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Simulation of elastic objects has received a lot of attention in the past 

decade in the computer graphics community, due to their ubiquity and im-

portance in our everyday life; some examples include muscles, squishy balls, 

cloth, and many more. When approaching physical simulation, the computer 

graphics community has focused on the questions on the representation of 3D 

data, for example, by building a theory of discrete differential geometry to 

represent nonlinear deformation, and by inventing algorithms to reconstruct 

and simulate digital twins of real-world elastic objects. Despite the extensive 

research, there is not a unified solution that integrates the discrete geometric 

understanding in the graphics research and combines it with the sophisticated 

physical modelling in scientific computing. This thesis explores possibilities 

to bridge the gap between graphics and computational physics by taking the 

state-of-the-art computer graphics algorithms for representing and discretizing
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3D geometry and deformations and equipping these discrete geometric models

with physics.
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Chapter 1

Introduction

Recent achievements in computer graphics and computer vision have

provided us with powerful tools to understand and visualize the world around

us. For example, the long-standing Plateau problem of solving for the minimal

surface given complex boundary conditions, which is intractable for any analyt-

ical method, can be easily solved by representing the curves and surfaces using

their discrete differential forms [149]. Surface and volumetric reconstruction

is another great example: with a few pictures taken from a consumer-grade

camera, we can build a 3D reconstruction of the environment around us with

incredible amounts of detail. The rendering techniques have become so sophis-

ticated that we often find it challenging to distinguish an actual picture from

the rendering of virtual reconstruction. All these methods provide great tools

for us to build a virtual equivalent of a real-world object, but at the same time

lack the description of the physics of the object.

On the other end of the spectrum, physicists have derived mathematical

models that correctly predict the motion of an object using only a handful of

physical parameters, and the same models generalize across different elastic

materials and interactions. Elastic simulation has been extensively studied in
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scientific computing, and algorithms such as the finite element methods [93,

39, 60, 126] and peridynamics [125] have successfully predicted the nonlinear

motion of elastic objects.

The work of this thesis explores the recent trend in computer graphics

to formulate dynamics based on the discrete geometric model obtained using

state-of-the-art computer graphics techniques. We use the language of discrete

differential geometry, such as the discrete analog of first and second fundamen-

tal forms, and seek a principled method of discretization that preserves some

fundamental geometric and topological structures of the underlying continuous

model. We then formulate our simulation based on these discrete geometric

properties which enable us to apply insight from the smooth setting directly

into our new models.

The following chapters of this thesis explore the idea. Starting from a

new energy formulation for thin shells that encodes the change due to envi-

ronmental stimulus in chapter 2, a constraint-based thin shell simulator that

achieves faster computation speed than energy-based solvers in chapter 3, and

a complete pipeline of learning a real-world deformation of elastic objects in

chapter 4.

1.1 Publication

The content of this dissertation has appeared in the following publica-

tions:
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• Chapter 2: Hsiao-Yu Chen, Arnav Sastry, Wim M. van Rees, Etienne

Vouga. “Physical simulation of environmentally induced thin shell de-

formation”, ACM Transactions on Graphics/Siggraph, 2018

• Chapter 4: Hsiao-yu Chen, Edith Tretschk, Tuur Stuyck, Petr Kadlecek,

Ladislav Kavan, Etienne Vouga, Christoph Lassner.“Virtual Elastic Ob-

jects”, Computer Vision and Pattern Recognition Conference(CVPR),

2022

The dataset of the Virtual Elastic Objects can be downloaded from the corre-

sponding project site: https://hsiaoyu.github.io/VEO/
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Chapter 2

Environmentally-Induced Thin Shell

Deformation

2.1 Introduction

Consider the wrinkling and curling of a drying leaf. The drying process

corresponds to water evaporating from the internal cells, so that the tissue

contracts in volume. This process typically happens differentially, due to hav-

ing one side exposed to the sun, or having boundaries farther away from the

veins than interior, leading to non-uniform curvature and curling of the leaf

[157, 63]. Related phenomena are the swelling and wrinkling of paper when

exposed to water, such as when coffee is spilled on a notebook page, or the

wrinkling and shrinking of plastic when heated. Although the physical mech-

anisms in these examples are different (shrinking of cells vs swelling of fibers

vs contraction of polymers) the effect on the objects is the same: the intrinsic

geometry of the thin objects change over time in response to dynamic changes

in the environment.

In addition to growth, wrinkling, and swelling, other phenomena involv-

ing the same physics include burning of thin objects, especially those made

of curved or composite materials; wilting of flowers and dynamic response
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of plants to light or humidity; changes and wrinkling in skin due to aging,

moisture, creams; shrinking and subsequent wrinkling of clothes; warping of

wood due to one-sided heating; etc. There is also increasing excitement about

manufacturing processes based on differential or inhomogeneous growth, that

require precise control over the material’s rest geometry. Examples include

water printers that induces paper bending [53], two-layer structures consisting

of plastic printed on canvas under tension [112], the various works of Ner-

vous Systems [121], and fabrication using networks of filaments that stretch

anisotropically when moistened. Exploiting these technologies requires solv-

ing challenging inverse problems, with reliable methods for solving forward

problems an essential first step.

Of course, one could capture all of these phenomena by modeling elastic

volumes explicitly using tetrahedral or hexahedral elements, and tracking the

change in moisture or heat within each element. However, such a volumetric

model is computationally expensive, and unnecessary: structures that are thin

relative to their surface diameter ought to be able to benefit from a reduced

elastic shell model, augmented to track and account for dynamic changes in the

environmental stimulus throughout the shell volume. Yet previous methods

studying phenomena such as burning of paper [80], drying of leaves [63], and

cooking pasta [150], have used either ad-hoc application-specific shell models,

or volumetric finite elements, to account for intrinsic geometric changes. Our

goal instead is to provide a principled low-order simulation methodology for

such systems. This goal can be broken into two connected challenges: to
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simulate the object’s elastic response to changes in its intrinsic geometry, and

to model its intrinsic geometry changes in response to environmental stimuli.

In this work we address both, resulting in a numerical method that allows

researchers studying growth and related phenomena to plug in any realistic

model and parameter set, and reap a working simulation.

Contribution We present a unified low-order discrete shell model tailored

to simulating non-uniform, anisotropic, differential growing and shrinking of

thin shells. This model is needed for simulating real-world thin materials

whose geometry changes in response to stimuli such as heat, moisture, and

growth. In contrast to previous methods for simulating such phenomena, our

formulation builds on discrete geometric shell theory and supports arbitrary

rest curvature and strain, and physical settings such as thickness and Lamé

parameters. We couple our shell model to a simple formulation of moisture

and temperature diffusion in both the lateral and thickness directions, which

takes into account anisotropy of the material grain. In a series of experiments,

we show that our model successfully predicts the qualitative behavior of thin

shells undergoing complex, dynamic deformations due to material expansion

or contraction, such as occurs when paper is moistened or thin plastic melts.

2.1.1 Related Work

Simulating Burning/Melting/Swelling Several papers look at related

problems, such as evolving the boundary of a burning or melting solid, with-

6



out incorporating curling/wrinkling and other elastic deformations of the solid.

Melek and Keyser [88, 89] simulate pyrolysis and heat diffusion of burning ob-

jects, but do not consider their elastic deformation. Losasso et al [83] proposed

tracking of the burning boundary of thin shells using an adaptive level set on

the shell. Some of the deformation can be qualitatively approximated by map-

ping physical quantities like heat and moisture to cells of a coarse grid around

the object, deforming the cage, and mapping the deformation back onto the

shell (as in Free Form Deformation); this approach was proposed by Melek

and Keyser [90] and adopted by Liu et al [80].

Steps towards a more principled elastic model include the use of a mass-

spring network to represent the shell, with update rules for how spring rest

lengths should change due to physical processes in the shell. Such rules are

simplest to formulate in the case where growth or shrinkage is uniform through

the shell thickness, and the shell can be represented using a single spring

layer; Larboulette et al [73] present such a rule, which includes handling of the

machine direction of paper: a bias in the orientation of the fibers composing

the paper which causes the paper to swell anisotropically. We adopt this

parameter in our material model.

Most similar to our work is the method of Jeong et al [62, 63], which

uses a bilayer of springs (a triangle mesh and its circumcentric dual, offset a

distance from the primal mesh) to represent the shell. The bilayer allows the

method to capture differential growth due to gradients in moisture concentra-

tion across the thickness of leaves, leading to visually impressive simulations
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of leaves curling as they dry. Our work is based on the same fundamental

idea (representing the shell using a rest strain that varies linearly through the

thickness) but couched in the machinery of differential geometry; our formula-

tion allows us to easily incorporate non-zero rest curvature, machine direction,

and a physical material model. Also somewhat related are the CurveUps of

Guseinov et al [54], which induce rest curvature in shells by embedding rigid

pieces within a pre-stressed substrate.

Mechanics of Shells The mathematics underpinning the physics of thin

shells is a venerable topic: Ciarlet’s book [28] on elasticity as applied to shells

offers a thorough overview. Our work is based on the common Kirchhoff-Love

assumption that the shell does not undergo any transverse shear; i.e., that

the shell volume is foliated by normal offsets of the shell’s midsurface. The

problem of studying deformation of the 3D shell volume then reduces to that

of deformation of a 2D surface, and tools from Riemannian geometry can be

applied [126].1 One key property of the shells we want to simulate is that they

are non-Euclidean: they do not have a rest (strain-free) state that is realizable

in three-dimensional space. Non-Euclidean shells have received substantial

attention recently in the physics community [70, 68], thanks to their potential

applications in fabrication and robotics, and their connection to biological

1We adopt the so-called “intrinsic” view [101] that shells can be understood in terms
of Kirchhoff-Love and geometric principles, as this view allows us to easily discretize shell
physics by leveraging discrete differential geometry, but we note in passing that the validity
of the Kirchhoff-Love assumption, and of reduced shell models in general, remains unsettled,
and the literature documents numerous alternative shell theories.
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growth; physicists such as Sharon, Efrati, and Ben Amar [49, 31, 35, 124]

pioneered the study of shell mechanics in this setting.

For the sake of being self-contained, we briefly review the geometric

foundations of shell mechanics in Section 2.2.

Computational Modeling of Thin Shells Thin shells first caught the

interest of the graphics community in the context of simulating cloth [6, 20].

These early methods tended to focus on thin plates, i.e. shells that have a

flat rest configuration, and formulate shell dynamics in terms of either hinge-

based bending energies [134, 135] or the insight that the bending energy can

be written in terms of the intrinsic Laplace-Beltrami operator applied to the

shell’s embedding function [15, 12, 152].

Grinspun et al [51] introduced to graphics the simulation of shells with

non-zero rest curvature. Their formulation is based on differences of squared

mean curvature, leading to a simple and easy-to-discretize bending energy.

This model is physically suspect, however: consider a half-cylinder at rest

when curled around the x-axis. Unbend the shell and re-bend it around the

y-axis; the deformed configuration’s strain cannot be captured by looking at

mean curvature alone, as it is pointwise identical to the mean curvature of the

rest configuration. Complete support for rest curvature therefore requires a

bending energy that incorporates full information about the extrinsic defor-

mation of the shell [50]. One such discrete energy is described in Weischedel’s

work on discrete Cosserat shells [154]; our exposition is modeled closely on
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hers, though we make different modeling choices (we use an intrinsic rather

than Cosserat shell model, and require more flexible handling of the shell rest

geometry).

A popular alternative to Grinspun et al.’s bending formulation based

on the mid-edge shape operator is to use a triangle-averaged shape operator

proposed by Gingold et al. [46], which expresses bending energy of a triangle in

terms of the hinge angles of each of its three edges. Gingold et al. demonstrate

how plasticity can be implemented by maintaining and dynamically updating

“rest” values of the hinge angles, and also propose a simple method for simulat-

ing thin shell fracture. Although Grinspun et al. [50] raised concerns about the

consistency of this averaged shape operator, it is simple to implement and has

been adopted in thin shell simulation frameworks like ArcSim [99]. We briefly

discuss how Gingold et al.’s operator might be adapted for non-Euclidean rest

geometry in Section 2.6.

Higher-order methods for simulating shells (including with NURBS or

subdivision elements) are common in computational mechanics and isogeo-

metric analysis [9, 8, 29, 67, 11, 5] and have also been proposed for computer

graphics [153] and growing shells [144]. High-order methods have some ob-

vious advantages (better convergence behavior in the thin limit, continuous

surface normals) at the cost of additional computation and complexity, espe-

cially when handling contact.

In this paper, we ignore the problem of mesh tessellation, or of adapting

the mesh in response to either large deflections or large amounts of growth;

10



Figure 2.1: Left: the volumetric shell is parameterized by a slab Ω×[−h/2, h/2]
around a region Ω in the plane. r maps Ω to the shell midsurface. Right: we
parameterize all triangles of discrete shells by a single canonical triangle T.
We express all face-based quantities in the face’s local barycentric coordinate
system (u1, u2), which is not consistent across faces.

such remeshing is an important component of a practical shell simulation but

orthogonal to our focus on shell dynamics. An existing tool such as Arc-

Sim [100], which incorporates a method of adaptive remeshing while avoiding

significant popping artifacts, could easily be adopted in our framework if de-

sired.

