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Abstract 

 

A Reactor Scale Gas Dynamics Model of an Industrial Multi-

wafer Atomic Layer Deposition Reactor using Direct 

Simulation Monte Carlo Approach 

 

Sudharshanaraj Thiruppathiraj, MSE 

The University of Texas at Austin, 2021 

 

Supervisor: Laxminarayan L. Raja 

 
Atomic layer deposition (ALD) using multi-wafer batch reactors has 

now emerged as the manufacturing process of choice for modern 

microelectronics at a massive scale. Stringent process requirements of thin 

film deposition uniformity within wafer (WiW) and wafer-wafer (WTW) in 

the batch, film conformity along submicron wafer features, thin film quality, 

and the utilization of expensive precursors in the reactor dictate ALD reactor 

design and process parameter optimization. This research discusses a particle-

based direct-simulation Monte Carlo (DSMC) of the full reactor scale 

simulation that overcomes the low Knudsen number limitation of typical 
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continuum computational fluid dynamics (CFD) approaches used for 

modeling low-pressure ALD reactors. A representative industrial multi-wafer 

batch reactor used for the deposition of Si-based thin films with N2 and Si2Cl6 

(hexachlorodisilane - HCD) as process feed gases with pressures in the range 

43 Pa to 130 Pa and uniform reactor temperature of 600oC is simulated. The 

model provides detailed insights into the flow physics associated with the 

transport of the precursor species from the inlets, through wafer feed nozzles, 

into the inter-wafer regions, and finally through the outlet. The reactor 

operating conditions are shown to be in the slip/transitional flow regime for 

much of the reactor volume and especially the feed gas nozzle and inter wafer 

regions (where the Knudsen number approaches ~0.2), justifying the need for 

a high-Knudsen number DSMC approach as in this work. For the simulated 

conditions, the non-uniformity of precursor species immediately above the 

wafer surface is predicted to be within < 1% for a given wafer and < 2% 

across the entire multi-wafer stack. Results indicate that higher pressure 

degrades WiW and WTW uniformity. A precursor-wafer interaction 

efficiency of ~99% is observed, irrespective of chamber pressure. 
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Chapter 1 

Introduction 

 

Scaling trends in the semiconductor manufacturing industry have 

traditionally been dictated by the Moore’s Law, which states that the number 

of transistors on an integrated circuit roughly increases twice every two years.  

The primary approach to achieving this trend is to shrink feature sizes on 

chips [1].  This need for miniaturization of microelectronics has driven 

semiconductor companies to extend it in three dimensions and fabricate at 5 

nm scales and lower. 

1.1 Limitations of Chemical Vapor Deposition 

 

With increasing demand for good performance and capacity, the latest 

flash memory devices are based on 3D vertical-NAND (V-NAND) 

architectures.  The challenge with 3D V-NAND memory lies in the 

fabrication of very high aspect ratio channel holes requiring etching and 

deposition of very thin and conformal layers of nitrides or oxides of silicon 

with atomic layer precision. Classical techniques like chemical vapor 

deposition (CVD) have been used to construct the nano-scale features, 
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although they require the operation at undesirably high temperature, in 

temperatures excess of 700 oC [2] and poor step coverage.  The atomic layer 

deposition (ALD) technique is an alternative to CVD and can achieve atomic 

precision in the deposition process [2] [3] [4] [5].  This precision is achieved 

through the deposition of individual atomic layers on the surface through 

separate self-limiting reaction steps that are repeated in cycles [6].  Each step 

in an ALD cycle involves the introduction of a specific source precursor and 

reactant gases to build an atomic layer partially, followed by one or more 

steps that involve a different gas exposure to complete a single atomic layer 

[5].  The process is inherently slow and extremely time-consuming to 

complete a single ALD film stack versus a similar CVD process. 

1.2 Industrial Multi-wafer Batch Reactors 

 

Although precision manufacturing requirements have forced single-

wafer processing as a necessity in several semiconductor manufacturing unit 

steps [7], batch processing of many wafers at the same time is desirable to 

increase throughput and minimize costs [8].  Fortunately, batch processing for 

ALD has proven a success in large throughput semiconductor manufacturing, 
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although many issues with this processing approach remain unique and 

require extensive study for a specific thin film deposition system. 

Industrial batch processing reactors involves placing a vertical or 

horizontal stack of several tens of wafers at the same time [9] [10].  However, 

the vertical type of batch process has been mostly used in the industry due to 

better uniformity of wafers and less footprint for the equipment. Batch 

reactors typically operate in a hot wall configuration, with the entire system 

being maintained at a single operating temperature, which in itself poses a 

complicated thermal design and control problem.  A series of injectors carry 

source precursor, reactant, and carrier gases into the reactor that diffuse into 

the inter-wafer spaces and interact with the wafer surface where the ALD 

reactions occurs.  The remaining precursor gas is typically removed from the 

reactor by a common exhaust. 

