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This dissertation is a contribution to the equilibrium theory in incom-

plete financial markets. It shows that, under appropriate conditions, an equi-

librium exists and is unique in a general class of incomplete Brownian mar-

ket environments either composed of exponential-utility-maximizing agents or

populated by a class of convex-risk-measure-minimizing agents.

We first use the Dynamic Programming Principle to deduce the Hamil-

ton-Jacobi-Bellman (HJB) equation for each agent, and solve the individual

optimization problem, to identify the optimal control. Using the optimal port-

folio, we establish the equivalence between the existence of a stochastic equi-

librium in an incomplete Brownian market and solvability of a non-linearly

coupled parabolic PDE system with a homogeneously-quadratic non-linear

structure.

To solve this PDE system, we work mainly in anisotropic Hölder spaces.

There, we construct a proper class of Hölder subspaces, where potential solu-
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tions to the equilibrium PDE system are expected to “live”. These turn out to

be convex and compact under the uniform topology, thanks to the help of an

Arzelá-Ascoli-type theorem for unbounded domains. We then define an appro-

priate functional on the subspace, and show that, if we choose the parameters

associated with the subspace carefully, this functional maps the subspace back

to itself. After that, we apply Schauder’s fixed point theorem on a constructed

subset of the subspace, and establish the existence of solutions to the PDE sys-

tem, therefore equivalently, the existence of market equilibria in these general

incomplete Brownian market environments.

To prove the uniqueness of the solution to the parabolic PDE system,

we utilize classical L2-type energy estimates and the Gronwall’s inequality.

This way, we also establish the uniqueness of a market equilibrium within a

class of smooth Markovian markets.
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Chapter 1

Introduction

The competitive equilibrium, a class of price-determination models

based on a balance of demand and supply, has been an active research area in

Economics for more than a century. Perhaps the oldest work on this subject is

that of Leon Walras [24] in 1874. Later, a mathematical approach, addressing

the question of existence and uniqueness of Walras’s equations, was given by

Wald [23] in 1936. The first complete and mathematically rigorous existence

proof of an equilibrium in an economy with multiple agents and finitely many

assets was accomplished by Arrow and Debreu [2] in 1954. Bewley’s paper [4]

at 1972 is frequently cited as the classical reference on competitive equilibrium

with an infinite-dimensional commodity space.

The issue of existence and uniqueness of equilibrium in complete cont-

inuous-time stochastic models with heterogeneous agents has been subject to

active research in the latter half of the twentieth century, and has made sig-

nificance advances - see, for example, [1], [6], [10], [11], [12], [15], [16], [17],

[25] as well as Chapter 4 of [18]. Among these references, the central idea of

finding an equilibrium is the representative-agent approach, which is closely

related to market completeness. Using this idea, one tries to assign weights
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to different agents to form a representative agent, and thereby reduces the

problem to one of the determination of the proper weights. As a result, it

turns the infinite-dimensional problem of finding an equilibrium process into a

finite-dimensional problem of finding a finite set of real weights. Furthermore,

when viewed from a PDE perspective, the same idea can be used to reduce a

parabolic PDE system (formed by the Hamilton-Jacobi-Bellman (HJB) equa-

tions induced by each agent) into one single HJB PDE (corresponding to the

representative agent).

When the market model is incomplete, the equilibrium analysis be-

comes much more difficult, mainly due to the fact that the classical reduction

described above will not work. While some authors successfully treated classes

of degenerate markets using this idea, the representative agent will not exist

in a generic incomplete model. Therefore, one faces a difficult, necessarily

infinite-dimensional problem, or equivalently from the PDE’s perspective, one

confronts a fully coupled non-linear parabolic PDE system, with a highly non-

trivial structure. So far, to the best of our knowledge, the only paper in

continuous time where a fully-incomplete market structure is analyzed and

existence of equilibria is established, is by Gordan Žitković [26]. In his work,

the market is assumed to have a single stock whose price dynamics is driven

by a single Brownian Motion while the terminal payoff further depends on an

independent one-jump Poisson process, and the author reduced the problem

into a semi-linear PDE system and solved it.

In this thesis, we are interested in the existence and uniqueness of
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stochastic equilibria in a general class of fully incomplete continuous-time fi-

nancial market environments where the market participants are either het-

erogeneous exponential-utility maximizers or convex-risk-measure minimizers

with random endowments that are generally not hedgeable, due to the incom-

pleteness feature of the market model. We use the Dynamic Programming

Principle to derive the Hamilton-Jacobi-Bellman equation for each agent, and

relate the problem of finding a market equilibrium to a quasi-linear PDE sys-

tem. After that, we solve it using a combination of old and new techniques.

In Chapter 2, we introduce a class of incomplete financial market mod-

els containing multiple non-redundant assets, as well as a group of financial

agents with non-hedgeable terminal random endowments (or liabilities). These

agents come from two classes, the first one being a formal, but not conceptual,

subclass of the second. The first one contains classical exponential-utility max-

imizers who adjust their portfolios by dynamically trading so as to maximize

their expected terminal utilities. The other class of agents, instead of maxi-

mizing utilities, try to minimize their terminal risks, which are measured by a

class of convex risk measures. After that, we formulate the equilibrium prob-

lem in an appropriate mathematical framework. At the very end, we list the

standing assumptions and notational conventions which are used throughout

the rest of this dissertation.

In Chapter 3, we establish the existence and uniqueness of an equilib-

rium when the market is populated by exponential-utility-maximizing agents.

We start by solving the optimal control problem for a single agent, and relate
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the optimal control to a solution of a quasilinear parabolic PDE. Using the

newly-obtained form of the single-agent’s optimal portfolio, we observe that

the equilibrium condition can be interpreted as a special form of coupling of

single-agent equations. This way, we reduce the problem to a system of quasi-

linear parabolic PDEs, which exhibits non-trivial coupling and a quadratic

non-linear structure. We start its analysis by examining several simple cases,

which reduce the problem, in various ways, into complete market scenarios

where we can construct the equilibrium in a fairly explicit form. These exam-

ples illustrate quite clearly the way in which the problem becomes dramatically

more difficult when the market is incomplete. We conclude the chapter with

our main theorem. It states that, under the appropriate smallness condition,

the PDE system admits a unique solution in C2,α(Q), thus establishing exis-

tence and uniqueness (within a certain class) of a stochastic incomplete-market

equilibrium.

In Chapter 4, we answer a more general question, namely whether the

equilibrium exists and whether it is unique when the market is formed by

interacting convex-risk-measure-minimizing agents; the answer is, again, affir-

mative. Just like in Chapter 3, we solve the individual optimal control problem

first, through an approach based on the Dynamic Programming Principle and

the related HJB equation. The non-linear HJB equation is of Isaacs type,

due to the fact that an agent minimizing his or her convex risk measure can

be viewed as participating in a stochastic game, where the agent is playing

against a particularly malicious nature. The structure of the optimal port-
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folio is, however, much less explicit in this case (compared to the case of an

exponential agent). Nevertheless, it can still be used, together with the equi-

librium condition, to transform the equilibrium problem into a quasi-linear

PDE system, which takes a more general form than the one in the previous

chapter. Moreover, the system turns out to be solvable in C2,α(Q) under a set

of conditions similar to that in the main theorem in Chapter 3.

In Chapter 5, we use our previous PDE-based results to establish a new

existence result within the theory of Backward Stochastic Differential Equa-

tions (BSDE). We use a well-known relationship between the quadratic BSDE

and quasilinear (quadratic) PDE, to show that a class of multi-dimensional

quadratic BSDEs admit unique solutions.

Chapter 6 provides technical details related to our solution of a class of

quasi-linear parabolic PDE systems, slightly more general than that appearing

in the equilibrium PDE systems. Here, we work with the classical anisotropic

Hölder spaces, perform various heat-kernel and convolution-based computa-

tions, and apply the Schauder’s fixed point theorem to show the existence

of solutions. Uniqueness is obtained by using energy-type estimates and the

Gronwall’s inequality.
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Chapter 2

The Problem Statement

2.1 The Market Environment

2.1.1 The Information Structure

Let (Ω,F,F,P) be a filtered probability space, where the filtration F =

{Ft}t∈[0,T ] satisfies the usual conditions of right-continuity and completeness.

We assume further that F is the P-completion of the filtration generated by

an n-dimensional Brownian motion {Bt}t∈[0,T ] = {B[1]
t , . . . , B

[n]
t }t∈[0,T ].

2.1.2 Completeness Constraints

On the probabilistic setup described above, we single out a family of

financial markets, which will contain all possible market dynamics we allow

the eventual equilibrium to take. We refer the reader to Appendix B for the

function-space notation, such as (C0,α(Q))d, where 0 < d < n, and we use

Q := [0, T ]× Rn to denote the domain.

Let σ = (σjk)
j≤d
k≤n be a d × n matrix with the block form σ =

[
Id 0

]
,

where Id is a d × d identity matrix and 0 is a d × n zero matrix. For

λ = (λ[1], . . . , λ[d]) ∈ (C0,α(Q))d, we define the d-dimensional Itô-process
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{Sλt }t∈[0,T ] = {(Sλ)
[1]
t , . . . , (Sλ)

[d]
t }t∈[0,T ] by

dSλt = λ(t,Bt) dt+ σ dBt, t ∈ [0, T ], Sλ0 = (0, 0, . . . , 0) ∈ Rd, (2.1.1)

where the values of all multi-dimensional stochastic processes are interpreted

as column vectors. Written component-wise, the dynamics of Sλ is given by

d(Sλ)
[j]
t = λ[j](t,Bt) dt+ dB

[j]
t , j = 1, . . . , d. (2.1.2)

Remark 2.1.1. It is important to note that a specific form for the dynamics

of the process Sλ is not important for our purposes. We only care about the

market subspace it spans, i.e., the set of all admissible stochastic integrals

with respect to it (see 2.1.3 below for precise definitions of admissibility). For

that reason, we choose arithmetic dynamics and the simplest possible volatility

structure. A linear change of variables is enough to ensure that all the results

in this dissertation remain valid under the weaker assumption that σ is a

general full-rank d× n matrix.

Thanks to Remark 2.1.1 above, we can (and do) interpret the process

{λ[j](t,Bt)}t∈[0,T ] as the market price of risk of the j-th asset. In general,

we will identify the d-dimensional process {λ(t,Bt)}t∈[0,T ] and its Markov

representative λ ∈ (C0,α(Q))d and call it the market price of risk.

2.1.3 Utility-Maximizing Agents

We assume that there is a finite number I ∈ N of agents, all of whom

actively participate in trading in all available assets, and they belong to one
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of two classes. The first class is composed of those with exponential-utilities.

In the description of this class we adopt the Alt-von Neumann-Morgenstern

expected-utility paradigm and assume that the behavior of each agent in this

class is fully specified by the following two ingredients:

1. the utility function given by U [i](x) = − exp(−γix), x ∈ R, for γi > 0,

2. the random endowment, i.e., a random variable E[i] ∈ L∞(FT ) of the

form

E[i] = g[i](BT ) for g[i] ∈ C0(Rn).

Remark 2.1.2.

1. It is important to note that the agents’ random endowments depend on

all components of the n-dimensional “factor” process {Bt}t∈[0,T ]. It is

precisely this property that makes the situation truly incomplete. No

matter what the prevailing market price of risk λ happens to be, the

market will (generically) not be able to span all E[i], for i = 1, . . . , I.

2. It is implicitly assumed that all agents assess the likelihood of future

events according to the same probability P. This is, however, not a

significant assumption, thanks to the exponential nature of the utility

functions. Indeed, using the identity

EP[i]

[− exp(−γi(X + E[i]))] = E[− exp(−γi(X + Ẽ[i]))],

8



where Ẽ[i] = E[i]− 1
γi

log(dP
[i]

dP ), we can easily “absorb” different subjective

probabilities into the random endowment, if the appropriate regularity

conditions are met.

2.1.4 Risk-Measure-Minimizing Agents

The second class of agents are those who strive to minimize their risk,

as measured by a convex risk measure, through dynamical trading in all assets.

Coherent risk measures were introduced by Artzner et al. [3] in finite sample

spaces, and later by Delbaen [7] in general probability spaces. They were later

extended by Föllmer and Schied [13] and Frittelli and Rosazza Gianin [14] to

the class of convex risk measures:

Definition 2.1.3. A map ρ : L∞(P)→ R is called a convex risk measure if it

satisfies the following three conditions, ∀X, Y ∈ L∞(P):

1. Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ),∀λ ∈ [0, 1].

2. Monotonicity: If X ≥ Y , then ρ(X) ≤ ρ(Y ).

3. Translation Invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.

The class of convex risk measures, ρ[i] where i = 1, . . . , I, which we

assume that agents use, are further restricted by the following regularity as-

sumption:

9



Assumption 2.1.4. There exist convex continuous functions f [i](x) where

i = 1, . . . , I, such that ρ[i] is represented by the following:

ρ[i](X) = sup
ν∈N

E
[
ZνT

(
−X −

∫ T

0

f [i](νs) ds

)]
(2.1.3)

where N denote the class of d-dimensional F-progressively measurable pro-

cesses {νt}t∈[0,T ], such that:

N :=
{
{νt}t∈[0,T ] : ∀ c > 0, E

[
exp

(
c

∫ T

0

‖νt‖2dt

)]
<∞

}
and {Zνt }t∈[0,T ] is the stochastic exponential of νt, i.e.

Zνt := exp

(
−
∫ t

0

νsdBs − 1
2

∫ t

0

‖νs‖2ds

)
Remark 2.1.5.

1. The representation (2.1.3) of a convex risk measure is not uncommon.

In fact, Delbaen, Peng and Rosazza Gianin [9] have shown that, under

minimal conditions, for a given convex risk measure ρ, there always exists

proper, convex, upper semi-continuous function f , such that ρ admits a

representation similar to above.

