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Abstract 

Size effects in out-of-plane bending in elastic 

honeycombs fabricated using additive manufacturing: 

modeling and experimental results 

 

James Kevin Mikulak, Ph.D. 

The University of Texas at Austin, 2011 

 

Supervisor: Desiderio Kovar 

Size effects in out-of-plane bending stiffness of honeycomb cellular materials 

were studied using analytical mechanics of solids modeling, fabrication of samples and 

mechanical testing.  Analysis predicts a positive size-effect relative to continuum model 

predictions in the flexure stiffness of a honeycombed beam loaded in out-of-plane 

bending.  A method of determining the magnitude of that effect for several different 

methods of constructing or assembling square-celled and hexagonal-celled materials, 

using both single-walled and doubled-walled construction methods is presented.  

Hexagonal and square-celled honeycombs, with varying volume fractions were 

fabricated in Nylon 12 using Selective Laser Sintering.  The samples were mechanically 
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tested in three-point and four point-bending to measure flexure stiffness.  The results 

from standard three-point flexure tests, did not agree with predictions based on a 

mechanics of solids model for either square or hexagonal-celled samples.  Results for 

four-point bending agreed with the mechanics of solids model for the square-celled 

geometries but not for the hexagonal-celled geometries.  A closed form solution of an 

elasticity model for the response of the four-point bending configuration was 

developed, which allows interpretation of recorded displacement data at two points and 

allows separation the elastic bending from the localized, elastic/plastic deformation that 

ƻŎŎǳǊǎ ōŜǘǿŜŜƴ ǘƘŜ ƭƻŀŘƛƴƎ ǊƻƭƭŜǊǎ ŀƴŘ ǘƘŜ ǎǇŜŎƛƳŜƴΩǎ ǎǳǊŦŀŎŜΦ  ¢Ƙƛǎ ƭƻŎŀƭƛȊŜŘ 

deformation was significant in the materials tested.  With this analysis, the four-point 

bending data agreed well with the mechanics of solids predictions.   



viii 
 

 

Contents 

List of Tables x 

List of Figures xi 

Chapter 1: Introduction and motivation for research 1 

Introduction  1 

Background and pervious work 5 

Chapter 2: Modeling size effects of honeycombs loaded elastically in tension and 

bending 9 

Motivation and scope 9 

Calculations 11 

Tension 11 

Bending 13 

Sample designs 16 

Results and discussion 26 

Conclusions 31 

Chapter 3: Characterization of the size effect in the elastic response of honeycomb 

beams in bending 33 

Motivation and scope 33 

Design and fabrication of samples 34 

Testing of samples 40 

Three-point bending tests 41 

Four-point bending tests 43 

Analysis of data 46 

Continuum model 46 

Mechanic of solids model 47 



ix 
 

Analysis of bending data 48 

Normalization of the flexure stiffness 55 

Results 55 

General results regarding samples produced using selective laser 

sintering 56 

Three-point and four-point bending results for square-celled 

honeycombs: fifteen percent solid fraction 58 

Three-point and four-point bending results for square-celled 

honeycombs: twenty five percent volume fraction 63 

Three-point and four-point bending results for hexagonal-celled 

honeycombs: thin walled samples 67 

Three-point and four-point bending results for hexagonal-celled 

honeycombs: thick walled samples 73 

Chapter 4:  Discussion of experimental results 78 

Introduction 78 

Specimen length-to-height ratio 79 

Experimental results compared to mechanics of solids predictions 80 

Elastic bending and corrections for localized elastic/plastic deformation 86 

Additional Discussion 92 

Chapter 5: Conclusions and future work 94 

Conclusions 94 

Future Work 97 

Appendix A: Elastic Response of Honeycomb Materials 101 

Appendix B: DuraForm PA Plastic; 3DSystem; Technical Data Sheet 106 

Appendix C: PA250, Advanced Laser Materials, LLC: Technical Data Sheet 107 

Bibliography 108 

 



x 
 

List of Tables 

Table 2-1: Expressions for double-walled architectures 21 

Table 2-2: Showing representative analysis for hexagonal-celled samples 22 

Table 2-3: Representative calculations evaluating Equation 2.61 25 

Table 3-1: Honeycomb sample set design 36 

Table 3-2: Selective Laser Sintering Processing Parameters 36 

Table 3-3: Square-celled honeycomb samples, the dimensional tolerances that were 

obtained, and the associated errors in the cross-sectional areas 57 

 



xi 
 

List of Figures 

Figure 2-1: Single cell square honeycomb and solid rod in tension 12 

Figure 2-2: Single walled square-celled modeled set 15 

Figure 2-3: Double walled square-celled modeled set 16 

Figure 2-4: Single walled hexagonal-celled modeled set 16 

Figure 2-5: Doubled walled hexagonal-celled modeled set ς configuration B 17 

Figure 2-6: Doubled walled hexagonal-celled modeled set ς configuration C 18 

Figure 2-7: Doubled walled hexagonal cell modeled set ς configuration A 18 

Figure 2-8: Graph of single walled square cell showing the calculated normalized 

moment of inertia versus specimen-to-cell ratio for five volume fractions 26  

Figure 2-9: Graph of single walled square-celled honeycombs showing the calculated 

normalized moment of inertia versus volume fraction of solid for four samples with        

R = 1-4 27  

Figure 2-10: Graph of double and single walled square-celled honeycombs showing 

normalized moment of inertia as a function of the volume fraction 28  

Figure 2-11: Graph for single-walled hexagonal-celled honeycombs showing the 

calculated normalized moment of inertia versus volume fraction for four samples with   

