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Abstract 

 

Implementation of an Open Source JTAG Debugging Development 

Chain for the BeagleBoard ARM
®
 Cortex A-8 

 

 

 

 

Warren Clay Grant, MSE 

The University of Texas at Austin, 2012 

 

Supervisor:  Jacob Abraham 

 

The BeagleBoard-xM, manufactured by Texas Instruments, is a small, low cost, 

open source development platform for the ARM
®
 Cortex-A8 processor. This paper 

implements a hardware and software combination to connect to the ARM
®
 processor via 

a JTAG connection for debugging. A FlySwatter interface board is utilized to connect the 

JTAG port to a host computer and a combination of software tools are implemented to 

demonstrate the capability for debugging the Linux kernel. The necessary files for 

booting the Linux 3.0 kernel were compiled and loaded on the BeagleBoard-xM and the 

host computer. Installation and selection of the components that make up the software 

tool chain are described. All the hardware and software used for this project are open 

source designs.  
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Introduction 

The use of embedded systems is widespread and continues to increase. As more 

applications for embedded systems are identified, requirements for computing power and 

complexity are also rising. Writing and debugging software for these applications also 

presents a challenge. A hardware and software platform for their design can help gain a 

working knowledge and understanding for specific implementations of the embedded 

system. 

 This project attempts to establish a hardware platform with a JTAG debugging 

development chain using open source based products.  The hardware consists of a Texas 

Instruments (TI) BeagleBoard-XM which contains an ARM
®

 Cortex-A8 processor, a 

FlySwatter JTAG dongle from TinCanTools, and a PC running the Linux operating 

system that serves as the host computer. The BeagleBoard-XM and the JTAG dongle 

used are open source hardware designs. Open source software is used to implement and 

document the development tool chain and provides the ability actively debug code for the 

hardware target. The software includes OpenOCD and GDB implemented via Insight (a 

GDB GUI). The GNU ARM
®
 toolchain was used to compile programs for the ARM

® 

architecture. 
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Chapter 1:  Hardware 

BEAGLEBOARD 

The BeagleBoard was designed by TI to provide a low cost way to explore open 

source hardware and software capabilities. It has the additional advantage of being a 

single board computer designed for low power and occupies a small foot print, 

approximately 85 X 86 mm. Though not intended as a full development platform, it was 

developed as a community supported platform to develop community software baselines 

and it provide the needed capabilities to implement a debugging toolchain for the 

purposes of this project.  

Two versions of the BeagleBoard are available; BeagleBoard Rev C4 and the 

BeagleBoard-xM shown in Illustration 1. Bothe versions provide support for an SD card 

that can act as program storage space and provide the equivalent function of a hard drive 

that would be present on a on a personal computer. This project uses the BeagleBoard-

xM which has several advantages such as a higher processor speed of 1 GHz, an RS-232 

connector not provided in the C4 version and a four port USB hub with Ethernet. A more 

complete list of features is provided in Appendix A.  

This board does not have NAND flash memory. The micro-SD card is accessed 

during boot-up. This is an advantage since mistakes can lead to a corruption of the 

NAND and render the board useless without a significant amount of effort to recover the 

NAND via the JTAG connection. Given that the board is used for experimenting and 

development, the elimination of this an issue provides a level of comfort and potentially a 

substantial time and cost savings. 

Figure 1 shows a block diagram of the BeagleBoard. Overvoltage protection is 

another feature that prevents damage to the board when powering via the 5V DC 
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connection. The processor is a DM3730 System on Chip (SOC) design. The DM3730 is a 

Package on Package configuration where the 512MB is mounted on top of the processor. 

 

 

Illustration 1, BeagleBoard-xM with Dimensions [1] 

 

Figure 1. BeagleBoard-xM Block Diagram [1] 
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Processor  

The processor in the BeagleBoard-xM has a DM3730 processor as opposed to the 

C4 version which contains an OMAP3530 processor [1]. The DM3730 is a System on 

Chip (SOC) design that includes a digital media processor, the ARM
®

 Cortex-A8 

Microprocessor, a graphics accelerator, and other features while maintaining 

compatibility with the OMAP 3 architecture.  

A few of the key features of the Cortex-A8 processor include the following [2]: 

 full implementation of the ARM
®
 architecture v7-A instruction set 

 Architecture (AMBA) with Advanced Extensible Interface (AXI) for main 

memory interface supporting multiple outstanding transactions 

 a pipeline for executing ARM
®
 integer instructions 

 Memory Management Unit (MMU) and separate instruction and data 

Translation 

 Look-aside Buffers (TLBs) of 32 entries each 

 Embedded Trace Macrocell (ETM) support for non-invasive debug 

 ARMv7 debug with watchpoint and breakpoint registers and a 32-bit 

Advanced Peripheral Bus (APB) slave interface to a CoreSight™ debug 

system 

The processor implements the ARMv7 Debug architecture that includes support 

for CoreSight™.  The ARM
®
 Debug Interface (ADIv5) [3] is designed to be compatible 

with the ARM
®
 CoreSight™ architecture [4]: 

• a CoreSight™ interface implementation is a valid implementation of ADIv5 

• the ADIv5 specification does not require an ADI to be CoreSight™ compliant 

The Embedded Trace Macrocell (ETM) unit is a non-intrusive trace macrocell 

that filters and compresses an instruction and data trace for use in system debugging. The 
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Trace information such as executed instruction addresses, instruction condition codes, 

and exception information is generated via the ETM. ETM unit has an external interface 

outside of the processor called the Advanced Trace Bus (ATB) interface. There is limited 

access to this interface, however, and it is considered a rare case for accessing this 

interface using OpenOCD. OpenOCD, used in this project, accesses the processor via the 

JTAG interface and the APB interface as shown in Figure 2. The ETM can be accessed 

via the APB. 