The uniformity of ALD processes must be ensured across the wafer 

area for each wafer, and the same deposition conditions and uniformity must 

be ensured for all wafer across the batch reactor wafer stack. This can be 

achieved by the positioning of individual gas injectors for each wafer in the 

stack and the gradual rotation of the entire wafer stack [10].  However, in 

practice, despite the individual wafer-level organization of the precursor flow, 

a large pressure differential across the length of the reactor volume means that 
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uniformity across the wafer stack can be compromised.  For example, the gas 

flow rates can vary gradually between different inter-wafer gap regions, and 

consequently, the deposition rate can be different on different wafer surfaces 

for the same process batch.  Despite the wafer rotation, single wafer 

uniformity can also be difficult because the flow from each injector nozzle 

can exit with high momentum and spread non-uniformly over the wafer 

surface. Overall, within-wafer (WiW) and wafer-wafer (WTW) uniformity, 

step-coverage, deposition time, and precursor consumption are still the main 

concerns of the ALD batch process. 

1.3 Motivation 

 

While the deposition chemistry of various ALD processes has been 

studied widely through reaction engineering and ab initio modeling 

approaches [11] [12], the reactor design, and its optimization is traditionally 

done through cut-and-try approaches by experienced equipment engineers and 

increasingly through the use of computational fluid dynamics (CFD) tools to 

address specific flow components in the reactor, if not the reactor as a whole 

[13] [14] [15] [16]. A few studies, in literature, have reported full reactor 

modeling of batch ALD systems, albeit with some simplifications compared 
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to actual industrial process reactors [2] [17] [18] [19].  These studies have 

provided insights into several of the questions mentioned, e.g., cross-wafer 

and inter-wafer uniformity as a function of the reactor operating conditions.  

Despite the usefulness of CFD modeling, a key question on the 

validity of continuum fluid modeling in low-pressure ALD reactor remains.  

At low pressures, the mean free path of gas molecules (𝜆) can be comparable 

to critical dimensions of flow facing parts of the reactor (𝑙 ).  As an example, 

for the conditions of interest in the study reported in this thesis, i.e., a pressure 

range of 43 Pa to 130 Pa and temperature of 600 oC, the mean free path ranges 

from 0.3 mm to 3 mm in the wafer zone depending on the species 

concentration and pressure, which is comparable to the gas distribution nozzle 

diameter of 2 mm, and the 19.2 mm inter-wafer gap.  In other words, the local 

Knudsen number  𝐾𝑛 =   around the inter-wafer gap is estimated to be ~0.2 

i.e., in the slip-transition region [20], invalidating the accuracy of the CFD 

models that require 𝐾𝑛 ≪ 1 [21].  Particle-based models for gas transport in 

these systems is more appropriate and can preserve the fidelity of the model in 

all regions of a batch reactor. 

A purely gas kinetic model for a full scale ALD reactor is the subject 

of this research.  A Direct-Simulation Monte Carlo (DSMC) approach for 
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modeling a representative industrial thermal ALD batch reactor is considered 

here.  The gas dynamics of flow through the reactor, mixing of the precursor 

molecules with the inert carrier gas stream in the inter-wafer gap region, 

uniformity of process across a wafer, and across different wafers in the stack 

are described.  Insights into the non-continuum effects are provided to assess 

the need for DSMC modeling of such reactor systems. The DSMC model is 

described in Chapter 2, simulation results and discussions are presented in 

Chapter 3, and the conclusion in Chapter 4. 
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Chapter 2 

Model Description 

 

A single step of a multi-step ALD process is considered for the 

deposition of SixNy film using Si2Cl6 (hexachlorodisilane or HCD) as the 

precursor [22]. The precursor is transported into the reactor through the nozzle 

using N2 as the carrier gas.  Previous studies [11] [23] have shown that the 

HCD precursor is stable in the gas phase at the temperatures of interest in this 

study, and hence gas phase reactions are neglected.  Furthermore, the ratio of 

molecules that adsorb to that impinge upon a surface in the same period, i.e., 

sticking coefficient for the precursor at the active surface is low (~10-5) at the 

ALD process temperatures of interest.  Hence, the surface appears mostly 

non-reactive to the HCD molecules [11] and it takes several minutes to 

complete the source supply step for deposition of hole patterns with aspect 

ratio of 100 or more in the batch process. This longer processing time in the 

batch reactor has a major influence on uniformity than in single wafer 

process. 
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2.1 The Design of Thermal ALD Batch Reactor 

 

 

Figure 2.1: A cutaway of the multi-wafer batch ALD reactor showing main 
features of relevance to this study. The path of the gas is highlighted for the 
central inlet. 

 

The chamber design used in this study is based on a representative 

industrial full-scale reactor with a vertically stacked multi-wafer and 

crossflow system of diffusion flow laterally across the wafer patented by 

Yoshida et al. [10].  Figure 2.1 shows a schematic of the reactor geometry 

with a half-symmetry cut through the center of the reactor.  The external 
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dimensions of the reactor are roughly 0.5 m × 0.35 m × 0.75 m (L×W×H).  

