-wise. Evidently, the † operation

is involutive.

The system (1.0.1) is a compatibility condition for the overdetermined system of

equations {
∂xF(ψ1,ψ2)(t, x, λ) = U(ψ1,ψ2)(t, x, λ)F(ψ1,ψ2)(t, x, λ),

∂tF(ψ1,ψ2)(t, x, λ) = V(ψ1,ψ2)(t, x, λ)F(ψ1,ψ2)(t, x, λ)
, (1.1.2)

where F(ψ1,ψ2) is a spacetime C2-valued column vector and U(ψ1,ψ2) and V(ψ1,ψ2) are λ-dependent

2× 2 matrices given by

U(ψ1,ψ2)(λ) := U0,(ψ1,ψ2) + λU1, U0,(ψ1,ψ2) :=
√
κ

(
0 ψ2

ψ1 0

)
, U1 :=

1

2i

(
1 0
0 −1

)
(1.1.3)

and

V(ψ1,ψ2)(λ) := V0,(ψ1,ψ2) + λV1,(ψ1,ψ2) + λ2V2,

V0,(ψ1,ψ2) := i
√
κ

(√
κψ1ψ2 −∂xψ2

∂xψ1 −
√
κψ1ψ2

)
, V1,(ψ1,ψ2) := −U0,(ψ1,ψ2), V2 := −U1.

(1.1.4)

In the preceding and following material, λ plays the role of an auxiliary spectral parameter.

It will be convenient going forward to introduce notation for the 2× 2 Pauli matrices:

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, σ+ :=

σ1 + iσ2

2
, σ− :=

σ1 − iσ2

2
.

(1.1.5)

Written using U and V , the compatibility condition for the system (1.1.2) is then

∂tU(ψ1,ψ2) − ∂xV(ψ1,ψ2) +
[
U(ψ1,ψ2), V(ψ1,ψ2)

]
= 0 (1.1.6)
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point-wise in λ. In the sequel, we will omit the subscript (ψ1, ψ2), which shows that the

matrices are really matrix-valued functionals evaluated at a specific point, except when

invoking the dependence is necessary. We hope that this omission will not result in any

confusion on the reader’s part.

There is a geometric interpretation to (1.1.6) in terms of local connection coefficients

in the vector bundle R2×C2. Equation (1.1.6) then says that the (U, V )-connection has zero

curvature. For this reason, (1.1.6) is often called the zero curvature representation in the

literature. We will not emphasize this geometric aspect in the appendix, as it does not play

a role for us.

Now fix a time t0 and consider the auxiliary linear problem

∂xF = U(t0, x, λ)F. (1.1.7)

The object of interest associated to (1.1.7) is the monodromy matrix, which is the matrix of

parallel transport along the contour t = t0, −L ≤ x ≤ L positively oriented:

TL(λ, t0) :=
x

exp

(∫ L

−L
dxU(x, t0, λ)

)
, (1.1.8)

where
x

exp denotes the path-ordered exponential.1 By using the superposition principle for

parallel transport and the fact that parallel transport along a closed curve is trivial, one can

show that the monodromy matrices are conjugate for different values of t. Consequently, the

1For A ∈ L∞(TL;Cn ⊗ Cn), the path-ordered exponential of A is defined by

x
exp

(∫ x

−L
dzA(z)

)
:=

∞∑
n=0

∫ x

−L
dxn

∫ xn

−L
dxn−1 · · ·

∫ x2

−L
dx1A(xn) · · ·A(x1). (1.1.9)
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trace of the monodromy matrix is constant in time:

trC2 TL(λ, t2) = trC2 TL(λ, t1), ∀t1, t2 ∈ R, (1.1.10)

where trC2 denotes the 2 × 2 matrix trace. Furthermore, one can show that the choice of

fundamental domain [−L,L] in the definition (1.1.8) is immaterial to computing the trace.

We conclude that

F̃L(λ) := trC2 TL(λ) (1.1.11)

is a generating function for the conservation laws of (1.0.1).

More generally, we have the transition matrix, which is the matrix of parallel transport

from y to x along the x-axis:

T (x, y, λ) :=
x

exp

(∫ x

y

dzU(z, λ)

)
. (1.1.12)

The monodromy matrix is then the special case of the transition matrix obtained by setting

(x, y) = (L,−L). From the definition (1.1.12), it is immediate that the transition matrix

satisfies the Cauchy problem{
∂xT (x, y, λ) = U(x, λ)T (x, y, λ)

T (x, y, λ)|x=y = IC2

, (1.1.13)

where IC2 is the identity matrix on C2. T (x, y, λ) is a smooth function of (x, y) and is also

analytic in λ due to the analyticity of U(x, λ) and the initial datum. By using that
∫ x
y

= −
∫ y
x

in (1.1.12), we see that T (x, y, λ) also satisfies the ODE

∂yT (x, y, λ) = −T (x, y, λ)U(y, λ). (1.1.14)

Additionally, the transition matrix has several elementary properties, which we record with

the following lemma.

308



Lemma 1.1.1. The following properties hold:

(i) T (x, z, λ)T (z, y, λ) = T (x, y, λ),

(ii) T (x, y, λ) = T−1(y, x, λ),

(iii) detC2T (x, y, λ) = 1.

Proof. Properties (i) and (ii) are straightforward, and we leave them to the reader. For

property (iii), the reader will recall Jacobi’s formula that for any n× n matrix A(t),

d

dt
detCn(A(t)) = trCn

(
adj(A(t))

dA(t)

dt

)
, (1.1.15)

where adj(A(t)) is the adjugate of A(t) (i.e. the transpose of the cofactor matrix of A(t)).

Fixing y, λ and applying Jacobi’s formula to T (x, y, λ) with independent variable x instead

of t and also using the equation (1.1.13), we find that detC2(T (x, y, λ)) is a solution to the

Cauchy problem{
∂xdetC2(T (x, y, λ)) = trC2(adj(T (x, y, λ))U(x, λ)T (x, y, λ)),

detC2(T (x, y, λ))|x=y = 1
(1.1.16)

Since

adj(T (x, y, λ)) =

(
T 22(x, y, λ) −T 12(x, y, λ)
−T 21(x, y, λ) T 11(x, y, λ)

)
, (1.1.17)

it follows by direct computation that

T (x, y, λ)adj(T (x, y, λ)) = detC2(T (x, y, λ))IdC2 . (1.1.18)

So by the cyclicity and linearity of trace, detC2(T (x, y, λ)) is the unique constant solution to

the Cauchy problem{
∂xdetC2(T (x, y, λ))) = detC2(T (x, y, λ)) trC2(U(x, y, λ)IC2) = 0

detC2(T (x, y, λ))|x=y = 1
, (1.1.19)
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where we use that U(x, y, λ) is trace-less. Thus, the proof of (iii) is complete.

It is evident from its definition (1.1.3) that

U †(ψ1,ψ2)(x, λ) = σU(ψ1,ψ2)(x, λ̄)σ, (1.1.20)

where

σ =

{
σ1, κ = 1

σ2, κ = −1
, (1.1.21)

where κ is the defocusing/focusing parameter in (1.0.1) and σ1, σ2 are the Pauli matrices in

(1.1.5). The transition matrix also satisfies an important involution relation leading to the

special structure of the matrix T (x, y, λ), which we isolate in the next lemma.

Lemma 1.1.2. T (x, y, λ) has the involution property

σT(ψ1,ψ2)(x, y, λ̄)σ = T †(ψ1,ψ2)(x, y, λ). (1.1.22)

Consequently, we can write the monodromy matrix TL,ψ1,ψ2(λ) as

TL,(ψ1,ψ2)(λ) =

(
aL,(ψ1,ψ2)(λ) sgn(κ)b†L,(ψ1,ψ2)(λ̄)

bL,(ψ1,ψ2)(λ) a†L,(ψ1,ψ2)(λ̄)

)
, (1.1.23)

where a†L,(ψ1,ψ2)(λ) := aL,(ψ2,ψ1)(λ) and analogously for b†L,(ψ1,ψ2).

Proof. Since the Cauchy problem (1.1.13) has a unique solution and σ2 = IC2 , it suffices to

show that the matrix

T̃(ψ1,ψ2)(x, y, λ) := σT †(ψ1,ψ2)(x, y, λ̄)σ (1.1.24)

is a solution of (1.1.13).
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It is evident from T(ψ1,ψ2)(x, y, λ)|x=y = IC2 and σ2 = IC2 that the initial condition

holds. Now using that ∂x commutes with left- (and right-) multiplication by a constant

matrix and complex conjugation, we find that

∂xT̃(ψ1,ψ2)(x, y, λ) = σ∂xT(ψ2,ψ1)(x, y, λ̄)σ

= σU(ψ2,ψ1)(x, λ)T(ψ2,ψ1)(x, y, λ̄)σ

= σU †(ψ1,ψ2)(x, λ)T †(ψ1,ψ2)(x, y, λ̄)σ, (1.1.25)

where the penultimate equality follows from application of (1.1.13) with (ψ1, ψ2) replaced by

(ψ2, ψ1) and the ultimate equality follows from the definition of the dagger superscript. Since

σ2 = IC2 , we can use the associativity of matrix multiplication together with the identity

(1.1.20) to write

σU †(ψ1,ψ2)(x, λ)T †(ψ1,ψ2)(x, y, λ)σ =
(
σU †(ψ1,ψ2)(x, λ)σ

)(
σT †(ψ1,ψ2)(x, y, λ)σ

)
= U(ψ1,ψ2)(x, λ)T̃(ψ1,ψ2)(x, y, λ), (1.1.26)

which is exactly what we needed to show.

We now show the second assertion concerning the structure of the monodromy matrix.

We only present the details in the case κ = 1 and leave the κ = −1 case as an exercise for

the reader. Writing

T(ψ1,ψ2)(x, y, λ) =

(
T 11

(ψ1,ψ2)(x, y, λ) T 12
(ψ1,ψ2)(x, y, λ)

T 21
(ψ1,ψ2)(x, y, λ) T 22

(ψ1,ψ2)(x, y, λ)

)
, (1.1.27)

we see from direct computation that

σT(ψ1,ψ2)(x, y, λ̄)σ =

(
0 1
1 0

)(
T 12

(ψ1,ψ2)(x, y, λ̄) T 11
(ψ1,ψ2)(x, y, λ̄)

T 22
(ψ1,ψ2)(x, y, λ̄) T 21

(ψ1,ψ2)(x, y, λ̄)

)
=

(
T 22

(ψ1,ψ2)(x, y, λ̄) T 21
(ψ1,ψ2)(x, y, λ̄)

T 12
(ψ1,ψ2)(x, y, λ̄) T 11

(ψ1,ψ2)(x, y, λ̄)

)
. (1.1.28)
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Now by the involution property (1.1.22) and the definition of T †(ψ1,ψ2), we see that(
T 11

(ψ2,ψ1)
(x, y, λ) T 12

(ψ2,ψ1)
(x, y, λ)

T 21
(ψ2,ψ1)

(x, y, λ) T 22
(ψ2,ψ1)

(x, y, λ)

)
= T †(ψ1,ψ2)(x, y, λ)

=

(
T 22

(ψ1,ψ2)(x, y, λ̄) T 21
(ψ1,ψ2)(x, y, λ̄)

T 12
(ψ1,ψ2)(x, y, λ̄) T 11

(ψ1,ψ2)(x, y, λ̄)

)
. (1.1.29)

Evaluating this identity at (x, y) = (L,−L) and defining

aL,(ψ1,ψ2)(λ) := T 11
L,(ψ1,ψ2)(λ), bL,(ψ1,ψ2)(λ) := T 21

L,(ψ1,ψ2)(λ), (1.1.30)

we obtain the desired conclusion.

Remark 1.1.3. Since the transition matrix is an entire function of λ, it follows that the

functions aL,(ψ1,ψ2), a
†
L,(ψ1,ψ2), bL,(ψ1,ψ2), b

†
L,(ψ1,ψ2) are entire functions as well. In fact, they are

of exponential type L. Moreover, the unimodularity property (iii) for the transition matrix

implies the normalization condition

aL,(ψ1,ψ2)(λ)a†L,(ψ1,ψ2)(λ)− sgn(κ)bL,(λ1,λ2)(λ)b†L,(ψ1,ψ2)(λ) = 1, λ ∈ R. (1.1.31)

We close this subsection with an alternative way to see that the trace of the mon-

odromy matrix, which we called F̃L(λ) in (1.1.11), is conserved in time. By differentiating

both sides of equation (1.1.13) with respect to time and performing some algebraic manip-

ulation, one finds that

∂tT (t, x, y, λ) = V (t, x, λ)T (t, x, y, λ)− T (t, x, y, λ)V (t, y, λ) (1.1.32)

Since V is 2L-periodic and therefore V (t, L, λ) = V (t,−L, λ), it follows that the monodromy

matrix satisfies the von Neumann equation

∂tTL(t, λ) = [V (t, L, λ), TL(t, λ)]. (1.1.33)
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Since differentiation commutes with the trace and the trace of a commutator is zero, it

follows that

∂t trC2(TL(t, λ)) = 0. (1.1.34)

1.2 Integrals of Motion

We now use an asymptotic expansion for the generating functional F̃L(λ) (recall

(1.1.11)) to identify conserved quantities for the system (1.0.1). We start by finding a gauge

transformation that reduces the transition matrix to diagonal form expZ(x, y, λ):

T (x, y, λ) = (IC2 +W (x, λ)) exp(Z(x, y, λ))(IC2 +W (y, λ))−1, (1.2.1)

where W and Z are off-diagonal and diagonal matrices, respectively. We will see that W

and Z have the large real λ asymptotic expansions

W (x, λ) ∼
∞∑
n=1

Wn(x)

λn
, Z(x, y, λ) ∼ (x− y)λσ3

2i
+
∞∑
n=1

Zn(x, y, λ)

λn
, (1.2.2)

where the reader will recall the Pauli matrix σ3 from (1.1.5). Here and throughout the

appendix, the asymptotic should be interpreted as follows: for any k ∈ N,

o(|λ|−k) = sup
−L≤x≤L

‖W (x, λ)−
k∑

n=1

Wn(x)

λn
‖

+ sup
−L≤x,y,≤L

‖Z(x, y, λ)− (x− y)λσ3

2i
−

k∑
n=1

Zn(x, y, λ)

λn
‖

(1.2.3)

as |λ| → ∞ on the real line, where ‖ · ‖ denotes any matrix norm.

