

Copyright

by

Warren Clay Grant

2012

The Report Committee for Warren Clay Grant

Certifies that this is the approved version of the following report:

Implementation of an Open Source JTAG Debugging Development

Chain for the BeagleBoard ARM
®
 Cortex A-8

APPROVED BY

SUPERVISING COMMITTEE:

Jacob Abraham

Mark McDermott

Supervisor:

Implementation of an Open Source JTAG Debugging Development

Chain for the BeagleBoard ARM
®
 Cortex A-8

by

Warren Clay Grant, BSInfTech; MBA

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2012

Dedication

This report is dedicated to my wife Denise for her patience and dedicated support

that made attaining this goal possible. Her understanding during my long hours for study

while working full time is appreciated and will require a lot to make up.

 v

Acknowledgements

I would like to acknowledge the professors, instructors, guest lecturers at the

University of Texas. They all were truly experts in their respective fields and shared a

volume and quality of knowledge that would otherwise have been out of reach.

May, 2012

 vi

Abstract

Implementation of an Open Source JTAG Debugging Development

Chain for the BeagleBoard ARM
®
 Cortex A-8

Warren Clay Grant, MSE

The University of Texas at Austin, 2012

Supervisor: Jacob Abraham

The BeagleBoard-xM, manufactured by Texas Instruments, is a small, low cost,

open source development platform for the ARM
®
 Cortex-A8 processor. This paper

implements a hardware and software combination to connect to the ARM
®
 processor via

a JTAG connection for debugging. A FlySwatter interface board is utilized to connect the

JTAG port to a host computer and a combination of software tools are implemented to

demonstrate the capability for debugging the Linux kernel. The necessary files for

booting the Linux 3.0 kernel were compiled and loaded on the BeagleBoard-xM and the

host computer. Installation and selection of the components that make up the software

tool chain are described. All the hardware and software used for this project are open

source designs.

 vii

Table of Contents

List of Tables ... viii

List of Figures .. ix

List of Illustrations .. x

Introduction .. 1

Chapter 1: Hardware .. 2

BeagleBoard ... 2

Processor ... 4

ARM
®
 Basics ... 5

JTAG on the BeagleBoard ... 6

FlySwatter.. 10

Setup .. 12

Chapter 2: Software .. 14

GNU ARM Toolchain .. 14

BeagleBoard-xM .. 14

SD Card Setup ... 15

The Linux Kernel ... 16

OpenOCD... 20

GNU Debugger and Insight .. 25

Chapter 3: Problems and Forward Work ... 29

Chapter 4: Conclusion .. 31

Appendix... 32

References ... 33

Vita ... 34

 viii

List of Tables

Table 1, JTAG 14-pin Adapter .. 11

Table 2, Project Hardware ... 12

Table 3, OMAP Kernel Patches [11].. 18

Table 4, OpenOCD Installation ... 22

 ix

List of Figures

Figure 1. BeagleBoard-xM Block Diagram [1] .. 3

Figure 2, Cortex-A8 Block Diagram [2] .. 5

Figure 3, JTAG Scan Chain Example .. 8

Figure 4, JTAG TAP State Machine [2] ... 10

 x

List of Illustrations

Illustration 1, BeagleBoard-xM with Dimensions [1] ... 3

Illustration 2, FlySwatter Adapter and JTAG Cable [5].. 7

Illustration 3, FlySwatter in Circuit Debugger ... 12

Illustration 4, BB-xM and Flyswatter Setup ... 13

Illustration 5, Overall Hardware Setup ... 13

Illustration 6 Port, Target Board Boot Screen at Serial Port 19

Illustration 7, Terminal Screen at Debian Prompt .. 20

Illustration 8, Scan Chain Results .. 23

Illustration 9, OpenOCD "halt" Window ... 26

Illustration 10, "start_kernel" in "main.c" .. 27

Illustration 11, Insight "head.s" Window ... 27

Illustration 12, Insight Debug Window .. 28

Illustration 13, Loading the Kernel .. 29

 1

Introduction

The use of embedded systems is widespread and continues to increase. As more

applications for embedded systems are identified, requirements for computing power and

complexity are also rising. Writing and debugging software for these applications also

presents a challenge. A hardware and software platform for their design can help gain a

working knowledge and understanding for specific implementations of the embedded

system.

 This project attempts to establish a hardware platform with a JTAG debugging

development chain using open source based products. The hardware consists of a Texas

Instruments (TI) BeagleBoard-XM which contains an ARM
®

 Cortex-A8 processor, a

FlySwatter JTAG dongle from TinCanTools, and a PC running the Linux operating

system that serves as the host computer. The BeagleBoard-XM and the JTAG dongle

used are open source hardware designs. Open source software is used to implement and

document the development tool chain and provides the ability actively debug code for the

hardware target. The software includes OpenOCD and GDB implemented via Insight (a

GDB GUI). The GNU ARM
®
 toolchain was used to compile programs for the ARM

®

architecture.

 2

Chapter 1: Hardware

BEAGLEBOARD

The BeagleBoard was designed by TI to provide a low cost way to explore open

source hardware and software capabilities. It has the additional advantage of being a

single board computer designed for low power and occupies a small foot print,

approximately 85 X 86 mm. Though not intended as a full development platform, it was

developed as a community supported platform to develop community software baselines

and it provide the needed capabilities to implement a debugging toolchain for the

purposes of this project.