 

 

Figure 2, Cortex-A8 Block Diagram [2] 

ARM
®
 Basics 

ARM
®
 processors have thirty seven, thirty two bit long registers of which thirty 

are general purpose registers available according to which of up to 7 modes are selected. 

The processor modes are User where most tasks are executed, fast interrupt request (FIQ) 
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for high priority interrupt, interrupt request (IRQ) for lower priority interrupt, Supervisor 

for reset and software interrupt instruction, Abort for memory access violation handling, 

Undef for undefined instruction handling, and System which is a privileges mode using 

the same registers as the user mode.  Each mode can access a specific set of r0 – r12 

registers, a program counter register R15, a stack register R13, and the current program 

status register (CPSR). The saved program status register (SPSR) can be accessed in 

privileged modes.  

 The application binary interface (ABI) is a calling convention that specifies the 

interface between applications and the operating system. The Embedded ABI (EABI) 

specifics standards for register usage, data types, file formats, et. al. for an embedded 

system [5]. According to the convention argument passing is performed using registers 

r0–r3, r4-r11 are used for local variables, r12 is used as a function call scratch register, 

r13 as the stack pointer, r14 as the link register, and r15 as the program counter [6].  

JTAG on the BeagleBoard 

The JTAG connection accesses the Debug Port supported by ARM
® 

for the
 

CoreSight™ architecture specification [4]. The JTAG port is IEEE 1149.1 compliant and 

uses the standard nTRST, TCK, TMS, TDI, and TDO signals. Two instrumentation pins, 

EMU0 and EMU1 are also used and determine the initial scan chain configuration. As 

noted in the DM37x technical reference manual, the EMU power must have pull up 

resister equal to 10kΩ installed before starting the debugger [4]. The JATG cable adapter 

for the FlySwatter shown in Illustration 2 has jumpers available for EMU1 and 2. The 

jumpers must be placed correctly between 1 and 2 in lieu of 0 and 1 to enable 

initialization of the scan chain. 
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Illustration 2, FlySwatter Adapter and JTAG Cable [5] 

By pulling EMU0 and EMU1 high, the board is placed in the TAP router-only 

mode. The TAP router exists to control up to 16 TAP controllers. In the router-only mode 

no secondary TAPs are selected and the TAP router is the only TAP between TDI and 

TDO (data in and data out) [4].  

TAPs are added to the scan chain by programming the tap router. Once this is 

accomplished then the debug access port (DAP) is added to the scan chain. The DAP is 

interfaced to the APB shown in Figure 2 and discussed previously. The debugger then 

has access to the entire memory space without the need for sending the processor into a 

debug state [4]. Modules on the DM3730 are mapped to the DAP address. OpenOCD 

executes the IDCODE instruction to return information about devices in the chain. The 

terminal output showing the ROM table from OpenOCD: 

 

 

 

Not required for the 

BeagleBoard-xM 

EMU pins 

and 
resistors 
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> dap info 1                       

AP ID register 0x04770002 

 Type is MEM-AP APB 

AP BASE 0x80000000 

 ROM table in legacy format 

 MEMTYPE System memory not present. Dedicated debug bus. 

 ROMTABLE[0x0] = 0xd4010003 

  Component base address 0x54010000, start address 0x54010000 

  Component class is 0x9, CoreSight component 

  Type is 0x13, Trace Source, Processor 

  Peripheral ID[4..0] = hex 04 20 6b b9 21 

  Part is Cortex-A8 ETM (Embedded Trace) 

 ROMTABLE[0x4] = 0xd4011003 

  Component base address 0x54011000, start address 0x54011000 

  Component class is 0x9, CoreSight component 

  Type is 0x15, Debug Logic, Processor 

  Peripheral ID[4..0] = hex 04 20 6b bc 08 

  Part is Cortex-A8 Debug (Debug Unit) 

 ROMTABLE[0x8] = 0xd4012003 

  Component base address 0x54012000, start address 0x54012000 

  Component class is 0x9, CoreSight component 

  Type is 0x64, Debug Control, Reserved 

  Peripheral ID[4..0] = hex 00 00 09 71 13 

  Part is -*- unrecognized -*-  

 ROMTABLE[0xc] = 0xd4013002 

  Component not present 

 ROMTABLE[0x10] = 0xd4019003 

  Component base address 0x54019000, start address 0x54019000 

  Component class is 0x9, CoreSight component 

  Type is 0x11, Trace Sink, Port 

  Peripheral ID[4..0] = hex 04 00 1b b9 12 

  Part is Coresight TPIU (Trace Port Interface Unit) 

 ROMTABLE[0x14] = 0xd401b003 

  Component base address 0x5401b000, start address 0x5401b000 

  Component class is 0x9, CoreSight component 

  Type is 0x21, Trace Sink, Buffer 

  Peripheral ID[4..0] = hex 04 00 0b b9 07 

  Part is Coresight ETB (Trace Buffer) 