This batch reactor houses a 25-wafer stack with a pitch of 20mm, and each 

silicon wafer has a diameter of 300 mm and a thickness of 0.8 mm. The 

wafers are unpatterned. The wafers are uniformly spaced from each other at 

an inter-wafer gap of 19.2 mm.  An annular gap of 10 mm exists between the 

edge of the wafers and the inner radial wall of the reactor tube. To operate the 

reactor at high temperature, this gap is necessary to maintain a sufficient 

tolerance for differential thermal expansion of the different components in the 

reactor and to accommodate the rotational tolerance of the wafer stacked boat.  

This gap is, however, detrimental to obtain uniform thickness of the deposited 

films and to effectively transport the precursor to the wafers since it provides 

an alternative flow path for the process gases that can completely bypass the 

wafer region.  This undesirable flow path is termed as “bypass flow”, in the 

study. 

There are three inlet gas feed nozzles with gas injection holes in each 

separate chamber space from which the inlet gases can be injected into the 

central chamber containing the wafer stack.  Feeding of gases is done through 

the two outer nozzles (Side Inlet) supplying carrier N2 gas while the central 

nozzle (Central Inlet) supplying a mixture of N2 carrier gas and HCD 

precursor.  The gases entering from the inlets are directly transported into 
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each of the 25 inter-wafer gaps through 25 nozzle holes with a diameter of 2 

mm in each nozzle. The gas flow direction in the inlet manifold is from 

bottom to top and the top of each nozzle is capped, thus ensuring all the inlet 

flow in each nozzle exits only through the 25 holes.  On entering the reactor 

volume, feed gas diffuses between the inter-wafer space, reacts with the wafer 

surface, and flows out to a cylindrical outlet port located at the bottom side of 

the reactor.  

2.2 The Direct-Simulation Monte Carlo Approach 

 
A multi-species DSMC approach implemented in VizGrain software 

package [24] [25] [32] is used to model gas transport, inter-species gas phase 

mixing, and the interaction of the precursor molecules with the reactor 

components and the wafer surface.  The DSMC model is a particle-based full 

kinetic representation for the gas flow [21]. Representative particles are used 

to simulate the motion of individual real particles in the gas. The 

representative particles are also called “simulated particles”, and each 

simulated particle has a mass 𝑚  that is the same as a real particle (atom or 

molecule) it represents.  In order to make a simulation tractable, each 

simulated particle is assigned a statistical weight ℱ, where ℱ is the number of 
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real particles that a single simulated particle represents.  ℱ needs to be large. 

For example, in the simulation, it is ~1013. This value is chosen to give about 

5 particles per cell for transition and slip flow regimes at which the reactor 

operates [27]. The motion of a particle is governed by Newton’s laws. 

Mathematically, it is represented as: 

𝑚
𝑑𝑐

𝑑𝑡
= �⃗�  

(1) 

𝑑�⃗�

𝑑𝑡
= 𝑐  

(2) 

where, �⃗�  is the particle position, 𝑐  is the particle velocity, and �⃗�  is the force 

acting on the particle.  Equations (1) and (2) are time-integrated using a leap-

frog finite-difference time integration approach with a time step Δt.  In the 

absence of forces acting on the particle (e.g., in the case of a neutral gas), the 

particles execute straight-line trajectories until they are interrupted by very 

brief collision events with other particles or with solid boundaries.  Collisions 

among particles are treated using a unique collision sampling technique called 

the DSMC (in fact, the classification DSMC refers specifically to the collision 

algorithm in a particle method but is used generally to describe the particle-

based modeling approach as a whole).  



 12 

The DSMC model executes a gas collision among particles in close 

vicinity of each other. At any given time, all particles within a small cell 

volume in the domain are assumed candidates for executing collisions.  The 

collisions are solved by determining the probability of collision (𝑃 ) 

between any two particles within a cell of volume 𝑉  and is determined as: 

𝑃 = ℱ
𝜎 𝑔

𝑉
Δt (3) 

Here, 𝑔  is the relative speed between the two particles and 𝜎  is the 

collision cross section for the collision pair.  In general, the approach is to 

pick all possible collision pairs within a cell, i.e. 
 
𝑁 𝑁  where 𝑁  and 𝑁  are 

the number of simulated particles of species 𝑎 and 𝑏, respectively (for 

example, N2 and HCD are the two species in this problem), and execute the 

collision if a uniform random number ℛ = (0,1] is such that            

ℛ < 𝑃 .  This is then repeated for all cell volumes in the domain before 

the next particle move step in equations (2) and (3) are repeated.  The above 

approach is, however, computationally costly, and a variation of the Null-

Time-Counter (NTC) method is used in this study.  Here the maximum 

expected value of the product of 𝜎  and 𝑔  is estimated, i.e. (𝜎 𝑔 ) , and 

the maximum collision probability, 
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𝑃 , = ℱ
(𝜎 𝑔 )

𝑉
Δt 

(4) 

is evaluated for each cell.  Instead of selecting all possible collision pairs in a 

cell, a smaller fraction of the pairs 𝑁 ,  is selected for collision as, 

𝑁 , =
1 

2
𝑁 𝑁  𝑃 ,  

(5) 

These pairs then collide if a uniform random number ℛ <
,

 

.  The value of (𝜎 𝑔 )  for each cell is updated during the simulation so a 

best estimate is available at all times for calculating 𝑃 , .  Overall, the 

computational saving with the NTC approach can be considerable for large-

scale problems with a large number of simulated particles.  