Two versions of the BeagleBoard are available; BeagleBoard Rev C4 and the

BeagleBoard-xM shown in Illustration 1. Bothe versions provide support for an SD card

that can act as program storage space and provide the equivalent function of a hard drive

that would be present on a on a personal computer. This project uses the BeagleBoard-

xM which has several advantages such as a higher processor speed of 1 GHz, an RS-232

connector not provided in the C4 version and a four port USB hub with Ethernet. A more

complete list of features is provided in Appendix A.

This board does not have NAND flash memory. The micro-SD card is accessed

during boot-up. This is an advantage since mistakes can lead to a corruption of the

NAND and render the board useless without a significant amount of effort to recover the

NAND via the JTAG connection. Given that the board is used for experimenting and

development, the elimination of this an issue provides a level of comfort and potentially a

substantial time and cost savings.

Figure 1 shows a block diagram of the BeagleBoard. Overvoltage protection is

another feature that prevents damage to the board when powering via the 5V DC

 3

connection. The processor is a DM3730 System on Chip (SOC) design. The DM3730 is a

Package on Package configuration where the 512MB is mounted on top of the processor.

Illustration 1, BeagleBoard-xM with Dimensions [1]

Figure 1. BeagleBoard-xM Block Diagram [1]

 4

Processor

The processor in the BeagleBoard-xM has a DM3730 processor as opposed to the

C4 version which contains an OMAP3530 processor [1]. The DM3730 is a System on

Chip (SOC) design that includes a digital media processor, the ARM
®

 Cortex-A8

Microprocessor, a graphics accelerator, and other features while maintaining

compatibility with the OMAP 3 architecture.

A few of the key features of the Cortex-A8 processor include the following [2]:

 full implementation of the ARM
®
 architecture v7-A instruction set

 Architecture (AMBA) with Advanced Extensible Interface (AXI) for main

memory interface supporting multiple outstanding transactions

 a pipeline for executing ARM
®
 integer instructions

 Memory Management Unit (MMU) and separate instruction and data

Translation

 Look-aside Buffers (TLBs) of 32 entries each

 Embedded Trace Macrocell (ETM) support for non-invasive debug

 ARMv7 debug with watchpoint and breakpoint registers and a 32-bit

Advanced Peripheral Bus (APB) slave interface to a CoreSight™ debug

system

The processor implements the ARMv7 Debug architecture that includes support

for CoreSight™. The ARM
®
 Debug Interface (ADIv5) [3] is designed to be compatible

with the ARM
®
 CoreSight™ architecture [4]:

• a CoreSight™ interface implementation is a valid implementation of ADIv5

• the ADIv5 specification does not require an ADI to be CoreSight™ compliant

The Embedded Trace Macrocell (ETM) unit is a non-intrusive trace macrocell

that filters and compresses an instruction and data trace for use in system debugging. The

 5

Trace information such as executed instruction addresses, instruction condition codes,

and exception information is generated via the ETM. ETM unit has an external interface

outside of the processor called the Advanced Trace Bus (ATB) interface. There is limited

access to this interface, however, and it is considered a rare case for accessing this

interface using OpenOCD. OpenOCD, used in this project, accesses the processor via the

JTAG interface and the APB interface as shown in Figure 2. The ETM can be accessed

via the APB.

Figure 2, Cortex-A8 Block Diagram [2]

ARM
®
 Basics

ARM
®
 processors have thirty seven, thirty two bit long registers of which thirty

are general purpose registers available according to which of up to 7 modes are selected.

The processor modes are User where most tasks are executed, fast interrupt request (FIQ)

 6

for high priority interrupt, interrupt request (IRQ) for lower priority interrupt, Supervisor

for reset and software interrupt instruction, Abort for memory access violation handling,

Undef for undefined instruction handling, and System which is a privileges mode using

the same registers as the user mode. Each mode can access a specific set of r0 – r12

registers, a program counter register R15, a stack register R13, and the current program

status register (CPSR). The saved program status register (SPSR) can be accessed in

privileged modes.

 The application binary interface (ABI) is a calling convention that specifies the

interface between applications and the operating system. The Embedded ABI (EABI)

specifics standards for register usage, data types, file formats, et. al. for an embedded

system [5]. According to the convention argument passing is performed using registers

r0–r3, r4-r11 are used for local variables, r12 is used as a function call scratch register,

r13 as the stack pointer, r14 as the link register, and r15 as the program counter [6].

JTAG on the BeagleBoard

The JTAG connection accesses the Debug Port supported by ARM
®

for the

CoreSight™ architecture specification [4]. The JTAG port is IEEE 1149.1 compliant and

uses the standard nTRST, TCK, TMS, TDI, and TDO signals. Two instrumentation pins,

EMU0 and EMU1 are also used and determine the initial scan chain configuration. As

noted in the DM37x technical reference manual, the EMU power must have pull up

resister equal to 10kΩ installed before starting the debugger [4]. The JATG cable adapter

for the FlySwatter shown in Illustration 2 has jumpers available for EMU1 and 2. The

jumpers must be placed correctly between 1 and 2 in lieu of 0 and 1 to enable

initialization of the scan chain.

 7

Illustration 2, FlySwatter Adapter and JTAG Cable [5]

By pulling EMU0 and EMU1 high, the board is placed in the TAP router-only

mode. The TAP router exists to control up to 16 TAP controllers. In the router-only mode

no secondary TAPs are selected and the TAP router is the only TAP between TDI and

TDO (data in and data out) [4].