2. Note that {Zt}t∈[0,T ], defined by:

Zt := exp

(
−
∫ t

0

νsdBs − 1
2

∫ t

0

‖νs‖2ds

)
is a square-integrable martingale. Furthermore, it has a finite n-th mo-

ment ∀n ∈ N.

10



3. In the definition of N above, the requirement that it has finite exponential

moments for all c > 0 is not necessary. In fact, it is enough to require

merely that it has finite exponential moment up to some constant c0 > 0,

which can be explicitly computed in the proof of Theorem 4.1.2, and as

a result, {Zt}t∈[0,T ] has finite n-th moment up to certain n0 > 0, which

is enough to achieve our result.

Finally, the behavior of each agent in the second class is fully specified

by the following two ingredients:

1. the convex risk measure given by Assumption 2.1.4.

2. the random endowment, i.e., a random variable E[i] ∈ L∞(FT ) of the

form

E[i] = g[i](BT ) for g[i] ∈ C0(Rn).

2.1.5 Behavior of Agents

Let us now focus on the case when the set of tradeable assets consists

of d risky assets whose dynamics are fixed and given by {Sλt }t∈[0,T ], for some

λ ∈ (C0,α(Q))d (the existence of the trivial numéraire asset with constant

value 1 is assumed throughout). Agent i uses a dynamic self-financing portfolio

strategy which maximizes the expected utility or minimizes the risk measure

from total terminal wealth. More precisely, let Ai and Ãi denote families of
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d-dimensional F-progressively measurable processes {πt}t∈[0,T ], such that:

Ai :=

{
{πt}t∈[0,T ] : ∃ bi > 1, s.t. E

[
exp

(∫ T

0

1
2
biγ

2
i ‖πt‖

2dt

)]
<∞

}
Ãi :=

{
{πt}t∈[0,T ] : ∀ c > 0, E

[
exp

(
c

∫ T

0

‖πt‖2dt

)]
<∞

}
(2.1.4)

so that, for given initial wealth ξ[i] ∈ R, where i = 1, . . . , I, actions of agents

with exponential-utilities are determined by the following optimization prob-

lem:

E
[
U [i]
(
ξ[i] +

∫ T
0
πu dS

λ
u + E[i]

)]
→ max over π ∈ Ai. (2.1.5)

and actions of agents with convex risk measures, specified in Assumption 2.1.4,

are determined by the optimization problem below:

ρ[i]
(
ξ[i] +

∫ T
0
πu dS

λ
u + E[i]

)
→ min over π ∈ Ãi. (2.1.6)

Remark 2.1.6.

1. Due to the regularity of some of the ingredients, one does not need the

sophistication encountered in general semimartingale models and the

weaker notions of admissibility typically used there (see, e.g., the classes

Θi, i = 1, 2, 3, 4 in [8] or the notion of permissibility in [21]).

2. In the definition of Ã above, the finite-exponential-moment requirement

for all c > 0 is not necessary. In fact, it is enough to require merely

an exponential moment up to some order c0 > 0, exists, which can be

explicitly computed in the proof of Theorem 4.1.2.
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2.2 The Problem Statement

2.2.1 Market-Clearing Conditions

A fundamental economic paradigm states that the prevailing market

dynamics must have the following property: the demand and supply for each

tradeable asset must offset each other at each time and in each state of the

world. More precisely, we have the following definition:

Definition 2.2.1. Given a fixed λ := (λ[1](t,x), . . . , λ[d](t,x)), the process

{Sλt }t∈[0,T ] is said to have an equilibrium price dynamics or, to be an

equilibrium price, if

1. (Rationality)

(a) when the market is composed of utility-maximizing agents, there

exist processes {π(λ,i)
t }t∈[0,T ] := {(π(λ,i,1)

t , . . . , π
(λ,i,d)
t )}t∈[0,T ] ∈ Ai,

i = 1, . . . , I, such that for all π ∈ Ai and all i = 1, . . . , I:

E[U [i](
∫ T

0
π

(λ,i)
u dSλu + E[i])] ≥ E[U [i](

∫ T
0
πu dS

λ
u + E[i])]

(b) when the market is populated by risk-measure-minimizing agents,

there exist processes {π(λ,i)
t }t∈[0,T ] := {(π(λ,i,1)

t , . . . , π
(λ,i,d)
t )}t∈[0,T ] ∈

Ãi, i = 1, . . . , I, such that for all π ∈ Ãi and all i = 1, . . . , I:

ρ[i](
∫ T

0
π

(λ,i)
u dSλu + E[i]) ≤ ρ[i](

∫ T
0
πu dS

λ
u + E[i])

2. (Market Clearing)
∑I

i=1 π
(λ,i,j)
t = 0, for all t ∈ [0, T ], a.s., and all

j = 1, . . . , d.
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2.2.2 The Problem Statement

We are mainly interested in the following problem: does there exist an

equilibrium market price of risk λ(t,x)? Is it unique?

In the rest of this dissertation, we will show, under appropriate assump-

tions, that the answers to both of the questions above are affirmative, both

for the market populated by agents with exponential-utilities and the market

composed of agents who minimize risk measures.

2.3 Assumptions and Conventions

Here is a list of assumptions we will use for various results in the rest

of the dissertation.

Assumption 2.3.1. For i = 1, . . . , I:

1. g[i] belongs to the isotropic Hölder space C2,α(Rn).

2. There exists a positive decreasing radial function h : Rn → R+, i.e.

h(x) = R(‖x‖) for some decreasing function R : R+ → R+, with h ∈

L1(Rn), such that:

∣∣g[i](x)
∣∣ , ∣∣∣g[i]

xj
(x)
∣∣∣ ≤ Cgh(x)

for some constant Cg > 0, and all x ∈ Rn.

Remark 2.3.2.

14



1. Thanks to Lemma A.1.1, we will assume, without loss of generality, that

function h satisfies the condition (A.1.1) for some constant B0 > 1. If

we apply Lemma A.1.2 (2), we get the following useful inequalities:

∣∣g[i](x)
∣∣ , ∣∣∣g[i]

xj
(x)
∣∣∣ ≤CgM0(B0, D)φD(x), ∀x ∈ Rn,

where φD(x) := exp
(
−‖x‖

2

D

)
∗ h(x).

2. Furthermore, without loss of generality, we assume that |h|L1 = 1. For

example, one can take h to be one of the following:

(a) h(x) :=

(√
1+‖x‖2

)−a∣∣∣∣(√1+‖x‖2
)−a∣∣∣∣

L1

where a > n.

(b) h(x) :=
(‖x‖n(ln ‖x‖)b)

−1∣∣∣(‖x‖n(ln ‖x‖)b)
−1
∣∣∣
L1

where b > 1.

Assumption 2.3.3. For any i = 1, . . . , I, we assume that the function f [i] :

Rn → R in Assumption 2.1.4, satisfies the following conditions:

1. f [i] is separable in the following sense:

f [i](x1, . . . , xn) = f
[i]
1 (x1, . . . , xd) + f

[i]
2 (xd+1, . . . , xn)

where functions f
[i]
1 : Rd → R and f

[i]
2 : Rn−d → R are proper, strictly

convex, and continuously differentiable.

2. Functions f
[i]
1 and f

[i]
2 satisfy the following quadratic growth conditions:∣∣∣f [i]

1 (x)
∣∣∣ ≤ L2‖x‖2, and L1‖x‖2 ≤ f

[i]
2 (x) ≤ L2‖x‖2, ∀x ∈ Rn,

for some constants 0 < L1 < L2.
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3. There exists a positive constant L[i], such that the following conditions

holds:

∥∥∥Df [i]
1 (x)

∥∥∥ ≥ 1

L[i]
‖x‖, ∀x ∈ Rn.

Furthermore, the sum
∑I

i=1Df
[i]
1 of Df

[i]
1 is assumed to satisfy the fol-

lowing inequalities:∥∥∥∥∥
I∑
i=1

Df
[i]
1 (x)−

I∑
i=1

Df
[i]
1 (y)

∥∥∥∥∥ ≥ 1

L3(‖x‖, ‖y‖)
‖x− y‖∥∥∥∥∥

I∑
i=1

Df
[i]
1 (x)

∥∥∥∥∥ ≥ 1

L3

‖x‖

∀x ∈ Rn, and for some positive constants L3 and locally bounded func-

tion L3 : R2
+ → R+.

Remark 2.3.4. Note that in the assumption (3) above, the seemingly artificial

requirements admit an economic interpretation. For example, in the proto-

typical case of an entropic risk measure, f [i](x) = 1
2γi
‖x‖2, where γi has to be

positive to make f [i](x) a valid penalty function. Seen from another perspec-

tive, γi corresponds to the risk aversion of the exponential-utility the entropic

risk measure is equivalent to, in the sense that minimizing the entropic risk

measure produces the same optimal strategy as maximizing the exponential-

utility with risk aversion γi. Loosely speaking, the conditions above can then

be understood as the conditions that keep the risk-measure analogue of the

risk aversion coefficient positive and bounded away from 0.

Lastly, throughout this thesis, we will use the following convention:
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Convention 1. For a vector X ∈ Rn and a matrix Z ∈ RI×n, we denote by

‖X‖ the Euclidean norm and by ‖Z‖ the Frobenius (Hilbert-Schmidt) norm[
tr
(
ZZT

)]1/2
. For the following functions (where 0 < d < n and the usual

argument names are included for the readers convenience),

V (t, ξ,x) :[0, T ]× R× Rn → R,

v(t, ξ, z,x) :[0, T ]× R× R× Rn → R,

u(t,x) :Q→ R, and

u(t,x) : = (u[1](t,x), . . . , u[I](t,x)) : Q→ RI

we use the following shortcuts:

DV := (Vx1 , . . . , Vxn)T DdV := (Vx1 , . . . , Vxd)
T

Dv := (vx1 , . . . , vxn)T Ddv := (vx1 , . . . , vxd)
T

Du := (ux1 , . . . , uxn)T Du :=
(
u[i]
xj

)
I×n
∈ RI×n

Ddu := (ux1 , . . . , uxd)
T Dn−du :=

(
uxd+1

, . . . , uxn
)T

With ∗ denoting convolution, we set φD(x) := exp
(
−‖x‖

2

D

)
∗ h(x), as well as

H := |h|L∞ G := max
i=1,...,I

(∣∣g[i]
∣∣
2,α

)
γ := (γ1, . . . , γI) ∈ RI

+ γ :=

(
I∑
i=1

γ−1
i

)−1

The following constants (where ε0 appears in Lemma A.1.1 and A.1.2)

α, B0, Cg, D, G, H, L
[i], L1, L2, L3, T, n, d, I, ε0, γ,

or any functions thereof are called ”Generic Constants”.
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Chapter 3

Market Equilibria with Utility-Maximizing

Agents

3.1 Individual Optimization Problem

In this section, we discuss the optimization problem for an individual

exponential-utility-maximizing agent. To simplify the notation, we will drop

the upper index i in this section.

3.1.1 The Value Function and the HJB Equation

One can characterize the optimal portfolio by a solution to a quasi-

linear PDE, i.e., a Hamilton-Jacobi-Bellman equation (HJB). Existing charac-

terizations of this type under various conditions, in case of exponential-utility,

are too numerous to list (see, for example, the references in [5]). We start by

defining the value function V ∗ : [0, T ]× Rn+1 → R, as the following:

V ∗(t, ξ,x) := max
π∈A

E
[
− exp

{
−γ
(
ξ +

∫ T
t
πTs dS

λ
s + g(BT )

)} ]
(3.1.1)

where we assume that the Brownian Motion Bs, t ≤ s ≤ T , satisfies Bt = x.

We can formally deduce the Hamilton-Jacobi-Bellman equation through the
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Dynamic Programming Principle, as follows:{
Vt + maxπ∈Rd

(
1
2
Vξξ||σTπ||

2
+
(
Vξλ

T +DdV
T
ξ

)
π
)

+ 1
2
∆V = 0

V (T, ξ,x) = − exp{−γ (ξ + g(x))}
(3.1.2)

Thanks to the special structure of the exponential-utility, we can guess that

the solution V takes the following form:

V (t, ξ,x) := − exp{−γ(ξ + u(t,x))}.

Indeed, that leads to the following quasilinear equation for u:{
ut + 1

2
∆u− λTDdu+ 1

2γ
‖λ‖2 − γ

2
‖Dn−du‖2 = 0

u(T,x) = g(x)
(3.1.3)

The following equivalent form will also come in handy:ut + 1
2
∆u+ γ

2

∥∥∥ 1
γ
λ−Ddu

∥∥∥2

− γ
2
‖Du‖2 = 0

u(T,x) = g(x)

3.1.2 Solution to HJB and Verification

Theorem 3.1.1. Assuming that g ∈ C2,α(Rn) and λ ∈ C0,α(Q), the HJB

equation (3.1.3) has a unique solution u ∈ C2,α(Q). Furthermore, the portfolio

{π(λ)
t }t∈[0,T ], given by,

π
(λ)
t :=

1

γ
λ (t,Bt)−Ddu(t,Bt),

is admissible and optimal.

Proof. The first part of the theorem is a direct consequence of Theorem 8.1 of

chapter V from [20]. Now let us verify that the portfolio given above is indeed
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admissible and optimal. The admissibility of π(λ) is obvious, since both λ and

Ddu are uniformly bounded. For optimality, set

V (t,x) := − exp{−γ (ξ + u(t,x))}

where u ∈ C2,α(Q) is the unique solution to HJB equation (3.1.3), then one

can verify that V is the solution to the formal HJB equation (3.1.2), and it

inherits its regularity from u. For any fixed admissible portfolio πt, we define

stopping times τn, ∀n ∈ N, as follows:

τn := inf{s ≥ t : |Xπ
s | ≥ n}.

Itô formula, applied to V (s ∧ τn, Xπ
s∧τn ,Bs∧τn), yields:

V (T ∧ τn, Xπ
T∧τn ,BT∧τn) = V (t, ξ,x)

+

∫ T∧τn

t

[
Vξπ

T
s σ +DV

]
(s,Xπ

s ,Bs) dBs

+

∫ T∧τn

t

LπsV (s,Xπ
s ,Bs) ds,

(3.1.4)

where

LπV = Vt + 1
2
Vξξ
∥∥σTπ∥∥2

+
(
Vξλ

T +DdV
T
ξ

)
π + 1

2
∆V.