R = 1-4 29  

Figure 2-12: Graph of double walled hexagonal-celled honeycombs showing the 

calculated normalized moment of inertia versus volume fraction for four samples with   

R = 1-3 31  

Figure 3-1: Cross-section geometry of square-celled honeycomb sample set, single-

walled with R = 1-4 34  



xii 
 

Figure 3-2: Cross section geometry of hexagonal-celled honeycomb sample set, with 

single wall construction and constant cell size, R= 1-5 34  

Figure 3-3: Schematic of Selective Laser Sintering process (SLS) 37  

Figure 3-4: Orientations of parts relative to the build direction (z-axis) 38  

Figure 3-5: A square-celled honeycomb sample set fabricated using SLS 38  

Figure 3-6: A hexagonal-celled honeycomb sample set fabricated using SLS 39  

Figure 3-7: Photograph of test frame showing sample undergoing four-point bending 40  

Figure 3-8: Bending test fixture, used for both 3pt. and 4pt. testing, shown configured 

for 4 pt. testing 40  

Figure 3-9: Geometry used for three-point bending tests 41  

Figure 3-10: Three-point bending of a honeycomb with regular hexagonal cells 42  

Figure 3-11: Geometry used for four-point bending tests 43  

Figure 3-12: Load displacement for regular hexagonal-celled honeycombs tested in four-

point bending test results 45  

Figure 3-13: Geometry used for four-point bending tests showing U(a) and U(b) 45 

Figure 3-14: Photograph of hexagonal honeycomb sample being tested in three-point 

bending 46 

Figure 3-15: Beam in pure bending 48 

Figure 3-16: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, fifteen volume percentage, and continuum model predictions 58 

Figure 3-17: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, fifteen volume percentage continuum model and mechanics of 

solids predictions 59 



xiii 
 

Figure 3-18: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, fifteen volume percentage continuum model predictions, 

mechanics of solids model and experimental 3pt beam measurements analyzed using 

beam theory 61 

Figure 3-19: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, fifteen volume percentage continuum model predictions, 

mechanics of solids model and experimental data tested in 4pt bending and analyzed 

using beam theory 61 

Figure 3-20: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, fifteen volume percentage continuum model predictions, 

mechanics of solids model and experimental data tested in 4pt bending and analyzed 

using elasticity theory 62 

Figure 3-21: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, fifteen volume percentage, all experimental data and model 

predictions 62 

Figure 3-22: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, twenty five percent volume fraction, continuum model predictions63 

Figure 3-23: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, twenty five volume fraction, continuum model and mechanics of 

solids predictions 64  

Figure 3-24: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, twenty five volume percentage continuum model predictions, 

mechanics of solids model predictions and experimental 3pt beam measurements 

analyzed using beam theory 64 

Figure 3-25: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, twenty five volume percentage, continuum model predictions, 

mechanics of solids model and experimental data tested in 4pt bending and analyzed 

using elasticity theory 65 

Figure 3-26: Normalized flexure stiffness versus specimen-to-cell size ratio: square-

celled honeycombs, twenty five volume percentage, continuum model predictions, 



xiv 
 

mechanics of solids model and experimental data tested in 4pt bending and analyzed 

using elasticity theory 66 

Figure3-27: Normalized flexure stiffness verses specimen-to-cell size ratio: square-celled 

honeycombs, twenty five volume percentage, all experimental data and model 

predictions 67 

Figure 3-28: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, continuum model predictions 68 

Figure 3-29: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, continuum model and mechanics of solids 

predictions 69 

Figure 3-30: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, continuum model predictions, mechanics of 

solids predictions and experimental 3pt beam measurements analyzed using beam 

theory 70 

Figure 3-31: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, continuum model predictions, mechanics of 

solids predictions and experimental 4pt beam measurements analyzed using beam 

theory 71 

Figure 3-32: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, continuum model predictions, mechanics of 

solids predictions and experimental 4pt beam measurements analyzed using elasticity 

theory 71  

Figure 3-33: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, all experimental data and model predictions 72 

Figure 3-34: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thick walled samples, continuum model predictions 73 

Figure 3-35: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thick walled samples, continuum model and mechanics of solids 

predictions 74 



xv 
 

Figure 3-36: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thick walled samples, continuum model predictions, mechanics of 

solids predictions and experimental 3pt beam measurements analyzed using beam 

theory 75 

Figure 3-37: Normalized flexure stiffness versus specimen-to-cell size ratio: hexagonal-

celled honeycombs, thick walled samples, continuum model predictions, mechanics of 

solids predictions and experimental 4pt beam measurements analyzed using beam 

theory 76 

Figure 3-38: Normalized flexure stiffness verses specimen-to-cell size ratio: hexagonal-

celled honeycombs, thin walled samples, continuum model predictions, mechanics of 

solids predictions and experimental 4pt beam measurements analyzed using elasticity 

theory 76 

Figure 3-39: Normalized flexure stiffness versus specimen-to-cell size ratio:  hexagonal-

celled honeycombs, thick walled samples,  all experimental data and model prediction 77 

Figure 4-1: Three-point bending, square-celled samples, measured flexure 

stiffness/predicted flexure stiffness versus specimen-to-cell size ratio 80 

Figure 4-2: Three-point bending, hexagonal-celled samples, measured flexure 

stiffness/predicted flexure stiffness versus specimen-to-cell size ratio 81 

Figure 4-3: Four-point bending - evaluated using beam theory, square-celled samples, 

measured flexure stiffness /  predicted flexure stiffness versus specimen-to-cell size ratio 

