Copyright
by
Warren Clay Grant
2012

The Report Committee for Warren Clay Grant

Certifies that this is the approved version of the following report:

Implementation of an Open Source JTAG Debugging Development
Chain for the BeagleBoard ARM® Cortex A-8

APPROVED BY
SUPERVISING COMMITTEE:

Supervisor:

Jacob Abraham

Mark McDermott

Implementation of an Open Source JTAG Debugging Development
Chain for the BeagleBoard ARM® Cortex A-8

by

Warren Clay Grant, BSInfTech; MBA

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2012

Dedication

This report is dedicated to my wife Denise for her patience and dedicated support
that made attaining this goal possible. Her understanding during my long hours for study

while working full time is appreciated and will require a lot to make up.

Acknowledgements

I would like to acknowledge the professors, instructors, guest lecturers at the
University of Texas. They all were truly experts in their respective fields and shared a

volume and quality of knowledge that would otherwise have been out of reach.

May, 2012

Abstract

Implementation of an Open Source JTAG Debugging Development
Chain for the BeagleBoard ARM® Cortex A-8

Warren Clay Grant, MSE

The University of Texas at Austin, 2012
Supervisor: Jacob Abraham

The BeagleBoard-xM, manufactured by Texas Instruments, is a small, low cost,
open source development platform for the ARM® Cortex-A8 processor. This paper
implements a hardware and software combination to connect to the ARM® processor via
a JTAG connection for debugging. A FlySwatter interface board is utilized to connect the
JTAG port to a host computer and a combination of software tools are implemented to
demonstrate the capability for debugging the Linux kernel. The necessary files for
booting the Linux 3.0 kernel were compiled and loaded on the BeagleBoard-xM and the
host computer. Installation and selection of the components that make up the software
tool chain are described. All the hardware and software used for this project are open

source designs.

Vi

Table of Contents

LSt Of TADIES .ueeviiieeeiiiiee e et e et e e e erneeeeenees viii
LSt Of FIGUIS ...vvviieiiiiiee ettt ettt et e e e et e e e e esbeaeeeanneas X
List Of THUSTIAtIONS ...eevviieeiiiiiee et et ee et e ettt e e et eeeeitaeeeeesnsseaeeennneas X
TNEPOAUCTION ...t e e e e e e e e e e e e seaaaaeeeas 1
Chapter 1: HArdware............cc...uuueeiieeiieiiiiiiiiiieee e eeeeiteee e e e e e eeavaeeea e e e e ennnenes 2
BeagleBoard.........oceeiiiiiiiieeeeee e 2
PrOCESSOT . 4

ARM® BaSICS.....vovvieirioiiiisie s 5

JTAG on the BeagleBoardcccvvviviiiiiiiiiiiiieeee e 6
FIYySWatter......vvviiiieee e 10

11| o T PP 12

CRAPLET 2: SOfIWAFEeeeevieeeeeeeeeee ettt e e e e e e e e 14
GNU ARM To0O0IChaINccceeiiiiiiiiiiiiieeeeeeeeee et 14
BeagleBoard-XMoiiiiiiiiiiiieee e 14

SD Card SELUP ...ueeeiviiiiieee ettt e et ee e e e e e e ee e e e e e e e nannes 15

The Linux Kernel.........c..oooiiiiiiiiiiiiiiiiiiiee e 16

(070751110 163 b 2SR 20
GNU Debugger and InSightcoooiviiiiiiiiiiiiieieeeeceeee e, 25
Chapter 3: Problems and Forward Workccooeeeeceiiveeeeeeeeeeeccciiieeeaaeeennn 29
Chapter 4: CONCIUSTONcccceeiieeeeiee ettt aaa e e 31
F N 0] 015 1 1d) PP PPPPRR 32
RETEIONCESeiiiiiiie e ettt e e e 33
VL PSSP PPPPP 34

vii

List of Tables

Table 1, JTAG 14-pin AdaPLerceeveeiiiiieeeeiiiie et e e 11
Table 2, Project HardWarec..oeeeeriiiiieiiiiiieeeeiieee et 12
Table 3, OMAP Kernel Patches [11].......coooiiiiiiiiiiiiiiiieeeeeeeeeeeee e 18

Table 4, OpenOCD Installation

viii

List of Figures

Figure 1. BeagleBoard-xM Block Diagram [1]ccccoooiiiviiiiniiiiniieeiieeieene 3
Figure 2, Cortex-A8 Block Diagram [2]ccoeevviiiiiiiiiiieiiiiiee et 5
Figure 3, JTAG Scan Chain EXampleccoooiiiiiiiiiniiiiiiieicecceeceeee e 8
Figure 4, JTAG TAP State Machine [2].......ccccovviiiieeiiiiiiiiiieeeeeeeeeireeee e 10

X

List of Illustrations

[lustration 1, BeagleBoard-xM with Dimensions [1].........ccccveeveiiiieeinriieeeeennnnen. 3
[lustration 2, FlySwatter Adapter and JTAG Cable [5].....cccoceevviieniiieiniiiiieeens 7
[lustration 3, FlySwatter in Circuit Debuggerccccceeevevieeeeniiiiieeniiee e, 12
[Mlustration 4, BB-xM and Flyswatter Setup.........cccceeveeviiiiiiiieieeeeeeiiiieeeeeeeennn 13
[Mlustration 5, Overall Hardware Setup.........cccvvviiieieeiiiiiiiiieeeeeeeeeieeeee e 13
[llustration 6 Port, Target Board Boot Screen at Serial Portccoccceeeniee. 19
[llustration 7, Terminal Screen at Debian Promptccccceevveeiiiiiiiiiiiiineenn. 20
ITlustration 8, Scan Chain RESUIESuuueeeiiiiiiiiiiieeee e 23
[ustration 9, OpenOCD "halt" WIndowccoviiiiiiiiiiiiiiiceee e 26
[Mlustration 10, "start_kernel" in "main.c"ccccceeereeiiiiiiiiieeee e 27
[Mustration 11, Insight "head.s" Windowccccceeeeiiiiiiiiiiieeeeeeceeeee e 27
[Mustration 12, Insight Debug Windowccceeviiiiiiiiciiiiiiiieecceeceeee e 28
[Mustration 13, Loading the Kernelccccvvviiiiiiiiiiiiiieeeeeeeeeeee e 29

Introduction

The use of embedded systems is widespread and continues to increase. As more
applications for embedded systems are identified, requirements for computing power and
complexity are also rising. Writing and debugging software for these applications also
presents a challenge. A hardware and software platform for their design can help gain a
working knowledge and understanding for specific implementations of the embedded
system.

This project attempts to establish a hardware platform with a JTAG debugging
development chain using open source based products. The hardware consists of a Texas
Instruments (TT) BeagleBoard-XM which contains an ARM® Cortex-A8 processor, a
FlySwatter JTAG dongle from TinCanTools, and a PC running the Linux operating
system that serves as the host computer. The BeagleBoard-XM and the JTAG dongle
used are open source hardware designs. Open source software is used to implement and
document the development tool chain and provides the ability actively debug code for the
hardware target. The software includes OpenOCD and GDB implemented via Insight (a
GDB GUI). The GNU ARM® toolchain was used to compile programs for the ARM®

architecture.

Chapter 1: Hardware

BEAGLEBOARD

The BeagleBoard was designed by TI to provide a low cost way to explore open
source hardware and software capabilities. It has the additional advantage of being a
single board computer designed for low power and occupies a small foot print,
approximately 85 X 86 mm. Though not intended as a full development platform, it was
developed as a community supported platform to develop community software baselines
and it provide the needed capabilities to implement a debugging toolchain for the
purposes of this project.