Notice that the first term on the right hand side is a martingale due to the

uniform boundedness of Xπ
s on χ{s≤τn} and the admissibility of π. We recall

that V (t, ξ,x) is the solution to HJB equation (3.1.2), and take expectations

of both sides to get:

E
[
V (T ∧ τn, Xπ

T∧τn ,BT∧τn)
]
− V (t, ξ,x) = E

[ ∫ T∧τn

t

LπV (s,Xπ
s ,Bs) ds

]
≤ E

[ ∫ T∧τn

t

max
π∈Rd

LπV (s,Xπ
s ,Bs) ds

]
= 0

(3.1.5)
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Our next claim is that the family
(
V (T ∧ τn, Xπ

T∧τn ,BT∧τn)
)
n∈N is uniformly

integrable. To see this, observe that by the admissibility condition (2.1.4),

there exists b > 1, such that

E
[ ∣∣V (T ∧ τn, Xπ

T∧τn ,BT∧τn)
∣∣√b ]

≤E
[

exp
(
−γ
√
b
(
Xπ
T∧τn + u(T ∧ τn,BT∧τn

)) ]
≤ exp

(
γ
√
b |u|0

)
E
[

exp

(
−γ
√
b

(
ξ +

∫ T∧τn

t

πTuλudu+

∫ T∧τn

t

πTuσdBu

))]
≤ exp

(
γ
√
b

(
|u|0 + |ξ|+ |λ|0H

√
dT

(∫ T

0

‖πu‖2du

)1/2
))
×

E
[

exp

(
−γ
√
b

∫ T∧τn

t

πTuσdBu

)]
≤ exp

(
γ
√
b

(
|u|0 + |ξ|+ |λ|0H

√
dT

(∫ T

0

‖πu‖2du

)1/2
))
×

E
[

exp

(
−γ
√
b

∫ T∧τn

t

πTuσdBu − 1
2
γ2b

∫ T∧τn

t

‖πu‖2du+ 1
2
γ2b

∫ T∧τn

t

‖πu‖2du

)]
≤ exp

(
γ
√
b

(
|u|0 + |ξ|+ |λ|0H

√
dT

(∫ T

0

‖πu‖2du

)1/2
))
×

E
[

exp

(
−γ
√
b

∫ T∧τn

t

πTuσdBu − 1
2
γ2b

∫ T∧τn

t

‖πu‖2du

)]
×

E
[

exp

(
1
2
γ2b

∫ T∧τn

t

‖πu‖2du

)]
≤ exp

(
γ
√
b

(
|u|0 + |ξ|+ |λ|0H

√
dT

(∫ T

0

‖πu‖2du

)1/2
))
×

E
[

exp

(
1
2
γ2b

∫ T

0

‖πu‖2du

)]
<∞

We can now let n→∞ in equation (3.1.4) to conclude that:

E
[
V (T,Xπ

T ,BT )
]
≤ V (t, ξ,x).
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Notice that V (T,Xπ
T ,BT ) = − exp{−γ

(
ξ +

∫ T
t
πTs dS

λ
s + g(BT )

)
}, so that:

E
[
− exp{−γ

(
ξ +

∫ T
t
πTs dS

λ
s + g(BT )

)
}
]
≤ V (t, ξ,x) (3.1.6)

As a result V ∗ ≤ V , i.e.:

V ∗(t, ξ,x) := max
π∈A

E
[
− exp{−γ

(
ξ +

∫ T
t
πTs dS

λ
s + g(BT )

)
}
]
≤ V (t, ξ,x)

On the other hand, since Vξξ < 0 and because of the quadratic structure of

the Hamiltonian of HJB (3.1.2), if we let πs = π(λ) (s,Bs) := 1
γ
λ (s,Bs) −

Ddu(s,Bs), all the inequalities in (3.1.5) and (3.1.6) become equalities. As a

result:

V ∗(t, ξ,x) = V (t, ξ,x)

Therefore, we have proved that the solution V (t, ξ,x) to HJB (3.1.2) is in-

deed the value function, and the optimal utility is achieved by the portfolio

π(λ) (s,Bs).

3.2 Market Equilibria with Utility-Maximizing Agents

3.2.1 The Equilibrium PDE System

Recall the market clearing condition of Definition 2.2.1 and the optimal

portfolio formula of Theorem 3.1.1. If an equilibrium exists, we have that, for

all agents i = 1, . . . , I, and j = 1, . . . , d:

I∑
i=1

π(λ,i,j)(t,x) =
I∑
i=1

(
1

γi
λ[j](t,x)− u[i]

xj
(t,x)

)
= 0
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equivalently:

λ(t,x) = γ
I∑
i=1

Ddu
[i](t,x). (3.2.1)

where we recall that γ :=
(∑I

i=1 γ
−1
i

)−1

. If we insert it into the HJB equation

(3.1.3) for each agent, we have that u := (u[1], . . . , u[I]) solves the following

PDE system (due to the optimality of π
(λ,i)
t , for all i = 1, . . . , I):

u
[i]
t + 1

2
∆u[i]−

(
Ddu

[i]
)T (

γ
I∑

k=1

Ddu
[k]

)

+
1

2γi

∥∥∥∥∥γ
I∑

k=1

Ddu
[k]

∥∥∥∥∥
2

− γi
2

∥∥Dn−du
[i]
∥∥2

= 0

u[i](T,x) = g[i] (x)

(3.2.2)

Equivalently, we can rewrite it into the following form:u[i]
t + 1

2
∆u[i] + 1

2γi

∥∥∥γ∑I
k=1 Ddu

[k] − γiDdu
[i]
∥∥∥2

− γi
2

∥∥Du[i]
∥∥2

= 0

u[i](T,x) = g[i] (x)

On the other hand, suppose that the PDE system (3.2.2) has a solution.

Then, obviously, (3.2.1) defines an equilibrium price dynamic and finding an

equilibrium becomes equivalent to solving (3.2.2). However, before we attempt

to solve the problem in its general setting, let us first look at a few special

cases.

3.2.2 A Market Populated by a Single Agent

In this case, the market equilibrium simply means there is zero volume

of trading, thus by Theorem 3.1.1, we have λ(t,x) = γDdu(t,x). If we insert

23



this equality into the HJB equation, we get:{
ut + 1

2
∆u− γ

2
‖Du‖2 = 0

u(T,x) = g(x)
(3.2.3)

Now we can solve this equation above explicitly. Indeed, let U(t,x) :=

exp (−γu(t,x)). Then we have:

Ut = −γutU

Uxj = −γuxjU

Uxjxj =
(
γ2u2

xj
− γuxjxj

)
U

∆U =
(
γ2‖Du‖2 − γ∆u

)
U

If we multiply equation (3.2.3) by −γU , we get:{
Ut + 1

2
∆U = 0

U(T,x) = exp (−γg(x))
(3.2.4)

Note that the assumption that g is bounded allows us to use the explicit

formula for U as the solution to the PDE above. Let H(t,x,y) be defined as

follows:

H(t,x,y) :=

(
1

2π(T − t)

)n/2
exp

(
−‖x− y‖

2

2(T − t)

)
exp (−γg(y)) , (3.2.5)

and note that:

U(t,x) =

∫
Rn
H(t,x,y) dy

Then the unique solution to the PDE is:

u(t,x) = −1

γ
ln (U(t,x)) = −1

γ
ln

(∫
Rn
H(t,x,y) dy

)
,
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and so,

λ0
j(t,x) = −

Uxj
U

=

∫
Rn

(xj−yj)
T−t H(t,x,y) dy∫

Rn H(t,x,y) dy
(3.2.6)

is the unique equilibrium market price of risk.

3.2.3 Hedgeable Terminal Random Endowments

By “hedgeable terminal random endowments”, we mean the following:

Assumption 3.2.1. For i = 1, . . . , I, we assume that g[i] depends only on the

first d variables.

Then the equilibrium problem is reduced to the case of a complete

market, and one can easily find the “Representative Agent” and an explicit

formula for the equilibrium price. Indeed, in this case, the solution to the

HJB equation will also only depend on the first d elements of x, and last n−d

Brownian Motions become irrelevant. Let W (t,x) :=
∑I

i=1 u
[i](t,x), and sum

the equations in the PDE system (3.2.2) to get:

Wt + 1
2
∆W − γ

2
‖DdW‖2 = 0 (3.2.7)

Therefore, we are looking at a representative agent with risk aversion γ, and

would like to have zero trading volume in the equilibrium. In the same way as

above, we can define HRep(t,x,y) and URep(t,x) as:

HRep(t,x,y) :=

(
1

2π(T − t)

)n/2
exp

(
−‖x− y‖

2

2(T − t)

)
exp

(
−γ

I∑
i=1

g[i](y)

)
URep(t,x) :=

∫
Rn
HRep(t,x,y) dy,

(3.2.8)
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then the unique solution W to the PDE (3.2.7) and the unique equilibrium

market price of risk λRep are given by:

W (t,x) = −1

γ
ln (URep(t,x)) = −1

γ
ln

(∫
Rn
HRep(t,x,y) dy

)
λRepj (t,x) = −

(URep)xj
URep

=

∫
Rn

(xj−yj)
T−t HRep(t,x,y) dy∫

Rn HRep(t,x,y) dy

(3.2.9)

3.2.4 “Totally Nonhedgeable” Terminal Random Endowments

By “totally nonhedgeable” terminal random endowments, we mean the

following:

Assumption 3.2.2. For i = 1, . . . , I, we assume that g[i] depends on only the

last n− d variables, i.e. g[i](x) = g[i](xn−d), where xn−d ∈ Rn−d.

Now observe that the equilibrium system (3.2.2) takes the following

form: {
u

[i]
t + 1

2
∆u[i] − γi

2

∥∥Dn−du
[i]
∥∥2

= 0

u[i](T,x) = g[i] (xn−d)

which has unique explicit solutions, as shown above. However, the solutions

all depend only on the last n − d elements of the variable x. As a result, by

(3.2.1), one can easily see that the unique equilibrium market price of risk λ

is λ(t,x) = 0, ∀ (t,x) ∈ Q.

3.2.5 A Linear Combination of Hedgeable and “Totally Nonhedge-
able” Terminal Random Endowments

Now we assume that the terminal endowments can be expressed as

linear combinations of the previous two special cases, i.e.:
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Assumption 3.2.3. For i = 1, . . . , I, we assume that g[i] is separable, in the

following sense:

g[i](x) = g
[i]
1 (x1, . . . , xd) + g

[i]
2 (xd+1, . . . , xn)

Then it is not hard to see that the solution to the equilibrium PDE

system (3.2.2), is also separable, i.e. u(t,x) = u1(t,xd) + u2(t,xn−d), where

xd ∈ Rd and xn−d ∈ Rn−d, and the system (3.2.2) decouples into the two

special cases above. Therefore it becomes clear that, under this assumption,

a result similar to (3.2.9) will hold.

3.2.6 Existence and Uniqueness of an Equilibrium in the General
Case

Let B(·, ·, ·, ·, ·, ·) be as in Definition 6.2.1.

Theorem 3.2.4. There exists a positive generic constant C independent of

Cg such that for T ≤ T0 = C/C2
g , under the Assumption 2.3.1, the equilibrium

PDE system (3.2.2) has a unique solution u ∈ C2,α(Q). Moreover, there exist

generic constants C1, D1, C2, D2, E, F and A1, A2, A3, such that

u ∈ B(C1, D1, C2, D2, E, F )

and, for all (t,x) ∈ Q,

‖u(t,x)‖ ≤A1φD1(x)

‖Du(t,x)‖ ≤A2φD2(x)

|u|2,α ≤A3
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An equilibrium market price of risk, denoted by λ, is given by (3.2.1). It is

unique in (C1,α(Q))
d

and there exist generic constants A4 and A5, such that:

‖λ(t,x)‖ ≤A4φD2(x), ∀ (t,x) ∈ Q

|λ|1,α ≤A5

Finally, if the function h of Assumption 2.3.1 further satisfies the condition

(A.1.2) in Lemma A.1.1, there exist generic constants Ã1, Ã2 and Ã3 such

that:

‖u(t,x)‖ ≤Ã1h(x)

‖Du(t,x)‖ ≤Ã2h(x)

‖λ(t,x)‖ ≤Ã3h(x)

Proof. We shall apply the results of Section 6.3. To show the existence of a

solution, we need to verify that PDE system (3.2.2) satisfies the Assumption

6.1.5. Let Z := (Zij)I×n ∈ RI×n, denote Z := (Z [1], . . . , Z [I]), where Z [i] =

(Zij)
n
j=1 ∈ Rn, for i = 1, . . . , I, are the row vectors of Z, and write:

Z [i] :=(Zi1, . . . , Zid, Zid+1, . . . , Zin)T

:=(Z
[i]
d , Z

[i]
n−d)

T ∈ Rl × Rd−l × Rn−d
(3.2.10)

Also, we introduce the function f [i] by

f [i](t,x, Z) := −
(
Z

[i]
d

)T (
γ

I∑
k=1

Z
[k]
d

)
+

1

2γi

∥∥∥∥∥γ
I∑

k=1

Z
[k]
d

∥∥∥∥∥
2
− γi

2

∥∥∥Z [i]
n−d

∥∥∥2

Then it is easy to see that:

∣∣f [i](t,x, Z)
∣∣ ≤γ I∑

k=1

∥∥∥Z [k]
d

∥∥∥∥∥∥Z [i]
d

∥∥∥+
γ2I

2γi

(
I∑

k=1

∥∥∥Z [k]
d

∥∥∥2
)