 82 

Figure 4-4: Four-point bending - evaluated using beam theory, hexagonal-celled 

samples, measured flexure stiffness/predicted flexure stiffness versus specimen-to-cell 

size ratio 84 

Figure 4-5: Four-point bending - evaluated using elasticity theory, squared-celled 

samples, measured flexure stiffness/ predicted flexure stiffness versus specimen-to-cell 

size ratio 84 



xvi 
 

Figure 4-6: Four-point bending - evaluated using elasticity theory, hexagonal-celled 

samples, measured flexure stiffness/predicted flexure stiffness versus specimen-to-cell 

size ratio 85 

Figure 4-7: Schematic showing the location of the displacements used for the elasticity 

analysis 86 

Figure 4-8: Representative data from four-point bending tests, square-celled samples 87 

Figure 4-9: One pattern of data seen from four point testing 88 

Figure 4-10: Representative data from four point bending tests hexagonal-celled 

samples 90 

Figure 4-11: Second pattern of data seen from four point testing 90 

Figure 5-1: Summary of thin walled hexagonal-celled samples 95 

Figure 5-2: Summary of thick walled hexagonal-celled samples 97 

Figure 5-3: Summary of thin-walled square-celled samples 98 

Figure 5-4: Summary of thick-walled square-celled samples 99   

 

 

 



1 
 

Chapter 1: Introduction and motivation for research 

INTRODUCTION  

hƴŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ŎŜƭƭǳƭŀǊ ǎƻƭƛŘǎ ƛǎ άŀƴ ŀǎǎŜƳōƭȅ ƻŦ ŎŜƭƭǎ ǿƛǘƘ ǎƻƭƛŘ ŜŘƎŜǎ ƻǊ ŦŀŎŜǎ 

ǇŀŎƪŜŘ ǘƻƎŜǘƘŜǊ ǘƻ Ŧƛƭƭ ǎǇŀŎŜέ (Gibson and Ashby 1997).  Many examples of cellular 

solids exist in nature; cork, sponges, and coral are examples of three-dimensional 

cellular materials, while a beehive is an example of honeycomb cellular material.  Man-

made cellular materials have been produced from many materials including metals, 

ceramics, plastics and even composites.  Interesting applications of manufactured 

cellular structures include lightweight space and aerospace construction materials 

(Labuhn 2005) (Bianchi, Aglietti and Richardson 2010), materials for impact absorption 

(Banhart 2001) and materials used to provide reaction sites for catalysis (Gruppi and 

Tronconi 2005). 

A defining feature of cellular solids is that they exhibit a high stiffness-to-mass 

ratio.  Conventional theory predicts that this ratio depends on the properties of the solid 

material used, the volume fraction of solid, and the shape of the cells (Gibson and Ashby 

1997).  Nature to date has succeeded in constructing cellular materials with far more 

complex architectures than human-kind; to paraphrase Sir Michael Ashby, nature builds 

with cells while man builds with solids (Simancik 2002).  The point is that, until recently, 

the ability to tailor the architectural parameters that define a cellular solid such as cell 
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size, cell geometry and volume fraction has been limited by existing materials 

processing technologies.  So unlike what we see in nature, the majority of existing 

cellular solids and even appropriate tools to analyze the behavior of cellular solids have 

been limited to materials that have uniform cell size, cell geometries, and relative 

densities.  

The first effective honeycomb manufacturing technique was developed by 

Heilburn in 1901.  As early as 1915, honeycomb cores were patented for aircraft 

applications.  (EconHP Holding GmbH 2011) In these applications, honeycombs are very 

often used in a core and sandwich arrangement in which the cellular material has walls 

parallel with the thickness direction and is sandwiched between solid sheets of material.  

Typically in these configurations, honeycombs have a relatively short thickness 

compared to the width or length of the sandwich panel.  These configurations have 

been well studied and are generally treated as continuum materials because the 

number of cells relative to the specimen size is large.  In this work, we take a different 

approach by examining configurations with long z-axis lengths.  

Recent advances in additive layered manufacturing (Marcus and Bourell 1993) 

and other new materials processing routes (Crumm and Halloran 1998) (Van Hoy, et al. 

1998) have greatly enhanced the ability to tailor the defining parameters of cellular 

materials.  When building cellular materials with 3D CAD-driven, additive manufacturing 

processes, the use of multi-scale cells, varying wall thickness, mixed geometries or non-

uniform relative densities is as easy as the use of uniform size, geometry, and density.  
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These parameters can now be varied so that cell topology and scale effects can now be 

reasonably considered.  However, to date there has been no design guidance available 

to leverage these processing capabilities to build non-uniform cellular materials with 

properties that are superior to uniform cellular materials. 

Of interest in determining the influence of cellular architectures on stiffness is 

the issue of a size effect that occurs when there is a small specimen-to-cell size ratio.  