Two versions of the BeagleBoard are available; BeagleBoard Rev C4 and the
BeagleBoard-xM shown in Illustration 1. Bothe versions provide support for an SD card
that can act as program storage space and provide the equivalent function of a hard drive
that would be present on a on a personal computer. This project uses the BeagleBoard-
xM which has several advantages such as a higher processor speed of 1 GHz, an RS-232
connector not provided in the C4 version and a four port USB hub with Ethernet. A more
complete list of features is provided in Appendix A.

This board does not have NAND flash memory. The micro-SD card is accessed
during boot-up. This is an advantage since mistakes can lead to a corruption of the
NAND and render the board useless without a significant amount of effort to recover the
NAND via the JTAG connection. Given that the board is used for experimenting and
development, the elimination of this an issue provides a level of comfort and potentially a
substantial time and cost savings.

Figure 1 shows a block diagram of the BeagleBoard. Overvoltage protection is

another feature that prevents damage to the board when powering via the 5V DC

connection. The processor is a DM3730 System on Chip (SOC) design. The DM3730 is a

Package on Package configuration where the 512MB is mounted on top of the processor.

1 3.35" |
85.09mm |
o |

3.37"
85.598mm

[llustration 1, BeagleBoard-xM with Dimensions [1]

[mcesp] [Audio |

Board Power

BeagleBoard-xvi
[[3TAG | [Host1-4 | | Ethernet | [microsd | [Rs232 | Block Diagram

Figure 1. BeagleBoard-xM Block Diagram [1]

3

Processor

The processor in the BeagleBoard-xM has a DM3730 processor as opposed to the

C4 version which contains an OMAP3530 processor [1]. The DM3730 is a System on

Chip (SOC) design that includes a digital media processor, the ARM® Cortex-A8

Microprocessor, a graphics accelerator, and other features while maintaining

compatibility with the OMAP 3 architecture.

A few of the key features of the Cortex-AS8 processor include the following [2]:

full implementation of the ARM® architecture v7-A instruction set
Architecture (AMBA) with Advanced Extensible Interface (AXI) for main
memory interface supporting multiple outstanding transactions

a pipeline for executing ARM” integer instructions

Memory Management Unit (MMU) and separate instruction and data
Translation

Look-aside Buffers (TLBs) of 32 entries each

Embedded Trace Macrocell (ETM) support for non-invasive debug
ARMv7 debug with watchpoint and breakpoint registers and a 32-bit
Advanced Peripheral Bus (APB) slave interface to a CoreSight™ debug

system

The processor implements the ARMv7 Debug architecture that includes support

for CoreSight™. The ARM® Debug Interface (ADIVS) [3] is designed to be compatible

with the ARM® CoreSight™ architecture [4]:

+ a CoreSight™ interface implementation is a valid implementation of ADIv5

* the ADIV5 specification does not require an ADI to be CoreSight™ compliant

The Embedded Trace Macrocell (ETM) unit is a non-intrusive trace macrocell

that filters and compresses an instruction and data trace for use in system debugging. The

4

Trace information such as executed instruction addresses, instruction condition codes,
and exception information is generated via the ETM. ETM unit has an external interface
outside of the processor called the Advanced Trace Bus (ATB) interface. There is limited
access to this interface, however, and it is considered a rare case for accessing this
interface using OpenOCD. OpenOCD, used in this project, accesses the processor via the

JTAG interface and the APB interface as shown in Figure 2. The ETM can be accessed

via the APB.
DFT interface APB interface ATB interface
' '
N
Instruction fetch Instruction decode Instruction execute Load/store
Prefatch Flags ALU1 L1
L1 cache || Prefetc
- Dependency cache
L1 interface and lep|| Decode & ALUZ |1 . L1
RAM branch sequencer ch?ck and Control |interface RAM |[*]
_— issue RegBank
prediction MAG
TLB TLB

cache Instruction, data, NEON and preload engine buffers |

Arbitration L2 cache pipeline control

‘ Fill and eviction queue

Parity and
Wi L2 cache data RAM ECC RAM L2 cache tag RAM
BIU
buffer
‘ !
NEON |»
Cortex-A8
A,
AXl interface

Figure 2, Cortex-A8 Block Diagram [2]

ARM® Basics

ARM" processors have thirty seven, thirty two bit long registers of which thirty
are general purpose registers available according to which of up to 7 modes are selected.

The processor modes are User where most tasks are executed, fast interrupt request (FIQ)
5

for high priority interrupt, interrupt request (IRQ) for lower priority interrupt, Supervisor
for reset and software interrupt instruction, Abort for memory access violation handling,
Undef for undefined instruction handling, and System which is a privileges mode using
the same registers as the user mode. Each mode can access a specific set of 10 — r12
registers, a program counter register R15, a stack register R13, and the current program
status register (CPSR). The saved program status register (SPSR) can be accessed in
privileged modes.

The application binary interface (ABI) is a calling convention that specifies the
interface between applications and the operating system. The Embedded ABI (EABI)
specifics standards for register usage, data types, file formats, et. al. for an embedded
system [5]. According to the convention argument passing is performed using registers
r0-r3, r4-r11 are used for local variables, r12 is used as a function call scratch register,

r13 as the stack pointer, r14 as the link register, and r15 as the program counter [6].

JTAG on the BeagleBoard

The JTAG connection accesses the Debug Port supported by ARM® for the
CoreSight™ architecture specification [4]. The JTAG port is IEEE 1149.1 compliant and
uses the standard nTRST, TCK, TMS, TDI, and TDO signals. Two instrumentation pins,
EMUO and EMUI are also used and determine the initial scan chain configuration. As
noted in the DM37x technical reference manual, the EMU power must have pull up
resister equal to 10kQ installed before starting the debugger [4]. The JATG cable adapter
for the FlySwatter shown in Illustration 2 has jumpers available for EMUI and 2. The
jumpers must be placed correctly between 1 and 2 in lieu of 0 and 1 to enable

initialization of the scan chain.

EMU pins
and
resistors

Not required for the /
BeagleBoard-xM

-
-
.

[llustration 2, FlySwatter Adapter and JTAG Cable [5]

By pulling EMUO and EMUI high, the board is placed in the TAP router-only
mode. The TAP router exists to control up to 16 TAP controllers. In the router-only mode
no secondary TAPs are selected and the TAP router is the only TAP between TDI and
TDO (data in and data out) [4].

