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Abstract 
 

Development of Linear Capacitance-Resistance Models for 

Characterizing Waterflooded Reservoirs 

 

by 

 

Jong Suk Kim, M.S.E. 

The University of Texas at Austin, 2011 

 

Supervisor: Thomas F. Edgar 

Co-Supervisor: Larry W. Lake 

 

 The capacitance-resistance model (CRM) has been continuously improved and 

tested on both synthetic and real fields. For a large waterflood, with hundreds of injectors 

and producers present in a reservoir, tens of thousands of model parameters (gains, time 

constants, and productivity indices) in a field must be determined to completely define 

the CRM. In this case obtaining a unique solution in history-matching large reservoirs by 

nonlinear regression is difficult. Moreover, this approach is more likely to produce 

parameters that are statistically insignificant. The nonlinear nature of the CRM also 

makes it difficult to quantify the uncertainty in model parameters. 

The analytical solutions of the two linear reservoir models, the linearly 

transformed CRM whose control volume is the drainage volume around each producer 
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(ltCRMP) and integrated capacitance-resistance model (ICRM), are developed in this 

work. Both models are derived from the governing differential equation of the producer-

based representation of CRM (CRMP) that represents an in-situ material balance over the 

effective pore volume of a producer. The proposed methods use a constrained linear 

multivariate regression (LMR) to provide information about preferential permeability 

trends and fractures in a reservoir. The two models’ capabilities are validated with 

simulated data in several synthetic case studies.  

The ltCRMP and ICRM have the following advantages over the nonlinear 

waterflood model (CRMP): (1) convex objective functions, (2) elimination of the use of 

solver when constraints are ignored, and (3) faster computation time in optimization. In 

both methods, a unique solution can always be obtained regardless of the number of 

parameters as long as the number of data points is greater than the number of unknowns 

(parameters). The methods of establishing the confidence limits on CRMP gains and 

ICRM parameters are demonstrated in this work. 

This research also presents a method that uses the ICRM to estimate the gains 

between newly introduced injectors and existing producers for a homogeneous reservoir 

without having to do additional simulations or regression on newly simulated data. This 

procedure can guide geoscientists to decide where to drill new injectors to increase future 

oil recovery and provide rapid solutions without having to run reservoir simulations for 

each scenario. 

 

 



ix 

 

Table of Contents 

 

List of Tables ..................................................................................................................... xi 

List of Figures ................................................................................................................... xii 

Chapter 1: Introduction ........................................................................................................1 

1.1    Waterflooding Predictive Models ...................................................................1 

1.2    Research Objective and Overview of Thesis ..................................................4 

Chapter 2: Simple Reservoir Models for Secondary Recovery ...........................................6 

2.1    Capacitance-Resistance Model (CRM) ...........................................................6 

2.1.1    CRM Background and History ..............................................................7 

2.1.2    Mathematical Derivation of the CRMP .................................................9 

2.1.3    Linearly Transformed CRMP (ltCRMP) .............................................13 

2.2    Integrated Capacitance-Resistance Model (ICRM) ......................................15 

2.3    Comparison between the CRMP and the ICRM ...........................................17 

2.4    Summary .......................................................................................................19 

Chapter 3: Synthetic Case Studies .....................................................................................21 

3.1    Synfield-1: Streak Case .................................................................................21 

3.1.1   CRMP vs.  ltCRMP ..............................................................................23 

3.1.2   CRMP vs. ICRM ...................................................................................32 

3.2    Synfield-2: Complete Sealing Barrier ...........................................................36 

3.3    Synfield-3: Partially Sealing Barrier .............................................................40 

3.4    Synfield-4: Wells in Random Locations .......................................................42 



x 

 

3.5    Synfield-5: Wells in Random Locations with New Injectors .......................49 

3.6   Summary ........................................................................................................56 

Chapter 4: Uncertainty Quantification of the Model Parameters ......................................57 

4.1    Confidence Intervals on Model Parameters with CRMP ..............................57 

4.2    Confidence Intervals on Model Parameters with ICRM...............................60 

4.3     Summary ......................................................................................................62 

Chapter 5: Summary, Conclusions, and Recommendations for Future Work ...................63 

5.1    Technical Contributions ................................................................................63 

5.2    Conclusions ...................................................................................................64 

5.3    Recommendations for Future Work ..............................................................66 

Appendix A: Convex Optimization with Linear CRMs ....................................................69 

Appendix B: Establishment of Confidence Intervals on Fitted Parameters ......................73 

Nomenclature .....................................................................................................................75 

References ..........................................................................................................................78 

Vita ................................................................................................................................81 

 

 

 

 

 

 

 



xi 

 

List of Tables 
 

Table 2.1: Relationships between the original and transformed parameters .....................14 

Table 2.2: Comparison between CRM and ICRM.............................................................19 

Table 3.1: Inferred CRMP parameters for the streak case .................................................24 

Table 3.2: Inferred ltCRMP parameters for the streak case ...............................................25 

Table 3.3: Inferred original ltCRMP parameters for the streak case .................................25 

Table 3.4: Inferred ICRM parameters for the streak case ..................................................33 

Table 3.5: Average reservoir and fluid properties of Synfield-2 .......................................37 

Table 3.6: Inferred ICRM parameters for Synfield-2 ........................................................38 

Table 3.7: Inferred ICRM parameters for Synfield-3 ........................................................41 

Table 3.8: Comparison between fij and d

ijf for Synfield-4 .................................................47 

Table 4.1: 95% Confidence intervals on gains estimated by CRMP in Synfield-1 ...........59 

Table 4.2: 95% confidence intervals on ICRM parameters in Synfield-1 .........................61 

 

 

 

 

 

 

 

 

 



xii 

 

List of Figures 
 

Figure 2.1: Schematic representation of the impact of an injection rate signal on total 

production response for an arbitrary reservoir control volume in the CRM 

(Sayarpour, 2008). ...................................................................................................9 

Figure 2.2: Schematic representation of a drainage volume around a single producer used 

in CRMP (Weber, 2009). .........................................................................................9 

Figure 3.1: Streak case permeability field consists of two high-permeability streaks of 

500 and 1,000 md in a field of 5 md (same example as in Liang et al., 2007 and 

Sayarpour et al., 2007). ..........................................................................................22 

Figure 3.2: Monthly water injection rates of five injectors for the streak case (Albertoni 

and Lake, 2003). ....................................................................................................22 

Figure 3.3: Monthly total liquid production rates of four producers in the streak case 

(Albertoni and Lake, 2003). ...................................................................................23 

Figure 3.4: Comparison between CRMP gains and original ltCRMP gains for P1, P2, P3, 

and P4 in streak case. Subscript i is an injector index in the range 1 to 5. ............26 

Figure 3.5: Comparison between CRMP time constants and ltCRMP time constants in the 

streak case. .............................................................................................................26 

Figure 3.6: Streak case CRMP and ltCRMP match of total production. ...........................27 

Figure 3.7: R
2
 values of fits calculated by CRMP and ltCRMP. .......................................28 

Figure 3.8: Comparison of optimal objective function between CRMP and ltCRMP. .....28 

Figure 3.9: ltCRMP match of total productions in Synfield-1. Effective gain (f’ij) is zero 

for all well-pairs, and ej is one for all producers. ...................................................30 

Figure 3.10: CRMP match of total productions in Synfield-1. Gain (fij) is zero for all 

well-pairs, and j is infinite number for all producers. ...........................................31 

Figure 3.11: CRMP match of total productions for P2 in Synfield-1. f’i2 is zero, and e2 is 

one. .........................................................................................................................32 

Figure 3.12: Comparison between CRMP gains and ICRM gains for P1, P2, P3, and P4 in 

the streak case. Subscript i is an injector index in the range 1 to 5. ......................34 



xiii 

 

Figure 3.13: Comparison between CRMP time constants and ICRM time constants in the 

streak case. .............................................................................................................35 

Figure 3.14: Streak case CRMP and ICRM match of total productions. ...........................35 

Figure 3.15: R
2
 values of fits calculated by both CRMP and ICRM. ................................36 

Figure 3.16: Synfield-2 is a homogeneous isotropic reservoir (k=50 md and =0.2) and 

consists of three compartments that do not communicate with each other because 

of the presence of fault seals. .................................................................................37 

Figure 3.17: Monthly total liquid production rates of four producers in Synfield-2. ........38 

Figure 3.18: ICRM match of total production in Synfield-2. ............................................40 

Figure 3.19: Synfield-3 is a homogeneous isotropic reservoir (k=50 md and =0.2) with a 

partially sealing barrier (blue diagonal blocks). ....................................................41 

Figure 3.20: ICRM match of total productions in Synfield-3. ...........................................42 

Figure 3.21: Synfield-4 is a homogeneous isotropic reservoir (k=50 md and =0.2) and 

consists of five water injectors and four producers. ..............................................43 

Figure 3.22: Comparison between CRMP gains and ICRM gains for P1, P2, P3, and P4 in 

Synfield-4. Subscript i is an injector index in the range 1 to 5. .............................44 

Figure 3.23: Comparison between CRMP time constants and ICRM time constants in 

Synfield-4. ..............................................................................................................44 

Figure 3.24: Synfield-4 CRMP and ICRM match of total productions. ............................45 

Figure 3.25: ICRM gain vs interwell-distance (dij) in Synfield-4. ....................................46 

Figure 3.26: R
2
 values of ICRM fits (blue histograms) and the fits based on d

ijf
 
(red 

histograms) for Synfield-4. ....................................................................................48 

Figure 3.27: ICRM fits (red solid line) and predicted total production rates based on d

ijf

(green dashed line) for Synfield-4. ........................................................................48 

Figure 3.28: Synfield-5 is a homogeneous isotropic reservoir (k=50 md and =0.2) and 

consists of five water injectors and four producers initially. After six years of oil 

production, two injectors (I6 and I7) have been added in the reservoir. ...............49 

Figure 3.29: Daily total liquid production rates of four producers in Synfield-5. .............50 



xiv 

 

Figure 3.30: ICRM gains before adding injectors (blue histograms) vs. ICRM gains after 

adding injectors (red histograms) for Syfield-5. Subscript i is an injector index in 

the range 1 to 5. ......................................................................................................52 

Figure 3.31: ICRM time constants before adding injectors (blue histograms) and ICRM 

time constants after adding injectors (red histograms) for Syfield-5. ....................52 

Figure 3.32: fij (blue histogram) vs. fij
d
 (red histogram) with new injectors for Synfield-5.53 

Figure 3.33: Predictions of the future total liquid production rates without (red solid line) 

or with new injectors (green dashed line) in Synfield-5: (a) P1, (b) P2, (c) P3, (d) 

P4 ...........................................................................................................................55 

Figure 4.1: 95% confidence intervals on gains (fij) estimated by CRMP in Synfield-1 

(streak case). Subscript i is an injector index in the range 1 to 5. ..........................59 

Figure 4.2: Comparison between CRMP gains (fij) and ICRM gains in Synfield-1 (streak 

case). 95% confidence intervals on gains (fij) estimated by the both CRMP and 

ICRM. Subscript i is an injector index in the range 1 to 5.....................................61 

Figure 4.3: Comparison between CRMP time constants and ICRM time constants in 

Synfield-1 (streak case). 95% confidence intervals on time constants (j) 

estimated by the ICRM. Subscript j is a producer index in the range 1 to 4. ........62 

 

 

 
 

 

 

 

 

 



1 

 

Chapter 1: Introduction 
 

 

 
 As conventional oil supplies are becoming more limited, evaluating a reservoir 

characteristics and predicting future production performance have become very important 

tasks. To achieve these tasks, reservoir engineers must choose an adequate method, 

which could be empirical, analytical, or numerical, to model past reservoir behavior and 

use this model to forecast future reservoir production. After choosing the right model for 

a particular application, one can determine the optimal oil production strategy, e.g., 

optimal water injection scheme for a secondary recovery, which would maximize the net 

present value (NPV) of the reservoir asset. 