+
γi
2

∥∥∥Z [i]
n−d

∥∥∥2

≤P [i](γ, I, n)‖Z‖2
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where P [i] is a generic constant that depends only on γ, I, n. Furthermore,

using the following inequality,

|uv|α = |uv|0 + [uv]α

≤ |uv|0 + |u|0 [v]α + [u]α |v|0 ,

valid for u, v ∈ C0,α(Q), it is not hard to verify the condition (3) in Assumption

6.1.5. Furthermore, for Z, Z̃ ∈ RI×n, we set Y := Z − Z̃, and use the notation

in (3.2.10) so that

f [i](t,x, Z)− f [i](t,x, Z̃)

=− γ

((
Z

[i]
d

)T I∑
k=1

Z
[k]
d −

(
Z̃

[i]
d

)T I∑
k=1

Z̃
[k]
d

)
+
γ2

2γi

∥∥∥∥∥
I∑

k=1

Z
[k]
d

∥∥∥∥∥
2

−

∥∥∥∥∥
I∑

k=1

Z̃
[k]
d

∥∥∥∥∥
2


− γi
2

(∥∥∥Z [i]
n−d

∥∥∥2

−
∥∥∥Z̃ [i]

n−d

∥∥∥2
)

=− γ

((
Y

[i]
d

)T I∑
k=1

Z
[k]
d +

(
Z̃

[i]
d

)T I∑
k=1

Y
[k]
d

)
+
γ2

2γi

(
I∑

k,m=1

(
Z

[m]
d + Z̃

[m]
d

)T
Y

[k]
d

)

− γi
2

((
Z

[i]
n−d + Z̃

[i]
n−d

)T
Y

[i]
n−d

)
:=

I∑
k=1

hTikY
[k]
d + rTi Y

[i]
n−d

where hik and ri are:hik := −γZ̃ [i]
d + γ2

2γi

∑I
m=1

(
Z

[m]
d + Z̃

[m]
d

)
− δik

(
γ
∑I

m=1 Z
[m]
d

)
ri := −γi

2

(
Z

[i]
n−d + Z̃

[i]
n−d

)
and δik is the Kronecker delta function. Notice that the hik and ri are poly-

nomials, thus locally bounded functions. Consequently, Assumption 6.1.5 (4)

is satisfied.
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By Lemma 6.2.3, Theorem 6.3.1 and Corollary 6.3.2, there exist generic

constants C1, D1, C2, D2, E, F and A1, A2, A3, such that the equilibrium

PDE system (3.2.2) has a unique solution, denoted by u, which belongs to

B(C1, D1, C2, D2, E, F ), and it satisfies the first set of desired inequalities.

If we further assume that the function h in Assumption 2.3.1, satisfies the

condition (A.1.2) in Lemma A.1.1, we can apply Lemma A.1.2 to ensure the

existence of generic constants Ã1 and Ã2 such that the last set of desired

inequalities holds.

Finally, the market price of risk λ is given by the equation (3.2.1), and

its uniqueness follows from the uniqueness of the solution to the equilibrium

PDE system (3.2.2). It is not hard to see that, under condition (A.1.2), we

can use the equation (3.2.1) and Lemma A.1.2 to show that there exist generic

constants A4, A5 and Ã3, such that the desired estimates for λ hold.
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Chapter 4

Market Equilibria with

Risk-Measure-Minimizing Agents

4.1 Individual Optimization Problem

In this section, we discuss the optimization problem for an individual

agent with a convex risk measure. To simplify the notation, we drop the upper

index i throughout.

4.1.1 Value Function and the HJB

Recall that the risk measure is given in terms of its penalty function f ,

which satisfies the Assumption 2.3.3:

ρ(X) = sup
ν∈N

E
[
ZνT

(
−X −

∫ T

0

f(νs) ds

)]
As in the exponential case, one can characterize the optimal portfolio by a

solution to a quasi-linear PDE, derived from the Hamilton-Jacobi-Bellman

equation (HJB). We start by defining the value function v∗ : [0, T ]×Rn+2 → R,

as follows:

v∗(t, ξ, z,x) := inf
π∈Ã

sup
ν∈N

Et,ξ,z,x
[
ZνT (−g(BT )− YT )

]
(4.1.1)
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under the following, stochastic, dynamics:
dYs = πTs λsds+ πTs σsdBs + f(νs)ds; Yt = ξ

dZνs = −Zνs νTs dBs; Zνt = z

dBs = dBs; Bt = x

(4.1.2)

We can formally deduce the Hamilton-Jacobi-Bellman equation by applying

Itô’s formula to v(t, ξ, z,x):

dv(s, Ys, Zs,Bs) = (vξπ
T
s σ − vzZsνTs +DvT )dBs + (vs + 1

2
∆v + vξ(π

T
s λs + f)+

Ddv
T
ξ πs − vξzZsπTs σνs −DvTz νsZs + 1

2
vξξ‖πs‖2 + 1

2
vzzZ

2
s‖νs‖

2)ds

Thus the HJB take the form:
vt + 1

2
∆v + infπ∈Rd supν∈Rn(vξ(π

Tλ+ f) +Ddv
T
ξ π − vξzz(πTσν)−DvTz νz

+1
2
vξξ‖π‖2 + 1

2
vzzz

2‖ν‖2) = 0

v(T, ξ, z,x) = −zξ − zg(x)

(4.1.3)

Similarly as in the exponential-utility case, we can guess that the solution

v(t, ξ, z,x) takes the following form:

v(t, ξ, z,x) := −zξ − zu(t,x).

After we insert it into the Hamilton-Jacobi-Bellman equation (4.1.3), we get

the following quasi-linear PDE for the function u(t,x):{
ut + 1

2
∆u+ supπ∈Rd infν∈Rn(πTλ+ f(ν)− πTσν −DuTν) = 0

u(T,x) = g(x)
(4.1.4)

Let f̃(x) denote the convex conjugate of function f(x), so that

f̃(y) := sup
ν∈Rn

(yTν − f(ν)) = f̃1(y1) + f̃2(y2)
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where y1 ∈ Rd and y2 ∈ Rn−d. Then observe that:

sup
π∈Rd

inf
ν∈Rn

(πTλ+ f(ν)− πTσν −DuTν)

= sup
π∈Rd

(πTλ− f̃(σTπ +Du))

= sup
π∈Rd

(πTλ− f̃1(π +Ddu)− f̃2(Dn−du))

=− λTDdu+ f1(λ)− f̃2(Dn−du)

Therefore, the HJB equation (4.1.3) turns into:{
ut + 1

2
∆u− λTDdu+ f1(λ)− f̃2(Dn−du) = 0

u(T,x) = g(x)
(4.1.5)

Remark 4.1.1. Comparing equation (4.1.5) above with the HJB equation from

an exponential-utility-maximizing agent, i.e. equation (3.1.3), one can clearly

see that (3.1.3) is nothing but a special case of the HJB (4.1.5) above. That

is precisely what one would expect due to the formal equivalence between

entropic risk measures and the exponential-utility.

4.1.2 Solution to HJB and Verification

Theorem 4.1.2. For g ∈ C2,α(Rn) and λ ∈ C0,α(Q), under the Assumption

2.3.3, the HJB equation (4.1.5) has a unique solution u ∈ C2,α(Q). Further-

more, the portfolio π(λ), given by:

π
(λ)
t := Df1(λ(t,Bt))−Ddu(t,Bt),

is admissible and optimal.

Proof. Once again, we apply Theorem 8.1 of chapter V from [20], to (4.1.5).

It’s not hard to check that the conditions required by the theorem are satisfied,
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thanks to Assumption 2.3.3. Now let us verify that the portfolio given above

is indeed admissible and optimal. The admissibility of π(λ) is obvious, since

both λ(t,x) and Ddu(t,x) are uniformly bounded and the function Df1 is

continuous. To show optimality, set:

v(t, ξ, z,x) := −zξ − zu(t,x) (4.1.6)

where u ∈ C2,α(Q) is the unique solution to HJB equation (4.1.5), one can

then easily verify that v is the solution to the formal HJB equation (4.1.3).

For any admissible π, define νπ as:

νπt :=
(
Df̃1(πt +Ddu(t,Bt)), Df̃2(Dn−du(t,Bt))

)T
where u is the solution to the HJB equation (4.1.4). Recall that, in Assumption

2.3.3, we assumed that: ‖Df1(x)‖ ≥ (1/L)‖x‖, thus thanks to Proposition

A.3.1, we have: ∥∥∥Df̃1(x)
∥∥∥ ≤L‖x‖

Observe further, that ‖Du‖ is bounded, thus it is easy to see that νπt ∈ N,

due to the requirement of πt ∈ Ã.

We insert π and νπ in (4.1.2), to construct the corresponding processes

Y π and Zπ, and insert them into the function v(t, ξ, z,x) defined in (4.1.6).

By Itô’s formula:

dv(s, Y πs , Z
π
s ,Bs) = −Zπs

(
πTs σ − (Y πs + u)(νπs )T +Du

)
dBs

−Zπs (ut + 1
2
∆u+ πTs λ+ f(νπs )− πTs σνπs −DuTνπs )ds
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If the stopping times {Tn}n∈N are defined by:

Tn := inf
s≥t
{s : ‖Y πs ‖ ≥ n or ‖Zπs ‖ ≥ n},

by the choice of νπ, we have

Ev(T ∧ Tn, Y πT∧Tn , Z
π
T∧Tn ,BT∧Tn)− v(t, ξ, z,x)

=

∫ T∧Tn

t

−Zπs (ut + 1
2
∆u+ πTs λ+ f(νπs )− πTs σνπs −DuTνπs )ds

=

∫ T∧Tn

t

(
−Zπs (ut + 1

2
∆u+ inf

ν∈Rn

(
πTs λ+ f(ν)− πTs σν −DuTν)ds

))
≥
∫ T∧Tn

t

(
−Zπs (ut + 1

2
∆u+ sup

π∈Rd
inf
ν∈Rn

(
πTλ+ f(ν)− πTσν −DuTν)ds

))
=0

We claim that the family

v(T ∧ Tn, Y πT∧Tn , Z
π
T∧Tn ,BT∧Tn) = −ZπT∧TnY

π
T∧Tn − Z

π
T∧Tnu(T ∧ Tn,BT∧Tn)

is uniformly integrable, with respect to index n ∈ N. Since the function u is

bounded and Zπ is square integrable, (ZπT∧Tnu(T∧TN ,BT∧Tn))n∈N is uniformly

integrable. Now observe that:

Y πs = ξ +

∫ s

t

πTs λsds+

∫ s

t

πTs σdBs +

∫ s

t

f(νs)ds
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E
[
(ZπT∧Tn)2

(∫ T∧Tn

t

πTuλudu

)2 ]
+ E

[
(ZπT∧Tn)2

(∫ T∧Tn

t

f(νu)du

)2 ]
≤
(
E
[
(ZπT∧Tn)4

])1
2

(
E
[ ∫ T∧Tn

t

πTuλudu
]4
)1

2

+ L2
2E
[
(ZπT∧Tn)2

(∫ T∧Tn

t

‖νu‖2du

)2 ]
≤T |λ|20

(
E
[
(ZπT )4

])1
2

(
E
[ ∫ T

0

‖πu‖2du
]2
)1

2

+ L2
2

(
E
[
(ZπT )4

])1
2

(
E
[ ∫ T

0

‖νu‖2du
]4
)1

2

≤
(
E
[
(ZπT )4

])1
2

(
NT |λ|20 E

[
exp

(∫ T

0

‖πt‖2dt

)]
+NL2

2E
[

exp

(∫ T

0

‖νt‖2dt

)])
<∞

and for 1 < b < 2:

E
∣∣∣∣ZπT∧Tn ∫ T∧Tn

t

πTuσdBu

∣∣∣∣b
≤
(
E
∣∣ZπT∧Tn∣∣ 2b

2−b
) 2−b

2

(
E
(∫ T∧Tn

t

πTuσdBu

)2
)b/2

≤
(
E |ZπT |

2b
2−b

) 2−b
2

(
E
∫ T

0

‖πu‖2du

)b/2
≤N

(
E |ZπT |

2b
2−b

) 2−b
2

(
E
[

exp

(∫ T

0

‖πt‖2dt

)])b/2
<∞

Therefore, we can let n→∞, and get the following:

Ev(T, Y πT , Z
π
T ,BT ) ≥ v(t, ξ, z,x)

As a result, ∀π ∈ Ã:

sup
ν∈N

Ev(T, Y π,νT , ZνT ,BT ) ≥ v(t, ξ, z,x)
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Therefore:

v∗(t, ξ, z,x) = inf
π∈Ã

sup
ν∈N

Ev(T, Y πT , Z
π
T ,BT ) ≥ v(t, ξ, z,x)

On the other hand, if we insert π(λ) := Df1(λ(t,Bt)) − Ddu(t,Bt) and any

ν ∈ N into SDEs (4.1.2), we get process Y ∗ and Z∗. Then we insert them into

function v(t, ξ, z,x) defined in (4.1.6) so that:

dv(s, Y ∗s , Z
∗
s ,Bs) = −Z∗s

(
(π(λ)

s )Tσ − (Y ∗s + u)(νs)
T +Du

)
dBs

−Z∗s (ut + 1
2
∆u+ (π(λ)

s )Tλ+ f(νs)− (π(λ)
s )Tσνs −DuTνs)ds

As before, we define the stopping times Tn := infs≥t{s : ‖Y ∗s ‖ ≥ n or ‖Z∗s‖ ≥

n}. Thus by the choice of π(λ), we get:

Ev(T ∧ Tn, Y ∗T∧Tn , Z
∗
T∧Tn ,BT∧Tn)− v(t, ξ, z,x)

=

∫ T∧Tn

t

−Z∗s (ut + 1
2
∆u+ (π(λ)

s )Tλ+ f(νs)− (π(λ)
s )Tσνs −DuTνs)ds

≤
∫ T∧Tn

t

sup
ν∈Rn

(
−Zπs (ut + 1

2
∆u+ (π(λ)

s )Tλ+ f(ν)− (π(λ)
s )Tσν −DuTν)ds

)
=

∫ T∧Tn

t

−Z∗s (ut + 1
2
∆u+ (π(λ))Tλ− f̃1(π(λ) +Ddu)− f̃2(Dn−du))ds

=

∫ T∧Tn

t

−Z∗s (ut + 1
2
∆u+−λTDdu+ f1(λ)− f̃2(Dn−du))ds

=0

As before, it is not hard to show v(T ∧ Tn, Y ∗T∧Tn , Z
∗
T∧Tn ,BT∧Tn) is uniformly

integrable, and then pass the limit, n→∞, to get:

Ev(T, Y ∗T , Z
∗
T ,BT ) ≤ v(t, ξ, z,x)

Hence, we have the following:

sup
ν∈N

Ev(T, Y ∗T , Z
∗
T ,BT ) ≤ v(t, ξ, z,x)
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Therefore:

v∗(t, ξ, z,x) = inf
π∈Ã

sup
ν∈N

Ev(T, Y πT , Z
π
T ,BT ) ≤ v(t, ξ, z,x)

All in all, we showed that:

v∗(t, ξ, z,x) = v(t, ξ, z,x)

If we use π(λ) and ν∗t :=
(
λ(t,Bt), Df̃2(Dn−du)

)T
in the arguments above,

all the inequalities become equalities, thus we see that π(λ) is indeed optimal.