TAPs are added to the scan chain by programming the tap router. Once this is
accomplished then the debug access port (DAP) is added to the scan chain. The DAP is
interfaced to the APB shown in Figure 2 and discussed previously. The debugger then
has access to the entire memory space without the need for sending the processor into a
debug state [4]. Modules on the DM3730 are mapped to the DAP address. OpenOCD
executes the IDCODE instruction to return information about devices in the chain. The

terminal output showing the ROM table from OpenOCD:

> dap info 1
AP ID register 0x04770002
Type is MEM-AP APB
AP BASE 0x80000000
ROM table in legacy format
MEMTYPE System memory not present. Dedicated debug bus.
ROMTABLE [0x0] = 0xd4010003
Component base address 0x54010000, start address 0x54010000
Component class is 0x9, CoreSight component
Type is 0x13, Trace Source, Processor

Peripheral ID[4..0] = hex 04 20 6b b9 21
Part is Cortex-A8 ETM (Embedded Trace)
ROMTABLE [0x4] = 0xd4011003

Component base address 0x54011000, start address 0x54011000
Component class is 0x9, CoreSight component
Type is 0x15, Debug Logic, Processor

Peripheral ID[4..0] = hex 04 20 6b bc 08
Part is Cortex-A8 Debug (Debug Unit)
ROMTABLE [0x8] = 0xd4012003

Component base address 0x54012000, start address 0x54012000
Component class is 0x9, CoreSight component
Type is 0x64, Debug Control, Reserved

Peripheral ID[4..0] = hex 00 00 09 71 13
Part is -*- unrecognized -*-

ROMTABLE [Oxc] = 0xd4013002
Component not present

ROMTABLE [0x10] = 0xd4019003

Component base address 0x54019000, start address 0x54019000
Component class is 0x9, CoreSight component
Type is 0x11l, Trace Sink, Port

Peripheral ID[4..0] = hex 04 00 1b b9 12
Part is Coresight TPIU (Trace Port Interface Unit)
ROMTABLE [0x14] = 0xd401b003

Component base address 0x5401b000, start address 0x5401b000
Component class is 0x9, CoreSight component
Type is 0x21, Trace Sink, Buffer

Peripheral ID[4..0] = hex 04 00 Ob b9 07
Part is Coresight ETB (Trace Buffer)
ROMTABLE [0x18] = 0xd401d003

Component base address 0x5401d000, start address 0x5401d000
Component class is 0xf, PrimeCell or System component
Peripheral ID[4..0] = hex 00 00 09 73 43
Part is TI DAPCTL

ROMTABLE [Ox1lc] = 0xd4500003
Component base address 0x54500000, start address 0x54500000
Component class is 0x9, CoreSight component
Type is 0x63, Trace Source, Reserved

Peripheral ID[4..0] = hex 00 00 19 71 20
Part is TI SDTI (System Debug Trace Interface)
ROMTABLE [0x20] = 0x0

End of ROM table

ETM TPIU
(XX]
DI DO —\ DI DO

Figure 3, JTAG Scan Chain Example

The technical reference manual [4] lists the modules as the ETM, the Cortex-AS,
the trace port interface unit (TPIU), and the embedded trace buffer (ETB) module. Note
from the listing above that 2 additional modules are identified along with one that is
“unrecognized” because it is “reserved” by the architecture and one that is listed as not
present. The DAPCTL sounds like it may be a DAP control module, but the
documentation does not go into detail about its function. The SDTI (System Debug Trace
Interface) module is described as implementing system trace during debug emulation and
details of its configuration, protocol, data format and function are provided in manual [4].

One other key aspect of the CoreSight™ architecture should be mentioned. The
DAP is an implementation of the ADIvS by way of CoreSight™ DAP-Lite [5]. The
components that make up the DAP-Lite interface to the board/processor are the debug
ports (DP) and access ports (AP). Note that the AP and DP together are referred to as the
DAP. The DAP implements the JTAG-DP which sets up the JTAG connection to the
debugger and host computer.

The JTAG-DP operation is controlled by an IEEE 1149.1 compliant state

machine. The TMS signal that queries the controller is shown as an example in Figure 4.

salecl IR scan

TME=0

TMS=1

Figure 4, JTAG TAP State Machine [2]

The data is sent and received serially. The IR and DR in Figure 4 are the
instruction and data registers respectively. The state machine can access data,
instructions, and perform a reset. The clock signal, TCK, provides the means to step
through the state machine. To load IR values, for example, the controller must be in the
Shift IR state. Data is transferred on each clock pulse via TDI and TDO.

One last point on the JTAG controller needs to be made concerning the ICEPick
module. The ICEPick module allows the controller to select which subsystem the TAPs
are accessible to in multiple processor systems. If a subsystem is powered down for any
reason, such as for power savings, the scan chain would be interrupted and the JTAG
connection would fail. The ICEPick allows the powered down system to be ignored so
the other subsystems can be accessed. The ICEPick also manages the power, clock and
reset for each TAP. Since the DM3730 has a Digital Signal Processor, and other
subsystems, the ICEPick module is included. All accesses to the JTAG signals are

accomplished via the ICEPick module.

FlySwatter

The FlySwatter is the in-circuit debugger. It provides the interface between the
USB port on the host computer and the JTAG connection on the target computer, in this
case the BeagleBoard-xM. A standard 14 pin JTAG connector is provided and matches
up with the 14 pin connector on the BeagleBoard-xM via an adapter made for that
purpose. The adapter is shown in Illustration 2. The adapter converts from the standard

14 pin JTAG layout to the ARM® specific layout on the board shown in Table 1.

10

ARM-14-JTAG TI-14-JTAG
FlySwatter BeagleBoard-xM

VREF 1--2 GND JTAG_TMS 1--2 JTAG _nTRST
JTAG _nTRST 3--4 GND JTAG_TDI 3--4 GND
JTAG_TDI 5--6 GND VREF 5- X6 KEY (empty)
JTAG_TMS 7--8 GND JTAG _TDO 7--8 GND

JTAG TCK 9--10 GND JTAG_RTCK 9--10 GND

JTAG _TDO 11--12 JTAG_SRST N | JTAG_TCK 11- -12 GND

VREF 13--14 GND JTAG_EMUOQ 13- -14 JTAG_EMU1

Table 1, JTAG 14-pin Adapter

An RS232 interface is also provided and supports modem protocols. Both the
RS-232 and USB to JTAG interface utilizes Future Technology Devices International
Ltd. (FTDI’s) FT232 Dual USB UART/FIFO!. The FT232 has two ports, A and B. Port
A is used for the USB to JTAG interface and Port B is for the serial UART. The
FlySwatter provides a standard 14-pin JTAG interface as well as a standard RS232 port
with support for full modem signals. The USB 2.0 standard is supported and it supports a
number of different target system voltages. Though 3.3V appears to the most popular, the
board for this project requires a JTAG connector voltage of 1.8V. The FlySwatter board
is also supported in OpenOCD which provides an interface for it.
The FlySwatter provides the interface for OpenOCD to find the DAP, check for
power and timing information, get the ROM table and compare the peripheral IDs [4].
[lustration 3 shows the Flyswatter as used for this project with the adapter, RS-

232 extender, and JTAG cable installed.

I FTDI manufactures the FT232 dual chip and provides drivers on its website www.ftdichip.com. The
drivers are also included in most of the recent Linux versions.

11

[llustration 3, FlySwatter in Circuit Debugger

Setup

The hardware setup consists of the components listed in Table 2.

Project Hardware

Host Computer (HP 2133 Netbook)

USB Cable

FlySwatter in Circuit Debugger

JTAG 14 Pin Adapter

RS-232 extender

BeagleBoard-xM Target Computer

5V power cord for BeagleBoard-xM

Table 2, Project Hardware

The BeagleBoard-xM has the added advantage of having an RS-232 connector on
the board. Previous versions did not have that available, though the adapter kit supplied

one with the JTAG 14 pin adapter. A protective case was added to prevent damage by
12

physical, or electrostatic, means. The BeagleBoard-xM is shown connected to the
FlySwatter with associated cables in the illustration below.
The host computer is an HP 2133 netbook with Ubuntu Linux 11.10 installed at

the beginning of the project. The overall hardware setup is shown in Illustration 5.