Proceeding formally to identify the relevant equations, we substitute (1.2.1) into the
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transition matrix differential equation (1.1.13) and use the Leibnitz rule to obtain that

U(x, λ)(IC2 +W (x, λ)) exp(Z(x, y, λ))(IC2 +W (y, λ))−1

= ∂xW (x, λ) exp(Z(x, y, λ))(IC2 +W (y, λ))−1

+ (IC2 +W (x, λ))∂xZ(x, y, λ) exp(Z(x, y, λ))(IC2 +W (y, λ))−1,

(1.2.4)

which can be manipulated to yield

U(x, λ)(IC2 +W (x, λ)) = ∂xW (x, λ) + (IC2 +W (x, λ))∂xZ(x, y, λ). (1.2.5)

Recalling from (1.1.3) that U(x, λ) = U0(x)+λU1, where U0 is off-diagonal and U1 is diagonal,

and decomposing both sides of (1.2.5) into off-diagonal and diagonal parts, we find that W

and Z satisfy the coupled system of equations{
∂xW +W∂xZ = U0 + λU1W

∂xZ = U0W + λU1

. (1.2.6)

Substituting the second equation into the first one and using that U1 anticommutes with W ,

we find that W satisfies the matrix Riccati equation

∂xW + iλσ3W +WU0W − U0 = 0. (1.2.7)

One can rewrite (1.2.7) as an integral equation and use the fixed-point method to show

that (1.2.7) has a smooth solution on TL for sufficiently large λ depending on the data

(‖φ‖L1(TL), ‖φ‖L∞(TL), L), with the asymptotic expansion (1.2.2). We can then solve for Z

subject to the initial condition Z(x, y, λ)|x=y = 0C2 by

Z(x, y, λ) =
λ(x− y)

2i
σ3 +

∫ x

y

dz U0(z)W (z, λ). (1.2.8)

In particular, the asymptotic expansion of Z is then determined by the asymptotic expansion

for W . W and Z satisfy (1.2.1) since both the left-hand side and right-hand side of the

equation (1.2.1) are solutions to the same Cauchy problem, which has a unique solution.
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Next, substituting the expansion
∑∞

n=1
Wn(x)
λn

into equation (1.2.7), we find that the

coefficients Wn(x) satisfy the recursion relation

W1(x) = −iσ3U0(x) = i
√
κ

(
0 −ψ2(x)

ψ1(x) 0

)
,

Wn+1(x) = iσ3

(
∂xWn(x) +

n−1∑
k=1

Wk(x)U0(x)Wn−k(x)

)
.

(1.2.9)

Evidently, the matrices Wn(x) are 2L-periodic and are polynomials of the derivatives of

U0(x). By equation (1.2.7) for W and the continuity method together with the equation

(1.2.8) for Z, one can show that the asymptotic (1.2.2) holds. In the next lemma, we record

an important involution property of the Wn. As before with U , we include the subscripts

(ψ1, ψ2) in the sequel to denote the underlying dependence.

Lemma 1.2.1. For every n ∈ N, it holds that Wn is off-diagonal and

W †
n,(ψ1,ψ2)(x) = σWn,(ψ1,ψ2)(x)σ, (1.2.10)

where σ is as in (1.1.21). Additionally, Wn,(ψ1,ψ2)(x) has the form

i
√
κ

(
0 −w†n,(ψ1,ψ2)(x)

wn,(ψ1,ψ2)(x) 0

)
, (1.2.11)

where the functions wn,(ψ1,ψ2)(x) satisfy the recursion relation

w1,(ψ1,ψ2)(x) = ψ1(x),

wn+1,(ψ1,ψ2)(x) = −i∂xwn(x) + κψ2(x)
n−1∑
k=1

wk,(ψ1,ψ2)(x)wn−k,(ψ1,ψ2)(x).
(1.2.12)

Proof. We prove the lemma by strong induction on n using the recursion formula (1.2.9).

The base case n = 1 follows from

U †0,(ψ1,ψ2)(x) = σU0,(ψ1,ψ2)(x)σ (1.2.13)
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and the fact that σ anti-commutes with σ3.

For the induction step, suppose that for some n ∈ N, the involution relation holds for

all k ∈ N≤n−1. Multiplying (1.2.9) by σ on the left and right and using that σ2 = IC2 , we

find that

σWn+1,(ψ1,ψ2)(x)σ

= iσσ3

(
∂xWn,(ψ1,ψ2)(x) +

n−1∑
k=1

Wk,(ψ1,ψ2)(x)U0,(ψ1,ψ2)(x)Wn−k,(ψ1,ψ2)(x)

)
σ

= −iσ3

(
∂x(σWn,(ψ1,ψ2)(x)σ) +

n−1∑
k=1

(σWk,(ψ1,ψ2)(x)σ)(σU0,(ψ1,ψ2)(x)σ)(σWn−k,(ψ1,ψ2)(x)σ)

)

= −iσ3

(
∂xW

†
n,(ψ1,ψ2)(x) +

n∑
k=1

W †
k,(ψ1,ψ2)(x)U †0,(ψ1,ψ2)(x)W †

n−k,(ψ1,ψ2)(x)

)
, (1.2.14)

where we again use (1.2.13) and the anti-commutativity of σ and σ3 to obtain the penultimate

equality and the induction hypothesis to obtain the ultimate equality. Since (iσ3)† = −iσ3

and the † operation is a homomorphism of algebras which commutes with differentiation,

(1.2.10) is proved. SinceW1,(ψ1,ψ2), . . . ,Wn,(ψ1,ψ2) are off-diagonal, it it follows from some basic

algebra and the diagonality and off-diagonality of σ3 and U0, respectively, that Wn+1,(ψ1,ψ2)

is off-diagonal. Thus, the proof of the induction step is complete.

Now since Wn,(ψ1,ψ2) is off-diagonal, it takes the form

Wn,(ψ1,ψ2) =

(
0 w12

n,(ψ1,ψ2)

w21
n,(ψ1,ψ2) 0

)
, w12

n,(ψ1,ψ2), w
21
n,(ψ1,ψ2) ∈ C∞(TL), (1.2.15)

which by direct computation implies that

σWn,(ψ1,ψ2)σ =

(
0 sgn(κ)w21

n,(ψ1,ψ2)

sgn(κ)w12
n,(ψ1,ψ2) 0

)
, (1.2.16)
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Now the involution relation (1.2.10) implies the equality(
0 sgn(κ)w21

n,(ψ1,ψ2)

sgn(κ)w12
n,(ψ1,ψ2) 0

)
= W †

n,(ψ1,ψ2) =

(
0 w12,†

n,(ψ1,ψ2)

w21,†
n,(ψ1,ψ2) 0

)
. (1.2.17)

Therefore, defining wn,(ψ1,ψ2) := w21
n,(ψ1,ψ2)/(i

√
κ), we can write Wn,(ψ1,ψ2) in the form

Wn,(ψ1,ψ2) = i
√
κ

(
0 −w†n,(ψ1,ψ2)(x)

wn,(ψ1,ψ2)(x) 0

)
, (1.2.18)

where by (1.2.9), the functions wn,(ψ1,ψ2)(x) satisfy the recursion relation

w1,(ψ1,ψ2)(x) = ψ1(x),

wn+1,(ψ1,ψ2)(x) = −i∂xwn,(ψ1,ψ2)(x) + κψ2(x)
n−1∑
k=1

wk,(ψ1,ψ2)(x)wn−k,(ψ1,ψ2)(x).
(1.2.19)

Thus, the proof of the lemma is complete.

By using the equation (1.2.7), one can also show that W(ψ1,ψ2)(x, λ) satisfies the same

involutive property as Wn. So we can write

W(ψ1,ψ2)(x, λ) = i
√
κ
(
w(ψ1,ψ2)(x, λ)σ− − w†(ψ1,ψ2)(x, λ̄)σ+

)
, (1.2.20)

where σ± are defined in (1.1.5) and where w(ψ1,ψ2) has the large real lambda asymptotic

expansion

w(ψ1,ψ2)(x, λ) ∼
∞∑
n=1

wn,(ψ1,ψ2)(x)

λn
. (1.2.21)
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Using equation (1.2.8) for Z(ψ1,ψ2)(x, y, λ) and evaluating (x, y) = (L,−L), we find that

ZL,(ψ1,ψ2)(λ) := Z(ψ1,ψ2)(L,−L, λ)

=
λL

i
σ3 +

∫ L

−L
dzU(ψ1,ψ2)(z)W(ψ1,ψ2)(z, λ)

=

(
−iλL 0

0 iλL

)
+

∫ L

−L
dz

(
0

√
κψ2(z)√

κψ1(z) 0

)(
0 −i

√
κw†(ψ1,ψ2)(z, λ)

i
√
κw(ψ1,ψ2)(z, λ) 0

)
=

(
−iλL+ iκ

∫ L
−L dzψ2(z)w(ψ1,ψ2)(z, λ) 0

0 iλL− iκ
∫ L
−L dzψ1(z)w†(ψ1,ψ2)(z, λ)

)
(1.2.22)

Evaluating both sides of equation (1.2.1) at (x, y) = (L,−L), we find that the monodromy

matrix TL(λ) has the representation

TL,(ψ1,ψ2)(λ) =
(
IC2 +W(ψ1,ψ2)(L, λ)

)
exp
(
ZL,(ψ1,ψ2)(λ)

)(
IC2 +W(ψ1,ψ2)(−L, λ)

)−1

.

(1.2.23)

We now turn to finding a formula for the generating function F̃L(λ) (recall (1.1.11))

in terms of the functions w and w†. We first have an important involution property for the

entries of ZL(λ).

Lemma 1.2.2. For every (ψ1, ψ2) ∈ S(R)2 and λ ∈ R sufficiently large so that w(ψ1,ψ2)(·, λ)

exists, it holds that∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ) =

∫ L

−L
dxψ1(x)w†

(ψ1,ψ2)
(x, λ) =

∫ L

−L
dxψ1(x)w(ψ2,ψ1)(x, λ).

(1.2.24)

In particular, if for every n ∈ N, we define

Ĩn(ψ1, ψ2) :=

∫ L

−L
dxψ2(x)wn,(ψ1,ψ2)(x), ∀(ψ1, ψ2) ∈ S(R)2, (1.2.25)
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then

Ĩn(ψ1, ψ2) = Ĩn(ψ2, ψ1). (1.2.26)

Proof. Since detC2(TL,(ψ1,ψ2)(λ)) = 1 by the unimodularity property Lemma 1.1.1(iii) and(
IC2 +W(ψ1,ψ2)(L, λ)

)−1

= IC2 +W(ψ1,ψ2)(−L, λ) (1.2.27)

by the 2L-periodicity of W (·, λ), it follows from the multiplicative property of determinant

that

1 = detC2(TL,(ψ1,ψ2)(λ)) = detC2

(
expZL,(ψ1,ψ2)(λ)

)
. (1.2.28)

Now for any matrix A ∈ Cn ⊗ Cn, Jacobi’s formula implies the trace identity

detCn(eA) = exp(trCn A). (1.2.29)

Hence,

1 = exp
(

trC2 ZL,(ψ1,ψ2)(λ)
)

= 1 =⇒ trC2 ZL,(ψ1,ψ2)(λ) = 0. (1.2.30)

So by identity (1.2.22), we obtain that∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ) =

∫ L

−L
dxψ1(x)w†

(ψ1,ψ2)
(x, λ) =

∫ L

−L
dxψ1(x)w(ψ2,ψ1)(x, λ). (1.2.31)

where the ultimate equality follows by definition of the † superscript. Substituting the

asymptotic expansions (1.2.21) for w(ψ1,ψ2)(x, λ) and w(ψ2,ψ1)(x, λ) into the left-hand and

right-hand sides of the preceding equation, respectively, and using the definition (1.2.25) for

Ĩn(ψ1, ψ2) and Ĩn(ψ2, ψ1), the second assertion follows as well.

Lemma 1.2.3. For every (ψ1, ψ2) ∈ S(R)2 and λ ∈ R sufficiently large as in Lemma 1.2.2,

it holds that

F̃L(ψ1, ψ2;λ) = 2 cos

(
−λL+ κ

∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ)

)
, (1.2.32)
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where F̃L is defined in (1.1.11).

Proof. Since the trace is invariant under unitary transformation and W(ψ1,ψ2) is 2L-periodic,

we have that

F̃L(ψ1, ψ2;λ) = trC2 TL,(ψ1,ψ2)(λ) = trC2 exp
(
ZL,(ψ1,ψ2)(λ)

)
, (1.2.33)

so we have reduced to considering the right-hand side expression.

Using that ZL,(ψ1,ψ2)(λ) is diagonal and applying formula (1.2.22) and Lemma 1.2.2,

we find that

ZL,(ψ1,ψ2)(λ) =

(
−iλL+ iκ

∫ L
−L dxψ2(x)w(ψ1,ψ2)(x, λ) 0

0 iλL− iκ
∫ L
−L dxψ2(x)w(ψ1,ψ2)(x, λ))

)
,

(1.2.34)

it follows that the exponential of ZL,(ψ1,ψ2)(λ) is the diagonal matrix with the entries given

by the exponential of the entries of ZL(λ). Using the elementary trigonometric identity

eiz + e−iz = 2 cos(z), z ∈ C, (1.2.35)

we then obtain that

trC2 exp
(
ZL,(ψ1,ψ2)(λ)

)
= 2 cos

(
−λL+ κ

∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ)

)
, (1.2.36)

which completes the proof of the lemma.

Remark 1.2.4. By Lemma 1.1.2, we have the involution relation

trC2 TL,(ψ1,ψ2)(λ) = trC2

(
σT †

L,(ψ1,ψ2)
(λ̄)σ

)
= trC2 T †

L,(ψ1,ψ2)
(λ̄) = trC2

(
TL,(ψ2,ψ1)(λ̄)

)
, (1.2.37)
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where we use the cyclicity of trace and σ2 = IC2 to obtain the penultimate equality. Conse-

quently, we have that

F̃L(ψ1, ψ2;λ) = F̃L(ψ2, ψ1; λ̄). (1.2.38)

Consequently, if we take twice the real part of F̃L(ψ1, ψ2;λ),

FL,Re(ψ1, ψ2;λ) := 2 Re
{
F̃L(ψ1, ψ2;λ)

}
, ∀(ψ1, ψ2, λ) ∈ C∞(TL)2 × C, (1.2.39)

then we obtain from (1.2.32) that

FL,Re(ψ1, ψ2;λ) = 2 cos

(
−λL+ κ

∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ)

)
+ 2 cos

(
−λL+ κ

∫ L

−L
dxψ1(x)w(ψ2,ψ1)(x, λ̄)

)
.

(1.2.40)

Similarly, if we take twice the imaginary part of F̃L(ψ1, ψ2;λ),

FL,Im(ψ1, ψ2;λ) := 2 Im
{
F̃L(ψ1, ψ2)

}
, (1.2.41)

then we have that

FL,Im(ψ1, ψ2;λ) = −i
(

2 cos

(
−λL+ κ

∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ)

)
−2 cos

(
−λL+ κ

∫ L

−L
dxψ1(x)w(ψ2,ψ1)(x, λ)

))
.

(1.2.42)

Moreover, we can regard FL,Re(·, ·;λ) and FL,Im(·, ·;λ), respectively, as restrictions of the

complex functionals of four variables to the subspace ψ1̄ = ψ1, ψ2̄ = ψ2. More precisely, for

fixed λ ∈ C, define complex-valued functionals on C∞(TL)4 by

F̃L,Re(ψ1, ψ2̄, ψ2, ψ1̄;λ) := F̃L(ψ1, ψ2̄;λ) + F̃L(ψ2, ψ1̄;λ),

F̃L,Im(ψ1, ψ2̄, ψ2, ψ1̄;λ) := −i
(
F̃L(ψ1, ψ2̄;λ)− F̃L(ψ2, ψ1̄;λ)

)
,

(1.2.43)
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so that

FL,Re(ψ1, ψ2̄;λ) = F̃L,Re(ψ1, ψ2, ψ2, ψ1;λ)

FL,Im(ψ1, ψ2̄;λ) = F̃L,Im(ψ1, ψ2, ψ2, ψ1;λ).
(1.2.44)

Consequently, FL,Re(λ) and FL,Im(λ) extend with an abuse of notation to well-defined smooth

functionals on the space C∞(TL;V) (recall the space of matrices V in (4.3.12)) given by{
FL,Re(γ;λ) := FL,Re(φ1, φ2;λ),

FL,Im(γ;λ) := FL,Im(φ1, φ2;λ)
, ∀γ =

1

2
odiag(φ1, φ2, φ2, φ1), (1.2.45)

which belong to the admissible algebra AS,V , provided that F̃L ∈ AS,C, a result we postpone

until the next subsection. By the same reasoning, the functionals

Ib,n(γ) :=
1

2

(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
=

1

2

∫ L

−L
dx
(
φ2(x)wn,(φ1,φ2)(x) + φ1(x)wn,(φ2,φ1)(x)

)
, ∀γ =

1

2
odiag(φ1, φ2, φ2, φ1),

(1.2.46)

where the subscript b is to denote the dependence on two inputs, extend to smooth functionals

on C∞(TL;V) which belong toAS,V . This latter admissibility can be verified using the results

of Section 4.5.2. Note that by Lemma 1.2.2, the functionals Ib,n are real-valued.