Traditional reservoir simulators can provide reasonable solutions if accurate input 

data on reservoir properties are used for simulation runs; however, collecting the required 

reservoir input data is time-consuming and costly. Moreover, complex numerical 

simulations are computationally prohibitive to use when simulations involve millions of 

grid blocks and hundreds of wells for a very large reservoir. Therefore, the need for 

simplified reservoir models that can provide rapid prediction of future recovery and 

reservoir performance has been growing. 

 

1.1    Waterflooding Predictive Models 

Secondary-recovery operations are those of injection of fluids (gas, air, or water) 

after the reservoir has reached a state of substantially complete depletion of its initial 

content of energy available for oil expulsion or where the production rates have 
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approached the limits of profitable operation (Walsh and Lake, 2003). In secondary 

recovery, the most common injectant is water. Buckley and Leverett (1942) proposed a 

simple simulation method that calculates fractional flow and recovery performance after 

water breakthrough for a linear reservoir with homogeneous properties. Welge (1952) 

extended the frontal advance theory proposed by Buckley and Leverett. Stiles (1949) and 

Dykstra-Parsons (1950) developed simple methods for calculating recovery in stratified 

homogeneous reservoirs. These methods are based on the assumption of a piston-like 

displacement of oil in a linear bed, and Stiles showed that the rate of advance of flood 

front is proportional to the permeability of the bed. However, the assumptions made on 

these models are too simple to be used in field cases where the heterogeneity of the 

reservoir has a great effect on reservoir production. 

Heffer et al. (1995) used the Spearman rank coefficient to estimate injector-

producer relationships based on autocorrelation between injection and production rates. 

Refunjol (1996) introduced time delays in the correlation analysis, and De Sant’ Anna 

Pizarro (1998) validated this technique with numerical simulations. Soeriawinata and 

Kelkar (1999) extended the Spearman rank correlation method by incorporating the 

superposition effect in the reservoir caused by the influence of multiple injection wells on 

a producing well, and Barros-Griffiths (1998) validated this technique using tracer tests 

in an actual field. Panda and Chopra (1998) used artificial neural networks to determine 

the interaction between injector/producer pairs. In this approach, wells (equivalent to 

nodes in a neural network) are related by mathematical weights. The network should be 

trained using historic data such as water injection rates and oil and water production rates. 



3 

 

Because of the rapid advances made in computer hardware and software 

technology, numerical simulation has become the dominant method to model past 

reservoir behavior and to forecast future reservoir production. Reservoir simulation 

allows a more detailed study of the reservoir by dividing the reservoir into a number of 

blocks and applying fundamental equations for flow in porous media to each block (Aziz 

and Settari, 1979). However, the differential equations governing the physical flow into 

and out of each grid block must be solved by using the finite difference method. This 

could become computationally expensive when a reservoir is so large that it involves 

millions of grid blocks in simulations. Furthermore, conventional reservoir simulators 

require a priori data to be specified before running simulations such as geologic and fluid 

properties. 

Albertoni and Lake (2003) estimated the connectivity between injector/producer 

well pairs on the basis of a linear model with coefficients calculated by multiple linear 

regression (MLR). Estimated regression coefficients quantitatively indicate the 

communication between injector/producer well pairs in a waterflooded reservoir. The 

time lag between a producer and an injector was accounted for by filters.  

Yousef et al. (2006) introduced the capacitance model (CM) that can quantify 

interwell connectivity and the degree of fluid storage (compressibility) between well 

pairs. The CM provides the same information as the Spearman rank correlation models 

but is derived from a physical model of the reservoir fluids. Sayarpour et al. (2007) 

introduced analytical solutions of the fundamental differential equation of the CM based 

on superposition in time and developed model structures for different reservoir control 
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volumes. Weber et al. (2009) used the capacitance-resistance model (CRM) to optimize 

injection allocation and well location in waterfloods with many variables and constraints. 

 

1.2    Research Objective and Overview of Thesis 

 The objectives of this research are to develop and apply linearized capacitance-

resistance models to waterfloods and to evaluate the uncertainty of estimated model 

parameters. Also, the relationship between interwell-connectivities and interwell-distance 

between injector-producer well-pairs is investigated. 

 Section 1.1 gave a literature review surveying waterflooding predictive models. 

Chapter 2 reviews the theory and derivation of producer-based representation of 

capacitance-resistance model (CRM). This chapter also contains the derivations of two 

linear capacitance-resistance models, the linearly transformed CRMP (ltCRMP) and 

integrated capacitance-resistance model (ICRM), and they are compared to the CRMP. 

 Chapter 3 presents the validation and application of the three simple reservoir 

models discussed in Chapter 2 on several synthetic oil fields in which there are five 

injectors and four producers. Conventional reservoir simulators, such as Eclipse and the 

Implicit-Explicit black oil simulator (IMEX) developed by Computer Model Group Ltd. 

(CMG), were used to generate synthetic field data. The relationship between interwell-

connectivities and interwell-distance between well-pairs was also investigated in Chapter 

3. 

 Chapter 4 discusses uncertainty quantification of the model parameters. Statistical 

techniques that determine confidence limits on the model estimates were presented. 
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 Finally, Chapter 5 summarizes the key contributions of this research and presents 

recommendations for future work. 
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Chapter 2: Simple Reservoir Models for Secondary Recovery 
 

 

 

Conventional reservoir simulators such as Eclipse and the IMEX solve the 

differential material balance equations numerically to calculate the pressure and oil 

saturation of each grid block in the reservoir. However, these values (pressure and oil 

saturation) not only vary spatially from one grid block to another but also vary over time 

requiring them to be updated as simulation progresses. This could be very cumbersome 

process when a large reservoir needs to be modeled because large simulations involve a 

millions of grid blocks. Collecting core samples to estimate rock and fluid properties, 

which are the necessary input data to run reservoir simulators, is also time-consuming 

and costly job. As a result of these issues encountered in traditional reservoir simulations, 

simple reservoir models have become more attractive to reservoir engineers.  

In this chapter, the background and development of the capacitance-resistance 

model (CRM) is demonstrated. The linearly transformed CRMP (ltCRMP) and integrated 

capacitance-resistance model (ICRM) that are alternative models to CRMP applicable for 

secondary recovery were developed in this research. Three simple reservoir models were 

compared to each other in the following sections. 

 

2.1    Capacitance-Resistance Model (CRM) 

 The capacitance-resistance model (CRM) is an input-output model that 

characterizes the properties of an oil reservoir using only data available at the wells 

(Weber, 2009). The name CRM is selected for this model because of its analogy to a 
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resistance-capacitor (RC) circuit (Thompson, 2006). A production rate response to a step-

change in injection rate is analogous to voltage measurement of a capacitor in a parallel 

RC circuit where the battery potential is equivalent to the injection signal (Sayarpour, 

2008). 

 The CRM estimates two types of model parameters via multivariate nonlinear 

regression: connectivities (or gains) that represent the degree of communication between 

injector-producer well pairs and time constants that represent the degree of fluid storage 

(compressibility) or pressure dissipation between well pairs. 

 

2.1.1    CRM Background and History 

In secondary recovery, CRM has been continuously improved and tested on both 

synthetic and real oil fields, and the validity and capability of the modeling approach 

have been verified previously by researchers at the University of Texas at Austin. 

Albertoni and Lake (2003) quantitatively calculated the interwell connectivity between 

injector-producer well pairs in a waterflooded reservoir by multivariate linear regression 

with diffusivity filters. Yousef et al. (2006) proposed the capacitance model (CM) and 

replaced the diffusivity filter that accounts for the time lag between a producer and an 

injector with a time constant. Two different approaches, the balanced capacitance model 

(BCM) and the unbalanced capacitance model (UCM), were proposed to study interwell 

connectivities depending on whether the waterflood is balanced or not. Sayarpour et al. 

(2007) solved fundamental differential equation of the CM analytically based on 

superposition in time and developed model structures for three different reservoir control 
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volumes: 1) volume of the entire field or tank model (CRMT), 2) drainage volume of 

each producer (CRMP), and 3) drainage volume between each injector-producer pair 

(CRMIP). Weber (2009) discretized the CRM and used the CRM to optimize injection 

allocation and well location in waterfloods with many variables and constraints. Nguyen 

et al. (2011) developed an integrated capacitance-resistance model (ICRM) that uses 

cumulative water injection and cumulative total production instead of water injection rate 

and total production rate. The ICRM performs linear multivariate regression (LMR) to 

obtain the model estimates. Compared to traditional reservoir simulators, the CM, CRM, 

and ICRM provide a rapid evaluation of reservoir behavior between injectors and 

producers because three models only require water injection rates (or cumulative water 

injection) and total liquid production rates (or cumulative total liquid production), which 

are typically already measured and collected, and producer bottom hole pressure (BHPs) 

to solve for model parameters. None of the three models require extensive geologic 

models. 

 In chemical engineering, the CRM is analogous to a single (or a series of) first-

order tank storage model(s), where the flow rate into the tank is used to predict the level 

of the incompressible fluid inside and the outflow rate (Seborg et al., 2010). Figure 2.1 

shows a schematic of how the total production of a slightly compressible fluid (oil and 

water production) responds to a step-change made on an injection rate in the CRM. The 

shape of the output response caused by a step-change in injection rate depends on the 

time lag and attenuation between a producer and an injector. 
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Figure 2.1: Schematic representation of the impact of an injection rate signal on total 

production response for an arbitrary reservoir control volume in the CRM (Sayarpour, 

2008). 