 ROMTABLE[0x18] = 0xd401d003 

  Component base address 0x5401d000, start address 0x5401d000 

  Component class is 0xf, PrimeCell or System component 

  Peripheral ID[4..0] = hex 00 00 09 73 43 

  Part is TI DAPCTL  

 ROMTABLE[0x1c] = 0xd4500003 

  Component base address 0x54500000, start address 0x54500000 

  Component class is 0x9, CoreSight component 

  Type is 0x63, Trace Source, Reserved 

  Peripheral ID[4..0] = hex 00 00 19 71 20 

  Part is TI SDTI (System Debug Trace Interface) 

 ROMTABLE[0x20] = 0x0 

  End of ROM table 

 

Figure 3, JTAG Scan Chain Example 

TMS

TCK

TDI

TDO

Cotex-A8 ETM TPIU

TDI TDOTDITDI TDOTDO

●●● 

●●● 
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The technical reference manual [4] lists the modules as the ETM, the Cortex-A8, 

the trace port interface unit (TPIU), and the embedded trace buffer (ETB) module. Note 

from the listing above that 2 additional modules are identified along with one that is 

“unrecognized” because it is “reserved” by the architecture and one that is listed as not 

present. The DAPCTL sounds like it may be a DAP control module, but the 

documentation does not go into detail about its function. The SDTI (System Debug Trace 

Interface) module is described as implementing system trace during debug emulation and 

details of its configuration, protocol, data format and function are provided in manual [4].  

One other key aspect of the CoreSight™ architecture should be mentioned. The 

DAP is an implementation of the ADIv5 by way of CoreSight™ DAP-Lite [5]. The 

components that make up the DAP-Lite interface to the board/processor are the debug 

ports (DP) and access ports (AP). Note that the AP and DP together are referred to as the 

DAP. The DAP implements the JTAG-DP which sets up the JTAG connection to the 

debugger and host computer. 

The JTAG-DP operation is controlled by an IEEE 1149.1 compliant state 

machine. The TMS signal that queries the controller is shown as an example in Figure 4.  
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Figure 4, JTAG TAP State Machine [2] 

The data is sent and received serially. The IR and DR in Figure 4 are the 

instruction and data registers respectively. The state machine can access data, 

instructions, and perform a reset. The clock signal, TCK, provides the means to step 

through the state machine. To load IR values, for example, the controller must be in the 

Shift IR state. Data is transferred on each clock pulse via TDI and TDO.  

One last point on the JTAG controller needs to be made concerning the ICEPick 

module. The ICEPick module allows the controller to select which subsystem the TAPs 

are accessible to in multiple processor systems. If a subsystem is powered down for any 

reason, such as for power savings, the scan chain would be interrupted and the JTAG 

connection would fail. The ICEPick allows the powered down system to be ignored so 

the other subsystems can be accessed. The ICEPick also manages the power, clock and 

reset for each TAP. Since the DM3730 has a Digital Signal Processor, and other 

subsystems, the ICEPick module is included. All accesses to the JTAG signals are 

accomplished via the ICEPick module.  

FlySwatter 

The FlySwatter is the in-circuit debugger. It provides the interface between the 

USB port on the host computer and the JTAG connection on the target computer, in this 

case the BeagleBoard-xM.  A standard 14 pin JTAG connector is provided and matches 

up with the 14 pin connector on the BeagleBoard-xM via an adapter made for that 

purpose. The adapter is shown in Illustration 2. The adapter converts from the standard 

14 pin JTAG layout to the ARM
®
 specific layout on the board shown in Table 1. 
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ARM-14-JTAG 

FlySwatter 

TI-14-JTAG 

BeagleBoard-xM 
VREF        1 - - 2 GND         JTAG_TMS   1 -  - 2 JTAG_nTRST 
JTAG_nTRST  3 - - 4 GND         JTAG_TDI   3 -  - 4 GND 
JTAG_TDI    5 - - 6 GND         VREF       5 -  x 6 KEY (empty) 
JTAG_TMS    7 - - 8 GND         JTAG_TDO   7 -  - 8 GND 
JTAG_TCK    9 - - 10 GND         JTAG_RTCK  9 -  - 10 GND 
JTAG_TDO    11 - - 12 JTAG_SRST_N JTAG_TCK   11 -  - 12 GND 
VREF        13 - - 14 GND         JTAG_EMU0  13 -  - 14 JTAG_EMU1 

Table 1, JTAG 14-pin Adapter 

  An RS232 interface is also provided and supports modem protocols. Both the 

RS-232 and USB to JTAG interface utilizes Future Technology Devices International 

Ltd.  (FTDI’s)  FT232 Dual USB UART/FIFO1. The FT232 has two ports, A and B. Port 

A is used for the USB to JTAG interface and Port B is for the serial UART. The 

FlySwatter provides a standard 14-pin JTAG interface as well as a standard RS232 port 

with support for full modem signals. The USB 2.0 standard is supported and it supports a 

number of different target system voltages. Though 3.3V appears to the most popular, the 

board for this project requires a JTAG connector voltage of 1.8V. The FlySwatter board 

is also supported in OpenOCD which provides an interface for it.  

The FlySwatter provides the interface for OpenOCD to find the DAP, check for 

power and timing information, get the ROM table and compare the peripheral IDs [4].  

Illustration 3 shows the Flyswatter as used for this project with the adapter, RS-

232 extender, and JTAG cable installed. 

                                                
1 FTDI manufactures the FT232 dual chip and provides drivers on its website www.ftdichip.com. The 

drivers are also included in most of the recent Linux versions. 
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Illustration 3, FlySwatter in Circuit Debugger 

Setup 

The hardware setup consists of the components listed in Table 2. 