4.2 Market Equilibria with Risk-Measure-Minimizing
Agents

4.2.1 The Equilibrium PDE System

The market clearing condition in Definition 2.2.1 and the optimal-

portfolio formula in Theorem 4.1.2, state that, in an equilibrium, we have

I∑
i=1

π(λ,i)(t,x) =
I∑
i=1

(
Df

[i]
1 (λ(t,x))−Ddu

[i](t,x)
)

= 0 (4.2.1)

Note that the function
∑I

i=1 f
[i]
1 : Rd → R, is proper, strictly convex and

continuously differentiable. Thus, thanks to Proposition B.2.4 from [22], we

know that its gradient admits an inverse function, which is the gradient of its

conjugate, and we denote it by F (y), i.e.,

F (y) :=

(
I∑
i=1

Df
[i]
1 (y)

)−1
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Equivalently, (4.2.1) becomes

λ(t,x) = F (
I∑
i=1

Ddu
[i](t,x)) (4.2.2)

If we insert (4.2.2) into the HJB equation (4.1.5) for each agent, we have that

u := (u[1], . . . , u[I]) solves the following PDE system, due to the optimality of

π(λ,i), for all i = 1, . . . , I.
u

[i]
t + 1

2
∆u[i] −

(
Ddu

[i]
)T (

F (
I∑

k=1

Ddu
[k])

)
+ f

[i]
1

(
F (

I∑
k=1

Ddu
[k])

)
− f̃ [i]

2 (Dn−du
[i]) = 0

u[i](T,x) = g[i] (x)

(4.2.3)

On the other hand, if the PDE system (4.2.3) has a solution, then obviously

(4.2.2) leads to an equilibrium price dynamics. Therefore, finding an equilib-

rium becomes equivalent to solving (4.2.3).

Remark 4.2.1. Comparing the equilibrium PDE system (4.2.3) to the one for

exponential-utility agents, i.e., equation (3.2.2), one can see, not surprisingly,

that (3.2.2) is just a special case of (4.2.3).

4.2.2 Existence and Uniqueness of an Equilibrium with Risk-Measure-
Minimizing Agents

Let the space B(·, ·, ·, ·, ·, ·) be as in Definition 6.2.1.

Theorem 4.2.2. There exists a positive constant C, independent of Cg such

that for T ≤ T0 = C/C2
g , and under the Assumption 2.3.1, the equilib-

rium PDE system (4.2.3) has a unique solution u ∈ C2,α(Q). Moreover,
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there exist generic constants C1, D1, C2, D2, E, F and A1, A2, A3, such that

u ∈ B(C1, D1, C2, D2, E, F ) and

‖u(t,x)‖ ≤A1φD1(x)

‖Du(t,x)‖ ≤A2φD2(x)

|u|2,α ≤A3

An equilibrium market price of risk λ is given by equation (3.2.1). Moreover,

it is unique in (C1,α(Q))
d
, and there exist generic constants A4, A5, such that:

‖λ(t,x)‖ ≤A4φD2(x)

|λ|α ≤A5

Finally, if the function h in Assumption 2.3.1 further satisfies the condition

(A.1.2) in Lemma A.1.1, then there exist generic constants Ã1, Ã2 and Ã3

such that:

‖u(t,x)‖ ≤Ã1h(x)

‖Du(t,x)‖ ≤Ã2h(x)

‖λ(t,x)‖ ≤Ã3h(x)

Proof. As above, we want to use the results in Section 6.3. To show that

solutions to the PDE system (4.2.3) exist, we introduce the function F [i] :

[0, T ]× Rn × RI×n by

F [i](t,x, Z) = −
(
Z

[i]
d

)T (
F (

I∑
k=1

Z
[k]
d )

)
+ f

[i]
1 (F (

I∑
k=1

Z
[k]
d ))− f̃ [i]

2 (Z
[i]
n−d)

where we use the notation defined in (3.2.10). We need to check that F [i]
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satisfies the conditions in Assumption 6.1.5. By Assumption 2.3.3 we have:∥∥∥∥∥
I∑
i=1

Df
[i]
1 (x1)−

I∑
i=1

Df
[i]
1 (x2)

∥∥∥∥∥ ≥ 1

L3(‖x1‖, ‖x2‖)
‖x1 − x2‖∥∥∥∥∥

I∑
i=1

Df
[i]
1 (x)

∥∥∥∥∥ ≥ 1

L3

‖x‖

Therefore, as the inverse of
∑I

i=1 Df
[i]
1 , the function F is locally Lipschitz and

has at most linear growth, i.e.

‖F (y1)− F (y2)‖ ≤L3(|F (y1)| , |F (y2)|)‖y1 − y2‖

‖F (y)‖ ≤L3‖y‖
(4.2.4)

where both L3 and F are locally bounded. Further notice that both functions

f
[i]
1 and f̃ [i] are local Lipschitz. Thus, the function F [i] is local Lipschitz w.r.t

Z, i.e.

∣∣F [i](Z(1))− F [i](Z(2))
∣∣ ≤ L4(

∥∥Z(1)
∥∥,∥∥Z(2)

∥∥)
∥∥Z(1) − Z(2)

∥∥
where L4 : R+ × R+ → R+ is some locally bounded (increasing) function.

Now thanks to Assumption 2.3.3 and Proposition A.3.1, it’s clear that F [i]

satisfies the quadratic growth condition in Assumption 6.1.5 (2). Finally, in

order to check Assumption 6.1.5 (3), we pick Z ∈ (C0,α(Q))
I×n

, and compute[
F [i](Z(t,x))

]
α
:

∣∣F [i](Z(t,x))− F [i](Z(s,y))
∣∣ ≤L4(|Z|0 , |Z|0)‖Z(t,x)− Z(s,y)‖ (4.2.5)

Therefore, we have:

[
F [i](Z(t,x))

]
α
≤ L4(|Z|0 , |Z|0) [Z(t,x)]α

41



In addition, remember that the function F [i] is continuous, so there exists a

constant L(|Z|0), such that:

∣∣F [i](Z(t,x))
∣∣ ≤ L(|Z|0) (4.2.6)

Combining (4.2.5) and (4.2.6), we have verified the condition (3) in Assumption

6.1.5.

We can, thus, apply Lemma 6.2.3, Theorem 6.3.1 and Corollary 6.3.2,

to conclude that there exist generic constants C1, D1, C2, D2, E, F and A1,

A2, A3, such that the equilibrium PDE system (3.2.2) has a unique solution,

denoted by u, which belongs to B(C1, D1, C2, D2, E, F ), and it satisfies the first

set of desired inequalities. If we further assume that function h in Assumption

2.3.1, satisfies the condition (A.1.2) in Lemma A.1.1, by Lemma A.1.2, there

exist generic constants Ã1 and Ã2 such that the last set of desired inequalities

holds.

Finally, the market price of risk λ is given by the equation (4.2.2),

and its uniqueness follows from the uniqueness of solution to equilibrium PDE

system (4.2.3). It is not hard to see that there exist generic constants A4, A5

and Ã3 (under condition (A.1.2)), such that the desired estimates for λ hold

by equation (3.2.1), thanks to Lemma A.1.2.
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Chapter 5

A System of BSDEs

Consider the following system of Backward Stochastic Differential Equa-

tions (BSDE):

Yt = g(BT ) +

∫ T

t

f(s,Bs, Zs) ds−
∫ T

t

Zs dBs (5.1.1)

where g := (g[1], . . . , g[I])T , f := (f [1], . . . , f [I])T and Yt := (Y [1], . . . , Y [I]) take

values in RI , Zt ∈ RI×n and Bt ∈ Rn.

Definition 5.1.3. A pair of adapted and pathwise square-integrable processes

(Yt, Zt) : [0, T ] × Ω → Rn × RI×n is called a solution of the system (5.1.1), if

they satisfy the system (5.1.1) P-almost surely.

Let B(·, ·, ·, ·, ·, ·) be as in Definition 6.2.1.

Theorem 5.1.4. Under Assumption 6.1.5, we fix T ≤ T0, where the con-

stant T0 is given by (6.2.2) or (6.2.3). Then, the system (5.1.1) has a so-

lution (Yt, Zt), and there exists a function u ∈ B(C1, D1, C2, D2, E, F ) and

generic constants C1, D1, C2, D2, E, F defined by Lemma 6.2.3, such that,

Yt = u(t,Bt) and Zt = Du(t,Bt).

In addition, such a solution is unique, within the class of pairs (Y, Z),

where Z is uniformly bounded.
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Proof. Thanks to Theorem 6.3.1, let u := (u[1], . . . , u[I]) ∈ C2,α(Q) be the

solution to the PDE system (6.1.1). we apply Itô’s formula to u[i](s,Bs), for

i = 1, . . . , I, to obtain:

du[i](s,Bs) =
(
u[i]
s (s,Bs) + 1

2
∆u[i](s,Bs)

)
ds+Du[i](s,Bs)

TdBs

=− f [i](s,Bs, Du(s,Bs))ds+Du[i](s,Bs)dBs

The processes Yt := u(t,Bt) and Zt := Du(t,Bt) obviously form an adapted

solution to the BSDE (5.1.1). It remains to show that the solution is unique.

Suppose that there is another solution (Ỹt, Z̃t) to (5.1.1) with supt∈[0,T ] |Z̃t| ≤

Ñ , P-almost surely for some fixed constant Ñ > 0. Set Wt := Yt − Ỹt and

Xt := Zt− Z̃t. We then apply Itô’s formula to
(
W

[i]
t

)2

, take expectations, and

observe that by Assumption 6.1.5, we have:

E
∣∣∣W [i]

t

∣∣∣2 +

∫ T

t

E
∥∥X [i]

s

∥∥2
ds

=E
[ ∫ T

t

2W [i]
s

(
f [i](s,BsZs)− f [i](s,Bs, Z̃s)

)
ds
]

≤E
[ ∫ T

t

2
∣∣W [i]

s

∣∣ Ñ2(C2, Ñ)‖Xs‖ ds
]

≤IÑ2
2 (C2, Ñ)

∫ T

t

E
∣∣W [i]

s

∣∣2 ds+

∫ T

t

1

I
E‖Xs‖2 ds

where Ñ2 is a constant that depends on C2, Ñ and the function N1(x, y) of

Assumption 6.1.5. If we sum both sides of the inequality above over i =

1, . . . , I, we get:

E‖Wt‖2 +

∫ T

t

E‖Xs‖2ds ≤ IÑ2
2 (C2, Ñ)

∫ T

t

E‖Ws‖2ds+

∫ T

t

E‖Xs‖2 ds

After canceling the integral term on both sides, we obtain:

E‖Wt‖2 ≤ IÑ2
2 (C2, Ñ)

∫ T

t

E‖Ws‖2ds
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By Gronwall’s inequality, we have that Wt = 0, P-a.s. as a result, we showed

that (Yt, Zt) = (Ỹt, Z̃t), P-a.s. on [0, T ], and the adapted solution to BSDE

(5.1.1) is unique for bounded process Zt.
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Chapter 6

A Solution to the PDE System (6.1.1)

We devote this section to the technical aspects of the proof of the

existence and uniqueness of the solution to the PDE system (6.1.1), which is

somewhat more general than the equilibrium PDE system of previous chapters:{
u

[i]
t + a

2
∆u[i] + f [i](t,x, Du) = 0, i = 1, . . . , I,

u[i](T,x) = g[i](x), i = i, . . . , I,
(6.1.1)

where a > 0. We start the analysis by describing the standing assumptions on

functions g[i] and f [i]:

Assumption 6.1.5. For i = 1, . . . , I, we assume that:

1. g[i] satisfies Assumption 2.3.1, so that (see Remark 2.3.2 ):

∣∣g[i](x)
∣∣ , ∣∣∣g[i]

xj
(x)
∣∣∣ ≤ CgM0(B0, D)φD(x)

where the function φD(x) is defined by Convention 1 in Section 2.3 of

Chapter 2.

2. There exists constants Cp, Cq > 0 and a function 0 ≤ Q[i](t,x) ≤

CqφD(x), such that ∀ (t,x) ∈ Q, ∀Z ∈ RI×n:

∣∣f [i](t,x, Z)
∣∣ ≤ Cp‖Z‖2 +Q[i](t,x). (6.1.2)
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3. For all Z ∈ (C0,α(Q))
I×n

we have f [i](t,x, Z(t,x)) ∈ C0,α(Q), and:

∣∣f [i](t,x, Z(t,x))
∣∣
α
≤ N1(|Z|0) ([Z]α + 1) (6.1.3)

where N1 : R+ → R+ is a locally bounded function.