TAPs are added to the scan chain by programming the tap router. Once this is

accomplished then the debug access port (DAP) is added to the scan chain. The DAP is

interfaced to the APB shown in Figure 2 and discussed previously. The debugger then

has access to the entire memory space without the need for sending the processor into a

debug state [4]. Modules on the DM3730 are mapped to the DAP address. OpenOCD

executes the IDCODE instruction to return information about devices in the chain. The

terminal output showing the ROM table from OpenOCD:

Not required for the

BeagleBoard-xM

EMU pins

and
resistors

 8

> dap info 1

AP ID register 0x04770002

 Type is MEM-AP APB

AP BASE 0x80000000

 ROM table in legacy format

 MEMTYPE System memory not present. Dedicated debug bus.

 ROMTABLE[0x0] = 0xd4010003

 Component base address 0x54010000, start address 0x54010000

 Component class is 0x9, CoreSight component

 Type is 0x13, Trace Source, Processor

 Peripheral ID[4..0] = hex 04 20 6b b9 21

 Part is Cortex-A8 ETM (Embedded Trace)

 ROMTABLE[0x4] = 0xd4011003

 Component base address 0x54011000, start address 0x54011000

 Component class is 0x9, CoreSight component

 Type is 0x15, Debug Logic, Processor

 Peripheral ID[4..0] = hex 04 20 6b bc 08

 Part is Cortex-A8 Debug (Debug Unit)

 ROMTABLE[0x8] = 0xd4012003

 Component base address 0x54012000, start address 0x54012000

 Component class is 0x9, CoreSight component

 Type is 0x64, Debug Control, Reserved

 Peripheral ID[4..0] = hex 00 00 09 71 13

 Part is -*- unrecognized -*-

 ROMTABLE[0xc] = 0xd4013002

 Component not present

 ROMTABLE[0x10] = 0xd4019003

 Component base address 0x54019000, start address 0x54019000

 Component class is 0x9, CoreSight component

 Type is 0x11, Trace Sink, Port

 Peripheral ID[4..0] = hex 04 00 1b b9 12

 Part is Coresight TPIU (Trace Port Interface Unit)

 ROMTABLE[0x14] = 0xd401b003

 Component base address 0x5401b000, start address 0x5401b000

 Component class is 0x9, CoreSight component

 Type is 0x21, Trace Sink, Buffer

 Peripheral ID[4..0] = hex 04 00 0b b9 07

 Part is Coresight ETB (Trace Buffer)

 ROMTABLE[0x18] = 0xd401d003

 Component base address 0x5401d000, start address 0x5401d000

 Component class is 0xf, PrimeCell or System component

 Peripheral ID[4..0] = hex 00 00 09 73 43

 Part is TI DAPCTL

 ROMTABLE[0x1c] = 0xd4500003

 Component base address 0x54500000, start address 0x54500000

 Component class is 0x9, CoreSight component

 Type is 0x63, Trace Source, Reserved

 Peripheral ID[4..0] = hex 00 00 19 71 20

 Part is TI SDTI (System Debug Trace Interface)

 ROMTABLE[0x20] = 0x0

 End of ROM table

Figure 3, JTAG Scan Chain Example

TMS

TCK

TDI

TDO

Cotex-A8 ETM TPIU

TDI TDOTDITDI TDOTDO

●●●

●●●

 9

The technical reference manual [4] lists the modules as the ETM, the Cortex-A8,

the trace port interface unit (TPIU), and the embedded trace buffer (ETB) module. Note

from the listing above that 2 additional modules are identified along with one that is

“unrecognized” because it is “reserved” by the architecture and one that is listed as not

present. The DAPCTL sounds like it may be a DAP control module, but the

documentation does not go into detail about its function. The SDTI (System Debug Trace

Interface) module is described as implementing system trace during debug emulation and

details of its configuration, protocol, data format and function are provided in manual [4].

One other key aspect of the CoreSight™ architecture should be mentioned. The

DAP is an implementation of the ADIv5 by way of CoreSight™ DAP-Lite [5]. The

components that make up the DAP-Lite interface to the board/processor are the debug

ports (DP) and access ports (AP). Note that the AP and DP together are referred to as the

DAP. The DAP implements the JTAG-DP which sets up the JTAG connection to the

debugger and host computer.

The JTAG-DP operation is controlled by an IEEE 1149.1 compliant state

machine. The TMS signal that queries the controller is shown as an example in Figure 4.

 10

Figure 4, JTAG TAP State Machine [2]

The data is sent and received serially. The IR and DR in Figure 4 are the

instruction and data registers respectively. The state machine can access data,

instructions, and perform a reset. The clock signal, TCK, provides the means to step

through the state machine. To load IR values, for example, the controller must be in the

Shift IR state. Data is transferred on each clock pulse via TDI and TDO.

One last point on the JTAG controller needs to be made concerning the ICEPick

module. The ICEPick module allows the controller to select which subsystem the TAPs

are accessible to in multiple processor systems. If a subsystem is powered down for any

reason, such as for power savings, the scan chain would be interrupted and the JTAG

connection would fail. The ICEPick allows the powered down system to be ignored so

the other subsystems can be accessed. The ICEPick also manages the power, clock and

reset for each TAP. Since the DM3730 has a Digital Signal Processor, and other

subsystems, the ICEPick module is included. All accesses to the JTAG signals are

accomplished via the ICEPick module.

FlySwatter

The FlySwatter is the in-circuit debugger. It provides the interface between the

USB port on the host computer and the JTAG connection on the target computer, in this

case the BeagleBoard-xM. A standard 14 pin JTAG connector is provided and matches

up with the 14 pin connector on the BeagleBoard-xM via an adapter made for that

purpose. The adapter is shown in Illustration 2. The adapter converts from the standard

14 pin JTAG layout to the ARM
®
 specific layout on the board shown in Table 1.