 

2.1.2    Mathematical Derivation of the CRMP 

 The CRM gives different solutions for different reservoir control volumes. The 

schematic representation of the CRMP, whose control volume is the drainage volume 

around each producer, is shown in Figure 2.2. 

 

Figure 2.2: Schematic representation of a drainage volume around a single producer used 

in CRMP (Weber, 2009). 
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 A governing material balance differential equation at reservoir conditions with 

multiple injectors and one producer j is given as the following: 

 
1

( )
( ) ( )

iN
j

t P ij i jj
i

dp t
cV f i t q t

dt 

 
                                     

(2.1) 

where 

Ni is the total number of injectors   

 ct is the total compressibility of the reservoir 

 Vp is the reservoir pore volume 

 ( )p t is the average pressure in the reservoir at time t 

 ii (t) is the water injection rate of an injector i at time t, and 

 qj (t) is the total production (both oil and water) rate from a producer j at time t. 

In Equation 2.1, fij is a well connectivity between a injector i and a producer j. fij is also 

called a gain.  Physically, fij represents the fraction of water rate from injector i flowing 

towards producer j at steady state. With the productivity index J defined by Walsh and 

Lake (2003), a linear productivity model for a producer j is defined as 

 ,( ) ( ) ( )j j j wf jq t J p t p t 

                                          

(2.2) 

where J is the productivity index and pwf (t) is the bottom hole pressure at time t. 

Substituting Equation 2.2 into Equation 2.1 eliminate the average reservoir pressure, p , 

yields the following: 

  ,

1

( ) ( )
( ) ( )

iN
j wf jt P

j ij i t P j
i j

dq t dp tcV
q t f i t cV

J dt dt

 
   

 


                        

(2.3) 
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Equation 2.3 is the governing differential equation for the CRMP (Liang et al., 2007). 

The time constant, , is defined as  

      

t PcV

J
              (2.4) 

and Equation 2.3 can be expressed as 

,

1

( ) ( )
( ) ( )

iN
j wf j

j ij i j j j

i

dq t dp t
q t f i t J

dt dt
 



  
                          

(2.5) 

Physically, the time constant represents the pressure dissipation or degree of fluid storage 

(compressibility) between injector/producer well pairs. Equation 2.5 is developed for a 

system based on the following assumptions (Sayarpour, 2008): 

 No new wells are drilled in the field over the analyzed period 

 Constant fluid (compressibility, viscosity, density, and etc.) and rock 

(permeability, porosity, and etc.) properties 

 Reservoir temperature is constant or does not vary significantly 

 Two immiscible phases coexist 

 Capillary pressure and  gravity effects are neglected 

 Darcy’s law applies, and 

 Productivity index is constant. 

If we assume the injection rates of all injectors are constant and the producer bottom hole 

pressure varies linearly over a discrete time period, t, then Equation 2.5 can be 

integrated analytically and gives the following solution (the CRMP) for the total 

production rate of producer j in time period k: 
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1

, ,

( 1)

1

1
i

j j

k kNt t
wf j wf j

jk j k ij ik j j

i

p p
q q e e f i J

t

 


 





  
        


               

(2.6) 

In Equation 2.6, qjk is a weighted sum of the previous total production rate in time period 

k-1, qj(k-1), and the combined effect of the current rate of arrival of water at the producer j 

from all injectors and producer BHP change at the well. 

The CRMP only requires field production data to infer the interwell connectivity 

between well pairs. Also, the CRMP allows the rapid estimation of future production 

rates of the producer j at any injection rates and producer BHPs if model parameters are 

specified. If producer BHPs are constant, Equation 2.6 can be simplified (Equation 2.7):  

 
( 1)

1

1
i

j j

Nt t

jk j k ij ik

i

q q e e f i
 

 





 
   

 
                            (2.7) 

In Equation 2.7, model parameters such as the gains, time constants, and the productivity 

indices are estimated by nonlinear multivariate regression that minimizes the following 

objective function: 

    
2

1 1

min
pt

nn

jk jkobs cal
k j

z q q
 

                       (2.8) 

where (qjk)obs is the observed total production rate, (qjk)cal is the calculated total 

production rate by the model, np is the total number of producers, and nt is the total 

number of historic time periods selected in a fitting window. This objective function is 

solved with Equation 2.7 (if producer BHPs are constant) as well as additional constraints: 

1

1
pn

ij

j

f


 for all i                             (2.9) 
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, 0ij jf   for all i and j                   (2.10) 

Equation 2.9 is a total material balance (continuity) allowing for a loss of water injected 

within the control volume when the sum of gains is less than one (Weber et al., 2009). 

Equation 2.10 ensures that injected water does not adversely affect the reservoir 

production. 

Note that both Equations 2.6 and 2.7 are defined for each producer j, but the 

gains in Equation 2.9 are summed over the injector index i. Due to the presence of the 

constraint (Equation 2.9), it is not possible to minimize the terms in Equations 2.6 and 

2.7 corresponding to each producer j separately when solving the objective function 

(Equation 2.8).  

 

2.1.3    Linearly Transformed CRMP (ltCRMP) 

The CRM is highly nonlinear in the parameters such that it not only has the 

exponential terms but also is written in a recursive form. What the CRM is expressed in a 

recursive form means that in order to calculate the production rate at time step k (qk) by 

the model, the production rate at time step k-1 (qk-1) needs to be known ahead of time. 

However, qk-1 also depends on the rate at time step k-2 (qk-2). Due to the nonlinear nature 

of the CRM, it would be difficult to obtain a unique solution in history-matching large 

reservoirs by nonlinear multivariate regression. 

A producer-based representation of CRM (CRMP) can be linearized if the 

predicted total production rate term on the right-hand side of Equation 2.6 is replaced by 
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the observed (or measured) total production rate. After lumping and redefining the 

parameters in Equation 2.6, a linearly transformed CRMP (ltCRMP) is obtained: 

   ' ' 1

( 1) , ,

1

iN
k k

jk j k obs j ij ik j wf j wf jcal
i

q q e f i J p p 





   
                 

(2.11) 

The transformed gain, f’ij, is called effective gain that accounts for the time-dependent 

effect of gain for each well-pair. From the transformed parameters, the original 

parameters (fij, j, and Jj) can be calculated by the relationships shown in Table 2.1. 

 

Table 2.1: Relationships between the original and transformed parameters 

Transformed 

parameter 
ej f’ij J’j 

Relationship with the 

original parameter 
j

t

e




 
1 j

t

ije f


 
 

 
 

1 j

t

j je J

t




 
 

 


 

 

Equation 2.11 further reduces to Equation 2.12 if producer BHPs are constant.  

   '

( 1)

1

iN

jk j k obs j ij ikcal
i

q q e f i



 
                                 

(2.12) 

The constraints associated with the ltCRMP are the following: 

      

'

1

1
1

pn

ij

j j

f

e





 

for all i                                (2.13) 

        
' 0ijf 

 
for all i and j                                        (2.14) 

0 ≤ ej ≤ 1 for all j                                        (2.15) 
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ltCRMP’s transformed model parameters can be estimated by linear multivariate 

regression that minimizes the same objective function (Equation 2.8). With a linear 

model, the objective function becomes a convex function. 

An attempt to linearize a nonlinear CRMP results in nonlinear constraints (2.13). 

However, these constraints form a convex set, so any local minimum found in Equation 

2.8 is a global minimum. The convexity of the constraints associated with the ltCRMP is 

shown in Appendix A. 

 

2.2    Integrated Capacitance-Resistance Model (ICRM) 

The integrated capacitance-resistance model (ICRM) for secondary recovery is 

developed from the CRMP governing differential equation (Equation 2.3) that represents 

the in-situ material balance over the effective pore volume of a producer (Sayarpour et al., 

2007). After multiplying both sides of Equation 2.3 by dt , Equation 2.3 can be integrated 

over the time interval from 0t to kt : 

     ,

0
0 0 0 ,

,

1

1 1 ki
jk k k wf j

j wf j

N
q t t p

k

jk jk ij ik j wf j
q t t p

ij j

dq q dt f i dt J dp
  

   
     

  
            (2.16)

 

After rearranging terms and integrating Equation 2.16, ICRM for a secondary recovery 

scheme is obtained: 

     0

, 0 , ,

1

in
k k k

p j j jk j ij i j j wf j wf j

i

N q q f CWI J p p 


       (2.17) 

Here, ,

k

p jN represents the cumulative amount of total liquid, oil and water, produced from 

a producer j at time step k. The parameter 
k

iCWI represents the cumulative volume of 
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water injected into an injector i at time step k. If producer BHPs are constant, Equation 

2.17 can be simplified (Equation 2.18):  

   , 0

1

in
k k

p j j jk j ij i

i

N q q f CWI


                           (2.18) 

Model parameters (gains, time constants, and productivity indices) are estimated by 

linear multivariate regression that minimizes the following objective function: 

    
2

, ,

1 1

min
pt

nn
k k

p j p j
obs cal

k j

z N N
 

                                   (2.19) 

This objective function is solved with Equation 2.17 or Equation 2.18 (with constant 

producer BHPs) as well as additional constraints (Equations 2.9 and 2.10). 

As seen in Equations 2.9, 2.10, and 2.18, the ICRM for secondary recovery and 

the constraints associated with it are all linear, indicating that any local minimum found 

in Equation 2.19 is a global minimum. Therefore, a unique set of parameters that give a 

global minimum is obtained when Equation 2.19 is minimized. When the total water 

injection is approximately equal to the total liquid production, the waterflood is balanced 

(Sayarpour et al., 2007). In this case, the constraints (Equation 2.9) can be relaxed 

(ignored), and Equation 2.20 can be solved for each producer j separately:     

  
2

, ,

1

ˆmin
tn

k k

p j p j
obs

k

z N N


        (2.20) 

Furthermore, if all the constraints are ignored, then Equation 2.20 can be solved 

analytically by matrix inversion. 
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2.3    Comparison between the CRMP and the ICRM 

Although both CRMP and ICRM are developed from the same governing 

differential equation, their formulations and regression methods are different from one 

model to another. In this section, the two models are compared and the advantages and 

disadvantages of each model are discussed. 

Both models (CRMP and ICRM) are derived from the first-order ordinary 

differential equation (Equation 2.3) that describes the flow of the total fluid in oil 

reservoir. They simplify the reservoir to a system of inputs and outputs. Both models 

characterize the time-dependent effects of injectors on producers using interwell 

connetivities and time constants for each input-output pair, similar to linear dynamic 

models used in chemical process control (Weber et al., 2009). These two models share 

the following similarities: 

 Both models do not require a priori estimation of physical reservoir and fluid 

properties but only available field data 

 They can be used to compute the future water injection rates that maximize the 

net present value (NPV) of reservoir asset, and 

 A regression analysis is performed to estimate the same kinds of model 

parameters (gains, time constants, and productivity indices) with the same 

imposing constraints on parameters. 