[lustration 5, Overall Hardware Setup

13

Chapter 2: Software
GNU ARM TOOLCHAIN

Compiling code on a host computer to run on a target computer with a different
hardware architecture requires a cross compiler. Particularly for embedded systems,
programming on a host computer can be faster and more convenient. It may also be
necessary in the case where a boot loader and operating system need to be developed for
the embedded system before it can run. The host computer for this project is Linux based
(UBUNTU 10.10). The Linaro ARM cross tool chain (version 4.6.2-14) is an open source
tool chain that was installed with little effort? using “apt-get install gcc-arm-linux-
gnueabi.” Setting the PATH to the “usr/arm-linux-gnueabi/bin” folder then enables use of
the cross compiler in other directories. The tool chain includes the GNU binutils, the
GNU C compiler (gcc), and the glibc library. The tools required for compiling the uboot
file and libncurses (provides capability for an ASCII based GUI) are also needed. Each of
these can be downloaded separately and compiled on the host machine, but unlike other
tool chains such the CodeSourcery G++ Lite toolchain, all of the Linaro toolchain [§]

source is covered by the GNU General Public License (GPL) and is freely available.

BEAGLEBOARD-XM

The BeagleBoard-xM has no flash and boots directly from a microSD card. The
SD card must be setup properly in order for the system to boot and load the Linux
operating system. A boot partition (FAT32 file system format for this project) on the SD
card is required with MLO, uEnv.txt, and u-boot.img files. The ROM code is designed to
detect file allocation table (FAT) format types, so it will not boot from a Linux formatted

partition. The Linux file system is located on a second ext3 partition. The card acts like a

2 In order to get the Linaro toolchain an additional repository must be added (“sudo add-apt-repository
ppa:linaro-maintainers/toolchain”).

14

hard drive since the master boot record (MBR) was created in the first partition during
format. A floppy drive-like configuration is also supported [2].

The Multimedia Card Loader (MMC Loader or MLO) is the image read by the
system read only memory (ROM) for the boot procedure. The ROM code checks for a
valid MBR signature of 0xAAS5 at offset 01FEh. Once found and other requisite
conditions are checked successfully, the ROM code performs a translation of each FAT
entry corresponding to the MLO file and places the results in a buffer. The booting
procedure then refers to the buffer for accessing the file [2]. The general purpose memory
controller (GPMC) is used to access NAND such as that on earlier versions of the
BeagleBoard. Instructions for accessing the NAND via the GPMC are contained in the
MLO file. The MLO file then directs boot up via the boot loader contained in the file u-
boot.img. The boot loader then passes system information to, and executes, the kernel.

The MLO file can be downloaded directly from a number of sources available via
a quick Google search or the one supplied with the board can be used. Since an
understanding and hands-on application of the software implementation is desired, the
MLO file was compiled from source [8]. The source code and patches were downloaded
and compiled using the Linaro Arm tool chain. The u-boot.img file is included in the

source and is also produced during compilation.

SD Card Setup

As noted previously the ARM® Cortex-A8 on the BeagleBoard-xM requires two
partitions, a FAT and an ext3. GParted is an open source disk partitioning tool that has a
graphical user interface (GUI). Gparted was used to set up the boot and ext3 partitions on

a 4MB SD card. The boot partition size selected is 65MB and the rest was allocated to

15

ext3 partition, about 3.7GB, for the file system. The MLO and u-boot.img were then
copied to boot partition along with a uEnv.txt file.

A Dboot.scr file was supplied on the SD card that came with board when
purchased. It contains for the boot parameters to be used. More recent versions of u-boot
reference the uEnv.txt file instead of the boot.scr. To change parameters using boot.scr a
new image would have to be made using a boot.cmd text file for each set of
modifications. The uEnv.txt file is plain text and can be changed easily. This saves time
and eliminates several additional steps. This is particularly helpful when trying out
different parameters to observe the effects on the system, even when they are as simple as
changing the display resolution which was modified for this project. The compressed
kernel image file and address to begin loading the kernel are also specified here.

The last file to go onto the boot partition is the compressed Linux kernel image,
zlmage which is produced by compiling the kernel. The second partition receives the root
file system and additional Linux modules. The modules were installed in a separate
directory and compressed during compilation (a script file was used from reference [10]
with minor changes). The file system and module were then uncompressed to the rootfs
partition of the SD card for use on the target board.

There are some additional tools required for successful setup of the SD card to go

into the target computer. “u-boot-tools”

The Linux Kernel

Cross compiling the Linux kernel can be a daunting task. The latest kernel
provides support for arm cores, but the patches and modules for the OMAP architecture
must also be installed. Using the “git” clone, checkout and commit functions, the latest

kernel was obtained via “git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git”

16

and development source from reference [10]. The version at the time of this report is
3.2.15-x8. The patches were then collected and merged prior to cross compiling the
kernel. An example of the kernel patches for the OMAP3 is shown in Table 3.

Parameters in the make file must be verified to include the architecture for the
target of the kernel, ARM®, and the direction to perform a cross compilation along with a
location of the cross compiler tools, in this case the GNU ARM compiler “gcc-arm-linux-
gnueabi.” The kernel configuration is specified up front and can be edited one of several
ways. The “menuconfig” option provides a graphical interface to set the compiler options
and is useful when trying to avoid errors from mistakes made when typing on the
keyboard. The default selections are adequate with the exception of kernel debugging.
This is normally not selected, but needed for this project. It adds some time to the
compilation process, but produces a “vmlinux” file in addition to the compressed kernel
file “zImage.” The vmlinux file contains the linux kernel and the kernel symbol table.
The symbol table is required on the host computer to debug the target computer.

Once the kernel is compiled, the zImage file from ‘“/KERNEL/arch/arm/boot” is
copied to the boot partition of the SD card. Getting all the right files to the correct
locations on each respective partition for the target board SD card is important. The MLO
file must be the first file copied to the boot partition, otherwise the target will not boot.

The next step is removing the SD card from the host and placing into the target
computer. As already noted, the FlySwatter interface has a second port for the serial
connection on the BeagleBoard-xM. Using Minicom on the host computer with the serial
port set to 115200, 8N1 allows all the boot messages to be seen from the target computer.
For the project it was beneficial to use a serial-to-usb converter and a Microsoft Windows
based machine running Tera Term VT. This reduced the number of open windows on the

host computer and allowed better access to the host computer functions.
17

Description Module Name Owner
1 omap: serial: fix non-empty uart fifo read abort Platform Vikram Pandita
2 | OMAP3 : Enable TWL4030 Keypad for Zoom2 and Gaia Manjunath GK
Zoom3 boards
3 Zoom?2/3:Update hsmmc board config params HSMMC Madhu
4 omap3: zoom?2/3: make MMC slot work again HSMMC Anand G
5 | Correcting GPMC CONFIG1 DEVICETYPE NAND NAND Vimal
6 | Add NAND Lock/Unlock feature NAND Vimal Singh
7 OMAP: ZOOM?2: Correcting key mapping for few keys Keypad Vimal
8 omap3: pm: Add T2 Keypad as a wakeup source Keypad Teerth
9 | omap: serial: fix coding style indentation Platform Vikram Pandita
10 | omap: zoom3: enable ehci support Platform Vikram Pandita
11 | OMAP3 : Fix I2C lockup during timeout/error cases 12C Manjunath
12 | ARM: OMAP3: PM: T2 keypad wakeup for Zoom2 Power Lesly AM
13 | OMAP3: add support for 192Mhz DPLL4M?2 output Platform Vishwa
14 | OMAP3: introduce DPLL4 Jtype Platform Vishwa
15 | OMAP3: Correct width for CLKSEL Fields Platform Vishwa
16 | OMAP3: Introduce 3630 DPLL4 HSDivider changes Platform Mike T
17 | OMAP3630: Clock: Workaround for DPLL HS divider Power Vijay
limitation
18 | 3630 DVFS Power Romit
19 | Introducing gpmc nand.c for GPMC specific NAND ini NAND Vimal
20 | OMAP SDP Introducing board sdp flash.c for flash NAND Vimal
21 | OMAP3: Add support for flash on 3430SDP board NAND Vimal
22 | Zoom3: Defconfig update Platform Manjunath
23 | PM debug: Fix warning when no CONFIG DEBUG FS | Power Sergio
24 | OMAP2/3 PM: Adding power domain APIs for reading Power Thara
the next logic and mem state
25 | OMAP3 PM: Defining .pwrsts_logic ret field for core Power Thara
power domain structurePower
26 | OMAP: HWMOD: Add support for early device register | Power Thara
into omap device layer
27 | FIX OMAP3:McBSP poll read and write for OMAP3 McBSP Rafiuddin Syed