This effect has been known alternatively as an edge effect and its recognition, as an 

effect seen in honeycombs or foam materials, traces back to attempts to make accurate 

ƳŜŀǎǳǊŜƳŜƴǘǎ ƻŦ ¸ƻǳƴƎΩǎ ƳƻŘǳƭǳǎ ƻŦ ŎŜƭƭǳƭŀǊ ŎŜǊŀƳƛŎ ŦƻŀƳǎ (Brezny and Green 1990) 

(Anderson and Lakes 1994).  aŜŀǎǳǊŜƳŜƴǘǎ ƳŀŘŜ ƻƴ ǎƳŀƭƭ ǎŀƳǇƭŜǎ άǎƛƳǇƭȅ ŘƛŘƴΩǘ ƳŀƪŜ 

ǎŜƴǎŜέ ŀƴŘ ƛƴ ǇǊŀŎǘƛŎŀƭ ǘŜǊƳǎ ŦŜǿ ŀǘǘŜƳǇǘǎ ǿŜǊŜ ƳŀŘŜ ǘƻ ƳŜŀǎǳǊŜ ŀƴŘ ŎƘŀǊŀŎǘŜǊƛȊŜ 

properties below a certain specimen-to-cell size ratio.   

Size effects are known in to exist in the plastic deformation of dense metals.  

Indentations, conducted by L.M. Brown and reported by N.A. Fleck, showed the inferred 

hardness of a sample increases with a decreasing indent size for indents in the micron to 

submicron range (Fleck and Hutchinson 1993).  Fleck also reported copper wires in the 

12-170 µm diameter range showed the thinner wires exhibiting stronger behavior than 

the thicker wires in torsion testing.  M.I. Idiart reports the effect in micro-bending of 

thin metallic foils in the 10-150 µm range (Idiart, et al. 2009).  Mechanistically this 

behavior has been explained as strain hardening resulting from the accumulation of 

statistically stored or geometrically necessary dislocations while from a 
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phenomenological standpoint, conventional continuum theories of plasticity, like those 

of elasticity possess no material length scale.  In the case of plasticity, the generalized 

continuum theory, has been expanded to account for this size effect (Fleck, et al. 1994) 

(Fleck and Hutchinson 1997).  These modifications of the generalized continuum theory 

are higher order theories such as strain gradient theories.  

In general size effects are considered significant when two characteristic lengths 

in a material are of the same order.  For example, the characteristic length scale in 

dense metals is of the order of 1 µm while the length scales for commercially available 

honeycombs can be closer to 1 mm.  Assuming typical specimen or feature dimensions 

are 1 mm and above, then honeycombs are far more likely to experience overlap of the 

macro-scale specimen or feature lengths with the micro-scale characteristic lengths.   

Experiments have demonstrated that in some loading configurations these size 

effects cannot be ignored when characterizing the elastic response of cellular solids or 

foam (Lakes 1983) (Andrews, Gioux, et al. 2001) (Anderson and Lakes 1994) (Brezny and 

Green 1990).  Greatly varying, both positive and negative size effects have been 

documented in different loading conditions such as uniaxial compression, torsion, 

indentation, bending and around notches and holes.  (Andrews & Gibson, 2001) (Mora 

and Waas 2000)  Like in the case of plasticity of dense metals, the elastic continuum 

analysis of cellular materials as developed by Gibson and Ashby does not include a 

length scale and does not account for any size effect (Gibson and Ashby 1997). 
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The possible loading configurations, together with the geometries of cellular 

solids, honeycombs or foams, their volume fractions, their cell shapes, and whether 

loading is in-plane or out-of-plane creates a large space to examine.  Some reduction in 

the number of possible configurations is possible by recognizing that foams and cellular 

honeycomb structures can act as models for each other in some configurations that lend 

themselves to two dimensional analyses.  Foams loaded in compression and 

honeycombs loaded in in-plane compression are examples.  However, other 

configurations require more complicated two and a half dimensional or three 

dimensional analyses.  Our interest is in honeycomb-type cellular solids with a focus on 

out-of-plane bending which requires higher order analyses. 

BACKGROUND AND PREVIOUS WORK 

Both analytical and discrete two dimensional models have been proposed (Onck, 

Andrews and Gibson 2001) (Tekoglu & Onck, 2005) (Dai and Zhang 2009) (Tekoglu & 

Onck, 2008) to characterize the elastic behavior of honeycombs.  These models have 

been compared to a small set of experiments, most of which were performed on foams.  

Onck et al. developed an analysis for infinitely long, regular hexagonal honeycombs 

loaded 1) in-plane uniaxially in compression and 2) in shear (Onck, Andrews and Gibson 

2001).  They used a combination of analytical analysis and 2D finite element modeling 

using a commercial FEM code.  Their model used a combination of conventional beam 

bending analysis, rigid body assumptions, and equations of compatibility of deformation 
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to predict an elastic size effect in uniaxial compression and shear.  They used their 

model to predict enhanced compliance in compression and enhanced stiffness relative 

to the predictions of the continuum model of Gibson and Ashby for cellular materials 

loaded in shear.  Thus, the size effect can be either positive or negative, but the 

predicted shear stiffening was short lived, being observed only for very small values of 

specimen-to-cell size ratio.  It was also shown that the location of specimen edge 

relative to the cellular architecture was important.  For example, specimens can 

terminate at a closed cell or an open cell.  The weakening effect seen in compression 

was attributed to decreased constraint from open cells and for cells located near a free 

surface.  The mechanism for the shear stiffening was not explicitly addressed.  

Experimental work was done in conjunction with the previously described 

modeling (Andrews & Gibson, 2001).  A seven volume percent, 20 pore per inch, open-

cell Al 6101-T6 (trade name Duocel) foam and 8% dense, closed-cell Al foam (trade 

name Alpora) were tested in compression and in shear at different size ratios of 

specimen-to-cell size.  Their results showed qualitative agreement with the trends in the 

modeling, but with quantitative differences. 