The CRM is used to match total production rates based on changing water 

injection rates (independent variables). Because the CRM is nonlinear, nonlinear 

regression is carried out to minimize the objective function. 
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For a typical large waterflood, hundreds of producers and injectors may be 

present in a reservoir, resulting in tens of thousands of model parameters in a field to be 

determined to completely define the CRM. In this case, obtaining a unique solution in 

history-matching large reservoirs by nonlinear multivariate regression can be difficult, 

and this approach can produce parameters that are statistically insignificant (Weber et al., 

2009). Furthermore, establishing confidence intervals of the model parameters is also 

difficult because of the nonlinear nature of both models. 

The ICRM is purely linear (both the model and constraints) and fits cumulative 

total productions with cumulative water injections. This model performs linear regression 

to obtain the model estimates.  Therefore with ICRM confidence intervals of model 

parameters can easily be established (Montgomery and Peck, 1982). Uncertainty 

quantification of the ICRM’s parameters is studied in Chapter 4. The objective function 

minimized with the ICRM is a convex function. Because the constraints associated with 

the ICRM are linear as well, any local minimum found by its objective function is a 

global minimum. As a result of convex optimization, the ICRM guarantees a unique 

solution regardless of the number of parameters as long as the number of data points is 

greater than the number of unknowns (parameters). Another advantage of using the 

ICRM over the CRMP is that the ICRM can be solved analytically by matrix inversion if 

constraints are relaxed (ignored). Finally, the simpler formulation of the ICRM would 

reduce computation time. Table 2.2 shows the comparison between the CRMP and the 

ICR model. 
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Table 2.2: Comparison between CRM and ICRM 

 

CRMP ICRM 

Regression method Nonlinear multivariate Linear multivariate 

Linearity of the model Nonlinear Linear 

Linearity of the constraints Linear Linear 

Dependent variable Total production rate, qjk Cumulative total production, Npk 

Independent variables 
Water injection rate, ik 

Producer BHP, pwf,j
k
 

Cumulative water injection, CWIik 

Producer BHP, pwf,j
k
 

Estimated parameters 
Gains, time constants, 

productivity indices 

Gains and time constants, 

productivity indices 

Convex optimization Yes No 

Analytical solution Not possible Possible if constraints are relaxed 

Uniqueness of solution Possibly local minimum Global minimum 

Direct Estimation of 

confidence intervals on 

model parameters 

Difficult Easy 

Relative computation time Slow Fast 

 

 

 

2.4    Summary 

 In this chapter, the mathematical development of the CRMP was reviewed. The 

ltCRMP was derived, whose constraints are nonlinear but form a convex set. The ICRM 

that is purely linear for secondary recovery was also derived. The ICRM trains 

cumulative production data based on changing cumulative water injection data.  

The CRM and the ICRM share the similarities: the governing differential equation 

that describes the flow of the total fluid in oil reservoir, no estimation of reservoir and 

fluid properties required before simulations, and same types and number of model 

Models 
Features 
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parameters. Although the two models share a few similarities, the ICRM has many 

advantages over the CRMP: 

 Linear regression analysis can be performed 

 Uniqueness of a solution (global minimum) is guaranteed 

 Objective function can be solved analytically if constraints are relaxed 

 Confidence intervals on model parameters can easily be established, and 

 Computation time in optimization is relatively faster. 
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Chapter 3: Synthetic Case Studies 
 

 

 

In this chapter, the ICRM is applied to five synthetic oil fields under 

waterflooding. The CRMP and ltCRMP are also applied to synthetic fields, and the 

results obtained by applying three models are compared to each other. The numerical 

simulators (Eclipse and the IMEX) are used to generate synthetic field data on which all 

three models are fitted. Simulated data are free of noise. The five synthetic oil fields used 

to validate the models are all undersaturated black-oil reservoirs under waterflooding. 

The Microsoft Excel Solver is used to solve the objective functions (sum of squared 

errors between simulated data and calculated values by the models). 

 

3.1    Synfield-1: Streak Case 

 Synfield-1 is a synthetic oil field (streak case studied by Sayarpour et al., 2007) 

that consists of five vertical injectors and four vertical producers. Figure 3.1 shows the 

well locations and permeability distributions of the synthetic field. This streak case is a 

homogeneous reservoir with porosity of 18% and permeability of 5 md except where the 

two high-permeability streaks exist. The simulation ran for 100 months of simulated time, 

and both injectors and producers started operating at the same time (in the first month). 

The producer BHPs were kept constant at 250 psi for all producers. Figure 3.2 shows the 

injection history for each injector with water injected for 100 months. Total production 

rates for each well vs. time are shown in Figure 3.3. In this example, the total water 

injection was approximately equal to the total liquid production, so the waterflood was 
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balanced. The numerical simulator Eclipse was used to generate synthetic field data in 

Synfield-1. 

 

Figure 3.1: Streak case permeability field consists of two high-permeability streaks of 

500 and 1,000 md in a field of 5 md (same example as in Liang et al., 2007 and 

Sayarpour et al., 2007). 

 

  

Figure 3.2: Monthly water injection rates of five injectors for the streak case (Albertoni 

and Lake, 2003). 
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Figure 3.3: Monthly total liquid production rates of four producers in the streak case 

(Albertoni and Lake, 2003). 

 

 

3.1.1   CRMP vs.  ltCRMP 

Prior to comparing the two models (CRMP and ltCRMP), the sensitivity of the 

CRMP parameters to relaxing the constraints was examined for the balanced waterflood. 

The CRMP was applied to match simulated data starting from month 58 to month 100, 

and the model parameters were estimated by both the unconstrained NMR and the 

constrained NMR. The results show (see Table 3.1) that the model parameters estimated 

by the both regression methods are essentially the same, confirming the CRMP 

parameters are insensitive to relaxing the constraints for the balanced waterflood 

(Synfield-1). When the constraint (Equations 2.9) was ignored in CRMP optimization, 

the sum of the gains over all producer indices for I1, I3, and I4 was slightly greater than 

one, violating the material-balance requirements. However, these values are sufficiently 
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close to ones to effectively satisfy the material-balance requirements in a waterflooded 

reservoir. 

Table 3.1: Inferred CRMP parameters for the streak case 

 

Unconstrained NMR 
I1 I2 I3 I4 I5 

j 

(day) Constrained NMR 

P1 

Unconstrained 

fi1 
0.8957 0.5804 0.2241 0.2173 0.1840 15.99 

Constrained    

fi1 
0.8923 0.5822 0.2215 0.2147 0.1891 15.81 

P2 

Unconstrained 

fi2 
0.0294 0.0328 0.0508 0.2012 0.0394 28.21 

Constrained    

fi2 
0.0265 0.0345 0.0478 0.1985 0.0448 28.13 

P3 

Unconstrained 

fi3 
0.0198 0.1807 0.0866 0.0348 0.1700 24.16 

Constrained    

fi3 
0.0170 0.1822 0.0835 0.0322 0.1755 24.42 

P4 

Unconstrained 

fi4 
0.0668 0.1996 0.6504 0.5568 0.5857 21.58 

Constrained    

fi4 
0.0641 0.2011 0.6472 0.5546 0.5907 21.58 

1

pn

ij

j

f


  
Unconstrained 1.012 0.994 1.012 1.010 0.979 

Constrained 1.000 1.000 1.000 1.000 1.000 

 

After validating that the CRMP parameters in Synfield-1 were insensitive to 

relaxing the constraints, both the CRMP and ltCRMP methods were applied to match 

simulated data starting from month 58 to month 100. Equations 2.9 and 2.13 were not 

used because the waterflood was balanced in streak case. 

 Table 3.2 shows the transformed model parameters from the ltCRMP. Original 

ltCRMP parameters refer CRMP parameters calculated from the resulting ltCRMP 

parameters (or transformed model parameters) by the relationships shown in Table 2.1. 



25 

 

The original ltCRMP parameters for the streak case are shown in Table 3.3. Figure 3.4 

shows the comparison between the estimated gains from the CRMP and original gains 

from the ltCRMP presented in histograms. The results show the gains estimated from the 

both models are comparable to each other. 

 

 

Table 3.2: Inferred ltCRMP parameters for the streak case 

f’ij I1 I2 I3 I4 I5 ej 

P1 0.7634 0.4914 0.1917 0.1784 0.1578 0.1504 

P2 0.0201 0.0208 0.0337 0.1315 0.0263 0.3415 

P3 0.0136 0.1283 0.0619 0.0239 0.1214 0.2906 

P4 0.0501 0.1486 0.4885 0.4172 0.4391 0.2507 

 

 

 

Table 3.3: Inferred original ltCRMP parameters for the streak case 

fij I1 I2 I3 I4 I5 j (day) 

P1 0.8985 0.5784 0.2257 0.2100 0.1857 15.84 

P2 0.0306 0.0316 0.0512 0.1996 0.0400 27.92 

P3 0.0192 0.1809 0.0873 0.0337 0.1711 24.28 

P4 0.0668 0.1984 0.6519 0.5568 0.5860 21.68 
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Figure 3.4: Comparison between CRMP gains and original ltCRMP gains for P1, P2, P3, 

and P4 in streak case. Subscript i is an injector index in the range 1 to 5. 

 

 

Time constants (or taus) estimated by the CRMP are also comparable to original 

ltCRMP time constants (see Figure 3.5). Figure 3.6 shows the total production match for 

all producers in the streak case. 

 

Figure 3.5: Comparison between CRMP time constants and ltCRMP time constants in the 

streak case. 
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Figure 3.6: Streak case CRMP and ltCRMP match of total production. 

 

 The R
2
 value quantifies the goodness of fit, and R

2
 values for CRMP and ICRM 

fits for all four producers are shown in Figure 3.7. Although both CRMP and ltCRMP fit 

the data well with large R
2
 value (close to one) as shown in Figure 3.7, the smaller value 

of the objective function resulted from the ltCRMP indicates that ltCRMP fits better than 

CRMP (see Figure 3.8).  

In Synfield-1 we expect the majority of the water injected into I1 would flow 

towards P1 because there is a high-permeability (1000 md) streak between I1 and P1. The 

interwell connectivity calculated by both models between I1 and P1 is 0.896, the highest 

gain obtained.  The large gain indicates 90 % of the water injected into I1 travelled to P1 
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(at steady state), as expected. The gain calculated by both models for another high-

permeability (500 md) streak between I3 and P4 also indicates 65% of water injected into 

I3 travelled towards P4. Therefore, the estimated interwell connectivities obtained from 

both CRMP and ICRM are consistent with the imposed geology. 

 

Figure 3.7: R
2
 values of fits calculated by CRMP and ltCRMP. 