 

Project Hardware 

Host Computer (HP 2133 Netbook) 

USB Cable  

FlySwatter in Circuit Debugger 

JTAG 14 Pin Adapter 

RS-232 extender 

BeagleBoard-xM Target Computer 

5V power cord for BeagleBoard-xM 

Table 2, Project Hardware 

The BeagleBoard-xM has the added advantage of having an RS-232 connector on 

the board. Previous versions did not have that available, though the adapter kit supplied 

one with the JTAG 14 pin adapter.  A protective case was added to prevent damage by 
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physical, or electrostatic, means. The BeagleBoard-xM is shown connected to the 

FlySwatter with associated cables in the illustration below.  

The host computer is an HP 2133 netbook with Ubuntu Linux 11.10 installed at 

the beginning of the project. The overall hardware setup is shown in Illustration 5. 

 

 

Illustration 4, BB-xM and Flyswatter Setup 

 

Illustration 5, Overall Hardware Setup 

Host Computer 

BeagleBoard-xM 

With Enclosure 

 FlySwatter 
JTAG Cable 
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Chapter 2:  Software 

GNU ARM TOOLCHAIN 

Compiling code on a host computer to run on a target computer with a different 

hardware architecture requires a cross compiler. Particularly for embedded systems, 

programming on a host computer can be faster and more convenient. It may also be 

necessary in the case where a boot loader and operating system need to be developed for 

the embedded system before it can run. The host computer for this project is Linux based 

(UBUNTU 10.10). The Linaro ARM cross tool chain (version 4.6.2-14) is an open source 

tool chain that was installed with little effort2 using “apt-get install gcc-arm-linux-

gnueabi.” Setting the PATH to the “usr/arm-linux-gnueabi/bin” folder then enables use of 

the cross compiler in other directories. The tool chain includes the GNU binutils, the 

GNU C compiler (gcc), and the glibc library. The tools required for compiling the uboot 

file and libncurses (provides capability for an ASCII based GUI) are also needed. Each of 

these can be downloaded separately and compiled on the host machine, but unlike other 

tool chains such the CodeSourcery G++ Lite toolchain, all of the Linaro toolchain [8] 

source is covered by the GNU General Public License (GPL) and is freely available. 

BEAGLEBOARD-XM 

The BeagleBoard-xM has no flash and boots directly from a microSD card. The 

SD card must be setup properly in order for the system to boot and load the Linux 

operating system. A boot partition (FAT32 file system format for this project) on the SD 

card is required with MLO, uEnv.txt, and u-boot.img files. The ROM code is designed to 

detect file allocation table (FAT) format types, so it will not boot from a Linux formatted 

partition.  The Linux file system is located on a second ext3 partition. The card acts like a 

                                                
2 In order to get the Linaro toolchain an additional repository must be added (“sudo add-apt-repository 

ppa:linaro-maintainers/toolchain”). 
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hard drive since the master boot record (MBR) was created in the first partition during 

format. A floppy drive-like configuration is also supported [2].  

The Multimedia Card Loader (MMC Loader or MLO) is the image read by the 

system read only memory (ROM) for the boot procedure. The ROM code checks for a 

valid MBR signature of 0xAA55 at offset 01FEh. Once found and other requisite 

conditions are checked successfully, the ROM code performs a translation of each FAT 

entry corresponding to the MLO file and places the results in a buffer. The booting 

procedure then refers to the buffer for accessing the file [2]. The general purpose memory 

controller (GPMC) is used to access NAND such as that on earlier versions of the 

BeagleBoard. Instructions for accessing the NAND via the GPMC are contained in the 

MLO file. The MLO file then directs boot up via the boot loader contained in the file u-

boot.img. The boot loader then passes system information to, and executes, the kernel. 

The MLO file can be downloaded directly from a number of sources available via 

a quick Google search or the one supplied with the board can be used. Since an 

understanding and hands-on application of the software implementation is desired, the 

MLO file was compiled from source [8]. The source code and patches were downloaded 

and compiled using the Linaro Arm tool chain. The u-boot.img file is included in the 

source and is also produced during compilation.  

SD Card Setup 

As noted previously the ARM
®

 Cortex-A8 on the BeagleBoard-xM requires two 

partitions, a FAT and an ext3. GParted is an open source disk partitioning tool that has a 

graphical user interface (GUI). Gparted was used to set up the boot and ext3 partitions on 

a 4MB SD card. The boot partition size selected is 65MB and the rest was allocated to 
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ext3 partition, about 3.7GB, for the file system. The MLO and u-boot.img were then 

copied to boot partition along with a uEnv.txt file.  

A boot.scr file was supplied on the SD card that came with board when 

purchased. It contains for the boot parameters to be used. More recent versions of u-boot 

reference the uEnv.txt file instead of the boot.scr. To change parameters using boot.scr a 

new image would have to be made using a boot.cmd text file for each set of 

modifications. The uEnv.txt file is plain text and can be changed easily. This saves time 

and eliminates several additional steps. This is particularly helpful when trying out 

different parameters to observe the effects on the system, even when they are as simple as 

changing the display resolution which was modified for this project. The compressed 

kernel image file and address to begin loading the kernel are also specified here. 

The last file to go onto the boot partition is the compressed Linux kernel image, 

zImage which is produced by compiling the kernel. The second partition receives the root 

file system and additional Linux modules. The modules were installed in a separate 

directory and compressed during compilation (a script file was used from reference [10] 

with minor changes). The file system and module were then uncompressed to the rootfs 

partition of the SD card for use on the target board.  