2.2 Continuous Formulation

Before describing our discretization of shells, we briefly review the for-

mulation in the continuous setting, as this formulation will guide our dis-

cretization.
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Shell Geometry We can represent shells S ⊂ R3 of thickness h by a pa-

rameter domain Ω in the plane and an embedding ϕ : Ω × [−h/2, h/2] → R3

with S the image of ϕ (see Figure 2.1). The Kirchhoff-Love assumption allows

us to represent the entire shell volume only in terms of the shell’s midsurface

r : Ω → R3. In other words,

ϕ(x, y, z) = r(x, y) + zn̂(x, y)

where n̂ = (rx × ry)/∥rx × ry∥ is the midsurface normal. The metric g on the

slab Ω × [−h/2, h/2], pulled back from R3, can be expressed in terms of the

geometry of the midsurface:

g =

[
a− 2zb+ z2c 0

0 1

]
, (2.1)

where

a = drTdr b = −drTdn̂ c = dn̂Tdn̂

are the classical first, second, and third fundamental forms of the surface r.

Oftentimes, the parameterization domain of a thin shell is assumed to

be also the rest state of the shell, so that the strain in the material of the shell

can be determined directly from looking at g. We cannot assume this: consider

for instance a piece of paper whose center has been moistened by spilled coffee.

The fibers in the coffee stain stretch; since they are confined by the surrounding

non-wet region of the paper, the paper cannot globally stretch in such a way

that both the wet and dry regions of the paper are simultaneously at rest.

Instead, the paper will buckle out of plane, into a shape that compromises
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between relaxing the in-plane (stretching) strain and the introduced bending

strain. At this point the paper’s rest state is non-Euclidean—it is impossible

to find any embedding of the paper into R3 that is entirely strain-free.

We therefore record the rest state of the shell using a rest metric

ḡ(x, y, z) [35].2 Since our model is tailored to simulating differential in-plane

swelling or shrinking across the thickness of the shell, we make the simplifying

assumption that this rest metric is linear in the thickness direction:

ḡ(x, y, z) =

[
ā(x, y)− 2zb̄(x, y) 0

0 1

]
.

A shell that begins a simulation at rest will simply have ā = a0 and b̄ = b0,

where a0 and b0 are the values of a and b at the start of the simulation,

respectively; this setup is a special case of a shell which has a rest state specified

by a “rest surface” r̄ that is isometrically embeddable in R3, in which case ā and

b̄ are the first and second fundamental forms of that rest surface. Therefore ā

and b̄ can be thought of as representing the “rest metric” and “rest curvature”

of the shell’s midsurface, respectively.3

To summarize, our parameterization of thin shells involves the following

kinematic elements:

• a thickness h and parameterization domain Ω ⊂ R2, both of which are

fixed over the course of the simulation;

2Here and throughout the paper, we use an overbar to denote quantities associated to
the shell rest state.

3We stress, though, that these labels are to provide intuition only—ā and b̄ must not,
and generally will not, satisfy usual relationships from differential geometry such as the
Gauss-Codazzi-Mainardi equations.
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Figure 2.2: Stereographic projection of the disk into the plane yields a confor-
mal parameterization of one by the other (left); we simulate the disk dynamics
as it relaxes to equilibrium by adopting a spherical shape (right).

• an embedding r : Ω → R3 representing the shell midsurface’s “current”

or “deformed” geometry, and which evolves over time. From this em-

bedding, the current midsurface normals n̂ can be calculated, and thus

r provides the embedding of the full shell volume ϕ, as well as the mid-

surface fundamental forms;

• a rest metric ḡ, parameterized by the pair of tensor fields ā, b̄ over Ω,

respectively. These might also evolve over time, due to changes in the

shell rest state via expansion or contraction.

2.2.1 Shell Dynamics

Motivated by the common observation that a sufficiently thin shell

bends much more readily than it will stretch, we assume that the shell’s defor-

mation involves large rotations but only small in-plane strain of the midsur-

face: ∥ā−1a−I∥∞ < h.We also assume that the shell’s material is uniform and

isotropic. The simplest constitutive law consistent with these assumptions is
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the St. Venant-Kirchhoff material model4 together with Green strain; it can

be shown (see e.g. Weischedel [154]) that these choices yield an elastic energy

density (the Koiter shell model) that can be approximated up to O(h4) by

W (x, y) =

(
h

4
∥ā−1a− I∥2SV +

h3

12
∥ā−1(b− b̄)∥2SV

)√
det ā (2.2)

where ∥∥SV is the “St. Venant-Kirchhoff norm” [154]

∥M∥SV =
α

2
tr2M + β tr

(
M2
)
,

for material parameters α, β. In terms of the Young’s modulus E and Poisson’s

ratio ν,

α =
Eν

1− ν2
, β =

E

2(1 + ν)
.

We thus have a formulation of kinetic energy and potential energy

T [ṙ] =

∫
Ω

hρ∥ṙ∥2
√
det ā dxdy, V [r] =

∫
Ω

W (x, y) dxdy,

for volumetric density ρ, to which additional external energies and forces (grav-

ity, constraint forces, etc) can be added to yield equations of motion via the

usual principle of least action.

2.3 Discretization

We approximate the midsurface r with a triangle mesh (V,E, F ); the

positions of the vertices v = [v1,v2 . . .] take the place of the embedding func-

tion r. The general strategy we will use is to assume that a and b, as well

4The neo-Hookean material model is also popular in computer graphics and could be
used instead, although there is little benefit to doing so when simulating thin shells since
strains are typically small.

15



as their rest counterparts ā and b̄, are constant over each face of the triangle

mesh; it will then be straightforward to write down a discrete analogue of the

Koiter elastic energy density in Equation (2.2).

Discrete Shell Model As in the continuous setting, the discrete shell does

not necessarily have a rest state embeddable as a mesh in R3, making it im-

possible to parameterize the deformed configuration of the shell in terms of

the rest configuration; additionally we do not want to assume (or compute)

a global parameterization of the midsurface. Instead, we independently pa-

rameterize each triangle in its own barycentric coordinates (see Figure 2.1).

Let fijk be a face in F containing the vertices vi, vj, vk, and denote by T the

canonical unit triangle with vertices (0, 0), (1, 0), (0, 1). Then locally the face

fijk is embedded by the affine function

rijk : T → R3, rijk(u1, u2) = vi + u1(vj − vi) + u2(vk − vi);

under this embedding, the Euclidean metric on face fijk pulls back to the first

fundamental form

aijk =

[
∥vj − vi∥2 (vj − vi) · (vk − vi)

(vj − vi) · (vk − vi) ∥vk − vi∥2
]

on T. If we are given an explicit rest configuration v̄i of the shell, we can

compute the rest first fundamental form āijk analogously; or alternatively we

can set āijk to any desired symmetric positive-definite 2 × 2 matrix. Notice

that any such matrix corresponds to some choice of “rest lengths” for the
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edges of face fijk that obey the triangle inequality, but that two faces sharing

a common edge do not necessarily agree about that length.

These discrete fundamental forms are enough to discretize the stretch-
ing term in Equation (2.2): each face contributes a term∫

T

h

4
∥ā−1

ijkaijk − I∥2SV
√

det āijk =
h

8
∥ā−1

ijkaijk − I∥2SV
√
det āijk,

where the division by two is due to the canonical triangle T having area 1
2
.

This energy is quartic in the positions of the mesh vertices, and is exactly the

energy of constant-strain triangle stretching elements commonly used in cloth

simulation.

For the bending term, we also need a discretization of the second funda-

mental form. Here there is a significant departure between the smooth theory

and the discrete approximation: we would like to apply the Kirchhoff-Love

principle to extrude the mid-surface into a shell volume, but unfortunately nor-

mal offsets of triangle meshes are no longer guaranteed to be triangle meshes

(or even piecewise-affine). One can instead look at weaker notions of mesh

parallellity [14]:

• vertex offsets require choosing a normal at each mesh vertex (itself a

problem without an obvious solution), and moving each vertex a constant

distance along this normal usually does not result in faces parallel to the

original faces;

• edge offsets likewise do not guarantee parallel faces;
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• face offsets are not conforming: moving each of the faces neighboring

a vertex of valence four or higher in their normal directions yields new

faces that are not guaranteed to still intersect at a common point.

While there is no perfect choice, we use the discretization that arises

from edge parallelity, leading to the so-called “mid-edge” discretization of the

second fundamental form [50, 154]. This approach has several advantages:

first, computing the edge offsets of a face requires knowing only the geometry

of that face and its three edge neighbors, leading to a compact and constant-

size discrete stencil for computing the discrete second fundamental form. By

contrast, vertex offsets lead to stencils that vary depending on vertex valence.

Moreover, the mid-edge formulation is significantly more robust to triangle

inversion artifacts. Unlike in a face-offset-based approach, it also allows us

to discretize rest second fundamental forms in the same place as the first

fundamental forms, on the mesh faces.

Let ei denote the edge opposite vertex i on face fijk, and define the

mid-edge normal n̂i by:

• the face normal
(vj−vi)×(vk−vi)

∥(vj−vi)×(vk−vi)∥ , if ei is a boundary edge;

• the mean of the face normals of the two faces incident on ei, otherwise.

Let f ϵijk denote the triangle formed by offsetting all of fijk’s edges in

their mid-edge normal direction by a distance ϵ, and let aϵ
ijk be the discrete
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first fundamental form of that offset triangle. Then the discrete second funda-

mental form b can be defined, by analogy to Equation (2.1), as the first-order

correction aϵ
ijk = aijk − 2ϵbijk +O(ϵ2), leading to the formula

bijk =
1

2

[
(n̂i − n̂j) · (vi − vj) (n̂i − n̂j) · (vi − vk)
(n̂i − n̂k) · (vi − vj) (n̂i − n̂k) · (vi − vk)

]
.

(Alternatively, this formula can be derived by discretizing the relation b =

−drTdn̂ using divided differences). Although it may not appear so at first, the

matrix bijk is always symmetric (since each mid-edge normal is orthogonal to

that edge); it is not in general positive-definite.5 We represent the rest second

fundamental form b̄ijk by an arbitrary symmetric 2 × 2 matrix assigned to

each face.

Choosing Rest Fundamental Forms Depending on the mechanism for

growth being simulated, there are several choices for how to set and update ā

and b̄:

No Growth: A classic shell, whose rest state is fixed, simply has ā = a0

and b̄ = b0, where a0 denotes the first fundamental form induced by v0, the

positions of the midsurface vertices at the beginning of the simulation. (And

if the shell is pre-strained, ā, b̄ can be adjusted appropriately).

5As observed by Grinspun et al [50], the shape operator dn̂ in the continuous setting
always maps tangent vectors to tangent vectors, whereas in the discrete setting the finite
difference of mid-edge normals is not always parallel to the mesh triangle. This discrepancy
is a consequence of the failure of edge-offset meshes to also be face-offsets. Corrections
to the shape operator have been proposed to remedy this quirk, though we found them
unnecessary (and in any case, any components of dn̂ that lie orthogonal to the face are
annihilated when forming the second fundamental form −drT dn̂).
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Figure 2.3: We simulate one of Wang et al.’s [150] shape-changing pasta de-
signs, consisting of a half-annulus decorated with concentric rings which are
both thicker (and thus more bending-resistant) and less porous than the sur-
rounding material. Our simulation predicts qualitatively identical curling be-
havior of the pasta as both the physical experiment and volumetric FEM
simulation conducted by Wang et al. Top-left: the initial geometry, showing
the thickened concentric ribs. Bottom-left: our simulated result. Right: pho-
tographs of Wang et al’s experimental results, at different stages of swelling.
Photographs reproduced with permission.
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Pullback Forms: In the case where the shell’s initial configuration is flat,

it is natural to align it with a region of the xy plane, and prescribe rest

fundamental forms in Euclidean (x, y) coordinates, instead of prescribing an

āijk in the barycentric coordinates of each triangle. Let āxy and b̄xy be such

prescribed forms; these can be sampled on each triangle fijk’s centroid and

pulled back to the triangle’s parameterization domain to give

ā = T T āxy(ξ)T, b̄ = T T b̄xy(ξ)T

in barycentric coordinates, where T =
[
v0
j − v0

i v0
k − v0

i

]
maps from vectors

in the barycentric coordinates of fijk to Euclidean space, and ξ = 1
3
(vi+vj+vk)

is the face centroid.

Isotropic Growth: In many cases growth is isotropic and uniform through

the thickness of the shell (for instance, when plastic shrinks in response to heat,

or biological tissue grows through cell division). In this case ā = e2sijka0, b̄ =

b0 for a per-face conformal factor s encoding the amount of growth (or shrink-

ing, if negative).