1.3 Poisson Commutativity

In this last subsection of the appendix, we show that the functionals Ib,n defined in

(1.2.46) are in involution with respect to the Poisson bracket {·, ·}L2,V defined in Proposi-

tion 4.3.2. We obtain this result by first showing that the generating functionals F̃L(λ), F̃L(µ),

for λ, µ ∈ C, are in involution with respect to the Poisson bracket {·, ·}L2,C. The reader will

recall that the F̃L was defined in (1.1.11) above.
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Given two complex-valued functionals F,G on C∞(TL)2 satisfying the conditions of

Remark 4.3.6, we recall their Poisson bracket is defined by

{F,G}L2,C(ψ1, ψ2) = −i
∫ L

−L
dx(∇1F (ψ1, ψ2)∇2̄G(ψ1, ψ2)−∇2̄F (ψ1, ψ2)∇1G(ψ1, ψ2))(x),

(1.3.1)

where ∇1 and ∇2̄ denote the variational derivatives defined in (4.3.1). Now let A and B be

two complex-matrix-valued functionals on C∞(TL)2. We introduce the notation

{A⊗,B}L2,C(ψ1, ψ2) := −i
∫ L

−L
dx(∇1A(ψ1, ψ2)⊗∇2̄B(ψ1, ψ2)−∇2̄A(ψ1, ψ2)⊗∇1B(ψ1, ψ2))(x),

(1.3.2)

where our identification of the tensor product is the 4× 4 matrix

(A⊗B)jk,mn = AjmBkn, j,m, k, n ∈ {1, 2}, (1.3.3)

so that

{A⊗,B}L2,Cjk,mn = {Ajm, Bkn}L2,C. (1.3.4)

Remark 1.3.1. An observation important for our identities in the sequel is that the notation

{⊗,} admits an obvious extension to general n× n matrices.

The reader may check that the above tensor Poisson bracket notation has the following

properties:

Skew-symmetry

{A⊗,B}L2,C = −P{B⊗,A}L2,CP, (1.3.5)

where P is the permutation matrix in C2⊗C2 defined by P (ξ⊗η) = η⊗ξ, for ξ, η ∈ C2.
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Leibnitz rule

{A⊗,BC}L2,C = {A⊗,B}L2,C(IC2 ⊗ C) + (IC2 ⊗B){A⊗,C}L2,C, (1.3.6)

Jacobi identity

0 = {A⊗,{B⊗,C}L2,C}L2,C + P13P23{C⊗,{A⊗,B}L2,C}L2,CP23P13

+ P13P12{B⊗,{C⊗,A}L2,C}L2,CP12P13,
(1.3.7)

where Pij is the permutation matrix in (C2)⊗3 which swaps the ith and jth element of

a tensor ξ1 ⊗ ξ2 ⊗ ξ3, for i, j ∈ {1, 2, 3}.

Remark 1.3.2. The reader can also check that P is idempotent (i.e. P 2 = IC2) and

P (A⊗B) = (B ⊗ A)P , for any 2× 2 matrices A,B.

With the above notation in hand, we proceed to compute Poisson brackets. Let us

consider U(ψ1,ψ2)(z, λ) from (1.1.3) as a functional of (ψ1, ψ2), for fixed (z, λ). For the reader’s

benefit, we recall that

U(ψ1,ψ2)(x, λ) =
λ

2i
σ3 + U0(x) =

λ

2i
σ3 +

√
κ(ψ2(x)σ+ + ψ1(x)σ−), (1.3.8)

where U0(x) is defined in (1.1.3). The first objective is to prove the following lemma which

gives the so-called fundamental Poisson brackets.

Lemma 1.3.3 (Fundamental Poisson brackets). For any (λ, µ) ∈ C2, we have the distribu-

tional (on T2
L) identity

{U(x, λ)⊗,U(y, µ)}L2,C = −[r(λ− µ), U(x, λ)⊗ IC2 + IC2 ⊗ U(y, µ)]δ(x− y), (1.3.9)

where r(λ− µ) := − κ
(λ−µ)

P .2

2This matrix r is called an r-matrix in the integrable systems literature and is a central object in the
study of such systems.

324



Proof. We recall the (classical) canonical commutation relations

{ψ1(x), ψ1(y)}L2,C = {ψ2(x), ψ2(y)}L2,C = 0, {ψ1(x), ψ2(y)}L2,C = −iδ(x− y), (1.3.10)

which should be interpreted in the sense of tempered distributions on T2
L. It then follows

from (1.3.8) that

(∇1U(x, λ))(ψ1, ψ2) =
√
κσ−δx, (∇2̄U(x, λ))(ψ1, ψ2) =

√
κσ+δx, (1.3.11)

where δx is the Dirac mass centered at the point x. Hence,

{U(x, λ)⊗,U(y, µ)}L2,C(ψ1, ψ2)

= −i
∫ L

−L
dz((∇1U(x, λ))(ψ1, ψ2)(∇2̄U(y, µ))(ψ1, ψ2)− (∇2̄U(x, λ))(ψ1, ψ2)(∇1U(y, µ))(ψ1, ψ2))(z)

= −iκ
∫ L

−L
dzδ(z − x)δ(z − y)(σ− ⊗ σ+ − σ+ ⊗ σ−)

= −iκδ(x− y)(σ− ⊗ σ+ − σ+ ⊗ σ−).

One can check from the commutation relations for the Pauli matrices defined in (1.1.5) that

σ− ⊗ σ+ − σ+ ⊗ σ− =
1

2
[P, σ3 ⊗ IC2 ] = −1

2
[P, IC2 ⊗ σ3]. (1.3.12)

Therefore,

iκ(σ− ⊗ σ+ − σ+ ⊗ σ−) =
iκλ

λ− µ
(σ− ⊗ σ+ − σ+ ⊗ σ−)− iκµ

λ− µ
(σ− ⊗ σ+ − σ+ ⊗ σ−)

= − κ

λ− µ

(
λ

2i
[P, σ3 ⊗ IC2 ] +

µ

2i
[P, IC2 ⊗ σ3]

)
. (1.3.13)

Now recalling the definition of U(x, λ) in (1.3.8) and that P commutes with the tensor

U0(x)⊗IC2 +IC2⊗U0(x) by the symmetry of the latter, we obtain the desired conclusion.
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The importance of the fundamental Poisson brackets is that they yield a formula for

the Poisson brackets between the entries of the transition matrices T (x, y, λ) and T (x, y, µ),

regarded as matrix-valued functionals, as the next lemma shows.

Lemma 1.3.4. For fixed −L < y < x < L and (λ, µ) ∈ C2, regard T (x, y, λ) as the C2⊗C2-

matrix valued functional C∞(TL)2 defined by (ψ1, ψ2) 7→ T(ψ1,ψ2)(x, y, λ) and similarly for

T (x, y, µ). Then it holds that

{T (x, y, λ)⊗, T (x, y, µ)}L2,C = −[r(λ− µ), T (x, y, λ)⊗ T (x, y, µ)]. (1.3.14)

Proof. We use the differential equations (1.1.13) and (1.1.14) for the transition matrix in

order to prove the lemma. Since the (a, b) entry of the matrix-valued functional T (x, y, λ)

depends on (ψ1, ψ2) through the entries of the matrix-valued functional U(z, λ) it follows

from the definition of the Poisson bracket {·, ·}L2,C reviewed in (1.3.1) and the chain rule

that{
T ab(x, y, λ), T cd(x, y, µ)

}
L2,C(ψ1, ψ2)

=

∫ x

y

∫ x

y

dzdz′(∇Ujk(λ)T
ab(x, y, λ)(ψ1, ψ2))(z)

{
U jk(z, λ), U `m(z′, µ)

}
L2,C(ψ1, ψ2)

× (∇U`m(µ)T
cd(x, y, µ)(ψ1, ψ2))(z′),

(1.3.15)

where ∇Ujk(λ)T
ab(x, y, λ) and ∇U`m(µ)T

cd(x, y, µ) are the variational derivatives uniquely

defined by (a priori in the sense of distributions)

dT ab(x, y, λ)[ψ1, ψ2](δU jk(λ)) =

∫ L

−L
dz(∇Ujk(λ)T

ab(x, y, λ)(ψ1, ψ2))(z)δU jk(z, λ),

dT cd(x, y, µ)[ψ1, ψ2](δU `m(µ)) =

∫ L

−L
dz(∇U`m(µ)T

cd(x, y, µ)(ψ1, ψ2))(z′)δU `m(z′, µ).

(1.3.16)
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In (1.3.15), we use the convention of Einstein summation, so the summation over repeated

indices is implicit.

We now seek a formula for ∇Ujk(λ)T
ab(x, y, λ) and ∇U`m(µ)T

cd(x, y, µ). To find such

a formula, we take the Gâteaux derivative of both sides of (1.1.13) at the point U(·, λ) in

the direction δU(·, λ) to obtain the equation{
∂xdT (x, y, λ)[U(·, λ)](δU(·, λ)) = U(x, λ)dT (x, y, λ)[U(·, λ)](δU(·, λ)) + δU(x, λ)T (x, y, λ),

dT (x, y, λ)[U(·, λ)](δU(·, λ))|x=y = IC2 .

(1.3.17)

The reader can check by direct computation that the solution to this equation is given by

dT (x, y, λ)[U(·, λ)](δU(·, λ)) =

∫ x

y

dzT (x, y, λ)δU(z, λ)T (z, y, λ). (1.3.18)

Examining identity (1.3.18) entry-wise, we have that

dT ab(x, y, λ)[U(·, λ)](δU(·, λ)) =

∫ x

y

dzT aj(x, y, λ)δU jk(z, λ)T kb(z, y, λ),

dT cd(x, y, µ)[U(·, λ)](δU(·, λ)) =

∫ x

y

dzT c`(x, y, µ)δU `m(z′, µ)Tmd(z′, y, µ),

(1.3.19)

which upon comparison with (1.3.16) yields the identity

(∇Ujk(λ)T
ab(x, y, λ)(ψ1, ψ2))(z) =

{
T aj(ψ1,ψ2)(x, y, λ)T kb(ψ1,ψ2)(z, y, λ), −L < y < z < x < L

0, otherwise
,

(∇U`m(λ)T
cd(x, y, µ)(ψ1, ψ2))(z′) =

{
T c`(ψ1,ψ2)(x, y, µ)Tmd(ψ1,ψ2)(z

′, y, µ), −L < y < z′ < x < L

0, otherwise

.

(1.3.20)

Substituting the identity (1.3.20) into (1.3.15), we find that

{T (x, y, λ)⊗, T (x, y, µ)}L2,C(ψ1, ψ2)

=

∫ x

y

∫ x

y

dzdz′
(
T(ψ1,ψ2)(x, z, λ)⊗ T(ψ1,ψ2)(x, z

′, µ)
)
{U(z, λ)⊗,U(z′, µ)}L2,C(ψ1, ψ2)

×
(
T(ψ1,ψ2)(z, y, λ)⊗, T(ψ1,ψ2)(z

′, y, µ)
)
.

(1.3.21)
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Using the formula given by Lemma 1.3.3, we obtain that the right-hand equals

−
∫ x

y

dz
(
T(ψ1,ψ2)(x, z, λ)⊗ T(ψ1,ψ2)(x, z, µ)

)
[r(λ− µ), U(z, λ)⊗ IC2 + IC2 ⊗ U(z, µ)]

×
(
T(ψ1,ψ2)(z, y, λ)⊗ T(ψ1,ψ2)(z, y, µ)

)
.

(1.3.22)

We now claim that the integrand is the partial derivative with respect to z of

(
T(ψ1,ψ2)(x, z, λ)⊗ T(ψ1,ψ2)(x, z, µ)

)
r(λ− µ)

(
T(ψ1,ψ2)(z, y, λ)⊗ T(ψ1,ψ2)(z, y, µ)

)
, (1.3.23)

which then completes the proof. Indeed, the reader may verify this is the case by direct

computation using the Leibnitz rule and the equations (1.1.13) and (1.1.14) for the transition

matrix. So upon application of the fundamental theorem of calculus and using the initial

condition T (x, y, λ)|x=y = IC2 , we obtain the desired conclusion.

We next check that the functional F̃L(λ) defined in (1.1.11), is admissible (i.e. it

belongs to AS,C defined in (4.3.32)). This admissibility will then imply that FL,Re(λ) and

FL,Im(λ) defined in (1.2.39) and (1.2.41), respectively, belong to AS,V defined in (4.3.19).

First, observe that by taking the direction

δU(z, λ) =
√
κ(δψ2(z)σ+ + δψ1(z)σ−) (1.3.24)

in (1.3.18), we find that

(∇1T (x, y, λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(x, z, λ)σ−T(ψ1,ψ2)(z, y, λ),

(∇2̄T (x, y, λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(x, z, λ)σ+T(ψ1,ψ2)(z, y, λ),

(1.3.25)

for z ∈ [y, x], and zero for z ∈ (−L,L) \ (y, x). Letting x→ L+ and y → L−, we find that

(∇1TL(λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(L, z, λ)σ−T(ψ1,ψ2)(z,−L, λ),

(∇2̄TL(λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(L, z, λ)σ+T(ψ1,ψ2)(z,−L, λ).

(1.3.26)
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Note that ∇1TL(λ)(ψ1, ψ2),∇2̄TL(λ)(ψ1, ψ2) are smooth in (−L,L) but discontinuous at

the boundary, and consequently do no belong to C∞(TL) (i.e. TL(λ) is not an admissible

functional). However, if we take the 2×2 matrix trace of both sides of the preceding identities

and use that the variational derivative commutes with the trace together with the cyclicity

of trace, we obtain that the resulting expressions extend smoothly periodically to the entire

real line. We summarize the preceding discussion with the following lemma.

Lemma 1.3.5. For any λ ∈ C, F̃L ∈ AS,C. Consequently, FL,Re(λ), FL,Im(λ) ∈ AS,V .

We now show that traces F̃L(λ), F̃L(µ), for fixed µ, λ ∈ C, are in involution with

respect to the Poisson bracket {·, ·}L2,C. They key ingredient of this result is the identity of

Lemma 1.3.4 for the Poisson brackets between the entries of the transition matrices.

Lemma 1.3.6. For any λ, µ ∈ C, we have that

{F̃L(λ), F̃L(µ)} L2,C ≡ 0. (1.3.27)

Proof. Applying Lemma 1.3.4, we have that[
r(λ− µ), T(ψ1,ψ2)(x, y, λ)⊗ T(ψ1,ψ2)(x, y, µ)

]
=

∫ L

−L
dz(∇1T (x, y, λ)⊗∇2̄T (x, y, µ)−∇2̄T (x, y, λ)⊗∇1T (x, y, µ))(φ1, φ2)(z).