There are some additional tools required for successful setup of the SD card to go 

into the target computer. “u-boot-tools”  

The Linux Kernel 

Cross compiling the Linux kernel can be a daunting task. The latest kernel 

provides support for arm cores, but the patches and modules for the OMAP architecture 

must also be installed. Using the “git” clone, checkout and commit functions, the latest 

kernel was obtained via “git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git” 
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and development source from reference [10]. The version at the time of this report is 

3.2.15-x8.  The patches were then collected and merged prior to cross compiling the 

kernel. An example of the kernel patches for the OMAP3 is shown in Table 3.  

Parameters in the make file must be verified to include the architecture for the 

target of the kernel, ARM
®
, and the direction to perform a cross compilation along with a 

location of the cross compiler tools, in this case the GNU ARM compiler “gcc-arm-linux-

gnueabi.” The kernel configuration is specified up front and can be edited one of several 

ways. The “menuconfig” option provides a graphical interface to set the compiler options 

and is useful when trying to avoid errors from mistakes made when typing on the 

keyboard. The default selections are adequate with the exception of kernel debugging. 

This is normally not selected, but needed for this project. It adds some time to the 

compilation process, but produces a “vmlinux” file in addition to the compressed kernel 

file “zImage.” The vmlinux file contains the linux kernel and the kernel symbol table. 

The symbol table is required on the host computer to debug the target computer.  

Once the kernel is compiled, the zImage file from “/KERNEL/arch/arm/boot” is 

copied to the boot partition of the SD card. Getting all the right files to the correct 

locations on each respective partition for the target board SD card is important. The MLO 

file must be the first file copied to the boot partition, otherwise the target will not boot.  

The next step is removing the SD card from the host and placing into the target 

computer. As already noted, the FlySwatter interface has a second port for the serial 

connection on the BeagleBoard-xM. Using Minicom on the host computer with the serial 

port set to 115200, 8N1 allows all the boot messages to be seen from the target computer. 

For the project it was beneficial to use a serial-to-usb converter and a Microsoft Windows 

based machine running Tera Term VT. This reduced the number of open windows on the 

host computer and allowed better access to the host computer functions. 
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# Description Module Name Owner 
1 omap: serial: fix non-empty uart fifo read abort Platform Vikram Pandita 

2 OMAP3 : Enable TWL4030 Keypad for Zoom2 and 

Zoom3 boards 

Gaia Manjunath GK 

3 Zoom2/3:Update hsmmc board config params HSMMC Madhu 

4 omap3: zoom2/3: make MMC slot work again HSMMC Anand G 

5 Correcting GPMC_CONFIG1_DEVICETYPE_NAND NAND Vimal 

6 Add NAND Lock/Unlock feature NAND Vimal Singh 

7 OMAP: ZOOM2: Correcting key mapping for few keys Keypad Vimal 

8 omap3: pm: Add T2 Keypad as a wakeup source Keypad Teerth 

9 omap: serial: fix coding style indentation Platform Vikram Pandita 

10 omap: zoom3: enable ehci support Platform Vikram Pandita 

11 OMAP3 : Fix I2C lockup during timeout/error cases I2C Manjunath 

12 ARM: OMAP3: PM: T2 keypad wakeup for Zoom2 Power Lesly A M 

13 OMAP3: add support for 192Mhz DPLL4M2 output Platform Vishwa 

14 OMAP3: introduce DPLL4 Jtype Platform Vishwa 

15 OMAP3: Correct width for CLKSEL Fields Platform Vishwa 

16 OMAP3: Introduce 3630 DPLL4 HSDivider changes Platform Mike T 

17 OMAP3630: Clock: Workaround for DPLL HS divider 
limitation 

Power Vijay 

18 3630 DVFS Power Romit 

19 Introducing gpmc nand.c for GPMC specific NAND ini  NAND Vimal 

20 OMAP SDP Introducing board sdp flash.c for flash NAND Vimal 

21 OMAP3: Add support for flash on 3430SDP board NAND Vimal 

22 Zoom3: Defconfig update Platform Manjunath 

23 PM debug: Fix warning when no CONFIG_DEBUG_FS Power Sergio 

24 OMAP2/3 PM: Adding power domain APIs for reading 

the next logic and mem state 

Power Thara 

25 OMAP3 PM: Defining .pwrsts_logic_ret field for core 

power domain structurePower 

Power Thara 

26 OMAP: HWMOD: Add support for early device register 

into omap device layer 

Power Thara 

27 FIX OMAP3:McBSP poll read and write for OMAP3 McBSP Rafiuddin Syed 

Table 3, OMAP Kernel Patches [11] 

The output from the serial target computer serial is shown in Illustration 6 below. 

The serial port, board name, and the uEnv.txt file can be seen with the “Loaded 

environment from uEnv.txt” message that follows. The zImage file is then read and the 

message “Starting kernel…” appears. The rest of the messages are associated with 

booting the kernel and show up on the serial port just as they would on a connected 

computer monitor for this, or any other Linux machine.  
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Illustration 6 Port, Target Board Boot Screen at Serial Port 

The DVI port is enabled on the board and the display settings were adjusted to 

accommodate an HD monitor that was available for the project. The kernel boots 

successfully and commands are able to be entered via a connected keyboard or the serial 

interface. The “uname –a” and “lsb_release –a” commands were run to demonstrate the 

results and are shown in the terminal screen in Illustration 7. 
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Illustration 7, Terminal Screen at Debian Prompt 

A few “tweaks” needed to be made once the kernel was running. In order to get 

an Ethernet connection working, modifications were made to the 

“/etc/network/interfaces” file. “auto eth0” and “eth0 inet dhcp” appended to the file 

enabled the internet connection. 