Linear Differential Swelling: Porous materials like paper swell when moist-

ened, and differences in water concentration through the thickness of a thin

shell can induce metric frustration and buckling. This mechanism is respon-

sible for the buckling of paper when wet, and the curling of leaves as they

dry.

We model this swelling mechanism by assuming that the amount of

moisture varies linearly in the thickness direction of the shell, and represent
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the percentage of additional moisture present in the material at the top and

bottom of the shell by two scalars m+
i ,m

−
i ∈ R at each vertex vi. We average

these values to compute a moisture content m±
ijk per face fijk. The additional

water content induces swelling, which changes the rest geometry; assuming a

linear relationship between rest length and moisture concentration [1], we can

write the rest metric of the volumetric shell as

ḡ =

[
ḡ− (1

2
− z

h

)
+ ḡ+

(
1
2
+ z

h

)
0

0 1

]
.

Here ḡ+ and ḡ− are the metric on the top and bottom of the shell,

ḡ+ = (1 +m+µ)2(a0 − hb0); ḡ− = (1 +m−µ)2(a0 + hb0)

for moisture expansion coefficient µ. Then

ā =
(1 +m+µ)2 + (1 +m−µ)2

2
a0 + h

(1 +m−µ)2 − (1 +m+µ)2

2
b0

b̄ =
(1 +m−µ)2 − (1 +m+µ)2

2h
a0 +

(1 +m+µ)2 + (1 +m−µ)2

2
b0.

Piecewise Constant Differential Swelling Instead of a linear moisture

gradient through the thickness, in some cases it is more appropriate to model

a piecewise constant moisture profile, such as when modeling bilayers with

different material properties. For example, Wang et al [150] fabricate exotic

pasta geometries by cooking pasta composed of two layers of different porosity.

van Rees et al [143] showed that a bilayer of thickness h with piecewise-constant

rest metric

ḡ(z) =


{
ḡ+, z > 0

ḡ−, z < 0
0

0 1


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is energetically equivalent to a shell with linearly-varying metric

ā =
g+ + g−

2
, b̄ =

3

4h
(g− − g+);

thus the desired piecewise-constant metric taking into account moisture-induced

swelling is

ḡ+ = (1 +m+µ+)2
(
a0 − 2

3
hb0

)
; ḡ− = (1 +m−µ−)2

(
a0 +

2

3
hb0

)
,

where µ+ and µ− encode the differing moisture-length relationship in the two

layers. Converting this piecewise-constant metric back into the equivalent

linear metric gives

ā =
(1 +m+µ+)2 + (1 +m−µ−)2

2
a0 + h

(1 +m−µ−)2 − (1 +m+µ+)2

3
b0

b̄ = 3
(1 +m−µ−)2 − (1 +m+µ+)2

4h
a0 +

(1 +m+µ+)2 + (1 +m−µ−)2

2
b0.

Linear Differential Swelling with Machine Direction In paper, leaves,

and other materials composed of microscopic fibers, swelling induced by mois-

ture is anisotropic, since fibers swell more in their circumferential than axial

direction. We can model this behavior by storing a machine direction dijk per

triangle face; this direction, a vector in the barycentric coordinates of the tri-

angle, is the direction in which the fibers are aligned. Given this direction, we

can compute the intrinsically orthogonal direction d⊥
ijk (with dT

ijka
0
ijkd

⊥
ijk = 0),

and impose different moisture-length constants µ and µ⊥ in the d and d⊥ di-

rections, respectively. Then the desired rest metrics at the top and bottom of
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the shell are

ḡ+ = T TM+T−T (a0 − hb0)T−1M+T,

ḡ− = T TM−T−T (a0 + hb0)T−1M−T.

where T =
[
d d⊥ ]−1

transforms from the triangle’s barycentric coordinates

to the d,d⊥ coordinate system, and

M± =

[
(1 +m±µ) 0

0 (1 +m±µ⊥)

]
anisotropically stretches in the machine direction. As in the previous cases,

the rest fundamental forms can be computed from these metrics using the

formula

ā =
ḡ+ + ḡ−

2
, b̄ =

ḡ− − ḡ+

2h
.

Figure 2.4: Time evolution of a plastic armadillo and a plastic bunny as they
shrink when exposed to localized heating (red beam in the figure), where redder
parts have higher temperature.
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Elastic Energy We can now write down the full elastic energy of the shell,

in exact analogy to the Koiter energy:

Eelastic(v) =
∑

fijk∈F

√
det āijk

2

(
h

4
∥ā−1

ijkaijk − I∥2SV +
h3

12
∥ā−1

ijk(bijk − b̄ijk)∥2SV

)
.

It is worth making a few observations about this energy. First, the matrices a,

ā, etc. are coordinate-dependent : replacing the parameterization domain T, or

even cyclically permuting the order of vertices around a face, would alter the

values in the matrix. However, the generalized eigenvalues of a− ā and b− b̄

with respect to the inner product ā are coordinate-independent, as is the total

energy. Perhaps the easiest way to see this fact is to note that these spectra

measure the geometrically exact strain induced by an affine embedding of T,

and so must be independent of the coordinates chosen. Second, the terms of

the form ∥ā−1M∥2SV are sometimes instead written as ∥ā−1/2M ā−1/2∥2SV , where

ā−1/2 is the unique positive-definite square root of ā. The two expressions are

equivalent, since the spectrum of a product of matrices is invariant under

cyclic permutation, but the form used above is slightly more convenient for

computation.

Mass Matrix Whether swelling or shrinking of the surface affects the mass

of the surface depends on the mechanism: changes due to growth or moisture

absorption/evaporation do change the mass, while plastic polymers contracting

when exposed to heat do not. In cases where modeling the mass change is

desired, the mass λi of each vertex can be recomputed at a given instant in
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time by

λi =
∑
f∼vi

ρh

3

√
det āf/2;

here the sum is over all faces f incident to vi and yields the usual “lumped”

or barycentric mass matrix Λ.6

Viscous Damping Since the growth and swelling phenomena we want to

simulate all take place at relatively long time scales, and paper and plastic are

viscoelastic, a damping model is needed to dissipate the elastic waves in the

material. We implement a simple Kelvin-Voigt damping model by including a

damping potential

Edamp(v,v
prev) =

η

E
∆t

∑
fijk∈F

√
det āijk

2
(Ws +Wb)

Ws =
h

4

∥∥∥∥[aprev
ijk

]−1 aijk − aprev
ijk

∆t

∥∥∥∥2
SV

, Wb =
h3

12

∥∥∥∥[aprev
ijk

]−1 bijk − bprev
ijk

∆t

∥∥∥∥2
SV

.

where ∆t is the time step size, vprev denotes the values of v in the previous

time step (and likewise for aprev, etc), and η is a viscosity parameter.

Thickness 0.1 mm Viscosity η 5 · 10−13 Pa · s
Young’s Mod. E 2× 109 Pa Swelling const. µ 0.0025
Poisson’s Ratio ν 0.3 Swelling const. µ⊥ 0.001
Density ρ 250 kg/m3

Table 2.1: Table of reasonable physical parameters for ordinary paper.

6For absorption/evaporation, one might also want to model the fact that water has a
different density than the shell material; we do not do so in our examples.
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Summary In the simulation we track the following variables:

• The configuration v and configurational velocity v̇. These vertex posi-

tions completely encode the kinematics of the discrete shell.

• Two matrices ā and b̄ per face in F , both symmetric, and with ā positive-

definite. These matrices store information about the rest state of the dis-

crete shell, and may change over the course of the simulation. In most

of our simulations, the mechanism for changes in the shell rest state is

either change in temperature or absorption/evaporation of moisture; in

this case we store two scalars m+ and m− per vertex, indicating temper-

ature/moisture concentration on the top and bottom boundary of the

shell, and ā and b̄ are computed from these scalars, as described above.

In addition, we track a machine direction d per face, which stays constant over

the course of the simulation; finally Table 2.1 lists the physical parameters and

constants on which the simulation depends, as well as reasonable values of

these parameters for the special case of ordinary paper. We use these default

values in all experiments described below, unless specified otherwise.

Time Integration We integrate the equations of motion using implicit Euler

time integration:

Λ
v̇i+1 − v̇i

∆t
= F

(
vi+1,vi

)
vi+1 = vi +∆tv̇i+1, (2.3)
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where superscripts denote the time step index, and the total force is given by

F
(
vi+1,vi

)
= Fext −∇Eelastic

(
vi+1

)
−∇Edamp

(
vi+1,vi

)
where Fext encapsulates contact forces and external forces like gravity. Solving

these equations requires computing first and second derivatives of the elastic

energy; the derivatives of a triangle’s stretching term depend only on the

vertices of that triangle, whereas the derivatives of the bending term also

depend on vertices of the neighboring three triangles (due to the dependence

of b on the mid-edge normals). The bending term in particular is somewhat

unpleasant to differentiate due to its high degree of nonlinearity, and special

cases that arise for triangles adjacent to the mesh boundary. We provide source

code for calculating the derivatives on the project webpage.

2.4 Moisture Diffusion

Moisture diffuses in both the thickness and in-plane directions of the

shell, and from the environment into the shell. We assume that within the shell,

moisture diffuses isotropically at a rate uniform throughout the shell, so that

the percentage of additional moisture m(x, y, z; t) : Ω× [−h/2, h/2]× R → R

obeys the diffusion equation

∂m

∂t
(x, y, z) =

{
D∆gm, −h/2 < z < h/2

s(x, y, z), z = ±h/2,
(2.4)

where D is the diffusion coefficient, ∆g is the intrinsic Laplace-Beltrami oper-

ator with respect to the volumetric metric g, and s is a source term describing

diffusion into (or out) of the shell from the environment.
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Figure 2.5: A comparison between the experiment (left), simulation (middle),
and the thickened cross-section (right) as time progresses for a water-painted
paper strip. Orange and green indicate high and low moisture content, respec-
tively.

We discretize equation (2.4) with bilinear Galerkin finite elements on

the triangular prisms F × [−h/2, h/2]; the solution m and source term s in the

prism surrounding face fijk are approximated by linear combinations of basis

29



functions

m(u1, u2, z) =
∑

v∈{i,j,k}

(
m+

v ψ
+
v +m−

v ψ
−
v

)
s(u1, u2, z) =

∑
v∈{i,j,k}

(
s+v ψ

+
v + s−v ψ

−
v

)
parameterized over the prism T × [−h/2, h/2] surrounding the canonical unit

triangle. In other words

ψ±
i =

(1− u1 − u2)

h

(
h

2
± z

)
; ψ±

j =
u1
h

(
h

2
± z

)
; ψ±

k =
u2
h

(
h

2
± z

)
.

From the above equations, the moisture is updated each time step using

implicit time integration,

(MG +∆tDKG)m
i+1 =MG(m

i +∆tsi) (2.5)

where si is the discretized source term. This source term s±i prescribes at each

vertex the rate of diffusion of moisture in or out of the shell at both the top

and bottom layer of the shell; the details of this term depend on the problem

being modeled.

When the mechanism for swelling/shrinking is heat rather than mois-

ture, the above diffusion formulation remains unchanged, withm reinterpreted

as temperature rather than moisture.

2.5 Numerical Issues

Integrating the physics (2.3) requires some care, as the scale-separation

between the stretching and bending forces, along with high values of stiffness,
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pose numerical challenges. (The diffusion equation in Equation (2.5) poses no

numerical difficulties.)

Newton’s Method We recommend the usual technique of using the explicit

Euler step ṽ = vi+∆tv̇i as the initial guess in Newton’s method each iteration;

writing vi+1 = ṽ +∆tδv, we have from Equation 2.3

Λδv −∆tF
(
ṽ +∆tδv,vi

)
= 0 = σ(δv),

which is well-scaled for using Newton’s method to solve σ(δv) = 0. The

stiffness and nonlinearity of the elastic forces prohibit very large time steps,

though a line search allows time integration using ∆t ≈ 10−4 seconds.

The Newton gradient ∇σ = Λ + ∆t2∇F is symmetric and almost

always positive-definite, and thus amenable to sparse Cholesky decomposi-

tion for small-to-medium sized meshes. We use the CHOLMOD solver of the

SuiteSparse library [24] for solving the Newton linear system. In the (rare)

cases where ∇σ is detected by the solver to be indefinite, we regularize by

using ∇σ = (1 + α)Λ + ∆t2∇F for progressively larger multiples of α, until

the Cholesky decomposition succeeds. For larger meshes, where the Cholesky

factors do not fit in main memory, we solve the equations using Alglib’s im-

plementation of LBFGS [16]. Iterative methods (conjugate gradients) could

also be used.

Inexact Hessian The Hessian of the bending energy is expensive to com-

pute, and almost always dominated by the Hessian of the (much stiffer) stretch-
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ing term; we observed improved performance replacing the exact bending Hes-

sian with a partial approximation. In particular, we can rewrite the bending

energy on face fijk as

Ebending(v) =
h3
√
det āijk

24

(
r1(v)

2 + r2(v)
2
)

r1(v) =
√
α/2 tr

(
ā−1
ijk(b− b̄ijk)

)
; r2(v) =

√
β tr

([
ā−1
ijk(b− b̄ijk)

]2)
(note that the trace of the square of any real matrix is guaranteed to be

nonnegative). This allows approximation of the Hessian by the Gauss-Newton-

esque

HEbending ≈
h3
√
det āijk

12

(
∇r1∇rT1 +∇r2∇rT2

)
.