The above DSMC approach requires the entire computational domain 

to be divided into non-overlapping, continuous cell volumes, which is 

achieved using a standard, unstructured mesh, as in the case of CFD 

simulations.  The same mesh is also useful in calculating average fluid 

properties by calculating the ensemble average properties of the simulated 

particles with each cell volume in the domain.  In the case of the DSMC 

method, the mesh resolution requirement and particle count requirement 

(adjustable by the statistical weight ℱ) is such that a few 10s to 100s of 
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particles must reside within each cell for sufficient collision and average fluid 

property statistics.  The time step Δt is chosen such that the particles only 

transit a fraction of a cell at each time step. 

Boundary conditions include the inlets, walls, and outlets.  At the 

inlets, all particles are assumed to enter with a specified Maxwellian inflow 

flux for the individual species at a specified inflow temperature.  Particles 

from the interior that impinge at the inlet are assumed to be reflected back 

diffusely at the specified inlet temperature, which effectively forces the 

correct gas inflow into the reactor.  All particles interacting with the reactor 

walls are assumed to thermally accommodate at the wall and then reflect off 

diffusely from the surface dictated by a Maxwellian distribution at the surface 

temperature.  At the outlet, a particle reflection fraction parameter (𝑓 ) of 

the particles that impinge on the outlet surface are assumed to reflect back 

diffusely.  As discussed below, in the simulations this fraction is defined by 

repeated trials to achieve an overall specified pressure in the reactor.  

2.3 Computational Mesh 

 
Due to a vertical symmetry in the geometry about the midplane of the 

reactor, the simulations consider only half of the actual reactor domain with a 



 15 

plane of symmetry boundary separating the two halves.  The mesh for the 

DSMC model is generated using Salome, an open-source geometry creation, 

and meshing tool [26].    

An unstructured mesh comprising 1.21 million tetrahedral cells was 

constructed.  Section of the mesh is shown in Figure 2.2.  Resolution 

requirements in the mesh were dictated by the need to resolve flow-relevant 

geometric features of the reactor as well as requirements imposed by the 

DSMC algorithm discussed above.  At the highest pressure considered in this 

study, mean free paths of N2 and HCD mixture was estimated to be between 

0.3 mm to 3 mm.  Cell sizes were chosen based on mean free paths of N2 and 

HCD, the ability to maintain geometric fidelity, and the necessity to achieve a 

significant number of particles in each cell for better numerical results [27]. 

Cell diameters on the wafers are about 8 mm, and in the inter-wafer gap, they 

are around 5 mm, as shown in Figure 2.2. 
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Figure 2.2: The upper section of the computational domain showing mesh 
features. 

 

2.4 Operating Conditions 

 
The reactor is assumed to operate at chamber pressures of 43 Pa, 86 

Pa, and 130 Pa and a uniform wall temperature of 600 oC (873 K). Although a 

practical reactor will experience temperature non-uniformities, the 

consideration of thermal state of the reactor is outside the scope of this study.  

Here the is focus only on the rarefied flow physics in the ALD reactor.  The 

Central Inlet provides a mixture of HCD precursor gas along with carrier N2 

gas in the volume ratio 1:5 totaling 1.2 SLPM (standard liter per minute), 2.4 

SLPM, and 3.6 SLPM for the three operating pressures 43 Pa, 86 Pa, and 130 
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Pa, respectively.  Similarly, the outer feed nozzles – the two Side Inlets (note 

only one side inlet is included in the simulations owing to the symmetry 

considerations) provide pure N2 gas at 0.5 slm, 1.0 slm, and 1.5 slm, 

respectively, for the three pressure cases.  The inlets, wall, and outlet 

temperatures are all taken to be 600 oC. 

A time step Δ𝑡 of 0.1 ms was chosen based on the molecular speed at 

the operating conditions and cell sizes in the wafer region.  Gas phase 

reactions, mainly decomposition of HCD, is insignificant for the reactor 

conditions described above [5] [28] [29].  Hence to ease computational 

overhead, a non-reactive chemistry of single precursor (HCD) transported by 

a carrier gas (N2) is used to describe the gas feed process in the reactor.  A 

statistical weight of ℱ = 1 × 10  for a chamber pressure of 43 Pa, ℱ =

2 × 10  for intermediate pressure of 86 Pa, and ℱ = 3 × 10  for the highest 

pressure of 130 Pa is used, which corresponds roughly to 15 million particles 

simulated for each reactor condition. These statistical weight choices ensure 

about five particles per cell for transitional flows [27].   