OPENOCD 

OpenOCD3 is an abbreviation for open on-chip debugger. It provides the 

capability to program, debug, and boundary scan test remote target embedded platforms 

[7]. OpenOCD communicates with the target via a hardware adapter such as the 

FlySwatter used here. Compilation and installation is on the host computer and the 

drivers for the debug adapter must be included during compilation. The FTDI drivers 

mentioned previously support this requirement for the FlySwatter and provide the 

interface to the JTAG connector on the target board.  

The latest version of the OpenOCD software at the time of this writing is 0.5.0 

and is the version used for this project. In order to get the latest version the source was 

                                                
3 The OpenOCD software is covered under the GNU General Public License and is available from the 

Sourceforge website: http://sourceforge.net/projects/openocd/files/openocd/ 
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downloaded and built on the host computer “git clone 

git://openocd.git.sourceforge.net/gitroot/openocd/openocd.” Some additional drivers and 

tools were required for the OpenOCD configuration.  

1. pkg-config  

a. Obtained from “pkgconfig.freedesktop.org/releases/” [13]  

b. This is tool allows compiler options to be entered on the command line 

thus preventing them from being hard coded. It is helpful since there 

are a multitude of options available and updates occur often. 

2. libusb library 

a. Obtained using “apt-get install libusb-dev” 

b. This is an open source C library needed for the FTDI open source 

driver 

3. libftdi 

a. Obtained using “apt-get install libftdi-dev” 

b. The open source FTDI FT232 driver 

4. libtool 

a. Needed for compiling OpenOCD since it used in the open source 

provided scripts 

b. Provides an interface for using shared libraries for consistency 

5. Texinfo 

a. Installed using “apt-get install texinfo” 

b. Provides format used for the documentation for OpenOCD 

In order to install OpenOCD the following commands were run to get the final 

install as shown in Table 4: 
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# Command Description 

1 ./booststrap configure the autoconf 
2 ./configure –enable-maintainer-

mode –enable-ft2232_libftdi 
to configure the ftdi driver (the 
open source version) 

3 Make Compile OpenOCD 

4 Make install 
Installation in applicable 
directories 

Table 4, OpenOCD Installation 

To run the software two configuration files are needed; one for the FlySwatter and 

one for the BeagleBoard-xM. Though the –xM is OMAP compliant, the processor 

architecture is different, so it will need to reference a different target chip type. The 

“ti_beagleboard_xm.cfg” file references the configuration file for the dm37x, 

“amdm37x.cfg.” This configuration file contains the specific information for the –xM 

chip set as well as information for the am35x. The TAPs for JTAG are set up in this file 

and follow the convention specified in the DM37x technical reference manual [2]. The 

TAPs must be added to the scan chain in order such that the TAP closest to TDO comes 

first. The dm37x processor SRAM begins at address 0x4020 0000. The configuration file 

reserves the first 16K starting at that address for use by the OpenOCD software. 

OpenOCD processes the configuration files input on the command line when it 

starts: “openocd –f interface/flyswatter.cfg –f ti_beagleboard_xm.cfg.” 

The JTAG setup is accomplished via the target configuration file “amdm37x.cfg.” 

The ICEPick module is referenced as “icepick.cfg” and will be the last in the JTAG chain 

since it is closest to TDI.  The ICEPick configuration file selects the JTAG router and 

sets up control of the data and instruction register scans in the configuration file. 
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The target configuration file finds the chip type (dm37x) and establishes the 

expected IDCODE for the JRC. In this case it is 0x1b89102f. This is validated by the 

“scan_chain” command in OpenOCD. As shown in Illustration 8, dm37x.jrc is enabled 

and the IDCODE matches the expected IDCODE. The adapter frequency is set and then 

the chain is set up. OpenOCD requires all devices to be declared using the “jatg newtap” 

command and, as mentioned earlier, they must be declared in order.  

 

 

Illustration 8, Scan Chain Results 

The code snippet below illustrates the TAP declaration on line 1 followed by the 

last declaration shown as line 2 for the ICEPick.  

1 jtag newtap dm37x arm2 -irlen 4 -ircapture 0x1 -irmask 0x0f -disable 

2 jtag newtap dm37x jrc -irlen 6 -ircapture 0x1 -irmask 0x3f 0x1b89102f 

The irlen number represents the length of the instruction register in bits. The 

disable parameter is used to flag a TAP that is not part of the scan chain after a reset via 

TRST or by entering the RESET state on the state machine. The ircapture is the bit 

pattern loaded into the JTAG SR. This is for entering the capture IR state as shown in 

Figure 4. Per the JTAG specification the two least significant bits of this value should be 

one. The irmask value is used with the ircapture to as a check to verify the scans are 
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working. If the TAPs are not configured, OpenOCD has an auto TAP discovery feature. 

This was attempted by the author without success.  

Once the description is completed in the target configuration file, the TAPs are 

enabled. Several TCK cycles are then sent to ensure the things are running followed by a 

“tapenable” command. The next section establishes the work area for OpenOCD as 

discussed earlier at address 0x420 0000 with 16K reserved for the program.  