Inverted Triangles We observed a somewhat subtle failure case when run-

ning simulations containing neighboring triangles with very different prescribed

metrics ā: if the two triangles are exactly coplanar, and one triangle collapses

completely and inverts, then the mid-edge normal on the common edge is un-

defined (as its direction is now the mean of two anti-parallel vectors). This fail-

ure case can be prevented by either maintaining a minimum vertex/edge/face

distance using continuous-time collision detection, by adaptively remeshing

triangles undergoing excessive deformation [100], or by adjusting the initial

mesh. The usual advice of using an intrinsic Delaunay triangulation, and

avoiding adjacent triangles of very disparate size, applies.

Symmetry-Breaking Any rest flat (b̄ = 0) shell has an extrinsically flat

equilibrium configuration, regardless of ā. In most cases this equilibrium state
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is unstable and is not observed in the real world, due to small imperfections in

the shell material breaking the symmetry of the initial and/or rest state. We

apply a small random perturbation to the rest and initial configurations of all

of our initially-flat examples with b̄ = 0, to force symmetry-breaking.

2.6 Hinge-Based Shape Operator

Gingold et al. [46] use a hinge-based shape operator instead, motivated

from the observation that on the edges, the shape operator has rank one,

and that averaging this per-edge shape operator over an area should yield

an approximation to the smooth shape operator. The formulas as originally

presented rely fundamentally on the existence of an embedded, Euclidean un-

deformed mesh, and so it is not obvious how to extend the formulation to the

non-Euclidean setting where arbitrary ā and b̄ are prescribed. One possible

extension of Gingold et al.’s formula is

SH(θ) =
3∑

i=1

√
wT

i āwi tan (θi/2)

∥wi∥2
√
det ā

wiw
T
i

where i sums over the three edges of the canonical barycentric triangle T; wi

is the vector normal to edge i and with magnitude equal to that of edge i,

and θi is the hinge angle associated to edge i. As defined above, SH takes into

account length and area distortions of the triangle’s rest pose due to the metric

ā, while reducing to Gingold et al.’s formula when ā = I. Given rest hinge

angles θ̄i, the difference SH(θ)−SH(θ̄) can be substituted in for ā−1(b− b̄) in

the Koiter energy. In the following, we compare this formulation to the one
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based on the mid-edge shape operator proposed above.

Solving for Hinge Angles Given a desired b̄, rest angles θ̄i can be recov-

ered by testing the shape operator against the wi: we desire

wT
i b̄wi

wiāwi

= wT
i SH(θ̄)wi, i ∈ {1, 2, 3},

a system of three linear equations in tan(θ̄i/2). Note that two neighboring

faces might disagree on the value of the rest hinge angle of their common

edge; to support non-Euclidean rest geometry, both values must be stored and

used when computing the energy density of their respective triangles.

2.7 Results

2.7.1 Analytic Benchmarks

We first test the method on examples where the equilibrium state can

be computed exactly. When an embedding r exists for which a = ā and b = b̄,

that embedding is clearly a global minimizer of the elastic energy, regardless of

material parameters. We ran all of the following experiments using the default

values in Table 2.1. We ran the simulation for enough time to reach steady

state.

Swelling of Square We take Ω to be a unit square, with r(x, y) = (x, y, 0),

and assign static fields for both ā and b̄ to the entire shell. Table 2.2 summa-

rizes the values of ā and b̄ we used, and the expected shape and curvatures
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Figure 2.6: Distance between our simulated solutions and analytic solutions
for the test cases in table 2.2. Warmer colors mean larger error.

of the exact solution. In cases where b̄ = 0 and ā is homogeneous over the

surface, our method must (and does) reproduce the exact solution. Examples

with rest curvature are affected by discretization error; we ran the simulation

using three mesh resolutions (820/2686/39210 vertices) and for each, plot the

distance of each point from the corresponding point on the exact solution in

Figure 2.6.

Isotropic Growth The Riemann mapping theorem guarantees that every

surfaceM with disk topology can be parameterized by the unit disk, with met-

ric conformally equivalent to the Euclidean metric. This insight was exploited

by Kim et al [68] to grow an approximate sphere from a square. When M

has finite thickness, however, we do not expect the shell to grow exactly into

the shape M , since embedding the shell as the shape M minimizes stretch-
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ā b̄ Expected Shape Mean Curv. Gauss Curv. Error (one-sided Hausdorff)
4I 0 Enlarged Square 0 0 1.38 · 10−5

1
1−x2−y2

(
1− y2 xy
xy 1− x2

)
1

1−x2−y2

(
1− y2 xy
xy 1− x2

)
Spherical Cap 1 1 5.32 · 10−2 // 3.47 · 10−2 // 2.20 · 10−2(

1 + x2 −xy
−xy 1 + y2

)
1√

1+x2+y2

(
−1 0
0 1

)
Hyperboloid Cap varies < −1 1.69 · 10−2(

2 1
1 2

)
0 Rhombus 0 0 4.82 · 10−11

I

(
1 0
0 0

)
Cylindrical Patch 1 0 2.23 · 10−2 // 1.08 · 10−2 // 1.61 · 10−2

Table 2.2: Didactic experiments on a unit square. Different rest fundamental
forms are prescribed over the square, and in each case we compare the sim-
ulated steady state to the expected analytic solution with mesh resolution of
820 (//2686//39210) vertices.

ing energy while ignoring bending energy. Nevertheless, we expect the steady

state geometry to closely resemble M , especially when M is convex and the

shell thickness h is small. Figure 2.2 shows the result of swelling the unit disk

into a sphere: we stereographically project the sphere of radius 1/4 units to

the plane, and take the region bounded by the unit disk. The stereographic

projection is conformal, so we set ā on the unit disk per the conformal factor,

and simulate the damped dynamics of the disk returning to its equilibrium

state. Notice that the disk transitions through highly deformed intermediate

states before “popping” back into a spherical shape. The rest state is not per-

fectly spherical at the boundary: the shell flares outward, as expected since the

perfectly spherical configuration minimizes stretching energy while neglecting

bending. A theoretical argument for this behavior at the boundary is given in

[36].

Comparison to Finite Elements We compare our method to finite el-

ements to validate both the discretized elastic energy, and the equilibrium
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configuration, of a slab undergoing differential non-Euclidean growth. More

specifically, for different growth magnitudes G we prescribe the rest metric

ḡxy =
[
(1+G)z

h
+
(
1− z

h

)]2
I throughout the volume of a 20 by 10 mm slab of

thickness h = 0.1 mm, and evaluate its elastic energy using three methods:

(i) tetrahedral finite elements using a St. Venant-Kirchhoff material model,

where each tetrahedron is assigned a piecewise constant rest metric by evalu-

ating ḡ at its centroid; (ii) our method, as described in section 2.3; (iii) our

method, using Gingold et al.’s hinge-based shape operator, as discussed in

section 2.6. All finite element energies and simulations were computed using

the Vega library [7]. We also compute two ground truth energy values: the

true elastic energy of a St. Venant-Kirchhoff material integrated over the shell

volume, and the energy of the midsurface-based thin limit approximation in

equation 2.2. Figure 2.7 shows convergence plots of the elastic energy of the

finite element and shell methods as a function of mesh resolution. For a fixed

value G = 0.03, we compute the energy of a non-equilibrium embedding of

the slab r(x, y) = (sin[100x], 100y, cos[100x]). Our method converge linearly

to the Koiter energy (2.2), in agreement with previous studies of Euclidean

shells discretized using the mid-edge b [154]. Our method converges to an

energy slightly higher than the exact shell energy; we believe the discrepency

is due to membrane locking, i.e. the impossibility of bending a discrete surface

without stretching any triangles [37]. Figure 2.9 plots the error of both shell

methods relative to the FEM solution, for different levels of refinement; on

a coarse mesh our method slightly underestimates the curvature of the FEM
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Method G = 0.005 0.03 0.05 0.08 0.1 0.3 0.5
True Volumetric Energy 1.60 · 10−6 5.64 · 10−5 1.55 · 10−4 3.87 · 10−4 5.97 · 10−4 4.77 · 10−3 1.20 · 10−2

Thin Limit Approximation 1.60 · 10−6 5.77 · 10−5 1.60 · 10−4 4.10 · 10−4 6.40 · 10−4 5.67 · 10−3 1.54 · 10−2

Our Energy 1.60 · 10−6 5.77 · 10−5 1.60 · 10−4 4.10 · 10−4 6.40 · 10−4 5.67 · 10−3 1.54 · 10−2

Hinge-based Formulation 2.20 · 10−6 8.01 · 10−5 2.29 · 10−4 6.11 · 10−4 9.83 · 10−4 1.23 · 10−2 5.01 · 10−2

Volumetric Finite Elements 1.60 · 10−6 5.60 · 10−5 1.53 · 10−4 3.85 · 10−4 5.93 · 10−4 4.74 · 10−3 1.19 · 10−2

Table 2.3: Comparison of the elastic energy of a thin slab, simulated using
tetrahedral finite elements, our method using the mid-edge shape operator,
and using Gingold’s hinge-based shape operator. Higher G induces more dif-
ferential growth.

solution; the formulation using Gingold et al.’s operator overestimates it. The

overall one-sided Hausdorff distance between the simulation and ground truth

(as computed using volumetric FEM) for our method, from coarse to fine, is

2.25·10−4, 8, 93×10−5, and 8.09·10−5 m. Using the hinge-based shape operator

instead, the distance is 2.9 · 10−4, 2.45× 10−4, and 2.34× 10−4 m.

Table 2.3 compares the limit energy values of the discrete methods to

the ground truths, for different values ofG (the meshes used for this experiment

contain 22881 tetrahedra/ 5538 triangles). Our method shows good agreement

with the Koiter energy. Notice that for high values of G, even the exact Koiter

energy does not agree with the true volumetric elastic energy; this is because

as G grows large, the modeling assumption that strain is small relative to the

thickness of the shell no longer holds for this imposed embedding.

2.7.2 Comparisons to Experiments

Curling of Paper Ordinary paper, when moistened on one side (by painting

water, or placing the paper on a damp sponge), undergoes complex dynamic

behavior. Water diffuses into the wet side, and that side swells, causing global
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curling due to this differential material growth. Over time, water penetrates

the entire thickness of the paper and the water concentration becomes uniform;

the paper flattens again. This process plays out over about ten seconds. We

compare experiment and simulation of this behavior: we use a brush to moisten

a piece of real paper, and compare the video of the curling and uncurling of

the paper to a simulation of the same phenomenon. Figure 2.5 shows the

experiment, the simulation, and a stylized, thickened cross-section of the paper

showing the difference in moisture concentration through the paper thickness

over time.

Radial Swelling of Disk Sharon and Efrati [124], in their pioneering work

on the geometry of non-Euclidean plates, induced non-uniform growth in a

punctured disk of NIPA polymer by varying the cross-linking ratio as a func-

tion of the radius away from the disk’s center. We compare simulation and

experiment in figure 2.8.

2.7.3 Effects of Parameters

One advantage of our formulation of swelling thin shells is that it sup-

ports physical material parameters. In this section, we show results highlight-

ing the importance of these parameters and their effects on the behavior of

swelling and shrinking thin objects.

Thickness Since it controls the relative importance of stretching and bend-

ing, the thickness of a shell is its most important physical parameter. Changing
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the thickness will often dramatically change how a shell deforms. For example,

when a moist paper annulus dries, it rolls up. Depending on its thickness, the

annulus transitions through several intermediate shapes before rolling up com-

pletely: the outer boundary of the annulus lifts to form an n-sided polygon,

with n decreasing over time as one metastable configuration cascades into the

next. Figure 2.11 shows the range of behavior for an annulus of inner radius

1 cm and outer radius 2 cm, and several paper thicknesses (0.05, 0.1, 0.2 and

0.5 mm).

Machine Direction As mentioned above, when paper is manufactured, its

fibers arrange in a preferential direction, leading to anisotropic growth when

the paper is moistened. In figure 2.11 (right) we repeat the annulus experiment

with paper whose fibers are aligned to the x direction (left to right in the

figure). Notice the dramatic change in the annulus dynamics, compared to

figure 2.11 (left).

2.7.4 Qualitative Experiments

We end with several experiments that demonstrate the flexibility of the

method to simulate complex geometries undergoing nonlinear deformations

due to differential swelling.