The DSMC collision algorithm requires specification of molecular 

mass and collision cross sections for the three possible binary collision pairs 

in the two species gas mixture. These properties for N2 are taken to be 
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4.7 × 10  kg and 4.3 × 10  m2 [30], and for HCD to be 4.4 × 10  kg 

and an estimated cross-section of 4.4 × 10  m2, about 10 times that of N2.  

The corresponding collision cross sections 𝜎  are calculated assuming a hard 

sphere molecular model for each collision pair [10].      

Pressure control in the reactor requires careful attention.  In practice, 

the pressure in the reactor is set by the total feed gas flow rate into the reactor 

and the outflow impedance at the pump as characterized by the effective 

blockage of the pumping system to the outflowing gas molecules [31].  A 

calibration study is first performed, where a fraction of the molecules in that 

impinge on the outflow boundary 𝑓  are reflected back into the domain.  𝑓  

effectively mimics flow impedance of the pump.  𝑓  is calibrated in the 

study by running the DSMC simulations over a range of 𝑓  values for fixed 

feed gas inflow rates, thus giving a correlation between the reactor pressure 

and the value of 𝑓 .  A value of 𝑓 = 0.11  is determined based on a 

calibration of the conditions from the case with lowest operating pressure of 

43 Pa.  This value of 𝑓  is assumed fixed for all simulations. 

The initial state of the reactor is assumed to correspond to vacuum and 

the simulations start with a flow of particles through the inlets.  All 

simulations were performed on the Stampede 2 supercomputer at the Texas 
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Advanced Computing Center (TACC) at the University of Texas at Austin.  

Each simulation run typically used 480 cores divided across 10 nodes.  The 

CPU time for the simulations was typically 48 hours. 
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Chapter 3 

Results and Discussion 

 
The flow residence times for reactors depend on geometry of the 

components, pressure, temperature, gas composition, and mass flow rate.  

Using the approach by Lankhorst et al. (refer Eq.11 in [17]), the flow 

residence times is estimated to be about 0.45 s for all three cases.  The 

simulations ran to about 8.5 s of physical time, i.e., about twenty times the 

estimated residence time to ensure a steady state.  The total number of 

simulated particles in the domain also remained nearly constant during this 

period confirming a steady state.  The results presented below are time-

averaged over relatively long periodic intervals of 0.75 s to reduce statistical 

noise in the averaged gas properties.  While a longer time averaging will yield 

results with further improvements to the statistical noise, the chosen value was 

purely due to single run time restrictions on the supercomputing nodes at 

TACC. 
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3.1 Flow Characteristics 

 

 

Figure 3.1: Cross section of the reactor showing pressure profiles for the 
intermediate case. [The range of the contours are chosen to highlight only the 
pressure variations within the reactor volume and not the inlet nozzles.] 

 

The steady state result for the pressure contours across the symmetry 

plane cross section of the reactor at 86 Pa is shown in Figure 3.1. The pressure 

is significantly higher in the feed gas inlet nozzles ~104 Pa than the pressure 

in the reactor volume owing to flow constriction at the small 2 mm dia. 

nozzles that feed each inter-wafer gap independently. (Note that in Figure 3.1, 
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maximum pressure contour is taken as 95 Pa corresponding to the highest 

pressure within the reactor volume.  The pressure in the inlet nozzles is 

therefore shown as saturated at this value.)  The pressure, however, drops 

rapidly along the length of the inlet tube as it flows from the bottom to the top 

and loses mass as the gas effuses out through each nozzle.  Once the gas exits 

the nozzles to enter the reactor volume the pressure drops along the flow 

direction and varies over a range from about 95 Pa to 70 Pa, as it flows 

through wafers, along the bypass regions, and finally out through the outflow.  

Although the operating pressure is characterized by a single average value (86 

Pa) in this case, actual pressure within the wafer zone varies by almost 15%. 
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Figure 3.2: Azimuthally averaged pressure (Pa) at various radial locations on 
25 wafers for all three cases.  [In the figure, ‘dot’ markers correspond to 43 
Pa, ‘triangles’ to 86 Pa, and ‘circles’ to 130 Pa.  This notation is used for all 
figures below.]  

 

Figure 3.2 shows the azimuthally averaged pressure profiles at fixed 

radial locations for all 25 wafers in the stack.  The azimuthal averaging is 

motivated by the wafer rotation that provides an averaged flow environment 

across the wafer.  The variation of the averaged pressure on each of the 25 

wafer surfaces is found to be negligible at different radial locations, with the 

highest radial variations of about 0.4% observed only for the highest pressure 

(130 Pa case) and at the bottom-most wafers in the stack.  The azimuthally 

averaged wafer pressure increases slightly from the bottom-most wafer #1 to 

the top-most wafer #25 with the highest variation of about 2% observed for 
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the bottom-most wafer in the 130 Pa case.  It must be noted that the pressure 