 11

ARM-14-JTAG

FlySwatter

TI-14-JTAG

BeagleBoard-xM
VREF 1 - - 2 GND JTAG_TMS 1 - - 2 JTAG_nTRST
JTAG_nTRST 3 - - 4 GND JTAG_TDI 3 - - 4 GND
JTAG_TDI 5 - - 6 GND VREF 5 - x 6 KEY (empty)
JTAG_TMS 7 - - 8 GND JTAG_TDO 7 - - 8 GND
JTAG_TCK 9 - - 10 GND JTAG_RTCK 9 - - 10 GND
JTAG_TDO 11 - - 12 JTAG_SRST_N JTAG_TCK 11 - - 12 GND
VREF 13 - - 14 GND JTAG_EMU0 13 - - 14 JTAG_EMU1

Table 1, JTAG 14-pin Adapter

 An RS232 interface is also provided and supports modem protocols. Both the

RS-232 and USB to JTAG interface utilizes Future Technology Devices International

Ltd. (FTDI’s) FT232 Dual USB UART/FIFO1. The FT232 has two ports, A and B. Port

A is used for the USB to JTAG interface and Port B is for the serial UART. The

FlySwatter provides a standard 14-pin JTAG interface as well as a standard RS232 port

with support for full modem signals. The USB 2.0 standard is supported and it supports a

number of different target system voltages. Though 3.3V appears to the most popular, the

board for this project requires a JTAG connector voltage of 1.8V. The FlySwatter board

is also supported in OpenOCD which provides an interface for it.

The FlySwatter provides the interface for OpenOCD to find the DAP, check for

power and timing information, get the ROM table and compare the peripheral IDs [4].

Illustration 3 shows the Flyswatter as used for this project with the adapter, RS-

232 extender, and JTAG cable installed.

1 FTDI manufactures the FT232 dual chip and provides drivers on its website www.ftdichip.com. The

drivers are also included in most of the recent Linux versions.

 12

Illustration 3, FlySwatter in Circuit Debugger

Setup

The hardware setup consists of the components listed in Table 2.

Project Hardware

Host Computer (HP 2133 Netbook)

USB Cable

FlySwatter in Circuit Debugger

JTAG 14 Pin Adapter

RS-232 extender

BeagleBoard-xM Target Computer

5V power cord for BeagleBoard-xM

Table 2, Project Hardware

The BeagleBoard-xM has the added advantage of having an RS-232 connector on

the board. Previous versions did not have that available, though the adapter kit supplied

one with the JTAG 14 pin adapter. A protective case was added to prevent damage by

 13

physical, or electrostatic, means. The BeagleBoard-xM is shown connected to the

FlySwatter with associated cables in the illustration below.

The host computer is an HP 2133 netbook with Ubuntu Linux 11.10 installed at

the beginning of the project. The overall hardware setup is shown in Illustration 5.

Illustration 4, BB-xM and Flyswatter Setup

Illustration 5, Overall Hardware Setup

Host Computer

BeagleBoard-xM

With Enclosure

 FlySwatter
JTAG Cable

 14

Chapter 2: Software

GNU ARM TOOLCHAIN

Compiling code on a host computer to run on a target computer with a different

hardware architecture requires a cross compiler. Particularly for embedded systems,

programming on a host computer can be faster and more convenient. It may also be

necessary in the case where a boot loader and operating system need to be developed for

the embedded system before it can run. The host computer for this project is Linux based

(UBUNTU 10.10). The Linaro ARM cross tool chain (version 4.6.2-14) is an open source

tool chain that was installed with little effort2 using “apt-get install gcc-arm-linux-

gnueabi.” Setting the PATH to the “usr/arm-linux-gnueabi/bin” folder then enables use of

the cross compiler in other directories. The tool chain includes the GNU binutils, the

GNU C compiler (gcc), and the glibc library. The tools required for compiling the uboot

file and libncurses (provides capability for an ASCII based GUI) are also needed. Each of

these can be downloaded separately and compiled on the host machine, but unlike other

tool chains such the CodeSourcery G++ Lite toolchain, all of the Linaro toolchain [8]

source is covered by the GNU General Public License (GPL) and is freely available.

BEAGLEBOARD-XM

The BeagleBoard-xM has no flash and boots directly from a microSD card. The

SD card must be setup properly in order for the system to boot and load the Linux

operating system. A boot partition (FAT32 file system format for this project) on the SD

card is required with MLO, uEnv.txt, and u-boot.img files. The ROM code is designed to

detect file allocation table (FAT) format types, so it will not boot from a Linux formatted

partition. The Linux file system is located on a second ext3 partition. The card acts like a

2 In order to get the Linaro toolchain an additional repository must be added (“sudo add-apt-repository

ppa:linaro-maintainers/toolchain”).

 15

hard drive since the master boot record (MBR) was created in the first partition during

format. A floppy drive-like configuration is also supported [2].

The Multimedia Card Loader (MMC Loader or MLO) is the image read by the

system read only memory (ROM) for the boot procedure. The ROM code checks for a

valid MBR signature of 0xAA55 at offset 01FEh. Once found and other requisite

conditions are checked successfully, the ROM code performs a translation of each FAT

entry corresponding to the MLO file and places the results in a buffer. The booting

procedure then refers to the buffer for accessing the file [2]. The general purpose memory

controller (GPMC) is used to access NAND such as that on earlier versions of the

BeagleBoard. Instructions for accessing the NAND via the GPMC are contained in the

MLO file. The MLO file then directs boot up via the boot loader contained in the file u-

boot.img. The boot loader then passes system information to, and executes, the kernel.