Shape-changing Food Differential growth has been used to design gelatin

films that fold into novel shapes, by exploiting the ability to fabricate the film
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Example Fig verts tris time step (s) time/step (s)
Bunny 2.4 51k 102k 10−5 5.25
Armadillo 2.4 42k 86k 10−5 33.88
Pasta 2.3 9k 19k 10−4 23.6
Globe 2.2 5k 10k 10−4 0.5
Annuli 2.11 1.5k 3k 10−4 8

Table 2.4: Timing numbers for the simulations shown in the paper. Each sim
used one thread on an Intel Xeon E3-1270 desktop with 16GB RAM.

into a bilayer of differing density and porosity [150]. Wang et al. validated

their designs using a volumetric simulation in ABAQUS; in figure 2.3 we com-

pare their simulated and experimental results to our thin shell simulations,

demonstrating that a reduced shell model can accurately predict the behavior

of the bilayer without need of a volumetric simulation.

Melting Plastic We simulate the behavior of several thin-shell plastic ob-

jects (sphere, torus bunny, and armadillo) shrinking when exposed to heat.

Notice the complex buckling patterns visible in these examples, due to met-

ric incompatibility introduced into the object geometry during heating. See

figure 2.4 and figure 2.10.
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Figure 2.7: Comparison of energy convergence rate as a function of resolu-
tion of our method, the alternative hinge-based formulation, and volumetric
FEM. The FEM energy was compared to the analytic volumetric elastic en-
ergy. For both shell methods, the computed energy was compared to the
analytic thin-limit energy in equation (2.2). Both our method and FEM show
linear convergence to their respective exact energies.
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Figure 2.8: We compare the experiments of Sharon and Efrati [124] using
polymer disks (top) with our simulation (bottom) for two prescribed radially-
varying rest metrics. Blue regions correspond to higher growth rates.
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Figure 2.9: Visualization of distance between solutions using thin shell simu-
lations of our method (left), and our method with hinge-based shape operator
(right), compared to FEM for meshes with 1277, 3594, and 5538 vertices, plot-
ted over the slab’s material domain.
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Figure 2.10: Deformed punctured plastic spheres with different temperature
distribution with hotter region indicated as red are shown on the top panel.
Plastic torus deformation due to heat source (red sphere) through time is
shown in the bottom.
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isotropic anisotropic

Figure 2.11: The left figure shows the curling behavior of moist paper annuli
as they dry, with time increasing from top to bottom. Varying the thickness
(from left to right, the thicknesses of the annuli are 0.05 mm, 0.1 mm, 0.2 mm,
and 0.5 mm) demonstrates that the amount and type of curling is strongly
dependent on the thickness of the material. The right figure shows the same
annuli endowed with a principal machine direction along the x axis (directed
from left-to-right in the figure): the dynamics are markedly different from the
case of no machine direction.
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Chapter 3

Constraint-Based Thin Shell Simulation on

Point Clouds

Efficiently simulating thin objects such as cloth, paper, or skin remains

significantly more challenging than simulating their rigid or volumetric coun-

terparts, due to their kinematic complexity and nonlinear physics. Specifically,

numerical discretizations of thin plates must overcome two challenges: the dra-

matic stiffness disparity between stretching and bending material forces, and

the tendency for discretizations of thin surfaces to lock.

• Stiffness scale-separation. The behavior of thin plates is governed

by a combination of membrane forces, resisting in-plane stretching and

shear of the material, and bending forces. These forces have dramati-

cally different stiffnesses: stretching stiffness scales like the thickness of

the material, whereas bending scales like thickness cubed, so that the

stretching forces are order of magnitude stronger.

For sufficiently thin objects, the scale separation between these stiffnesses

is so vast that stretching of the material is imperceptible; in this setting

paying the price in element or time step size in order to resolve the

stretching modes does not make sense. Instead, one can look at isomet-
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ric kinematics, where constraints enforcing zero in-plane strain replace

force-level resistance to stretching. However, such a strategy requires dis-

crete surface kinematics that supports cleanly decoupling bending from

stretching modes.

• Membrane locking. A smooth surface can bend into a general de-

velopable surface isometrically; the same is not true for a triangle mesh.

Regular equilateral meshes can isometrically bend about their three axes

of symmetry only; irregular meshes cannot bend at all without distort-

ing some of the triangle edges. As a consequence, any formulation of

stretching forces based on triangle edge lengths will suffer from locking :

situations, such as holding a piece of cloth up by two corners as shown in

Figure ??, left, where deformations that are bending-dominated in the

continuous regime are stretching-dominated in the discrete regime [117],

due to failure of bending to kinematically decouple from stretching.

On the other side of the same coin, insufficiently constraining discrete

inextensible plates, so that stretching-dominated deformations in the

continuous regime are instead bending-dominated (or completely uncon-

trolled), allows equally undesirable spurious deformation modes.

Main Idea We present a method for simulating isometric thin plates by

combining two simple ideas: replacing the very stiff membrane forces by hard

constraints, and doing so on a formulation of the strain tensor that is averaged

over surface patches via moving least squares, to alleviate locking. We can
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then simulate the material by adding a bending energy and enforcing the hard

inextensibility constraints using standard methods for constrained Lagrangian

dynamics, such as the method of Fast Projections [48].

The resulting numerical method is simple to implement, and because

stretching forces are replaced with hard constraints, it can simulate infinitesi-

mally thin, inextensible materials without requiring very fine meshes or small

time steps. Even very coarse, efficient simulations of thin materials undergoing

large amounts of bending and crumpling give good qualitative results.

3.1 Related Work

Membrane Locking is a well-known phenomenon for simulations in-

volving low-order elements, and has been studied extensively by Quaglino [116,

117], who proposed several tests characterizing behavior of a variety of triangle-

mesh-based kinematics. English and Bridson [37] suggested gluing triangles at

edge midpoints rather than at vertices, which avoids locking but unfortunately

suffers from spurious modes. Popular workarounds to locking include adaptive

refinement of the mesh, as in the popular ArcSim [100] code and its extensions;

avoiding triangles entirely and using higher-order elements; or compensating

for locking by tweaking stiffness parameters on an ad-hoc per-example basis.

Isometry/Strain Limiting Treating membrane strain with constraints rather

than forces has proven to be a powerful technique for reproducing characteristic

wrinkle patterns in thin shell materials. Early application of this idea was used
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to introduce fine wrinkles where contact introduces compression of the materi-

als [114, 19]. Goldenthal et al. [48] proposed a framework for constraint-based

limiting of strain in the warp and weft directions on a quadrilateral mesh,

and demonstrated that constraint-based inextensibility is significantly more

efficient than force-based simulation of membrane strain, even when using im-

plicit methods. Chen and Tang [21] enforce isometry in a least-squares sense

while also respecting collision constraints. Other methods for enforcing strain

limits have been proposed, with support for constraining all elements of the

strain tensor [138] and for boosting performance by applying constraints in a

hierarchical manner [147], though these methods treat strain based on triangle

deformations and will lock unless the material is sufficiently compliant when

under the strain limit. Also related is the method of position-based dynam-

ics [98, 132], a stable and fast alternative to traditional physical simulation

that replaces all forces (even the soft bending forces) with constraints.

Meshless Methods Although most cloth solvers are mesh-based, meshless

methods have also been explored [163]. They are particularly appealing for

problems involving fracture; peridynamics [125] has had significant success

in computer graphics [74, 22, 56, 158] and has been extended to shells [26].

Similar in spirit are Elastons [86], a quadrature scheme for deformation energy

based on unstructured sample points which can be used to simulate elastic

bodies of arbitrary codimension in a unified way. Also related are the “F-bar”

methods in finite elements for simulating incompressible volumes, which avoids
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locking by imposing area/volume constraints on patches of elements rather

than on single quadrilaterals [30] or triangles [102]. This idea has been applied

to simulation of incompressible volumes [107, 17], including in graphics [61].

Figure 3.1: Locking test on a square piece of cloth pinned at the corner.
Left column: simulation using our constraints, with constraints tolerance 0.1,
0.01, and 0.001 from top to bottom. Second column: sampling with twice the
neighborhood size, on a regular grid, and on a finer mesh. All these simulations
have similar curvature and do not lock. Third column: simulations using
discrete elastic shells [50] for the same bending stiffness as our simulations, but
varying stretching stiffnesses, decreasing from top to bottom (Young’s moduli:
104, 100, and 1 MPa). Notice there is no free lunch between excessive in-plane
strain, and locking. Last column: Simulation using isometry constraints on all
edges of a quad mesh with varying diagonal spring stiffness, decreasing from
top to bottom [48].

3.2 Meshless Kinematics

In this section, we describe the meshless kinematics we use, and our

notation. The heart of our method will be in Section 3.3, where we formulate

constraints on neighborhoods of the material. We assume we are given a
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surface S whose rest state is flat. We adopt a standard meshless discretization

of the plate, and sample S at N points P of S, and associate to each point a

neighborhood Ni ⊂ P of other sample points. We require that |Ni| ≥ 2; the

neighboring points can be chosen based on a threshold distance away from the

sample points on S, graph distance on a user-provided input triangle mesh,

etc.

We assume that locally, each neighborhood Ni can be isometrically

parameterized by a region Ωi of the plane (this parameterization might be

given, in the case of cloth sewing patterns, or precomputed from S by plane-

fitting). We will write X i
j ∈ R2 for the position of sample point j ∈ Ni on

Ωi; note that a sample point likely belongs to multiple neighborhoods and

might have different material coordinates X i
j in each such neighborhood. Let

Yi ∈ R3 be the embedded position of sample point i in 3D. The set of Yi are

then the degrees of freedom of the simulation. Finally we associate to each

neighborhood a lumped mass mi (based on a given material density and the

barycentric area of its associated sample point).

3.3 Isometry Constraints

Motivation The most obvious way to enforce isometry of a surface is to dis-

cretize it as a triangle mesh, and constrain each edge length to remain constant.

However, such constraints are doomed to lock. Consider for instance that for

a mesh with |V | vertices and |E| edges, there are 3|V | kinematic degrees of

freedom and |E| constraints, and yet from the Euler characteristic formula,

52



Figure 3.2: Draping experiments using coarse and fine meshes (left and right
columns, respectively). Our constraints yields consistent results even for very
coarse discretizations of the cloth.

|E| ≈ 3|V |; the edge-based isometry constraints are therefore expected to

remove almost all of the cloth’s degrees of freedom. Contrast this situation

with the smooth setting, where the cloth can deform into a rich variety of

developable surfaces. Note that replacing the triangle mesh with quadrilat-

erals does not in any way solve the problem: one can then enforce isometry

for only the quadrilateral edges (as in Goldenthal et al. [48]), which allows

non-isometric shear and stretching in the diagonal direction (see Figure 3.1),

or also constrain the lengths of the diagonals, which essentially triangulates

the mesh.

We propose instead to enforce isometry on the vertices : we will use
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moving least-squares to formulate a strain on each of the |V | neighborhoods

Ni, and constraint the principle strains to be zero. We will then have only 2|V |,

rather than |E|, isometry constraints, leaving |V | leftover degrees of freedom

for isometric bending modes.

Constraint Formulation Near a sample point i, the 3 × 2 deformation

gradient F of the thin plate, with respect to the local parameterization of Ni,

must satisfy

FX i
j ≈ Yj − Yi ∀j ∈ Ni. (3.1)

Of course, for points i with more than two neighbors, this relation is over-

constrained; we instead work with an averaged deformation gradient Fi in Ni,

based on satisfying Equation 3.1 in the moving least-squares sense,

Fi = argmin
F

∑
j∈Ni

mj

∥∥FX i
j − (Yj − Yi)

∥∥2 .
The averaged deformation gradient Fi can then be expressed in closed form as

Fi = YWXT (XWXT )−1,

where each column of X2×|Ni| is one X
i
j, each column of Y3×|Ni

is one current

displacement Yj − Yi, and W|Ni|×|Ni| = diag(mj).

Isometry Given current deformation gradient Fi for a neighborhood of point

i, we can formulate the strain tensor,

εi = (F T
i Fi − I),
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for I is the identity matrix. Typically for dynamics we would then derive forces

by applying a constitutive law to this strain; since we instead want to enforce

inextensibilty as a hard constraint, we need to write down constraint functions

specifying vanishing of the strain. There are several sets of constraints we could

choose; unfortunately, all are nonlinear. We use the pair

gtri = tr
(
F T
i Fi

)
− tr (I) = 0

gdeti = det
(
F T
i Fi

)
− det (I) = 0,

(3.2)

Since the zero matrix is the only symmetric matrix with both eigenvalues zero,

these constraints are equivalent to εi = 0. The gradients of these constraints,

in local coordinates with respect to a variation δY of Y, are given by

∇gtri · δY = 2F (XWXT )−1XW : δY

∇gdeti · δY = 2F (F TF )adj(XWXT )−1XW : δY,

where [
a b
c d

]adj
=

[
d −b
−c a

]
.

Notice in particular that both constraints have zero as a regular value: neither

gradient vanishes when εi = 0, a crucial requirement for the numerical stability

of techniques like Fast Projections that are based on the method of Lagrange

multipliers. Intuitively, the trace of the strain tensor corresponds to the sum

of the squared principle stretches, which is in a sense the averaged squared

distance to the neighboring points. The determinant of the strain tensor is the

product of the squared principle stretches and measures a notion of squared

neighborhood area. Both constraints together imply that the stress tensor,
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averaged in each neighborhood, is the zero matrix, equivalent to isometry of

the neighborhood.