upstream of each nozzle decreases from the bottom-most nozzle to the top-

most nozzle, but the average pressure variation on the wafers is opposite due 

to the influence of the low pressures at the outflow end of the wafer stack and 

the azimuthal averaging. 
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Figure 3.3: (a) Velocity streamlines as seen from the side, (b) from the top of 
the reactor – outlet is on the top, and (c) velocity contours along the reactor 
symmetry plane for intermediate pressure 86 Pa case. (Rotated 90o 
clockwise.) 
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Figure 3.3 shows the flow velocity streamlines from the side of the 

reactor and panel (c) from the top of the reactor for the 86 Pa case.  The 

streamlines are colored according to flow speed shown on the legend to the 

right in the Figure 3.3. The streamlines indicate the flow exits the individual 

nozzles and rapidly expands within the reactor volume.  The side view (panels 

(a) and (c) in Figure 3.3) shows the flow from the nozzle (the central inlet 

nozzles are more clearly seen in panel (b) enters the inter-wafer gap and exits 

the opposite end of the wafer stack into the outlet region of the reactor 

volume.  The top-down view (panel (b) in Figure 3.3) indicates a significant 

fraction of the streamlines, especially from the side inlet nozzle, bypass the 

inter-wafer region altogether.  The flow from the central inlet nozzles is more 

confined and enter the inter-wafer gap without as much bypass loss as the side 

inlet nozzle flows.  The panel (c) on Figure 3.3 shows the flow velocity 

contours on the symmetry plane of the reactor.  The peak flow velocity of 

about 300 m/s occurs at the individual nozzle exit locations and slow down 

significantly as they flow through the reactor volume before being accelerated 

again as it exits the reactor in the outlet pump port region.       
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Figure 3.4: Cross section of the reactor center showing (a) pressure, (b) 
temperature, and (c) velocity streamlines of inlet jets for the intermediate 
pressure (83 Pa). 
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A closeup view of the flow variables in the nozzle region around the 

wafer #12 through #15, near the mid-section of the reactor, is shown in   

Figure 3.4.  The inlet nozzle is on the left of each panel and the reactor 

volume is to the right of the nozzle wall and nozzle exits.  The edges of the 

wafers are seen to the right of each panel.  As mentioned earlier, the inlet 

nozzle pressure is significantly higher than the reactor volume and is about 

1500 Pa for the central nozzle shown and drops rapidly as it flows through the 

nozzle and enters the reactor where the pressure is around 90 Pa.  The 

pressure between the nozzle and the reactor is almost entirely dropped within 

the nozzle.  The temperature is uniform at 873 K (600oC) in the nozzle and 

drops rapidly to a minimum temperature of about 700 K as it accelerates 

through the nozzle.  The temperature quickly recovers to that of the reactor 

volume temperature of 873 K.  The flow velocity is seen to accelerate to a 

peak value of about 310 m/s as it is constricted through the nozzle region and 

slows down to much lower values of ~1 m/s within the reactor volume.   

Despite the rapid acceleration of the flow through the nozzle the flow 

remains subsonic throughout with peak Mach numbers not exceeding about 

0.6.  This is due to speed of sound being around 530 m/s at 700 K and the 

maximum flow velocity is 310 m/s giving a locally subsonic flow throughout.  

The residence time of the flow in the nozzle region 𝜏  can be estimated 
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by the ratio of a characteristic length scale 𝑑   (~ 2 mm) given by the 

nozzle diameter to the peak flow velocity 𝑢  (~300 m/s) and is calculated 

around 7 microseconds.  The kinematic viscosity of the flow 𝜈  is also 

estimated by the Sutherland’s formula for nitrogen at 600 oC is about 98×10-6 

m2/s.  Therefore, the viscous diffusion length scale estimated as 𝑙 =

𝜈 𝜏  ~7 × 10  m.  Since 𝑙 ≪ 𝑑  the flow in the individual 

nozzle region can be considered inviscid and adiabatic, explaining the rapid 

drop in temperature to about 700 K as the flow navigates through the nozzle.  

The flow in the nozzle region can therefore be summarized as a high subsonic 

inviscid flow. 

A similar estimate of the residence time in the inter-wafer region 

𝜏  using an average flow velocity 𝑢  of about 1 m/s and a 

characteristic length scale of the wafer diameter 𝑑 = 0.3 m, gives a 

𝜏 ~ 0.3 s.  Here the Mach number approaches zero.  The corresponding 

viscous diffusion length scale in the inter-wafer region 𝑙 = 𝜈 𝜏  

~ 5 mm.  This length is comparable to the inter-wafer gap of 19.2 mm.  

Hence, the flow in the inter-wafer region can be summarized as a highly 

viscous dominated Stokes’ flow. 

 



 30 

3.2 Precursor Concentration Profile 

 

 

Figure 3.5: Cross section of the reactor showing number density profiles of 
HCD for the intermediate 86 Pa case. (The range of the contours are chosen to 
highlight only the pressure variations within the reactor volume and not the 
inlet nozzles.) 