 

 

Figure 3.8: Comparison of optimal objective function between CRMP and ltCRMP. 
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If data quality is good, like those generated by simulators, one can expect to 

obtain good fits via regression as long as correct models are applied to fit data. When the 

ltCRMP is used to match the total production data, it is critical to plot them using the 

CRMP with the original ltCRMP parameters. If measured production rates change 

smoothly in a continuous fashion like the data observed from Synfield-1, then seemingly 

good fits can be obtained regardless of the quality of the data.  

For example, Figure 3-9 shows the total production match in Synfield-1 with f’ij 

equal to zero and ej equal to one for all producers. These ltCRMP fits shown in Figure 3-

9 seem acceptable, and the quality of fits is fair. However, original gains calculated by 

the effective gains indicate the degree of communication between all injector-producer 

well pairs is zero. Also, original time constants calculated from the transformed time 

constants are infinite numbers, indicating either Synfield-1 has infinite pore volume or 

the fluid is infinitely compressible. These results are not consistent at all with the 

assumed geology in Synfield-1. Figure 3.10 shows the CRMP fits for Synfield-1 with 

zero gains and infinite time constants. 
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Figure 3.9: ltCRMP match of total productions in Synfield-1. Effective gain (f’ij) is zero 

for all well-pairs, and ej is one for all producers. 
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Figure 3.10: CRMP match of total productions in Synfield-1. Gain (fij) is zero for all 

well-pairs, and j is infinite number for all producers. 

 

 

 If some producers with few data points or many data outliers are observed, then it 

would be difficult to obtain a set of model parameters that are consistent with imposed 

geology of the reservoir and provide good regression fits. This problem can be alleviated 

by maximizing the time constants (equivalent to fixing ej to be one) when the ltCRMP is 

used to carry out history-matching. When ej is one and f’ij is zero, calculated total liquid 

production rate at time step k ((qk) cal) is observed total liquid production rate at time step 

k-1 ((qk-1) obs), yielding a fair value of R
2
. In this case, the regression fit overlaps the data 

if the ltCRMP is shifted by one time period as shown in Figure 3-11. Unfortunately, 

observed field production data such as both oil and water production rates often change 
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smoothly in a continuous fashion in real fields. Therefore, it is suggested to re-plot the 

CRMP with the original model parameters that are calculated from the ltCRMP 

parameters when the quality of production data is obviously poor. 

 

 

Figure 3.11: CRMP match of total productions for P2 in Synfield-1. f’i2 is zero, and e2 is 

one. 
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Prior to comparing the two models (CRMP and ICRM), the sensitivity of the 

ICRM parameters to relaxing the constraints was examined for the balanced waterflood. 

The ICRM was applied to match simulated data starting from month 58 to month 100, 

and the model parameters were estimated by both the unconstrained LMR and the 

constrained LMR. The results show (see Table 3.4) that the model parameters estimated 
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parameters are insensitive to relaxing the constraints for the balanced waterflood 

(Synfield-1). When the constraint (Equations 2.9) was ignored in ICRM optimization, the 

sum of the gains over all producer indices for I1, I2, and I4 was slightly greater than one, 

violating the material-balance requirements. However, these values are sufficiently close 

to ones to effectively satisfy the material-balance requirements in a waterflooded 

reservoir. 

Table 3.4: Inferred ICRM parameters for the streak case  

 

Unconstrained NMR 
I1 I2 I3 I4 I5 

j 

(day) Constrained NMR 

P1 

Unconstrained 

fi1 
0.8961 0.5926 0.1981 0.2515 0.1625 5.16 

Constrained    

fi1 
0.8935 0.5907 0.2013 0.2397 0.1739 5.16 

P2 

Unconstrained 

fi2 
0.0357 0.0351 0.0402 0.2047 0.0330 13.64 

Constrained    

fi2 
0.0332 0.0332 0.0434 0.1928 0.0444 13.64 

P3 

Unconstrained 

fi3 
0.0199 0.1808 0.0856 0.0400 0.1660 12.27 

Constrained    

fi3 
0.0173 0.1789 0.0888 0.0282 0.1774 12.27 

P4 

Unconstrained 

fi4 
0.0586 0.1992 0.6634 0.5511 0.5929 10.60 

Constrained    

fi4 
0.0560 0.1973 0.6666 0.5393 0.6043 10.60 

1

pn

ij

j

f


  
Unconstrained 1.010 1.008 0.987 1.047 0.954 

Constrained 1.000 1.000 1.000 1.000 1.000 

 

Figure 3.12 shows the comparison between CRMP gains estimated by the 

constrained NMR and ICRM gains estimated by the LMR presented in histograms. The 

results show the gains estimated from the both models are comparable to each other. The 
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estimated interwell connectivities obtained from ICRM are consistent with the imposed 

geology. 

 

Figure 3.12: Comparison between CRMP gains and ICRM gains for P1, P2, P3, and P4 in 

the streak case. Subscript i is an injector index in the range 1 to 5. 

 

 

Time constants (or taus) estimated by the CRMP are about twice those estimated 

by the ICRM, but the two quantities are of the same order of magnitude (see Figure 3.13). 

The cause of this bias is that the observed cumulative production has been overestimated. 

The ICRM fit could be improved by decreasing the time constant when the model is 

fitted on overestimated responses (cumulative production). Figure 3.14 shows the total 

production match for all producers in the streak case. R
2
 values for CRMP and ICRM fits 

for all four producers are shown in Figure 3.15. 
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Figure 3.13: Comparison between CRMP time constants and ICRM time constants in the 

streak case. 

 

 

 

 

Figure 3.14: Streak case CRMP and ICRM match of total productions. 
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Figure 3.15: R
2
 values of fits calculated by both CRMP and ICRM. 

 

 

 

3.2    Synfield-2: Complete Sealing Barrier 

 Like a case of Synfield-1, Synfield-2 consists of five vertical injectors and four 

vertical producers. Figure 4.16 shows the location of wells and sealing barriers of 

Synfield-2. This field is characterized as a homogeneous isotropic reservoir with porosity 

of 20% and permeability of 50 md.  However, this field is divided into three by a sealing 

fault. Table 4.5 provides the average reservoir and fluid properties. 
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Figure 3.16: Synfield-2 is a homogeneous isotropic reservoir (k=50 md and =0.2) and 

consists of three compartments that do not communicate with each other because of the 

presence of fault seals. 

 

 

 

Table 3.5: Average reservoir and fluid properties of Synfield-2 

Size (ft
3
) 1240  1240  200 

Number of grid blocks 33  33  5 

Permeability (md) 50 

Porosity (%) 20 

Initial reservoir pressure (psi) 1250 

Initial water saturation 0.3 

Producer bottom-hole pressure constraint (psi) 250 

Depth of a top layer from the surface (ft) 1600 

 

 

All four producers started in January 2005, and water was injected into all five 

injectors from January 2006 until the end of the simulation, January 2015. Historical 
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water injection rates used in Synfield-2 were the same as those used in Synfield-1 (Figure 

3.2). The producer BHPs were kept constant at 250 psi during the simulation, and a 

constrained linear regression was done using the ICRM to match the IMEX simulated 

cumulative production starting from January 2007 to November 2010. Simulated total 

production rates for Synfield-2 are shown in Figure 3.17. Table 3.6 shows the estimated 

parameters from the ICRM in Synfield-2. 

 

 

Figure 3.17: Monthly total liquid production rates of four producers in Synfield-2. 

 

Table 3.6: Inferred ICRM parameters for Synfield-2 

fij I1 I2 I3 I4 I5 j (day) 

P1 1.0000 0.0000 0.0000 0.0000 0.0000 8.359 

P2 0.0000 0.0000 0.9995 1.0000 0.0000 33.04 

P3 0.0000 0.7461 0.0001 0.0000 0.5002 25.98 

P4 0.0000 0.2539 0.0005 0.0000 0.4996 22.89 
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In compartment A, there is one injector, I1, and one producer, P1; therefore, we 

expect I1 to only communicate with P1. The estimated gain between I1 and P1 is truly 

one, indicating all the water injected into I1 travelled only to P1. This result agrees 

exactly with the imposed geological information.  

Compartment B contains two injectors, I3 and I4, and one producer, P2. The 

estimated gains of the I3/P2 and I4/P2 well-pairs are 0.9995 and 1.These results suggest 

that there are no-flow boundaries around I3, I4, and P2 and that these wells are isolated 

from the rest of wells in this field.  

In compartment C, I5 is an equal distance from producers P3 and P4, so we can 

expect water injected into I5 to be equally distributed to P3 and P4. The result shows that 

half the water injected into I5 travelled to P3 (0.5002) and that the other half travelled to 

P4 (0.4996). There is another injector, I2, in compartment C, and the distance of I2/P4 

well-pair is 2.25 times greater than that of I2/P3 well-pair. The interwell connectivities of 

I2/P4 and I2/P3 well-pairs are 0.2539 and 0.7461, respectively, and these results are 

consistent with the larger connectivities encountered for close injector-producer well-

pairs (Sayarpour, 2008).  

When injectors fall in one compartment, and producers fall in another, there 

should be no communication between injector-producer well-pairs, and estimated gains 

of these well-pairs are zero as expected. The total production match of all producers for 

Synfield-2 is shown in Figure 3.18. The ICRM results fit the data well. 
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Figure 3.18: ICRM match of total production in Synfield-2. 

 

 

 

3.3    Synfield-3: Partially Sealing Barrier 

Synfield-3 is identical to Synfield-2 except the barrier is only partially sealing. 

Constrained linear regression was done using the ICRM to match the IMEX simulated 

cumulative production starting from January 2007 to November 2010. Table 3.7 shows 

the estimated parameters from the ICRM in Synfield-3. Figure 3.19 shows the location of 

wells and sealing barriers of Synfield-3. 
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Table 3.7: Inferred ICRM parameters for Synfield-3 

fij I1 I2 I3 I4 I5 j (day) 

P1 0.0326 0.4670 0.0409 0.0827 0.1257 27.79 

P2 0.6286 0.0737 0.3560 0.4568 0.1410 13.84 

P3 0.1000 0.3550 0.1717 0.1470 0.3659 13.45 

P4 0.2388 0.1043 0.4314 0.3135 0.3674 13.40 

 

 

 

Figure 3.19: Synfield-3 is a homogeneous isotropic reservoir (k=50 md and =0.2) with a 

partially sealing barrier (blue diagonal blocks). 

 

 

The result shows that the presence of transmissibility barrier can be inferred by 

interwell connectivities (gains) estimated by the ICRM. Low interwell connectivities are 

found for injector-producer well-pairs on each side of the barrier and close to the barrier. 



42 

 

For example, the estimated gains of the I1/P1 and I3/P1 well-pairs are 0.0326 and 0.0409, 

and these results suggest that there is a transmissibility barrier (or no-flow boundary) 

between P1 and injectors I1 and I3. The total production match of all producers for 

Synfield-3 is shown in Figure 3.20. 

