
Copyright

by

Ravishankar Mathur

2012



The Dissertation Committee for Ravishankar Mathur
certifies that this is the approved version of the following dissertation:

An Analytical Approach to Computing Step Sizes

for Finite-Difference Derivatives

Committee:

Cesar A Ocampo, Supervisor

David G Hull

Wallace T Fowler

Belinda Marchand

Juan Senent



An Analytical Approach to Computing Step Sizes

for Finite-Difference Derivatives

by

Ravishankar Mathur, B.S.A.A.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2012



Dedicated to my wife Tajel; may she never have to go through something like

this again.



Acknowledgments

To Dr. Ocampo and Dr. Howell: you gave me second chances, and your

teachings sparked and continuously reaffirmed my love for theory and analysis. Dr.

Ocampo, you unquestioningly supported me through my search for a dissertation

topic about which I could be passionate, and I cannot thank you enough for that.

I hope to nurture independent creative thought in others, the way you have in me.

To my wife Tajel: you met me when graduate school was taking over my

life, and I can’t tell you how much your unending love and support has helped

me get through it. You’ve taught me the definition of the word ‘patience’, and I

hope I can eventually understand it as well as you do.

To my mother and father Jyoti and Aditya: you taught me the discipline

required to complete this degree. To have parents who truly understand what one

is going through is invaluable, and for that I am thankful every day.

To J.P. Munoz: you were the first friend of mine accomplish the trifecta

of a wedding, a Ph.D., and a new career, all within one year. You taught me by

example how to handle that without going crazy. Or at least, completely crazy.

Finally, to George Davis and Everett Cary of Emergent Space Technologies:

thank you for being so understanding and supportive of my dissertation time

requirements.

v



An Analytical Approach to Computing Step Sizes

for Finite-Difference Derivatives

Publication No.

Ravishankar Mathur, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Cesar A Ocampo

Finite-difference methods for computing the derivative of a function with

respect to an independent variable require knowledge of the perturbation step size

for that variable. Although rules of thumb exist for determining the magnitude

of the step size, their effectiveness diminishes for complicated functions or when

numerically solving difficult optimization problems.

This dissertation investigates the problem of determining the step size that

minimizes the total error associated with finite-difference derivative approxima-

tions. The total error is defined as the sum of errors from numerical sources

(roundoff error) and mathematical approximations (truncation error). Several

finite-difference approximations are considered, and expressions are derived for

the errors associated with each approximation. Analysis of these errors leads to

an algorithm that determines the optimal perturbation step size that minimizes

the total error.
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A benefit of this algorithm is that the computed optimal step size, when

used with neighboring values of the independent variable, results in approximately

the same magnitude of error in the derivative. This allows the same step size to be

used for several successive iterations of the independent variable in an optimization

loop. A range of independent variable values for which the optimal step size can

safely remain constant is also computed.

In addition to roundoff and truncation errors within the finite-difference

method, numerical errors within the actual function implementation are also con-

sidered. It is shown that the optimal step size can be used to compute an upper

bound for these condition errors, without any prior knowledge of the function

implementation. Knowledge of a function’s condition error is of great assistance

during the debugging stages of simulation design.

Although the fundamental analysis assumes a scalar function of a scalar

independent variable, it is later extended to the general case of a vector function

of a vector independent variable. Several numerical examples are shown, rang-

ing from simple polynomial and trigonometric functions to complex trajectory

optimization problems. In each example, the step size is computed using the al-

gorithm developed herein, a rule-of-thumb method, and an alternative statistical

algorithm, and the resulting finite-difference derivatives are compared to the true

derivative where available.
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Chapter 1

Introduction

Accurately computing the derivative of a function is a problem of interest

within every engineering discipline. In aerospace subfields, the derivative of a

function is most influential in problems for which the solution is obtained via

gradient-based nonlinear optimization. In these optimization methods, a function

is extremized by analyzing it at a given set of optimization parameters, and then

iteratively changing those parameters according to the derivatives of the function.

It is reasonable to infer, then, that the outcome of such optimization methods

would depend on the accuracy of the computed derivatives.

The following simple minimization problem gives evidence of this depen-

dence: given a point on the x-y plane, minimize the point’s y coordinate with the

constraint that the point should lie on a unit circle. Specifically, the problem is

to minimize the performance index

J(x, y) = y

subject to the equality constraint

x2 + y2 = 1

The analytical solution to this problem is easily shown to be (x, y) = (0,−1).
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Table 1.1: Effects of correct vs error-prone derivatives on optimization.

Derivatives xf yf iterations
Exact −1.09 · 10−11 −1.00 18

Erroneous −2.48 · 10−7 −1.00 43

The numerical solutions1 using correct and error-prone derivatives are given

in Table 1.1. Although the optimizer arrives at the same solution in both cases, the

iterative path taken differs noticeably when errors are introduced in the computed

derivatives. Not only does the optimizer take considerably more iterations to

converge, but the convergence tolerance for the x coordinate is not nearly as

accurate. In more complex optimization problems, such as those arising from

real-life scenarios, a change in the iterative path could lead to a different solution

or even to no converged solution at all.

Because of the fundamental importance of derivatives within engineering,

an enormous amount of attention has been given to the general problem of ef-

ficiently computing accurate derivatives. Solutions have ranged from simple al-

gorithms that work for any problem but are error-prone, to highly specialized

complex algorithms with near-analytical accuracy. The finite-difference class of

algorithms are among the simpler algorithms, both mathematically and in terms

of implementation complexity. On the opposite end of the difficulty spectrum are

problem-specific solutions such as the Variational Model by Ocampo et al. [33–35],

1Numerical solutions were obtained using the VF13 SQP algorithm, which is part of the
Harwell Subroutine Library [47].
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which finds near-analytical partial derivatives for spacecraft trajectories involving

one or more segments.

Every finite-difference algorithm contains a parameter, called the step size,

which controls the accuracy of the computed derivative. If the chosen step size is

too large, then mathematical truncation error dominates the derivative. If it is too

small, then numerical roundoff errors greatly reduce the derivative’s accuracy. To

understand the impact of the step size, consider the process of optimizing a three-

impulse transfer from a Moon-centered initial orbit to a specified V∞ vector, as

described in Whitley et al. [56]. Assuming a circular initial lunar orbit, the general

geometry of such a transfer is as follows. The first impulse is mostly an apoapse-

raising maneuver, the second impulse (near apoapse) mainly changes plane, and

the third impulse (near periapse) inserts the spacecraft onto a departure hyper-

bola with the desired V∞ vector. Although it has been shown by Gobetz and

Doll [14] that such a maneuver often outperforms a single-impulse transfer, the

added complexity of coordinating multiple impulses makes numerical optimiza-

tion a difficult task. This difficulty occurs, in no small part, because computing

derivatives for the system Jacobian matrix using finite-difference methods requires

considerable effort to find suitable step sizes. Ocampo and Saudemont [36] and

Jones and Ocampo [21] have made great strides in efficiently computing initial

guess solutions for the three-impulse transfer, which helps to increase the chance

of successful optimization. However, due to the sheer amount of time spent finding

step sizes (especially after the impulses were converted to finite burns), Ocampo et

al. [33,35] developed an alternate specialized method just to compute the deriva-

3



tives of the problem.

Situations like the one described, where researchers put much effort into

developing alternatives to finite-difference derivatives, are not at all uncommon.

When one spends countless hours fine-tuning the step sizes to achieve convergence

in one set of test cases, only to find that another set of test cases no longer

converges, it is understandable to seek out an alternative method to compute

derivatives.

This dissertation focuses on the problem of finding an optimal balance for

the step size, known as ‘the step-size dilemma’. Formally, the problem is to find

the step-size value that minimizes both mathematical and numerical errors for a

specified finite-difference method, given a function and particular values of the

function’s domain variables.

1.1 Existing Work on Numerical Derivatives

1.1.1 Finite-Difference Derivative Approximations

Finite-difference approximations are arguably the most frequently studied

methods for computing the derivative of a function. They are derived from Tay-

lor’s Theorem [52]2, written in 1715, which approximates a function near a point

by a polynomial of that function’s derivatives [20]. As such, finite-difference meth-

ods essentially fit a polynomial to a function at a given point, and then estimate

the function’s derivative to be the polynomial’s derivative at that point.

2An excellent modern essay on Taylor’s Theorem is given by Gibson [11].
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It is expected that a polynomial fit to a general function will have errors,

and from Taylor’s Theorem, these errors take the form of an infinite series3. In

1797, Lagrange was among the first to reduce this infinite series to a succinct

finite term in his landmark work, Théorie des Fonctions Analytiques [24]. The

Lagrange remainder of the Taylor Series of f(x) about a point x0 truncated after

n terms is

Rn =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1 (1.1)

where ξ ∈ (x0, x) is the only unknown. By replacing an infinite series represen-

tation with a single unknown variable ξ, Lagrange opened the door to modern

numerical step-size analysis.

In the early 1900’s, Richardson and Gaunt [43, 44] introduced and refined

the Richardson Extrapolation method. This method produces a high-order ap-

proximation to a function by combining several low-order approximations. It

has been used successfully in fluid dynamics (for estimating fine meshes by using

several coarse meshes) and numerical integration methods [4, 5]. When applied

to finite-difference derivatives, Richardson Extrapolation provides a high-order

derivative estimate using low-order estimates with successively decreasing step

sizes.

By the 1970’s, a considerable amount of headway had been made on the

topic of estimating an optimal step size. Curtis and Reid [6] described a simple

method which requires a priori estimation of higher-order derivatives and roundoff

3While Taylor originally wrote the error term as a multiple integral, it is now commonly
represented as an infinite summation series.
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errors of the function. While the resulting step sizes give decent results for many

problems, estimating the function’s roundoff errors is no easy task for non-trivial

functions (a fact even more true today, as functions get extremely complex).

In 1979, Stepleman and Winarsky [51] created an adaptive step-size algo-

rithm which iteratively evaluated a descending sequence of step sizes. Using the

fact that the finite-difference derivative monotonically tends to the true derivative

(for a ‘sufficiently small’ sequence of step sizes), they showed that the smallest

step size for which the finite-difference derivative did NOT violate this trend is

in fact the optimal step size. Because of the caveat that the initial step size in

the search sequence must be sufficiently small, they developed a heuristics-based

method for estimating the initial step size. Interestingly, some of the core meth-

ods of this dissertation are similar to those of Stepleman and Winarsky, and these

similarities are compared and contrasted herein.

In 1983, Gill, Murray, Saunders, and Wright [12] presented an algorithm to

compute step-sizes for forward-difference derivative approximations (an extension

to Gill et al. [13] in 1981). Not happy with the significant number of function

evaluations required by iterative methods, their method instead gave a succinct

equation by which an ‘optimal’ step size could be computed for forward- and

central-difference derivatives. It required an estimate of the function’s condition

error (which can be estimated by a method given by Hamming [19]), and explicitly

ignored subtractive cancellation error.

In contrast to the previously common assumption that a function has many

digits of accuracy, in 1992 Barton [1] showed how to approximate the step size

6



when the function of interest had only a few reliable digits of accuracy. In addi-

tion, Barton argued that when finite-difference derivatives are used as part of an

optimization loop, it is important to recompute the step sizes as the optimization

progresses. He also offered a rudimentary method by which it can be determined

how often to recompute step sizes (relative to a change in the optimization vari-

able). Barton did, in fact, rely heavily on results presented by Gill et al. [12]; his

main contributions were in the treatment of finite-difference step sizes within the

framework of optimization problems and error-prone functions.

Yang et al. [58] give a practical approach to computing finite-difference

step sizes in their 2005 book. Referring to the fact that the majority of step-

size estimation methods require a priori knowledge of roundoff errors within the

function of interest, they conclude that

... these equations are only of theoretical value and cannot be used

practically to determine h0 [the step size] ...

Yang is among the first to acknowledge the fact that such detailed knowledge of

a function is often not available.

Diverging from the trend of computing an optimal step size, in 2011 Pren-

tice [38] cleverly improved upon the standard 3-point approximation (commonly

called central differences) by computing an optimal set of sampling points. In-

stead of evaluating the function at f(x−h) and f(x+h), the method computes a

set {a, b, c} which are used to compute f(x+ah), f(x+ bh), and f(x+ ch). These

7



non-symmetric function values, when used with a standard 3-point method, were

shown to actually increase the order of the method beyond the standard O(h2).

Although much research was being done in the latter half of the 19th century

on determining good step sizes, it was widely recognized that any finite-difference

method has a significant loss of accuracy due simply to the finite-precision sub-

tractions involved. In order to avoid this problem altogether, researchs in the

numerical analysis community were seeking out alternatives to finite-difference

methods. The two main approaches developed are called Automatic Differentia-

tion (AD) and complex-step differentiation (CSD), and it is important to know

their histories in order to compare and contrast them to finite-difference methods.

1.1.2 Complex-Step Derivative Approximations

Early forays into alternate numerical differentiation schemes were by Ly-

ness and Moler [28, 29] in the late 1960’s. By noticing that the Cauchy integral

theorem gives the nth derivative of a complex-domain function as a closed complex

integral, they were able to formulate methods to numerically compute derivatives.

This was done by evaluating the complex integral using trapezoidal quadrature

methods and choosing a particular contour in the complex plane.

Fornberg [9] extended this work in 1981 by using the Fast Fourier Trans-

form to evaluate the complex integral. His work aimed to implement the same

theoretical solution as Lyness and Moler using a more robust and compact algo-

rithm that required less user interaction.

For nearly two decades the field of complex analysis in numerical differenti-
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ation remained dormant, until Squire and Trapp [50] introduced the complex-step

method in 1998. This method is not based on the Couchy integral theorem, but

instead simply uses complex perturbations with the general Taylor series. The

resulting well-known formula,

f ′(x) =
Im[f(x+ ih)]

h
(1.2)

is considerably easier to implement than the methods of Lyness and Moler and

Fornberg, and has no subtractive cancellation error as do finite-difference methods.

While Squire and Trapp sought only to state the complex-step formula in

(1.2) and analyze numerical results, a thorough and in-depth analysis of the CSD

method was performed by Martins, Sturdza, Alonzo, and Kroo [30–32] between

2000 and 2003. In addition to analyzing the CSD method, their papers explored

its relationship to AD methods and provided computer scripts to automatically

make existing functions compatible with the CSD method.

Following the papers of Martins et al., the scientific community picked up

quickly on this simple new method of computing derivatives to almost analytical

precision, and many developers have turned to its use for numerical differentia-

tion. However, because the CSD method was designed to compute only the first

derivative, several researchers (including Lai [25]) sought to extend the theory to

higher-order derivatives only to discover that the results were just as prone to

cancellation errors as finite-differences.

In 2006, Pemba [37] developed an extension to CSD which allowed for any

order derivative to be computed without any finite-difference cancellation errors.

9



Their method used a complexification function to iteratively compute higher-order

derivatives from lower-order ones.

It was not until 2010 that a true generalization of the CSD method was

introduced by Lantoine, Russell, and Dargent [26, 27]. Their method used mul-

ticomplex numbers in place of ordinary complex numbers, which allowed them

to derive an arbitrary-order derivative by perturbing only the appropriate multi-

complex direction of the independent variable. The resulting derivatives are not

subject to any finite-difference cancellation errors, and can therefore be computed

to an arbitrary precision.

1.1.3 Automatic Differentiation

When an equation or algorithm is implemented as a computer program, it

is invariably broken down into a series of steps, each one involving an elementary

operation. Automatic Differentiation methods take the partial derivatives of each

of these operations, and then combine them via the chain rule to produce the de-

sired derivative. The early days of AD (the 1960’s and 1970’s) involved specialized

precompilers, often times with their own specialized languages. [40,41,54,55]

Instead of developing a specialized AD language, Kedem [23] considered

the differentiation of a Fortran subroutine. His 1980 paper suggested using an

automated process to analyze an existing Fortran subroutine and replace elemen-

tary operations by their derivatives. This method forms the basis of AD methods

today.
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1.2 Motivation and Research Contributions

There is no doubt that, when used properly, the complex-step and auto-

matic differentiation methods outperform finite-difference derivative methods in

terms of accuracy. The question then arises: Why continue studying methods

to find optimal step sizes for finite-difference derivatives? The iterative step-size

search method of Stepleman and Winarsky [51] could suffice where necessary, and

all future research could be directed towards CSD and AD methods.

To answer this question, one must consider the current climate of numeri-

cal differentiation. Finite-difference methods are so easy to implement and verify

that their use has become de facto within industry. Because CSD methods did

not really take off until the 2000’s, and AD methods would have been too slow

to implement effectively on computers until the same time, finite-difference meth-

ods were also the only feasible choice. Therefore, there are currently uncountably

many simulations in use that employ this method. Within many of these sim-

ulations, the function to be differentiated consists of calls to libraries and other

computational facilities for which the source code is either not available, or is

not easy to obtain. Even if this is not the case, and the function is purely self-

contained, often times it either cannot be changed (perhaps due to verification

requirements) or is very large and therefore difficult to change and verify.

All CSD methods require that the function of interest be able to operate on

complex numbers. Some modern programming environments such as MATLAB

assume complex numbers intrinsically, at least for built-in capabilities and most
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user-built programs4. Fortran, C5, and C++ all support complex variables, how-

ever they must be explicitly declared as such. Because the vast majority of existing

simulations were created long before the rise of CSD, they do not have variables

declared as complex. In order to use the CSD method with these simulations, the

function(s) to be differentiated must have all relevant variables converted to the

complex data-type, either manually or with existing CSD conversion scripts.

In contrast, AD methods can operate in two basic forms. The first method

uses special AD preprocessors to analyze the function, differentiate it instruction-

by-instruction, and create a new function that computes the derivatives of the

original. The second method requires that the function itself be written using

special AD-friendly data types, and uses operator overloading to create code for

derivative evaluation at compile time.

For both AD and CSD methods, the entire function of interest must be

available and editable at the source code level. This instantly precludes all codes

that call external precompiled libraries as part of critical computations. As dis-

cussed earlier, these codes are not rare, and in today’s world of object-oriented

programming it is becoming even more common to use scientific libraries written

by third parties.

From the reasons laid out here, it is clear that there still exists a de-

mand for accurate finite-difference derivatives. Since increasing the accuracy of

4The exception in MATLAB would be custom specialized algorithms, for which care must
be taken to ensure that the algorithm itself can handle complex variables.

5C supports complex data types as of the C99 specification.
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finite-difference derivatives goes hand-in-hand with choosing a better step size,

the search for an optimal step size as discussed in this dissertation is very relevant

to the simulation community.

1.3 Dissertation Organization

This dissertation introduces and proposes a solution for the finite-difference

step-size dilemma in five chapters, including this introduction.

Chapter 2 details the analytical solution by identifying the main sources

of error, formulating equations to quantify those errors, and then analyzing those

equations to determine the optimal step size. Informal proofs are given to show

that the derived approximations to the errors do in fact follow the same trends as

the errors themselves. It is shown that most of the analysis can be done knowing

only the order of the finite-difference method, without regard to the method’s

particular equation. For the small part in which the particular finite-difference

equation does appear, a variety of common equations are considered and their

results are tabulated for convenience. Finally, arguments are made concerning the

validity of the optimal step size as the independent variable of interest changes in

value (which happens at ever iteration of an optimization loop).

Chapter 3 presents a rigorous approach to developing an algorithm which

bridges the gap between the analytical and numerical sides of the step-size dilemma.

The algorithm is first developed for the one-dimensional case, and then extended

to the multidimensional case while retaining memory efficiency. For the multidi-

mensional case, the algorithm finds several optimal step sizes (one for each element
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of the function’s output), so methods are discussed for choosing a particular step

size. Finally, an implementation of this algorithm, called AutoDX, is presented

and briefly explained.

Chapter 4 studies the effectiveness of AutoDX in finding suitable step sizes

for various example problems. The initial examples consider simple polynomial

and trigonometric functions. Special cases such as low-order polynomials or zero

derivatives are also shown, in order to showcase the exception-handling capabili-

ties of the AutoDX algorithm’s underlying analytical solution. Next, intermediate

examples consider functions whose implementations are advanced algorithms such

as numerical integrations or root-finding problems. These examples show cases

where the function’s implementation may introduce considerable errors into its

output. Finally, full numerical optimization problems are tackled, and the re-

sults are compared between AutoDX and several other numerical differentiation

methods.