Table 3, OMAP Kernel Patches [11]

The output from the serial target computer serial is shown in I1lustration 6 below.
The serial port, board name, and the uEnv.txt file can be seen with the “Loaded
environment from uEnv.txt” message that follows. The zImage file is then read and the
message “Starting kernel...” appears. The rest of the messages are associated with
booting the kernel and show up on the serial port just as they would on a connected

computer monitor for this, or any other Linux machine.

18

¥ COM7:115200baud - Tera Term VT N -0 x|

e File Edit Setup Control Window Help

—-Boot SPL 2012.04-rcil-dirty C(Apr 14 2012 - 14:57:19)
exas Instruments Revision detection unimplemented
MAP SD/MMC: @

imed out in wait_for_bh: I2C_STAT=1000

eading u-hoot.img

eading u-hoot.img

—-Boot 2012.084-rci-dirty (Apr 14 2012 - 14:57:19)

MAP3630,3730-GP ES1.1, CPU-OPP2, L3-165MHz, Max CPU Clock 1 Ghz
MAP3 Beagle board + LPDDR/NAND

ready
RAM: 512 MiB
AND: @ MiB

OMAP SD/MMC: @
Warning — readenv() failed, using default environment

serial

serial

serial

eagle xM Rev A

o EEPROM on expansion hoard

o EEPROM on expansion bhoard

ie ID #0c1800011ff00000A15739ehBhB2a01f
et = Net Initialization Skipped

o ethernet found.

it any key to stop autoboot: @

he user hutton is currently NOT pressed.
D/MMC found on device @

eading uEnv.txt

850 bhytes read

oaded environment from uEnu.txt
Importing environment from mmc ...
eading zImage

002344 bytes read
ooting from mmc ...

tarting kernel ...

ncompressing Linux... done, booting the kernel.
[0.80008A]1 Booting Linux on physical CPU @

[0.000000]1 Initializing cgroup subsys cpuset

[0.000000]1 Initializing cgroup subsys cpu

[0.00000A]1 Linux version 3.2.15-x8 (JlmEJxm—laptop) {gcc versio
tu/Linaro 4.6.2-14ubuntu2™ppald > #1 SMP Sun Apr 15 02:10:05 CDT 20
[0.0000001 CPU: ARMu? Processor [413fc@82] revision 2 (ARMu?),
[g.GBBBGB] CPU: PIPT ~ VIPT nonaliasing data cache, UIPT aliasi
n cache

[0.000008B81 Machine: OMAP3 Beagle Board

[0.000000]1 Beagle expansionhoard: none

[0.00000A] Beagle second expansionhoard: none

[0.0000AA]1 Reserving 12582912 bytes SDRAM for URAM

[0.000000]1 Memory policy: ECC disabled. Data cache writeback

[0.000000]1 OMAP36308 ES1.1 (l2cache iva sgx neon isp 192mhz_clk
L 0.000008]1 Clocking rate (Crystal/Core/MPU)>: 26. 0/400/680 MHz

L 0.0000001 PERCPU: Embedded 8 pages/cpu (GcBd02000 s10784 »8192

|

[llustration 6 Port, Target Board Boot Screen at Serial Port

The DVI port is enabled on the board and the display settings were adjusted to

accommodate an HD monitor that was available for the project. The kernel boots

successfully and commands are able to be entered via a connected keyboard or the serial

interface. The “uname —a” and “Isb_release —a” commands were run to demonstrate the

results and are shown in the terminal screen in [llustration 7.

19

1VU.3387451 EXT4-fs (mmchlkVUpZ): re-mounted. Opts: <(nulld
10.5496521 EXT4-fs (mmchlk@p2)>: re-mounted. Opts: errors=remount-r

L
[
[13.7360831 smsc95xx 1-2.1:1.8: eth@: link up, 188Mbps, full-duplex
. lpa Bx45E1

[25.3997191 sshd (872): /proc/872/0oom_adj is deprecated, please use
/proc/872/00om_score_adj instead.

ebian GNU/Linux 6.8 devel tty02

evel login: root

assword:

ast login: Tue Apr 17 16:24:45 CDT 2012 on ttyl

inux devel 3.2.15-x8 #1 SMP Sun Apr 15 02:18: 05 CDT 2012 armuv?l

he programs included with the Debian GNU/Linux system are free softwa

t he exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

ebian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
| ermitted by applicable law.
ootBdevel:"# uname -a
Linux devel 3.2.15-x8 #1 SMP Sun Apr 15 ©2:18:85 CDT 2812 armv?1l GNU/L
inux
Eproot@devel:"# 1sh_release -a
o LSB modules are available.
istributor ID: Debian
escription: gegian GNU/Linux 6.08.4 (squeeze)
.8.4

elease
"rootl’.‘deuel ~“t . j

[llustration 7, Terminal Screen at Debian Prompt

A few “tweaks” needed to be made once the kernel was running. In order to get
an Ethernet connection working, modifications were made to the
“/etc/network/interfaces” file. “auto eth0” and “eth0 inet dhcp” appended to the file

enabled the internet connection.

OPENOCD

OpenOCD?3 is an abbreviation for open on-chip debugger. It provides the
capability to program, debug, and boundary scan test remote target embedded platforms
[7]. OpenOCD communicates with the target via a hardware adapter such as the
FlySwatter used here. Compilation and installation is on the host computer and the
drivers for the debug adapter must be included during compilation. The FTDI drivers
mentioned previously support this requirement for the FlySwatter and provide the
interface to the JTAG connector on the target board.

The latest version of the OpenOCD software at the time of this writing is 0.5.0

and is the version used for this project. In order to get the latest version the source was

3 The OpenOCD software is covered under the GNU General Public License and is available from the
Sourceforge website: http://sourceforge.net/projects/openocd/files/openocd/

20

[P

downloaded and built on the host computer git clone
git://openocd.git.sourceforge.net/gitroot/openocd/openocd.” Some additional drivers and
tools were required for the OpenOCD configuration.

1. pkg-config

a. Obtained from “pkgconfig.freedesktop.org/releases/” [13]

b. This is tool allows compiler options to be entered on the command line
thus preventing them from being hard coded. It is helpful since there
are a multitude of options available and updates occur often.