 

Figure 3.5 shows the number density contours of the active precursor 

HCD on the symmetry plane of the reactor for the intermediate pressure 86 Pa 

case.  The precursor flows into the reactor only through the central inlet 

nozzles along with the N2 carrier gas and then mixes with the pure N2 gas 
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streams from the side nozzles.  The HCD density is highest at the bottom-

most nozzle that is adjacent to the wafer #1 and gradually decreases in the 

upper regions of the wafer zone.  In a reactive environment, the HCD density 

changes in the reactor are a consequence of three factors: changes in total gas 

density resulting from pressure and temperature changes, dilution of the HCD 

molecules due to mixing with the side inlet pure N2 gas streams, and 

decomposition to reaction products owing to gas and surface reactions.  For 

the reactor conditions in this study, the temperature is mostly uniform at 873 

K, no homogeneous reactions occur in the gas phase, and the surface 

consumption of HCD is assumed zero due to the negligibly low sticking 

probability (estimated at ~10-5 in [11]).  As a result, the HCD density changes 

are due only to pressure variation in the reactor and mixing of HCD with the 

carrier gas side inlet streams.  Hence, the HCD density changes seen in  

Figure 3.5 on the symmetry plane can be directly related to the pressure 

changes seen in Figure 3.1 on the same plane.   
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Figure 3.6: Cross sections of (a) #4, (b) #13, and (c) #22 wafers showing 
number density profiles of HCD for lowest pressure (43Pa). [Note the 
simulation results are mirrored about the half plane for clarity] 
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Figure 3.7: Cross sections of (a) #4, (b) #13, and (c) #22 wafers showing 
number density profiles of HCD for intermediate pressure (86 Pa).  [Note the 
simulation results are mirrored about the half plane for clarity] 
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Figure 3.8: Cross sections of (a) #4, (b) #13, and (c) #22 wafers showing 
number density profiles of HCD for highest pressure (130Pa).  [Note the 
simulation results are mirrored about the half plane for clarity] 
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The effect of gas mixing between the HCD and side inlet N2 streams 

can be discerned in Figures 3.6, 3.7 and 3.8, where the inter-wafer HCD 

density profiles are shown for 3 wafer locations near the bottom (4th), middle 

(13th) and top (22nd) of the stack, for all three cases.  The locations of the 

central inlet nozzle, side inlet nozzle, and the annular bypass flow regions are 

shown for clarity.  As seen in the flow streamlines in panel (c) of Figure 3.4, 

the flow from the central inlet that carries the HCD molecules expands 

sideways as it enters the reactor volume.  This sideways flow of the central 

gas is however confined by the side inlet with the pure N2 gas streams that 

forces the HCD laden flow into the inter-wafer gap region, thereby 

minimizing the loss of HCD molecules down the annular bypass region.  The 

evidence for this central inlet flow confinement by the side inlet streams is 

directly visible in the inter-wafer HCD density profiles in Figures 3.6, 3.7 and 

3.8.  The maximum HCD densities are seen in the nozzle inflow region 

spanning the regions between left and the right-side inlets in all cases with an 

abrupt drop in densities beyond this region.  Therefore, it is reasonable 

conclude that an important role of the side inlet streams is to prevent loss of 

HCD precursors to the bypass flow and maximize active precursor gas 

exposure to the wafer processing surface.  Additionally, Figures 3.6, 3.7 and 

3.8 illustrate the bottom-most wafers experience the highest HCD densities 
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close to the nozzle inflow region and minimum HCD densities at the opposite 

end close to the outflow region.  The HCD density distribution over the wafer 

surfaces is more uniform for the top-most inter-wafer regions. Upon 

comparing the low pressure 43 Pa case to the high pressure 130 Pa case, the 

non-uniformity, as characterized by the difference between the maximum and 

minimum densities to the average densities in the inter-wafer regions, is lower 

for the lower pressure cases. This trend is expected since lower pressures 

promote greater diffusion of species thereby improving uniformity.   

 

 

Figure 3.9: Azimuthally averaged incident surface flux of HCD (#/m2-s) 
sampled at various locations on the wafers for all three pressure cases. 
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The non-uniformities in the HCD densities over the wafer surfaces 

seen in Figures 3.6, 3.7 and 3.8, emphasize the need for improving the 

uniformity by mechanical rotation of the wafer stack.  In fact, in the absence 

of rotation, the non-uniformity is not acceptable for production 

manufacturing.  Figure 3.9 shows the azimuthally averaged flux of HCD 

precursor molecules impacting the wafer surface for three pressure cases and 

at different radial location on the wafer.  The average precursor species flux to 

the surface increases going from the bottom-most wafer to the top-most wafer 

in all three pressure cases.  The absolute values of the precursor flux are about 