We mention in passing some alternative sets of constraints we tried,

and abandoned: perhaps the most obvious is to directly constrain each entry

of εi, which amounts to three constraints per neighborhood since strain is

symmetric. However, this formulation bloats the set of constraints by 50%,

while introducing rank deficiency in the constraint gradients, leading to poor

performance. One might also consider constraining the trace and determinant

of the strain tensor, rather than of F T
i Fi—the problem with this approach is

that the function det(εi) has a critical point at the strain-free state, which as

mentioned above makes the constraint unsuitable for projection.

3.4 Time Integration

We enforce the constraints (3.2) at every time step using the method of

Fast Projections [48], with implicit time integration of bending and external

forces. Any bending model can be used, though we note that for materi-

als which are rest flat (including cloth, paper, etc), the simple and efficient

quadratic bending model [12] is quite attractive, since isometry of the material

is precisely the assumption required for validity of the model:

Ebend =
k

2
∥LY∥2M−1 ,

where M is the system mass matrix, L the Laplace-Beltrami operator (com-

puted from a meshless discretization [113], or from a triangulation of the input
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surface), and k is a bending stiffness proportional to the Young’s modulus and

cubed thickness of the material. Note that the quadratic bending energy, true

to its name, has constant Hessian which can be prefactored, so that the per-

formance bottleneck of each time integration step is enforcing the constraints.

In most of our experiments, we used a time step size of 10−3 seconds

and a constraint tolerance of 0.1; Fast Projections typically converges in one

to three iterations. However, Fast Projections does not perform a true pro-

jection onto the constraint manifold, and comes with no guarantees; we found

that regularizing each projection by the geometric stiffness matrix of the con-

straints [139] improves performance. In cases where Fast Projections fails to

decrease the constraint residual after a few iterations, we switch to true pro-

jection using the augmented Lagrangian method; in practice this fallback was

only needed when high-energy impacts cause large violations in the constraints

within a single time step.

3.5 Results

Locking Tests We perform a sequence of tests demonstrating that the con-

straints (3.2) works for near isometric thin plate and does not exhibit spurious

modes. In Figure 3.1, we pin a square sheet of cloth at two corners, and let

the sheet relax under gravity. We simulate this experiment using our isom-

etry constraints for different constraint tolerances, for different resolutions of

sampling points, and for both ordered and disordered sampling of the cloth.

Our simulations consistently give comparable results. Statistics for these and
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other experiments described in this section can be found in Table 3.1.

Effect of Parameters As we decrease the constraint tolerance as shown in

the left column in Figure 3.1, the sagging in the middle of the cloth decreases

as expected, since the isometry constraints enforce that the distance between

the two pinned corners is identical to that of the flat rest shape.

Comparison to Related Work We compare to force-based shell meth-

ods [50], using the same bending stiffness, on the third column of Figure 3.1,

where enforcing isometry via high stiffness rigidifies the cloth. Lastly, the same

experiment was performed using the constraints proposed by [48]. Due to the

fact that the edge length constraints on a quad method do not control the

length of each quad diagonal, the cloth sags significantly.

Crushed Cylinder We replicate the cascade of diamond buckling patterns

observed by Martin2010, and although only our high-resolution simulation can

resolve the fine-scale pattern at the beginning of the simulation, it correctly

reproduces the highly-buckled final state.

Spinning tank top We show the dynamics of a tank top draping over a

spinning hanger in Figure 3.4. Our method resolves the wrinkles generated

during the motion.
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Figure 3.3: Frames of cylinder crumpling using our method, for a fine (left and
middle) and coarse (right) simulation. Only the fine simulation resolves the
fine-scale pattern but both simulations settle to similar static states.

Bending Stiffness One important feature of our method is that the bending

stiffness of the simulated cloth can be controlled, while preserving isometry.

For most thin shell models, extensive tuning of the hyper-parameters is often

required to achieve the balance between avoiding locking and maintaining

isometry of the material. As shown in Figure 3.5, just by adjusting the bending

stiffness, our method produces cloth with different wrinkling patterns without

stretching.
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Figure 3.4: Dynamics of a spinning tank top.

Skin Wrinkling Several papers [119, 75] describe how to simulate wrinkling

of skin via one-way coupling of thin plate simulations to a volumetric elastic

substrate. The coupling is enforced via a sparse set of average-position con-

straints sampled on the skin surface. This setup is ideal for our method, since

(i) the behavior of the upper skin layers is governed by bending and by the

coupling constraints, so that replacing in-plane strain of the skin with isome-

try of these fine layers is justified; (ii) the coupling constraints can be trivially

incorporated by including them as extra terms during Fast Projections. Fig-

ure 3.6 shows the behavior of our simulation when the substrate is compressed

in one and two directions.

Table 3.1: Parameters used in each experiment.

Fig. 3.1 coarse Fig. 3.1 regular Fig. 3.1 fine cylinder(coarse) cylinder (fine) tank top
verts 662 625 1656 979 15039 3450

tolerance 0.01 0.01 0.01 0.001 0.001 0.01
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Figure 3.5: Our method generates draped skirt shapes with different wrinkle
patterns while preserving the isometry.

Figure 3.6: Simulations of skin coupled to a volumetric substrate. Even for
coarse discretizations, our method reproduces the correct undulating or 3D-
folded wrinkling pattern for compression in one or two directions, and pinching.
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Chapter 4

Virtual Elastic Objects

3D reconstruction is one of the fundamental problems of computer vi-

sion and a cornerstone of augmented and virtual reality. A recent achievement

in this direction is the discovery of a fairly general formulation for representing

radiance fields [94, 79, 87, 123, 164, 161, 141, 13, 128, 104, 133]. Neural radi-

ance fields are remarkably versatile for reconstructing real-world objects with

high-fidelity geometry and appearance. But static appearance is only the first

step: it ignores how an object moves and interacts with its environment. 4D

reconstruction tackles this problem in part by incorporating the time dimen-

sion: with more intricate capture setups and more data, we can reconstruct

objects over time—but can only re-play the captured sequences. Today, in

the age of mixed reality, a photo-realistically reconstructed object might still

destroy immersion if it is not “physically realistic” because the object cannot

be interacted with. (For example, if a soft object appears as rigid as the rocks

next to it when stepped on.)

By building on advances in computer vision and physics simulation, we

begin to tackle the problem of physically-realistic reconstruction and create

Virtual Elastic Objects : virtual objects that not only look like their real-world
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counterparts but also behave like them, even when subject to novel interac-

tions. For the first time, this allows for full-loop reconstruction of deforming

elastic objects: from capture, to reconstruction, to simulation, to interaction,

to re-rendering.

Our core observation is that with the latest advances in 4D reconstruc-

tion using neural radiance fields, we can both capture radiance and defor-

mation fields of a moving object over time, and re-render the object given

novel deformation fields. The remaining challenge is to capture an object’s

physics from observations of its interactions with the environment. With the

right representation that jointly encodes an object’s geometry, deformation,

and material behavior, compatible with both differentiable physical simula-

tion and the deformation fields provided by 4D reconstruction algorithms, we

can use these deformation fields to provide the necessary supervision to learn

the material parameters.

But even with this insight, multiple challenges remain to create Virtual

Elastic Objects. We list them together with our technical contributions:

1) Capture. To create VEOs, we need to collect data that not only contains

visual information but also information about physical forces. We present the

new PLUSH dataset1 containing occlusion-free 4D recordings of elastic ob-

jects deforming under known controlled force fields. To create this dataset, we

built a multi-camera capture rig that incorporates an air compressor with a

1https://hsiaoyu.github.io/VEO/

63

https://hsiaoyu.github.io/VEO/


movable, tracked nozzle. More details can be found in Sec. 4.2.1.

2) Reconstruction. VEOs do not require any prior knowledge about the

geometry of the object to be reconstructed; the reconstruction thus must be

template-free and provide full 4D information (i.e., a 3D reconstruction and

deformation information over time). We extend Non-rigid Neural Radiance

Fields [140] with novel losses, and export point clouds and point correspon-

dences to create the data required to supervise learning material behavior

using physical simulation. We provide further details in Sec. 4.2.2.

3) Simulation. Crucially for creating realistic interactive objects, a phys-

ical simulation is required, both to optimize for an unknown object’s phys-

ical parameters and to generate deformations of that object in response to

novel interactions. We implement a differentiable quasi-static simulator that

is particle-based and is compatible with the deformation field data provided

by our 4D reconstruction algorithm. We present the differentiable simulator

and explain how we use it to obtain physical parameters in Sec. 4.2.3, and

describe simulations of novel interactions in Sec. 4.2.4.

4) Rendering. Since we convert from a neural representation of the cap-

tured object’s geometry to a point cloud reconstructing the object’s physical

properties, we require a function that allows rendering the object given new

simulated deformations of the point cloud. We introduce a mapping function

that enables us to use deformed point clouds instead of continuous deforma-

tion fields to alter the ray casting for the Neural Radiance Fields we used for

the original reconstruction. Further details on re-rendering can be found in
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Sec. 4.2.5.

4.1 Related Work

Our work integrates together multiple areas of computer vision, com-

puter graphics, and simulation.

Recovering Elastic Parameters for 3D Templates. A number of prior

works estimate material parameters of a pre-scanned 3D template by tracking

the object over time from depth input. Wang et al. [146] were among the first

to tackle tracking, rest pose estimation, and material parameter estimation

from multi-view depth streams. They adopt a gradient-free downhill simplex

method for parameter fitting, and can only optimize a limited number of ma-

terial parameters. Objects built from multiple types of materials cannot be

faithfully captured without manual guidance or prior knowledge of a part de-

composition. Hahn et al. [55] learn an inhomogeneous viscoelastic model from

recordings of motion markers covering the object. Recently, Weiss et al. [155]

infer homogeneous linear material properties by tracking deformations of a

given template with a single depth camera. In contrast to these methods,

ours jointly reconstructs not just object deformations and physics without a

need for depth input or markers but also geometry and appearance without

a need for a template. Our formulation can model inhomogeneous, nonlinear

materials without prior knowledge or annotations.

3D/4D Reconstruction. Representing static scenes remains an open prob-

lem, with recent mesh-based [148, 52] and neural approaches [25, 91, 118].
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Reconstructing non-rigid objects from a video sequence is an equally long-

standing computer vision and graphics problem [165, 142]. Shape-from-Template

methods deform a provided template using RGB [162] or RGB-D data [167].

DynamicFusion [103] is a model-free, real-time method for reconstructing gen-

eral scenes from a single RGB-D video. When reliable 2D correspondences are

available from optical flow, non-rigid structure-from-motion (NRSfM) can be

used to reconstruct the 3D geometry [2, 71], perhaps even using physics-based

priors [3]. There are also image-based approaches that do not yield a true

3D scene [160, 10]. Recently, reconstruction using neural representations have

become more common. Whereas OccupancyFlow [105] requires 3D supervi-

sion, Neural Volumes [81] reconstructs a dynamic scene from multi-view input

only, but does not compute temporal correspondences. See a recent survey on

neural rendering [137] for more.

Neural Radiance Fields [94], the seminal work of Mildenhall et al., lays

the groundwork for several follow-up reconstruction methods that extend it

to dynamic scenes [76, 109, 4, 115, 108, 77, 34, 41, 156, 82]. In this work,

we assume multi-view RGB video input with known camera parameters and

foreground segmentation masks and so extend Non-Rigid Neural Radiance

Fields (NR-NeRF) [140].

Data-Driven Physics Simulation. For simulating elastic objects specif-

ically, one line of work replaces traditional mesh kinematics with a learned

deformation representation to improve performance: Fulton et al. [40] use

an autoencoder to learn a nonlinear subspace for elastic deformation, and
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Holden et al. [57] train a neural network to predict the deformation of cloth

using a neural subspace. Some methods use neural networks to augment coarse

traditional simulations with fine details [72, 44].

Another line of work uses data to fit a parameterized material model

to observed deformations. This idea has been successfully applied to muscle-

actuated biomechanical systems such as human faces [66, 129], learning the

rest pose of an object in zero gravity [23], the design of soft robotics [59, 58],

and motion planning with frictional contacts [43, 33]. Yang et al. [159] learn

physical parameters for cloth by analysing the wrinkle patterns in video. While

all of these methods learn physical parameters from data, our method is unique

in requiring no template or other prior knowledge about object geometry to

reconstruct and re-render novel deformations of an object.

Meshless Simulation. Meshless physics-based simulation emerged as a

counter-part to traditional mesh-based methods [95] and is ideal for effects

such as melting or fracture [95, 111]. These methods have been later extended

to support oriented particles and skinning [96, 45, 84]. Another extension of

point-based simulations consists in incorporating a background Eulerian grid,

which enables more efficient simulation of fluid-like phenomena [131, 64].