The MLO file can be downloaded directly from a number of sources available via

a quick Google search or the one supplied with the board can be used. Since an

understanding and hands-on application of the software implementation is desired, the

MLO file was compiled from source [8]. The source code and patches were downloaded

and compiled using the Linaro Arm tool chain. The u-boot.img file is included in the

source and is also produced during compilation.

SD Card Setup

As noted previously the ARM
®

 Cortex-A8 on the BeagleBoard-xM requires two

partitions, a FAT and an ext3. GParted is an open source disk partitioning tool that has a

graphical user interface (GUI). Gparted was used to set up the boot and ext3 partitions on

a 4MB SD card. The boot partition size selected is 65MB and the rest was allocated to

 16

ext3 partition, about 3.7GB, for the file system. The MLO and u-boot.img were then

copied to boot partition along with a uEnv.txt file.

A boot.scr file was supplied on the SD card that came with board when

purchased. It contains for the boot parameters to be used. More recent versions of u-boot

reference the uEnv.txt file instead of the boot.scr. To change parameters using boot.scr a

new image would have to be made using a boot.cmd text file for each set of

modifications. The uEnv.txt file is plain text and can be changed easily. This saves time

and eliminates several additional steps. This is particularly helpful when trying out

different parameters to observe the effects on the system, even when they are as simple as

changing the display resolution which was modified for this project. The compressed

kernel image file and address to begin loading the kernel are also specified here.

The last file to go onto the boot partition is the compressed Linux kernel image,

zImage which is produced by compiling the kernel. The second partition receives the root

file system and additional Linux modules. The modules were installed in a separate

directory and compressed during compilation (a script file was used from reference [10]

with minor changes). The file system and module were then uncompressed to the rootfs

partition of the SD card for use on the target board.

There are some additional tools required for successful setup of the SD card to go

into the target computer. “u-boot-tools”

The Linux Kernel

Cross compiling the Linux kernel can be a daunting task. The latest kernel

provides support for arm cores, but the patches and modules for the OMAP architecture

must also be installed. Using the “git” clone, checkout and commit functions, the latest

kernel was obtained via “git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git”

 17

and development source from reference [10]. The version at the time of this report is

3.2.15-x8. The patches were then collected and merged prior to cross compiling the

kernel. An example of the kernel patches for the OMAP3 is shown in Table 3.

Parameters in the make file must be verified to include the architecture for the

target of the kernel, ARM
®
, and the direction to perform a cross compilation along with a

location of the cross compiler tools, in this case the GNU ARM compiler “gcc-arm-linux-

gnueabi.” The kernel configuration is specified up front and can be edited one of several

ways. The “menuconfig” option provides a graphical interface to set the compiler options

and is useful when trying to avoid errors from mistakes made when typing on the

keyboard. The default selections are adequate with the exception of kernel debugging.

This is normally not selected, but needed for this project. It adds some time to the

compilation process, but produces a “vmlinux” file in addition to the compressed kernel

file “zImage.” The vmlinux file contains the linux kernel and the kernel symbol table.

The symbol table is required on the host computer to debug the target computer.

Once the kernel is compiled, the zImage file from “/KERNEL/arch/arm/boot” is

copied to the boot partition of the SD card. Getting all the right files to the correct

locations on each respective partition for the target board SD card is important. The MLO

file must be the first file copied to the boot partition, otherwise the target will not boot.

The next step is removing the SD card from the host and placing into the target

computer. As already noted, the FlySwatter interface has a second port for the serial

connection on the BeagleBoard-xM. Using Minicom on the host computer with the serial

port set to 115200, 8N1 allows all the boot messages to be seen from the target computer.

For the project it was beneficial to use a serial-to-usb converter and a Microsoft Windows

based machine running Tera Term VT. This reduced the number of open windows on the

host computer and allowed better access to the host computer functions.

 18

Description Module Name Owner
1 omap: serial: fix non-empty uart fifo read abort Platform Vikram Pandita

2 OMAP3 : Enable TWL4030 Keypad for Zoom2 and

Zoom3 boards

Gaia Manjunath GK

3 Zoom2/3:Update hsmmc board config params HSMMC Madhu

4 omap3: zoom2/3: make MMC slot work again HSMMC Anand G

5 Correcting GPMC_CONFIG1_DEVICETYPE_NAND NAND Vimal

6 Add NAND Lock/Unlock feature NAND Vimal Singh

7 OMAP: ZOOM2: Correcting key mapping for few keys Keypad Vimal

8 omap3: pm: Add T2 Keypad as a wakeup source Keypad Teerth

9 omap: serial: fix coding style indentation Platform Vikram Pandita

10 omap: zoom3: enable ehci support Platform Vikram Pandita

11 OMAP3 : Fix I2C lockup during timeout/error cases I2C Manjunath

12 ARM: OMAP3: PM: T2 keypad wakeup for Zoom2 Power Lesly A M

13 OMAP3: add support for 192Mhz DPLL4M2 output Platform Vishwa

14 OMAP3: introduce DPLL4 Jtype Platform Vishwa

15 OMAP3: Correct width for CLKSEL Fields Platform Vishwa

16 OMAP3: Introduce 3630 DPLL4 HSDivider changes Platform Mike T

17 OMAP3630: Clock: Workaround for DPLL HS divider
limitation

Power Vijay

18 3630 DVFS Power Romit

19 Introducing gpmc nand.c for GPMC specific NAND ini NAND Vimal

20 OMAP SDP Introducing board sdp flash.c for flash NAND Vimal

21 OMAP3: Add support for flash on 3430SDP board NAND Vimal

22 Zoom3: Defconfig update Platform Manjunath

23 PM debug: Fix warning when no CONFIG_DEBUG_FS Power Sergio

24 OMAP2/3 PM: Adding power domain APIs for reading

the next logic and mem state

Power Thara

25 OMAP3 PM: Defining .pwrsts_logic_ret field for core

power domain structurePower

Power Thara

26 OMAP: HWMOD: Add support for early device register

into omap device layer

Power Thara

27 FIX OMAP3:McBSP poll read and write for OMAP3 McBSP Rafiuddin Syed

Table 3, OMAP Kernel Patches [11]

The output from the serial target computer serial is shown in Illustration 6 below.