 

 

Figure 3.20: ICRM match of total productions in Synfield-3. 

 

 

 

3.4    Synfield-4: Wells in Random Locations 

  The relationship between interwell-connectivity and interwell-distance is studied 

by applying simple reservoir models on Synfield-4. This synthetic reservoir is 
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characterized as a homogeneous isotropic reservoir where wells (five water injectors and 

four producers) are located randomly (see Figure 3.21). 

 

 

Figure 3.21: Synfield-4 is a homogeneous isotropic reservoir (k=50 md and =0.2) and 

consists of five water injectors and four producers. 

 

 

Both CRMP and ICRM were applied to match simulated data starting from 

January, 2007 to November, 2010. The CRMP parameters were estimated via constrained 

NMR, and the ICRM parameters were estimated via constrained LMR. The CRMP and 

ICRM parameters are shown in Figures 3.22 and 3.23. The results show model 

parameters estimated from the both models are comparable to each other. Figure 3.24 

shows the total production match for all producers in Synfield-4. 
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 Figure 3.22: Comparison between CRMP gains and ICRM gains for P1, P2, P3, and P4 

in Synfield-4. Subscript i is an injector index in the range 1 to 5. 

 

 

 

 

Figure 3.23: Comparison between CRMP time constants and ICRM time constants in 

Synfield-4. 
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Figure 3.24: Synfield-4 CRMP and ICRM match of total productions. 

 

If the relationship between the gain and the interwell-distance between injector-

producer well-pair is assumed to be linear, one can estimate an interwell-distance 

dependent gain ( d

ijf ) at a given interwell-distance: 

          

d

ij ijf Ad B                                      (3.1) 

where dij is an interwell-distance between injector-producer well-pair, and A and B are 

fitting parameters. Fitting parameters (A and B) can be estimated by regressing Equation 

3.1 on ICRM gains. Equation 3.1 should only be used to interpolate gains; therefore, it is 

valid in the range of fij,lo to fij,hi, where fij,lo is the lowest gain and fij,hi is the highest gain 

estimated for a given reservoir.  
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In Figure 3.25, ICRM gains estimated from Synfield-4 are plotted on the y-axis 

and the corresponding well-distance between each injector-producer pair is plotted on the 

x-axis. As expected, the well-connectivity (gain) tends to decrease as the interwell-

distance increases. Equation 3.1 was linearly regressed on ICRM gains in Synfield-4, and 

regression coefficients were found to be -0.0003 ft
-1

 for A and 0.401 ft for B. 

 

 

 

Figure 3.25: ICRM gain vs interwell-distance (dij) in Synfield-4. 

 

In Table 3.8, the gain calculated by Equation 3.1 ( d

ijf ) is compared to the ICRM gain (fij) 

with corresponding dij for Synfield-4. 
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Table 3.8: Comparison between fij and d

ijf for Synfield-4 

dij (ft) fij 
d

ijf  

110 0.5409 0.3681 

198 0.4294 0.3417 

260 0.1968 0.3230 

310 0.4837 0.3080 

388 0.2401 0.2848 

426 0.2068 0.2731 

426 0.2751 0.2731 

442 0.1270 0.2685 

493 0.0444 0.2530 

510 0.3100 0.2481 

527 0.2742 0.2429 

543 0.3502 0.2383 

576 0.1253 0.2282 

650 0.2059 0.2061 

677 0.1246 0.1980 

745 0.0861 0.1774 

806 0.2895 0.1591 

815 0.2756 0.1566 

860 0.2457 0.1429 

959 0.1687 0.1134 

 

 

 

Although R
2
 values of the fits based on fij

d
 are not as good as R

2
 values of ICRM 

fits (see Figure 3.26), these fits are able to capture the general trends of the reservoir 

production observed in Syfield-4 as shown in Figure 3.27. 
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Figure 3.26: R
2
 values of ICRM fits (blue histograms) and the fits based on d

ijf
 
(red 

histograms) for Synfield-4. 

 

 

Figure 3.27: ICRM fits (red solid line) and predicted total production rates based on d

ijf

(green dashed line) for Synfield-4. 

 

 

-0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

P1 P2 P3 P4 

R
2

 ICRM_fit 

ICRM_dij 



49 

 

3.5    Synfield-5: Wells in Random Locations with New Injectors 

 The allocation factor for water injection rate can be estimated reasonably from the 

interwell-distance between well-pairs. This allows approximation of well-connectivities 

between newly drilled injectors and existing producers in homogenous reservoirs. 

Synfield-5 (Figure 3.28) is identical to Synfield-4, but two injection wells (I6 and I7) 

were added in a reservoir after 2200 days (six years) of oil production.  After new 

injectors have been added in a reservoir, oil production has been carried out for an 

additional four years. 

 
 

Figure 3.28: Synfield-5 is a homogeneous isotropic reservoir (k=50 md and =0.2) and 

consists of five water injectors and four producers initially. After six years of oil 

production, two injectors (I6 and I7) have been added in the reservoir. 
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In Figure 3.29, adding two new injectors supported reservoir pressure 

substantially, causing a sudden increase in total production rates of all four producers 

after oil production has occurred for 2200 days. 

 

 
 Figure 3.29: Daily total liquid production rates of four producers in Synfield-5. 

 

 

Predicting gains between newly added injectors and producers by using Equation 

3.1 would make sense only if it is assumed that the model parameters remain constant 

with the introduction of new injectors. To validate this assumption that model parameters 

are invariant to adding new injectors, ICRM was applied on Synfield-5 by selecting two 

different fitting windows (see Figure 3.29). In Figure 3.30, the results show that the gains 

between existing injectors and producers before adding new wells do not vary 

significantly compared to the gains between the same well-pairs that were calculated after 

adding injectors.  
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However, the time constants decreased by about half of their original values that 

were estimated before adding new injectors in Synfield-5 as shown in Figure 3.31. The 

time constant in both CRMP and ICRM is proportional to the reservoir pore volume  

(VP) and the total compressibility of the reservoir (ct) by definition (Equation 2.4). 

Despite the fact that both the water and oil are considered to be relatively incompressible 

fluids in a black-oil reservoir, the compressibility of water is smaller than that of oil. 

Therefore, as more water (less compressible fluid) from newly installed injectors (I6 and 

I7) was injected into Synfield-5 to displace oil (more compressible fluid), the fluids in 

this reservoir became less compressible. Also, the contraction of the reservoir pore 

volume as oil production has been carried out for an additional four years was another 

reason for having the smaller time constants from Synfield-5 than the time constants from 

Synfield-4. This bias was noticeable in Synfield-5, which is a small reservoir. In real oil 

fields, the size of reservoirs are much larger than the size of the synthetic fields (1240 ft  

1240 ft  200 ft) we studied, so  the change in time constants to adding new injectors is 

expected to be less significant.  
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Figure 3.30: ICRM gains before adding injectors (blue histograms) vs. ICRM gains after 

adding injectors (red histograms) for Syfield-5. Subscript i is an injector index in the 

range 1 to 5. 

 

 
 

Figure 3.31: ICRM time constants before adding injectors (blue histograms) and ICRM 

time constants after adding injectors (red histograms) for Syfield-5. 
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 After determining that ICRM gains between existing injectors and producers are 

insensitive to adding new injectors, the gains between newly added injector (I6 and I7) 

and producers (P1-P4) were calculated by Equation 3.1. ICRM gains were also estimated 

via linear regression on newly simulated data after adding two injectors. Figure 3.32 

compares fij
d
 to fij and the results show that they are similar to each other (less than 30% 

error). These predicted gains by Equation 3.1 did not match exactly the ICRM gains but 

the general trend of the gains leads to an approximate solution. Furthermore, this simple 

approach can be used to guide reservoir simulation. 

 

 

Figure 3.32: fij (blue histogram) vs. fij
d
 (red histogram) with new injectors for Synfield-5. 

 

 

Finally, interwell-distance dependent gains were used to predict the future liquid 

productions if two injectors would have been added with known water injection scheme. 

In Figure 3.33, green dashed lines represent the future liquid production rates that were 

predicted by fij
d
 if I6 and I7 have been added in Synfield-5 after 2200 days of oil 

production. In the same figure, red solid lines represent the future liquid production rates 
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without adding new injectors. It seems that the ICRM fits based on fij
d
 are able to predict 

the future liquid production rates quite well if new injectors are added in the reservoir. In 

Figure 3.33a, it is clearly shown that the total production rates would increase 

substantially by q after 2200 days of oil production due to the additional pressure 

support caused by adding two new injectors. 

One needs to be aware that Equation 3.1 should be used to estimate gains between 

new injectors and existing producers only. It should not be used to estimate gains 

between existing injectors and new producers. If new producers are added in a reservoir, 

the gains between existing injectors and producers that are calculated by regression prior 

to adding wells will change significantly. Also, Equation 3.1 should only be used for 

homogeneous reservoirs. 
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Figure 3.33: Predictions of the future total liquid production rates without (red solid line) 

or with new injectors (green dashed line) in Synfield-5: (a) P1, (b) P2, (c) P3, (d) P4 
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3.6   Summary 

 In this chapter, three input-output models were applied to synthetic oil fields to 

validate and compare them to each other. Numerical simulators (Eclipse and the IMEX) 

were used to generate synthetic field data (total liquid production and cumulative 

production data) to which the ltCRMP, CRMP, and ICRM were fitted. The ltCRMP, 

CRMP, and ICRM were validated for secondary recovery with Synfield-1(streak case). 

For the balanced waterflood like the streak case, the CRMP and ICRM parameters were 

insensitive to relaxing the constraints. By comparing the results (estimated parameters 

and regression fits) obtained by all three models in Synfield-1, it is clear that the ltCRMP 

and ICRM are attractive alternatives to CRMP. ICRM was also able to detect the 

presence of no-flow boundaries in Synfield-2. In Synfield-3 the presence of a 

transmissibility barrier could be inferred by low interwell connectivities calculated from 

the ICR model. Synfield-4 showed that interwell connectivities between newly 

introduced injectors and existing producers can be estimated solely by interwell-distance 

between well-pairs. Finally, in Synfield-5, the gains between existing producers and 

injectors remain constant with the introduction of new injectors, and future liquid 

production after adding new injectors could be plausibly predicted by the approximate 

gains. 
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Chapter 4: Uncertainty Quantification of the Model Parameters 
 

 

 

 Investigating the uncertainty of the resulting model parameters is necessary to 

determine the validity of a history match done by regression. Traditional reservoir models, 

consisting of hundreds of differential equations and using uncertain parameters such as 

permeability and porosity, are too complex for a simple statistical analysis (Weber, 2009). 