Tekoglu et al. considered extensions to the generalized continuum theories to 

determine a theory that could best match the results of discrete models (Tekoglu & 

Onck, 2008).  They addressed both higher-order theories, such as micropolar theory, 

micromorphic theory and microstrech theory and higher-grade theories, such as strain 

gradient theory, stress couple theory and a variation of the stress couple theory that 
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they call strain divergence theory.  Both the higher-order and higher-grade theories 

require an introduction of additional degrees of freedom into the continuum.  The 

higher order theories do this by introducing a new independent degree of freedom.  In 

the case of micropolar theory, a rotational degree of freedom is introduced.  The higher 

grade theories introduce the new degrees of freedom by tying the deformation 

measures to additional gradients in the strain.  Tekoglu evaluated two potential 

extensions of generalized continuum theory, the micropolar rotation and strain 

divergence theory, against numerical modeling.  For shear, the two theories converged, 

i.e. the fit characteristic length was of the same order as the cell size, and they reported 

excellent agreement in strain fields.  However for pure bending, this was not the case, 

i.e. the analytical solution using micro-polar and strain divergence theories both 

predicted an increase in stiffness while the discrete analysis predicted a reduction in 

stiffness. 

Dai and Zhang (Dai and Zhang 2009) modeled the elastic behavior of cellular 

materials using an analytical bending energy method for in-plane bending of four types 

cellular structures built with different unit cells including rectangular, hexagonal, 

triangular and Kagome structures, and compared those results to the predictions of two 

continuum calculations. The two continuum models included a general homogenization 

method and what the authors described as a meso-mechanics method that was based 

ƻƴ Dƛōǎƻƴ ŀƴŘ !ǎƘōȅΩǎ ǿƻǊƪΦ  bŜƛǘƘŜǊ ŎƻƴǘƛƴǳǳƳ ƳŜǘƘƻŘ ǇǊŜŘƛŎǘŜŘ ŀ ǎƛȊŜ ŜŦŦŜŎǘ ǿƘƛƭŜ 

their bending energy method did.  They reported different responses for the differing 
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cell shapes.  The rectangular cells showed an increase in stiffness, while the triangular 

and kagome cells showed a decrease in stiffness, and the hexagonal cells at low 

specimen-to-cell size ratios first exhibited a decrease in stiffness then an increase in 

stiffness before converging with the continuum predictions. 

The motivation for this research is to understand of how cell architectural 

features; specimen-to-cell size ratio, geometry, and volume fraction influence the final 

stiffness of honeycomb cellular materials loaded in out-of-plane bending.  To this end, 

we have conducted preliminary experiments by fabricating using selective laser 

sintering, differing sets of honeycomb structures.  These honeycombs contain a solid 

fraction of between 15 and 45 percent, have uniform cell sizes, and have varying shapes 

and specimen-to-cell size ratios.  We then experimentally measured the out-of-plane 

bending stiffness with the aim of documenting a size effect and determining what 

models can be used to correctly predict the effect.  Ultimately, this information can be 

used to design and test materials with non-uniform architectures which may out-

perform their more conventional counterparts.  
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Chapter 2: Modeling size effects of honeycombs loaded elastically 

in tension and bending 

MOTIVATION AND SCOPE 

From a practical standpoint, the design of honeycomb and foam structures has 

been limited by available manufacturing routes.  When producing honeycomb 

structures from ceramics, plastics and metals, there are only a limited number of 

processing routes that exist for each material class.  Several recent advances in 

manufacturing techniques such as additive manufacturing and micro-fabrication by co-

extrusion have opened up new and as of yet unexplored methods for creating 

honeycomb structures with more complex architectures  (Marcus and Bourell 1993).  

These methods allow much greater customization of the defining parameters of a 

honeycomb than the current methods that include expansion, corrugation, molding or 

direct extrusion (Banhart 2001) (Wadley 2003).   

We start by looking at the parameters that define a honeycomb.  Cell size, cell 

shape, and volume fraction or wall thickness are typically used to define the honeycomb 

architecture.  For most commercially available honeycombs, these parameters are 

usually constant throughout the specimen.  That is, the cell size, shape, wall thickness 

and thus volume fraction all remain the same throughout the structure, mainly because 

the manufacturing or processing route makes these parameters difficult or expensive to 

vary.  However newer processing routes do not have these limitations.  3D additive 
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manufacture methods such as selective laser sintering, (Marcus and Bourell 1993) 

(Deckard 1986) 3D printing (Rosochowski 2000) and fused deposition modeling (Crump 

1989) allow the fabrication of structures with varying cell shapes, sizes and volume 

fractions without a differential production cost. 

The combination of manufacturing and measurement constraints has resulted in 

limitation of the analysis of the elastic properties of honeycombs to configurations that 

have large specimen-to-cell size ratios.  Expanding the use of honeycomb structures 

beyond the current architectures with uniform cell sizes to use them more effectively 

leads to designs with a longer z-axis length.  This increases the exposure of these types 

of structures to bending as a limiting loading condition. 

As discussed in the preceding chapter, one well established starting point for 

predicting the elastic response of cellular structures is the work of Gibson and Ashby 

(Gibson and Ashby 1997). These models are continuum analyses that do not include a 

length scale in the effective modulus. Instead, the out-of-plane elastic modulus Ὁ is 

predicted to depend only on 1) the relative density of the honeycomb, ”ᶻ”ϳ  and 2) the 

¸ƻǳƴƎΩǎ modulus of the solid portion of the honeycomb. 