Finally, Chapter 5 concludes this dissertation by identifying opportuni-

ties for future research on the step-size dilemma. The AutoDX code itself is

summarized in Appendix A, and expressions for several common finite-difference

derivative methods are given in Appendix B.
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Chapter 2

Analysis of Finite-Difference Derivatives

2.1 Chapter Summary

This chapter focuses on developing the mathematical tools necessary for

step-size analysis. All sources of error within finite-difference derivative methods

(hereafter referred to as FDD methods) are identified, and equations to quantify

them are derived. This allows for the modeling of total error for a given FDD

method, expressed as an upper bound. Because this total error estimate is useful

only in the theoretical sense, another equation is developed which estimates the

true truncation error of a given FDD method by using a variation of Richardson

Extrapolation. It is shown that this estimate accurately matches the theoretical

total error model, thereby making it a useful tool in the search for the optimal

step size.

2.2 Richardson Extrapolation

Let f(x) be an unknown function with a computable approximation FDn(x, h)

whose nth-order error formula is given by

f(x) = FD(x, h) + ahn +O(hn+k) (2.1)
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where the step size h is positive, n and k are known integer constants, and a is an

unknown constant. If the approximation is evaluated at two different step sizes

h1 and h2 (where h1 > h2
1), then

f(x) = FD(x, h1) + ahn1 +O(hn+k
1 ) (2.2)

f(x) = FD(x, h2) + ahn2 +O(hn+k
2 ) (2.3)

This constitutes a system of two equations in two unknowns (f(x) and a). Omit-

ting intermediate algebra, the solution for f(x) is

f(x) =
(h1/h2)nFD(x, h2)− FD(x, h1)

(h1/h2)n − 1
+O(hn+k

1 ) (2.4)

where the order of the error has increased to n+k. This is the basis of Richardson

Extrapolation; approximations of a given order using two different step sizes are

combined to achieve an approximation of higher order. Alternately, solving for

the unknown constant a gives

a =
FD(x, h2)− FD(x, h1)

hn1 − hn2
+O(hk1) (2.5)

This estimate of the constant a can then be used to estimate the error ahn1 in the

original approximation FDn(x, h1).

2.3 The Taylor Series and Lagrange Remainder

The Taylor Series is an infinite series that estimates a function in the

neighborhood of a particular point by building up a polynomial whose coefficients

1It is often assumed that h2 = h1t for some 0 < t < 1, but this is not strictly necessary from
a derivation standpoint.
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depend on successive derivatives of the function. For a function f(x), the Taylor

Series of f(x) about the point x0 is

f(x) =
∞∑
m=0

f (m)(x0)

m!
(x− x0)m = f(x0) + f ′(x0)(x− x0) + · · · (2.6)

The series on the right-hand-side of (2.6) does in fact converge to f(x) if (and

only if) the function is analytic at x0 [18]. In addition, if convergence for a given

x0 is achieved over an interval |x − x0| < δ for some δ > 0, then δ is called the

radius of convergence.

For the remainder of this dissertation, it is assumed that the function being

differentiated is analytic, and its radius of convergence is large enough to overstep

numerical roundoff errors. Note that this is a perfectly reasonable assumption. If

the function is not analytic, then its Taylor Series does not converge to itself (for

points other than the trivial x = x0), and therefore FDD methods cannot be used

in the first place. If the radius of convergence is very small, then proportionally

small step sizes must be used to compute the Taylor Series. Such small step sizes

may be well within the roundoff error region for the function.

The basic process of FDD methods is to truncate the Taylor Series after

a certain number of terms, and consider the discarded terms as having negligible

error for sufficiently small step sizes. The ability to quantify this error forms the

basis of step-size analysis. Consider the Taylor Series of f(x) about x0 after n
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terms,

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+Rn (2.7)

Rn =
∞∑
m=n

f (m)(x0)

m!
(x− x0)m (2.8)

The remainder term Rn is actually derived from an integral form2,

Rn =

∫ x

x0

· · ·
∫ x

x0

f (n)(x)dxn (2.9)

If it is assumed that the nth derivative of f is bounded over the interval of inte-

gration [x0, x], i.e. a ≤ f (n)(x) ≤ c, then∫ x

x0

· · ·
∫ x

x0

a(dx)n ≤Rn ≤
∫ x

x0

· · ·
∫ x

x0

b(dx)n (2.10)

a
(x− x0)n

n!
≤Rn ≤ c

(x− x0)n

n!
(2.11)

It is clear that the remainder might take on the same form as the left and right

sides of (2.11). In other words, there exists some b ∈ [a, c] for which

a
(x− x0)n

n!
≤ b

(x− x0)n

n!
≤ c

(x− x0)n

n!
(2.12)

Equating (2.11) and (2.12), the remainder becomes

Rn = b
(x− x0)n

n!
(2.13)

Although b is unknown, the Intermediate Value Theorem implies that there exists

some point ξ ∈ [x0, x] for which f (n)(ξ) will take the value b.

f (n)(ξ) = b , ξ ∈ [x0, x] (2.14)

2The modern derivation of the Taylor Series, not given here, is done using integral calculus
[18].
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From this, the remainder term, called the Lagrange remainder, is rewritten as,

Rn =
f (n)(ξ)

n!
(x− x0)n , ξ ∈ [x0, x] (2.15)

Note that there is no way to exactly determine ξ for a general function. The

nth-order Taylor Series for an analytic function f(x) about x0, using the Lagrange

remainder, is then

f(x) =
n∑

m=0

f (m)(x0)

m!
(x− x0)m +

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1 , ξ ∈ [x0, x] (2.16)

In the case where x < x0, (2.16) still holds with the modification that ξ ∈ [x, x0].

2.4 Derivation of Finite-Difference Methods

The Taylor Series from (2.16) is used to derive all FDD methods. The

simplest FDD method, called the forward-difference approximation, is computed

from the first-order Taylor Series about the point x itself.

f(x+ h) = f(x) + f ′(x)h+
f (2)(ξ)

2
h2 , ξ ∈ [x, x+ h] (2.17)

f ′(x) =
f(x+ h)− f(x)

h
− f (2)(ξ)

2
h (2.18)

FD
(1)
1 (x, h) =

f(x+ h)− f(x)

h
+O(h) (2.19)

Note the distinction between the true derivative f ′(x), and the finite-difference

derivative FD
(1)
1 (x, h), namely that the FDD truncates the error term and repre-

sents it simply as an order-of-magnitude. The generic notation FD
(d)
n (x, h) will

be used to refer to the finite-difference approximation of the dth derivative of f(x),

19



using a Taylor Series of order p = n+ d− 1 (where n, d ≥ 1) and step size h. The

truncation error associated with such a FDD is easily shown to be O(hn).

Analysis of approximations using higher-order Taylor Series requires fur-

ther evaluation of the error term. Consider the common second-order central

differences method, computed from the second-order Taylor Series,

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f (3)(ξ+)

3!
h3 , ξ+ ∈ [x, x+ h] (2.20)

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f (3)(ξ−)

3!
h3 , ξ− ∈ [x− h, x] (2.21)

f ′(x) =
f(x+ h)− f(x− h)

2h
− f (3)(ξ+) + f (3)(ξ−)

2

h2

3!
(2.22)

The error term in (2.22) can be simplified by observing that it contains the aver-

age of the third derivative evaluated at the unknown ξ+ and ξ− values. Assuming

that f (3)(x) is smooth and bounded over [x − h, x + h], the Mean Value Theo-

rem can be used to show that there must exist some ξ between ξ− and ξ+ which

satisfies the average (see Figure 2.1). However, because ξ− and ξ+ can lie any-

where in their respective intervals, ξ will lie somewhere in the combined interval.

With this replacement, the FDD equation for the second-order central-difference

approximation becomes,

f ′(x) =
f(x+ h)− f(x− h)

2h
− f (3)(ξ)

3!
h2 , ξ ∈ [x− h, x+ h] (2.23)

FD
(1)
2 (x, h) =

f(x+ h)− f(x− h)

2h
+O(h2) (2.24)

Both (2.19) and (2.24) follow the general form of a FDD equation,

FD(d)
n (x, h) =

∆f
(d)
n (x, h)

hd
+O(hn) (2.25)

where ∆f
(d)
n is the appropriate finite-difference expression from Appendix B.
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x 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x‐h  x+h 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ξ‐  ξ 

f(3)(ξ+) 

f(3)(ξ‐) 

f(3)(ξ) 

Figure 2.1: The Mean Value Theorem guarantees existence of ξ ∈ [ξ−, ξ+] for
which f (3)(ξ) is the average of f (3)(ξ+) and f (3)(ξ−).

2.5 The Step-Size Dilemma

If the truncation error term in (2.19) is ignored, then it becomes an ap-

proximation to the true derivative, with an error proportional to the chosen step

size h. A cursory examination of the truncation error shows that O(h) → 0 as

h→ 0, which implies that h should be made as small as possible to maximize the

accuracy of the approximation. The same is true of (2.24), in which O(h2) → 0

even faster than in the forward difference case.

However, a more in-depth analysis of (2.19) and (2.24) indicates a contra-

diction to the above rule. On any finite-precision machine such as a computer,

numbers are represented with a fixed number of binary digits [15]. Because of this,

all mathematical operations have an inherent loss of accuracy, as extra digits in-

volved in the computation must be discarded. This phenomenon, called roundoff

error, has a significant effect on the subtraction in (2.19) and (2.24). In partic-

ular, the relative errors caused by the subtraction operation tend to increase as

the step size h is decreased, implying that h should be made as large as possible
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to minimize these errors. This contradiction to the preceding requirement is the

step-size dilemma.
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Figure 2.2: The step-size dilemma for sin(x) with x = π/4 using the O(h) forward-
difference approximation.

The classical step-size dilemma is illustrated in Figure 2.2 by plotting the

error in the finite-difference derivative as a function of the step size h, using

double-log scaling to compress the vast orders of magnitude. It is seen that there

exists a region of h for which the total error in f ′(x) is minimized. If h is chosen

at the low end of that range, then increased roundoff error is sacrificed in favor

of decreased truncation error. Conversely, if h is chosen at the high end of that

range, then truncation error in the FDD approximation increases, but roundoff

error is virtually nonexistent. The optimal choice of h depends on requirements
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of the quality of the derivative, as discussed in Chapter 3.

2.6 Truncation Error Estimation

Although the value of ξ in the truncation error term of (2.19) is unknown,

it is clear that as the step size is reduced, ξ approaches x itself and therefore the

remainder term approaches a limit.

lim
h→0

O(h) = −f
(2)(x)

2
h (2.26)

This is the expected truncation error in a forward-difference approximation using

a sufficiently small step size h, assuming that f (2)(x) is smooth and bounded in

the neighborhood of x. For the central-difference approximation in (2.24), the

same assumptions lead to

lim
h→0

O(h2) = −f
(3)(x)

3!
h2 (2.27)

Because each finite-difference approximation has a unique truncation error

based on its particular formulation, it becomes necessary to develop a general

method to approximate the truncation error. This is done by analyzing the general

form of a finite-difference equation, regardless of its order of accuracy. Using (2.19)

and (2.24) as a template, a general relationship between a derivative and its FDD

approximation is given by,

f (d)(x) = FD(d)
n (x, h) + C(x, h)hn (2.28)

where f (d)(x) is the true dth derivative, FD
(d)
n (x, h) is the particular finite-difference

approximation (in the absence of roundoff errors) given in (2.25), n is the order
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of the approximation, and C(x, h) is the coefficient of the truncation error term.

In Lagrange form, this is

C(x, h) = a1f
(n+d)(ξ) , ξ ∈ [x− a2h, x+ a3h] (2.29)

where a1, a2, and a3 are known nonzero constants determined by the particular

finite-difference approximation. Although C(x, h) is undetermined (because it

involves the unknown ξ), as the step size h is reduced, a similar argument can be

used as in the beginning of this section to claim that

lim
h→0

C(x, h) ≈ Cn(x) ≡ a1f
(n+d)(x) (2.30)

In other words, if f (n+d)(x) is smooth and bounded in the neighborhood of x

and h becomes sufficiently small, the FDD remainder coefficient C(x, h) loses its

dependence on the step size. The value of Cn(x) can then be estimated by noting

that (2.28) is very similar to the Richardson Extrapolation equation (2.1). Using

that method, (2.28) is evaluated with two sufficiently small step sizes h1 and h2

(assuming h1 > h2),

f (d)(x) = FD(d)
n (x, h1) + Cn(x)hn1 (2.31)

f (d)(x) = FD(d)
n (x, h2) + Cn(x)hn2 (2.32)

Since Cn(x) is considered constant with respect to the step size, (2.5) gives

Cn(x) =
FD

(d)
n (x, h2)− FD(d)

n (x, h1)

hn1 − hn2
(2.33)

It is important to understand the context of (2.33). First and foremost, it gives

an approximation to the true coefficient C(x, h). In addition, although it assumes
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that the step sizes h1 and h2 are sufficiently small, (2.33) does not take into

account any numerical issues from step sizes that are too small. In later sections,

this seemingly obvious oversight will form the basis of detecting when an optimal

step size has been found. For now, the computed Cn can be used to estimate the

truncation error for the FDD of order n in (2.28),

TEn(x, h1) = Cn(x)hn1 (2.34)

Note that the notation indicating which derivative d is being computed has been

dropped. This is because although Cn does use finite-difference approximations

for a particular derivative, it does not explicitly depend on which derivative is

being computed. In addition, this estimate can also be applied to the truncation

error associated with step size h2, but the decision to use it with h1 arises from

the need to obtain an upper bound on the truncation error, since h1 > h2.

An example of the use of the truncation error estimate from (2.33) and

(2.34) is given in Figure 2.3. The similarities between this estimated truncation

error and the absolute error from Figure 2.2 are clear. Both exhibit a decreasing

truncation error until a limiting point is reached, followed by an increasing round-

off error. The region in which truncation error begins to give way to roundoff

error contains the optimal step size. Note the ‘stray minima’ points within the

roundoff error portion of Figure 2.3, for which the estimated error is zero. These

points occur because successive finite-difference approximations from (2.33) are

equal (due to roundoff errors), causing the estimate for the truncation error to

be zero. Such stray minima are not uncommon for step sizes that are so small
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Figure 2.3: Estimated truncation error for sin(x) with x = π/4 using the O(h)
forward-difference approximation.

that roundoff error dominates the computations. However, their existence does

not lessen the effectiveness of using estimated truncation error plots to analyze

error trends.

Although Figures 2.2 and 2.3 appear similar, the concern arises as to

whether this is merely a coincidence for the particular function being analyzed,

or whether an estimated truncation error plot is in fact a good approximation

to the true absolute error plot for any function3. This concern is addressed in

later sections of this dissertation, but at this point it is stated that truncation

3That is, any function analytic at x for which f (n+d) is smooth and bounded.
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error estimates obtained via (2.33) and (2.34) do in fact accurately estimate both

truncation and roundoff errors for step sizes that are not too large.

So far, all truncation error analysis has assumed a ‘sufficiently small’ step

size h. For the sake of completeness, the opposite case of a large step size should

be considered. The general form of a FDD equation, given in (2.28) and (2.29),

comes from the Lagrange remainder derivation and therefore does not rely on the

step size being small. For a large h, (2.29) indicates that the unknown ξ can take

a large range of values. Because there is no restriction on the quality of f (n+d) in

a large neighborhood of x, it is entirely possible that C(x, h) could have a very

large magnitude. In addition, for large step sizes, hn also increases. As a result,

using a large step size can result in a truncation error that is large, or worse,

unpredictable.

This behavior is seen in Figure 2.4, which shows the difference between

estimated and true truncation error in computing the derivative of f(x) = sin(x)

at x = π/4 using the forward-difference approximation. For step sizes that are

too small, the estimate clearly follows the true roundoff error (with some overes-

timation as discussed in Section 2.9). For step sizes that are ‘sufficiently small’,

the estimate and true errors are almost exactly equal, which is expected since

the estimate is designed to ideally model this region. For large step sizes, it is

clear that the truncation error estimate is not even close to the true error, which

supports the theoretical claim that the truncation error estimate is unreliable for

large h. The tipping point between invalid and valid truncation errors (in terms

of step size) depends highly on the function itself, and to an extent on the point
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Figure 2.4: Comparison of estimated and true truncation errors for sin(x), x =
π/4.

x at which the derivative is computed.

A visual analysis of Figure 2.4 indicates that the optimal step size hopt ≈

10−8. Given a machine precision of 10−16 and x having approximately unity mag-

nitude, this result is consistent with conventional approximations [1,12]. However,

Figure 2.5 paints a very different picture.

The most significant change between Figures 2.4 and 2.5 is a much smaller

valid truncation error interval; 8 orders of magnitude in the former, versus only 5

orders of magnitude in the latter. Once again, the stray points with abnormally

small roundoff error are simply fortuitous coincidence. Figure 2.5 also indicates

an optimal step size hopt ≈ 10−11. If the function itself is known – in this case
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Figure 2.5: Comparison of estimated and true truncation errors for sin(x2 +106x),
x = π/4.

sin(x2 + 106x) – then this optimal step size can be computed via conventional

approximations. However, with no prior knowledge of the function’s qualities,

it would be difficult to estimate that the optimal step size is a full 3 orders of

magnitude away from the common wisdom choice. Because the implementation

of the function of interest is assumed to be unknown, it is necessary to study not

only the truncation error, but also to form estimates for the roundoff errors in the

FDD equations.
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2.7 Roundoff Error Estimation

In the simplest sense, roundoff error is an error in the computation of a

number caused by the fact that the number is represented using finite numerals.

Although the term ‘roundoff error’ has so far been referred to in a general sense,

there are actually multiple sources of roundoff errors [15]. Because these errors

are often tiny when considered individually, their analysis is sometimes neglected.

Doing so can have disastrous results; an extreme example is the Patriot missile

failure of 1992 [49]. A software oversight in converting numbers between finite-

precision representations caused a Patriot missile system to lag by 0.3433 seconds.

In this short time, an enemy Scud missile being tracked was able to travel an extra

1/2 kilometer, hit a barracks, and kill 28 soldiers.

While the consequences of this dissertation may not be so dire, a proper

understanding of roundoff error sources nevertheless provides useful tools for step-

size analysis. Two types of roundoff error are considered here: cancellation error

and condition error.

2.7.1 Cancellation Error

Given two numbers a and b represented in fixed precision, cancellation

error occurs when a significant number of the leading digits of a and b are equal

and the two numbers are subtracted. Consider two numbers a and b with values

a = 0.3142049 b = 0.3141550 (a− b)true = 0.0000499
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If a 5-digit fixed precision representation (with standard rounding) is used to

approximate a and b, then the subtraction of the numbers becomes,

a = 0.31420 b = 0.31416 a− b = 0.00004

This subtraction operation has error in the least significant digit of the result, as

compared to the true result. In general, fixed precision subtraction results in an

error whose magnitude is at most that of the least significant digit in the larger

of the two numbers [15]. An accurate upper bound to this error is,

|(a− b)true − (a− b)| ≤ δmax(|a|, |b|) (2.35)

where δ is the precision of the representation. In the above example with 5-digit

precision, δ = 10−5. For a standard double precision representation on a computer

(defined by IEEE 754 [22, 48]), δ = 2−53. It is important to note that (2.35) only

gives an upper bound on subtractive cancellation error; there is no way to know

the exact error without additional information about the computation of a and b.

Example 2.1. For FDD approximations, cancellation error enters via the sub-

traction between various function evaluations. Consider the forward-difference

approximation (2.19) for f(x) = sin(x) at x = π/4, as shown in Figure 2.3. The

approximation of the first derivative is

FD
(1)
1 (x, h) =

sin(x+ h)− sin(x)

h
(2.36)

Because the evaluation of sin(x) is accurate to full precision for reasonable values

of x, the subtraction in the approximation is subject only to cancellation error as
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described in (2.35). Using this equation, the error can be approximated as,

|FDtrue − FD| =
∣∣∣∣ [sin(x+ h)− sin(x)]true − [sin(x+ h)− sin(x)]

h

∣∣∣∣ (2.37)

≤ δmax(| sin(x+ h)|, | sin(x)|)
h

(2.38)

where the sub and superscripts have been dropped from FD for conciseness. As-

suming that the step size h is sufficiently small, the magnitudes of sin(x+ h) and

sin(x) will be approximately equal. The error in the FDD then becomes,

|FDtrue − FD| ≤
δ| sin(x)|

h
(2.39)

Since δ is a constant and sin(x) is independent of the step size, it is clear to see

that as h decreases, the cancellation error in the FDD approximation will increase.