One can use Monte Carlo simulations to generate multiple realizations of the model and 

study the uncertainty in complex reservoir models such as Eclipse or the IMEX. Landa et 

al. (2005) used clustered computing techniques to analyze uncertainty in history-

matching and forecasting. Sayarpour (2008) generated ensembles of history-matching 

results using the CRM to quantify uncertainty in porosity and residual oil and water 

saturations. 

 In this chapter, confidence intervals are established for model parameters (gains 

and time constants) estimated by both nonlinear and linear regression methods. This 

simple analysis of uncertainty in resulting model parameters does not require ensembles 

of models or history-matching solutions.  

  

4.1    Confidence Intervals on Model Parameters with CRMP 

As discussed in Chapter 3, the CRMP is highly nonlinear and is expressed in a 

recursive form. As a result of the nonlinear nature of the CRMP, direct estimation of 

confidence intervals on model parameters is quite difficult in practice. Weber (2009) 

suggested one way to establish confidence limits of gains by assuming that time constants 
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are not regression parameters, but constants. In this approach, the resulting model is 

linear in gains if producer BHPs are kept at constant value and the total production rate of 

a producer j at the time step k, qjk, is expressed in terms of initial total production rate, qj0, 

as the following: 
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 (4.1) 

 

The first term on the right-hand side of Equation 4.1 accounts for primary recovery and 

the second term accounts for secondary recovery. 

 The CRMP was applied on Synfield-1(see Figure 3.1), and 95% confidence limits 

on gains were calculated by assuming the time constants are not regression parameters. In 

this regression analysis, the number of data points fitted was 42. For each producer, the 

number of fitted parameters (gains) used was five. Therefore, the degrees of freedom 

used for both the t-test and the standard deviation estimate was 37.  

The results show the 95% confidence limits of gains are narrow enough to 

conclude regression coefficients are statistically significant. Table 4.1 and Figure 4.1 
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show the 95% confidence intervals on the gains. The details of the calculation of 

confidence intervals are shown in Appendix B. 

 

Table 4.1: 95% Confidence intervals on gains estimated by CRMP in Synfield-1 

fij I1 I2 I3 I4 I5 

P1 
0.892 

 ± 0.0389 
0.588 

 ±0 .032 
0.226 

 ± 0.041 
0.213 

 ± 0.047 
0.214 

 ± 0.044 

P2 
0.028 

 ± 0.009 
0.031 

 ± 0.009 
0.045 

 ± 0.012 
0.182 

 ± 0.017 
0.046 

 ± 0.013 

P3 
0.012 

 ± 0.009 
0.198 

 ± 0.009 
0.103 

 ± 0.012 
0.057 

 ± 0.015 
0.192 

 ± 0.017 

P4 
0.064 

 ± 0.014 
0.182 

 ± 0.013 
0.555 

 ± 0.019 
0.503 

 ± 0.022 
0.544 

 ± 0.021 

 

 

Figure 4.1: 95% confidence intervals on gains (fij) estimated by CRMP in Synfield-1 

(streak case). Subscript i is an injector index in the range 1 to 5. 
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4.2    Confidence Intervals on Model Parameters with ICRM 

 

 As the CRMP is a nonlinear model, a straightforward statistical analysis of the 

variability of the parameter estimates is not possible (Weber, 2009). Assuming the time 

constants are not regression parameters allows us to establish the confidence limits on the 

gains; however, establishing the confidence limits for the time constants is still 

problematic with the CRMP. The linearity of ICRM makes it easy to establish confidence 

intervals of the model parameters (Montgomery and Peck, 1982). 

The ICRM was applied on Synfield-1 (streak case), and 95% confidence limits on 

both the gains and time constants were calculated. The results show that the confidence 

limits of the gains calculated by the ICRM are smaller than those calculated by the 

CRMP (see Figure 4.2). This result is convincing evidence that regression coefficients 

(gains) estimated by the ICRM (linear model) are more statistically significant and 

reliable values than those estimated by the CRMP (nonlinear model). Figure 4.3 shows 

the 95% confidence intervals of the time constants. Since the value of zero is outside of 

the confidence interval, as shown in Figures 4.2 and 4.3, each fitted parameter is 

statistically different from zero to the confidence level (95% limit) assumed. Table 4.2 

summarizes the 95% confidence intervals of the model parameters calculated by the 

ICRM. 
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Table 4.2: 95% confidence intervals on ICRM parameters in Synfield-1 

 

fij I1 I2 I3 I4 I5 j (day) 

P1 
0.896 

± 0.018 

0.593 

± 0.009 

0.198 

± 0.017 

0.252 

± 0.029 

0.163 

± 0.024 

5.16 

± 1.70 

P2 
0.036 

± 0.008 

0.035 

± 0.003 

0.040 

± 0.009 

0.205 

± 0.012 

0.033 

± 0.012 

13.6 

± 4.78 

P3 
0.012 

± 0.005 

0.181 

± 0.002 

0.086 

± 0.005 

0.040 

± 0.008 

0.166 

± 0.007 

12.3 

± 2.41 

P4 
0.059 

± 0.014 

0.199 

± 0.006 

0.663 

± 0.016 

0.551 

± 0.024 

0.593 

± 0.023 

10.6 

± 1.56 

 

 

 

Figure 4.2: Comparison between CRMP gains (fij) and ICRM gains in Synfield-1 (streak 

case). 95% confidence intervals on gains (fij) estimated by the both CRMP and 

ICRM. Subscript i is an injector index in the range 1 to 5. 
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Figure 4.3: Comparison between CRMP time constants and ICRM time constants in 

Synfield-1 (streak case). 95% confidence intervals on time constants (j) estimated by the 

ICRM. Subscript j is a producer index in the range 1 to 4. 

 

 

 

4.3     Summary 

In this chapter, I quantified the uncertainty inherent in the CRM and ICRM 

parameters and validated the trustworthiness of the model parameters. Assuming the time 

constants are not regression parameters allowed us to establish approximate confidence 

limits on the gains with the CRMP. The confidence limits of both the gains and time 

constants could be established easily with the ICRM. The 95% confidence limits of 

model parameters were narrow enough to conclude regression coefficients were 

statistically significant. Lastly, the confidence limits of the gains calculated by ICRM 

were smaller than those calculated by CRMP. 
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Chapter 5: Summary, Conclusions, and Recommendations for Future 

Work 
 

 

 

The main objectives of this work were to develop and apply linearized 

capacitance-resistance models to waterfloods and to evaluate the uncertainty on model 

parameters. Therefore, two linear reservoir models (ltCRMP and ICRM) were developed 

and their applications in history-matching, convex optimization, and uncertainty 

quantification on model parameters were demonstrated. 

This work developed and tested the ltCRMP and ICRM in several synthetic oil 

fields under waterflooding and showed that they were comparable in scope to the CRMP 

but allowed us to solving the objective functions analytically by matrix inversion. The 

relationship between interwell-connectivities and interwell-distance of well-pairs was 

presented. Also, the power of the ICRM permitted describing the interactions between 

newly introduced injectors and existing producers and predicting the future total liquid 

production based on these estimates. 

  

5.1    Technical Contributions 

 The analytical solutions of the ltCRMP and ICRM for the drainage volume 

around each producer were developed in a similar manner as Sayarpour (2008). These 

two models are linear and provide advantages over the nonlinear waterflood model 

(CRMP): convex objective functions, efficient solution, and faster computation time in 

optimization. 
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 The ltCRMP and ICRM were validated by applying them to five synthetic cases 

and comparing their results against simulated results. Each of these studies was selected 

to test different aspects of two models’ capabilities. The streak case (Synfield-1) was 

used to test the two models’ comparability in scope to the CRMP. Synfield-1 was also 

used to test the sensitivity of the CRMP and ICRM parameters to relaxing the constraints 

for the balanced waterflood.  

The ICRM’s capability in detecting the presence of transmissibility barriers was 

validated by applying it to two synthetic oil fields (Synfield-2 and Synfield-3). In the case 

studies with Synfield-4 and Synfield-5, the assumption that ICRM gains do not vary with 

the introduction of new injectors was verified and the prediction of future total liquid 

production based on interwell-distance gains was presented. 

 The streak case was also used to quantify the uncertainty on model parameters 

and establish the confidence intervals on the CRM gains and ICRM parameters.  

 

 

5.2    Conclusions 

All three simple reservoir models (CRMP, ltCRMP, and ICRM) presented in this 

work do not require a priori estimation of rock and fluid properties. Moreover, they share 

the similarities: the governing differential equation that describes the flow of the total 

fluid in oil reservoir and the number of model parameters in each model. 

Two linear models (ltCRMP and ICRM) derived for secondary recovery in this 

work form convex objective functions and convex sets of constraints. Therefore, any 

local minimum found in optimization is the global minimum, thus uniqueness of a 
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solution is guaranteed always (see Appendix A). Linear formulation of these models 

allows us to solve convex objective functions analytically by matrix inversion if 

constraints are relaxed to get an approximate solution. 

Application of ltCRMP and ICRM on synthetic oil fields (Synfields-1, 2, and 3) 

showed that estimated model parameters are consistent with the imposed geology. Both 

models were able to capture the general trends of reservoir production observed in 

synthetic reservoirs quite well. Therefore, ltCRMP and ICRM are attractive alternatives 

to CRMP. For the balanced waterflood like the streak case, the CRMP and ICRM 

parameters were insensitive to relaxing the constraints. In Synfield-4 the method to 

estimate the gains between well-pairs solely by interwell-distance between well-pairs (dij) 

for a homogeneous reservoir was demonstrated. In Synfield-5 the future total liquid 

production after adding new injectors could be plausibly predicted by interwell-distance 

dependent gains (
d

ijf ). This method can guide decisions as to where to drill new injectors 

to increase future oil recovery and provide rapid solutions without having to run 

additional reservoir simulations for each scenario. 

 In Synfield-1 the uncertainty inherent in the CRM and ICRM parameters was 

quantified. Assuming the time constants are not known allowed us to establish 

approximate confidence limits on the gains with the CRMP. The confidence limits of 

both the gains and time constants could be established easily with the ICRM. The 95% 

confidence intervals of model parameters were narrow enough to conclude regression 

coefficients were statistically significant. Lastly, the confidence intervals of the gains 
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calculated by the ICRM were smaller than those calculated by the CRMP, suggesting that 

the ICRM is more precise than the CRMP. 

 

5.3    Recommendations for Future Work 

 The following recommendations for future work are suggested. 

1. All the models presented in this work have been derived based on black-oil 

reservoirs, which are relatively incompressible so one can assume numerous PVT 

related properties such as total compressibility (ct), dissolved gas-oil ratio (Rs), oil 

formation volume factor (Bo), and gas formation volume factor (Bg), to be zero or 

constant. In this case, the use of static time constant and constant oil formation 

volume factor in the models is justified for waterflooded reservoirs.  