As part of this work, we will compare the effective stiffness predicted from 

Dƛōǎƻƴ ŀƴŘ !ǎƘōȅΩǎ ŎƻƴǘƛƴǳǳƳ ƳƻŘŜƭ ǿƛǘƘ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴǎ ƻŦ ŜŦŦŜŎǘƛǾŜ ǎǘƛŦŦƴŜǎǎ ƳŀŘŜ 

using a conventional mechanics of solids technique.  To do this we consider multiple 

sets of sample structures chosen to highlight these effects. The goals of this part of our 

work are to 1) determine the magnitude of the size effect for specimens with small 
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specimen-to-cell size ratios 2) determine the necessary specimen-to-cell size ratio 

where a continuum model can be used to predict effective stiffness, 3) examine the 

influence of relative density on the size effect and 4) examine the effects of cell 

geometry by varying the cell shape and configuration choices such a single verses 

double-walled structures.  

CALCULATIONS 

TENSION 

We begin by employing a mechanics of solids analysis and considering 

honeycombs with small specimen-to-cell size ratios loaded in tension or compression 

and comparing these materials to a solid material, as shown in Figure 2-1.  The top part 

of Figure 2-1 shows a side view and cross section of a solid.  The bottom part of the 

figure shows the side view and cross section of a squareςcelled honeycomb consisting of 

a single cell. The single celled honeycomb is considered here because, if there is a size 

effect, it is expected that this architecture would show the largest effect.  Both beams 

have the same perimeter and are loaded by an axial force F. They have areas A and As, 

respectƛǾŜƭȅΦ  ²Ŝ ŀƭǎƻ ŘŜŦƛƴŜ ǘƘŜ ¸ƻǳƴƎΩǎ ƳƻŘǳƭǳǎ ƻŦ ǘƘŜ ǎƻƭƛŘ ǎǇŜŎƛƳŜƴΣ E, and the 

ŜŦŦŜŎǘƛǾŜ ¸ƻǳƴƎΩǎ ƳƻŘǳƭǳǎ ƻŦ ǘƘŜ ǎƛƴƎƭŜ-celled square honeycomb, Es.    
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The stress on each of these beams is  

„           Equation 2.1 

„          Equation 2.2 

and assuming linear elasticity  

‐           Equation 2.3 

‐          Equation 2.4 

Since the areas of the cross sections are the same  

ὃ ‰ὃ         Equation 2.5 

Where, ‰ is the volume fraction of solid in the honeycomb. Comparing the 

stresses and the strains and we obtain 

‰         Equation 2.6 

       Equation 2.7 

 

FIGURE 2-1: SINGLE CELL SQUARE HONEYCOMB AND SOLID ROD IN TENSION 
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Thus, for the axial strains in each specimen to be the same under a load F,  

Ὁ  ‰Ὁ         Equation 2.8 

and substituting  Equation 2.7  into Equation 2.8, we obtain 

ρ         Equation 2.9 

This calculation shows that we do not expect to observe a size effect in tension 

or compression.  Thus, we expect that the continuum analysis of Gibson and Ashby 

should be capable of predicting the elastic response of honeycombs loaded axially in 

tension and compression, independent of their specimen size-to-cell size ratios. 

BENDING 

To compare the predictions of the Gibson and Ashby continuum model to those 

obtained from a mechanics of solids analysis, a method for normalizing the stiffness is 

required.  Recognizing that several normalization schemes are possible and that no one 

normalization method is intrinsically superior to another, the following method of 

normalizing bending stiffness and comparing the two methods was selected.   

The flexure rigidity is defined as  

ὉὍ          Equation 2.10 

where Ὁ is a material property and Ὅ is the structure-dependent second 

moment of inertia.  A continuum mechanics equivalent of the same flexure rigidity 

would be 

ὉᶻὍ  
ᶻ

ὉὍ        Equation 2.11 
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where Ὅ is the second moment of inertia of the entire enclosed or filled cross 

sectional area, and Ὁᶻ is the continuum effective modulus and  ”ᶻ”ϳ   is the relative 

density or equivalently, the volume fraction of solid in the honeycomb. 

To compare the two results we define a continuum effective second moment of 

inertia, Ὅ, such that  

Ὅ
ᶻ

Ὅ         Equation 2.12 

The ratio of the two flexure rigidities can then be expressed as 

 

 ᶻ
 

ᶻ  
 

       Equation 2.13 

with Ὁȟ ǘƘŜ ¸ƻǳƴƎΩǎ ƳƻŘǳƭǳǎ ƻŦ ǘƘŜ ǎƻƭƛŘ ŎŀƴŎŜƭƛƴƎ ƻǳǘΦ 

When normalized in this manner the mechanics of solids analysis converges with 

the continuum solution when the ratio of ὍὍϳ  is equal to one.  Thus, predicting the size 

effect of the elastic response of these structures is reduced to calculating the ratios  

ὍὍϳ  as a function of specimen-to-cell size ratio. There were several approaches taken to 

determining this ratio.  First for the single walled sample sets, Ὅ was calculated using the 

output of the SolidWorksϰ 3D CAD system (Dassault Systemes SolidWorks Corp., 

Concord MA) on which the geometries were drawn.  These calculations where then 

checked using analytical calculations.  For the double walled structures, each sample set 

was analyzed by first developing an expression for the second moment of each member 

in the sample set, then examining those derived relationships to find generalized 
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expressions for the second moment for the entire set as well as defining a relationship 

for Ὅ .  This relationships were then evaluated and the ratio of  ὍὍ ϳ reported.  