This is consistent with the roundoff error portion of Figure 2.3.

2.7.2 Condition Error

During cancellation error analysis in the preceding section, it was assumed

that the values being subtracted were known to machine precision. In the example

given, the values were computed using the sin() function, which is indeed accurate

to machine precision in all modern implementations. However, in general a func-

tion may not have a perfectly precise output value (in the numerical sense). For

example, a function may numerically integrate its input in order to produce its

output. This numerical integration will likely have a specified global error toler-

ance, meaning that only a certain number of significant digits in its output will be

accurate. In addition, the algorithm implemented within the function may consist
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of many elementary operations, each of which may accumulate a small amount

of error. An example is the solution of Kepler’s equation [2]. Because this equa-

tion is transcendental, common solution methods are iterative and have specified

convergence tolerances. It is shown in Chapter 4 that certain implementations of

Kepler’s equation can introduce significant error into the final result.

Errors in the output of a function, even if the input is exactly correct, are

called condition errors. Because they reduce the number of accurate digits in a

function’s output, condition errors can result in significant loss of accuracy in a

FDD computation of that function.

It is important to distinguish the terms condition error and condition num-

ber. The relative condition number κ̂ of a single-valued function f(x) is defined

as [53],

κ̂(f, x) =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ (2.40)

The condition number of a function predicts how small errors in a particular

input value will affect the output value of the function. This definition implies

that a condition number is associated with a problem itself, not necessarily with

its implementation. While the condition number of a problem and condition error

of its implementation are not unrelated, only the latter is of significance to this

dissertation.

Example 2.2. The condition number for the function sin(x) at x = 106 is

κ̂ =

∣∣∣∣106 cos(106)

sin(106)

∣∣∣∣ = 2.7× 106 (2.41)
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Although this condition number is very large, the value of sin(106) as computed

by most modern implementations is accurate to machine precision, which implies

a very small condition error for sin(x).

The step-size estimation methods of Gill et al. [12,13] and Barton [1] explic-

itly require an estimate of the condition error associated with the function being

differentiated. Although there are methods to roughly approximate this condition

error [19], the goal of this dissertation is to require as little prior information and

estimation as possible.

Assuming that condition error affects all digits in the output of f(x) below

a certain threshold, an approximation of the upper bound of the error is given as,

|f(x)true − f(x)| ≤ ε|f(x)| (2.42)

where ε indicates the magnitude of the most significant digit affected by condi-

tion error. Although ε is equal to machine precision for elementary operations

and many built-in functions (e.g. sin, cos, etc...), in general it is an unknown to

be computed. Conversely, once ε is computed, it can be of great assistance in

determining the amount of condition error introduced by a given implementation

of f(x). Because ε is a relative value indicating only which digits are erroneous,

it allows for a meaningful comparison of condition errors between various imple-

mentations of the same problem.

Example 2.3. A function f(x) computes its output by numerically integrating x

with a specified relative global error tolerance of 10−12. Because the accuracy of

the output is only guaranteed for 12 digits, the condition error of f(x) is ε = 10−12.
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2.7.3 Total Roundoff Error

Although the exact value of roundoff error cannot be estimated for a general

function, an estimate of the upper bound of roundoff error can be made. The

roundoff error bounds in a finite-difference computation are formed using the

expressions for cancellation and condition errors given in (2.35) and (2.42). For

the forward-difference derivative approximation given in (2.19), using condensed

notation,

FD
(1)
1 (x, h) = FD =

f(x+ h)− f(x)

h
=
f1 − f0

h
(2.43)

where subscripts for f are used to indicate the step size as a multiple of h. To

develop an estimate of the maximum total roundoff error in the computation of

this FDD, both cancellation and condition errors are handled independently.

The upper bound on cancellation error, caused by the subtraction of func-

tion values, is computed using (2.35) as

FDtrue − FD =
(f1 − f0)true − (f1 − f0)

h
(2.44)

|FDtrue − FD| ≤
δ|f1/0|
h

(2.45)

|f1/0| = max(|f1|, |f0|) (2.46)

where FDtrue indicates the true value of the finite difference derivative, in the

absence of any roundoff errors. This is distinct from the true derivative itself,

which is in general unknown.

The upper bound on condition error, caused by errors accumulated within
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the function implementation, is computed using (2.42) as

FDtrue − FD =
(f1,true − f1)− (f0,true − f0)

h
(2.47)

|FDtrue − FD| ≤
ε1|f1| − ε0|f0|

h
(2.48)

If h is small enough such that the code paths taken by f(x) and f(x+ h)

are the same, then the magnitudes of the relative errors ε0 and ε1 introduced by

both calls to f will be approximately equal. In addition, for the worst case, the

signs of the errors will be opposite, causing the errors to compound. The condition

error then simplifies to,

|FDtrue − FD| ≤
ε(|f1|+ |f0|)

h
(2.49)

In contrast, if h is large enough such that the implementation of f uses

different code paths (with different relative errors) to compute f(x) and f(x+h),

then this simplification does not hold. It is assumed here that this situation will

not occur when h is near its optimal value, which is in general small relative to x.

In the general case, both cancellation and condition errors affect the upper

bound of the error in the finite-difference approximation. The total error bound

due to roundoff errors is the sum of both error bounds,

|FDtrue − FD| ≤
ε(|f1|+ |f0|) + δ|f1/0|

h
(2.50)

|f1/0| = max(|f1|, |f0|) (2.51)

where it is assumed that ε is unknown.
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For the central-difference derivative approximation given in (2.24), using

condensed notation,

FD
(1)
2 (x, h) = FD =

f(x+ h)− f(x− h)

2h
=
f1 − f−1

2h
(2.52)

Using a formulation similar to the forward-difference case above, the total

error bound due to roundoff errors is,

|FDtrue − FD| ≤
ε(|f1|+ |f−1|) + δ|f±1|

2h
(2.53)

|f±1| = max(|f1|, |f−1|) (2.54)

Both (2.50) and (2.53) follow the general form of the roundoff error bound-

ing equation,

|FDtrue − FD| ≤
ε|Fε|+ δ|Fδ|

hd
(2.55)

where |Fε| and |Fδ|, derived from the finite-difference expression ∆f
(d)
n in (2.25),

are given for various FDD approximations in Appendix B. Note that any constant

which traditionally appears in the denominator is now absorbed into the |Fε| and

|Fδ| expressions.

2.8 Total Error Estimation

The total error for a particular FDD approximation and function imple-

mentation can be bounded using the expressions for truncation error and roundoff

error. The general FDD equation given by (2.28) is first rewritten using condensed

notation,

f
(d)
true = FDtrue + Ctrueh

n (2.56)
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where the true finite-difference derivative in the absence of roundoff errors, FDtrue,

is unknown. Subtracting the computed FDD, which contains roundoff errors, gives

the total error in the finite-difference derivative,

f
(d)
true − FD = FDtrue − FD + Ctrueh

n (2.57)

Taking the magnitude of the total error and applying the triangle inequality gives

an upper bound on the total error,

|f (d)
true − FD| = |FDtrue − FD + Ctrueh

n| (2.58)

≤ |FDtrue − FD|+ |Ctrueh
n| (2.59)

If the step size h is small enough such that (2.30) applies, then the true value

of the truncation error coefficient Ctrue is well approximated by Cn as given in

(2.33). In addition, the roundoff error can be substituted from (2.55), giving the

equation for the total error bound,

|f (d)
true − FD| ≤

ε|Fε|+ δ|Fδ|
hd

+ |Cn|hn (2.60)

where the explicit expression for |FDtrue − FD| is given by (2.50), (2.53), or the

appropriate roundoff error bounding equation from Appendix B. For the 2nd-order

central-difference approximation of the first derivative,

|f ′true − FD| ≤
ε(|f1|+ |f−1|) + δ|f±1|

2h
+ |C2|h2 (2.61)

A method to reliably compute the condition error ε is presented later in

this dissertation, but ε can also be treated as a parameter to observe its effects on

the total error bound.
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Figure 2.6: Effect of condition error ε on the total error bound.

Example 2.4. For the function f(x) = sin(x) with x = π/4 and using the central-

difference approximation, the effect of condition error ε is seen in Figure 2.6. The

total error bound from (2.61) is plotted for various values of ε, and the estimated

truncation error from (2.34) is also plotted for comparison. C2 is computed as

−1
3!
f (3)(x), and δ = 2−53. It can be seen that in the roundoff error range of step

sizes, the ε value for which the total error bound most closely approximates the

estimated truncation error is ε = 10−16. This agrees with the fact that the sin()

function is accurate to machine precision. Furthermore, the ε = 10−16 curve

minimizes at almost exactly the same step size value as the estimated truncation

error curve.
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This example shows that if ε is known, then the optimal step size can be

computed as the minimizing h of the total error bound curve. This result is not

new; it forms the basis of existing step-size estimation algorithms [1, 12, 13, 51].

Of greater interest in this dissertation is the converse fact that if an optimal step

size can be found using the truncation error estimate curve, then the appropriate

form of (2.60) can be used to compute the function’s condition error with no prior

information about the function. To do so, the total error function E(x, h) is first

defined as the right-hand side of (2.60),

E(x, h) =
ε|Fε|+ δ|Fδ|

hd
+ |Cn|hn (2.62)

Note that the point of differentiation x does appear explicitly in this equation; it

is used to compute |Fε| and |Fδ|.

To properly use (2.62), both |Fε| and |Fδ| must be evaluated at the opti-

mal step size hopt, and Cn must closely approximate Ctrue. The latter condition

is satisfied if the step size is sufficiently small and (2.30) applies. The former

condition can be satisfied either by specifying ε and estimating |Fε| and |Fδ|, or

by specifying the optimal step size. In either case, (2.62) is solved not directly,

but by noting that the optimal step size occurs at its minimum,

∂E

∂h
= −dε|Fε|+ δ|Fδ|

hd+1
+ n|Cn|hn−1 (2.63)

where, to be clear, d is the derivative order being computed and n is the truncation
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error order of the FDD method used. Solving this derivative at the optimal hopt,

∂E

∂h

∣∣∣∣
hopt

= 0 (2.64)

−dε|Fε|+ δ|Fδ|
hd+1

opt

+ n|Cn|hn−1
opt = 0 (2.65)

If the condition error ε is known, then approximations for |Fε| and |Fδ| can be

used to solve for the optimal step size,

hopt =

[
d

n

1

|Cn|
(ε|Fε|+ δ|Fδ|)

]1/(n+d)

(2.66)

This equation simplifies to the approximations of Gill et al. [12,13] in the case of

the first derivative (d = 1) using the forward-difference approximation (n = 1).

Particular forms of this equation for various derivatives and orders are given in

Appendix B.

If the condition error ε is not known, but the optimal step size hopt can be

determined, then the condition error can be computed as

ε =
1

|Fε|

(n
d
|Cn|hn+d

opt − δ|Fδ|
)

(2.67)

2.9 Accuracy of the Estimated Truncation Error

It has so far been assumed that the truncation error estimate TEn(x, h)

given in (2.33) and (2.34) accurately models both truncation and roundoff errors.

Given a step size h1 and a comparison step size h2 < h1, the truncation error

estimate for a finite-difference approximation of the dth derivative using an nth-

order Taylor polynomial is

TEn(x, h1) =
FD

(d)
n (x, h2)− FD(d)

n (x, h1)

hn1 − hn2
hn1 (2.68)
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For large step sizes, it was shown in Figure 2.4 that this is not an accurate estimate

of the true truncation error. For step sizes which are sufficiently small, but not

so small as to incur significant roundoff error, the estimate is mathematically

designed (in Section 2.6) to closely model truncation error. It is now proven that

(2.68) does indeed accurately model roundoff error when the step size is very

small.

In practice, the ratio of step sizes h2/h1 is often kept constant in order to

reduce coding complexity. This step-size reduction ratio t, defined as t = h2/h1

with 0 < t < 1, is used to reformulate the truncation error estimate.

TEn(x, h1) =
FD

(d)
n (x, h2)− FD(d)

n (x, h1)

1− tn
(2.69)

This result only applies if roundoff errors do not affect the computation of FD
(d)
n .

If roundoff errors are considered, then the error in the truncation error equation

is,

TE − TEtrue =

(
FD2 − FD1

1− tn

)
−
(
FD2 − FD1

1− tn

)
true

(2.70)

=
(FD2 − FD2,true)− (FD1 − FD1,true)

1− tn
(2.71)

|TE − TEtrue| ≤
|FD2,true − FD2|+ |FD1,true − FD1|

1− tn
(2.72)

where condensed notation has been used, and the triangle inequality was employed

in the last equation. For very small step sizes (i.e. h < hopt), roundoff error

dominates the FDD computation, and (2.55) can be used to express the right-
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hand side.

|TE − TEtrue| ≤
1

1− tn

[
ε2|Fε2|+ δ2|Fδ2|

hd2
+
ε1|Fε1 |+ δ1|Fδ1|

hd1

]
(2.73)

≤ 1

1− tn

[
(1/t)d(ε2|Fε2|+ δ2|Fδ2|) + (ε1|Fε1|+ δ1|Fδ1|)

hd1

]
(2.74)

As stated at the end of Section 2.8, the various Fε and Fδ values are all evaluated

at the optimal step size, so Fε1 = Fε2 and Fδ1 = Fδ2 . Furthermore, δ itself only

depends on the machine precision, so δ1 = δ2. Finally, the condition error of the

function f(x) depends on the base value of x, which is independent of the step

size, so ε1 = ε2. Making these substitutions and using generic notation,

|TE − TEtrue| ≤
1 + (1/t)d

1− tn

(
ε|Fε|+ δ|Fδ|

hd

)
(2.75)

The true value of the truncation error becomes negligible as the step size is reduced

into the roundoff error range, so this equation is equivalent to,

|TEn(x, h)| ≤ 1 + (1/t)d

1− tn

(
ε|Fε|+ δ|Fδ|

hd

)
(2.76)

This equation gives an upper bound on the roundoff error when the estimated

truncation error (2.68) is used with neighboring small step sizes h1 = h and

h2 = th. In comparison, the total error in a FDD approximation, given in (2.62),

is

E(x, h) =
ε|Fε|+ δ|Fδ|

hd
+ |Cn|hn (2.77)

The first term in this equation, which dominates when the step size is small,

gives the true roundoff error bound. It is easily shown that the constant term in

(2.76) is always greater than unity since 0 < t < 1, and d and n are both ≥ 1
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(see Section 2.4). This means that the truncation error given by (2.68) slightly

overestimates the true roundoff error by a nearly constant amount. Because the

estimated truncation error follows the same trend as the true error with respect to

the step size and differs only by a constant, (2.68) is hereby proven to accurately

model roundoff error when the step size is very small.

To obtain the most accuracy from the truncation error (2.68), it should be

corrected for small step sizes by dividing out the constant from (2.76). The true

error function is then well approximated by the piecewise equation,

E(x, h) ≈


TEn(x, h1) h ≥ hopt

1−tn
1+(1/t)d

TEn(x, h1) h < hopt

(2.78)

There are of course other piecewise equations which would result in smoother

fits near hopt, such as a linear transition from the uncorrected to the corrected

equations. However, the actual behavior of the truncation error estimate at the

optimal step size is not of interest; rather, the behavior away from hopt is more

indicative of the optimal step size. This is proven in the analysis of Chapter 3.

The result of applying (2.78) to the truncation error estimate for sin(x) at

x = π/4 using the forward-difference approximation (originally in Figure 2.4) is

shown in Figure 2.7. It can be seen that the corrected truncation error estimate

more closely approximates the true roundoff error.

Because the estimated truncation error (2.68) overestimates the true round-

off error for very small step sizes, it can be concluded that the step size which

minimizes (2.68) is slightly greater than the optimal step size given in (2.66) which
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Figure 2.7: Result of correcting the truncation error estimate for sin(x), x = π/4.

minimizes the true error (2.60). This effect is shown in Figure 2.8, which analyzes

the function f(x) = sin(x2 + 106x), first seen in Figure 2.5. As expected, the

corrected truncation error estimate points are much better fits to the true error.

To visualize the optimal step size, best-fit dashed lines are shown for both un-

corrected and corrected truncation error estimates. It is clear that the optimal

step size resulting from the uncorrected truncation error is greater than from the

corrected truncation error.

The relationship between the uncorrected and corrected optimal step sizes

is derived from the fact that the truncation error estimate and the true error differ

only by a proportionality constant for very small step sizes. The general form of
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Figure 2.8: Optimal step size using a corrected truncation error estimate for
sin(x2 + 106x), x = π/4.

the true error is,

Etrue =
e

hd
+ Chn (2.79)

while the general form of the estimated truncation error is,

ETE =
t∗e

hd
+ Chn (2.80)

where e = ε|Fε| + δ|Fδ|, C = |Cn|, and t∗ = (1 + (1/t)d)/(1− tn). Differentiating
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both of these and solving for the optimal step size,

E ′true = −d e

hd+1
+ nChn−1 E ′TE = −d t

∗e

hd+1
+ nChn−1 (2.81)

hopt,true =

(
d

n

e

C

)1/(n+d)

hopt,TE =

(
d

n

e

C
t∗
)1/(n+d)

(2.82)

hopt,true =

(
1

t∗

)1/(n+d)

hopt,TE (2.83)

If the step-size reduction ratio is in the range 0 < t < 1, then t∗ > 1 and it is

proven that the true optimal step size is smaller than the uncorrected optimal

step size. This relationship is useful when the truncation error estimate is used

to determine an optimal step size (as explained in the next chapter), which can

then be easily corrected using (2.83).

It is interesting to analyze the relationship between t and t∗, in particular

with regards to making the uncorrected optimal step size as close to the true one

as possible.

t∗(d)
n (t) =

1 + (1/t)d

1− tn
(2.84)

The range of t∗ with respect to t is given in Figure 2.9 for various values of the

FDD order n. Clearly there is a value of t for which t∗ is minimized; i.e. the

uncorrected step size hopt,TE will be as close to hopt,true as possible.

The exact value of t which minimizes t∗ is computed as,

dt∗

dt
=
dt−d(tn − 1) + n(t−d + 1)tn

t(tn − 1)2
= 0 (2.85)

ntn+d + (n+ d)tn − d = 0 (2.86)

For a simple forward-differences approximation to the first derivative (n = d = 1),

(2.86) is quadratic and solves to t = −1 +
√

2 ≈ 0.41. This is the only case in
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Figure 2.9: Effect of changing FDD order n on t∗(d)
n .

which (2.86) is easily solved analytically; all other combinations of d and n require

a numerical root-finding method.

The optimal step-size reduction ratio t is computed for the derivative orders

d ∈ {1, 2, 3, 4} and common FDD orders n ∈ {1, 2, 4, 6, 8}. This t is then used

to evaluate the ratio hopt,TE/hopt,true (which equals t∗1/n+d from (2.86)), and the

results for each (d, n) combination are given in Figure 2.10. This graph shows that

if the appropriate optimal step-size reduction ratio t is chosen for a given (d, n)

pair, then the uncorrected optimal step size can in fact be quite close to the true

optimal step size.
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2.10 Chapter Conclusions

The basics of Richardson Extrapolation, Taylor Series, the Lagrange re-

mainder, and finite-difference derivative (FDD) methods were discussed at the

beginning of this chapter. In particular, it was shown in Section 2.5 that if the

step size used to compute a given FDD approximation is too small, then the error

of the method increases in inverse proportion to the step size. This problem is

called the ‘Step-Size Dilemma’, and is caused by roundoff errors interfering with

the computations within the FDD approximation.

The two main sources of roundoff error affecting a FDD computation are

cancellation and condition errors. By forming expressions to approximate the
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upper bounds of these errors, equation (2.60) was developed which accurately

approximates both roundoff and truncation errors. Because these errors occur in

inverse proportions, it was shown that the total error bound can be differentiated,

and the resulting zero gives the optimal step size hopt that minimizes total error in

a FDD approximation. This optimal step size, given in (2.66), is a generalization

of the ones given by other noted authors [1, 6, 12, 13, 19]. As noted by these

authors, its use requires prior knowledge of the condition error in the function

being differentiated.