4. f [i] is locally Lipschitz w.r.t. Z, i.e. ∀Z(1), Z(2) ∈ RI×n:∣∣f [i](t,x, Z(1))− f [i](t,x, Z(2))
∣∣ ≤ N1

(∥∥Z(1)
∥∥,∥∥Z(2)

∥∥) ∥∥Z(1) − Z(2)
∥∥

(6.1.4)

where N1 : R2
+ 7→ R+ is a locally bounded function.

Remark 6.1.6. For a function f [i] of the form f [i](t,x, Z) = f [i](Z), the third

assumption becomes unnecessary. Indeed, in this case, (6.1.3) is a direct con-

sequence of (6.1.2) and (6.1.4).

6.2 The Function Space B and the Map H

The idea behind our existence proof of a solution to the PDE system

(6.1.1) is to use the Schauder’s fixed point theorem on a proper subset of a

subspace B of (C1,α(Q))
I
, introduced below:

Definition 6.2.1. For constants C1, D1, C2, D2, E, F > 0, we define a sub-

space of C1,α(Q) as follows:

D(C1, D1, C2, D2, E, F ) = {u ∈ C1,α(Q) : |u(t,x)| ≤ C1φD1(x), [u]α ≤ E, and

∀ j = 1, . . . , n,
∣∣uxj(t,x)

∣∣ ≤ C2φD2(x),
[
uxj
]
α
≤ F}

The I-th Cartesian power DI of D is denoted by B.
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Thanks to Lemma A.1.2, the inclusion D ⊂ H1(Q) ∩ Cv(Q) holds, so

that B ⊆ (C1,α(Q))
I ∩ (H1(Q))

I ∩ (Cv(Q))I .

Lemma 6.2.2. The space D(C1, D1, C2, D2, E, F ) is closed in C0(Q). And,

thus, the space B(C1, D1, C2, D2, E, F ) is closed in (C0(Q))
I
.

Proof. To see this, let {un}n∈N ⊂ D be a sequence that converges uniformly

to a function u: ∀ ε > 0, there exists nε ∈ N such that for n ≥ nε

|u(t,x)− u(s,y)| ≤ |u(t,x)− un(t,x)|+ |un(t,x)− un(s,y)|

+ |un(s,y)− u(s,y)| ≤ 2ε+ E
(
dp((t,x), (s,y))

)α
.

Consequently, u ∈ C0,α(Q), and [u]α ≤ E. In addition, we observe that se-

quences {(uxj)n}n∈N, for j = 1, . . . , n, are bounded by a function that vanishes

at infinity, and are, hence, equicontinuous due to the uniform bound of their

[·]α norms by F . We can, therefore, apply Proposition A.4.1 and extract from

them uniformly convergent subsequences, for notational reasons still denoted

by {(uxj)n}n∈N, for j = 1, . . . , n. Therefore uxj ∈ C0(Q) and {(uxj)n}n∈N con-

verge to uxj uniformly. In a similar way, for each ε > 0, we can find nε ∈ N

such that for n ≥ nε we have∣∣uxj(t,x)− uxj(s,y)
∣∣ ≤ ∣∣uxj(t,x)− (uxj)n(t,x)

∣∣+
∣∣(uxj)n(t,x)− (uxj)n(s,y)

∣∣
+
∣∣(uxj)n(s,y)− u(s,y)

∣∣ ≤ 2ε+ F
(
dp((t,x), (s,y))

)α
.

Therefore, u ∈ C1,α(Q) and
[
uxj
]
α
≤ F , and it follows that u ∈ D.

Thanks to Theorem B.6.1, for v in B(C1, D1, C2, D2, E, F ) fixed, the

following linear PDE system has a unique solution u ∈ (C2,α(Q))
I
:{

u
[i]
t + a

2
∆u[i] + f [i](t,x, Dv) = 0

u[i](T,x) = g[i](x)
(6.2.1)
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One can, therefore, define a map H : B 7→ (C2,α(Q))
I

using the equation

above; namely, H(v) := u. In fact, if we choose the positive constants

C1, D1, C2, D2, E and F properly, we can make sure that the range of the

map H, denoted by R(H), is still inside of B.

Lemma 6.2.3. Let the constant T0 be defined by

T0 :=


√
aenICpC2

gM
2
0 + aeCq −

√
aenICpCgM0

6
√

2nICpCq

2

, when Cq > 0 (6.2.2)

and

T0 :=
ae

288n2I2C2
pC

2
gM

2
0

, when Cq = 0 (6.2.3)

where M0 := M0(B0, D) is as in Lemma A.1.2. Furthermore, for T ≤ T0, we

choose the constants C1, D1, C2, D2, E, F so that:

D2 := max (2D, 6aT )

C2 :=

√
ae

6
√

2nICp
√
T

D1 := 2aT +D2/2

C1 := nICpTC
2
2 + CqT + CgM0

and let F > 0 to be the unique solution to the following equation:

Ã
(
F + B̃

) 1+α
2+α

= F

where:

Ã := N(C1)
1

2+α

(
N0(Q,α, T )N1(

√
IC2)
√
nI
) 1+α

2+α

B̃ :=
G+N1(

√
IC2)

N1(
√
IC2)
√
nI
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where constant N comes from the Theorem B.5.2, constant N0 comes from

Theorem B.6.1 and function N1 is from Assumption 6.1.5. Finally, let J and

E be given by:

J := N0(Q,α, a, T )
(
G+N1(

√
IC2)

(√
nIF + 1

))
E := NJ

α
2+α (C1)

2
2+α

Then the range of the map H, defined above, is inside of B, i.e. H : B 7→ B.

Furthermore, R(H) is bounded by J in C2,α(Q). i.e. ∀u ∈ R(H), |u|2,α ≤ J .

Proof. By Assumption 6.1.5, f [i] ∈ C0,α(Q), ∀ i = 1, . . . , I, and furthermore,

by Lemma A.1.2 (1), we have:∣∣f [i](t,x, Dv)
∣∣ ≤Cp‖Dv(t,x)‖2 +Q[i](t,x)

≤Cp
I∑
i=1

n∑
j=1

∣∣∣v[i]
xj

∣∣∣2 + CqφD(x)

≤nICpC2
2φ

2
D2

(x) + CqφD(x)

≤
(
nICpC

2
2 + Cq

)
φD2/2(x)

since D ≤ D2/2. In addition, by Assumption 6.1.5, we can also estimate the

C0,α(Q) norm of f [i](t,x,v, Dv):∣∣f [i](t,x, Dv)
∣∣
α

=N1(|Dv|0) ([Dv]α + 1)

=N1(
√
IC2)

( I∑
i=1

n∑
j=1

[
v[i]
xj

]2

α

)1/2

+ 1


≤N1(

√
IC2)

(√
nIF + 1

)
where N1 is a constant that depends on the function N1 and the constant C2.

In addition, we have the classical convolution formula to represent the solution
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(see [20], §4.1), for i = 1, . . . , I, we have:

u[i](t,x) =

∫
Rn
Ka(T − t,x− y) g[i](y) dy

+

∫ T

t

∫
Rn

Ka(s− t,x− y)f [i](s,y, Dv) dyds

where:

Ka(t,x) :=

{(
1

2πat

)n/2
exp

(
−‖x‖

2

2at

)
for t > 0

0 for t ≤ 0

Now, we recall that |g(t,x)| ≤ CgφD(x), and use Lemma A.2.1 and Corollary

A.2.3 to estimate
∣∣u[i]
∣∣:

∣∣u[i](t,x)
∣∣ =

∣∣∣∣Ka(T − t,x) ∗ g[i](x) +

∫ T

t

Ka(s− t,x) ∗ f [i](s,x, Dv) ds

∣∣∣∣
≤ Ka(T − t,x) ∗ CgM0(B0, D)φD(x)

+

∫ T

t

Ka(s− t,x) ∗
(
nICpC

2
2 + Cq

)
φD2/2(x) ds

= CgM0(B0, D)
(

1
2πa(T−t)

)n/2 (
2a(T−t)Dπ
2a(T−t)+D

)n/2
φ2a(T−t)+D(x)

+
(
nICpC

2
2 + Cq

) ∫ T

t

(
1

2aπ(s−t)

)n/2 (
2a(s−t)D2π
2a(s−t)+D2

)n/2
φ2a(s−t)+D2/2(x) ds

≤
(
nICpTC

2
2 + CqT + CgM0(B0, D)

)
φ2aT+D2/2(x) := C1φD1(x)

Secondly, we observe that:

u[i]
xj

(t,x) = Ka(T − t,x) ∗ g[i]
xj

(x) +

∫ T

t

∂

∂xi
Ka(s− t,x) ∗ f [i]

v (s,y) ds
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We estimate
∣∣∣u[i]
xj

∣∣∣ in a similar way:∣∣∣u[i]
xj

(t,x)
∣∣∣ ≤ Ka(T − t,x) ∗ CgM0φD(x)

+

∫ T

t

(
1

2πa(s−t)

)n/2 |xi|
a(s−t) exp

(
− ‖x‖2

2a(s−t)

)
∗
(
nICpC

2
2 + Cq

)
φD2/2(x) ds

≤CgM0

(
1

2πa(T−t)

)n/2 (
2a(T−t)Dπ
2a(T−t)+D

)n/2
φ2a(T−t)+D(x) +

∫ T

t

nICpC2
2+Cq

a(s−t)(
1

2πa(s−t)

)n/2 3
√

2a(s−t)
2
√
e

(
a(s−t)D2π

2a(s−t)+D2/2

)n/2
φ3aT+D2/2(x) ds

≤
(
CgM0 + 3

√
2√
ae

(
nICpC

2
2 + Cq

)√
T
)
φ3aT+D2/2(x)

≤C2φD2(x)

where one can readily check that the last inequality holds due to the choices

of the constants C2, D2 and smallness of T in Lemma 6.2.3. In addition, using

the parabolic interpolation and Theorem B.6.1, we can estimate
[
u

[i]
xj

]
α

as the

following:[
u[i]
xj

]
α
≤N

[
u[i]
] 1+α

2+α

2,α

∣∣u[i]
∣∣ 1

2+α
0

≤N (C1)
1

2+α N
1+α
2+α

0 (Q,α, T )
(∣∣g[i]

∣∣
2,α

+
∣∣f [i]

∣∣
α

) 1+α
2+α

≤N (C1)
1

2+α N
1+α
2+α

0

(
G+N1(

√
IC2)

(√
nIF + 1

)) 1+α
2+α

=N(C1)
1

2+α

(
N0N1

√
nI
) 1+α

2+α

(
F +

G+N1

N1

√
nI

) 1+α
2+α

:=Ã
(
F + B̃

) 1+α
2+α

=F

The last equality holds due to the choice of constant F in Lemma 6.2.3. Fur-

thermore, we notice that:∣∣u[i]
∣∣
2,α
≤ N0(Q,α, T )

(
G+N1(

√
IC2)

(√
nIF + 1

))
:= J
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Finally, thanks to the parabolic interpolation, we have:

[
u[i]
]
α
≤ N

[
u[i]
] α

2+α

2,α

∣∣u[i]
∣∣ 2
2+α

0
≤ NJ

α
2+α (C1)

2
2+α := E

Therefore, we have shown that the unique solution u to system (6.2.1) also

belongs to the space B.

6.3 Existence and Uniqueness of the Solution to PDE
System (6.1.1)

Theorem 6.3.1. Under Assumption 6.1.5 and with T ≤ T0, where T0 is

given by (6.2.2) or (6.2.3), the PDE system (6.1.1) has a unique solution

u ∈ C2,α(Q). Moreover, u ∈ B(C1, D1, C2, D2, E, F ), where constants C1, D1,

C2, D2, E, F are defined as in Lemma 6.2.3.

Corollary 6.3.2. Under the same set of assumptions as in Theorem 6.3.1,

there exist generic constants A1, A2 and A3, such that the solution u satisfies:

‖u(t,x)‖ ≤A1φD1(x)

‖Du(t,x)‖ ≤A2φD2(x)

|u|2,α ≤A3

In addition, if the function h in Assumption 2.3.1 further satisfies the condition

(A.1.2) in Lemma A.1.1, there exist generic constants Ã1 and Ã2 such that:

‖u(t,x)‖ ≤Ã1h(x)

‖Du(t,x)‖ ≤Ã2h(x)

Proof. We simply combine Theorem 6.3.1, Lemma 6.2.3 and Lemma A.1.2.
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Proof of Theorem 6.3.1. By Lemma 6.2.3, the map H : B→ B is well-defined

by H(v) = u through (6.2.1). We claim that the map H : B→ B is continu-

ous with respect to the (C1,0(Q))
I

topology, where we recall

C1,0(Q) := {u(t,x) ∈ C0(Q) : |u|1,0 := |u|0 + |Du|0 <∞}.

To see this, pick v, ṽ ∈ B, and set u := H(v), ũ := H(ṽ), p := v − ṽ, and

q := u− ũ. Subtraction then yields:{
q

[i]
t + a

2
∆q[i] +

(
f [i](t,x, Dv)− f [i](t,x, Dṽ)

)
= 0

q[i](T,x) = 0

Thanks to Assumption 6.1.5, we have that:

∣∣q[i]
∣∣ ≤∫ T

t

∫
Rn
Ka(s− t,x− y)

∣∣f [i](s,y, Dv(s,y))− f [i](s,y, Dṽ(s,y))
∣∣ dyds

≤
∫ T

t

∫
Rn
Ka(s− t,x− y)N1(

√
IC2) |Dv(s,y)−Dṽ(s,y)| dyds

≤TN1(
√
IC2) |Dp|0

Furthermore, observe that∣∣∣q[i]
xj

∣∣∣ ≤∫ T

t

∫
Rn

|xj−yj |
a(s−t) Ka(s− t,x− y)

∣∣f [i](s,y, Dv(s,y))− f [i](s,y, Dṽ(s,y))
∣∣ dyds

≤N1(
√
IC2) |Dp|0

∫ T

t

∫
Rn

|xj − yj|
a(s− t)

Ka(s− t,x− y) dyds

≤N1(
√
IC2) |Dp|0

∫ T

0

∫
R

1√
2πat

|x|
at

exp(− x2

2at
) dxdt

=

√
8T

aπ
N1(
√
IC2) |Dp|0

which yields

|q|1,0 ≤ (T ∧
√

8T

aπ
)
√
IN1(

√
IC2) |p|1,0
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Therefore, we have shown that H : B → B is indeed continuous in the

(C1,0(Q))
I

norm. We also observe that ∀u ∈ R(H):

[u]α ≤
√
nE.