For a more compressible system (volatile oil or wet gas reservoir) or a field 

involving a gas flood (CO2), the above assumptions are less valid, and space-time 

varying model parameters must be used in the models. If the bottom hole 

pressures (BHPs) are available and temperatures and API gravity factors around 

each well are specified or left as additional model parameters to be determined, 

the average reservoir pressures can be estimated from the models and used to 

estimate PVT related properties. This approach would greatly improve the 

robustness and accuracy of the model. However, the average reservoir pressures 

must be calculated implicitly, requiring iterations.  

2. The objective functions presented in this work were solved to estimate model 

parameters by the means of the least mean squares (LMS). Therefore, new fitting 
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windows in regression must be chosen to include new production data if available 

in the future for each simulation. Model parameters can also be estimated by the 

recursive least squares (RLS) method that can monitor the change in geological 

properties, such as total compressibility, both in the history and in the future when 

new production data are available without having to select different fitting 

windows. We expect the RLS method can reflect the change in model parameters 

with respect to time and take into account dual role wells and wells shut-in for 

long time over the analyzed periods. 

3. The new reservoir models developed in this thesis considered vertical wells. 

Further research to consider horizontal and inclined wells would verify that the 

models can be used effectively regardless of the types of well configurations. 

4. Natural water influx into a hydrocarbon reservoir during pressure depletion is 

common. In this case, the waterflood is unbalanced, so we must take into account 

water influx as an additional independent variable in the model. The model 

estimation can be improved if pseudo steady-state aquifer models that were 

suggested by Walsh and Lake (2003) are used in the models. 

5. Two simple reservoir models derived (ltCRMP and ICRM) have been only 

applied to synthetic oil fields in this work. Application of the models on real oil 

fields is strongly recommended to strengthen the validity of the models. 

6. In this work, the gains between newly installed injectors and existing producers 

for a homogeneous reservoir could be approximated based on interwell-distance 

between well-pairs. This method is not well-suited for placing new producers. If 
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new producers are added in a reservoir, the gains between existing injectors and 

producers that are calculated by regression prior to adding new producers will 

change significantly. Further research should investigate simple methods that can 

approximate the gains between existing producers and injectors after adding new 

producers in a reservoir. 

7. Approximate gains (fij
d
) based on interwell-distance between well-pairs can be 

combined with an oil fractional-flow model and an economic model to determine 

where to drill new injectors to maximize the net present value of future oil 

recovery. A case study to determine optimal injector locations using this 

methodology is recommended. 

8. The current models (CRM, ltCRMP, and ICRM) need historic water injection 

rates (or cumulative injection) and producers BHPs for history-matching of total 

liquid production rates (or cumulative total liquid production). Geoscientists can 

manipulate future injection rates and producers BHPs to provide the best 

excitation signal for fitting the models to resulting production data. There may be 

an optimal way to perturb injection rates and producer BHPs to get a robust signal 

for model fitting.  
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Appendix A: Convex Optimization with Linear CRMs 
 

 

 

For a linear or nonlinear programming problem called the convex programming 

problem 

    Minimize: f (x) 

    Subject to: gi (x) ≤ 0 i=1, … , m       (A-1) 

in which (a) f (x) is a convex function, and (b) each inequality constraint is a convex 

function (so that the constraints form a convex set), then the local minimum of f (x) is 

also the global minimum (Edgar et al., 2001). The objective function of CRM 

optimization with linear water flooding predictive models, such as ICRM and ltCRMP, is 

a convex function. According to the definition of convex programming problem, the local 

minimum found from an objective function is also the global minimum if the constraints 

associated with the model form a convex set. The constraints associated with ICRM are 

all linear, forming a straightforward convex set. The constraints associated with ltCRMP 

are nonlinear; however, they also form a convex set. 

Suppose there are n injectors and two producers (P1 and P2) in water floods and 

assume there are no sealing faults in a reservoir.  With ltCRMP, Equations A-2 to A-4 

show the constraints regarding injector I1 to be: 

' '

11 12

1 2

1
1 1

f f

e e
 

 
                    (A-2) 

   
' '

11 12, 0f f           (A-3) 

  
   0 ≤ e1, e2 ≤ 1                    (A-4) 
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where f’11 is the fraction of water rate from injector I1 flowing towards producer P1 

accounting for time lag (1-e1), f’12 is the fraction of water rate from injector I1 flowing 

towards producer P2 accounting for time lag (1-e2), e1 is exp(-t/1), and e2 is exp(-t/2).  

 A set of points x satisfying the following relation is convex if the Hessian matrix 

(or simply Hessian) H(x) is a real symmetric positive-semidefinite matrix. 

   x
T
H(x)x ≤ 1                                                      (A-5) 

 H(x) is another symbol for 
2 

f (x), the matrix of second partial derivative of f (x) with 

respect to each xi (Edgar et al., 2001). The Hessians of Equations A-3 and A-4 are zeros 

indicating Equations A-3 and A-4 are both convex and concave functions. The Hessian of 

Equation A-2 is shown as the following: 

 

 

   
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f
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  
 
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 
 
 

   

                  (A-6) 

If the principal minors of Equation A-6 are equal or greater than zero at any value 

of parameters (f’11, f’12, e1, e2), then the Hessian is positive-definite, and Equation A-2 is 

convex. If the principal minors of Equation A-6 are equal or less than zero at any value of 

parameters (f’11, f’12, e1, e2), then the Hessian is negative-definite, and Equation A-2 is 

concave. For this example, the principal minors of H (f’11, f’12, e1, e2) are all zeros except 

M44, which is the principal minor of a 44 matrix from Equation A-6. M44 is found to be  
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   
4 4

1 21 1e e
 

  , so M44 is always positive. This result indicates the effective gains (f’11 

and f’12) are irrelevant in determining the convexity of Equation A-2. Therefore, all the 

constraints (Equations A-2, A-3, and A-4) are convex, and they form a convex set. There 

will be another convex set, which is formed by set of constraints due to injector I02. 

Now, suppose there are n injectors and three producers (P1, P2, and P3). 

Equations A-7 to A-9 show the constraints regarding injector I1 to be: 

           
'' '

1311 12

1 2 3

1
1 1 1

ff f

e e e
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  
                   (A-7) 

     ' ' '

11 12 13, , 0f f f                      (A-8) 

     1 2 30 , , 1e e e                                (A-9) 

Equations A-8 and A-9 are both concave and convex, and the Hessian matrix of Equation 

A-7 is shown below: 
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          (A-10) 

The principal minors of Equation A-10 are all zeros except M66, which is the principal 

minor of a 66 matrix from Equation A-10. M66 is found to be 
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     
4 4 4

1 2 31 1 1e e e
  

   , so M66 is always negative. Therefore, all the constraints 

(Equations A-7 to A-9) are concave, and they also form a convex set. There are the 

constraints regarding other injectors; however, these constraints form convex sets as well 

by induction. 
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Appendix B: Establishment of Confidence Intervals on Fitted 

Parameters 
  

 

 

To establish the confidence intervals about the fitted parameters, the sum of the 

squares of the fitted function from the actual data points is defined first as the following 

Equation B-1, 

    

2

1

( ( , ))
N

r i i i

i

S f f x y


          (B-1) 

where rS is the sum of the squared residuals, if is the actual (or measured) data points, 

and ( , )i if x y is the proposed linear regression function with two independent variables (x 

and y) evaluated at the i
th

 x and y values (Ludovice, 2003). Next, the effective standard 

deviation about a regression curve is calculated by Equation B-2, 

           /
r

y x
S

S
N m




                               (B-2) 

where, /y xS is the standard error, rS is defined by Equation B-1, N is the total number of 

data points, and m is the total number of coefficients in the fitted equation (Ludovice,  

2003). 

 To construct confidence intervals about the fitted parameters, the inverse of the 

covariance matrix C is defined by Equation B-3, 

     
1

1 TC Z Z


             (B-3) 

where 1C  is the inverse of covariance matrix C and Z is the matrix that consists of M 

columns, one for each coefficient in the proposed regression function, and N rows, one 
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for each of the data points. Z
T
 is the transpose of the matrix in which the rows and 

columns are switched (Ludovice, 2003).  

 Finally, the 95% confidence interval about a fitted parameter is given below as a 

function of the variance value (Cii) for that coefficient and the standard error of fit: 

            
1

0.95 /( )i y x iia t N m S C 
          (B-4) 

where ia is a fitted parameter, 0.95( )t N m   is the student’s t-distribution at 95% 

confidence limits in which  is the degree of freedom, and 
1

iiC 

is the square root of 

the off-diagonal elements of C
-1

 (Ludovice, 2003). 
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Nomenclature 
 

 

 

L, F, t mean length, force, and time, respectively. 

BHP = bottom hole pressure (F/L
2
) 

C = covariance matrix 

C
-1

 = inverse of covariance matrix C 

CM = capacitance model 

CMG = computer modeling group Ltd. 

CRM = capacitance-resistive model or capacitance-resistance model 

CRMP = a producer-based representation of capacitance-resistance model 

CWI = cumulative water injection (L
3
) 

ct = total reservoir compressibility (L
2
/F) 

dij = interwell-distance between injector-producer well-pair (L) 

fij = fraction of injection from injector i flows to producer j, dimensionless 

             
d

ijf  = interwell-distance dependent gain, dimensionless 

ICRM = integrated capacitance-resistance model 

i = water injection rate (L
3
/t) 

IMEX = Implicit-explicit black oil simulator 

 J = productivity index (L
5
/F-t) 

 LMR = linear multivariate regression 

 ltCRMP = linearly transformed CRMP 

ltCRM = linearly transformed CRM 
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 MLP = multiple linear regression 

 np = total number of producers 

 nt = total number of historic time periods 

 Ni = total number of injectors 

Np = cumulative total production (L
3
) 

OOIP = original oil in place (L
3
) 

 P = pressure (F/L
2
) 

Pwf = bottom-hole pressure (F/L
2
) 

             q = total liquid production rate (L
3
/t) 

 R
2
 = correlation coefficient 

Sr = sum of the squared residuals (L
6
/t

2
 or L

6
) 

 Sy/x = effective standard deviation about a regression curve (L
3
/t or L

3
) 

t = time (t) 

t0.95 = student’s t-distribution at 95% confidence limits 

Vp= pore volume (L
3
) 

 

Greek alphabets 

  = time constant (t) 

  = integrating variable (t) 

 

Subscripts and superscripts 

 cal = calculated quantity by the model 
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 hi = highest 

 i = injector index 

 ij = injector-producer pair index 

j = producer index 

k = time step index 

lo = lowest 

obs = observed quantity 

0 = initial time step 
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