5.6×1022 #/m2-s in the 43 Pa case and increases to about 1.65×1023 #/m2-s in 

the 130 Pa case, i.e., an increase that is proportional to the pressure.  The 

single wafer non-uniformity is seen to be the lowest for the lowest pressure 

case and increases with increasing pressures.  The highest single-wafer non-

uniformity is observed for the bottom-most wafer in the 130 Pa case and even 

here the non-uniformity is only about 0.6%.  The cross-wafer non-uniformity 

in the wafer stack is nearly the same in all pressure cases at about 1%. 
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3.3 Precursor-Wafer Interaction Efficiency 

 
Precursor gases such as the one described above can add significantly to the 

overall operating cost in an ALD process.  Besides, precursors molecules can 

often be toxic and environmentally damaging.  Consequently, the efficient 

utilization of precursor molecules is an important process metric.  For the 

multi-wafer ALD reactor, a parameter called the precursor-wafer interaction 

efficiency is defined as the fraction of inlet HCD molecules that have 

interacted one or more of the wafer surfaces at least once during their 

residence in the reactor volume.  Here the precursor-wafer interaction 

efficiency is given as, 

𝜂 =
�̇� ,

�̇� ,

 
(6) 

where �̇� ,  is the number flow rate of HCD molecules at the outlet that 

have reflected the wafer surfaces at least once to the total number flow rate of 

the HCD molecules at the outlet �̇� ,  (which equals the inflow rate of the 

HCD molecules). 

In order to identify the HCD molecules that have visited the wafer 

surfaces at least once, simulations were run where HCD molecules that 

impacted any one of the active wafer surfaces are tagged and allowed to 
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continue on their trajectories through the reactor with no change to their 

properties.  These tagged HCD molecules are then counted at the outlet 

surface and their ratio with the total HCD molecules (tagged plus untagged) 

are used to determine the precursor utilization efficiency.     

Results indicate an interaction efficiency in excess of 99% for all cases 

reported in this work. This implies that the ALD reactor designs with the 

multi-wafer stacks, with independent nozzle feeds for each inter-wafer gap, 

including the central inlet with the active HCD laden flow along with two side 

inlets with the inert carrier gas are highly efficient in terms of precursor-wafer 

interaction. 
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Chapter 4 

Summary 

 
A DSMC study of a multi-species flow phenomena in a low-pressure 

25-wafer batch ALD reactor is presented in this study.  Three reactor pressure 

cases were simulated: 43 Pa, 86 Pa, and 130 Pa. The reactor walls and wafers 

are specified as diffusely reflecting isothermal surfaces maintained at 873 K. 

The feed gas mixture consists of carrier N2 and precursor HCD.  The volume 

flow ratios of the of the gas mixture are kept constant across all three cases.  

A computation mesh of 1.2 million tetrahedral cells was used to represent the 

reactor geometry and about 15 million simulated particles was used in the 

DSMC simulation.  The steady state results were ensured by simulating each 

case for ~8.5 s, twenty times longer than the slowest residence time for this 

reactor. 

Results in the vicinity of wafers indicate high Knudsen numbers (~0.2) 

corresponding to slip regime, thus justifying the use of DSMC to accurately 

characterize flow in the reactor.  For all three cases, the flow inside the 

nozzles was high subsonic inviscid flow and therefore unchoked. However, it 

quickly transitions to viscous dominated Stokes flow within the inter-wafer 
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gap regions.  The use of a three-inlet design with precursor HCD laden central 

inlet and the inert N2 gas side inlets is clarified by the results.  The roles of 

side inlets are seen to promote confinement of the central inlet flow thereby 

minimizing bypass of this flow and directing the precursor into the inter-wafer 

gap.  The utilization of the precursor gases is therefore maximized by this 

design. The observed precursor-wafer interaction efficiency was ~99% for all 

three operating pressures.      

The pressure, temperature, and concentration of the precursor were all 

predicted to have a maximum variation of 1% WiW, and 2% WTW.  The 

highest non-uniformity both WiW and WTW was observed in the higher 

pressure 130 Pa case.  The lower-most wafer in every case had the highest 

pressure and the highest exposure to the precursor HCD molecules. 

In conclusion, the need for a particle-based simulation approach for 

low-pressure industrial ALD reactors used in modern semiconductor 

manufacturing processes is demonstrated.  The multi-species DSMC approach 

with complex geometry representation is necessary and shown to be effective 

for accurate quantitative modeling, design, and optimization of these reactors. 
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4.1 Future Work 

 
Temperature and pressure spatial uniformity heavily influence the 

transport kinetics and surface reactions. High temperature and pressure 

conditions are known to cause decomposition in Si2HCl5 [11][28][29], a 

precursor similar to Si2Cl6. This prompts the question of premature 

decomposition of Si2Cl6 in the feed pipes where pressure and temperature 

were highly favorable for such reactions. Understanding these effects are 

crucial in determining the constituents’ concentration after the decomposition 

of the precursor gas to accurately model surface reactions at a much smaller 

scale, for example, at the trench level. Results inferred from this paper can be 

used to model trench-scale reactive mechanisms focusing on the effects of 

pressure and temperature on decomposition of the precursor Si2Cl6, formation 

of Si-complexes on trench surfaces, and growth per cycle estimations. 
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