It follows that R(H) is an equicontinuous subset in (C0(Q))
I
. We apply Propo-

sition A.4.1, to conclude that R(H) is compact in (C0(Q))
I
, where the closure

is taken in the (C0(Q))
I
-topology. By Lemma 6.2.2, we have R(H) ⊂ B. Fur-

thermore, as in the proof of Lemma 6.2.2, it is easy to see that R(H) is also

compact in (C1,0(Q))I .

Thus, H maps B into itself continuously. Moreover, B is a convex

subset of (C1,0(Q))I , and R(H) is contained in a (C1,0(Q))I-compact subset of

B, i.e., in R(H). Therefore, by Schauder’s fixed point theorem, H has a fixed

point u ∈ B. Hence, u is a solution to the PDE system (6.1.1).

For uniqueness, recall that the solution belongs to space B ⊂ (C1,α(Q))
I∩

(Cv(Q))I ∩ (H1(Q))
I
, so to show that the solution is unique there, we only

need to show the solution is unique in (Cv(Q))I ∩ (H1(Q))
I
. Suppose that

u, ũ ∈ (Cv(Q))I ∩ (H1(Q))
I

are two solutions to (6.1.1) and set w := u− ũ.

Then w satisfies the following system of PDE:{
w

[i]
t + 1

2
∆w[i] + f [i](t,x, Du)− f [i](t,x, Dũ) = 0

w[i](T,x) = 0
(6.3.1)

By Assumption 6.1.5, the difference f [i](t,x, Du)− f [i](t,x, Dũ) satisfies:∣∣f [i](t,x, Du)− f [i](t,x, Dũ)
∣∣ ≤ N1(‖Du‖, ‖Dũ‖)‖Dw‖

:= N1‖Dw‖
(6.3.2)

55



where N1 is a bounded constant that depends on |Du|0, D |ũ|0 and N1 (as-

sumed to be locally bounded). We want to show that PDE system (6.3.1)

admits only the trivial solution. To do so, we multiply the above equation by

w[i] and integrate over Rn to obtain the following:∫
Rn
w

[i]
t w

[i] dx+

∫
Rn

1
2
∆w[i]w[i] dx+

∫
Rn

(
f [i]
u − f

[i]
ũ

)
w[i] dx = 0

Then by (6.3.2), we have:∫
Rn

(
f [i]
u − f

[i]
ũ

)
w[i] dx ≤

∫
Rn
N1‖Dw‖

∣∣w[i]
∣∣ dx

If we insert the inequality above into the previous equation and apply integra-

tion by part, we get:

− d

dt

∣∣w[i]
∣∣2
L2 +

∣∣Dw[i]
∣∣2
L2 ≤ N1

∫
Rn
‖Dw‖

∣∣w[i]
∣∣ dx

Summing the inequalities above for all 1 ≤ i ≤ I, we obtain:

− d

dt

(
I∑
i=1

∣∣w[i]
∣∣2
L2

)
+

I∑
i=1

∣∣Dw[i]
∣∣2
L2 = − d

dt
|w|2L2 + |Dw|2L2

≤2N1

∫
Rn
‖Dw‖

I∑
i=1

∣∣w[i]
∣∣ dx ≤ ∫

Rn
‖Dw‖2 +N2

1

(
I∑
i=1

∣∣w[i]
∣∣)2

dx

≤
∫
Rn
‖Dw‖2 + IN2

1

I∑
i=1

∣∣w[i]
∣∣2 dx = |Dw|2L2 + IN2

1 |w|
2
L2

It follows that {
d
dt
|w((T − t), ·)|2L2 ≤ IN2

1 |w((T − t), ·)|2L2

|w(T, ·)|2L2 = 0

which, in turn, implies that w = 0, by Gronwall’s inequality.
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Chapter 7

Summary

We have studied market equilibria in a general class of Brownian mar-

ket environments with two classes of financial agents. Agents in the first

class dynamically trade risky assets to maximize their terminal exponential

utilities and agents in the second class try to minimize their convex risk mea-

sures through dynamical portfolio adjustment. We transformed the equilib-

rium problem into a non-linear parabolic PDE system with a homogeneously-

quadratic non-linear structure. Then we proved the existence and uniqueness

of solutions to the PDE system, thus established the existence and uniqueness

of market equilibria.

To the best of our knowledge, the present work is the only example

that the existence and uniqueness of market equilibria are established in a

general class of fully-incomplete continuous-time Brownian market models,

where both the prices and the set of replicable claims are determined as part

of the equilibrium.

Financial models which do not exhibit equilibrium phenomena are gen-

erally considered “ill-posed”. Therefore, the implication from the existence

and uniqueness of equilibria in this class of Brownian market models is that
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these models are economically “well-posed”. Furthermore, the techniques we

used in solving the non-linear equilibrium PDE system may be adapted or gen-

eralized to solve other non-linear PDE systems that exhibit similar non-linear

structures.

The main assumption of this work is the “smallness” condition we put

on the terminal random endowments, agents risk aversions, etc, in order to

solve the equilibrium PDE system with a short-time solution. However, we

conjecture that the “smallness” condition is, in fact, not necessary and that

it is possible to prove the existence and uniqueness of global solutions to the

equilibrium PDE system, and consequently, the existence and uniqueness of

market equilibria, for arbitrary time horizons. The subject shall be an inter-

esting exploration for future research.
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Appendix A

Several Technical Lemmas

A.1 On the Function h

The following lemma justifies the claim that we can assume, without

loss of generality, that the function h automatically satisfies conditions (A.1.1)

and (A.1.2), in addition to our main Assumption 2.3.1.

Lemma A.1.1. Suppose that h : Rn → R+ is a positive decreasing radial

function, i.e. that there exists a decreasing function R : R+ → R+ with

h(x) = R(‖x‖), and that h ∈ L1(Rn). Then for any constant B0 > 1, there

exists another decreasing radial function h̃ ∈ L1(Rn), such that, ∀x ∈ Rn:

h(x) ≤ h̃(x) and

h̃(x) ≤ B0 h̃

(
x+

x

‖x‖

)
. (A.1.1)

In addition, given ε0 > 0 and D > 0, we can further choose h̃ to satisfies the

following inequality for some constant C0 > 0:

h̃(x) ≥ 1

C0

exp
(
− ‖x‖2
D(1+ε0)

)
, ∀x ∈ Rn (A.1.2)

Proof. We denote by Dm := Bm+1(0)∩BC
m(0), the ring from radius m to radius
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m+ 1 in Rn. and define the function f as follows:

f(x) :=
∞∑
m=o

Ωn

[
(m+ 1)n −mn

]
max

(
R(m), R(0)B−m0

)
χDm(x)

=
∞∑
m=0

Ωn

[ n−1∑
k=0

Ck
nm

k
]

max
(
R(m), R(0)B−m0

)
χDm(x)

where Ωn := πn/2

Γ(n/2+1)
is a generic constant that only depends on dimension

n and R(0) := |h|0. Since h ∈ L1(Rn) and B0 > 1, it is easy to see that

f ∈ L1(Rn). Moreover, one can readily check that f satisfies the condition

(A.1.1). Notice that, for any fixed constants ε0 > 0 and D > 0, the function(√
1 + ‖x‖2

)−a
satisfies both conditions (A.1.1) and (A.1.2), when a > n,

for some C0 > 0 and B0 = 3a/2 > 1. Finally, we can choose h̃(x) := f(x) +(√
1 + ‖x‖2

)−a
.

The following lemma illustrates the relationship between the function

h and its mollification φD(x) := exp
(
−‖x‖

2

D

)
∗h(x), i.e. we have the following

asymptotic equivalence result:

Lemma A.1.2. Under the same assumptions for h as in the previous lemma,

we have the following results:

1. For any positive constant C, we have:

φ2
C(x) ≤ |h|L1 φC/2(x)

In particular, φC ∈ L2(Rn).
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2. If h satisfies the condition (A.1.1), then there exists a constant M0(B0, D) >

0 such that:

h(x) ≤M0(B0, D)φD(x)

3. If we further assume that h satisfies the condition (A.1.2), then there

exists a constant M1(B0, C0, D,H, ε0) > 0 such that:

φD(x) ≤M1(B0, C0, D,H, ε0)h(x)

Proof. (1) follows from a simple application of Hölder’s inequality:(
exp

(
−‖x‖

2

C

)
∗ h(x)

)2

=

(∫
Rn

exp

(
−‖x− y‖

2

C

)
h(y)

1
2h(y)

1
2 dy

)2

≤ |h|L1 exp
(
−‖x‖

2

C/2

)
∗ h(x)

To prove (2), we recall the condition (A.1.1) on the function h in Lemma A.1.1,

and simply observe that for x 6= 0 we have

exp
(
−‖x‖

2

D

)
∗ h(x) =

∫
Rn

exp

(
−‖x− y‖

2

D

)
h(y) dy

≥
∫
B1(x)

exp

(
−‖x− y‖

2

D

)
h(x+

x

‖x‖
) dy

≥h(x)

B0

∫
B1(0)

exp

(
−‖y‖

2

D

)
dy

:=
1

M01(B0, D)
h(x),

where M01(B0, D) :=
(

1
B0

∫
B1(0)

, exp
(
−‖y‖

2

D

)
dy
)−1

. Further, one can eas-

ily observe that the inequality holds when x = 0, with constant M02 =

h(0)
(∫

Rn exp
(
−‖y‖

2

D

)
h(y) dy

)−1

. It suffices to take M0 = max(M01, M02).
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Finally, to show (3), we use both condition (A.1.1) and (A.1.2), and

observe the following, for all ‖x‖ ≥ 1:

h(x)∗exp

(
−
‖x‖2
D

)
h(x)

=

∫
Rn

h(x−y)
h(x)

exp

(
−‖y‖

2

D

)
dy

=

∫
B‖x‖

h(x−y)
h(x)

exp

(
−‖y‖

2

D

)
dy +

∫
BC‖x‖

h(x−y)
h(x)

exp

(
−‖y‖

2

D

)
dy

≤
∫
Rn

B
‖y‖+1
0 h(x)

h(x)
exp

(
−‖y‖

2

D

)
dy +

∫
BC‖x‖

|h|0
h(x)

exp

(
−‖y‖

2

D

)
dy

≤
∫
Rn

exp
(
−‖y‖

2

D
+ lnB0‖y‖+ lnB0

)
dy +

|h|0ωn
h(x)

∫ ∞
‖x‖

exp
(
−r2
D

)
rn−1dr

≤
∫
Rn

exp
(
−‖y‖

2

D
+ lnB0‖y‖+ lnB0

)
dy +

|h|0C̃(ε0,D)ωn
h(x)

∫ ∞
‖x‖

exp
(

−r2
D(1+ε0)

)
2rdr

≤
∫
Rn

exp
(
−‖y‖

2

D
+ lnB0‖y‖+ lnB0

)
dy +

|h|0C̃D(1+ε0)ωn
h(x)

exp
(
− ‖x‖2
D(1+ε0)

)
≤
∫
Rn

exp
(
−‖y‖

2

D
+ lnB0‖y‖+ lnB0

)
dy + |h|0C0C̃(ε0, D)Dωn(1 + ε0)

:= M11(B0, C0, D,H, ε0) <∞

where:

M11 :=

∫
Rn

exp

(
−‖y‖

2

D
+ lnB0‖y‖+ lnB0

)
dy + |h|0C0C̃(ε0, D)Dωn(1 + ε0)

The inequality now holds for ‖x‖ < 1, with the constant:

M12 = max
x∈B1

(
h(x) ∗ exp

(
−‖x‖

2

D

))
/h(x).

It remains to set M1 := max(M11, M12).

63



A.2 A Few Convolution-Related Computations

In this section, we state and prove several useful computational results

involving convolution. These results are used in Chapter 6.

Lemma A.2.1. For constants C, D > 0, and x ∈ Rn, we have:

exp
(
−‖x‖

2

C

)
∗ φD(x) =

(
CDπ

C +D

)n/2
φC+D(x)

Proof. This follows by direct computation.

Lemma A.2.2. For constant b > 0, the following inequality holds for all

ε > 0, t ∈ R:

|t| exp

(
−t

2

b

)
≤
√
b(b+ ε)

2eε
exp

(
− t2

b+ ε

)
(A.2.1)

In particular, for ε = b/2, we have:

|t| exp

(
−t

2

b

)
≤
√

3b

2e
exp

(
− t2

3b/2

)
Proof. We divide the left hand side of the equation (A.2.1) by its right hand

side and observe that the maximum of the obtained expression is 1.

Using the notation above, we obtain the following, useful, consequence of

Lemma A.2.2:
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Corollary A.2.3. |x|i exp
(
−‖x‖

2

C

)
∗ φD(x) ≤ 3

√
C

2
√
e

(
CDπ
C+D

)n/2
φ3C/2+D(x)

Proof. By Lemmas A.2.2 and A.2.1:(
|t| exp

(
− t

2

C

))
∗ exp

(
− t

2

D

)
≤
√

3C

2e
exp

(
− t2

3C/2

)
∗ exp

(
− t

2

D

)
=

√
3C

2e

(
3CDπ

3C + 2D

)1/2

exp

(
− t2

3C/2 +D

)
≤3
√
C

2
√
e

√
CDπ

C +D
exp

(
− t2

3C/2 +D

)

A.3 On The Penalty Function f

Proposition A.3.1. If the function f = f1 + f2 satisfies Assumption 2.3.3,

then we have the following properties:

1. the conjugate f̃2(x) of f2(x) satisfies the following growth condition:

1

4L2

‖x‖2 ≤ f̃2(x) ≤ 1

4L1

‖x‖2

2. f̃(x) is strictly convex and differentiable.