4.2 Method

Our method provides an end-to-end solution for constructing a realistic

virtual object, which is consist of several different parts, including capture, 4D

reconstruction, material parameter learning, and re-rendering, and the overall

67



Figure 4.1: Method overview. We use a multi-view capture system to record
objects deforming under the influence of external forces. Our method recon-
structs a meshless geometry and deformation field from these sequences. Using
a differentiable simulator, we optimize the material parameters of the objects
to match the observations. These parameters allow us to find novel, plausible
object configurations in response to new forces fields or collision constraints
due to user interactions. Finally, we re-render the deformed state.

pipeline is shown in fig 4.1.

4.2.1 Capture

To create a physically accurate representation of an object, we first

need to record visual data of its deformation under known physical forces. For

recording, we use a static multi-view camera setup consisting of 19 OpenCV

AI-Kit Depth (OAK-D) cameras2, each containing an RGB and two grey-scale

cameras (note that VEO does not use the stereo camera data to infer classical

pairwise stereo depth). They represent an affordable, yet surprisingly powerful

solution for volumetric capture. In particular, their on-board H265 encoding

capability facilitates handling the amount of data produced during recording

2https://store.opencv.ai/products/oak-d
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(5.12GB/s uncompressed). For details on temporal synchronization of the

cameras, please see the supplemental material. Since the cameras lack a lens

system with zoom capabilities, we keep them close to the object to optimize

the pixel coverage and re-configure the system depending on object size. The

maximum capture volume has a size of roughly 30cm3. We put a black sheet

around it to create a dark background with the exception of five stage lights

that create a uniform lighting environment. A visualization of the camera

layout and capture system can be found in the supplementary material.

In addition to the images, we also need to record force fields on the

object surface. This raises a problem: if a prop is used to exert force on the

capture subject, the prop becomes an occluder that interferes with photometric

reconstruction. We solved this problem when capturing our PLUSH dataset

by actuating the object using transparent fishing line and a compressed air

stream; see Sec. 4.3.1 for further details.

4.2.2 4D Reconstruction

Given the captured video of an object deforming under external forces,

we need 4D reconstruction to supply a temporally-coherent point cloud that

can be used to learn the object material properties. To that end, we use

NR-NeRF [140], which extends the static reconstruction method NeRF [94]

to the temporal domain. NeRF learns a volumetric scene representation: a

coordinate-based Multi-Layer Perceptron (MLP) v(x) = (o, c) that regresses

geometry (opacity o(x) ∈ R) and appearance (RGB color c(x) ∈ R3) at each
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point x in 3D space. At training time, the weights of v are optimized through

2D supervision by RGB images with known camera parameters: for a given

pixel of an input image, the camera parameters allow us to trace the corre-

sponding ray r(s) through 3D space. We then sample the NeRF at |S| points

{r(s) ∈ R3}s∈S along the ray, and use a volumetric rendering equation to accu-

mulate the samples front-to-back via weighted averaging: c̃ =
∑

s∈S αsc(r(s))

(i.e., alpha blending with alpha values {αs ∈ R}s derived from the opacities

{os}s). A reconstruction loss encourages the resulting RGB value c̃ to be

similar to the RGB value of the input pixel.

On top of the static geometry and appearance representation v (the

canonical model), NR-NeRF models deformations explicitly via a jointly learned

ray-bending MLP b(x, lt) = d that regresses a 3D offset d for each point in

space at time t. (lt is an auto-decoded latent code that conditions b on the

deformation at time t.) When rendering a pixel at time t with NR-NeRF,

b is queried for each sample r(s) on the ray in order to deform it into the

canonical model: (o, c) = v [r(s) + b(r(s), lt)]. Unlike NR-NeRF’s monocular

setting, we have a multi-view capture setup. We thus disable the regularization

losses of NR-NeRF and only use its reconstruction loss.

Extensions. We improve NR-NeRF in several ways to adapt it to our set-

ting. The input videos contain background, which we do not want to recon-

struct. We obtain foreground segmentations for all input images via image

matting [78] together with a hard brightness threshold. During training, we

use a background loss Lbackground to discourage geometry along rays of back-
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ground pixels. When later extracting point clouds, we need opaque samples

on the inside of the object as well. However, we find that Lbackground leads the

canonical model to prefer empty space even inside the object. We counteract

this effect with a density loss Ldensity that raises the opacity of point sam-

ples of a foreground ray that are ‘behind’ the surface, while emptying out the

space in front of the surface with Lforeground . During training, we first build a

canonical representation by pretraining the canonical model on a few frames

and subsequently using it to reconstruct all images. Our capture setup not

only provides RGB streams but also grey-scale images. We use these for su-

pervision as well. In practice, we use a custom weighted combination of these

techniques for each sequence to get the best reconstruction.

Point Cloud Extraction In order to extract a temporally-consistent point

cloud from this reconstruction, we require a forward deformation model, which

warps from the canonical model to the deformed state at time t. However,

NR-NeRF’s deformation model b is a backward warping model: it deforms

each deformed state into the canonical model. We therefore jointly train a

coordinate-based MLP w to approximate the inverse of b. After training, we

need to convert the reconstruction from its continuous MLP format into an

explicit point cloud. To achieve that, we cast rays from all input cameras

and extract points from the canonical model that are at or behind the surface

and whose opacity exceeds a threshold. These points can then be deformed

from the canonical model into the deformed state at time t via w. See the

supplemental material for further details. We thus obtain a 4D reconstruction
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in the form of a 3D point cloud’s evolving point positions {Pt}t, which are in

correspondence across time. To keep the computational cost of the subsequent

reconstruction steps feasible, we downsample the point cloud to 9-15k points

if necessary.

4.2.3 Learning Material Parameters

Before we can simulate novel interactions with a captured object, we

need to infer its physical behavior. Given that we have no prior knowledge

of the object, we make several simplifying assumptions about its mechanics,

with an eye towards minimizing the complexity of the physical model while

also remaining flexible enough to capture heterogeneous objects built from

multiple materials.

First, we assume a spatially varying, isotropic nonlinear Neo-Hookean

material model for the object. Neo-Hookean elasticity well-approximates the

behavior of many real-world materials, including rubber and many types of

plastic, and is popular in computer graphics applications because its nonlinear

stress-strain relationship guarantees that no part of the object can invert to

have negative volume, even if the object is subjected to arbitrary large and

nonlinear deformations. Finally, Neo-Hookean elasticity admits a simple pa-

rameterization: a pair of Lamé parameters (µi, λi) ∈ R2 at each point i of the

point cloud P .

Second, we assume that the object deforms quasistatically over time:

that at each point in time, the internal elastic forces exactly balance gravity
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and applied external forces. The quasistatic assumption greatly simplifies

learning material parameters, and is valid so long as inertial forces in the

captured video sequences are negligible (or equivalently, so long as external

forces change sufficiently slowly over time that there is no secondary motion,

which is true for the air stream and string actuations in our PLUSH dataset).

Overview. We first formulate a differentiable, mesh-free forward physical

simulator that is tailored to work directly with the (potentially noisy) recon-

structed point cloud. This forward simulator maps from the point cloud P0

of the object in its reference pose (where it is subject to no external forces

besides gravity), an assignment of Lamé parameters to every point, and an

assignment of an external force fi ∈ R3 to each point on the object surface,

to the deformed position yi ∈ R3 of every point in the point cloud after the

object equilibrates against the applied forces.

Next, we learn the Lamé parameters that match the object’s observed

behavior by minimizing a loss function L that sums, over all times t, the

distance between yi and the corresponding target position of the point in the

4D point cloud Pt.

Quasistatic Simulation. To compute the equilibrium positions yi of the

points in P for given external loads and material parameters, we solve the

variational problem

argmin
y

E(y), (4.1)
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where E is the total energy of the physical system, capturing both the elastic

energy of deformation as well as work done on the system by external forces. In

what follows, we derive the expression for E, and discuss how to solve Eq. 4.1.

Following Müller et al. [95], we adopt a mesh-free, point-based dis-

cretization of elasticity to perform forward simulation. For every point xi in

the reference point cloud P0, we define a neighborhood Ni containing the 6

nearest neighbors of xi in P0. For any given set of deformed positions yj of the

points in Ni, we estimate strain within the neighborhood in the least-squares

sense. More specifically, the local material deformation gradient Fi ∈ R3 maps

the neighborhood Ni from the reference to the deformed state:

Fi(xi − xj) ≈ yi − yj ∀xj ∈ Ni. (4.2)

For neighborhoods larger than three, Eq. 4.2 is over-determined, and we hence

solve for Fi in the least-squares sense, yielding the closed-form solution:

Fi = YiWiX
T
i (XiWiX

T
i )

−1, (4.3)

where the j-th column of Xi and Yi are xi − xj and yi − yj, respectively,

and Wi is a diagonal matrix of weights depending on the distance from xj to

xi [95].

The elastic energy of the object can be computed from the classic Neo-

Hookean energy density [106]:

Ψi
NH =

µi

2
(Ic − 3)− µi log J +

λi
2
(J − 1)2, (4.4)
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where Ic is the trace of the right Cauchy-Green tensor FT
i Fi, and J is the

determinant of Fi. µi and λi are the Lamé parameters assigned to point i.

The total elastic energy is then:

ENH =
∑
i

ViΨ
i
NH , (4.5)

where Vi ∈ R approximates the volume of Ni.

We also need to include the virtual work done by the external force

field to Eq. 4.1:

EW =
∑
i

fi · yi, (4.6)

where fi is the force applied to point i (the force of the air stream on the

boundary). If we measured the tension in the fishing lines, we could also

include the forces they exert on the object in Eq. 4.6. But since a fishing

line is effectively inextensible relative to the object we are reconstructing, we

instead incorporate the fishing lines as soft constraints on the positions of the

points Q ⊂ P attached to the lines: we assume that at time t, points in

Q should match their observed positions in Pt, and formulate an attraction

energy:

EA = α
∑
q∈Q

∥yq − x∗
q∥2, (4.7)

where x∗
q is the position of the point corresponding to yq in Pt, and α is a large

penalty constant. We found that this soft constraint formulation works better

in practice than alternatives such as enforcing yq = x∗
q as a hard constraint;

see the supplemental material for more discussion.
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The total energy in Eq. 4.1 is thus E = ENH + EW + EA, which

we minimize using Newton’s method. Since Newton’s method can fail when

the Hessian H of E is not positive-definite, we perform a per-neighborhood

eigen-decomposition of H and replace all eigenvalues that are smaller than a

threshold ϵ > 0 with ϵ; note that this is a well-known technique to improve

robustness of physical simulations [136]. We also make use of a line search

to ensure stability and handling of position constraints at points where the

capture subject touches the ground; see the supplemental material for further

implementation details.

Material Reconstruction. Given the 4D point cloud Pt and forces acting

on the object {fi}i, we use our forward simulator to learn the Lamé parameters

that best explain the observed deformations. More specifically, at each time t

we define the loss:

Lt =
∑
i∈∂Ω

∥yt,i − x∗
t,i∥2 (4.8)

where x∗
t,i is the position of point i in Pt, and yt,i is the output of the forward

simulation. We use an ℓ2 loss to penalize outliers strongly.

We choose a training subsequence T of 20-50 frames from the input

where the impact of the air stream roughly covers the surface so that we

have some reference for each part of the object, and compute the desired

Lamé parameters by minimizing the sum of the loss over all t ∈ T using the
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gradient-based Adam optimizer [69]:

µ∗, λ∗ = argmin
µ,λ

∑
t∈T

Lt. (4.9)

It is not trivial to back-propagate through the Newton solve for yt,i,

even if we ignore the line search and assume a fixed number of Newton it-

erations K. The gradient of y with respect to the Lamé parameters (µ for

instance) can be computed using the chain rule:

∂L

∂µ
=

∂L

∂yK

∂yK

∂µ
, (4.10)

and, for any 1 ≤ k ≤ K,

∂yk

∂µ
=
∂yk−1

∂µ
−
(
∂H−1

k−1

∂µ
+
∂H−1

k−1

∂yk−1

∂yk−1

∂µ

)
∇Ek−1

−H−1
k−1

(
∂∇Ek−1

∂µ
+
∂∇Ek−1

∂yk−1

∂yk−1

∂µ

)
. (4.11)

To avoid an exponentially-large expression tree, we approximate the derivative

of the kth Newton iterate yk by neglecting the higher-order derivative of the

Hessian and of the gradient of the energy with respect to the previous position

update:

∂yk

∂µ
≈ ∂yk−1

∂µ
−
∂H−1

k−1

∂µ
∇Ek−1 −H−1

k−1

∂∇Ek−1

∂µ

Although it is not guaranteed that the higher-order terms are always negligible,

this approximation provides a sufficiently high-quality descent direction for all

examples we tested. To improve performance and to capture hysteresis in

cases where E has multiple local minima at some times t, we warm-start the

Newton optimization at time t using the solution from time t − 1. See the

supplementary material for more details.
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4.2.4 Novel Interactions

Given a reconstructed VEO, we can use the same physical simulator

used for material inference to re-simulate the captured object subject to novel

interactions. New force fields can easily be introduced by modifying fi in

the energy EW . Other possible interactions include changing the direction of

gravity, adding contact forces to allow multiple objects to mutually interact,

or to allow manipulation of the object using mixed-reality tools, etc.