(1.3.28)

Taking the 4×4 matrix trace trC2⊗C2 of both sides and using that the trace of a commutator

is zero together with the algebraic identity

trC2⊗C2(A⊗B) = trC2(A) trC2(B), (1.3.29)

for any 2× 2 matrices A,B, we obtain that

0 = −
∫ L

−L
dz (∇1(trC2(T (x, y, λ))∇2̄ trC2(T (x, y, µ)))(φ1, φ2)(z)

−(∇2̄ trC2(T (x, y, λ))∇1 trC2(T (x, y, µ)))(φ1, φ2)(z)) ,

(1.3.30)
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where we also use that the trace commutes with the variational derivative. Now using

the continuity in (x, y) of the integrand, we can let x → L− and y → −L+ and use that

trC2(TL(λ)) = F̃L(λ) by definition (1.1.11) and trC2(TL(µ)) = F̃L(µ) to obtain the desired

conclusion.

Now we show that the functionals Ib,n defined in (1.2.46) are mutually involutive

with respect to the Poisson structure on C∞(TL;V). We begin by defining the generating

functional

p̃L(φ1, φ2;λ) := arccos

(
1

2
F̃L(φ1, φ2;λ)

)
, ∀(φ1, φ2, λ) ∈ C∞(TL)2 × C, (1.3.31)

where we take the principal branch of the function arccos. We first want to show that

{p̃L(λ), p̃L(µ)}L2,C(φ1, φ2) = 0, ∀(φ1, φ2) ∈ C∞(TL)2, (1.3.32)

for λ, µ ∈ R with sufficiently large modulus, which requires us to compute the variational

derivatives of p̃L(λ), p̃L(µ).

Recall from (1.2.32) that

1

2
F̃L(φ1, φ2;λ) = cos

(
−λL+ κ

∫ L

−L
dxφ2(x)w(φ1,φ2)(x, λ)

)
. (1.3.33)

We want to show that we can choose λ so that the cos in the right-hand side of the preceding

equation is at positive distance from ±1 for all (φ1, φ2) in a closed ball of C∞(TL). To this

end, we know from Appendix 1.2 that given (φ1, φ2) ∈ C∞(TL)2, we can choose

λ = λ(‖φ1‖L1(TL), ‖φ1‖L∞(TL), ‖φ2‖L1(TL), ‖φ2‖L∞(TL), L) ∈ R
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with sufficiently large modulus so that there exists w(φ1,φ2)(λ) in (1.2.20) with the asymptotic

expansion (1.2.21). Consequently, for any k ∈ N, we have that

‖w(φ1,φ2)(λ)‖L∞(TL) ≤

∥∥∥∥∥w(φ1,φ2)(λ)−
k∑

n=1

wk,(φ1,φ2)

λn

∥∥∥∥∥
L∞(TL)

+
k∑

n=1

‖wk,(φ1,φ2)‖L∞(TL)

λn

= o(|λ|k) +
k∑

n=1

‖wk,(φ1,φ2)‖L∞(TL)

λn
, (1.3.34)

where the implicit constant in o(|λ|k) depends only the data ‖∂n−1
x φj‖L∞(TL) for n ∈ N≤k+1

and j ∈ {1, 2}. By the analysis of Section 4.5.1,

‖wk,(φ1,φ2)‖L∞(TL) .k

k∑
n=0

(
‖∂nxφ1‖L∞(TL) + ‖∂nxφ2‖L∞(TL)

)
. (1.3.35)

Hence, ∣∣∣∣∫ L

−L
dxφ2(x)w(φ1,φ2)(x, λ)

∣∣∣∣ ≤ 2L‖φ2‖L∞(TL)‖w(φ1,φ2)(λ)‖L∞(TL)

.
2L

λ

1∑
n=0

(
‖∂nxφ1‖L∞(TL) + ‖∂nxφ2‖L∞(TL)

)
. (1.3.36)

Thus, given ε > 0, we can choose λ ∈ R with sufficiently large modulus depending the data

(ε, L, ‖∂nxφj‖L∞(TL)), ∀(n, j) ∈ {0, 1} × {1, 2},

so that ∣∣∣∣∫ L

−L
dxφ2(x)w(φ1,φ2)(x, λ)

∣∣∣∣ < ε. (1.3.37)

Also choosing λ so that mink∈Z{|λL− kπ|} > 2ε, we conclude that given R > 0,

min
k∈Z

{∣∣∣∣kπ − λL+ κ

∫ L

−L
dxφ2(x)w(φ1,φ2)(x, λ)

∣∣∣∣} ≥ δ > 0 (1.3.38)
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for all φ1, φ2 ∈ C∞(TL) with ‖∂nxφ1‖L∞(TL), ‖∂nxφ2‖L∞(TL) ≤ R, for n ∈ {0, 1}. For such

choice of λ, we have that

p̃L(φ1, φ2;λ) = −λL+ κ

∫ L

−L
dxφ2(x)w(φ1,φ2)(x, λ), φ1, φ2 ∈ C∞(TL), (1.3.39)

for all φ1, φ2 ∈ C∞(TL) with max{‖∂nxφ1‖L∞(TL), ‖φ2‖L∞(TL)} ≤ R, n ∈ {0, 1}. Moreover,

for such φ1, φ2, we can use the chain rule without concern over the singularity of arccos(z)

at z = ±1 to compute the variational derivatives p̃L, finding

(∇1p̃L(λ))(φ1, φ2) =
1

2

1−

(
F̃L(φ1, φ2;λ)

2

)2
−1/2

(∇1F̃ (λ))(φ1, φ2),

(∇2̄p̃L(λ))(φ1, φ2) =
1

2

1−

(
F̃L(φ1, φ2;λ)

2

)2
−1/2

(∇2̄F̃ (λ))(φ1, φ2),

(1.3.40)

where by Lemma 1.3.5, the variational derivatives of F̃L(λ) are elements of C∞(C∞(TL)2;C∞(TL)).

Recalling the definition (4.3.33) for the Poisson bracket {·, ·}L2,C, we then find that for ap-

propriate λ, µ ∈ R,

{p̃L(λ), p̃L(µ)}L2,C(φ1, φ2)

= − i
4

1−

(
F̃L(φ1, φ2;λ)

2

)2
−1/21−

(
F̃L(φ1, φ2;µ)

2

)2
−1/2

×
∫ L

−L
dx
(

(∇1F̃L(λ))(φ1, φ2)(∇2̄F̃L(µ))(φ1, φ2)− (∇2̄F̃L(λ))(φ1, φ2)(∇1F̃L(µ))(φ1, φ2)
)

(x)

=
1

4

1−

(
F̃L(φ1, φ2;λ)

2

)2
−1/21−

(
F̃L(φ1, φ2;µ)

2

)2
−1/2{

F̃L(λ), F̃L(µ)
}
L2,C

(φ1, φ2)

= 0,

where the ultimate equality follows from an application of Lemma 1.3.6.
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We now use (1.3.32) to prove the mutual involution of the functionals Ib,n.

Proposition 1.3.7. For any n,m ∈ N, it holds that

{Ib,n, Ib,m}L2,V ≡ 0 on C∞(TL;V). (1.3.41)

Proof. Fix n,m ∈ N, and let γ = 1
2
odiag(φ1, φ2, φ2, φ1) ∈ C∞(TL;V). Let us first introduce

some notation that will simplify the computations in the sequel. Define and

pL(γ;λ) := p̃L(φ1, φ2;λ) + p̃L(φ2, φ1;λ), ∀(γ, λ) ∈ C∞(TL;V)× C, (1.3.42)

where we recall that p̃L is defined in (1.3.31). Note that it is tautological that pL is the

restriction of a complex-valued functional on C∞(TL)4, which by an abuse of notation we

write as

pL(φ1, φ2̄, φ2, φ1̄;λ) = p̃L(φ1, φ2̄;λ) + p̃L(φ2, φ1̄;λ), φ1, φ1̄, φ2, φ2̄ ∈ C∞(TL). (1.3.43)

Now for γ ∈ C∞(TL;V), we have by the variational derivative formulation of the

Poisson bracket {pL(λ), pL(µ)}L2,V (recall (4.3.28)) and (1.3.43) that

{pL(λ), pL(µ)}L2,V(γ)

= −i
∫ L

−L
dz((∇1pL(λ))(∇2̄pL(µ))− (∇2̄pL(λ))(∇1pL(µ)))(φ1, φ2, φ2, φ1)(z)

− i
∫ L

−L
dz((∇2pL(λ))(∇1̄pL(µ))− (∇1̄pL(λ))(∇2pL(µ)))(φ1, φ2, φ2, φ1)(z)

= −i
∫ L

−L
dz((∇1p̃L(λ)(∇2̄p̃L(µ))− (∇2̄p̃L(λ))(∇1p̃L(µ)))(φ1, φ2)(z)

− i
∫ L

−L
dz((∇1p̃L(λ)(∇2̄p̃L(µ))− (∇2̄p̃L(λ))(∇1p̃L(µ)))(φ2, φ1)(z). (1.3.44)
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Recalling Remark 4.3.6 for the variational derivative formulation of the Poisson bracket

{·, ·}L2,C, we can rewrite the right-hand side of the preceding equality to obtain that

{pL(λ), pL(µ)}L2,V(γ) = {p̃L(λ), p̃L(µ)}L2,C(φ1, φ2) + {p̃L(λ), p̃L(µ)}L2,C(φ2, φ1). (1.3.45)

Given R > 0, for all γ ∈ C∞(TL;V) with ‖∂nxγ‖L∞(TL) ≤ R, for n ∈ {0, 1}, we can choose

λ, µ ∈ R arbitrarily large to apply (1.3.32), yielding that both terms in the right-hand side

of the preceding equality are zero. Hence,

{pL(λ), pL(µ)}L2,V(γ) = 0. (1.3.46)

Now by the formula (1.3.39) for p̃L(λ) and the large real λ asymptotic expansion

(1.2.21) for w(φ1,φ2)(λ), we see that

p̃L(φ1, φ2;λ) ∼ −λL+ κ
∞∑
k=1

∫ L
−L dxφ2(x)wk,(φ1,φ2)(x)

λk
= −λL+ κ

∞∑
k=1

Ĩk(φ1, φ2)

λk
, (1.3.47)

where the ultimate equality follows from the definition (1.2.25) for Ĩk. Taking the variational

derivatives of both sides of the preceding identity, we find that

∇1p̃L(φ1, φ2;λ) ∼ κ
∞∑
k=1

∇1Ĩk(φ1, φ2)

λk
, ∇2̄p̃L(φ1, φ2;λ) ∼ κ

∞∑
k=1

∇2̄Ĩk(φ1, φ2)

λk
. (1.3.48)

Substituting the asymptotic expansions (1.3.48) into (1.3.44), we see that

0 = {pL(λ), pL(µ)}L2,V(γ)

∼ −iκ2

∞∑
k,j=1

1

λkµj

∫ L

−L
dz
(
∇1Ĩk(φ1, φ2)∇2̄Ĩj(φ1, φ2)−∇2̄Ĩk(φ1, φ2)∇1Ĩj(φ1, φ2)

)
(z)

− iκ2

∞∑
k,j=1

1

λkµj

∫ L

−L
dz
(
∇1Ĩk(φ2, φ1)∇2̄Ĩj(φ2, φ1)−∇2̄Ĩk(φ2, φ1)∇1Ĩj(φ2, φ1)

)
(z)

=
∞∑

k,j=1

4{Ib,k, Ib,j}L2,V(γ)

λkµj
, (1.3.49)
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where the ultimate equality follows from Remark 4.3.3 and the definition (1.2.46) of the

functionals Ib,n. By the uniqueness of coefficients of asymptotic expansions, we conclude

that {Ib,k, Ib,j}L2,V ≡ 0 on C∞(TL;V), completing the proof of the proposition.
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Appendix 2

Locally Convex Spaces

2.1 Calculus on Locally Convex Spaces

The following material is intended as a crash course on calculus in the setting of

locally convex topological vector spaces. Since we are in general not dealing with Banach

spaces or Banach manifolds, the usual notion of the Fréchet derivative is not suitable for

our purposes. Indeed, the prototypical example we ask the reader to keep in mind is the

Schwartz space S(R).

One main issue posed by this more general setting is that there are several inequivalent

notions of the derivative for maps between locally convex spaces. Here, we use the definition

which is typically called the Gâteaux derivative, which has the property that C1 maps are

continuous,1 and hence enables us to regard the derivative of a smooth real-valued functional

f at a point x ∈ X, which we denote by df [x], as an element of the topological dual X∗.

The following material can be found in lecture notes by Milnor [65]. Many of the

definitions we record are standard, but we include them for completeness. The proofs are

omitted, but can be found in [38].

1For a notion of smoothness which allows for maps to be smooth but not continuous, we refer the reader
to the monograph [48].
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Definition 2.1.1 (Topological vector space). A real or complex topological vector space (tvs)

X is a vector space over a field K ∈ {R,C} with a topology τ which is Hausdorff and such

that the operations of addition

+ : X ×X → X, (x, y) 7→ x+ y (2.1.1)

and scalar multiplication

· : K×X → X, (λ, x) 7→ λx (2.1.2)

are continuous (the domains are equipped with the product topology).

Definition 2.1.2 (Locally convex space). A tvs X is said to be locally convex if every

neighborhood U 3 0 contains a neighborhood U ′ 3 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type

result.

Proposition 2.1.3 (Hahn-Banach). If X is locally convex, then given two distinct vectors

x, y ∈ X, there exists a continuous K-linear map ` : X → K with `(x) 6= `(y).

Definition 2.1.4 (Gâteaux derivative). Let X and Y be locally convex R-tvs, let X0 ⊂ X

and Y0 ⊂ Y be open sets, and let f : X0 → Y0 be a continuous map. Given a point x ∈ X0

and a direction v ∈ X, we define the directional derivative or Gâteaux derivative of f at x

in the direction v to be the vector

f ′(x; v) =: f ′x(v) := lim
t→0

f(x+ tv)− f(x)

t
, (2.1.3)

if this limit exists. We call the map f ′x : X → Y the derivative of f at the point x. We use

the notation df [x](v) := f ′(x; v).
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Definition 2.1.5 (C1 Gâteaux map). Let X0, Y0, and f be as above. The map f : X0 → Y0

is C1 if f ′(x; v) exists for all x ∈ X0, v ∈ X and is continuous as a map

f ′ : X0 ×X → Y, (2.1.4)

where the domain is equipped with the product topology.

The Gâteaux derivative f ′x of a map f between two locally convex spaces may fail

to be linear in the direction v. However, C1 smoothness is enough to ensure linearity in

the direction variable. We always work with C∞ functionals (see Definition 2.1.7), so the

requisite C1 smoothness is not problematic for our purposes.

Proposition 2.1.6 (Linearity of derivative). If f is C1, then for all x0 fixed, the map

X → Y, v 7→ f ′(x0; v) (2.1.5)

is linear.

Having defined the derivative and C1 regularity, we can inductively define higher-

order derivatives and regularity.