3. The gradient Df(x) of f(x) is one-to-one from Rn to Rn. Furthermore,

for i = 1, 2, we have Dfi(x) =
(
Df̃i(x)

)−1

.

Proof. The function x 7→ 1
2
‖x‖2 is invariant under the conjugate transform.

We can use that fact to help a direct computation which yields 1. above,

directly. Parts 2. and 3. follow directly from Proposition B.2.4 in [22].
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A.4 A Version of the Arzelá-Ascoli Theorem

The following version of the Arzelá-Ascoli theorem is needed in Chapter 6:

Proposition A.4.1. Let C(Q) := C(Q;RI) be the Banach space of continuous

vector functions from Q to RI , with the following norm:

|f |C(Q) :=

(
I∑
i=1

∣∣f [i]
∣∣2
0

)1/2

, for f = (f [1], . . . , f [I]). (A.4.1)

Let A ⊂ C(Q) be a subset that is equicontinuous, i.e: for ∀ ε > 0, ∃ δ > 0,

such that:

sup
f∈A

max
dp

(
(t,x),(s,y)

)
≤δ
‖f(t,x)− f(s,y)‖ ≤ ε

(A.4.2)

Furthermore, if there exists a positive bounded function g = (g[1], . . . , g[I]) ∈

C(Q), which vanishes at infinity, i.e.

lim
x→∞

(
sup
t∈[0,T ]

g[i](t,x)

)
= 0, ∀ i = 1, . . . , I

such that: ∣∣f [i]
∣∣ ≤ g[i]; ∀ (t,x) ∈ Q, and ∀ i = 1, . . . , I

Then A is relatively compact.

Proof. Since C(Q) is a metric space, it suffices to show that an arbitrary

sequence {fn}n∈N = {(f [1]
n , . . . , f

[I]
n )}n∈N ⊂ A has a convergent subsequence.

We start by looking at the first-component sequence {f [1]
n }n∈N.

For all ε > 0, there exists M ≥ 0, such that
∣∣g[1](t,x)

∣∣ ≤ ε, for ∀ (t,x) ∈

Q with dp(0, (t,x)) ≥ M . Let {(tm,xm)}m∈N be a dense set in BM(0) :=
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{(t,x) ∈ Q : dp(0, (t,x)) ≤M}. For each (tm,xm) fixed, {f [1]
n (tm,xm)}n∈N is

bounded by
∣∣g[1]

∣∣
0
, so it has a convergent subsequence. By diagonal argument,

we can find a subsequence, denoted by {f [1]
nk}k∈N, which is convergent for all

(tm,xm) in the dense set.

Furthermore, by equicontinuity, there exists δ > 0 corresponding to ε

via (A.4.2), and there exists a finite subset {(tm,xm)}N(ε)
m=1 ⊂ {(tm,xm)}l∈N,

such that:
N(ε)⋃
m=1

Bδ((tm,xm)) ⊃ BM(0)

since BM(0) is compact. In addition, there exist an integer L ∈ N big enough,

such that for all integers k1, k2 ≥ L, we have:

max
1≤m≤N(ε)

∣∣∣f [1]
nk1

(tm,xm)− f [1]
nk2

(tm,xm)
∣∣∣ ≤ ε.

Now for any fixed (t,x) ∈ Q, if dp(0, (t,x)) ≤M , one can choose (tm0 ,xm0) ∈

{(tm,xm)}N(ε)
m=1 , such that:

dp ((t,x), (tm0 ,xm0)) ≤ δ

Then for any k1, k2 ≥ L, by (∗∗), we have:∣∣∣f [1]
nk1

(t,x)− f [1]
nk2

(t,x)
∣∣∣ ≤ ∣∣∣f [1]

nk1
(t,x)− f [1]

nk1
(tm0 ,xm0)

∣∣∣
+
∣∣∣f [1]
nk1

(tm0 ,xm0)− f [1]
nk2

(tm0 ,xm0)
∣∣∣

+
∣∣∣f [1]
nk2

(tm0 ,xm0)− f [1]
nk2

(t,x)
∣∣∣

≤ 2ε+ max
1≤m≤N(ε)

∣∣∣f [1]
nk1

(tm,xm)− f [1]
nk2

(tm,xm)
∣∣∣ ≤ 3ε

On the other hand, if for the fixed (t,x), dp(0, (t,x)) > M , then:∣∣∣f [1]
nk1

(t,x)− f [1]
nk2

(t,x)
∣∣∣ ≤ 2g[1](t,x) ≤ 2ε
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We have shown that {f [1]
nk}k∈N is uniformly Cauchy, thus it converges uniformly.

In the same way, we can choose a subsequence for {f [2]
n }n∈N from {f [2]

nk}k∈N such

that it is uniformly convergent. If we repeat this process, in the end, we will

find a subsequence of {fn}n∈N, denoted by {fnr}r∈N = {(f [1]
nr , . . . , f

[I]
nr )}r∈N,

such that, {f [i]
nr}r∈N converges uniformly for each i = 1, . . . , I. Thus {fnr}r∈N

converges in the C(Q) norm, |·|C(Q), defined previously by (A.4.1).

68



Appendix B

Anisotropic Hölder Spaces

As already observed in [26], classical Hölder spaces provide a convenient

environment for problems related to stability, and consequently, equilibrium

in financial markets. This appendix provides a short overview of the notation,

some basic definitions and some well-known results.

B.1 Classical Anisotropic Hölder Spaces.

We fix n ∈ N and let Q = [0, T ]×Rn denote our space-time. Let C0(Q)

be the class of all bounded continuous functions u : Q→ R which is a Banach

space under the norm

|u|0 = sup
(t,x)∈Q

|u(t,x)| .

It pays to re-metrize Q using the so-called parabolic metric dp :

Q×Q→ [0,∞), defined by

dp

(
(t1,x1), (t2,x2)

)
=
√
|t2 − t1|+ |x2 − x1| ,

for (ti,xi) ∈ Q, i = 1, 2, where |·| denotes the Euclidean distance on Rn.

For a function u ∈ C0(Q) and α ∈ (0, 1], we define the α-Hölder
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constant [u]α ∈ [0,∞] by:

[u]α := sup
(t1,x1)6=(t2,x2)∈Q

|u(t2,x2)− u(t1,x1)|(
dp
(
(t1,x1), (t2,x2)

))α
The functional |·|α given by:

|u|α = |u|0 + [u]α

is a Banach norm on the space C0,α(Q) of all functions u ∈ C0(Q) with

[u]α <∞.

We use the “analyst’s” notation

Du = (ux1 , . . . , uxn)τ , D2u = [uxjxk ]
k=1,...,n
j=1,...,n , ∆u = TrD2u =

n∑
j=1

uxjxj ,

for spatial partial derivatives of sufficiently regular functions on Q, where T

denotes transposition and [·]k=1,...,n
j=1,...,n denotes an n × n-matrix. The set of all

functions u ∈ C0(Q) such that all components of Du are in C0,α(Q) is denoted

by C1,α(Q), and we can turn it into a Banach space by adjoining to it the

norm |u|1,α, defined by

|u|1,α = |u|0 + |Du|0 + [u]1,α ,

where

|Du|0 =
n∑
j=1

∣∣uxj ∣∣0 and [u]1,α =
n∑
j=1

[
uxj
]
α
.

Similarly, the space C2,α(Q) contains all functions in C0(Q) all of whose first

and second spatial and the first temporal partial derivatives exist and belong

to the space C0,α(Q). The Banach norm there is given by

|u|2,α = |u|0 + |ut|0 + |Du|0 +
∣∣D2u

∣∣
0

+ [u]2,α ,
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where

∣∣D2u
∣∣
0

=
n∑

j,k=1

∣∣uxjxk∣∣0 and [u]2,α = [ut]α +
n∑

j,k=1

[
uxjxk

]
α
.

Lastly, the Banach space C1,0(Q) will also be used, and it is defined as follows:

C1,0(Q) := {u ∈ C0(Q) : |u|1,0 := |u|0 + |Du|0 <∞}.

B.2 Isotropic Hölder Spaces.

Analogously, we can define Hölder spaces in the isotropic setting, i.e.,

for functions depending only on the spatial variables. C0(Rn) denotes the class

of all bounded continuous functions u : Rn → R; it is a a Banach space under

the norm

|u|0 := sup
x∈Rn

|u(x)| .

We overload the notation and, for a function u ∈ C0(Rn) and a α ∈ (0, 1], we

define the α-Hölder constant [u]α ∈ [0,∞] by:

[u]α := sup
x1 6=x2∈Rn

|u(x2)− u(x1)|
|x2 − x1|α

The functional |·|α given by: |u|α = |u|0 + [u]α is a Banach norm on the space

C0,α(Rn) of all functions u ∈ C0(Rn) with [u]α < ∞. The set of all functions

u ∈ C0(Rn) such that all components of Du are in C0,α(Rn) is denoted by

C1,α(Rn), and we can turn it into a Banach space by adjoining to it the norm

|u|1,α, defined by

|u|1,α = |u|0 + |Du|0 + [u]1,α ,
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where

|Du|0 =
n∑
j=1

∣∣uxj ∣∣0 and [u]1,α =
n∑
j=1

[
uxj
]
α
.

Similarly, the space C2,α(Rn) contains all functions in C0(Rn) all of whose first

and second spatial partial derivatives exist and belong to the space C0,α(Rn).

The Banach norm there is given by

|u|2,α = |u|0 + |Du|0 +
∣∣D2u

∣∣
0

+ [u]2,α ,

where ∣∣D2u
∣∣
0

=
n∑

j,k=1

∣∣uxjxk∣∣0 and [u]2,α =
n∑

j,k=1

[
uxjxk

]
α
.

B.3 Functions that Vanish at Infinity

Furthermore, we shall use function space Cv(Q) in our main results.

As a subspace of C0(Q), it is defined by the following:

Cv(Q) := {u ∈ C0(Q) : lim
dp

(
(t,x),0

)
→∞

u(t,x) = 0}
(B.3.1)

B.4 The Sobolev Space H1(Q)

The Sobolev space, H1(Q), which we will define as:

H1(Q) := {u(t,x) : ∀ t ∈ [0, T ],

∫
Rn

(
|u|2 + ‖Du‖2) dx <∞} (B.4.1)

will also be used.
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B.5 Interpolation Inequalities

We rephrase (and minimally adjust) the statements of the following

well-known results about the anisotropic Hölder spaces.

Theorem B.5.1 (Parabolic interpolation - additive form - [19] Theorem 8.8.1,

p. 124.). There exist a constant N = N(n, T ) > 0, such that for any ε > 0,

and u ∈ C2,α(Q) we have:

[u]α ≤ ε [u]2,α +Nε−α/2 |u|0

|Du|0 ≤ ε [u]1,α +Nε−1/(1+α) |u|0

[Du]α ≤ ε [u]1,α +Nε−(1+α) |u|0

Theorem B.5.2 (Parabolic interpolation - multiplicative form - [19], Exercise

8.8.2, p. 125.). There exist a constant N = N(n) > 0, such that for any

u ∈ C2,α(Q) we have:

[u]2+α
α ≤ N [u]α2,α |u|

2
0

|Du|2+α
0 ≤ N [u]2,α |u|

1+α
0

[Du]2+α
α ≤ N [u]1+α

2,α |u|0

Proposition B.5.3 (Parabolic interpolation - Hölder embedding). For any

0 < α < β ≤ 1, there exist a constant N such that, for any u ∈ C0,α(Q), we

have:

[u]α ≤ N |u|1−α/β0 [u]
α/β
β
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Proof. It follows immediately from the following observation: |u(t,x)− u(s,y)|(
dp
(
(t,x), (s,y)

))α
β/α

=
|u(t,x)− u(s,y)|(
dp
(
(t,x), (s,y)

))β |u(t,x)− u(s,y)|β/α−1

≤ 2β/α−1 |u|β/α−1
0 [u]β

B.6 A Linear Cauchy Problem

Theorem B.6.1. Let g ∈ C2,α(Q), f ∈ C0,α(Q) and h ∈ (C0,α(Q))
I
, with

|h|α ≤ K, then the following PDE has unique solution u ∈ C2,α(Q):{
ut + 1

2
∆u+ hTDu+ f = 0

u(T,x) = g(x)

Furthermore, we have the following estimate:

|u|2,α ≤ N0(Q,α, T,K)(|g|2,α + |f |α)

Proof. This is a direct corollary from [19] Exercises 9.1.3, p.140 and [26]

Lemma 3.1.
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[13] Hans Föllmer and Alexander Schied. Convex measures of risk and trading

constraints. Finance and Stochastics, 6(4):429–447, 2002.

[14] Marco Frittelli and Emanuela Rosazza Gianin. Putting order in risk

measures. Journal of Banking & Finance, 26(7):1473–1486, July 2002.

[15] Ioannis Karatzas, Peter Lakner, John P. Lehoczky, and Steven E. Shreve.

Equilibrium in a simplified dynamic, stochastic economy with heteroge-

76



neous agents. In Stochastic analysis, pages 245–272. Academic Press,

Boston, MA, 1991.

[16] Ioannis Karatzas, John P. Lehoczky, and Steven E. Shreve. Existence

and uniqueness of multi-agent equilibrium in a stochastic, dynamic con-

sumption/investment model. Math. Oper. Res., 15(1):80–128, 1990.

[17] Ioannis Karatzas, John P. Lehoczky, and Steven E. Shreve. Equilibrium

models with singular asset prices. Math. Finance, 1:11–29, 1991.

[18] Ioannis Karatzas and Steven E. Shreve. Methods of Mathematical Fi-

nance, volume 39 of Applications of Mathematics (New York). Springer-

Verlag, New York, 1998.

[19] Nicolai V. Krylov. Lectures on elliptic and parabolic equations in Hölder
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