1 $_TARGETNAME configure -work-area-phys 0x40200000 -work-area-size 

0x4000 

The JTAG clock is then slowed down to ensure that it will function with slowest 

processor core clock and then a software restart is completed by writing a 0b10 to address 

0x4830 7250 and is shown in table 3-452 of reference [7].  The target is then reinitialized 

with the “amdm37x_dbginit” function and the adapter speed is set to 100 kHz. 

“interface.c” contains the information and instructions for specifying JTAG state 

transitions (see Figure 4). A case structure is provided for each state, Reset, Idle, 

DRSHIFT, DRPAUSE, IRSHIFT, and IRPAUSE. 

The “cortex_a.c” file sets up target polling, breakpoints, read and writes, the 

processor mmu, and the virtual to physical memory address structure. Virtual address 

space is separated between user and kernel space with addresses from 0x0000 0000 to 

0xbfff ffff as user space and from 0xc000 0000 to 0xffff ffff for supervisor address mode.  

The ADIv5 interface mentioned previously is implemented in “arm_adi_v5.c.” 

The DAP, comprised of the DP and the AP is setup with the JTAG-DP and the MEM-AP 

for accessing memory registers.   

Once OPenOCD has started a separate terminal window is opened in order to 

connect to the OpenOCD session via “telnet localhost 4444.” From the prompt the 

“scan_chain,” “dap info,” register information and other commands can be issued. 



 25 

GNU DEBUGGER AND INSIGHT 

OpenOCD provides the capability to use a GDB server to monitor and control 

program execution. Insight [16] is a graphical environment integrated with GDB and is 

released under the terms of the GNU GPL. Insight has a program start window where the 

source code can be viewed, and watch, stack, register, memory browser and GDB 

terminal windows. It provides the ability to have multiple windows open at the same 

time, which is huge advantage when comparing registers, memory and program 

instructions. Though other alternatives are available this choice provided the most hassle 

free option for the debug environment and required only a small amount of work to set 

everything up.  

The Insight software was downloaded and compiled for use with ARM
®

 

architecture. Once OpenOCD is running Insight is started with “arm-linux-gnueabi-

insight” and then a connection made to the target; “target remote localhost :3333.” This 

can also be done with the “Run” menu in the source window. 

With all the hardware connections made, the host and target computers running, 

and the connection established via OpenOCD, initialization is accomplished with the 

“amdm37x_dbginit dm37x.cpu” command and quick check of the scan chain and 

registers verifies everything is working properly. Insight is then started and connected to 

the target. From Insight the symbol information from the vmlinux file is loaded and the 

registers and memory can be viewed. The assembly code with the symbol information 

appears in the source window.  

The target must be halted to obtain register and memory values. When the target 

is running, commands can be processed via the serial connection to the BeagleBoard or a 

keyboard if connected. After the processor is halted via the JTAG connection, a quick 

check of the target demonstrates that commands are no longer accepted. The “monitor 
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resume” command restores the running target machine again meaning that commands are 

passed through the JTAG chain to the processor as expected.  Cross checking the register 

values between the OpenOCD window and the Insight register window also validates that 

the correct values are being passed to the debugger. The initial insight window shows the 

beginning of the Linux kernel in “head.s” (the start of the kernel). “ENTRY(stext)” 

forces the SVC processor mode. The lookup for the processor and architecture type are 

performed prior to the “__create_page_tables” function. The MMU is then setup and 

enabled. The OpenOCD connection window shows the MMU as “enabled” if connected 

to the target with a running kernel as shown in Illustration 9.  

 

 

Illustration 9, OpenOCD "halt" Window 

The “__mmap_switched,” which holds the address of the “start_kernel” function 

is then run (see Illustration 10 and Illustration 11 below).  
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Illustration 10, "start_kernel" in "main.c" 

 

 

Illustration 11, Insight "head.s" Window 
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 Register and memory values update and are viewed in the debug window 

(Illustration 12) and breakpoints can be set, however stepping through the kernel is still 

problematic. The connection often drops or loses communication across the JTAG 

connection without warning. Persistence is required and entering commands via the 

OpenOCD window or the Insight console window is needed. Illustration 12 shows the 

result of one session where the kernel ran and was halted in the kernel timekeeping 

function. 

Being able to see the real time updates of the registers and memory save time and 

make the debugging task easier. The GUI allows all the locations of interest to be quickly 

and simultaneously displayed so that their status is immediately understood. This adds 

efficiency and reduces the time that would otherwise be required to issue separate 

commands and scroll through results to see how the information is changing.  

 

 

Illustration 12, Insight Debug Window 
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Chapter 3: Problems and Forward Work 

There are still a few issues that should eventually be addressed. There are a 

significant number of programs, hardware, and parameters that work together. The 

current setup is difficult in practice and sometimes displays erratic behavior. The 

connection to the target computer will drop out and the symbol information will 

sometimes show up out of step with the target machine.  

Small program files are able to be directly loaded to the target machine. When an 

attempt was made to load the Linux kernel remotely, the “head.text” and “.text” sections 

loaded successfully. Other sections would fail. This appears to be due to a memory 

address failure and further research provided an interim solution. By resetting and 

initializing the CPU, the vmlinux file would load with an offset specified as demonstrated 

in Illustration 13. 

 

 

Illustration 13, Loading the Kernel 
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This method requires further work to set up a boot loader and initialization file 

that will allow a remote load of the kernel to the correct address in RAM and run it. 