For the single-walled architectures, Ὅ was calculated using SolidWorksϰ 3D CAD 

system.  This software calculates numerically the value of Ὅ from the geometry of the 

cross-section.  These numerical solutions where then checked using analytical 

calculations.  For the double-walled structures, each architecture was analytically 

modeled by first deriving an expression for the second moment of each member in the 

sample set for values of R from one to six.  These relationships were then examined to 

determine generalized expressions for Ὅ as a function of n.  The value of Ὅȟ for each 

architecture was also determined. 

 

 
FIGURE 2-2: SINGLE WALLED SQUARE-CELLED MODELED SET 
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SAMPLE DESIGNS 

 

Two different basic geometries were examined, square-celled honeycombs and 

regular, hexagonal-celled honeycombs.  Within each of these geometries, the cellular 

architectures were varied systematically to explore their effects on effective stiffness.  

For example, in Figure 2-2, a set of square-celled samples is shown with a single wall 

thickness.  In this case the sample size is fixed and the cell-size-to-specimen size is varied 

by reducing the cell size proportionally.  Figure 2-3 shows an example of alternative 

construction rule for square-celled honeycombs.  In this case the cell size is fixed and 

the specimen-to-cell size is varied by adding cells, which results in a double-walled 

FIGURE 2-4 SINGLE WALLED HEXAGONAL-CELLED 
MODELED SET 

FIGURE 2-3:  DOUBLE WALLED SQUARE-CELLED MODELED SET 
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geometry. These construction rules result in a sample set that only has odd values of R, 

i.e. R = 1, 3, 5, and 7.  

 Figure 2-4 shows an example of a set of hexagonal-celled honeycombs with 

single wall thicknesses for R = 1 to 5, with two configurations shown for R = 2. And 

Figure 2-5 shows a sample set of hexagonal double walled architecture that also has odd 

values of R i.e. R = 1, 3, 5, and 7.  Figure 2-6 and Figure 2-7 are hexagonal-celled 

honeycombs built using the double wall, constant cell size approach.  Figure 2-5 shows 

an architecture that uses construction rules that also yield only an odd set of specimen-

to-cell size ratios.  However, Figure 2-6 and Figure 2-7 are constructed in a slightly 

different way, with the intent of defining an architecture that has both even and odd 

specimen-to-cell size ratios, yet the second moment of inertia can still be varied.  One 

additional design rule was used for all of the different geometry sets:  No half or quarter 

cells were used, only whole or complete cells were allowed.   

FIGURE 2-5: DOUBLED WALLED HEXAGONAL-CELLED MODELED SET 
ς CONFIGURATION B 



18 
 

To illustrate the methodology for utilizing a mechanics of solids approach to 

analyzing the elastic bending response, we present two cases below.  First the double-

walled, hexagonal celled structures shown in Figure 2-5 are presented.  This case is 

representative of the calculation method used when analyzing architectures where the 

cell size was held constant and the specimen size was increased to vary the specimen-

to-cell size ratio.  The second case presented is for single-walled, square honeycombs 

that were designed to keep the specimen size constant and with decreasing the cell size, 

as shown in Figure 2-2.  A summary of the results of the analyses for the other cases are 

then presented in Table 2-1. 

We start by calculating Ὅ for each of the samples using the parallel axis theorem 

to obtain an expression for Ὅ in terms of Ὅ, the second moment of one unit cell, and 

FIGURE 2-6 DOUBLED WALLED HEXAGONAL-CELLED MODELED SET 
ς CONFIGURATION C 

FIGURE 2-7: DOUBLED WALLED HEXAGONAL -CELLED MODELED SET ς 
CONFIGURATION A 
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ὃώ, where ὃ is the area of the unit cell and ώ is the square of the distance from the 

neutral axis to the second row of cells.  Extending this to all the architectures we obtain 

a series of equations as shown below: 

 

Ὅὲ π Ὅ         Equation 2.14 

Ὅὲ ρ χὍ ρςὃώ        Equation 2.15 

Ὅὲ ς ρωὍ ωφὃώ       Equation 2.16 

Ὅὲ σ σχὍ σχςὃώ       Equation 2.17 

Ὅὲ τ φρὍ ρπςπὃώ      Equation 2.18 

In these expressions it is important to note that n is not the specimen-to-cell size 

ratio but rather a counting variable and that, the specimen-to-cell size, R, is given by  

R = ςὲ ρ.         Equation 2.19 

From these equations we can generalize an expression for Ὅὲ such that 

Ὅὲ σὲ σὲ ρὍ В ςὲυὲ ρὃώ    Equation 2.20 

Equation 2.20 represents the value of Ὅ for a cross-section that has the outer 

perimeter shown in Figure 2-5, but is solid rather than cellular.  To obtain the values of 

Ὅὲ for the cellular architecture, the values of Ὅὲ for the open portions of the cellular 

structure, Ὅ ,  must be subtracted from the Ὅὲ  for the solid to obtain Ὅ . 