We demonstrate the feasibility of re-simulating novel interactions by

implementing a simple penalty energy to handle contact between a VEO and

a secondary object, represented implicitly as a signed distance field d : R3 → R.

The penalty energy is given by:

Ψc(y) =

{
αcd(y)

2 if d(y) < 0

0 otherwise,
(4.12)

Ec =
∑
i

ViΨc(yi), (4.13)

where αc is chosen large enough to prevent visually-noticeable penetration of

the VEO by the secondary object.

4.2.5 Rendering

We are able to interact freely with the VEO in a physically plausible

manner. Hence, we can close the full loop and realistically render the results

of simulated novel interactions using neural radiance fields. While we used b

for deformations during the reconstruction, we are now given a new deformed

state induced by a discrete point cloud: a canonical reference point cloud P0 =
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{x0
s}s and its deformed version Sd = {yd

s}s. We need to obtain a continuous

backward-warping field from that point cloud in order to replace b, which

bends straight rays into the canonical model. To that end, we interpolate the

deformation offsets db
s = x0

s − yd
s at a 3D sample point pd in deformed space

using inverse distance weighting (IDW):

pc = pd +
∑
s∈N

ws∑
s′∈N ws′

db
s, (4.14)

where N are theK = 5 nearest neighbors of pd in Sd, and ws = w′
s−mins′∈N w

′
s′

with w′
s = ∥pd − yd

s∥−1. We can then sample the canonical model at pc as

before: (o, c) = v(pc). To remove spurious geometry that o might show, we

set o(x) = 0 for x that are further than some threshold from Sd. Thus, we can

now bend straight rays into the canonical model and render the interactively

deformed state of the object in a realistic fashion.

When needed, we can upsample the point cloud from the simulation to

make it denser. Unlike for rendering, we need to consider forward warping for

this case.

4.3 Results

4.3.1 Dataset

The PLUSH dataset consists of 12 soft items encountered in everyday

life (see Fig. 4.2): a pillow, a sponge, and various plush toys. We chose

items that are composed of soft (and in some cases, heterogeneous) material,

complex geometry, and rich texture and color to enable successful background
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Figure 4.2: The PLUSH dataset consists of 12 items from everyday life: a
pillow, a sponge and several plushies. ∥ indicates that we recorded extremity
motion for the object, * indicates that the recording has significant second
order motion. We additionally provide the mass and recording duration for
each object. Lower right: Lamé parameter visualizations for Baby Alien and
Pony. Colors tending towards purple show a softer region, colors tending to-
wards green and yellow a harder region. Our method clearly identifies different
material properties on the objects, for example the arms and ears for the Baby
Alien, and the mane and tail of the Pony.

subtraction, 4D reconstruction and tracking. We provide purchase links for all

objects in the supplementary material to enable other researchers to reproduce

our experiments. Our strategy for applying external forces is based on the

observation that our chosen objects consist of bulk volumes (such as the body

of a plush toy) along with flexible extremities (ears and fingers of the toy).

We move object extremities by using transparent fishing line, and we use a

stream of compressed air to exert force on bulk volumes. The nozzle position

and stream direction must be tracked during video capture to provide the

direction and magnitude of forces acting on the object at every point in time.

Of the 19 cameras in our capture rig, we use three to track the nozzle using

an attached ArUco marker [42, 120]. Using this system, we generate multi-

part video sequences for each capture subject, where we sequentially actuate
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Object average (mm) 95% (mm) max (mm)
Baby Alien 3.8 14.4 29.3
Gray Fish 1.1 6.6 18.5

Leaf 0.4 1.1 9.8
Gray Mr. Seal 0.4 1.9 171.9

Pillow 1.5 7.8 18.35
Gray Dog 1.7 7.5 28.8
Sponge 0.2 1.8 15.8

Gray Dino Rainbow 4.0 14.6 171.4
Dino Blue 5.5 56.0 105.8

Gray Dino Green 6.2 68.4 132.0
Pony 21.1 164.3 204.9

Gray Serpentine 7.5 43.1 94.7

Average* 2.5 18.0 70.2
Average 4.4 32.3 83.5

Table 4.1: ℓ2 distance of simulated point clouds compared with reconstructed
point clouds on the test set. We record the average distance per point per
frame, the 95th percentile of average point distances of all frames, and the
maximum distance of all points. Average* excludes the data from Pony and
Serpentine.

the fishing lines (when applicable) followed by sweeping the air stream over

the object. See the supplemental material for details of our methodology for

applying and recording external forces. We record between 32s and 67s of

video for each object, at a frame rate of 40FPS.

4.3.2 Virtual Elastic Objects

For each of the 12 examples, we create a VEO using 20-50 frames

from the reconstruction and evaluate on the remaining 500-1500 frames. We

sample 100k points from NR-NeRF and down-sample to 10k–30k points for

simulation, depending on the object. We use the ℓ2 distance between the
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surface points of the VEO to the reconstructed point cloud from the captured

data to evaluate the quality of the reconstructed parameters. For all examples

except for the Baby Alien we use the external force field data obtained using

the air stream. For the Baby Alien, we specifically use the arm and ear motion

to demonstrate the versatility of our method in this scenario. We present the

results in Tab. 4.1.

The error is relatively small for all objects, which shows that our

method is applicable to objects with different geometries, and can learn the

corresponding material parameters even for heterogeneous objects. Larger er-

rors are observed for objects with a thin and tall component (see the last 4

rows of the table). This error is largely caused by tracking inaccuracies of the

nozzle: even slight inaccuracies can cause large errors when, for example, the

neck of the dinosaur moves while the recorded air stream direction does not,

or barely, touch the object.

Inhomogeneous Material. An important feature of our method is that it

can identify different material parameters for different parts of the object (c.t.

Fig. 4.2, lower right). This is crucial for building a detailed physics model with

no prior knowledge of the object. Even more, our method can reliably learn

‘effective’ softness of the material even in places with unreliable tracking, for

example thin geometrical structures close to joints. In case of Baby Alien, our

method learns that the ears and arms are softer compared to the other body

parts; the mane and tail of the Pony are softer, even though these regions are

very hard to track. Both reconstructions match the properties of their real
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Figure 4.3: Comparison with Weiss et al. Comparison on two examples. Blue
meshes are the ground truth, simulation results are shown in yellow. Weiss
et al. fails at reconstructing the horse (orange); our heterogeneous model pro-
duces overall more reliable results.
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Figure 4.4: Simulation of Baby Alien in poses unseen in the dataset. Using the
material model and simulator our method generalizes well to these asymmetric
postures for ears and arms; we only observe symmetric forward and backward
motions during training.

counterparts.

We compare our method with the mesh-based work of Weiss et al. [155]

(which requires a mesh template). We use the teddy mesh from their paper

and simulate it with a heterogeneous material under gravity. We provide

200 depth images and the template to [155], and use the equilibrium point

cloud under gravity as input to our method. We then compare both under a

novel gravity force; see Fig. 4.3. Our method is able to estimate the material

parameters much better, due to the use of a heterogeneous material model as

opposed to the homogeneous model in [155]. We also use a horse model in the

same setup. Weiss et al. fail at reconstructing the parts with more detailed

geometry (behavior has been confirmed as correct by the authors of [155]) and

cannot simulate the object due to the severe artifacts.

Generalization to Novel Poses. The strength of the underlying physics

simulator is the ability to generalize to scenarios that are not encountered
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Figure 4.5: Rendering of the Dino Blue and Dog VEOs during interactions with
secondary objects. The dinosaur neck bends correctly, and dents are forming
on the Dog’s back.

in the training set. We show different simulated poses of the Baby Alien in

Fig. 4.4, such as pulling the ears in opposite directions, and moving just one

single arm. This deformation is particularly challenging for purely data-driven

methods since both ears and arms only move synchronously in the training

data.

Runtime. The upper bound of the run time required for each step of our

pipeline is 20h for reconstruction on four NVIDIA V100 GPUs, 13h for learning

the parameters on a AMD Ryzen 5 1600 six-core processor, 5min for running

a new simulation, and 10min for rendering a frame.

Interaction with Virtual Objects. The physical model of the object en-

ables interactions with all kinds of different virtual items. Fig. 4.5 shows the
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one-way coupled interaction of the learned elastic objects with other virtual

items.

Rendering. Our pipeline ends with re-rendering an object under novel in-

teractions not seen during training. Fig. 4.5 contains renderings of the Dino

Blue and Dog objects, including interactions with two virtual objects. For

additional qualitative results, we refer to the supplemental video. Tab. 4.2

contains quantitative results, where we compare the renderings obtained from

the reconstructed point clouds (which are used for supervision when learning

the material parameters) and the simulated point clouds.

4.4 Limitations

Artifacts. Unlike in the simple static setting, we require reliable long-term

correspondences on top of the visual reconstruction, which for NeRF only [108,

115, 140] provide. They differ mainly in how they handle the respective monoc-

ular problem setting. Our reconstruction method can be seen as a multi-view

extension of any of them to our problem setting. Several remaining artifacts

arise from the setup. Due to the sparse camera setup (16 cameras for 360

degree coverage), we found NeRF unable to reconstruct viewpoint dependent

effects, leading to artifacts around specular regions like eyes. Furthermore, the

air compressor leads to quickly oscillating surfaces (e.g., the fins of the fish),

which pose a challenge for reconstruction and material parameter estimation,

and impacts calibration. These issues impact the extracted point clouds as

well as the final renderings (artifacts visible in Fig. 4.5). The physical simu-
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Simulated Reconstructed
Not Masked Masked Not Masked Masked

Object PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Baby Alien 18.40 0.734 0.255 21.17 0.840 0.174 18.75 0.747 0.249 21.92 0.853 0.167
Gray Fish 19.75 0.692 0.239 22.55 0.808 0.173 20.03 0.701 0.235 22.96 0.818 0.169

Leaf 25.14 0.901 0.091 27.32 0.935 0.065 25.19 0.901 0.091 27.37 0.935 0.065
Gray Mr. Seal 20.61 0.697 0.240 24.03 0.801 0.180 20.65 0.698 0.239 24.11 0.802 0.180

Pillow 21.45 0.743 0.223 23.18 0.806 0.174 21.92 0.760 0.218 23.84 0.823 0.169
Gray Dog 18.98 0.751 0.206 24.68 0.904 0.104 19.05 0.757 0.203 25.24 0.912 0.100
Sponge 21.94 0.846 0.130 26.99 0.925 0.070 21.92 0.846 0.130 27.01 0.925 0.070

Gray Dino Rainbow 18.64 0.754 0.302 23.87 0.839 0.232 20.22 0.778 0.281 26.21 0.859 0.213
Dino Blue 18.48 0.702 0.244 20.70 0.848 0.160 19.56 0.726 0.227 22.06 0.871 0.143

Gray Dino Green 18.94 0.779 0.190 21.49 0.863 0.135 20.46 0.794 0.180 23.59 0.879 0.121
Pony 16.54 0.758 0.245 19.20 0.859 0.163 19.31 0.798 0.200 24.65 0.906 0.108

Gray Serpentine 18.22 0.798 0.181 21.39 0.903 0.111 19.95 0.813 0.162 23.14 0.916 0.091

Average* 20.23 0.760 0.212 23.60 0.857 0.145 20.78 0.771 0.205 24.43 0.868 0.140
Average 19.76 0.763 0.212 23.05 0.861 0.147 20.58 0.777 0.201 24.34 0.875 0.133

Table 4.2: Rendering evaluation. We report the classic error metrics PSNR
and SSIM [151] (−1 to +1), where higher is better for both, and the learned
perceptual metric LPIPS [166] (0 is best). We use deformed point clouds
to render deformed states of the canonical model, see Sec. 4.2.5. We use
both, the point cloud Pt that the reconstruction (Sec. 4.2.2) provides directly
(‘Reconstructed’) or the point cloud that the simulator provides after learning
the material parameters (Sec. 4.2.3, ‘Simulated’). We report two versions: we
either apply the segmentation masks of the input images to the rendered image
to remove all artifacts that spill over onto the background (‘Masked’) or we do
not (‘Not Masked’). Note, that the values on the reconstructed point cloud are
a (soft) upper bound for what the simulator can achieve. The simulated results
are close the reconstructed results, demonstrating that the learned material
parameters yield deformation fields that allow to re-render the object as well
as the reconstruction can.

87



lator turned out to be remarkably robust towards noise and can run with any

point cloud with temporal correspondences.

Known Forces. The simulator requires the forces impacting the object during

capture to be known. This limits the variety of forces that can be applied and

hence the kind of objects that are compatible with the presented method. We

expect an extension handling unknown forces an exciting direction for future

work. Finding good force priors could be a viable approach in this direction.
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