The serial port, board name, and the uEnv.txt file can be seen with the “Loaded

environment from uEnv.txt” message that follows. The zImage file is then read and the

message “Starting kernel…” appears. The rest of the messages are associated with

booting the kernel and show up on the serial port just as they would on a connected

computer monitor for this, or any other Linux machine.

 19

Illustration 6 Port, Target Board Boot Screen at Serial Port

The DVI port is enabled on the board and the display settings were adjusted to

accommodate an HD monitor that was available for the project. The kernel boots

successfully and commands are able to be entered via a connected keyboard or the serial

interface. The “uname –a” and “lsb_release –a” commands were run to demonstrate the

results and are shown in the terminal screen in Illustration 7.

 20

Illustration 7, Terminal Screen at Debian Prompt

A few “tweaks” needed to be made once the kernel was running. In order to get

an Ethernet connection working, modifications were made to the

“/etc/network/interfaces” file. “auto eth0” and “eth0 inet dhcp” appended to the file

enabled the internet connection.

OPENOCD

OpenOCD3 is an abbreviation for open on-chip debugger. It provides the

capability to program, debug, and boundary scan test remote target embedded platforms

[7]. OpenOCD communicates with the target via a hardware adapter such as the

FlySwatter used here. Compilation and installation is on the host computer and the

drivers for the debug adapter must be included during compilation. The FTDI drivers

mentioned previously support this requirement for the FlySwatter and provide the

interface to the JTAG connector on the target board.

The latest version of the OpenOCD software at the time of this writing is 0.5.0

and is the version used for this project. In order to get the latest version the source was

3 The OpenOCD software is covered under the GNU General Public License and is available from the

Sourceforge website: http://sourceforge.net/projects/openocd/files/openocd/

 21

downloaded and built on the host computer “git clone

git://openocd.git.sourceforge.net/gitroot/openocd/openocd.” Some additional drivers and

tools were required for the OpenOCD configuration.

1. pkg-config

a. Obtained from “pkgconfig.freedesktop.org/releases/” [13]

b. This is tool allows compiler options to be entered on the command line

thus preventing them from being hard coded. It is helpful since there

are a multitude of options available and updates occur often.

2. libusb library

a. Obtained using “apt-get install libusb-dev”

b. This is an open source C library needed for the FTDI open source

driver

3. libftdi

a. Obtained using “apt-get install libftdi-dev”

b. The open source FTDI FT232 driver

4. libtool

a. Needed for compiling OpenOCD since it used in the open source

provided scripts

b. Provides an interface for using shared libraries for consistency

5. Texinfo

a. Installed using “apt-get install texinfo”

b. Provides format used for the documentation for OpenOCD

In order to install OpenOCD the following commands were run to get the final

install as shown in Table 4:

 22

Command Description

1 ./booststrap configure the autoconf
2 ./configure –enable-maintainer-

mode –enable-ft2232_libftdi
to configure the ftdi driver (the
open source version)

3 Make Compile OpenOCD

4 Make install
Installation in applicable
directories

Table 4, OpenOCD Installation

To run the software two configuration files are needed; one for the FlySwatter and

one for the BeagleBoard-xM. Though the –xM is OMAP compliant, the processor

architecture is different, so it will need to reference a different target chip type. The

“ti_beagleboard_xm.cfg” file references the configuration file for the dm37x,

“amdm37x.cfg.” This configuration file contains the specific information for the –xM

chip set as well as information for the am35x. The TAPs for JTAG are set up in this file

and follow the convention specified in the DM37x technical reference manual [2]. The

TAPs must be added to the scan chain in order such that the TAP closest to TDO comes

first. The dm37x processor SRAM begins at address 0x4020 0000. The configuration file

reserves the first 16K starting at that address for use by the OpenOCD software.

OpenOCD processes the configuration files input on the command line when it

starts: “openocd –f interface/flyswatter.cfg –f ti_beagleboard_xm.cfg.”

The JTAG setup is accomplished via the target configuration file “amdm37x.cfg.”

The ICEPick module is referenced as “icepick.cfg” and will be the last in the JTAG chain

since it is closest to TDI. The ICEPick configuration file selects the JTAG router and

sets up control of the data and instruction register scans in the configuration file.

 23

The target configuration file finds the chip type (dm37x) and establishes the

expected IDCODE for the JRC. In this case it is 0x1b89102f. This is validated by the

“scan_chain” command in OpenOCD. As shown in Illustration 8, dm37x.jrc is enabled

and the IDCODE matches the expected IDCODE. The adapter frequency is set and then

the chain is set up. OpenOCD requires all devices to be declared using the “jatg newtap”

command and, as mentioned earlier, they must be declared in order.

Illustration 8, Scan Chain Results

The code snippet below illustrates the TAP declaration on line 1 followed by the

last declaration shown as line 2 for the ICEPick.