Finally, a method to estimate the truncation error of a FDD approximation

was developed by using a variation of Richardson Extrapolation. This truncation

error estimate, given in (2.33) and (2.34), was shown in Section 2.9 to also correctly

model roundoff error (with a constant correction factor) when the step size is below

its optimal value.

Overall, mathematical tools have been developed which will be employed

in the next chapter to search for the optimal step size, and to analyze the function

of interest f(x) once the optimal step size has been found.
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Chapter 3

Developing the Step-Size Optimization

Algorithm

3.1 Chapter Summary

This chapter focuses on developing a robust algorithm that determines the

step size which minimizes both roundoff and truncation errors in the computation

of a finite-difference derivative (FDD). The step-size analysis tools developed in

Chapter 2 are used for this purpose, and are analyzed from a numerical perspec-

tive. A logarithmic analysis of the total error bound (2.60) sheds light on a unique

method of finding the optimal step size. This method is compared and contrasted

to the iterative search procedure of Stepleman and Winarsky [51], which simply

searches a descending error series for the best step size.

The validity of a given step size is also discussed. This gives a measure of

whether a given optimal step size is still close to optimal if the point of differenti-

ation x is changed. In particular, a bound on x is developed for which the optimal

step size is deemed valid.

Because roundoff error is inherently unpredictable (for the purposes of this

dissertation), the term ‘optimal step size’ must be used with caution. Since hopt

is computed using analytical approximations developed in Chapter 2, the effects
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of varying it slightly are also explored.

3.2 Algorithm Goals

The most common step-size approximation algorithms [1, 12, 13] require

knowledge of the condition error within a function. While the iterative algorithm

of Stepleman and Winarsky [51] does not require this knowledge, it can get ‘stuck’

in false minima caused by roundoff error near the true optimal step size. This al-

gorithm searches for the optimal step size by iteratively reducing the step size, and

stopping when the change in the the resulting FDD values is no longer decreasing.

In other words, the basic search condition used is

|FD(hi)− FD(hi+1)| ≤ |FD(hi)− FD(hi−1)| (3.1)

where hi is the current step size being tested, and hi+1 and hi−1 are the next

(smaller) and previous (larger) step sizes, respectively. It was recognized that

starting this search with too large of a step size would result in an immediate

failure, so a heuristic method was presented to iteratively compute the initial step

size. While this method suffices for most functions, it can certainly fail for out of

the ordinary functions with higher condition errors.

The step size optimization algorithm developed in this chapter is designed

to work with any function f(x) that is analytic in the neighborhood of the point

of differentiation x. No assumptions are made as to the condition of the function

or the value of the optimal step size. As seen in Section 2.6, a function can always

be conceived of which violates the traditional step-size estimation theories.

52



Furthermore, the algorithm developed here is iterative in nature. Starting

with a sufficiently large step size, successively smaller step sizes are analyzed until

the optimal one is found. A unique requirement of the algorithm is that it should

not be averse to overly large initial step sizes. Given such a large step size, the

algorithm should be able to overcome the initial erratic behavior of the resulting

finite-difference derivative and continue to find the true optimal step size.

Because the analysis of each step size requires multiple function evalua-

tions, the total number of function evaluations can get expensive. In the interest

of a thorough analysis, the algorithm is initially developed without regard to a

high number of function evaluations. Optimizing the algorithm to reduce function

evaluation cost is considered in Chapter 5, after the algorithm is fully developed

and examples are shown.

3.3 Benefit of Power-of-2 Step Sizes

From a mathematical perspective, the value of a step size is independent of

how that step size is represented. Because people are trained to think in base 10,

it is natural to use step sizes which are associated with powers of 10: 1e−6, 5e−8,

etc... Step-size analysis theories such as the ones developed in Chapter 2 suggest

that the total FDD error associated with a step size depends only on truncation

error (from the Taylor Series), cancellation error (from the subtraction operation),

and condition error (accumulated within the function itself). There is, however,

one more numerical source of error: representation error.

Representation error arises from the fact that not all numbers can be ex-
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actly expressed in binary using a fixed number of digits. In particular, no negative

integer power of 10 has an exact binary representation. Although the error be-

tween a number and its binary representation is smaller than machine precision, it

can have a nontrivial effect on FDD approximations, as evidenced by the following

example.

Example 3.1. The derivative of f(x) = x2 at x = 1 is computed using a second-

order central-difference approximation, and the results for a range of step sizes are

tabulated in Table 3.1. Since the function is quadratic and the FDD method is 2nd-

order, there is no truncation error. In addition, both cancellation and condition

errors are smaller than machine precision for a simple x2 multiplication near unity.

Finally, this code computes the ‘true’ step size to account for roundoff errors in

computing the perturbed x values, as discussed in Numerical Recipes [39]. As a

result of these considerations, the derivatives computed by this code should equal

the analytical derivative (df/dx = 2) for all tested step sizes. It can be seen in

Table 3.1 that this is not the case; several derivatives have nontrivial errors.

Since all other sources of error have been eliminated, only representation

error could cause the incorrect derivatives in Table 3.1. Even though small errors

in the actual step size have already been accounted for in the code, the resulting

perturbed test points are not always centered at x. As a consequence, there is a

possibility that the derivative is computed not at the desired x, but at a slightly

shifted point.

This form of representation error is easily avoided by using a step size that

is a power of 2, for example h = 2−p. Because such numbers have exact binary

54



Table 3.1: Representation error in the central-difference derivative.

Step Size d(x2)/dx, x = 1
10−1 2.000000000000000
10−2 2.000000000000000
10−3 1.999999999999944
10−4 1.999999999999445
10−5 2.000000000000000
10−6 2.000000000055511
10−7 2.000000000000000
10−8 1.999999994448885
10−9 2.000000000000000

...
...

10−15 2.000000000000000

representations, both x+ h and x− h will be correct to full precision, and will in

fact be centered at the desired x. When example 3.1 is reproduced with power-of-2

step sizes, the resulting derivatives are all 2.0 (to machine precision).

Although the effects of representation error may not always be as drastic

as in example 3.1, they are so easily avoidable that there is no reason for not using

power-of-2 step sizes. Even if the step size is computed relative to x,

h = eps * (1.0 + abs(x));

the equivalent power-of-2 step size would be computed as,

h = eps * (1.0 + abs(x));

p = ln(h) / ln(2.0);

h = 2.0^round(p);
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3.4 Slope of the Total Error

The total error function (2.62) can be analyzed from a logarithmic stand-

point to reveal linear trends as the step size moves away from its optimal value.

lnE(x, h) = ln

(
ε|Fε|+ δ|Fδ|

hd
+ |Cn|hn

)
(3.2)

lnE(x, h) =


ln (ε|Fε|+ δ|Fδ|)− d lnh h� hopt

ln |Cn|+ n lnh h� hopt

(3.3)

This reformulation indicates that the slope of the total error function, on a log-log

scale, approaches the negative of the differentiation order d as the step size gets

small, and approaches the FDD order n as it gets large. There are two caveats

to this rule. First, because roundoff errors are unpredictable, the limit for small

step sizes acts as a best-fit line; the true errors exhibit small fluctuations about

this line. Second, the limit for large step sizes only applies up until the point

where the nth-order truncation error estimate is no longer valid. As proven in

Section 2.9, the truncation error estimate from (2.68) accurately models the true

error when used with the correction factor in (2.78). Therefore, it is subject to

the same linear trends regarding small and large step sizes.

Example 3.2. The 1-σ Ricker wavelet commonly used in statistical analysis and

also tested by Pemba [37],

f(x) =
2√

3π1/4

(
1− x2

)
e−x

2/2 (3.4)

is differentiated at x = e using the forward-difference approximation. Figure 3.1

both confirms and alleviates concerns with the first caveat associated with the
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slope of the estimated truncation error for small step sizes. It is seen that the

best-fit line for the corrected truncation error points (in the roundoff error region)

does in fact have a slope very close to the predicted value of −d = −1. In addition,

the best-fit line in the valid truncation error region is such an exact match to its

constituent points and to the true truncation error that it is indistinguishable

from both.

 Roundoff 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Line 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= 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Figure 3.1: The slope of the estimated truncation error best-fit line approximates
the true roundoff error.

It was shown in Section 2.6 that the estimated truncation error is not a valid

approximation for step sizes that are too large. This is confirmed by performing

error analysis on the truncation error estimate (2.34). Expanding the general

FDD equation in (2.28) to include its error term and applying the Richardson
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extrapolate,

f ′ = FD1 + Cnh
n
1 +O(h2n

1 ) (3.5)

f ′ = FD2 + Cnh
n
2 +O(h2n

2 ) (3.6)

Cn =
FD2 − FD1

hn1 − hn2
+O(hn1 ) (3.7)

TEn(x, h1) = Cnh
n
1 + C2nh

2n
1 (3.8)

where C2n depends on higher-order derivatives. On a log-log scale, the truncation

error at first glance appears to have a predictable slope,

lim
h1→∞

lnTEn = lnC2n + 2n lnh1 (3.9)

where the slope is 2n. However, because C2n involves higher derivatives using the

Lagrange Remainder form, it is evaluated over an ever-increasing interval of [x−

a2h1, x+a3h1] (from the general FDD approximation form of (2.29)). This causes

C2n to change unpredictably as h1 continues to increase. The overall consequence

of this is that the estimated truncation error does not have a predictable slope

(on a logarithmic scale) for step sizes far greater than the optimal. When used

to estimate the true error, the estimated truncation error TE(x, h) is therefore

proven to not accurately model any of the true error’s trends for such huge step

sizes.

3.5 Algorithm Development for Scalar Functions

The step-size theory laid out in Chapter 2, combined with the analysis

performed so far in this chapter, allows the development of a simple iterative

step-size search algorithm.
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3.5.1 A Simple Step-Size Search Algorithm

A 2-body orbit about the Earth, with orbital parameters given in Table

3.2, is propagated for a quarter of its period from a fixed initial true anomaly of

ν0 = 0◦. Danby’s method1 [7] is used to solve Kepler’s equation, and the final

result is the true anomaly νf at the final time tf . Figure 3.2 shows the estimated

truncation error when the derivative dνf/dtf is computed using the second-order

central-difference method.

Table 3.2: Orbital parameters for propagated orbit.

µ 398600.4 [km3/s2]
a 200000 [km]
e 0.96453
i 51.619◦

ω, Ω, ν0 0◦

(t0, tf ) (0, 222533.8) [s]

A simple algorithm which satisfies all the conditions in Section 3.2 can be

developed by visually analyzing Figure 3.2 as follows.

1. A large initial step size h0 is chosen, preferably one that is a power of 2

as explained in Section 3.3. If h0 is too large, then the estimated trunca-

tion errors will be invalid, and it has been proven that in such cases the

estimated truncation error slope will not, in general, be n. However, it has

been observed that in isolated cases, a very large step size may result in a

1A useful summary of Danby’s method for solving Kepler’s equation is given at http://www.
cdeagle.com/ommatlab/toolbox.pdf.
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Figure 3.2: A truncation error plot used to develop the simple algorithm.

truncation error slope nearly equal to n by coincidence. These cases occur

sporadically; it may occur for a particular hi and hi+1, but will only occur

for a prolonged sequence of step sizes if the truncation error is actually valid.

2. A step-size reduction ratio t is chosen, which relates two consecutive tested

step sizes by t = h2/h1. It is known from Section 3.4 that the estimated

truncation errors associated with these step sizes should have a slope equal

to the FDD order (on a log-log scale), which in this case is n = 2. In

addition, t should be chosen as an inverse power of 2 so that h2 will also be

a power of 2.

3. The current step size hi and next step size hi+1 = thi are used with (2.68)
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to compute a truncation error estimate. This is compared to the previous

truncation error estimate, and the resulting slope is compared to the desired

slope n. To accommodate the anomalous cases described in step 1, a counter

variable is used to keep track of the number of consecutive step sizes with a

near-correct truncation error slope. If the current slope is correct, then the

counter is incremented and control goes to step 4. Otherwise, control goes

to step 6.

4. If the counter has passed a predetermined limit, then a sufficient number

of consecutive test step sizes have a truncation error slope equal to n. It

is therefore assumed that the ‘valid truncation error’ range of step sizes

has been reached; a flag is set to indicate this and control goes to step 5.

However, if the counter has not yet reached its limit, then control returns

to step 3 without setting the ‘valid truncation error’ flag.

5. Because the current step size results in a valid truncation error estimate,

the associated Cn value from (2.33) is saved for later use. Control returns

to step 3.

6. If the slope from step 3 is not correct and the ‘valid truncation error’ flag

is not set, then the counter is reset to zero and control returns to step 3.

However, if the ‘valid truncation error’ flag is set, then it is assumed that

roundoff error has caused the truncation error slope to deviate and control

goes to step 7.
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7. When control reaches this step, it is assumed that the current step size hi is

the optimal uncorrected step size. Although not absolutely necessary, it is

prudent to apply the step-size correction from (2.83): hopt = (t∗)−1/(n+d)hi.

Using this optimal step size and the previously saved Cn value, the condition

error ε can be computed using (2.67). The algorithm exits with the optimal

step size.

Steps 3-5 of this algorithm create a logic which skips over any initial trun-

cation error inaccuracies, recognizes the region of valid truncation error, and ter-

minates at the first sign that roundoff error has begun to dominate the FDD. The

optimal step size is then used to compute the condition error of the function. For

the propagation problem in Figure 3.2, the solution computed by this algorithm

is given in Table 3.3. Note that the corrected step size is adjusted to the closest

power of 2 which has already been tested, to reduce function evaluations.

Table 3.3: Solution for Kepler orbit propagation problem.

uncorrected corrected
hopt [s] 4.0 3.0

dνf/dtf [deg/s] 6.94245608057e−7 6.94245607964e−7
Relative Error 1.402e−10 6.98e−12

In both corrected and uncorrected cases, the function condition error ε is computed

to be smaller than machine precision (2−53) and the total number of function

calls is 103. The relative error is computed using the true derivative, which is

6.94245607959e−7 [deg/s]. Figure 3.3 illustrates the results of this problem; the
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corrected and uncorrected optimal step sizes are indicated. The true optimal step

size occurs at the bottom of the best-fit line, which (visually) is almost coincident

with the corrected optimal step size. A final point of interest is the accuracy of

the roundoff error best-fit line; it fits the true and corrected truncation errors

extremely well, and its slope is almost exactly −1 as expected from this problem.

This observation helps to validate the theory that corrected truncation error does

a very good job of approximating true error in the roundoff region of step sizes.
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Figure 3.3: The simple algorithm applied to the Kepler orbit propagation problem.

3.5.2 Optimal Step Size Accuracy vs Precision

In step 7 of the simple step-size search algorithm, it is assumed that the

optimal step size has been reached as soon as the truncation error slope deviates
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from its expected value. Because deviations from the expected value will always

exist, the algorithm must be specific as to how much deviation is considered exces-

sive. If this allowable deviation is very small, then the algorithm may terminate

several iterations early; i.e. the error would be smaller had it continued for a few

more iterations. On the other hand, if the deviation tolerance is large, then the

algorithm may iterate into step sizes where roundoff error dominates.

This uncertainty is exacerbated by the fact that, even if the chosen step

size truly does result in a minimum error, it will only be a minimum for the

given point of differentiation x. If the value of x is changed by a slight amount

∆x, it is useful to understand how the error in the computed FDD changes for a

given step size h. There are some conclusions that can be reached by examining

step-size optimization theory alone. For example if the test step size h is slightly

greater than the optimal step size hopt, then roundoff errors have not yet begun to

significantly effect the estimated error. Because of this, it is reasonable to expect

that the estimated truncation error from the current x will also bound the true

error for a slightly different x. Conversely, if the test step size h is slightly less

than hopt, then roundoff errors have a significant effect on the estimated error.

In this case the true error for a slightly different x may change unpredictably

compared to the value for the current x.

Two examples are now considered, which showcase the aforementioned

effects of step size choice on total error. In each example, two different step sizes

are tested, both of which are close to the optimal value. The x value is varied

about its nominal value, and the relative error in df/dx (as compared to the true
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derivative) is plotted using each test step size. In addition, a line is drawn for

each step size that indicates the true truncation error TE(x, h) for the nominal x

value. This line is intended to provide a quick visual indication of the accuracy

of the estimated truncation error.
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Figure 3.4: The effects of near-optimal step sizes.

The first example replicates the Kepler propagation problem given in Table

3.2, using step sizes of h1 = 6[s] and h2 = 3[s]. The nominal x (where x = tf ) is

varied by |∆x| ≤ 65536[s], and the results are given in Figure 3.4. As expected,

the larger step size results in greater relative error for almost all tested values of

x. It is also clear that the truncation error estimates at the nominal x do in fact

bound their respective relative errors for the range of x values tested. This is no

coincidence, and is explained in Section 3.5.3. Finally, the drastic reduction in
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the spread of relative error points for the h2 scan at the negative ∆x values is

an indication that there may be a better optimal step size as x reduces towards

zero. This is a graphical confirmation of the commonly known trend that if the

magnitude of x is greatly reduced, the optimal step size will follow suit.
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Figure 3.5: The simple algorithm applied to an ill-conditioned function.

The second example revisits the ill-conditioned function f(x) = sin(x2 +

106x) at x = π/4, originally analyzed in Figures 2.5 and 2.8. The corrected

and uncorrected optimal step sizes are indicated in Figure 3.5. It is apparent

that, as expected, the truncation error best-fit line very closely approximates the

corrected and true roundoff errors. The uncorrected and corrected optimal step

sizes are hopt ≈ 5.82e−11 and hopt ≈ 2.18e−11, respectively. In this instance, a

visual inspection suggests that the corrected optimal step size may still be slightly
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Figure 3.6: Increase in true relative error with a continued decrease in step size.

higher than the true optimal step size. Figure 3.6 shows the effects of varying the

nominal x by |∆x| ≤ 1.75e−8, by plotting the true relative error in the FDD value

(as compared to the true derivative). Three successively decreasing step sizes are

chosen to highlight the effects of excessively reducing the step size on FDD values

at neighboring x points. The largest step size h1 is clearly greater than the optimal

step size (from Figure 3.5), and as expected its associated relative error changes

fairly predictably with x. The next step size h2, being much closer to the optimal

value, has less relative error but the actual values are much less predictable with

respect to changes in x. As in the previous example, this is expected because

although the optimal step size results in less total error, it is also much more

susceptible to roundoff errors which affect the total error in unpredictable ways
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(on a small scale). However, this trend is partially broken in the smallest step

size h3, for which the relative error increases greatly and the uncertainty in the

relative error is also high. In other words, the step size h3 provides neither the

smaller errors of h2 nor the more predictable errors of h1; it is considered to be a

‘worse’ choice than both.

The results of these examples are indicative of the general trend when the

chosen step size is in the vicinity of the optimal step size. For step sizes slightly

larger than the optimal, the FDD error for neighboring x values has high precision2

but low accuracy3. As the step size approaches its optimal value, the computed

FDD error reduces in precision, but increases in accuracy. Finally, as the step size

is further reduced, it loses both accuracy and precision. These observations are

backed by theory as explained at the beginning of this section.

One of the most common reasons for using a FDD method is to compute

a derivative for use within an optimization loop. Because this loop may involve

many iterations, it is likely desirable to compute the optimal step size once, and use

that step size as iterations progress and the optimization parameter x is changed.

This is in fact the exact situation considered in this section. Therefore a step-size

smaller than the optimal should be avoided at all costs, since it provides neither

precision nor accuracy in the computed FDD values when x is varied. This leaves

only a small range of useful step sizes, all greater than or equal to the optimal,

which present a design tradeoff between precision (larger step sizes) and accuracy

2Precision indicates how close the FDD values are to each other.
3Accuracy indicates how close the average FDD value is to the true derivative.
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(smaller step sizes).