2. libusb library

a. Obtained using “apt-get install libusb-dev”

b. This is an open source C library needed for the FTDI open source
driver

3. libftdi
a. Obtained using “apt-get install libftdi-dev”
b. The open source FTDI FT232 driver

4. libtool

a. Needed for compiling OpenOCD since it used in the open source
provided scripts

b. Provides an interface for using shared libraries for consistency

5. Texinfo
a. Installed using “apt-get install texinfo”
b. Provides format used for the documentation for OpenOCD
In order to install OpenOCD the following commands were run to get the final

install as shown in Table 4:

21

Command

Description

./booststrap

configure the autoconf

./configure —enable-maintainer-
mode —enable-ft2232_libftdi

to configure the ftdi driver (the
open source version)

Make Compile OpenOCD
Installation in applicable
Make install directories

Table 4, OpenOCD Installation

To run the software two configuration files are needed; one for the FlySwatter and
one for the BeagleBoard-xM. Though the —xM is OMAP compliant, the processor
architecture is different, so it will need to reference a different target chip type. The
“ti_beagleboard_xm.cfg” file references the configuration file for the dm37x,
“amdm37x.cfg.” This configuration file contains the specific information for the —xM
chip set as well as information for the am35x. The TAPs for JTAG are set up in this file
and follow the convention specified in the DM37x technical reference manual [2]. The
TAPs must be added to the scan chain in order such that the TAP closest to TDO comes
first. The dm37x processor SRAM begins at address 0x4020 0000. The configuration file
reserves the first 16K starting at that address for use by the OpenOCD software.

OpenOCD processes the configuration files input on the command line when it
starts: “openocd —f interface/flyswatter.cfg —fti_beagleboard xm.cfg.”

The JTAG setup is accomplished via the target configuration file “amdm37x.cfg.”
The ICEPick module is referenced as “icepick.cfg” and will be the last in the JTAG chain
since it is closest to TDI. The ICEPick configuration file selects the JTAG router and

sets up control of the data and instruction register scans in the configuration file.

22

The target configuration file finds the chip type (dm37x) and establishes the
expected IDCODE for the JRC. In this case it is 0x1b89102f. This is validated by the
“scan_chain” command in OpenOCD. As shown in Illustration 8, dm37x.jrc is enabled
and the IDCODE matches the expected IDCODE. The adapter frequency is set and then
the chain is set up. OpenOCD requires all devices to be declared using the “jatg newtap”

command and, as mentioned earlier, they must be declared in order.

Illustration 8, Scan Chain Results

The code snippet below illustrates the TAP declaration on line 1 followed by the
last declaration shown as line 2 for the ICEPick.

1 jtag newtap dm37x arm2 -irlen 4 -ircapture Ox1 -irmask 0xOf -disable

2 jtag newtap dm37x jrc -irlen 6 -ircapture Ox1 -irmask Ox3f Ox1b89102f

The irlen number represents the length of the instruction register in bits. The
disable parameter is used to flag a TAP that is not part of the scan chain after a reset via
TRST or by entering the RESET state on the state machine. The ircapture is the bit
pattern loaded into the JTAG SR. This is for entering the capture IR state as shown in
Figure 4. Per the JTAG specification the two least significant bits of this value should be

one. The irmask value is used with the ircapture to as a check to verify the scans are

23

working. If the TAPs are not configured, OpenOCD has an auto TAP discovery feature.
This was attempted by the author without success.

Once the description is completed in the target configuration file, the TAPs are
enabled. Several TCK cycles are then sent to ensure the things are running followed by a
“tapenable” command. The next section establishes the work area for OpenOCD as
discussed earlier at address 0x420 0000 with 16K reserved for the program.

1 S_TARGETNAME configure -work-area-phys 0x40200000 -work-area-size

0x4000

The JTAG clock is then slowed down to ensure that it will function with slowest
processor core clock and then a software restart is completed by writing a Ob10 to address
0x4830 7250 and is shown in table 3-452 of reference [7]. The target is then reinitialized
with the “amdm37x dbginit” function and the adapter speed is set to 100 kHz.
“interface.c” contains the information and instructions for specifying JTAG state
transitions (see Figure 4). A case structure is provided for each state, Reset, Idle,
DRSHIFT, DRPAUSE, IRSHIFT, and IRPAUSE.

The “cortex a.c” file sets up target polling, breakpoints, read and writes, the
processor mmu, and the virtual to physical memory address structure. Virtual address
space is separated between user and kernel space with addresses from 0x0000 0000 to
Oxbfff ffff as user space and from 0xc000 0000 to Oxffff fftf for supervisor address mode.

The ADIVS interface mentioned previously is implemented in “arm adi v5.c.”
The DAP, comprised of the DP and the AP is setup with the JTAG-DP and the MEM-AP
for accessing memory registers.

Once OPenOCD has started a separate terminal window is opened in order to
connect to the OpenOCD session via “telnet localhost 4444.” From the prompt the

“scan_chain,” “dap info,” register information and other commands can be issued.
24

GNU DEBUGGER AND INSIGHT

OpenOCD provides the capability to use a GDB server to monitor and control
program execution. Insight [16] is a graphical environment integrated with GDB and is
released under the terms of the GNU GPL. Insight has a program start window where the
source code can be viewed, and watch, stack, register, memory browser and GDB
terminal windows. It provides the ability to have multiple windows open at the same
time, which is huge advantage when comparing registers, memory and program
instructions. Though other alternatives are available this choice provided the most hassle
free option for the debug environment and required only a small amount of work to set
everything up.

The Insight software was downloaded and compiled for use with ARM®
architecture. Once OpenOCD is running Insight is started with “arm-linux-gnueabi-
insight” and then a connection made to the target; “target remote localhost :3333.” This
can also be done with the “Run” menu in the source window.

With all the hardware connections made, the host and target computers running,
and the connection established via OpenOCD, initialization is accomplished with the
“amdm37x_dbginit dm37x.cpu” command and quick check of the scan chain and
registers verifies everything is working properly. Insight is then started and connected to
the target. From Insight the symbol information from the vmlinux file is loaded and the
registers and memory can be viewed. The assembly code with the symbol information
appears in the source window.

The target must be halted to obtain register and memory values. When the target
is running, commands can be processed via the serial connection to the BeagleBoard or a
keyboard if connected. After the processor is halted via the JTAG connection, a quick

check of the target demonstrates that commands are no longer accepted. The “monitor

25

resume” command restores the running target machine again meaning that commands are
passed through the JTAG chain to the processor as expected. Cross checking the register
values between the OpenOCD window and the Insight register window also validates that
the correct values are being passed to the debugger. The initial insight window shows the
beginning of the Linux kernel in “head.s” (the start of the kernel). “ENTRY (stext)”
forces the SVC processor mode. The lookup for the processor and architecture type are

(13

performed prior to the “ create page tables” function. The MMU is then setup and
enabled. The OpenOCD connection window shows the MMU as “enabled” if connected

to the target with a running kernel as shown in Illustration 9.

e e e e —_—
File Edit View Search Terminal Help
Escape character is '~]'. g

Open On-Chip Debugger

> amdm37x_dbginit dm37x.cpu

> halt

number of cache level 2

cache 12 present :not supported

mpdir not in multiprocessor format

target state: halted

target halted in ARM state due to debug-request, current mode: Superviso
r

cpsr: 8x680080d3 pc: BxeBd2fccc

MMU: enabled, D-Cache: enabled, I-Cache: enabled Ef

> 1

[lustration 9, OpenOCD "halt" Window

The “ mmap_switched,” which holds the address of the “start kernel” function

is then run (see Illustration 10 and Illustration 11 below).