1 jtag newtap dm37x arm2 -irlen 4 -ircapture 0x1 -irmask 0x0f -disable

2 jtag newtap dm37x jrc -irlen 6 -ircapture 0x1 -irmask 0x3f 0x1b89102f

The irlen number represents the length of the instruction register in bits. The

disable parameter is used to flag a TAP that is not part of the scan chain after a reset via

TRST or by entering the RESET state on the state machine. The ircapture is the bit

pattern loaded into the JTAG SR. This is for entering the capture IR state as shown in

Figure 4. Per the JTAG specification the two least significant bits of this value should be

one. The irmask value is used with the ircapture to as a check to verify the scans are

 24

working. If the TAPs are not configured, OpenOCD has an auto TAP discovery feature.

This was attempted by the author without success.

Once the description is completed in the target configuration file, the TAPs are

enabled. Several TCK cycles are then sent to ensure the things are running followed by a

“tapenable” command. The next section establishes the work area for OpenOCD as

discussed earlier at address 0x420 0000 with 16K reserved for the program.

1 $_TARGETNAME configure -work-area-phys 0x40200000 -work-area-size

0x4000

The JTAG clock is then slowed down to ensure that it will function with slowest

processor core clock and then a software restart is completed by writing a 0b10 to address

0x4830 7250 and is shown in table 3-452 of reference [7]. The target is then reinitialized

with the “amdm37x_dbginit” function and the adapter speed is set to 100 kHz.

“interface.c” contains the information and instructions for specifying JTAG state

transitions (see Figure 4). A case structure is provided for each state, Reset, Idle,

DRSHIFT, DRPAUSE, IRSHIFT, and IRPAUSE.

The “cortex_a.c” file sets up target polling, breakpoints, read and writes, the

processor mmu, and the virtual to physical memory address structure. Virtual address

space is separated between user and kernel space with addresses from 0x0000 0000 to

0xbfff ffff as user space and from 0xc000 0000 to 0xffff ffff for supervisor address mode.

The ADIv5 interface mentioned previously is implemented in “arm_adi_v5.c.”

The DAP, comprised of the DP and the AP is setup with the JTAG-DP and the MEM-AP

for accessing memory registers.

Once OPenOCD has started a separate terminal window is opened in order to

connect to the OpenOCD session via “telnet localhost 4444.” From the prompt the

“scan_chain,” “dap info,” register information and other commands can be issued.

 25

GNU DEBUGGER AND INSIGHT

OpenOCD provides the capability to use a GDB server to monitor and control

program execution. Insight [16] is a graphical environment integrated with GDB and is

released under the terms of the GNU GPL. Insight has a program start window where the

source code can be viewed, and watch, stack, register, memory browser and GDB

terminal windows. It provides the ability to have multiple windows open at the same

time, which is huge advantage when comparing registers, memory and program

instructions. Though other alternatives are available this choice provided the most hassle

free option for the debug environment and required only a small amount of work to set

everything up.

The Insight software was downloaded and compiled for use with ARM
®

architecture. Once OpenOCD is running Insight is started with “arm-linux-gnueabi-

insight” and then a connection made to the target; “target remote localhost :3333.” This

can also be done with the “Run” menu in the source window.

With all the hardware connections made, the host and target computers running,

and the connection established via OpenOCD, initialization is accomplished with the

“amdm37x_dbginit dm37x.cpu” command and quick check of the scan chain and

registers verifies everything is working properly. Insight is then started and connected to

the target. From Insight the symbol information from the vmlinux file is loaded and the

registers and memory can be viewed. The assembly code with the symbol information

appears in the source window.

The target must be halted to obtain register and memory values. When the target

is running, commands can be processed via the serial connection to the BeagleBoard or a

keyboard if connected. After the processor is halted via the JTAG connection, a quick

check of the target demonstrates that commands are no longer accepted. The “monitor

 26

resume” command restores the running target machine again meaning that commands are

passed through the JTAG chain to the processor as expected. Cross checking the register

values between the OpenOCD window and the Insight register window also validates that

the correct values are being passed to the debugger. The initial insight window shows the

beginning of the Linux kernel in “head.s” (the start of the kernel). “ENTRY(stext)”

forces the SVC processor mode. The lookup for the processor and architecture type are

performed prior to the “__create_page_tables” function. The MMU is then setup and

enabled. The OpenOCD connection window shows the MMU as “enabled” if connected

to the target with a running kernel as shown in Illustration 9.

Illustration 9, OpenOCD "halt" Window

The “__mmap_switched,” which holds the address of the “start_kernel” function

is then run (see Illustration 10 and Illustration 11 below).

 27

Illustration 10, "start_kernel" in "main.c"

Illustration 11, Insight "head.s" Window

 28

 Register and memory values update and are viewed in the debug window

(Illustration 12) and breakpoints can be set, however stepping through the kernel is still

problematic. The connection often drops or loses communication across the JTAG

connection without warning. Persistence is required and entering commands via the

OpenOCD window or the Insight console window is needed. Illustration 12 shows the

result of one session where the kernel ran and was halted in the kernel timekeeping

function.

Being able to see the real time updates of the registers and memory save time and

make the debugging task easier. The GUI allows all the locations of interest to be quickly

and simultaneously displayed so that their status is immediately understood. This adds

efficiency and reduces the time that would otherwise be required to issue separate

commands and scroll through results to see how the information is changing.

Illustration 12, Insight Debug Window

 29

Chapter 3: Problems and Forward Work

There are still a few issues that should eventually be addressed. There are a

significant number of programs, hardware, and parameters that work together. The

current setup is difficult in practice and sometimes displays erratic behavior. The

connection to the target computer will drop out and the symbol information will

sometimes show up out of step with the target machine.