The deviation tolerance employed by the simple step-size search algorithm

from Section 3.5.1 encompasses this design tradeoff. A tight tolerance causes the

algorithm to finish early with larger step size values, while a loose tolerance allows

the algorithm to proceed closer to the optimal step size. However, a tolerance

that is too loose may result in the algorithm proceeding past the optimal step

size, which as stated before is always undesirable. It has been found in practice

that a deviation tolerance equal to the desired truncation error slope n produces

optimal step sizes which, after correction, provide a very good balance between

precision and accuracy. Such a tolerance effectively stops the algorithm as soon

as a truncation error value is greater than the value preceding it, as evidenced

in the uncorrected optimal step sizes computed in Figures 3.3 and 3.5. However,

this rule of thumb does not have to be followed; the deviation tolerance can be

left as a user-specified parameter if it is so desired.

3.5.3 Optimal Step Size Validity Range

The step size computed by the simple algorithm of Section 3.5.1 and subject

to the constraints of Section 3.5.2 results in accurate and precise FDD values for

the current and neighboring values of the independent variable x. A method is

now derived to compute the particular range of x values for which the optimal

step size is valid.

General FDD methods are derived by first fitting an pth-degree Taylor

polynomial (where p = n + d − 1 from Section 2.4) to a function f(x) at p + 1
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points in the neighborhood of a particular x0. This polynomial is differentiated d

times at x, and the result is taken to be an approximation of the true derivative

f (d)(x). The error Rn in this approximation, proportional to O(hn) and given in

Lagrange form in Section 2.3, is rewritten here

Rn = a1f
(n+d)(ξ)hn , ξ ∈ [x0 − a2h, x0 + a3h] (3.10)

where a1, a2, and a3 are known constants dependent upon the particular FDD

method used, ξ is an unknown parameter, and the step size h is the distance

between the extremal polynomial fit points. It was shown in Section 2.6 that the

coefficient f (n+d)(ξ) can be estimated by using two step sizes h1 and h2. Note

that estimating f (n+d)(ξ) is tantamount to estimating ξ itself, although an actual

value for ξ is not of interest.

Consider the case where f (n+d)(ξ) is estimated twice, first using step sizes h1

and h2, and then using h2 and h3, and the estimates are equal to each other. This

can only happen for one of two reasons: either ξ is the same for both estimates,

or ξ changed but f (n+d)(ξ) happened to be the same in both cases. Both of these

cases are purely coincidental; they can only occur for particular combinations of

f , x0, and h. Figure 3.7 illustrates these caes when the first derivative is estimated

(d = 1).

Consider next the case where many different step sizes in the range [hopt, hmax]

are tested (where hmax � hopt), and f (n+d)(ξ) is the same for all of them. Extend-

ing the reasoning from above, this can only occur for one of two reasons:

1. ξ is the same for all step sizes. Because the range of possible ξ values depends
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 x 

f(n+1)(x) 

x‐h  x+h ξ1,ξ2 ξ1 

Figure 3.7: Two possibilities of ξ1 and ξ2 for which f (n+1)(ξ1) = f (n+1)(ξ2).

on the step size, the ξopt associated with hopt will be very close to x itself.

As a consequence, all of the ξ values must be very close to x. This presents

a contradiction; a general ξ value need not be close to x if the associated

step size h is large. Therefore this possibility is precluded.

2. f (n+d)(x) repeats itself for all ξ values. Because the ξ values are not neces-

sarily evenly spaced, the possibility of f (n+d) coincidentally repeating itself

many times at the exact ξ values is negligible. On the other hand, if f (n+d)

is constant over the range [x− a2hmax, x+ a3hmax] then this case would also

be true.

By elimination, it is shown that if f (n+d)(ξ) is constant for many tested step

sizes in the range [hopt, hmax], then f (n+d)(x) must in fact be constant for all

x ∈ [x0−a2hmax, x0+a3hmax]. An example is presented to show how this conclusion

is used along with the simple step-size algorithm to determine hmax.

71



TE Best‐Fit Line 
ln(TE) = 0.4159 + 2.02*ln(h) 

R² = 1 

1.E‐11 

1.E‐10 

1.E‐09 

1.E‐08 

1.E‐07 

1.E‐06 

1.E‐05 

1.E‐04 

1.E‐03 

1.E‐02 

1.E‐01 

1.E+00 

1.E+01 

1.E‐16  1.E‐15  1.E‐14  1.E‐13  1.E‐12  1.E‐11  1.E‐10  1.E‐09  1.E‐08  1.E‐07  1.E‐06  1.E‐05  1.E‐04  1.E‐03  1.E‐02  1.E‐01  1.E+00 
 A
bs
ol
ut
e 
Er
ro
r 
in
 d
f/
dx
 

Step Size h 

Es6mated Trunca6on Error (TE) vs Finite‐Difference Step Size 

EsAmated TE 

Valid TE 

Roundoff Error 

f(x) = ex/√(sin(x3) + cos(x3)) 
x = 1/2 

O(h2) Central Differences 

hopt  hmax 

Figure 3.8: Determination of a maximum step size hmax.

Example 3.3. Figure 3.8 shows the estimated truncation error for the function

f(x) =
ex√

sin(x3) + cos(x3)
(3.11)

which was also evaluated by Lyness [29], Squire and Trapp [50], and Pemba [37].

After evaluating this function with the simple step-size algorithm, it is found that

the uncorrected optimal step size hopt is approximately 1.14e−5. At the initial

large step sizes near unity, the slope is deemed inaccurate as compared to the

expected slope of n = 2. However, it is determined that for step sizes smaller

than 0.125, the truncation error estimate slope is within a tight tolerance of the

expected slope. For comparison, the truncation error equation for a 2nd-order
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central-difference FDD method, on a log-log scale, is

lnTE2 = ln(f (3)(ξ)/6) + 2 lnh (3.12)

In this example it is found that for h ∈ [hopt, hmax] (where hmax = 0.125), the

slope is very close to the expected value, as confirmed by the best-fit line in Figure

3.8. This means that over the given step size range, the derivative f (n+d) = f (3)

is nearly constant for all tested step sizes. By the reasoning presented prior

to this example, a near-constant (n + d)th derivative is expected over the range

x ∈ [0.5− 0.125, 0.5 + 0.125].

If it is shown that the (n+d)th derivative is nearly constant over a specified

range of x values, then the error in the n-th order FDD approximation to the

derivative is expected to be nearly constant over the same range of x values. From

a different perspective, this is equivalent to noting that the difference between

using p-th and (p + 1)-th degree Taylor polynomials to fit the function f(x) at a

given x is nearly constant for step sizes in the range h ∈ [hopt, hmax].

The proofs given and conclusions reached so far in this section are now

combined for clarity. When the simple step-size search algorithm is initialized

with a step size h0 which is too large, it will iteratively reduce this step size

until the truncation error slope reaches the expected value. The first step size for

which this is true is hmax, as proven above. Continuing onwards, the algorithm

determines the minimum safe step size hopt, which can be corrected with (2.83)

if desired. If this algorithm is used within an optimization loop, then there is no

need to recompute hopt for future iterations of x→ x′; the same hopt can be used
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while x′ ∈ [x − a2hmax, x + a3hmax], and the resulting estimated truncation error

will be consistent with the error for x.4

As mentioned in Section 3.5.2, it is no coincidence that the true relative

error in Figure 3.4 remains less than the predicted relative truncation error. In

fact, the range of x values used are based on hmax as computed using the simple

step-size search algorithm.

3.6 Deviant Functions

Certain families of functions have behavior that falls outside the assump-

tions made in the theoretical analysis of Chapter 2, the numerical analysis of the

current chapter, and the simple step-size search algorithm of Section 3.5.1. These

functions can cause the simple search algorithm to fail, so it is necessary to identify

and account for them by appropriately modifying the search algorithm.

3.6.1 Low-Degree Polynomial Functions

If an nth-order FDD method is used to approximate the dth derivative of a

polynomial with degree less than (n+d), then the approximation will be exact, and

there will be no truncation error. This is easily seen by the fact that truncation

error for such a FDD method is,

TEn(x, h) = a1f
(n+d)(ξ)hn (3.13)

4a2 and a3 are nonzero constants, defined in (2.29) and determined by the particular FDD
method.
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where f (n+d) = 0 for polynomials of degree < (n+d). If the simple step-size search

algorithm is applied to such a function, and power-of-2 step sizes are used, then

all truncation error estimates will be zero. Detecting such cases is not difficult; if

the first few truncation errors are zero, then it can be assumed that the function

is a low-degree polynomial. Choosing which step size should be returned by the

algorithm, however, is slightly more ambiguous since all step sizes produce an

exact derivative for all x values. Therefore, without any loss of generality or

accuracy, the optimal step size hopt is chosen to be the smallest tested step size,

and the maximum valid step size hmax is chosen to be equal to the initial trial

step size. Note that it is unsafe to choose hmax any larger than this, because the

function’s behavior is unknown outside of the domain [x− a2hmax, x+ a3hmax].

3.6.2 Functions with Null High-Order Derivatives

Certain functions have generally nonzero derivatives, with the exception

of one or more high-order derivatives which happen to be zero at the point of

differentiation x. If an nth-order FDD method is used, and the (n+d)th derivative

is zero at x, then the slope of the truncation error estimate will not have the

expected value of n. An example is the simple polynomial,

f(x) =
x5

60
− x3

6
(3.14)

Figure 3.9 shows the estimated truncation errors when the O(h2) central-difference

method is used to analyze this function at x = 1. The simple step-size algorithm,

when applied to this function, expects a truncation error slope of n = 2. However,
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it is clear from Figure 3.9 that this slope is not reached; the slope in the valid

truncation error region is actually 3.9917.

TE Best‐Fit Line 
ln(TE) = 0.0246 + 3.9917*ln(h) 

R² = 1 

1.E‐14 

1.E‐13 

1.E‐12 

1.E‐11 

1.E‐10 

1.E‐09 

1.E‐08 

1.E‐07 

1.E‐06 

1.E‐05 

1.E‐04 

1.E‐03 

1.E‐02 

1.E‐01 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E‐16  1.E‐14  1.E‐12  1.E‐10  1.E‐08  1.E‐06  1.E‐04  1.E‐02  1.E+00  1.E+02 

 A
bs
ol
ut
e 
Er
ro
r 
in
 d
f/
dx
 

Step Size h 

Es6mated Trunca6on Error (TE) vs Finite‐Difference Step Size 

EsAmated TE 

Valid TE 

Roundoff Error 

f(x) = x5/60 ‐ x3/6 
x = 1 

O(h2) Central Differences 

Figure 3.9: Unexpected truncation error slope for a deviant function.

To understand the reasoning behind this behavior, a higher-order derivative

of f(x) must be considered,

f (3)(x) = x2 − 1 (3.15)

At the point of differentiation x = 1, this derivative is in fact zero. Writing the

central-difference method to a higher-order error using the Lagrange remainder,

f ′(x) =
f(x+ h)− f(x− h)

2h
− f (3)(x)

3!
h2 − f (5)(ξ)

5!
h4 (3.16)

where again, ξ ∈ [x − h, x + h]. Applied to the current function, the 3rd-order
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derivative is zero, and the FDD equation reduces to,

f ′(x) =
f(x+ h)− f(x− h)

2h
− f (5)(ξ)

5!
h4 (3.17)

In this case, the total error function (2.62), when analyzed from a log-log perspec-

tive, is

E(x, h) =
ε|Fε|+ δ|Fδ|

h
+ |C4|h4 (3.18)

lnE(x, h) =


ln (ε|Fε|+ δ|Fδ|)− lnh h� hopt

ln |C4|+ 4 lnh h� hopt

(3.19)

It is now apparent that, for step sizes larger than the optimal step size, the ex-

pected log-log slope of the total error is 4, which confirms the observed truncation

error slope in Figure 3.9.

This problem can be generalized as follows. For a function f(x), which

is differentiated d times at x using a particular FDD method of order n, the

truncation error of the FDD method can be expressed as

TEn(x, h) = Cnh
n + C2nh

2n + C3nh
3n + C4nh

4n + · · · (3.20)

where each Cjn is proportional to f (jn+d)(x). If f (n+d) is zero at the given x,

then Cn = 0 and the truncation error slope must be analyzed using the C2n term.

Similarly, if f (2n+d) is also zero at the given x, then C2n = Cn = 0 and analysis

must be done with the C4n term. In general, the truncation error slope is analyzed

using the smallest j such that Cjn is nonzero, which results in an expected log-log

slope of jn itself.
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Figure 3.10: Unexpected truncation error slope resolving to the expected slope.

Even this search method can get stuck if there is a Cjn which is very close

to (but not equal to) zero. For example, when the same 5th-order polynomial is

analyzed at x = 1.01, the derivative f (3)(x) is nearly zero. Figure 3.10 shows

that the truncation error slope is n = 4 for large step sizes, as expected by the

above analysis. However, because f (3)(x) is in fact nonzero, for small step sizes

the truncation error slope returns to the expected value of n = 2 given by the

FDD order itself.

To account for these unexpected truncation error slopes, the simple step-

size search algorithm must be willing to accept slopes other than n. Instead of

assuming that the expected truncation error slope is n, the algorithm should look
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for a slope of jn where j is a positive integer. This slope is followed down a

decreasing sequence of step sizes, until the slope changes. If the new slope is j′n

where j′ is an integer such that 1 <= j′ < j, then the estimated truncation errors

are still valid. However, if the new slope does not fall into this range, then it is

assumed that the current step size has reached the domain of roundoff error.

3.6.3 Functions with Null Odd- or Even-Order Derivatives

Trigonometric functions have derivatives which repeat on a regular basis.

For example, the function

f(x) = sin(x) cos(x) (3.21)

repeats every second derivative,

f (d)(x) =


C1 sin(x) cos(x) d even

C2 cos(2x) d odd
(3.22)

where C1 and C2 are constants associated with the derivative order d. If the first

derivative (d = 1) is evaluated at x = π/4 using a 2nd-order FDD approximation

(n = 2), then all odd derivatives are zero. This causes the truncation error to be

zero (for the FDD used).

Figure 3.11 shows the result of using the simple step-size search algorithm

on this function. It can be seen that, as predicted, the estimated truncation error

is within machine precision of zero for large step sizes. Because the algorithm

searches for a truncation error slope of jn, and no such slope exists for this func-

tion, the algorithm will continue to search until it reaches a minimum allowable

step size. A visual examination of Figure 3.11 indicates that the ‘best’ step size
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Figure 3.11: Function whose odd derivatives are all zero at a particular x.

would be near h = 1, which is the minimum step size for which roundoff error

has not yet crept in. However, the current iterative form of the search algorithm

cannot come to this answer.

It should be noted that this is not a critical drawback in the algorithm.

Situations such as this have only been observed by the author for certain trigono-

metric functions evaluated at specific x values. In these cases, the algorithm can

simply return the initial tested step size as hopt, and set hmax = 0 to indicate that

the function should be reanalyzed as soon as x changes.
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3.7 Extension to Multidimensional Functions

More often than not, the function being differentiated is a vector function

of a vector input. In this case, the Jacobian matrix of the function with respect

to the input is necessary for gradient-based optimization techniques. When FDD

methods are used to compute the Jacobian’s constituent gradient vectors, a single

step size is usually used for each input variable. However, there is no guarantee

that a given step size will be optimal for every component of the output vector.

Because of this, it is of interest to consider the derivative of each output component

with respect to each input variable separately.

The simple step-size search algorithm could certainly be used for a given

input variable, and directed towards analyzing the truncation error for only a

particular output variable. This algorithm would then be run from within a nested

loop, with the outer loop iterating over the n input variables, and the inner loop

iterating over the m output variables. Such an analysis method has a cost of

O(nm), but this is easily reduced by noting that the function generally computes

all outputs for any given set of inputs. With this in mind, it is straightforward to

modify the search algorithm by having it analyze the estimated truncation error

for each element of the output vector independently, within an internal loop. Not

only does this reduce the algorithm’s functional cost to O(n), but it also noticeably

cuts down on the performance and memory overhead involved with more frequent

calls of the algorithm.

Consider a modified form of the orbit propagation problem from Section

3.5.1, specified in Table 3.2. The orbit is now propagated for half its period,
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and the output is the position vector rf at the final time tf . The gradient of

the function is therefore the final velocity vector vf , with the true value being

computed via a Kepler propagation and standard coordinate transformations.

Table 3.4: Solution for multidimensional Kepler orbit propagation problem.

rf,x rf,y rf,z
hopt [s] 4.0 6.0 6.0

Relative Error 2.269e−10 1.373e−10 1.400e−10
Calls to f() 131 129 129

Table 3.4 gives the uncorrected optimal step sizes5 for each component

of the gradient drf/dtf , along with the relative error (with respect to the true

derivative) and the number of function calls required to compute each derivative

separately6. The total number of function calls would therefore be the sum of the

individual values (in this case, 389). In contrast, if the multidimensional version of

the algorithm is used, then the total number of function calls will be the maximum

of the individual values.

3.7.1 Choosing a Single Optimal Step Size

When there are multiple optimal step sizes for a given input variable, it

is important to be able to choose one of these for use in future iterations of an

optimization loop. In the multidimensional orbit propagation problem of Table

5It is proven in Section 2.9 that the corrected optimal step size is easily computed from the
uncorrected value.

6The initial trial step size is taken to be 10000 times greater than x itself, which is responsible
for the large number of function evaluations.
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3.4, the optimal step sizes for each output element were shown to be quite close

to each other so choosing between them is not a difficult choice. This is not

necessarily true (e.g. ill-conditioned functions), and so it becomes necessary to

study various methods to choose the most desirable optimal step size for a given

problem. It is empirically determined that three straightforward methods are

min(), max(), and mean(), as described below.

1. min(hopt,i): The smallest of all possible optimal step sizes is chosen. This

method is most useful when most of the hopt values are close to the mini-

mum (in magnitude), with a few exceptions. For the output elements which

require a large step size, roundoff error will cause the total error to increase

in proportion to the order of the derivative d being sought.

2. max(hopt,i): The largest of all possible optimal step sizes is chosen. This is

a direct contrast to the min() method, and is appropriate when most hopt

values are close to the maximum. In this case, the total error for output

elements requiring a small step size will increase in proportion to the order

of the FDD method being used. Because the order of the FDD method n

is generally larger than the order of the derivative d being sought, it is rare

for the max() option to be the best.

3. mean(hopt,i): The log-based mean of all hopt values is chosen as the optimal

value, causing the increased error to be distributed amongst all derivatives.

When the n > d, it is desirable to weight the computed hopt towards the

smaller step sizes. The increased roundoff error for some derivatives will
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be outweighed by the decreased truncation error of the rest. While the

thorough weighting method would be to solve a polynomial for hopt in terms

of all other hopt,i values, in practice it is much easier to simply use a standard

n-vs-d weighting scheme,

ln(hopt) = ln(hopt,min) +
d

n+ d
(ln(hopt,max)− ln(hopt,min)) (3.23)

Regardless of the method used to choose an hopt value, an analyst should be

vigilant of situations where the computed optimal step size for a given input varies

greatly (in magnitude) for the various function outputs. This usually implies that

some components of the function are ill-conditioned as compared to others. Such

a situation is known to present difficulties for numerical optimization techniques.

3.8 Chapter Conclusions

A numerical analysis of the step-size theory from Chapter 2 was performed

in this chapter. It was first shown that step sizes which are powers-of-2 should

be used. Doing so eliminates a particular form of representation error from the

computed FDD values, and consequently from the estimated truncation error

values.

Next, it was shown that when the estimated truncation error (as a function

of the step size) is analyzed with log-log scaling, its slope is predictable. In

particular, when truncation error is valid, the slope is equal to the order of the

FDD method n. When roundoff error has dominated the results, the best-fit line

of the slope is the negative of the derivative order d. Finally, for very large step
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sizes for which neither roundoff nor truncation errors are valid, it was shown that

the slope of the estimated truncation error is unpredictable.

The knowledge of estimated truncation error slope was used to develop a

simple step-size search algorithm. This algorithm, when initialized with a very

large step size h0, is capable of ‘skipping over’ the initial incorrect FDD values.

The region of valid truncation error is successfully sought out by its expected

slope, and the step size is further reduced until roundoff error begins to dominate

the error. The step size at this point is considered as the uncorrected optimal step

size.

When this optimal step size is used with neighboring values of the inde-

pendent variable, is was shown that the optimal step size gives a good balance

between precision and accuracy of the resulting derivatives. While increasing the

step size increases precision at the expense of accuracy, it was shown that further

decreasing the step size below the optimal value results in decreased precision and

accuracy.