Definition 2.1.7 (Higher derivatives). The map f : X0 → Y0 is C2 Gâteaux if f is a C1

Gâteaux map and for each v1 ∈ X fixed, the map

X0 → Y, x 7→ f ′(x; v1) (2.1.6)

is C1 with Gâteaux derivative

lim
t→0

f ′(x+ tv2; v1)− f ′(x; v1)

t
(2.1.7)
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depending continuously on (x; v1, v2) ∈ X0×X ×X equipped with the product topology. If

this limit exists, we call it the second Gâteaux derivative of f at x in the directions v1, v2

and denote it by f ′′(x; v1, v2). We inductively define Cr maps X0 → Y0. If a map is Cr for

every r ∈ N, then we say that f is a C∞ map or alternatively, smooth map.

Proposition 2.1.8 (Symmetry and r-linearity of f
(r)
x0 ). If for r ∈ N, the map f is Cr, then

for each fixed x0 ∈ X0, the map

X × · · · ×X︸ ︷︷ ︸
r

→ Y, (v1, . . . , vr) 7→ f (r)(x0; v1, . . . , vr) (2.1.8)

is r-linear and symmetric, i.e. for any permutation π ∈ Sr,

f (r)(x0; vπ(1), . . . , vπ(r)) = f (r)(x0; v1, . . . , vr). (2.1.9)

Proposition 2.1.9 (Composition). If f : X0 → Y0 and g : Y0 → Z0 are Cr maps, then

g ◦ f : X0 → Z0 is Cr and the derivative of (g ◦ f) at the point x ∈ X0 is the map

g′f(x) ◦ f ′x : X → Z.

2.2 Smooth Locally Convex Manifolds

In this subsection, we use the calculus reviewed in the preceding subsection to intro-

duce the basics of smooth manifolds modeled on locally convex topological vector spaces,

which is needed for the construction of the Lie-Poisson manifold structure in Section 3.5.

Much of the theory parallels the finite-dimensional setting, where the model space Rd is now

replaced by an arbitrary, possibly infinite-dimensional locally convex tvs. Consequently,

many of the definitions below will be familiar to the reader with a minimal knowledge of

differential topology, but we record them for completeness. As in the last subsection, we

closely follow [65] in our presentation.
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Definition 2.2.1 (Smooth manifold). A smooth manifold modeled on a locally convex space

V consists of a regular, Hausdorff topological space M together with a collection of homeo-

morphisms ϕα : Vα →Mα satisfying the following properties:

(M1) Vα ⊂ V is open.

(M2) Mα ⊂M is open and
⋃
αMα = M .

(M3) ϕ−1
β ◦ ϕα : ϕ−1

α (Mα ∩Mβ)→ ϕ−1
β (Mα ∩Mβ) is a smooth map between open subsets of

V . We refer to the maps ϕα as local coordinate systems on M and the maps ϕ−1
α as

coordinate charts.

Remark 2.2.2. We will sometimes say that the manifold M is a Fréchet manifold if the

locally convex model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we

can define the notion of a smooth map between manifolds.

Definition 2.2.3 (Smooth map). If M1 and M2 are smooth manifolds modeled on locally

convex spaces V1 and V2, respectively, then a continuous function f : M1 →M2 is smooth if

the composition

ϕ−1
β,2 ◦ f ◦ ϕα,1 : ϕ−1

α,1

(
M1,α ∩ f−1(M2,β)

)
→ V2,β (2.2.1)

is smooth whenever f(M1,α) ∩M2,β 6= ∅. We say that f is a diffeomorphism if it is bijective

and both f and f−1 are smooth.

Definition 2.2.4 (Submanifold). A subset N of a smooth locally convex manifold M is a

submanifold if for each m ∈ N , there exists a chart (Mα, ϕ
−1
α ) about the point m, such that
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ϕ−1
α (Mα ∩N) = ϕ−1

α (Mα)∩W , where W is a closed subspace of the space V on which M is

modeled.

Remark 2.2.5. The submanifold N is smooth locally convex manifold modeled on W . In-

deed, the reader may check that the maps ϕα|Vα∩W : Vα∩W →Mα∩N are homeomorphisms

which satisfy properties (M1) - (M3).

In this work, we use the kinematic definition of tangent vectors (i.e. equivalence

classes of smooth curves), as opposed to the operational definition (i.e. derivations). While

these two definitions are equivalent in the finite-dimensional setting, they are in general

inequivalent in the infinite-dimensional setting.

Definition 2.2.6 (Tangent space). Let ϕα : Vα → Mα be a local coordinate system on

M with x0 ∈ Mα. Let p1, p2 : I → M be smooth maps on an open interval I ⊂ R with

pi(0) = x0 for i = 1, 2. We say that p1 ∼ p2 if and only if

d

dt

(
ϕ−1
α ◦ p1

)
|t=0 =

d

dt

(
ϕ−1
α ◦ p2

)
|t=0. (2.2.2)

The reader may verify that ∼ defines an equivalence relation on smooth curves p : I → M

with p(0) = x0. The set of all such equivalence classes is called the tangent space at x0,

denoted by Tx0M .

Definition 2.2.7 (Tangent bundle). We define the tangent bundle TM as a set by∐
x∈M

TxM.

We define a smooth locally convex structure on TM modeled on V ×V by the local coordinate

systems

ψα : Vα × V → TMα ⊂ TM, (2.2.3)
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where ψα(u, v) is defined to be the equivalence class containing the smooth curve t 7→

ϕα(u + tv) through the point ϕα(u) ∈ M . The reader may verify that ψα maps {u} × V

isomorphically onto the tangent space Tϕα(u)M .

Definition 2.2.8 (Derivative). Let M1 and M2 be smooth locally convex manifolds. A

smooth map f : M1 →M2 induces a continuous map

f ′x : TxM1 → Tf(x)M2, [p1] 7→ [f ◦ p1] (2.2.4)

called the derivative of f at x. Together, the maps f ′x induce a smooth map

f∗ : TM1 → TM2, (x, v) 7→ (f(x), f ′x(v)) (2.2.5)

which maps TxM1 linearly into Tf(x)M2.

Definition 2.2.9 (Smooth vector field). A smooth vector field on M is a smooth map

X : M → TM such that X(x) ∈ TxM . We denote the vector space of smooth vector fields

on M by X(M).
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Appendix 3

Distribution-Valued Operators

We review and develop some properties of distribution-valued operators (DVOs),

that is, elements of L(S(Rk),S ′(Rk)), which are used extensively in this work. Most of these

properties are a special case of a more general theory involving topological tensor products

of locally convex spaces for which we refer the reader to [86, 41, 97] for further reading.

3.1 Adjoint

In this section, we record some properties of the adjoint of a DVO as well as some

properties of the map taking a DVO to its adjoint. The proofs follow more or less readily

from the definition and standard arguments, and are left to the reader.

Lemma 3.1.1 (Adjoint map). Let k ∈ N, and let A(k) ∈ L(S(Rk),S ′(Rk)). Then there is a

unique map (A(k))∗ ∈ L(S(Rk),S ′(Rk)) such that〈
(A(k))∗g(k), f (k)

〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), g(k)

〉
S′(Rk)−S(Rk)

, ∀f (k), g(k) ∈ S(Rk). (3.1.1)

Furthermore, the adjoint map

∗ : L(S(Rk),S ′(Rk))→ L(S(Rk),S ′(Rk)), A(k) 7→ (A(k))∗ (3.1.2)

is a continuous involution.
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Additionally, for B(k) ∈ L(S ′(Rk),S ′(Rk)), there exists a unique linear map in (B(k))∗ ∈

L(S(Rk),S(Rk)) such that〈
u(k), (B(k))∗g(k)

〉
S′(Rk)−S(Rk)

=
〈
B(k)u(k), g(k)

〉
S′(Rk)−S(Rk)

, ∀(g(k), u(k)) ∈ S(Rk)× S ′(Rk).

(3.1.3)

Moreover, the adjoint map

∗ : L(S ′(Rk),S ′(Rk))→ L(S(Rk),S(Rk)) (3.1.4)

is a continuous involution.

The next lemma is useful for computing the adjoint of the composition of maps. We

omit the proof, which is standard.

Lemma 3.1.2. Let A(k) ∈ L(S(Rk),S ′(Rk)) and B(k) ∈ L(S ′(Rk),S ′(Rk)). Then

(
B(k)A(k)

)∗
= (A(k))∗(B(k))∗. (3.1.5)

Definition 3.1.3 (Self- and skew-adjoint). Given k ∈ N, we say that an operator A(k) ∈

L(S(Rk),S ′(Rk)) is self-adjoint if (A(k))∗ = A(k). Similarly, we say thatA(k) ∈ L(S(Rk),S ′(Rk))

is skew-adjoint if (A(k))∗ = −A(k).

Remark 3.1.4. Note that if A(k) ∈ L(S(Rk),S ′(Rk)) is an operator mapping S(Rk) →

L2(Rk), then our definition of self-adjoint does not coincide with the usual Hilbert space

definition for densely defined operators, but instead with the definition of a symmetric op-

erator.
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3.2 Trace and Partial Trace

In this section, we generalize the trace of an operator on a separable Hilbert space

to the DVO setting. First, we record some remarks to motivate our definition. Since the

operator |f〉 〈g|, where f, g ∈ L2(RN), has trace equal to 〈f |g〉, we might try to generalize

the notion of trace to pure tensors of the form f ⊗ u, where u ∈ S ′(RN) and f ∈ S(RN), by

defining

Tr1,...,N(f ⊗ u) = 〈u, f〉S′(RN )−S(RN ) (3.2.1)

and hope to extend this definition to S(RN)⊗̂S ′(RN) through linearity, continuity, and

density. However, the evaluation map

S(RN)× S ′(RN)→ C, (f, u) 7→ 〈u, f〉S′(RN )−S(RN ), (3.2.2)

is not continuous, but only separately continuous, preventing us from appealing to the uni-

versal property of the tensor product to guarantee the existence of a unique generalized

trace

Tr1,...,N : S(RN)⊗̂S ′(RN)→ C (3.2.3)

satisfying (3.2.1).

Nonetheless, by viewing the trace as a bilinear map and using the canonical isomor-

phisms

L(S(RN),S ′(RN)) ∼= S ′(R2N) and L(S ′(RN),S(RN)) ∼= S(R2N), (3.2.4)

we can uniquely define the generalized trace of the right-composition of an operator in

L(S(RN),S ′(RN)) with an operator in L(S ′(RN),S(RN)) through the pairing of their Schwartz

kernels. More precisely,

Tr1,...,N(A(N)γ(N)) = 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ) (3.2.5)
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is, with an abuse of notation, the distributional pairing of the Schwartz kernel of A(N), which

belongs to S ′(R2N), with the Schwartz kernel of the transpose of γ(N),1, which belongs to

S(R2N). Equivalently, for each fixed A(N) ∈ L(S(RN),S ′(RN)), the Schwartz kernel theorem

implies the existence of a unique linear map L(S ′(RN),S(RN))→ C, such that

Tr1,...,N

(
A(N)(f ⊗ g)

)
= 〈A(N)f, g〉S′(RN )−S(RN ) (3.2.6)

for all f, g ∈ S(RN).

Definition 3.2.1 (Generalized trace). We define

Tr1,...,N : L(S(RN),S ′(RN))× L(S ′(RN),S(RN))→ C

Tr1,...,N

(
A(N)γ(N)

)
:= 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ).

(3.2.7)

Remark 3.2.2. The reader can check that ifA(N) ∈ L(S(RN),S ′(RN)) and γ(N) ∈ L(S ′(RN),S(RN))

are such that A(N)γ(N) is a trace-class operator ρ(N), then our definition of the generalized

trace of A(N)γ(N) coincides with the usual definition of the trace of ρ(N) as an operator on

the Hilbert space L2(RN).

We now establish some properties of the generalized trace which are reminiscent of

properties of the usual trace encountered in functional analysis.

Proposition 3.2.3 (Properties of generalized trace). Let A(N) ∈ L(S(RN),S ′(RN)), and let

γ(N) ∈ L(S ′(RN),S(RN)). The following properties hold:

(i) Tr1,...,N is separately continuous.

1(γ(N))t is the operator f 7→
∫
RN dx

′
Nγ(x′N ;xN )f(x′N ).
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(ii) We have the following identity:

Tr1,...,N

(
(A(N))∗γ(N)

)
= Tr1,...,N(A(N)(γ(N))∗). (3.2.8)

(iii) If B(N) ∈ L(S ′(RN),S ′(RN)), then Tr1,...,N satisfies the cyclicity property

Tr1,...,N

((
B(N)A(N)

)
γ(N)

)
= Tr1,...,N

(
A(N)

(
γ(N)B(N)

))
. (3.2.9)

Proof. Assertion (i) follows from the separate continuity of the distributional pairing 〈·, ·〉S′(R2N )−S(R2N ).

To prove assertion (ii), it suffices by density of finite linear combinations of pure

tensors together with bilinearity and separate continuity of the generalized trace to consider

the case where γ(N) = f (N) ⊗ g(N), for f (N), g(N) ∈ S(RN). By definition of the generalized

trace,

Tr1,...,N

(
(A(N))∗(f (N) ⊗ g(N))

)
=
〈
(A(N))∗f (N), g(N)

〉
S′(RN )−S(RN )

, (3.2.10)

and by definition of the adjoint in Lemma 3.1.1,

〈
(A(N))∗f (N), g(N)

〉
S′(RN )−S(RN )

=
〈
A(N)g(N), f (N)

〉
S′(RN )−S(RN )

. (3.2.11)

Since (γ(N))∗ = g(N) ⊗ f (N), the desired conclusion then follows from another application of

the definition of the generalized trace.

To prove assertion (iii), we note that since

B(N)A(N) ∈ L(S(RN),S ′(RN)), γ(N)B(N) ∈ L(S ′(RN),S(RN)), (3.2.12)

all expressions are well-defined. As before, it suffices to consider the case where γ(N) =

f (N) ⊗ g(N), for f (N), g(N) ∈ S(RN). The proof then follows readily using the involution

property of the adjoint and the definition of generalized trace.
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We now extend the partial trace map to our setting using our bilinear perspective.

Proposition 3.2.4 (Generalized partial trace). Let N ∈ N and let k ∈ {0, . . . , N−1}. Then

there exists a unique bilinear, separately continuous map

Trk+1,...,N : L(S(RN),S ′(RN))× L(S ′(RN),S(RN))→ L(S(Rk),S ′(Rk)), (3.2.13)

which satisfies

Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
=

∫
RN−k

dxk+1;N(A(N)f (N))(xk, xk+1;N)g(N)(x′k, xk+1;N).

(3.2.14)

for all A(N) ∈ L(S(RN),S ′(RN)), and f (N), g(N) ∈ S(RN). That is,〈
Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
φ(k), ψ(k)

〉
S′(Rk)−S(Rk)

=
〈
A(N)f (N), ψ(k) ⊗ 〈g(N), φ(k)〉S′xk (Rk)−Sxk (Rk)

〉
S′(RN )−S(RN )

,
(3.2.15)

for all φ(k), ψ(k) ∈ S(Rk).

Remark 3.2.5. Our notation Trk+1,...,N implies a partial trace over the variables with indices

belonging to the index set {i : k+ 1 ≤ i ≤ N}. To alleviate some notational complications,

we will use the convention that if the index set of the partial trace is empty, we do not take

a partial trace.