26

1]]
nain,c] ISRC+HST‘1 x|
285 #ifdef CONFIG_DEBUG_PAGEALLOC S
286 int __read_mostly debug_pagealloc_enabled = 03
287 #endif
afi]
= FE9 S{tatic int __init init setup(char *str)
- 280
291 unsigned int i
282 —
- 293 execute_command = str;
284 Jx
295 # In case LILO is going to hoot us with default command line,
29 % it prepends "auto" before the whole cndline which makes
287 * the shell think it should execute a =script with such name,
208 *,-’SD we ignore all arguments entered _before_ init=..., [MJ]
289 ¥
300 for (1= 13 1 < MOX_INIT_ARGS: i++)
- 301 argy_init[i] = MULL;
302 return 1;
303}
304 _ setup("init=", init_setup);
305
306 gtatic int __init rdinit_setup(char *str) 7
u (Oxcl¥7adee <start_kernel>: beq 0xc077adad <parse_early paramntZ8> A
- Oxc07724d0 <start_kernel+d>: ldr r3, [rh, #-4] =
- Oxc077addd <start_kernel+8>: 1ldr r0, [r4, #568]
- OwcO77a4d8 {start_kernel+1Z:: Chpy r8, ra
- OmcO77adde <start_kernel+l&r: movce B, rd
- Omcl77adel <start_kernel+20r: chg rQ, #1 3 Oxl
- Ouc77aded <start kernel+24:: bhi Oxc0772448 <do earlu parant+lds: vl

[llustration 10, "start kernel" in "main.c"

M r | oot o

head, 5 >| |stext =| [sRE+AEM v]
82 X
83 THUMB{ adr rd, BSYM{1f) 3} @ Kernel iz always entered in ARM,
84 THUME(bw rg)] @ If this iz a Thumb-2 kernel,
33 THUME(.thumb) @ =witch to Thumbd now, =
86 THUMB(1:
27
- 88 setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r@ @ ensure svc mode
&8 @ and irgs dizabled
- a0 [ged pls, 0, 9, 0, o0 @ get processor id
- g bl __lookup_processor_type @ rS=procinfo r8=cpuid
- 52 novs r10, rS @ invalid processor (r8=0)7
93 THUME(it eq) @ force fixup-able long branch encoding
- B4 hen __errar_p @ yes, error 'p'
=l
95 #ifndef CONFIG_XKIP_KERNEL
- w7 acr ra, 2f
- &R Idmia r3 frd R £
B QxcO008000 <stext:: mst CPSR_c, #211 ;5 Owd3 A
- OxcO00B004 <stext+d>: nrc 18, 0, r3, cro, oo, {0}
= OxcO00B008 <stext+E>: bl 00542108 <__ lookup_processor_types»
- Owc000B00c <stewt+l2:: MoYs 10, r5
- Oec000B010 <stext+lf>: heg 0054221 <__error_p>
- Oxc0008014 <stext+20:: add r3, po, #48 5 030
- OxcO00B01E <stext+24>: ldm r3, {rd4, rs}
- OxcO00B01c <stext+28r: sub rd, rd, rd
= OxcO00B020 <stext+3Z2r: add rg, ra, rd
- OwcO00B024 <stewt+dhs: bl QncO0082dc <__vet_atags>
- Owc000B028 <stewt+d0:: bl Q0772000 <__fikup_smo>
- Owc000B02c <stewt+dds: bl Q0008209 <__fisup_pv_table>
= OxcO00B030 <stewxt+dds: bl 00008054 <__create_page_tables»
- QHcOO0B034 <stext+b2x: Lo =, [po, #12] 5 OwecO00B043 —
- DHcO00B038 <stext+5a:: add lr, po, #4 5 Ox4
- OxcO00B03c <stext+blr: moy rg, rd
= M NNRENAN cotawt 4R arid ne o pdn #1R 0 Mkl f
Program not running. Click on run icon to start. c0008000| B8

Ilustration 11, Insight "head.s" Window

27

Register and memory values update and are viewed in the debug window
(Illustration 12) and breakpoints can be set, however stepping through the kernel is still
problematic. The connection often drops or loses communication across the JTAG
connection without warning. Persistence is required and entering commands via the
OpenOCD window or the Insight console window is needed. Illustration 12 shows the
result of one session where the kernel ran and was halted in the kernel timekeeping
function.

Being able to see the real time updates of the registers and memory save time and
make the debugging task easier. The GUI allows all the locations of interest to be quickly
and simultaneously displayed so that their status is immediately understood. This adds
efficiency and reduces the time that would otherwise be required to issue separate

commands and scroll through results to see how the information is changing.

LimekeEpingeasouTCedVinG P =1|12

File PBun View Control Preferences Help

XGOS A8 6 sy Find:l—l
|t1mekeepiﬂg,: | |getnstimem‘dag x| |SRE+HSM |
606 ¥ Takes a timespec offset measuring a suspend interval and properly
607 */adds the zleep offset to the tinekeeping varisbles,
608
6809 S(tatlc void __timekeeping_inject_sleeptime(struct timespec #*delta)
- 610
= G if (Itimespec_valid(delta
612 pr itk (KERH_UARNTI
613
614 return;
615)
616
617 wtine = timespec_scd (wtim
IR wall tn mntanic = tiwes
H]
- xcQ0BL5S <getnstineofdau+dsy: bly r3
» Ovc006c15e <getnstinentoag+da>: ldrd r2, [r5, #5]
- OucD0B160 <getnstinenfoag+ds: ld~ r12, [rh, #50] =
- 04c006c164 {getmstinenfdagtl00>: subs 0, r0, r2
- OxcO06d168 <(getnstimeofdag+104>: » "
- Oxc06d16c <getnstimecfdautl08>: | 2Lz wlLany =
- Oxc006d170 <g fragt112> o reaisters
Lo - RS 0x8077adcc 2155324620
covedse]| 611 0x0]
OwG461 21601
02320010 4197580816
OwclB65FE0 3716571008
fddresses | N OclE804120 3732947232
— - - 008570 3229996892
Address |0xc006d15d =i Target is LITILE endizn Oxc07d20c0 3279425256
g 4 3 C GEEN Sracmtaoon " ariassann
Owc006d15e | Onelc520ds | 0xeS96c03c | 0ve0S00002 | Oxedci1nod |, P o
Owc006d16C | Ox21c521d0 | 0we0022000 | 020033001 | 0x=0810087 |. OwFEFFROCE 4294947016
OncO0Rd17e | 0%e5963004 | 0xe0Z1138c | OneblaZebc | OxelalZ000 |, Ox10c3357d 231360309
(o L e o | e | e s 50 OwdgEESTEO DdBe5 760
Owc006d18C | 021203001 | 0wFE7FFOSF | 0xe5971000 | 0421510008 |. " et 63584
Owc006a18e | Onlsffife? | 0ve5945004 | 0ne3a07000 | OxeS584c000 |, oo Oxc00Rd 155 OxcD0Bd150
Owc006d1ac | 0423209000 | 0we0920005 | 0xeG9fE048 | Oxe0a3lfch |. 00 o
(OMo00Blbs | 0#e507E044 | 0xalad300a | (real00002 | Oxe0BO0OE U4B0000013 1610612755
Owc00Ed1ee | 0422833001 | 0we0a11008 | OxelS70001 | 0401560000 |.

[lustration 12, Insight Debug Window

28

Chapter 3: Problems and Forward Work

There are still a few issues that should eventually be addressed. There are a
significant number of programs, hardware, and parameters that work together. The
current setup is difficult in practice and sometimes displays erratic behavior. The
connection to the target computer will drop out and the symbol information will
sometimes show up out of step with the target machine.

Small program files are able to be directly loaded to the target machine. When an
attempt was made to load the Linux kernel remotely, the “head.text” and “.text” sections
loaded successfully. Other sections would fail. This appears to be due to a memory
address failure and further research provided an interim solution. By resetting and
initializing the CPU, the vmlinux file would load with an offset specified as demonstrated

in [1lustration 13.