In recognition of the fact that FDD methods are often used within an

optimization loop, it was shown that there is a computable range of independent

variable values for which the optimal step size produces a predictable amount of

error. This is one level of optimization; the search algorithm can be called once to

determine hopt, and then not called again until the independent variable changes

by a predetermined amount.

It was shown that certain families of functions can trip up the simple step-
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size algorithm. These families of functions were analyzed and it was determined

that the algorithm could be modified to account for them. There is no loss of

generality in the algorithm from these modifications.

Finally, the algorithm was extended to account for multidimensional func-

tions of a vector input. It was shown that, with appropriate considerations, the

runtime expense can be limited to O(n) where n is the size of the input vector.

For multidimensional functions, there is a possibility that the optimal step

size is different for each component of the output. Choosing one of these step sizes

presents a design tradeoff. Three different methods were presented of choosing

between the various optimal step sizes.

86



Chapter 4

Numerical Examples

4.1 Chapter Summary

The step-size analysis theory and algorithm from Chapters 2 and 3 are

tested in this chapter. A particular implementation of the simple step-size search

algorithm, called AutoDX, is used to determine the optimal step size for a variety

of functions. Each test case is chosen to showcase a different facet of the theory

and algorithm, from the basic goal of determining an optimal step size to more

advanced fault-tolerance capabilities.

For each test case, the results of the AutoDX algorithm are compared to

those obtained using two other methods. The first comparison method involves

using a rule-of-thumb step size. The second method, called the Gradient Tuned

Algorithm (GTA), is a statistical step-size search algorithm created by Ocampo

and Restrepo [42]. The GTA algorithm starts with a very small step size (e.g.

h0 ≈ 10−16(1 + |x|)), and analyzes ‘batches’ of FDD values at each step size

up to some maximum. For each batch of FDD values, the algorithm computes

statistical quantities such as the mean and dispersion (standard deviation). The

idea behind GTA is that for very small step sizes, the dispersion of FDD values

will be high due to large roundoff errors. As the step size increases (i.e. approaches
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hopt from the roundoff error side) the dispersion should decrease due to decreasing

roundoff error. This trend continues until the optimal step size is reached, after

which truncation error dominates and the dispersion increases again. The GTA

algorithm then returns the step size with least FDD dispersion as the optimal step

size.

It should be noted that in many optimization algorithms, the step size used

to compute a FDD value is itself computed from a relative epsilon (eps) value,

where

h = eps(1 + |x|) (4.1)

While the GTA subroutine returns epsopt for the optimal step size, the AutoDX

subroutine instead directly returns hopt. When comparing results, the GTA eps

is converted to the equivalent step size. However, when examining the effects of

the optimal step size on a range of x values, the AutoDX hopt is first converted to

its equivalent eps, which is then used for all tested x values. This is done to more

accurately reflect real-world usage of FDD methods within an optimization loop.

4.2 Examples of Fundamental Functions

Fundamental functions compute their output by applying primitive oper-

ators (i.e. add, subtract, multiply, divide) to built-in functions. Examples are

polynomial, trigonometric, and exponential functions, or combinations thereof.

The output of such a function is expected to have little to no condition error,

since built-in functions and primitive operators are accurate to machine precision.
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Example 4.1. The function

f(x) = x2 + x− 1.34 (4.2)

is differentiated at x = 3.1, using the O(h2) central-differences method. Here,

n = 2 and d = 1. For the AutoDX algorithm, the initial large step size is taken

to be h0 = 1e5(1 + |x|). The rule-of-thumb step size is hrt = 5e−6|x|, as per the

guideline hrt = δ1/3|x| for second-order central-difference methods. The solution

using the three comparison algorithms is given in Table 4.1. The true relative

error is referenced to the true derivative, and the estimated relative error comes

from the total error function E(x,h) in (2.62). The AutoDX algorithm determined

that the maximum valid step size hmax = 192, and that the condition error in f(x)

is less than machine precision. Note that the estimated error is consistently larger

than the true error; this is because the total error function is by design an upper

bound to the true error.

Table 4.1: Solution for df/dx from example 4.1.

hopt |True Rel Err| |Est Rel Err| Num f()
Rule-of-thumb 1.55e−5 1.99e−11 1.23e−9 2

AutoDX 32.0 1.23e−16 6.10e−16 55
GTA 4.51e−6 0.00 4.33e−9 144

Clearly the computed derivative should be exact for any reasonable step

size, since this FDD method has no truncation error for polynomials of degree ≤ 2.

However, the results for this example show the far-reaching effects of numerical

errors. The relative error is zero for the GTA results, and near zero for the
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AutoDX results, even though the respective computed optimal step sizes are vastly

different. Meanwhile, the optimal step sizes between GTA and the rule-of-thumb

method are very similar but their relative errors are not.
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Figure 4.1: Estimated truncation errors for example 4.1.

This conundrum is better understood by looking at the estimated trunca-

tion error plot given in Figure 4.11. Because truncation error is nonexistent, only

numerical sources can cause nonzero estimated errors. In fact, it is seen that there

is only a small step-size range for which the estimated error is zero. The AutoDX

algorithm noticed this during its search, and immediately recognized the low-

1The true error is omitted from here on out, because the true derivative is assumed to be
unknown. The optimal step size can easily be corrected to represent the true optimal step size
using (2.83).
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degree polynomial exception from Section 3.6.1. The GTA algorithm, meanwhile,

found a range of step sizes for which the FDD dispersion was locally minimized.

1.E‐16 

1.E‐15 

1.E‐14 

1.E‐13 

1.E‐12 

1.E‐11 

1.E‐10 

1.E‐09 

1.E‐08 

1.E‐07 

1.E‐06 

1.E‐05 

‐2.5E+02  ‐2.0E+02  ‐1.5E+02  ‐1.0E+02  ‐5.0E+01  0.0E+00  5.0E+01  1.0E+02  1.5E+02  2.0E+02  2.5E+02 

Re
la
%
ve
 E
rr
or
 in
 d
f/
dx
 

Δx 

True Rela%ve Error vs Change in x 

AutoDX 

GTA 

Rule‐of‐thumb 
f(x) = x2 + x ‐ 1.34 

x = 3.1 
O(h2) Central Differences 

Figure 4.2: Relative errors with respect to neighboring x values for example 4.1.

The numerical problem in this case occurs because of representation error

in x. Even though power-of-2 step sizes are chosen (as explained in Section 3.3),

x itself is not exactly represented2 and so there are minor errors in x ± h. As

a consequence, step sizes much smaller than 0.1 (the approximate step size from

Figure 4.1 at which roundoff error begins to dominate) are predicted to have an

increasing amount of error. This is confirmed in the error of the rule-of-thumb

step size hrt, while the GTA step size (which is nearly equal to hrt) has zero

2x = 3.1 has no exact finite binary representation.

91



error simply by fortuitous cancellation of roundoff errors. If the GTA step size is

used with neighboring values of x, then its error should increase to the predicted

value. In contrast, the AutoDX step size should still produce near-zero errors for

neighboring x values, since it was chosen from the middle of the zero-error step

size region. These predictions are verified in Figure 4.2, in which it is seen that

the GTA eps results in increased errors while the AutoDX eps retains error near

machine precision.

Example 4.2. The function

f(x) =
1

3
x3 − 3

2
x2 + 2x+ 1 (4.3)

is differentiated at x = 3.1, using the O(h2) central-differences method. The

initial large step size for the AutoDX algorithm is taken to be h0 = 1 + |x|,

and the rule-of-thumb step size is hrt = 5e−6|x|. The solution using the three

comparison algorithms is given in Table 4.2, in which the AutoDX results are

given at the corrected optimal step size. The AutoDX algorithm determined that

the maximum valid step size is hmax = 3, and the condition error in f(x) is

ε ≈ 7.6e−16.

Table 4.2: Solution for df/dx from example 4.2.

hopt |True Rel Err| |Est Rel Err| Num f()
Rule-of-thumb 1.55e−5 1.99e−11 1.04e−10 2

AutoDX 1.53e−5 2.42e−11 1.01e−10 73
GTA 7.79e−6 4.69e−12 2.62e−11 164
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Figure 4.3: Estimated truncation errors for example 4.2.

These results are no surprise. The function is a simple polynomial with

machine precision output evaluated at a near-unity x, so the rule-of-thumb step

size is expected to be very close to the true optimal step size. Furthermore, in

this case the FDD method’s truncation error depends only on the constant third

derivative, so the maximum valid step size should be equal to the largest tested

step size. These predictions are confirmed by the truncation errors shown in

Figure 4.3.

Since all three step sizes are close to each other, it is expected that the

variation in errors with neighboring values of x should be the same for each.

Figure 4.4 confirms these predictions, which means that all three methods produce
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Figure 4.4: Relative errors with respect to neighboring x values for example 4.2.

equivalent results for simple non-deviant polynomials. The only differences are the

number of function evaluations. Of interest in this graph is the almost asymptotic

increase in relative error near ∆x ≈ −1.0. The exact derivative of the function in

this example is f ′(x) = (x−1)(x−2), which has a zero at x = 2. This corresponds

to ∆x = −1.1, which is exactly where the asymptotic increase in error occurs. For

functions f(x) evaluated at points x at which the derivative is zero, it is common

for the optimal step size to be different at neighboring x values. In this case,

AutoDX computes the optimal step size for the point x = 2 (i.e. ∆x = −1.1) to

be hopt = 8.73e−6.
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Example 4.3. The periodic function

f(x) = sin(x)cos(3x) (4.4)

is differentiated at x = −3.95, using the O(h2) central-differences method. The

initial large step size for the AutoDX algorithm is taken to be h0 = 1 + |x|,

and the rule-of-thumb step size is hrt = 5e−6|x|. The solutions using the three

comparison algorithms are given in Table 4.3, with the AutoDX results computed

using the corrected optimal step size. The AutoDX algorithm determined that

the maximum valid step size hmax = 0.25, and the condition error in f(x) is less

than machine precision.

Table 4.3: Solution for df/dx from example 4.3.

hopt |True Rel Err| |Est Rel Err| Num f()
Rule-of-thumb 1.98e−5 1.06e−9 3.19e−9 2

AutoDX 1.91e−6 1.26e−12 2.96e−11 85
GTA 4.95e−7 2.06e−11 1.04e−14 164

The estimated truncation error plot for this problem, given in Figure 4.5,

shows that the rule-of-thumb step size is clearly too large even though the function

is well-conditioned. In this case, even if the alternate rule-of thumb hrt = 1e−7

were to be used, the error would be well into the roundoff error range. One

seemingly odd result in Figure 4.5 is that the GTA optimal step size seems to

have almost zero estimated error, and Table 4.3 indicates an increased true relative

error. This discrepancy is explained by the fact that the GTA algorithm honed in

on a step-size region with very small dispersion due to coincidental roundoff error
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Figure 4.5: Estimated truncation errors for example 4.3.

cancellations. Such a repeated occurrence of nearly equal FDD values causes the

Cn estimate from (2.33) – and therefore also the truncation error estimate from

(2.34) – to be nearly zero. This is a prime example of how roundoff errors can make

the true error appear to be very small, and is precisely why step sizes smaller than

the true hopt (as approximated by the corrected AutoDX hopt) should be avoided.

The relative errors for neighboring values of x are given in Figure 4.6. As

explained in Section 3.5.2, the large rule-of-thumb step size hrt produces FDD

values which are very precise but not very accurate. It can be seen that on

average, the rule-of-thumb FDD errors are over an order of magnitude higher

than the AutoDX step size errors. Since the GTA step size is just slightly smaller
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Figure 4.6: Relative errors with respect to neighboring x values for example 4.3.

than the AutoDX step size, its errors are slightly higher, as expected.

Example 4.4. The highly nonlinear function

f(x) =
ex√

sinx3 + cosx3
(4.5)

has an asymptote at x ≈ 1.33067. The first derivative is approximated at x = 1.33

using the O(h2) central-differences method, with an initial large step size for the

AutoDX algorithm of h0 = 1 + |x|. The solutions using the three comparison

algorithms are given in Table 4.4. The AutoDX algorithm determined that the

maximum valid step size hmax = 1.83e−4, and the condition error in f(x) is

ε = 5.49e−14.
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Table 4.4: Solution for df/dx from example 4.4.

hopt |True Rel Err| |Est Rel Err| Num f()
Rule-of-thumb 6.65e−6 4.56e−5 1.37e−4 2

AutoDX 2.98e−8 1.08e−9 3.71e−9 105
GTA 3.26e−8 1.89e−9 4.44e−9 124

This example is interesting for two main reasons. First, the point x is

very close to an asymptote, so the maximum allowable step size hmax must be

very small to not overstep the asymptote. As a result, AutoDX would have to be

called within just a few iterations of an enclosing optimization loop as soon as x′

leaves the valid range given by [x ± hmax]. This proximity to an asymptote also

causes the output of the function itself to lose a small amount of reliability. For

this function, the ε ≈ 10−13 implies that almost 3 digits of accuracy are lost in

the computation of f itself.

Secondly, step sizes just beyond the asymptote result in a complex-valued

f . In programming practice, this has one of two results: either the system throws a

runtime error, or the computation returns ±∞ or NaN (Not a Number). Throw-

ing a runtime error is a specified behavior in all systems; there is generally a

compiler flag or error handler that must first be set. The AutoDX algorithm has

provisions to automatically disable this behavior during step-size analysis, so that

all erroneous values are correctly indicated as ±∞ or NaN3. In addition, once a

3AutoDX cannot work properly if the implementation of f(x) produces a fatal crash as a
result of erroneous internal computations. Such functions are not considered here, since proper
programming guidelines imply gracious error handling.
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Figure 4.7: Estimated truncation errors for example 4.4.

non-numeric f output is detected, AutoDX immediately skips to the next step

size. By implementing these two simple techniques, AutoDX is able to graciously

disregard step sizes which throw f(x± h) out of the real domain.

The truncation error plot in Figure 4.7 shows the step-size region in which

f(x) has non-numeric output. AutoDX skips these step sizes entirely, without

computing or analyzing estimated truncation errors for them. Of equal interest

is the rule-of-thumb step size, which is well into the truncation error range for

this function. If the alternate rule-of-thumb hrt = 1e−7|x| = 1.33e−7 is chosen,

then the estimated error would be much lower. However, this step size would

not suitable for example 4.3 as seen in Figure 4.5. These two examples alone
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highlight the fundamental problem with choosing a single step size for an unknown

function within an optimization loop. The amount of trial-and-error required to

find a ‘good’ step size can become staggering with more complicated functions

evaluated over large ranges of x.
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Figure 4.8: Relative errors with respect to neighboring x values for example 4.4.

Figure 4.8 confirms the expected behavior for both rule-of-thumb step sizes.

Although the smaller hrt value does produce considerably lower errors, those errors

are still an order of magnitude greater than both AutoDX and GTA methods. As

expected both of these latter two methods have equivalent errors for all x values

within the range given by hmax.
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4.3 Examples of Algorithmic Functions

Algorithmic functions are those which require an implementation of a non-

trivial algorithm to produce their results. Although not strictly required, algo-

rithmic functions often employ iterative methods to produce a result. Because

numerical errors can compound within these iterations, algorithmic functions are

expected to have a greater condition error than the simpler fundamental functions

of Section 4.2.

Example 4.5. The solution to Kepler’s equation, briefly examined in Section

3.5.1, is now thoroughly considered using the various step-size estimation algo-

rithms. The orbital parameters are given in Table 3.2, with the exception that

the orbit is propagated to x = tf = 444067.6[s], which is 1000 seconds short of a

half-period. The first derivative dνf/dtf is approximated using the O(h4) central-

differences method, with the initial large step size for the AutoDX algorithm taken

as h0 = 1 + |x|. Table 4.5 gives results from the three step-size approximation

algorithms. AutoDX determined that hmax = 9830.4[s], and ε = 1.35e−13.

Table 4.5: Solution for dνf/dtf from example 4.5.

hopt[s] |True Rel Err| |Est Rel Err| Num f()
Rule-of-thumb 2.220 2.74e−7 2.51e−7 4

AutoDX 1024 5.75e−9 1.62e−10 57
GTA 488.5 1.64e−10 1.74e−9 368

The most notable result here is the large condition error ε in f(x). To

understand this, the implementation of f(x) must be considered:
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nu_f = solve_kepler(t_0, nu_0, t_f) {

// Convert true to mean anomaly, accurate to machine precision

M_f = convert_TA_to_MA(nu_0, t_f - t_0);

// Compute final ecc anomaly, Danby’s method accurate to 4e-16

E_f = solve_kepler_danby(M_0, ecc);

// Compute final true anomaly, using standard arccos method

nu_f = acos((ecc - cos(E_f))/(ecc*cos(E_f) - 1));

nu_f = correct_for_quadrant(nu_f, M_f); // No loss of precision

}

Danby’s method of solving Kepler’s equation is accurate almost to machine preci-

sion (see Section 3.5.1). By elimination, the culprit of the large condition error ε

must be the acos function. Indeed, the implementation of the arccosine function

is ill-conditioned at angles near 0 and π, the latter of which is the case in this

example (since the final time is very close to the orbit’s half-period).

To fix this problem, the quadrant-aware atan2 function should be used in

place of acos.

nu_f = solve_kepler(t_0, nu_0, t_f) {

...

// Compute final true anomaly, using quadrant-aware arctangent method

nu_f = atan2(sqrt(1.d0 - ecc^2)*sin(E_f), cos(E_f) - ecc);
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}

The results from the three step-size approximation algorithms using this new

method are given in Table 4.6. It is clear that the errors in dνf/dtf are much

lower, as expected with a FDD method of O(h4) accuracy. Furthermore, AutoDX

now computes the condition error ε of f(x) to be below machine precision, which

verifies the increased accuracy of using atan2 over acos.

Table 4.6: Solution for dνf/dtf (using atan2) from example 4.5.

hopt[s] |True Rel Err| |Est Rel Err| Num f()
Rule-of-thumb 2.220 5.10e−12 1.12e−10 4

AutoDX 256.0 6.05e−13 6.31e−13 73
GTA 710.5 6.58e−12 1.15e−11 406

Figures 4.9 and 4.10 verify the validity of the AutoDX hopt value. Not only

does it properly find the minimum of the estimated truncation error plot, but the

resulting true relative errors for neighboring values of x (tf ) have similar accuracy.

It is also clear that the rule-of-thumb step size hrt simply does not apply here; it

is well within roundoff error range for all tested x values. Finally, it should be

noted that even the largest tested step size h0 (≈ tf ) falls within the truncation

error range in Figure 4.9. This simply means that the maximum reliable step size

hmax is most likely larger than h0. If the true hmax is desired, then h0 should be

increased when running AutoDX.

This example shows the importance of being able to accurately estimate a

function’s condition error ε. Engineering programmers sometimes use algorithms
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Figure 4.9: Estimated truncation errors for example 4.5 (using atan2).

given by reputable sources4, without full consideration of the limits of these algo-

rithms. An estimate of ε aids in verifying or challenging the fitness of a particular

function implementation.

Example 4.6. To showcase the performance of AutoDX for a multidimensional

step-size optimization problem, a Lunar intercept problem is considered. Given an

initial Earth-centered orbit (µ = 398600.4[km3/s2]), an optimal 2-body transfer

to the Moon is computed. The initial and Lunar orbits are frozen, and the epoch

time t0, initial Lunar true anomaly ν0,Moon, and initial orbit true anomaly ν0 are

all specified. The satellite coasts on the initial orbit for time dt1, after which an

4In this case, the acos method comes from the Bate, Mueller, and White [2] book itself.
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Figure 4.10: Relative errors with respect to neighboring x values for example 4.5
(using atan2).

impulse ∆v is applied to transfer the satellite to a transfer orbit. After coasting

on the transfer orbit for time dtga, the satellite arrives at the Moon at tf =

t0 + dt1 + dtga. This setup is illustrated in Figure 4.11. The performance index

for this problem is

J = ‖∆v‖ = ∆v (4.6)

and the optimization variable and constraint vectors are

x> =
(
dt1 dtga ∆vx ∆vy ∆vz

)
1×5

(4.7)

c =
(
rMoon(tf )− r(tf ) = 0

)
3×1

(4.8)
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Table 4.7: Initial and Lunar orbits for example 4.6.