Proof. We first show uniqueness. Fix N ∈ N and k ∈ {0, . . . , N − 1}. Fix A(N) ∈

L(S(RN),S ′(RN)). Suppose that there are two maps Trk+1,...,N and T̂rk+1,...,N satisfying

(3.2.14). Since every element γ(N) ∈ L(S ′(RN),S(RN)) is of the form

γ(N) =
∞∑
j=1

λjf
(k)
j ⊗ f

(N−k)
j ⊗ g(k)

j ⊗ g
(N−k)
j , (3.2.16)
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where {λj}j∈N ∈ `1 and f
(k)
j , g

(k)
j and f

(N−k)
j , g

(N−k)
j are sequences converging to zero in

S(Rk) and S(RN−k), respectively. Since the partial sums converge in L(S ′(RN),S(RN)), we

have by separate continuity that

Trk+1,...,N

(
A(N)γ(N)

)
=
∞∑
j=1

λj Trk+1,...,N

(
A(N)

(
f

(k)
j ⊗ f

(N−k)
j ⊗ g(k)

j ⊗ g
(N−k)
j

))
=
∞∑
j=1

λjT̂rk+1,...,N

(
A(N)

(
f

(k)
j ⊗ f

(N−k)
j ⊗ g(k)

j ⊗ g
(N−k)
j

))
= T̂rk+1,...,N

(
A(N)γ(N)

)
, (3.2.17)

which completes the proof of uniqueness.

We now prove existence. Let N, k and A(N) be fixed as above. For f (k), g(k) ∈ S(Rk)

and γ(N) ∈ L(S ′(RN),S(RN)), we define the integral kernel

Kf (k),g(k),γ(N)(xN ;x′N) := g(k)(x′k)

∫
Rk
dy

k
γ(N)(xN ; y

k
, x′k+1;N)f (k)(y

k
), (xN , x

′
N) ∈ R2N .

(3.2.18)

It is evident that Kf (k),g(k),γ(N) ∈ S(R2N). Moreover, it is straightforward to check that the

trilinear map

S(Rk)× S(Rk)× S(R2N)→ S(R2N), (f (k), g(k), γ(N)) 7→ Kf (k),g(k),γ(N) (3.2.19)

is continuous, where we abuse notation by using γ(N) to denote the Schwartz kernel as

well as the operator. Therefore by the Schwartz kernel theorem and the fact that A(N) ∈

L(S(RN),S ′(RN)) by assumption, for fixed f (k) ∈ S(Rk), the map

S(Rk)→ C, g(k) 7→
〈
KA(N) , Kt

f (k),g(k),γ(N)

〉
S′(R2N )−S(R2N )

(3.2.20)

defines an element of S ′(Rk) and the map

S(Rk)→ S ′(Rk), f (k) 7→
〈
KA(N) , Kt

f (k),·,γ(N)

〉
S′(R2N )−S(R2N )

(3.2.21)
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is continuous. We therefore define Trk+1,...,N(A(N)γ(N)) to be the element of L(S(Rk),S ′(Rk))

given by

〈
Trk+1,...,N(A(N)γ(N))f (k), g(k)

〉
S′(Rk)−S(Rk)

:=
〈
KA(N) , Kt

f (k),g(k),γ(N)

〉
S′(R2N )−S(R2N )

, (3.2.22)

which is evidently bilinear in (A(N), γ(N)).

It remains for us to prove separate continuity. Implicit in our work in the preceding

paragraph is continuity in the second entry for fixed A(N). Continuity in the first entry for

fixed γ(N) ∈ L(S ′(RN),S(RN)) then follows by duality.

3.3 Contractions and The “Good Mapping Property”

GivenA(i) ∈ L(S(Ri),S ′(Ri)), an integer k ≥ i, and a cardinality-i subset {`1, . . . , `i} ⊂

N≤k, we want to define to an operator acting only on the variables associated to {`1, . . . , `i}.

We have the following result.

Proposition 3.3.1 (k-particle extensions). There exists a unique A
(i)
(`1,...,`i)

∈ L(S(Rk),S ′(Rk)),

which satisfies

A
(i)
(`1,...,`i)

(f1⊗· · ·⊗fk)(xk) = A(i)(f`1⊗· · ·⊗f`i)(x`1 , . . . , x`i) ·
( ∏
`∈N≤k\{`1,...,`i}

f`(x`)

)
(3.3.1)

in the sense of tempered distributions.

Proof. We first consider the case (`1, . . . , `i) = (1, . . . , i). By the universal property of the

tensor product, there exists a unique continuous linear map

A
(i)
(1,...,i)

:= A(i) ⊗ Idk−i : S(Ri)⊗̂S(Rk−i)→ S ′(Ri)⊗̂S ′(Rk−i), (3.3.2)
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satisfying

A
(i)
(1,...,i)(f

(i) ⊗ g(k−i))(xk) = A(i)(f (i))(xi)g
(k−i)(xk−i), ∀f ∈ S(Ri), g ∈ S(Rk−i). (3.3.3)

For the general cases where (`1, . . . , `i) 6= (1, . . . , i), we set

A
(i)
(`1,...,`i)

:= π−1 ◦ A(i)
(1,...,i) ◦ π, (3.3.4)

where π ∈ Sk is any permutation such that π(`j) = j for j ∈ N≤i and we let π act on

measurable functions by (3.3.29) and on distributions by duality. Let (`∗1, . . . , `
∗
k−i) denote

the increasing ordering of the elements of the set N≤k \ {`1, . . . , `i}. Then for test functions

f1, . . . , fk, g1, . . . , gk ∈ S(R), we have〈
(π−1 ◦ A(i)

(1,...,i) ◦ π)(
k⊗
`=1

f`),
k⊗
`=1

g`

〉
S′(Ri)−S(Ri)

=

〈
A(i)(

i⊗
j=1

f`j)⊗
k−i⊗
j=1

f`∗j , (
k⊗
j=1

gj) ◦ π

〉
S′(Rk)−S(Rk)

=

〈
A(i)(

i⊗
j=1

f`j),
i⊗

j=1

g`j

〉
S′(Ri)−S(Ri)

·

〈
k−i⊗
j=1

f`∗j ,
k−i⊗
j=1

g`∗j

〉
S′(Rk−i)−S(Rk−i)

=

〈
A(i)(

i⊗
j=1

f`j),
i⊗

j=1

g`j

〉
S′(Ri)−S(Ri)

·
∏

j∈N≤k\{`1,...,`i}

〈fj, gj〉S′(R)−S(R), (3.3.5)

where the penultimate equality follows from the definition of the tensor product of two

distributions. By the density of finite linear combinations of pure tensors in S(Rk), it

follows from the preceding equality that our definition (3.3.42) is independent of the choice

of permutation π ∈ Sk satisfying π(`j) = j for every j ∈ N≤i.

An important property of the above k-particle extension is that it preserves self- and

skew-adjointness.
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Lemma 3.3.2. Let i ∈ N, let k ∈ N≥i, and let A(i) ∈ L(S(Rk),S ′(Ri)) be self-adjoint (resp

skew-adjoint). Then for any cardinality-i subset {`1, . . . , `i} ⊂ N≤k, we have that A
(i)
(`1,...,`i)

is

self-adjoint (resp. skew-adjoint).

Proof. Replacing A(i) by iA(i), it suffices to consider the self-adjoint case. By considerations

of symmetry, it suffices to consider the case (`1, . . . , `i) = (1, . . . , i). The desired conclusion

then follows from the fact that〈
A

(i)
(1,...,i)(f

(i) ⊗ f (k−i))
∣∣∣g(i) ⊗ g(k−i)

〉
=
〈
Af (i)

∣∣g(i)
〉 〈
f (k−i)∣∣g(k−i)〉

=
〈
f (i)
∣∣A(i)g(i)

〉 〈
f (k−i)∣∣g(k−i)〉

=
〈
f (i) ⊗ f (k−i)

∣∣∣A(i)
(1,...,i)(g

(i) ⊗ g(k−i))
〉
, (3.3.6)

for all (f (i), f (k−i), g(i), g(k−i)) ∈ (S(Ri)×S(Rk−i))2, linearity, and density of linear combina-

tions of such pure tensors in S(Rk).

Now let i, j ∈ N, let k := i + j − 1, and let (α, β) ∈ N≤i × N≤j. To construct a Lie

bracket in Section 3.5.2, we need to give meaning to the composition

A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k) (3.3.7)

as an operator in L(S(Rk),S ′(Rk)), whenA(i) ∈ L(S(Ri),S ′(Ri)) andB(j) ∈ L(S(Rj),S ′(Rj)).

Remark 3.3.3. Without further conditions on A(i) or B(j), the composition (3.3.7) may not

be well-defined. Indeed, consider the operator A ∈ L(S(R2),S ′(R2)) defined by

Af := δ0f, ∀f ∈ S(R2), (3.3.8)
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where δ0 denotes the Dirac mass about the origin in R2. Then for f, g ∈ S(R),∫
R
dx2(Af⊗2)(x1, x2)g⊗2(x′1, x2) = f(0)g(0)f(x1)g(x′1)δ0(x1) ∈ S ′(R)⊗ S(R). (3.3.9)

It is easy to show that fδ0 ∈ S ′(R) does not coincide with a Schwartz function.

This issue leads us to a property we call the good mapping property. The intuition for

the good mapping property is the basic fact from distribution theory that the convolution

of a distribution of compact support with a Schwartz function is again a Schwartz function.

We recall the definition of the good mapping property here.

Remark 3.3.4. By tensoring with identity, we see that if A(i) has the good mapping prop-

erty, then A
(i)
(`1,...,`i)

has the good mapping property, where i is replaced by k and α ∈ N≤k.

3.4 The Subspace Lgmp(S(Rk),S ′(Rk))

In this section, we expand more on Lgmp(S(Rk),S ′(Rk)) as a topological vector sub-

space of L(S(Rk),S ′(Rk)) and more on the identification of its topological dual.

Lemma 3.4.1. Lgmp(S(Rk),S ′(Rk)) is a dense subspace of L(S(Rk),S ′(Rk)).

Proof. We first show density, beginning by recalling that Lgmp(S(Rk),S ′(Rk)) is endowed

with the subspace topology induced by L(S(Rk),S ′(Rk)). Let A(k) ∈ L(S(Rk),S ′(Rk)), and

let KA(k) ∈ S ′(R2k) denote the Schwartz kernel of A(k). Since S(R2k) is dense in S ′(R2k),

given any bounded subset R ⊂ S(R2k) and ε > 0, there exists KR,ε ∈ S(R2k) such that

sup
K̃∈R

∣∣∣〈KA(k) −KR,ε, K̃〉S′(R2k)−S(R2k)

∣∣∣ < ε. (3.4.1)
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Since the integral operator defined by the kernel KR,ε is a continuous endomorphism of

S(Rk), it belongs to Lgmp(S(Rk),S ′(Rk)). Since any bounded subset S ⊂ S(Rk) induces a

bounded subset R ⊂ S(R2k) by

R := S⊗S := {f ⊗ ḡ : f, g ∈ S}, (3.4.2)

we conclude that given any ε > 0 and bounded subset S ⊂ S(Rk), there exists an element

A
(k)
S,ε ∈ L(S ′(Rk),S(Rk)) such that

sup
f,g∈S

∣∣∣〈(A(k) − A(k)
S,ε)f

∣∣∣g〉∣∣∣ < ε. (3.4.3)

Since the preceding seminorms generate the topology for L(S(Rk),S ′(Rk)), the proof of

density is complete.

Using the preceding lemma, we can show that the strong dual of the subspace

Lgmp(S(Rk),S ′(Rk)) is isomorphic to the space of linear operators with Schwartz-class ker-

nels.

Lemma 3.4.2. The space Lgmp(S(Rk),S ′(Rk))∗ endowed with the strong dual topology is

isomorphic to L(S ′(Rk),S(Rk)).

Proof. Since the canonical embedding ι : Lgmp(S(Rk),S ′(Rk))→ L(S(Rk),S ′(Rk)) is tauto-

logically continuous, the adjoint map

ι∗ : L(S(Rk),S ′(Rk))∗ → Lgmp(S(Rk),S ′(Rk))∗ (3.4.4)

is continuous. Now since Lgmp(S(Rk),S ′(Rk)) is dense in L(S(Rk),S ′(Rk)), any linear func-

tional

` ∈ Lgmp(S(Rk),S ′(Rk))∗ (3.4.5)

354



extends to a unique element ˜̀∈ L(S(Rk),S ′(Rk))∗ by the Hahn-Banach theorem. Hence, ι∗

is a continuous bijection. Since the domain of the canonical isomorphism

Φ : L(S ′(Rk),S(Rk))→ L(S(Rk),S ′(Rk))∗ (3.4.6)

is a Fréchet space, it follows from the open mapping theorem that ι∗◦Φ is an isomorphism.
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Appendix 4

Products of Distributions

In this appendix, we review some basic facts from microlocal analysis about the wave

front set of a distribution and its application to proving the well-definedness of the product

of two distributions, as used in Section 4.4.1. We mostly follow the exposition in Chapter

VIII of [40], but refer the reader to Chapter IX, §10 of [79] for a more pedestrian treatment.

Definition 4.0.3 (Singular support). Let u ∈ D′(Rk). We say that x ∈ Rk is a regular point

of u if and only if there exists an open neighborhood U 3 x and a function f : U → C which

is C∞ on U , such that

〈u, φ〉D′(Rk)−D(Rk) =

∫
Rk
f(x)φ(x)dx, ∀φ ∈ C∞c (Rk) with supp(φ) ⊂ U. (4.0.1)

We call the set

Rk \ {x ∈ Rk : x is a regular point for u} (4.0.2)

the singular support of u, denoted by sing supp(u).

Remark 4.0.4. It is evident that sing supp(u) ⊂ supp(u). Since the set of regular points is

open (any other point in the neighborhood U above also belongs to the singular support), it

follows that sing supp(u) is a closed subset of supp(u).

The singular support is useful for establishing the well-definedness of a product of

distributions uv via localization, as the next proposition shows.
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Proposition 4.0.5. Let u, v ∈ D′(Rk), and suppose that sing supp(u) ∩ sing supp(v) = ∅.

Then there is a unique w ∈ D′(Rk) such that the following holds:

(i) If x /∈ sing supp(v) and v = f in a neighborhood of x, where f ∈ C∞(Rk), then w = fu

in a neighborhood of x.

(ii) If x /∈ sing supp(u) and u = g in a neighborhood of x, where g ∈ C∞(Rk), then w = gv

in a neighborhood of x.

Proof. See Theorem IX.42 in [79].

Next, we introduce the wave front set of a distribution. While the singular support

captures the location of the singularities of a distribution, the wave front set also contains

information about the directions of the high frequencies that cause these singularities.

Definition 4.0.6 (Wave front set). Let u ∈ D′(Rk). We say that a point (xk, ξk) ∈ Rk ×

(Rk \ {0}) is a regular directed point for u if and only if there exist radii εx, εξ > 0 and a

function φ ∈ C∞c (Rk) which is identically one on the open ball B(xk, εx), such that∣∣∣φ̂u(λη
k
)
∣∣∣ .N (1 + |λ|)−N , ∀(η

k
, λ) ∈ B(ξ

k
, εξ)× [0,∞), ∀N ∈ N0. (4.0.3)

We define the wave front set of u to be the complement in Rk × (Rk \ {0}) of the set of

regular directed points:

WF(u) :=
(
Rk × (Rk \ {0})

)
\{(xk, ξk) ∈ Rk×(Rk\{0}) : (xk, ξk) is a regular directed point for u}.