Lastly, a script file with a means to acknowledge timing and connection successes would 

simplify and shorten the process required to get to the debugging screen in Insight with 

one command or click. Eclipse may work for this task as well, but would require a 

potentially large amount of setup and configuration. 

  



 31 

Chapter 4:  Conclusion 

This project demonstrated one hardware and software combination for a toolchain 

to debug the Linux kernel on an ARM
®
 Cortex-A8 processor via the JTAG connection. 

Components and their connections as well as operation of the software to support this 

project were explained.  
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Appendix 

BeagleBoard-xM Features 

Feature 
Processor Texas Instruments Cortex A8 1GHz processor 

POP Memory Micron 4Gb MDDR SDRAM (512MB) 200MHz 

PMIC TPS65950 

Power Regulators 

Audio CODEC 

Reset 

USB OTG PHY 

Debug Support 
14-pin JTAG  GPIO Pins 

UART  3 LEDs 

PCB 3.1” x 3.0” (78.74 x 76.2mm)  6 layers 

Indicators 
Power, Power Error  2-User Controllable 

PMU  USB Power 

HS USB 2.0 OTG Port 
Mini AB USB connector 

TPS65950 I/F 

USB Host Ports 

SMSC LAN9514 Ethernet HUB 

4 FS/LS/HS 
 Up to 500ma per Port if adequate 

power is supplied 

Ethernet 10/100  From USB HUB 

Audio Connectors 
3.5mm 3.5mm 

L+R out  L+R Stereo In 

SD/MMC Connector MicroSD 

User Interface 1-User defined button  Reset Button 

Video DVI-D  S-Video 

Camera Connector  Supports Leopard Imaging Module 

Power Connector USB Power  DC Power 

Overvoltage Protection Shutdown @ Over voltage 

Main Expansion 
Connector 

Power (5V & 1.8V)  UART 

McBSP  McSPI 

I2C  GPIO 

MMC2  PWM 

2 LCD Connectors 
Access to all of the LCD control 

signals plus I2C  
3.3V, 5V, 1.8V 

Auxiliary Audio 4 pin connector  McBSP2 

Auxiliary Expansion MMC3  MMC3,GPIO,ADC,HDQ 



 33 

References 

[1]  beagleboard.org, "BeagleBoard-xM Rev C System Reference Manual," 2010. 

[2]  ARM Limited, Cortex A-8 Technical Reference Manual, Revision: r3p0, 2006-2008, 

p. 758. 

[3]  ARM Limited, ARM Debug Interface v5 Architecture Specification, 2006.  

[4]  ARM Limited, CoreSight Architecture Specification, v1.0, 2004-2005.  

[5]  WikipediA, "Application Binary Interface," Wikimedia Foundation, Inc., 11 April 

2012. [Online]. Available: http://en.wikipedia.org/wiki/Application_binary_interface. 

[Accessed April 2012]. 

[6]  J. Masters, "Prorting Linux," WordPress Entries, 5 June 2011. [Online]. Available: 

http://www.jonmasters.org/blog/category/general/linux-kernel/. [Accessed March 

2012]. 

[7]  Texas Instruments, AM/DM37x Multimedia Device Technical Reference Manual, 

Version O, 2012.  

[8]  Tin Can Tools, "BeagleBoard Adapter Kit," 2012. [Online]. Available: 

http://www.tincantools.com/product.php?productid=16144&cat=0&page=1&featured. 

[Accessed 2012]. 

[9]  ARM Limited, CoreSight(TM) DAP-Lite Technical Reference Manual, ARM 

Limited, 2006-2008.  

[10]  T. Bauermann, "Toolchain Working Group," WorkingGroups/ToolChain, 9 April 

2012. [Online]. [Accessed April 2012]. 

[11]  DENX Software Engineering, "U-Boot Source Code," DetlevZundel, 19 October 

2011. [Online]. Available: http://www.denx.de/wiki/U-Boot/SourceCode. [Accessed 

March 2012]. 

[12]  R. Nelson, "BeagleBoard wiki," 2012. [Online]. Available: 

http://eewiki.net/display/linuxonarm/BeagleBoard#. [Accessed March 2012]. 

[13]  Media Wiki, "OMAPpedia Patches Accepted," Creative Commons Attribution-Share 

Alike 3.0 license., 25 May 2010. [Online]. Available: 

http://omappedia.org/wiki/Patches_Accepted. [Accessed 2011 March]. 

[14]  S. Oliver, O. Harboe, D. Ellis and D. Brownwell, Open On-Chip Debugger: 

OpenOCD User's Guide, Boston: Free Software Foundation, 2011.  

[15]  freedesktop.org, "Index of / releases," 28 May 2010. [Online]. Available: 

http://pkgconfig.freedesktop.org/releases/. [Accessed March 2012]. 

[16]  K. Seitz, J. Ingham, I. Taylor, T. Tromey and E. Zannoni, "The GDB GUI," 19 July 

2009. [Online]. Available: http://sources.redhat.com/insight/index.php. [Accessed 

Februray 2012]. 



 34 

Vita 

 

Warren Clay Grant has a Bachelor of Science in Information Technology from the 

University of Phoenix and an MBA from Regis University. He is a graduate of the Navy 

Nuclear Power School, Navy Nuclear Prototype training, and a qualified Submariner. He 

worked in the Department of Energy’s nuclear weapons complex at various sites across 

the country before coming to work at the Johnson Space Center for NASA in Houston, 

Texas.   

 

 

 

Permanent email: wcgrant2@gmail.com 

This report was typed by Warren Clay Grant. 

 