Initial Orbit Lunar Orbit
a 24555.6[km] 384400.0[km]
e 0.731921 0.0549
i 51.619◦ 19.0◦

ω 45.0◦ 0.0◦

Ω 250.0◦ 0.0◦

ν0 0.0◦ 90.0◦

While the system as stated is autonomous, the fact that time implicitly

plays a role in the relative alignments of the satellite and Moon makes the solu-

tion nontrivial. An initial guess can be determined by assuming a Hohmann-like

transfer orbit, with the transfer orbit plane coincident with the initial orbit plane5.

While this transfer orbit does intercept the Moon’s orbit, the Moon may not be

at this location due to timing issues. This position error c can be minimized by

considering orbit synchronization, but it will always be nonzero at the final time

tf (with rare exceptions of aligned initial and Lunar orbits).

The optimization process drives c to zero while minimizing the total cost

(∆v), and requires the gradients of both of these quantities with respect to the

optimization variables x. The latter gradient is easily computed analytically,

∂J

∂x
=
(

0 0 ∆v
∆v

>
)

1×5
(4.9)

The Jacobian of the constraint function
∂c

∂x
is much more difficult to compute.

5Since this is an intercept problem, it is assumed that there is no plane change at departure.
The optimization process adds a small plane change when necessary.
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Figure 4.11: Setup of the Lunar transfer problem from example 4.6. The initial
orbit is in red, and the transfer orbit is in blue.

Because this problem involves purely ballistic trajectory arcs, the state transition

matrix approach of Goodyear [16, 17] or the variational method of Ocampo and

Munoz [35] can be used to compute a near-analytical Jacobian matrix. However,

it is much faster in terms of programming complexity and runtime to use a FDD

method.

Continuing in the vein of previous examples, an O(h2) central-difference

FDD method is used to compute each element of the Jacobian matrix
∂cj
∂xi

(1 ≤

i ≤ 5, 1 ≤ j ≤ 3). The reference x is the Hohmann transfer initial guess,

x>0 ≈
(
37391 414135 -1.34 -4.09 0.18

)
1×5

(4.10)

where times are in [s] and velocities are in [km/s]. The rule-of-thumb step size
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for each element of x is hi,rt = 10−6(1 + |xi|). For AutoDX, the initial large step

sizes are hi,0 = 1 + |xi|. Since AutoDX computes the full gradient vector for a

particular element i of x, it must be run in a loop over each i. On the other hand,

GTA computes an individual partial derivative (for a given i and j), so it must be

run in a double nested loop over each i and j. As discussed in Section 3.7, there

may be a separate optimal step size hopt associated with each partial derivative

∂cj
∂xi

. Table 4.8 gives each of these step sizes as computed by AutoDX and GTA,

as well as the single rule-of-thumb step size for each xi.

Table 4.8: Optimal step sizes for each element of x from example 4.6, given in [s]
for dt and [km/s] for ∆v.

c1 c2 c3

Rule-of-Thumb AutoDX hopt AutoDX hopt AutoDX hopt

hrt GTA hopt GTA hopt GTA hopt

dt1 3.74e−2
4.88e−4 2.44e−4 9.77e−4
5.23e−4 4.11e−4 4.86e−3

dtga 4.14e−1
2.00 1.00 2.00
6.21 7.45 6.63

∆vx 2.34e−6
3.81e−6 1.91e−6 1.91e−6
4.21e−6 3.04e−6 4.21e−6

∆vy 5.09e−6
9.54e−7 9.54e−7 7.63e−6
7.13e−6 8.15e−6 7.64e−5

∆vz 1.18e−6
1.91e−6 2.38e−7 1.91e−6
1.18e−6 1.30e−6 1.18e−6

Note that while the gradient
∂c

∂dtga
can be computed analytically,

∂c

∂dtga
=
∂rMoon(tf )

∂dtga
− ∂r(tf )

∂dtga
= vMoon(tf )− v(tf ) (4.11)

it is assumed here that none of the Jacobian elements are actually known. The
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three step-size estimation methods are compared using the estimated truncation

error plot alone, which (as proven in Chapter 2) is a good approximation of the

true error. It can be seen from Table 4.8 that the variation in hopt between

methods is greatest when x4 = ∆vy is used to compute the derivative of c3 =

rMoon,z(tf )− rz(tf ).
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Figure 4.12: Derivative
∂c3

∂∆vy
from example 4.6.

Figure 4.12 shows these optimal step sizes overlaid on the estimated trunca-

tion error plot for this particular derivative. Here, it seems as if the AutoDX hopt is

too small, i.e. within roundoff error. However, AutoDX reports the corrected hopt

using (2.83), which is expected to be smaller than the uncorrected hopt as proven

in Section 2.9. The uncorrected step size for this case is hopt = 1.53e−5[km/s]
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which is almost exactly at the minimum of the (uncorrected) estimated truncation

error plot.

Table 4.9: Condition errors εij for each cj with respect to each element of the
input xi, from example 4.6.

c1 c2 c3

dt1 2.17e−14 1.04e−14 1.00e−13
dtga 3.83e−15 1.73e−16 6.45e−15
∆vx 6.93e−14 3.12e−14 6.94e−15
∆vy 1.81e−15 8.05e−15 2.71e−14
∆vz 4.54e−14 2.27e−16 3.13e−14

The condition errors as computed by AutoDX are given in Table 4.9. For

multivariate functions such as c, which depend on multiple inputs, the condition

error εij for any given cj will depend on which input xi is being varied. It can be

seen that the largest condition error occurs for the function c3 with respect to dt1.

dt1 determines the location of the trans-Lunar ∆v impulse, which is defined in the

inertial reference frame. It is therefore expected that c3 will be mathematically

sensitive to changes in dt1; in fact, the derivative
∂c3

∂dt1
is over 4100[km/s]. More

importantly, however, is the fact that the actual computation of c with respect to

a change in dt1 involves multiple Kepler propagations and coordinate transforma-

tions, which accumulate error. The combination of mathematical sensitivity and

algorithmic error accumulation leads to this increased condition error. In situa-

tions like this, a good approach to reducing condition error would be to redefine

∆v in a coordinate system relative to the local velocity vector. In this case, small

errors in the location of the ∆v (due to the propagation from t0 to t0 +dt1) would

110



have a smaller effect on the final position error c.

Table 4.10: Number of function evaluations in computing
∂c

∂xi
, from example 4.6.

Rule-of-Thumb AutoDX GTA
dt1 2 57 392
dtga 2 39 532
∆vx 2 43 492
∆vy 2 47 492
∆vz 2 47 512
Total 10 243 2420

The number of function evaluations for each method is given in Table 4.10.

As expected, using a fixed step size completely outperforms all other methods.

GTA has a high number of function evaluations for two reasons: it must be run

in a doubly-nested loop, and many function evaluations must be performed to get

good statistical approximations. The computational cost of AutoDX shown here

is a worst-case scenario where the initial step size h0 is taken to be very large. In

practical use, such a large step size would only be used once; it could be reduced

to the maximum valid step size hmax for future invocations of AutoDX. For this

example, the hmax for each xi is given in Table 4.11. If the initial step size is

taken to be slightly larger than this maximum, e.g. h0,i = 10hmax,i, then the total

number of function evaluations for AutoDX reduces to 203. In practice, it has

been observed that the cost savings of using h0 = 10hmax (for later invocations

of AutoDX) increases as the problem complexity increases, mostly because the

maximum valid step-size reduces as the problem becomes more nonlinear and the
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function accumulates more error.

Table 4.11: Maximum valid step size hmax for each element of x, from example
4.6. Given in [s] for dt, and [km/s] for ∆v.

dt1 dtga ∆vx ∆vy ∆vz
hmax 8 262144 6.25e−2 7.81e−3 3.13e−2

It should be noted that the hmax value for dt1 is quite small (8 seconds)

as compared to the actual value of dt1 (37391 seconds). Since the final position

error c is very sensitive to the location of ∆v, the valid step-size region is small

and hmax occurs closer to hopt. As a result, AutoDX would have to be run more

often for the dt1 variable since the optimizer would most likely change it by more

than 8 seconds fairly quickly.

Example 4.7. The three-finite-burn transfer problem previously studied by the

author [33] is now analyzed to show the use of step size optimization for finite-

burn problems. This problem involves using three maneuvers to transfer a satellite

from an initial Lunar orbit to an escape v∞ vector, which puts the satellite on an

earthbound trajectory. This problem has been extensively considered in academia

and for specific NASA missions, using both impulsive and finite-burn maneuvers

[3, 8, 10, 14, 34–36,45, 56, 57]. The particular variation of the problem used in this

example is reproduced from the author’s previous paper [33], and is analyzed here

from the perspective of step-size optimization.

Figure 4.13 illustrates the geometry of the three-burn problem using finite-

burn maneuvers. Starting in a Lunar orbit, the transfer sequence to a v∞ vector
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is divided into six segments. The spacecraft remains in the Lunar parking orbit

from the initial epoch t0 to the start of the first burn tb10. The first burn continues

until tb11, after which the spacecraft coasts until the start of the second burn at

tb20. The second burn continues until tb21, after which the spacecraft again coasts

until the start of the third burn at tb30. At tb31, the third burn finishes and the

spacecraft is on the desired hyperbolic escape trajectory with hyperbolic excess

velocity vector v∗∞. For each burn i, the finite-burn maneuver is taken to be

inertially fixed over the duration (tbi0, tbi1), as shown in Figure 4.14.

Figure 4.13: The three-finite-burn transfer from an initial orbit (at t0) to a v∞
vector, from example 4.7.

The objective function for this problem is

J = minimize(−mf ) (4.12)
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and the optimization variable and constraint function vectors are

x> =
(
tb10 tb11 tb20 tb21 tb30 tb31 u>1 u>2 u>3

)
1×15

(4.13)

c =



v∞(tb31)− v∗∞ = 0
‖u1‖ − 1 = 0
‖u2‖ − 1 = 0
‖u3‖ − 1 = 0
tb11 − tb10 ≥ 0
tb21 − tb20 ≥ 0
tb31 − tb30 ≥ 0

rp(tb21)− rp,min ≥ 0


10×1

(4.14)

Here, the final inequality constraint on the perilune distance rp is necessary in

some cases to ensure that the transfer does not impact the Moon.

Figure 4.14: Parameters for the inertially-fixed finite-burn model from example
4.7.

A good initial guess solution for the finite-burn problem is obtained by first

optimizing the impulsive-burn problem, the details of which are given by Ocampo

and Munoz [35]. Each of the resulting optimal impulses are converted to finite

burns via the rocket equation, which then form the initial guess x0. The result-

ing finite-burn trajectory no longer satisfies the constraints, so it is re-optimized

using the above optimization variables and constraints. As shown in [33, 34], the
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gradient of the objective function
dJ

dx
can easily be computed analytically. The

gradients of the constraints
dc

dx
are computed using an O(h2) central-difference

FDD method, and evaluated at the initial guess x0 before finite-burn optimization

is performed. As in all examples, the FDD step sizes are computed using a rule-

of-thumb method, AutoDX, and GTA. Since the Variational Model from previous

papers produces near-analytical gradients, it is used as the ‘true’ gradient for all

comparisons.

The initial Lunar orbit is circular and equatorial with a radius of 1838[km]

(≈ 100[km] altitude). The target v∗∞ vector has a magnitude of 1.2[km/s], with

zero right ascension and 50◦ declination. The method of Jones and Ocampo [21] is

used to generate an initial guess for the impulsive-burn optimization. This requires

estimates of the post-TEI1 apolune and post-TEI2 perilune distances, which are

specified as ra,1 = 17000[km] and rp,2 = 1839[km]. The optimized impulsive

trajectory is converted to a finite-burn trajectory using thrust magnitude T =

32.5[kN ] and specific impulse Isp = 320[s]. The resulting initial guess optimization

variable vector is

x>0 =
(
4294 4601 59161 59267 88460 88636 u>1 u>2 u>3

)
(4.15)

where the times are in seconds. The inertially-fixed thrust direction unit vectors

ui are

u>1 =
(
0.715 −0.690 0.114

)
(4.16)

u>2 =
(
0.262 −0.436 −0.861

)
(4.17)

u>3 =
(
0.0856 −0.657 0.749

)
(4.18)

115



When computing the gradients
dc

dx
, only the first three rows corresponding

to
∂v∞(tb31)

∂x
are of interest. It is shown in [33] that the remaining rows have

trivial analytical expressions. Therefore, in this example only the gradients of the

v∞ constraints (c1−3) are considered. Furthermore, it is expected that parameters

associated with the first finite-burn arc (tb10, tb11, u1) will have the largest effect

on the v∞ constraint since they occur earliest in the trajectory. Therefore, for

this example only the x1 (tb10), x2 (tb11), and x7−9 (u1) optimization variables are

considered.

Table 4.12: Optimal step sizes for the interesting elements of x and c from example
4.7, given in [s] for times and as nondimensional for thrust direction vectors.

c1 c2 c3

Rule-of-Thumb AutoDX hopt AutoDX hopt AutoDX hopt

hrt GTA hopt GTA hopt GTA hopt

tb10 1.00e−4
3.84e−5 3.76e−5 3.78e−5
5.15e−5 4.73e−5 4.73e−5

tb11 1.00e−4
3.84e−5 2.39e−5 2.37e−5
5.98e−5 5.98e−5 8.28e−5

u1,x 1.00e−6
6.01e−7 2.24e−7 3.73e−7
3.09e−7 3.09e−7 3.09e−7

u1,y 1.00e−6
6.01e−7 2.24e−7 3.73e−7
2.53e−7 2.53e−7 3.04e−7

u1,z 1.00e−6
1.92e−5 1.19e−5 7.18e−6
2.12e−5 1.45e−5 1.23e−5

Table 4.12 gives the optimal step size for each optimization variable of

interest, using the three step-size estimation methods. It should be noted that

during the study done in [33], a considerable amount of time and effort was spent
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in determining the rule-of-thumb step sizes. The results in Table 4.12 confirm that

the hrt values are within an order of magnitude of the true optimal step sizes (from

either AutoDX or GTA). In other words, AutoDX is able to determine optimal

step sizes in a fraction of the time – and with significantly greater certainty – than

the manual guess-and-check approach used traditionally.
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Figure 4.15: Estimated truncation errors for derivative
dc3

dx2

, from example 4.7.

For most of the optimization variables of interest, the step sizes computed

by AutoDX and GTA are very similar. The most notable exception is in tb11 (the

end time of the first finite-burn arc), for which the AutoDX step size, corrected as

per (2.83), is less than a third of the GTA step size. This discrepancy warrants a

closer look at the estimated truncation errors and neighboring x2 behavior, given
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Figure 4.16: Relative errors for neighboring values of x2, from example 4.7.

in Figures 4.15 and 4.16. The truncation error plot seems to indicate that both

GTA or AutoDX step sizes are equally close to the true minimum when only

considering estimated truncation error. However, when this error is corrected

using (2.78), it more closely matches the true error, and the true optimal step size

is seen to be at (or very close to) the AutoDX estimate. Figure 4.16 also shows

that the AutoDX step size produces consistently small relative errors when used

with neighboring values of x2 (tb11). In comparison, the GTA and rule-of-thumb

step sizes do not provide this consistency, mainly because their larger-than-optimal

values (albeit very slightly so) are more affected by mathematical truncation error.

The number of function evaluations performed by each step-size estimation
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method is given in Table 4.13. As with example 4.6, the number of function

evaluations for AutoDX can be reduced by using an initial step size h0 slightly

larger than the maximum safe step size. Table 4.14 shows that these maximum

safe step sizes are very small; for the thrust direction unit vectors, they are only

3 orders of magnitude greater than the optimal step sizes. This means that when

the optimal step size is used within an optimization loop, the AutoDX algorithm

would have to be re-run fairly quickly as the optimizer changes a given parameter

xi.

Table 4.15 indicates fairly high condition errors for the three constraint

equality functions relative to the optimization parameters of the first finite-burn

arc. In some cases, it is seen that almost four full digits of precision are lost in the

computation of the constraint. However, unlike the Kepler problem of example 4.5,

this loss of precision is not caused by programming errors. Rather, it is simply a

consequence of the fact that the process of computing the final v∞ is very sensitive

to the first finite-burn arc parameters. Without a reformulation of the underlying

mathematical equations of the problem (e.g. nondimensionalization), this high

condition error cannot be avoided.

4.4 Effects on Numerical Optimization

The effectiveness of using an optimal step size has so far only been consid-

ered in terms of the accuracy of the derivative itself. However, it is rare for the

derivative to be sought for its own sake; it is often used as part of a larger gradient-

based optimization algorithm. When comparing various derivative-estimation
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Table 4.13: Number of function evaluations in computing
∂c1−3

∂xi
(i ∈

{1, 2, 7, 8, 9}), from example 4.7.

Rule-of-Thumb AutoDX GTA
tb10 2 57 372
tb11 2 59 372
ux 2 49 432
uy 2 47 432
uz 2 39 552

Total 10 251 2160

Table 4.14: Maximum valid step size hmax for each xi, from example 4.6. Given
in [s] for times and as nondimensional for thrust direction vectors.

tb10 tb11 ux uy uz
hmax 0.125 0.125 4.88e−4 4.88e−4 1.56e−2

methods within an optimization problem, a performance metric must be chosen

carefully. The arguments for (or against) several optimization metrics are now

considered.

1. Number of optimization iterations. The accuracy of a derivative certainly

affects the path taken by an optimization algorithm. If one derivative es-

timation method produces very inaccurate derivatives, then the optimizer

may well take many more iterations to converge to a solution as compared

to a derivative estimation method that produces accurate derivatives. On

the other hand, given two derivatives with comparable accuracy (within a

few orders of magnitude), there is no guarantee that the ‘better’ derivative
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Table 4.15: Condition errors εij for each cj with respect to each element of the
input xi, from example 4.7.

c1 c2 c3

tb10 2.97e−14 1.96e−14 3.09e−14
tb11 2.95e−14 2.34e−14 3.73e−15
ux 9.61e−13 1.01e−14 1.25e−13
uy 8.31e−13 6.92e−14 1.08e−13
uz 2.11e−12 1.49e−13 7.40e−14

will result in faster convergence than the ‘worse’ derivative. Because of this,

using the number of optimization iterations to compare multiple derivatives

(with comparable accuracy) is not always an accurate comparison.

2. Convergence accuracy. If the optimizer manages to reach the neighborhood

of the minimum, then small variations in the accuracy of the derivatives

do not affect the overall convergence accuracy of the solution. Therefore,

convergence accuracy is not a good candidate for a metric with which to

compare derivative-estimation methods.

3. Graph of step size versus optimization variable value. Rule-of-thumb step

size estimation methods have a constant relationship between the variable

and its step size. However, more sophisticated methods such as AutoDX and

GTA assume no such relationship, and so it is of interest to observe how the

various step-size estimation methods vary the step size as the optimization

proceeds to convergence.
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Of the three metrics discussed, only the step size vs optimization variable

graph is used to compare the three step-size estimation methods in the context of

an optimization loop. The other metrics are given only for completeness.

Example 4.8. A classic problem used to teach optimal control theory and tra-

jectory optimization is the Lunar Lander problem. Given a spacecraft initially at

rest at some point above the Lunar surface, a minimum-time trajectory is com-

puted which results in a soft landing. The spacecraft’s initial position is specified

as r>0 =
(
1 1

)
km, with a zero initial velocity v0. The desired final position is at

the origin, with a zero final velocity. Spacecraft engine parameters are: Tmin = 0

N, Tmax = 200 N, c = 10 km/s. Lunar gravity is taken to be g = 1.6 m/s2, and

the initial spacecraft mass is m0 = 100 kg. The differential equations describing

system dynamics are,

x =

 r
v
m

 ẋ =


v

T
m

û−
(

0
g

)
−T
c

 û =

(
ûx
ûy

)
‖û‖ = 1 (4.19)

with initial conditions

x(t0) = x0 =

 r0

v0

m0

 (4.20)

Using the costates λ, this optimization problem is transformed to a two-point

boundary value targeting problem. The Hamiltonian function of the system is,

H = λ>r v + λ>v

(
T

m
û−

(
0
g

))
+ λm

(
−T
c

)
The optimization parameter vector, consisting of unknown initial point costates

and the unknown final time, is

x>p =
(
λrx0 λry0 λvx0 λvy0 λm0 tf

)
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subject to the costate differential equations

λ̇r = 0 (4.21)

λ̇v = −λr (4.22)

λ̇m =
−T
m2
‖λv‖ (4.23)

Applying the Pontryagin Minimum Principle, the thrust direction is chosen to

always be anti-parallel to the velocity costate λv. The thrust magnitude is chosen

according to the switching function,

S = −
(
‖λv‖
m

+
λm
c

)
(4.24)

T =


Tmin S ≥ 0

Tmax S < 0
(4.25)

The targeted final conditions are

β =


r(tf )
v(tf )
H(tf )
λm(tf )

 = 0 (4.26)

This constitutes a system of 6 initial-point unknowns xp and 6 final-point con-

straints β. While the λm0 initial value and λmf constraint equation can be elimi-

nated, they are kept in this example for completeness.