0]
@)

SISO /INY9Y)

(gdb) file vmlinux

(gdb) target remote ;3333
Remote debugging using :3333
0x402009¢c8 in ?7 (O

(gdb) load vmlinux Oxc0000000

Loading section .head.text, size 0x324 lma 0xB80008000
Loading section ,text, size 0x54b78c lma 0x80008340

Loading section .rodata, size Ox1bdOb9 lma 0xB80554000
Loading section __bug_table, size Ox9ecd lma 0x807110c0
Loading section ,builtin_fw, size O0x90 lma O0xB8071af84
Loading section __ksymtab, size Ox6d50 lma O0x8071b014
Loading section __ksymtab_gpl, size Oxd41c8 lma 0xB80721d64
Loading section __kecrctab, size 0x36a8 lma Ox80725f2c
Loading section __kecrctab_gpl, size 0x20ed lma 0x807295d4
Loading section __ksymtab_strings, size Ox18d6c lma 0xB8072b6b8
Loading section __param, size Oxb20 lma 0x80744424

Loading section __modver, size Oxbc lma 0x80744fd4

Loading section ,ARM,unwind_idx, size Ox2ada0 lma 0x80745000
Loading section .ARM,unwind_tab, size 0x92ac lma 0x8076fdal
Loading section .init,text, size 0x32688 lma 0x8077a000
Loading section .exit,text, size Oxlbbc lma Ox807act88
Loading section .init,arch,info, size 0x690 lma 0xB807ae244
Loading section ,init,tagtable, size Ox48 lma 0xB807aeBdd
Loading section .init,smpalt, size Ox79c8 lma 0xB807ae9lc
Loading section .init.pv_table, size 0x2d0 lma 0xB807h62ed
Loading section .init.data, size Ox15ccc lma 0xB807b65h8
Loading section .data..percpu, size 0x2a20 lma 0xB807cd000
Loading section ,data, size Ox68ff0 lma Ox807d0000

Loading section .notes, size 0x24 lma OxB0838ff0

Start address Oxc0008000, load size 8578985

Transfer rate: 11 KB/sec, 15799 bytes/write,

(zdb) |

[lustration 13, Loading the Kernel
29

This method requires further work to set up a boot loader and initialization file
that will allow a remote load of the kernel to the correct address in RAM and run it.
Lastly, a script file with a means to acknowledge timing and connection successes would
simplify and shorten the process required to get to the debugging screen in Insight with
one command or click. Eclipse may work for this task as well, but would require a

potentially large amount of setup and configuration.

30

Chapter 4: Conclusion

This project demonstrated one hardware and software combination for a toolchain
to debug the Linux kernel on an ARM® Cortex-A8 processor via the JTAG connection.
Components and their connections as well as operation of the software to support this

project were explained.

31

Appendix

BeagleBoard-xM Features

Feature
Processor Texas Instruments Cortex A8 1GHz processor
POP Memory Micron 4Gb MDDR SDRAM (512MB) 200MHz

Power Regulators

Audio CODEC

PMIC TPS65950
Reset
USB OTG PHY
14-pin JTAG GPIO Pins
Debug Support
UART 3 LEDs
PCB 3.1”x3.0” (78.74 x 76.2mm) 6 layers
. Power, Power Error 2-User Controllable
Indicators

PMU

USB Power

HS USB 2.0 OTG Port

Mini AB USB connector

TPS65950 I/F

SMSC LAN9514 Ethernet HUB

USB Host Ports 4FS/LS/HS Up to 500ma p.er Port if adequate
power is supplied
Ethernet 10/100 From USB HUB
Audio Connectors 3.5mm 3-5mm
L+R out L+R Stereo In
SD/MMC Connector MicroSD
User Interface 1-User defined button Reset Button
Video DVI-D S-Video
Camera Connector Supports Leopard Imaging Module
Power Connector USB Power DC Power
Overvoltage Protection Shutdown @ Over voltage
Power (5V & 1.8V) UART
Main Expansion McBSP McSPI
Connector 12C GPIO
MMC2 PWM
2 LCD Connectors Access t;;r:IaT: ;TESLIEE control 3.3V, 5V, 1.8V
Auxiliary Audio 4 pin connector McBSP2
Auxiliary Expansion

MMC3

MMC3,GPIO,ADC,HDQ

32

References

[1] beagleboard.org, "BeagleBoard-xM Rev C System Reference Manual," 2010.

[2] ARM Limited, Cortex A-8 Technical Reference Manual, Revision: r3p0, 2006-2008,
p. 758.

[3] ARM Limited, ARM Debug Interface v5 Architecture Specification, 2006.
[4] ARM Limited, CoreSight Architecture Specification, v1.0, 2004-2005.

[5] WikipediA, "Application Binary Interface," Wikimedia Foundation, Inc., 11 April
2012. [Online]. Available: http://en.wikipedia.org/wiki/Application binary interface.
[Accessed April 2012].

[6] J. Masters, "Prorting Linux," WordPress Entries, 5 June 2011. [Online]. Available:
http://www.jonmasters.org/blog/category/general/linux-kernel/. [Accessed March
2012].

[7] Texas Instruments, AM/DM37x Multimedia Device Technical Reference Manual,
Version O, 2012.

[8] Tin Can Tools, "BeagleBoard Adapter Kit," 2012. [Online]. Available:
http://www.tincantools.com/product.php?productid=16144&cat=0&page=1&featured.
[Accessed 2012].

[9] ARM Limited, CoreSight(TM) DAP-Lite Technical Reference Manual, ARM
Limited, 2006-2008.

[10] T. Bauermann, "Toolchain Working Group," WorkingGroups/ToolChain, 9 April
2012. [Online]. [Accessed April 2012].

[11] DENX Software Engineering, "U-Boot Source Code," DetlevZundel, 19 October
2011. [Online]. Available: http://www.denx.de/wiki/U-Boot/SourceCode. [Accessed
March 2012].

[12] R. Nelson, "BeagleBoard wiki," 2012. [Online]. Available:
http://eewiki.net/display/linuxonarm/BeagleBoard#. [Accessed March 2012].

[13] Media Wiki, "OMAPpedia Patches Accepted," Creative Commons Attribution-Share
Alike 3.0 license., 25 May 2010. [Online]. Available:
http://omappedia.org/wiki/Patches Accepted. [Accessed 2011 March].

[14] S. Oliver, O. Harboe, D. Ellis and D. Brownwell, Open On-Chip Debugger:
OpenOCD User's Guide, Boston: Free Software Foundation, 2011.

[15] freedesktop.org, "Index of / releases," 28 May 2010. [Online]. Available:
http://pkgconfig.freedesktop.org/releases/. [Accessed March 2012].

[16] K. Seitz, J. Ingham, I. Taylor, T. Tromey and E. Zannoni, "The GDB GUL" 19 July

2009. [Online]. Available: http://sources.redhat.com/insight/index.php. [Accessed
Februray 2012].

33

Vita

Warren Clay Grant has a Bachelor of Science in Information Technology from the
University of Phoenix and an MBA from Regis University. He is a graduate of the Navy
Nuclear Power School, Navy Nuclear Prototype training, and a qualified Submariner. He
worked in the Department of Energy’s nuclear weapons complex at various sites across
the country before coming to work at the Johnson Space Center for NASA in Houston,

Texas.

Permanent email: wcgrant2@gmail.com

This report was typed by Warren Clay Grant.

34