(4.0.4)
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Remark 4.0.7. In [40], Hörmander uses a definition of the wave front set of a distribution

u, which is seemingly different from our Definition 4.0.6. More precisely, for any xk ∈ Rk and

φ ∈ C∞c (Rk), such that φ(xk) 6= 0, he defines the set Σ(φu) consisting of all ξ
k
∈ Rk \ {0}

having no conic neighborhood U such that

|φ̂u(ξ
k
)| .N

(
1 + |ξ

k
|
)−N

, ∀ξ
k
∈ U, ∀N ∈ N. (4.0.5)

He then defines the set Σx(u) by

Σxk
(u) :=

⋂
φ

Σ(φu), φ ∈ C∞c (Rk) s.t. φ(xk) 6= 0. (4.0.6)

Hörmander’s definition of the wave front set of u, which we denote by W̃F(u), is then given

by

W̃F(u) := {(xk, ξk) ∈ Rk × (Rk \ {0}) : ξ
k
∈ Σxk

(u)}. (4.0.7)

It follows from Lemma 4.0.8 below that W̃F(u) = WF(u) (i.e. the two definitions are

equivalent).

We record some properties of the wave front set.

Lemma 4.0.8. If u ∈ D′(Rk) and g ∈ C∞c (Rk), then WF(gu) ⊂ WF(u). Similarly, if

u ∈ S ′(Rk) and g ∈ S(Rk), then WF(gu) ⊂WF(u).

Proposition 4.0.9. Let u ∈ D′(Rk).

(a) WF(u) is a closed subset of Rk × (Rk \ {0}).

(b) For each xk ∈ Rk, the set

WFxk(u) := {ξ
k
∈ Rk \ {0} : (xk, ξk) ∈WF(u)} (4.0.8)

is a cone.
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(c) If v ∈ D′(Rk), then

WF(u+ v) ⊂WF(u) ∪WF(v). (4.0.9)

(d) sing supp(u) = {xk ∈ Rk : WFxk(u) 6= ∅}.

(e) If v ∈ D′(Rj), then

WF(u⊗v) ⊂ (WF(u)×WF(v))∪((supp(u)× {0})×WF(v))∪(WF(u)× (supp(v)× {0})).

(4.0.10)

(f) If u ∈ S ′(Ri), v ∈ S ′(Rj) and w ∈ S(Ri+j) then

WF((u⊗ v)w) ⊂WF(u⊗ v).

Proof. Properties (a) - (c) are quick consequences of the definition of the wave front set. For

(d), see Theorem IX.44 in [79]. For property (e), see Theorem 8.2.9 in [40]. Property (f)

follows from Lemma 4.0.8.

In our proof of Lemma 4.4.1, we will need the following result.

Lemma 4.0.10 (Wave front set of δ(xi − xj)). Let k ∈ N, and let i < j ∈ N≤k. Then

WF(δ(xi−xj)) = {(xk, ξk) ∈ Rk×(Rk\{0}) : xi = xj, ξi+ξj = 0, and ξ` = 0 ∀l ∈ N≤k\{i, j}}.

Proof. By symmetry, it suffices to consider the case (i, j) = (1, 2). Since δ(x1 − x2) has

singular support in the hyperplane {x1 = x2} ⊂ Rk, it follows from Proposition 4.0.9(d) that

(xk, ξk) ∈WF(δ(x1 − x2)) implies that x1 = x2.
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Now suppose that (xk, ξk) ∈ Rk × (Rk \ {0}) and ξ1 + ξ2 6= 0. We claim that such a

point is a regular directed point for δ(x1−x2) (i.e. it does not belong to the wave front set).

Indeed, let ϕ ∈ C∞c (Rk) be such that ϕ(xk) 6= 0. Then

F(δ(x1 − x2)ϕ)(ξ′
k
) =

∫
Rk−1

dy
2;k
ϕ(y2, y2;k

)e
−i(ξ′1+ξ′2)y2+ξ′

3;k
·y

3;k , ∀ξ′
k
∈ Rk. (4.0.11)

Since ϕ is Schwartz class, repeated integration by parts in y
2;k

yields∣∣∣F(δ(x1 − x2)ϕ)(ξ′
k
)
∣∣∣ .N

(
1 + |ξ′1 + ξ′2|+ |ξ′3;k

|
)−N

, ∀N ∈ N0. (4.0.12)

We consider two cases based on the values of ξ1 and ξ2.

I. If sgn(ξ2) = sgn(ξ1), then

|ξ1 + ξ2| ≥ max{|ξ1|, |ξ2|}, (4.0.13)

which implies that (
1 + |ξ1 + ξ2|+ |ξ3;k

|
)−N

.N

(
1 + |ξ

k
|
)−N

. (4.0.14)

Hence, if ε > 0 is sufficiently small so that sgn(ξ′1) = sgn(ξ′2) for all ξ′
k
∈ B(ξ

k
, ε), then∣∣∣F(δ(x1 − x2)ϕ)(λξ′

k
)
∣∣∣ .N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞). (4.0.15)

II. If sgn(ξ2) = − sgn(ξ1), then without loss of generality suppose that |ξ1| > |ξ2|. Then

for ε > 0 sufficiently small, we have that there exists θ ∈ (0, 1) such that

|ξ′2|
|ξ′1|
≥ θ, ∀ξ′

k
∈ B(ξ

k
, ε). (4.0.16)

So by the reverse triangle inequality,(
1 + λ|ξ′1 + ξ′2|+ λ|ξ′

3;k
|
)−N

.θ,N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞).

(4.0.17)
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Now suppose that (xk, ξk) ∈ Rk × (Rk \ {0}), ξ1 + ξ2 = 0, and ξ
3;k
6= 0 ∈ Rk−2. We

claim that such a point is a regular directed point. We consider two cases based on the

magnitude of |ξ2| relative to |ξ
3;k
|.

I. If |ξ1| ≤ |ξ3;k
|, then for ε > 0 sufficiently small,(

1 + λ|ξ′1 + ξ′2|+ λ|ξ′
3;k
|
)−N

.N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞).

(4.0.18)

II. If |ξ1| > |ξ3;k
|, then for ε > 0 sufficiently small, there exists θ ∈ (0, 1) such that

|ξ′
3;k
|

|ξ′1|
≥ θ, ∀ξ′

k
∈ B(ξ

k
, ε). (4.0.19)

Hence,

|ξ′
3;k
| ≥
|ξ′

3;k
|

2
+
θ

4

(
|ξ′

1
|+ |ξ′

2
|
)
, (4.0.20)

which implies that(
1 + λ|ξ′

3;k
|
)−N

.θ,N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞). (4.0.21)

Thus, we have shown that

WF(δ(x1−x2)) ⊂ {(xk, ξk) ∈ Rk×(Rk\{0}) : x1 = x2, ξ1+ξ2 = 0, and ξ
3;k

= 0}. (4.0.22)

For the reverse inclusion, we claim that (xk, (−ξ2, ξ2, 03;k)) ∈ Rk× (Rk \ {0}) is not a regular

directed point for δ(x1 − x2). Indeed, this claim follows from observing that for a bump

function ϕ ∈ C∞c (Rk) about xk, we have that for all λ ∈ [0,∞),∣∣F(δ(x1 − x2)ϕ)(−λξ2, λξ2, 03;k)
∣∣ =

∫
Rk−1

dx2;kϕ(x2, x2;k). (4.0.23)
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We now seek to systematically give meaning to the product of distributions and, in

particular, preserve the property that the Fourier transform maps products to convolution.

We accomplish this task with a useful criterion due to Hörmander–one which we make heavy

use of in Section 4.4–for how to “canonically” define the product of two distributions. Before

stating Hörmander’s result, we need a few technical preliminaries.

For a closed cone Γ ⊂ Rk × (Rk \ {0}), define the set

D′Γ(Rk) := {u ∈ D′(Rk) : WF(u) ⊂ Γ}. (4.0.24)

Lemma 4.0.11. u ∈ D′(Rk) belongs to D′Γ(Rk) if and only if for every φ ∈ C∞c (Rk) and

every closed cone V ⊂ Rk satisfying

Γ ∩ (supp(φ)× V ) = ∅, (4.0.25)

we have that

sup
ξ
k
∈V
|ξ
k
|N |(̂φu)(ξ

k
)| <∞, ∀N ∈ N. (4.0.26)

Proof. See Lemma 8.2.1 in [40].

It is clear that D′Γ(Rk) is a subspace of D′(Rk). We say that a sequence {uj}∞j=1 in

D′Γ(Rk) and u ∈ D′Γ(Rk), we say that uj → u in D′Γ(Rk) as j →∞ if uj → u in the weak-*

topology on D′(Rk) and for every N ∈ N,

sup
ξ
k
∈V
|ξ
k
|N |(̂φu)(ξ

k
)− (̂φuj)(ξk)| → 0, (4.0.27)

as j →∞, for every φ ∈ C∞c (Rk) and closed cone V ⊂ Rk such that (4.0.25) holds.

The next lemma shows that C∞c (Rk) is sequentially dense in the space D′Γ(Rk).
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Lemma 4.0.12. For every u ∈ D′Γ(Rk), there exists a sequence uj ∈ C∞c (Rk) such that

uj → u in D′Γ(Rk).

Proof. See Theorem 8.2.3 in [40].

Lemma 4.0.13. Let m,n ∈ N and let f : Rm → Rn be a C∞ map. Define the set of normals

of the map f by

Nf := {(f(xm), η
n
) ∈ Rn × Rn : f ′(xm)Tη

n
= 0}, (4.0.28)

where f ′(xm)T denotes the transpose of the matrix f ′(xm). Then the pullback distribution

f ∗u can be defined in one and only one way for all u ∈ D′(Rn) with

Nf ∩WF(u) = ∅ (4.0.29)

so that f ∗u = u ◦ f , when u ∈ C∞(Rn) and for any closed conic subset Γ ⊂ Rn × (Rn \ {0})

satisfying Γ ∩Nf = ∅, we have a continuous map f ∗ : D′Γ(Rn)→ D′f∗Γ(Rm), where

f ∗Γ := {(xm, f ′(xm)Tη
n
) : (f(xm), η

n
) ∈ Γ}. (4.0.30)

In particular, for every u ∈ D′(Rn) satisfying (4.0.29), we have that

WF(f ∗u) ⊂ f ∗WF(u). (4.0.31)

Proof. See Theorem 8.2.4 in [40].

We are now prepared to state Hörmander’s criterion for the existence of the product

of two distributions.
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Proposition 4.0.14 (Hörmander’s criterion). Let u1, u2 ∈ D′(Rk), and suppose that

WF(u1)⊕WF(u2) := {(xk, ξk) ∈ Rk×(Rk\{0}) : ξ
k

= ξ
1,k

+ξ
2,k
, (xk, ξj,k) ∈WF(uj) for j = 1, 2}

(4.0.32)

does not contain an element of the form (xk, 0). Then the product u1u2 can be defined as the

pullback of the tensor product u1 ⊗ u2 by the diagonal map d : Rk → R2k. Moreover,

WF(u1u2) ⊂WF(u1) ∪WF(u2) ∪ (WF(u1)⊕WF(u2)). (4.0.33)

We refer to this definition of the product u1u2 as the Hörmander product.

Proof. See Theorem 8.2.10 in [40].

Sometimes it is easy to make an ansatz for an explicit formula for the product of two

distributions, for example δ(x1 − x2)δ(x2 − x3). The next lemma is useful for verifying that

the ansatz indeed coincides with the product distribution defined by Proposition 4.0.14.

Lemma 4.0.15. Let u, v ∈ D′(Rk). Then there exists at most one distribution w ∈ D′(Rk)

such that for every xk ∈ Rk, there exists φ ∈ C∞c (Rk) which is ≡ 1 on B(xk, ε), for some

ε > 0, and such that for every ξ
k
∈ Rk,

F(φu) · F(φv)(ξ
k
− ·) ∈ L1(Rk), (4.0.34)

the map

Rk → C, ξ
k
7→ (F(φu) ∗ F(φv))(ξ

k
) (4.0.35)

is polynomially bounded, and

F(φ2w)(ξ
k
) = (2π)−k/2

∫
Rk
dη

k
F(φu)(η

k
)F(φv)(ξ

k
− η

k
). (4.0.36)
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Proof. We first claim that for any ψ ∈ C∞c (Rk),

F(ψφ2w)(ξ
k
) = (2π)−k/2(F(ψφu1) ∗ F(φu2))(ξ

k
) = (2π)−k/2(F(φu1) ∗ F(ψφu2))(ξ

k
),

(4.0.37)

for all ξ
k
∈ Rk where the integrals defining the convolutions converge absolutely for ξ

k
fixed.

Indeed, since ψ̂ is Schwartz and F(φ2w) is analytic,

F(ψφ2w)(ξ
k
) = (2π)−k/2

∫
Rk
dη

k
F(ψ)(ξ

k
− η

k
)F(φ2w)(η

k
)

= (2π)−k/2
∫
Rk
dη

k
F(ψ)(ξ

k
− η

k
)

(∫
Rk
dη′

k
F(φu1)(η

k
− η′

k
)F(φu2)(η′

k
)

)
,

(4.0.38)

where the integrals are absolutely convergent. Hence, by the Fubini-Tonelli theorem,∫
Rk
dη

k
F(ψ)(ξ

k
− η

k
)

(∫
Rk
dη′

k
F(φu1)(η

k
− η′

k
)F(φu2)(η′

k
)

)
=

∫
Rk
dη′

k
F(φu2)(η′

k
)

(∫
Rk
dηkF(ψ)(ξ

k
− η

k
)F(φu1)(η

k
− η′

k
)

)
.

(4.0.39)

By the translation invariance of the Lebesgue measure,∫
Rk
dη

k
F(ψ)(ξ

k
− η

k
)F(φu1)(η

k
− η′

k
) =

∫
Rk
dη

k
F(ψ)(ξ

k
− η′

k
− η

k
)F(φu1)(η

k
)

= (F(ψ) ∗ F(φu1))(ξ
k
− η′

k
)

= (2π)k/2F(ψφu1)(ξ
k
− η′

k
), (4.0.40)

where the ultimate equality follows from Fourier inversion. Therefore,

(2π)−k/2
∫
Rk
dη′

k
F(φu2)(η′

k
)

(∫
Rk
dηkF(ψ)(ξ

k
− η

k
)F(φu1)(η

k
− η′

k
)

)
= (F(ψφu1) ∗ F(φu2))(ξ

k
).

(4.0.41)

By symmetry, we have also shown that

F(ψφ2w)(ξ
k
) = (F(φu1) ∗ F(ψφu2))(ξ

k
). (4.0.42)
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Now suppose that w1, w2 ∈ D′(Rk) are two distributions such that there exist φ1, φ2 ∈

C∞c (Rk) so that

F(φ2
1w1) = (F(φ1u1) ∗ F(φ1u2)) (4.0.43)

F(φ2
2w2) = (F(φ2u1) ∗ F(φ2u2)), (4.0.44)

where the integrals defining the convolutions are absolutely convergent for fixed ξ
k

and there

exists N1, N2 ∈ N0 so that

sup
ξ
k
∈Rk
〈ξ
k
〉−N1

∫
Rk
dη

k

∣∣∣F(φ1u1)(ξ
k
− η

k
)F(φ1u2)(η

k
)
∣∣∣ <∞ (4.0.45)

sup
ξ
k
∈Rk
〈ξ
k
〉−N2

∫
Rk
dη

k

∣∣∣F(φ2u1)(ξ
k
− η

k
)F(φ2u2)(η

k
)
∣∣∣ <∞. (4.0.46)

Then by (4.0.37),

F(φ2
1φ

2
2w1) = (2π)−k/2F(φ2) ∗ F(φ2φ

2
1w1) = (2π)−k/2F(φ2) ∗ (F(φ1u1) ∗ F(φ1φ2u2))

= (2π)−k/2F(φ2φ1u1) ∗ F(φ2φ1u2), (4.0.47)

where the ultimate equality is justified since F(φ2) is a Schwartz function and the fact that

there exists some N ∈ N so that

sup
ξ
k
∈Rk
〈ξ
k
〉−N

∫
Rk
dη

k

∣∣∣F(φ1u1)(ξ
k
− η

k
)F(φ1φ2u2)(η

k
)
∣∣∣ <∞, (4.0.48)

which is a consequence of (4.0.45). Similarly,

F(φ2
1φ2w2) = (2π)−k/2F(φ1φ2u1) ∗ F(φ1φ2u2), (4.0.49)

which shows that F(φ2
1φ

2
2w1) = F(φ2

1φ
2
2w2). By a localization argument (see, for instance,

Theorem 2.2.1 in [40]), it follows that w1 = w2 in D′(Rk), completing the proof of the

lemma.
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Lastly, we record some basic properties of the product of two distributions, when it

exists.