In order to solve this targeting problem, an initial guess must be obtained

for the unknown optimization parameters xp. Because the λ costates are unin-

tuitive, the adjoint control transformation is often used to obtain initial values.
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While this method does help in obtaining an initial guess for the optimizer, the

quality of the computed derivatives are also important to the optimization process.

Derivatives for this example are computed using the rule-of-thumb method

(hrt = 1e−6(1 + |x|)), and using two variations of AutoDX. The first variation

involves calling AutoDX at every optimization iteration to obtain hopt. The second

variation involves only calling AutoDX when the optimization variable changes

by the maximum valid step size hmax, as explained in Section 3.5.3. The first

method ensures that the computed gradients are as accurate as possible at every

optimization iteration, while the second method saves many function calls by

re-using the step size until it must be changed.
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Figure 4.17: Step sizes computed by various methods for the optimization variable
λrx0 of the Lunar Lander problem from example 4.8.
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Figure 4.17 shows the step sizes for the variable λrx0 (the first element of

xp) as it evolves from its initial guess value to the converged value over the course

of the optimization. For each step-size estimation method, the achieved optimiza-

tion convergence tolerance was 1e−12. The rule-of-thumb method converged in

377 function evaluations. The first variation of AutoDX (used at every optimiza-

tion iteration) converged in 15081 function evaluations. The second variation of

AutoDX (used only when xp changes considerably) converged in 2727 function

evaluations.

The results in Figure 4.17 indicate that for this problem, the optimal step

size is almost an order of magnitude greater than the rule-of-thumb step size.

The partial use of AutoDX is seen to sufficiently match the results of fully using

AutoDX, and has the benefit of considerably fewer function evaluations. Because

the Lunar Lander problem is not particularly difficult to solve numerically, each

method results in convergence. This is not necessarily true for all problems; for

more complex problems, the partial-use case of AutoDX is usually desirable for

its balance between an optimal step size and a reasonable number of function

evaluations.
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Chapter 5

Future Work and Conclusions

5.1 Optimized Algorithms

The step-size analysis theories presented in this dissertation give rise to

multiple possible implementations. The algorithm used to create the examples,

AutoDX, implements all of the basic theories but omits potential optimizations.

This is done intentionally, in order to better observe truncation and roundoff

error trends for various families of functions. Additional optimizations are now

discussed, which forego a rigorous analysis of all possible step sizes in favor of

potentially reduced function evaluations. Although these optimizations have not

been implemented within AutoDX, it would be of great benefit for them to be

included in any future implementations of the step-size analysis theory.

5.1.1 Store the Maximum Safe Step Size

The most straightforward optimization involves storing the maximum safe

step size computed by AutoDX. On the next call to AutoDX, which may occur

after several iterations of the optimization loop, the stored maximum safe step size

is used as the initial large step size. The benefit of this simple optimization is that,

for subsequent calls to AutoDX, many fewer function evaluations are required to

find the valid truncation error region. For the Lunar Lander problem of example
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4.8, this optimization results in a 5% reduction of total function evaluations. It

should be noted that this optimization is not in the algorithm itself, but rather is

a change in the arguments passed into the algorithm from the outer optimization

loop. Pseudocode for this optimization is as follows.

dX_maxstep = 1.0 + abs(X) // Initialize maximum tested step size

do optimization loop {

call AutoDX(X, ... , dX_maxstep, ..., dX_maxsafe)

if(no errors from AutoDX) {

dX_maxstep = dX_maxsafe

}

... // Remainder of optimization loop

}

5.1.2 Skipping the Valid Truncation Error Region

The AutoDX algorithm, as used herein, operates in a very linear fashion.

The initial large step size is monotonically decreased until roundoff error is de-

tected. In this process, many step sizes are tested which lie in the valid truncation

error region. However, these step sizes are never actually used, and so it is useful

to develop a method by which they are skipped.

To do this, it is recognized that the slopes of the valid truncation error and

roundoff error regions are known constants (Section 3.4). First, the algorithm

determines that a valid truncation error step size has been found, which corre-

sponding to the maximum safe step size. From this, the truncation error best-fit
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line can immediately be computed. Next, a few step sizes corresponding to the

roundoff error region are tested, and the roundoff error best-fit line is computed.

Finally, the intersection of these two best-fit lines (on a log-log scale) determines

the optimal step size.
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Figure 5.1: A more efficient step-size search algorithm, which skips analysis of
many truncation error step sizes.

This process is illustrated in Figure 5.1. It is seen that by evaluating

a few points in the roundoff error region, the algorithm can avoid computing

many points in the truncation error region. Note that in practice, the roundoff

error best-fit line would be computed using the corrected values of the roundoff

error points from (2.78). This optimization is expected to reduce the number of

function evaluations by 25% - 50%, depending on the size of the valid truncation
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error region (which in turn depends on the function itself).

5.2 Numerical Integration

In addition to numerical differentiation, finite-difference equations are also

commonly used in the design of numerical integration methods. In variable-step-

size numerical integration, it is desired to use the largest possible step size in

order to minimize the integration time. Therefore it is of interest to investigate

how the theories developed in this dissertation could be used within the context

of numerical integration.

5.3 Dissertation Conclusions

The original motivation for this research was to determine the optimal step

size that minimizes errors in finite-difference derivative (FDD) computations. As

is often the case, the pursuit of a seemingly simple solution led to a thorough

understanding of a much more general and complicated problem. The research

detailed in this dissertation presents a rigorous analysis of the analytical and

numerical properties of (FDD) equations. Once the general FDD properties are

understood, it becomes relatively simple to find specific properties such as an

optimal step size.

The first chapter of this dissertation introduced the problem of determining

an optimal step size, called the Step Size Dilemma. A history of FDD methods was

given, which sheds light on previous efforts to solve this problem. These efforts
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mainly focus on finding a step size which is optimal under certain assumptions of

the function itself. In addition to FDD methods, a history of complex-step analysis

and Automatic Differentiation was also presented. It was argued that although

these methods are more modern and can produce far more accurate derivatives,

the need for fully understanding finite-difference derivatives is still very relevant

in today’s world of simulation design.

The second chapter develops all analytical tools required to perform a

full analysis of finite-difference derivative equations. Richardson Extrapolation, a

method by which multiple low-order approximations are combined to produce a

higher-order approximation, is introduced. It is then shown that all FDD equa-

tions can be represented in a common form, dependent on which derivative d is

approximated and the order of the error term n. This error term, called trunca-

tion error and expressed in the Lagrange Remainder form, depends in part on the

step size h. Using a variation of Richardson Extrapolation, the truncation error

term can be approximated by computing the finite-difference derivative for two

successive step sizes.

From a purely mathematical standpoint, the error term for a FDD goes

to zero with the step-size. However, it is shown that in practice there are two

additional errors which play a very important role in step-size analysis. The first

of these is brought on by the fact that the implementation of a function will ac-

cumulate errors internally. The more complex a function’s implementation, the

greater the chance that more errors will affect its output. This error is known as

condition error, and is related to (but not the same as) the function’s mathemat-
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ical condition number. The second error arises from the subtraction operations

inherent to every finite-difference method. When the step size is small, perturbed

function values will be very close together and a computable amount of precision

will be lost in the subtraction. This is called cancellation error, and it increases

as the step size decreases. Together, condition and cancellation errors form an

upper bound on the total roundoff error caused by finite-precision computation of

a derivative using FDD methods.

The total error in a finite-difference derivative is shown to be bounded by

the sum of roundoff and truncation errors. Since these errors grow in an inverse

relation to each other, there must exist some step size for which their sum is min-

imized. A standard minimization is performed on the total error, and the result

is an expression for the optimal step size in terms of the truncation, condition,

and cancellation errors. Note that only the first two of these are unknown, since

cancellation error is easily approximated.

Since a function’s condition error and a FDD method’s truncation error

are in general unknown, the true error is also assumed to be unknown. However,

it is shown that the truncation error approximation is a very good fit for the

true error. For step sizes smaller than the optimal step size, the truncation error

approximation must be corrected by a known constant factor. In addition, it is

shown that the optimal step size computed using the estimated truncation error

differs from the true optimal step size by another known constant.

The third chapter bridges the gap between the analytical formulation of the

second chapter and the numerical analysis needed to develop a useable algorithm.
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It is shown that the slope of the estimated truncation error function with respect to

the step size is piecewise constant, when considered from a log-log perspective. For

larger than optimal step sizes, the slope is equal to the order of the FDD method n.

For step sizes smaller than the optimal, the truncation error estimates are greatly

affected by roundoff error and therefore do not change smoothly. However, it is

shown that a best-fit line through these points will have a slope of −d, where d is

the derivative being approximated. Furthermore, for step sizes much larger than

the optimal, the slope is shown to be generally unpredictable.

Using the fact that the estimated truncation error slope is known, an al-

gorithm is developed which iteratively seeks out the optimal step size. This al-

gorithm is robust enough to skip over any initial step sizes which may be too

large, and recognize when the region of predictable step size has been reached.

The optimal step size obtained by this algorithm is easily adjusted to match the

true optimal step size by using the correction factor derived in Chapter 2. This

algorithm is shown to easily extend to multidimensional functions, while retaining

memory efficiency and scalability.

Given an optimal step size, the condition error of a function can be ap-

proximated using theories derived in Chapter 2. Knowledge of this condition error

can be invaluable in debugging a function implementation. If the condition error

of a function is excessively high, then it would be prudent to consider whether

inefficient algorithms are being used within the function to compute its output.

Finally, Chapter 3 identifies a few families of functions for which the step-

size optimization theory will fail. These functions occur very rarely in real-world
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use, and even if they do it is only for isolated sets of input variables. Nevertheless,

should these deviant functions occur, methods are given by which they can be

identified.

The step-size analysis theory and application given in Chapters 2 and 3 are

implemented in a software package called AutoDX. Chapter 4 presents the results

of using AutoDX to analyze several example functions, from simple polynomials

to complex nonlinear optimization problems. For each example, derivatives are

computed using AutoDX, a competing algorithm called GTA, and a rule-of-thumb

step size. It is shown that AutoDX consistently computes a step size that is closest

to the true optimal step size. In comparison, GTA often gets very close to the

true optimal step size, and as expected the rule-of-thumb method is only close for

well-conditioned functions.

In addition to the accuracy of the computed derivative, the performance

of each step-size estimation method is compared. As expected, the rule-of-thumb

method has by far the best performance with a total number of function evalua-

tions proportional to the number of function inputs. In its current form, AutoDX

is shown to require 10-40 times as many function evaluations as the rule-of-thumb

method. With the optimizations outlined in this chapter, it is expected that Au-

toDX could perform with only 5-20 times as many function evaluations as the

rule-of-thumb method. In comparison to these, the GTA algorithm can have 5-10

times as many function evaluations as AutoDX. This is caused in part by the fact

that GTA does not employ concurrent analysis of a multidimensional function

vector. In addition, because GTA is a statistical algorithm, it must necessarily
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perform a large number of function evaluations to compile useful statistical data.

The author recognizes the large amount of preexisting work in the field of

step-size analysis, which provided a great deal of guidance during the course of

this research. It is the author’s sincere hope that future researchers will be able

to benefit from the formalization of step-size analysis theory presented herein.
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Appendix A

The AutoDX Algorithm

The AutoDX algorithm, written in Fortran, implements most of the the-

ories detailed in this dissertation. The version current as of this publication is

outlined here.

subroutine ADXGetStepSize(X, n, dX_max, F_Fcn, m, iX, order,

writeoutput, dFdX_known, dX_out,

dFdX_out, dXmax_out, err_out, farerr_out)

This primary component of AutoDX computes the optimal step size for

each element of a vector function F with respect to a particular element i of an

input vector X. These step sizes, when used with a particular finite-difference

derivative equation, produce the least error in each element of dF/dXi.

Inputs:

X (Vector) The independent variables.

n (Integer) Size of X.

dX max (Vector) Maximum tested step size for each element of X.
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F Fcn (Subroutine) The function to differentiate. Defined as:

subroutine F_Fcn(X, n, F, m)

integer, intent(in):: n, m

double precision, intent(in):: X(n)

double precision, intent(out):: F(m)

end subroutine F_Fcn

m (Integer) Size of output of F Fcn.

iX (Integer) The derivative of F Fcn is computed with respect to this element of

X.

order (Integer) The truncation error order of the finite-difference equation used

to compute derivatives.

writeoutput (Boolean) Whether analysis should be written to screen.

dFdX known (Boolean Vector) Specifies elements of dF/dXi which are already

known. Size m.

Outputs:

dX out (Vector) The optimal step size for each element of F Fcn. Size m.

dFdX out (Vector) The gradient vector dF/dXi. Size m.
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dXmax out (Vector) The maximum safe step size for each element of F Fcn.

Size m. This can be used to compute the maximum allowable change in X

if a partial use of AutoDX is desired (Section 3.5.3).

err out (Vector) Estimated relative error (roundoff + truncation) in dF/dXi.

Size m.

farerr out (Vector) Condition error (Section 2.7.2) for each element of F Fcn.

Size m.
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Appendix B

Finite-Difference Derivative Approximations

The most commonly used finite-difference derivative (FDD) approxima-

tions are given here, along with the various coefficients which are derived and

used in this dissertation.

B.1 FDD Approximations

As explained in Section 2.4, the general FDD equation is

FD(d)
n (x, h) =

∆f
(d)
n (x, h)

hd
+O(hn) (B.1)

where d is the derivative order, n is the truncation error order, and particular

forms of ∆f
(d)
n are given in Table B.1. Here, the notation fi is used in place of

f(x+ ih).

B.2 Roundoff Errors

As the step size h gets small, the perturbed function values from Table

B.1 approach similar values, and roundoff errors become a significant factor in the

FDD computation. The two types of roundoff error considered in this dissertation

are Cancellation Error (Section 2.7.1) and Condition Error (Section 2.7.2).
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Table B.1: Particular forms of finite-difference derivative equations.

Type d n ∆f
(d)
n (x, h)

Forward 1 1 f1 − f0

Forward 1 2 1
2

(4f1 − (f2 + 3f0))
Backward 1 1 f0 − f−1

Backward 1 2 1
2

((3f0 + f−2)− 4f−1)
Central 1 2 1

2
(f1 − f−1)

Central 1 4 1
12

(8(f1 − f−1) + (f−2 − f2))
Central 1 6 1

60
(45(f1 − f−1) + 9(f−2 − f2) + (f3 − f−3))

Forward 2 1 (f2 + f0)− 2f1

Central 2 2 (f1 + f−1)− 2f0

Central 2 4 1
12

(16(f1 + f−1)− (f2 + f−2 + 30f0))

As explained in Section 2.7.3, the total roundoff error is bounded by a

combination of cancellation and condition errors.

|FDtrue − FD| ≤
ε|Fε|+ δ|Fδ|

hd
(B.2)

where d is the derivative order. Particular forms of the error coefficients |Fε| and

|Fδ| are given in Tables B.2 and B.3, respectively. The notation f±i is used in

place of max(|fi|, |f−i|).

If the step size h is assumed to be very small (h < hopt), then it may

be safe to assume that f(x + ih) ≈ f(x) for small values of i. In condensed

notation, fi ≈ f0. Under this assumption, the condition and cancellation error

coefficient expressions can be simplified, and are given in Table B.4. Note that

this assumption has not been fully tested for step sizes at or near hopt.
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Table B.2: Particular forms of the condition error coefficient.

Type d n |Fε|
Forward 1 1 |f1|+ |f0|
Forward 1 2 1

2
(|f2|+ 4|f1|+ 3|f0|))

Backward 1 1 |f0|+ |f−1|
Backward 1 2 1

2
(3|f0|+ 4|f−1|+ |f−2|)

Central 1 2 1
2

(|f1|+ |f−1|)
Central 1 4 1

12
(8(|f1|+ |f−1|) + (|f−2|+ |f2|))

Central 1 6 1
60

(45(|f1|+ |f−1|) + 9(|f−2|+ |f2|) + (|f3|+ |f−3|))
Forward 2 1 |f2|+ 2|f1|+ |f0|
Central 2 2 |f1|+ 2|f0|+ |f−1|
Central 2 4 1

12
(16(|f1|+ |f−1|) + |f2|+ |f−2|+ 30|f0|)

Table B.3: Particular forms of the cancellation error coefficient.

Type d n |Fδ|
Forward 1 1 max(|f1|, |f0|)
Forward 1 2 1

2
max(4|f1|, |f2 + 3f0|)

Backward 1 1 max(|f0|, |f−1|)
Backward 1 2 1

2
max(|3f0 + f−2|, 4|f−1|)

Central 1 2 1
2
f±1

Central 1 4 1
12

(8f±1 + f±2)
Central 1 6 1

60
(45f±1 + 9f±2 + f±3)

Forward 2 1 max(|f2 + f0|, 2|f1|)
Central 2 2 max(|f1 + f−1|, 2|f0|)
Central 2 4 1

12
max(16|f1 + f−1|, |f2 + f−2 + 30f0|)
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Table B.4: Simplified forms of the condition and cancellation error coefficients
using small step sizes.

Type d n |Fε| |Fδ|
Forward 1 1 2|f0| |f0|
Forward 1 2 4|f0| 2|f0|

Backward 1 1 2|f0| |f0|
Backward 1 2 4|f0| 2|f0|
Central 1 2 |f0| 1

2
|f0|

Central 1 4 3
2
|f0| 3

4
|f0|

Central 1 6 11
6
|f0| 11

12
|f0|

Forward 2 1 4|f0| 2|f0|
Central 2 2 4|f0| 2|f0|
Central 2 4 16

3
|f0| 8

3
|f0|
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B.3 Optimal Step Size and Condition Error

The optimal step size can be estimated according to the derivation in

Section 2.8. The equations for this, (2.66), is repeated here.

hopt =

[
d

n

1

|Cn|
(ε|Fε|+ δ|Fδ|)

]1/(n+d)

(B.3)

Approximations of this equation for various FDD methods are given in Table

B.5. The |Cn| term is taken to be proportional to |f (n+d)(x)|; the constant of

proportionality is ignored. In addition, expressions for |Fε| and |Fδ| are taken

from Table B.4, and it is assumed that ε = δ = 1e−16. Under these assumptions,

the approximations given closely resemble commonly accepted rules of thumb for

the various FDD methods.
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Table B.5: Approximations of the optimal step size for f(x).

Type d n hopt ≈

Forward 1 1 1e−8
∣∣∣ f(x)

f (2)(x)

∣∣∣1/2
Forward 1 2 5e−6

∣∣∣ f(x)

f (3)(x)

∣∣∣1/3
Backward 1 1 1e−8

∣∣∣ f(x)

f (2)(x)

∣∣∣1/2
Backward 1 2 5e−6

∣∣∣ f(x)

f (3)(x)

∣∣∣1/3
Central 1 2 1e−6

∣∣∣ f(x)

f (3)(x)

∣∣∣1/3
Central 1 4 1e−4

∣∣∣ f(x)

f (5)(x)

∣∣∣1/5
Central 1 6 1e−3

∣∣∣ f(x)

f (7)(x)

∣∣∣1/7
Forward 2 1 1e−5

∣∣∣ f(x)

f (3)(x)

∣∣∣1/3
Central 2 2 1e−4

∣∣∣ f(x)

f (4)(x)

∣∣∣1/4
Central 2 4 1e−3

∣∣∣ f(x)

f (6)(x)

∣∣∣1/6
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