Small program files are able to be directly loaded to the target machine. When an

attempt was made to load the Linux kernel remotely, the “head.text” and “.text” sections

loaded successfully. Other sections would fail. This appears to be due to a memory

address failure and further research provided an interim solution. By resetting and

initializing the CPU, the vmlinux file would load with an offset specified as demonstrated

in Illustration 13.

Illustration 13, Loading the Kernel

 30

This method requires further work to set up a boot loader and initialization file

that will allow a remote load of the kernel to the correct address in RAM and run it.

Lastly, a script file with a means to acknowledge timing and connection successes would

simplify and shorten the process required to get to the debugging screen in Insight with

one command or click. Eclipse may work for this task as well, but would require a

potentially large amount of setup and configuration.

 31

Chapter 4: Conclusion

This project demonstrated one hardware and software combination for a toolchain

to debug the Linux kernel on an ARM
®
 Cortex-A8 processor via the JTAG connection.

Components and their connections as well as operation of the software to support this

project were explained.

 32

Appendix

BeagleBoard-xM Features

Feature
Processor Texas Instruments Cortex A8 1GHz processor

POP Memory Micron 4Gb MDDR SDRAM (512MB) 200MHz

PMIC TPS65950

Power Regulators

Audio CODEC

Reset

USB OTG PHY

Debug Support
14-pin JTAG GPIO Pins

UART 3 LEDs

PCB 3.1” x 3.0” (78.74 x 76.2mm) 6 layers

Indicators
Power, Power Error 2-User Controllable

PMU USB Power

HS USB 2.0 OTG Port
Mini AB USB connector

TPS65950 I/F

USB Host Ports

SMSC LAN9514 Ethernet HUB

4 FS/LS/HS
 Up to 500ma per Port if adequate

power is supplied

Ethernet 10/100 From USB HUB

Audio Connectors
3.5mm 3.5mm

L+R out L+R Stereo In

SD/MMC Connector MicroSD

User Interface 1-User defined button Reset Button

Video DVI-D S-Video

Camera Connector Supports Leopard Imaging Module

Power Connector USB Power DC Power

Overvoltage Protection Shutdown @ Over voltage

Main Expansion
Connector

Power (5V & 1.8V) UART

McBSP McSPI

I2C GPIO

MMC2 PWM

2 LCD Connectors
Access to all of the LCD control

signals plus I2C
3.3V, 5V, 1.8V

Auxiliary Audio 4 pin connector McBSP2

Auxiliary Expansion MMC3 MMC3,GPIO,ADC,HDQ

 33

References

[1] beagleboard.org, "BeagleBoard-xM Rev C System Reference Manual," 2010.

[2] ARM Limited, Cortex A-8 Technical Reference Manual, Revision: r3p0, 2006-2008,

p. 758.

[3] ARM Limited, ARM Debug Interface v5 Architecture Specification, 2006.

[4] ARM Limited, CoreSight Architecture Specification, v1.0, 2004-2005.

[5] WikipediA, "Application Binary Interface," Wikimedia Foundation, Inc., 11 April

2012. [Online]. Available: http://en.wikipedia.org/wiki/Application_binary_interface.

[Accessed April 2012].

[6] J. Masters, "Prorting Linux," WordPress Entries, 5 June 2011. [Online]. Available:

http://www.jonmasters.org/blog/category/general/linux-kernel/. [Accessed March

2012].

[7] Texas Instruments, AM/DM37x Multimedia Device Technical Reference Manual,

Version O, 2012.

[8] Tin Can Tools, "BeagleBoard Adapter Kit," 2012. [Online]. Available:

http://www.tincantools.com/product.php?productid=16144&cat=0&page=1&featured.

[Accessed 2012].

[9] ARM Limited, CoreSight(TM) DAP-Lite Technical Reference Manual, ARM

Limited, 2006-2008.

[10] T. Bauermann, "Toolchain Working Group," WorkingGroups/ToolChain, 9 April

2012. [Online]. [Accessed April 2012].

[11] DENX Software Engineering, "U-Boot Source Code," DetlevZundel, 19 October

2011. [Online]. Available: http://www.denx.de/wiki/U-Boot/SourceCode. [Accessed

March 2012].

[12] R. Nelson, "BeagleBoard wiki," 2012. [Online]. Available:

http://eewiki.net/display/linuxonarm/BeagleBoard#. [Accessed March 2012].

[13] Media Wiki, "OMAPpedia Patches Accepted," Creative Commons Attribution-Share

Alike 3.0 license., 25 May 2010. [Online]. Available:

http://omappedia.org/wiki/Patches_Accepted. [Accessed 2011 March].

[14] S. Oliver, O. Harboe, D. Ellis and D. Brownwell, Open On-Chip Debugger:

OpenOCD User's Guide, Boston: Free Software Foundation, 2011.

[15] freedesktop.org, "Index of / releases," 28 May 2010. [Online]. Available:

http://pkgconfig.freedesktop.org/releases/. [Accessed March 2012].

[16] K. Seitz, J. Ingham, I. Taylor, T. Tromey and E. Zannoni, "The GDB GUI," 19 July

2009. [Online]. Available: http://sources.redhat.com/insight/index.php. [Accessed

Februray 2012].

 34

Vita

Warren Clay Grant has a Bachelor of Science in Information Technology from the

University of Phoenix and an MBA from Regis University. He is a graduate of the Navy

Nuclear Power School, Navy Nuclear Prototype training, and a qualified Submariner. He

worked in the Department of Energy’s nuclear weapons complex at various sites across

the country before coming to work at the Johnson Space Center for NASA in Houston,

Texas.

Permanent email: wcgrant2@gmail.com

This report was typed by Warren Clay Grant.