Proposition 4.0.16 (Properties of product). The following properties hold:

(a) If f ∈ D(Rk) and u ∈ D′(Rk), then the usual definition of the fu coincides with

Proposition 4.0.14.

(b) If u, v, w ∈ D′(Rk) and the products uv, (uv)w, vw, and u(vw) all exists, then u(vw) =

(uv)w. Furthermore, if uv exists, then vu also exists and uv = vu.

(c) If u, v ∈ D′(Rk) have disjoint singular supports, then uv exists and is given by the

product distribution guaranteed by Proposition 4.0.5.

(d) If u, v ∈ D′(Rk) and uv exists, then supp(uv) ⊂ supp(u) ∩ supp(v).

Proof. See Theorem IX.43 in [79].
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Appendix 5

Multilinear Algebra

In this appendix, we review some useful facts from multilinear algebra about sym-

metric tensors, which we make use of to prove Theorem 4.1.7. Throughout this appendix, V

denotes a finite-dimensional complex vector space unless specified otherwise. For concrete-

ness, the reader can just take V = Cd, where d is the dimension of V . For more details and

the omitted proofs, we refer the reader to [37] and [17], in particular the latter for a concise,

pedestrian exposition.

Let n ∈ N, and let V ×n → V ⊗n be an algebraic n-fold tensor product1 for V . Now

given any n-linear map T : V ×n → W , where W is another complex finite-dimensional vector

space, the universal property of the tensor product asserts that there exists a unique linear

map T̄ : V ⊗n → W , such that the following diagram commutes

V ×n V ⊗n

W

T
T̄ . (5.0.1)

In particular, given any permutation π ∈ Sn, there is a unique map π̄ : V ⊗n → V ⊗n with

the property that

π̄(v1 ⊗ · · · ⊗ vn) = vπ(1) ⊗ · · · ⊗ vπ(n), ∀v1, . . . , vn ∈ V. (5.0.2)

1The reader will recall that the tensor product is only defined up to unique isomorphism.
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Using these maps π̄, we can define the symmetrization operator Symn on V ⊗n by

Symn(u) :=
1

n!

∑
π∈Sn

π̄(u), ∀u ∈ V ⊗n (5.0.3)

and define what it means for a tensor to be symmetric.

Definition 5.0.17 (Symmetric tensor). We say that u ∈ V ⊗n is symmetric if Symn(u) = u.

Equivalently, π̄(u) = u for every π ∈ Sn. We let Symn(V ⊗n), alternatively
⊗n

s V or V ⊗
n
s ,

denote the subspace of V ⊗n consisting of symmetric tensors.

Remark 5.0.18. If {e1, . . . , ed} is a basis for V , then {ej1 ⊗ · · · ⊗ ejn}dj1,...,jn=1 is a basis for

V ⊗n, so that dim(V ⊗n) = dn. Similarly, {Symn(ej1 ⊗ · · · ⊗ ejn)}1≤j1≤···≤jn≤d is a basis for

V ⊗
n
s , so that dim(V ⊗

n
s ) =

(
d+n−1
n

)
.

We now claim that any element of V ⊗
n
s is uniquely identifiable with an element of

C[x1, . . . , xd]n, the space of homogeneous polynomials of degree n in d variables. Indeed, fix

a basis {e1, . . . , ed} for V , so that {Symn(ej1 ⊗ · · · ⊗ ejn)}1≤j1≤···≤jn≤d is a basis for V ⊗
n
s . By

mapping

Symn(ej1 ⊗ · · · ⊗ ejn) 7→ xα1
1 · · ·x

αd
d =: x

αd
d , (5.0.4)

where αd is the multi-index defined by

αj :=
n∑
i=1

δj(ji), ∀j ∈ N≤d, (5.0.5)

where δj is the discrete Dirac mass centered at j, one obtains a linear map from V ⊗
n
s →

C[x1, . . . , xd]n. One can show this map is, in fact, an isomorphism. Consequently, if

u =
∑

1≤j1≤···≤jn≤d

uj1···jn Symn(ej1 ⊗ · · · ⊗ ejn) (5.0.6)
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is an element of V ⊗
n
s , then u is uniquely identifiable with the element F ∈ C[x1, . . . , xd]n

given by

F (xd) =
∑

1≤j1≤···≤jn≤d

uj1···jnx
αd(j

n
)

d , (5.0.7)

where we write αd(jn) to emphasize that αd is intended as a function of j
n

according to the

rule (5.0.5).

There is a useful bilinear form on C[x1, . . . , xd]n defined as follows: if F,G ∈ C[x1, . . . , xd]n

are respectively given by

F (xd) =
∑
|αd|=n

(
n

α1, . . . , αd

)
aαdx

αd
d , G(xd) =

∑
|αd|=n

(
n

α1, . . . , αd

)
bαdx

αd
d , (5.0.8)

then we define

〈F,G〉 :=
∑
|αd|=n

(
n

α1, . . . , αd

)
aαdbαd . (5.0.9)

The form 〈·, ·〉, which is evidently symmetric, has the important property of nonde-

generacy, as the next lemma shows.

Lemma 5.0.19 (Nondegeneracy). The symmetric bilinear form 〈·, ·〉 : C[x1, . . . , xd]n ×

C[x1, . . . , xd]n → C is nondegenerate: if 〈F,G〉 = 0 for all G ∈ C[x1, . . . , xd]n, then F ≡ 0.

When G is of the form G(xd) = (β1x1 + · · · + βdxd)
n (i.e. an nth power of a linear

form), then the next lemma provides an explicit formula for 〈F,G〉.

Lemma 5.0.20. If G(xd) = (β1x1 + · · · + βdxd)
n, where β

d
∈ Cd, then for every F ∈

C[x1, . . . , xd]n, we have that

〈F,G〉 = F (β
d
). (5.0.10)
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We now use Lemma 5.0.20 to prove the existence of a special decomposition for

elements of V ⊗
n
s . We have included a proof as it is a nice argument.

Lemma 5.0.21 (Symmetric rank-1 decomposition). For any u ∈ V ⊗ns , there exists an integer

N ∈ N, coefficients {aj}Nj=1 ⊂ C, and elements {vj}Nj=1 ⊂ V , such that

u =
N∑
j=1

ajv
⊗n
j . (5.0.11)

Proof. Let W ⊂ V ⊗
n
s denote the set of elements which admit a decomposition of the form

(5.0.11). Evidently, W is a subspace of V ⊗
n
s . Fix a basis {e1, . . . , ed} for V . If v = β1e1 +

· · ·+ βded, then one can check that under the isomorphism given by (5.0.7), v⊗n is uniquely

identifiable with the polynomial

(β1x1 + · · ·+ βdxd)
n,

i.e. an nth power of a linear form. Consequently, W is isomorphic to the span of nth powers

of linear forms in C[x1, . . . , xd]n.

Assume for the sake of a contradiction that W is a proper subspace, so that the

orthogonal complement W⊥ with respect to the form 〈·, ·〉 is nontrivial. Then it follows

from the embedding of W ⊂ C[x1, . . . , xd]n that there exists a nonzero polynomial F ∈

C[x1, . . . , xd]n, such that 〈F,G〉 = 0 for every G ∈ W . Lemma 5.0.20 then implies that

F (β
d
) = 0 for every β

d
∈ Cd, which contradicts that F is a nonzero polynomial.

Remark 5.0.22. Since Lemma 5.0.21 asserts that a decomposition of the form (5.0.11)

always exists, one can define the symmetric rank of an element u ∈ V ⊗
n
s by the minimal

integer N . Evidently, a tensor of the form v⊗n has symmetric rank 1. Although we will not
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need the notion of symmetric rank in this work, we will refer to the decomposition (5.0.11)

as a symmetric-rank-1 decomposition.

As an application of the symmetric-rank-1 tensor decomposition, we now show an

approximation result for bosonic Schwartz functions (i.e. elements of Ss(Rd)).

Lemma 5.0.23. Let f ∈ Ss(Rd). Then given ε > 0 and a Schwartz seminorm N , there

exist N ∈ N, elements {fi}Ni=1 ⊂ S(R), and coefficients {ai}Ni=1 ⊂ C, such that

N

(
f −

N∑
i=1

aif
⊗d
i

)
≤ ε. (5.0.12)

In other words, finite linear combinations of symmetric-rank-1 tensor products are dense in

Ss(Rd).

Proof. Fix f ∈ Ss(Rd), ε > 0, and seminorm N . Since Ss(Rd) ∼=
⊗̂d

sS(R), there exists an

integer M ∈ N, elements {gij} 1≤i≤d
1≤j≤M

⊂ S(R), and coefficients {aj}1≤j≤M ⊂ C, such that

N

(
f −

M∑
j=1

aj Symd

(
d⊗
i=1

gij

))
≤ ε. (5.0.13)

Define the complex vector space

V := spanC{gij : 1 ≤ i ≤ d, 1 ≤ j ≤M}, (5.0.14)

which is evidently finite-dimensional. For each j ∈ N≤M , consider the symmetric tensor

Symd

(
d⊗
i=1

gij

)
∈ V ⊗ds . (5.0.15)
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By Lemma 5.0.21, there exists an integer Nj ∈ N, elements {fj`}
Nj
`=1 ⊂ V , coefficients

{aj`}
Nj
`=1 ⊂ C, such that

Symd

(
d⊗
i=1

gij

)
=

Nj∑
`=1

aj`f
⊗d
j` . (5.0.16)

Consequently,
M∑
j=1

aj Symd

(
d⊗
i=1

gij

)
=

M∑
j=1

Nj∑
`=1

ajaj`f
⊗d
j` , (5.0.17)

so upon substitution of this identity into (5.0.13), we obtain the desired conclusion.

As a corollary of Lemma 5.0.23, we obtain the following decomposition for elements

in L(S ′s(Rd),Ss(Rd)).

Corollary 5.0.24. Let γ(d) ∈ L(S ′s(Rd),Ss(Rd)). Then given ε > 0 and a Schwartz semi-

norm N , there exists N ∈ N, elements {fi, gi}Ni=1 ⊂ S(R), and coefficients {ai}Ni=1 ⊂ C, such

that

N

(
γ(d) −

N∑
i=1

aif
⊗d
i ⊗ g⊗di

)
≤ ε. (5.0.18)

Proof. Fix γ(d) ∈ L(S ′s(Rd),Ss(Rd)), ε > 0, and seminorm N . Since

L(S ′s(Rd),Ss(Rd)) ∼= Ss(Rd)⊗̂Ss(Rd),

there exists an integer N , elements {f̃i, g̃i}Ni=1 ⊂ Ss(Rd), and coefficients {ai}Ni=1 ⊂ C, such

that

N

(
γ(d) −

N∑
i=1

aif̃i ⊗ g̃i

)
≤ ε. (5.0.19)

For each i ∈ N≤N , Lemma 5.0.23 implies that there exist integers Ni,f , Ni,g ∈ N, elements

{fij}
Ni,f
j=1 , {gij}

Ni,g
j=1 ⊂ S(R), and coefficeints {aij,f}

Ni,f
j=1 , {aij,g}

Ni,g
j=1 ⊂ C, such that

f̃i =

Ni,f∑
j=1

aij,ff
⊗d
ij , g̃i =

Ni,g∑
j=1

aij,gg
⊗d
ij . (5.0.20)
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By setting coefficients equal to zero, we may assume without loss of generality that Ni,f =

Ni,g = M ∈ N, for every i ∈ N≤N . So by the bilinearity of tensor product, we obtain the

decomposition
N∑
i=1

aif̃i ⊗ g̃i =
N∑
i=1

M∑
j,j′=1

aiaij,faij′,gf
⊗d
ij ⊗ g⊗dij′ . (5.0.21)

Substitution of this identity into (5.0.19) and relabeling/re-indexing of the summation yields

the desired conclusion.

374



Bibliography

[1] Mark J Ablowitz, David J Kaup, Alan C Newell, and Harvey Segur. The inverse scat-

tering transform-Fourier analysis for nonlinear problems. Studies in Applied Mathe-

matics, 53(4):249–315, 1974.

[2] Ralph Abraham and Jerrold E. Marsden. Foundations of mechanics. Benjamin/Cum-

mings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second

edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cush-
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[40] Lars Hörmander. The Analysis of Linear Partial Differential Operators: Distribution

Theory and Fourier Analysis. Springer-Verlag, 1983.
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115, 2015.

[53] Elliott H. Lieb. Exact analysis of an interacting Bose gas. II. The excitation spectrum.

Phys. Rev. (2), 130:1616–1624, 1963.

[54] Elliott H. Lieb and Werner Liniger. Exact analysis of an interacting Bose gas. I. The

general solution and the ground state. Phys. Rev. (2), 130:1605–1616, 1963.

[55] Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason. One-Dimensional Bosons in

Three-Dimensional Traps. Phys. Rev. Lett., 91(15):150401, Oct 2003.

[56] Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason. One-dimensional behavior of

dilute, trapped Bose gases. Comm. Math. Phys., 244(2):347–393, 2004.

[57] J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid, and R. G. Spencer. Hamiltonian

systems with symmetry, coadjoint orbits and plasma physics. In Proceedings of the

381



IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. I

(Torino, 1982), volume 117, pages 289–340, 1983.

[58] Jerrold Marsden and Alan Weinstein. Coadjoint orbits, vortices, and Clebsch variables

for incompressible fluids. volume 7, pages 305–323. 1983. Order in chaos (Los Alamos,

N.M., 1982).

[59] Jerrold E. Marsden, Philip J. Morrison, and Alan Weinstein. The Hamiltonian struc-

ture of the BBGKY hierarchy equations. In Fluids and plasmas: geometry and dy-

namics (Boulder, Colo., 1983), volume 28 of Contemp. Math., pages 115–124. Amer.

Math. Soc., Providence, RI, 1984.

[60] Jerrold E Marsden and Tudor S Ratiu. Introduction to mechanics and symmetry:

a basic exposition of classical mechanical systems, volume 17. Springer Science &

Business Media, 2013.

[61] Jerrold E. Marsden and Alan Weinstein. The Hamiltonian structure of the Maxwell-

Vlasov equations. Phys. D, 4(3):394–406, 1981/82.

[62] Dana Mendelson, Andrea R Nahmod, Nataša Pavlović, Matthew Rosenzweig, and
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