Ὅ ȟ Ὅ ȟ Ὅ ȟ       Equation 2.21 

Substituting for Ὅand ὃώ in terms of Ὓand Ὓ which are the outer and inner 

side dimensions of the hexagon as and solving for Ὅ ȟ  and  Ὅ ȟ  
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Ὅ ȟ σὲ σὲ ρ
Ѝ
Ὓ В ςὲυὲ ρ

Ѝ
Ὓ Ὓ  

Equation 2.22 

Ὅ ȟ σὲ σὲ ρ
Ѝ
Ὓ В ςὲυὲ ρ

Ѝ
Ὓ Ὓ  

Equation 2.23 

Subtracting the two results in: 

Ὅ Ὅ ȟ Ὅ ȟ Ὅ ȟ 

σὲ σὲ ρ
Ѝ
Ὓ Ὓ В ςὲυὲ ρ

Ѝ
Ὓ Ὓ Ὓ    

Equation 2.24 

Ὅȟ  and ὍὍϳ  can then be calculated  

Ὅȟ
ᶻ

Ὅ ȟ Ὓ Ὓ Ὓ σὲ σὲ ρ
Ѝ В ςὲυὲ ρ

Ѝ
  

Equation 2.25 

Ѝ В Ѝ

Ѝ В Ѝ
     Equation 2.26 

To simplify the expression we define  

Ὢὲ  σὲ σὲ ρ
Ѝ

        Equation 2.27 

Ὢὲ  ςὲυὲ ρ
Ѝ

       Equation 2.28 

ÓÏ ÔÈÁÔ ὍὍϳ  can then be expressed as 

В

В
        Equation 2.29 
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This expression can be further simplified if Ὓ ρ, where Ὓ is equal to the 

length of the outer side of and individual cell: 

В

В
       Equation 2.30 

Similar calculations were performed for the all the double-walled architectures 

and the results presented in Table 2-1 

TABLE 2-1  EXPRESSIONS FOR DOUBLE-WALLED ARCHITECTURES 

Cell Geometry Fig # F1(n) F2(n) 

Hex  
Double 
wall 

2.5 σὲ σὲ ρ
υЍσ

ρφ
   

EQUATION 2.31 

ςὲυὲ ρ
σЍσ

ς

σ

τ
  

EQUATION 2.32 

Hex 3 
wide ς 
odd  

Double 
wall 

2.6 
ρ

ς
φὲ ρ σ

υЍσ

ρφ
 

EQUATION 2.33 

ρ

σὲ
σЍσ

ς

σ

τ
 

EQUATION 2.34 

Hex 3 
wide ς
even 

Double 
wall 

2.7 

φὲ ρ

σ
Ѝ

   
EQUATION 2.35 

ρ σ ὲ

ρ
σЍσ

ς

σ

τ
  

EQUATION 2.36 

Square  
Double 
wall 

2.3 ςὲ ρ   
EQUATION 2.37 

ςςὲ ρ ὲ 

EQUATION 2.38 

The square celled architecture shown in Figure 2-3 has the summation term 

inside the f2 function and this slightly changes the final form of ὍὍϳ  so that for this case   

        Equation 2.39 

Also note that for square-celled architectures, we have replaced  Ὓ ×ÉÔÈ  ὒ  

where ὒ   represents the length of the inside of the square unit cell.  
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These functions were evaluated by varying the specimen-to-cell size ratios and 

the volume fractions.  A representative set of calculations is presented in Table 2-2.  

 

Next we present the calculations for the architecture where the specimen-to-cell 

size ratio was varied by decreasing the cell size. The beginning of the sample set 

analyzed is shown in Figure 2-2.  However only the odd values of the specimen-to-cell 

size ratios, R,  were analyzed, i.e. R = 1, 3, 5, 7 and 9 which correspond to n = 0, 1, 2, 3 

and 4 . Also, in these calculations we have let the outer size of the specimen, which is 

constant in this arrangement, arbitrarily set equal one, thus creating a unit-sized cell.  

We again start by calculating Ὅ for each of the architectures using the parallel axis 

theorem to obtain an expression for Ὅ in terms of ὍᶻΣ ǘƘŜ ǎŜŎƻƴŘ ƳƻƳŜƴǘ ƻŦ ƻƴŜ άƘƻƭŜέ 

in the unit cell, and ὃώ , where ὃ is the area of the hole and ώ  is the square of the 

n Rank si Vf Inet/Io

f1/C1 C1 f1 f2n/C2 ңŦƴκ/н C2 ңŦƴ 1>si>0 (1-si^2)

(n+1) 1/2(6n+ (-1)^(n+1)+3) (5*3^.5)/16 ((-1)^(n-1)+3)n^2 ((3*3^0.5)/2)(3/4)
0.98 0.0396

n Rank f1a c1 f1 f2a f2b c2 f2
a

0 1 1 0.5413 0.541 0 0 1.949 0 1.9604

1 2 5 0.5413 2.706 4 4 1.949 7.794229 1.247526

2 3 7 0.5413 3.789 8 12 1.949 23.38269 1.13392

3 4 11 0.5413 5.954 36 48 1.949 93.53074 1.057478

4 5 13 0.5413 7.036 32 80 1.949 155.8846 1.041479

5 6 17 0.5413 9.202 100 180 1.949 350.7403 1.024552

6 7 19 0.5413 10.284 72 252 1.949 491.0364 1.019702

7 8 23 0.5413 12.449 196 448 1.949 872.9536 1.013504

8 9 25 0.5413 13.532 128 576 1.949 1122.369 1.011441

9 10 29 0.5413 15.697 324 900 1.949 1753.701 1.00852

10 11 31 0.5413 16.779 200 1100 1.949 2143.413 1.00746

11 12 35 0.5413 18.944 484 1584 1.949 3086.515 1.005859

12 13 37 0.5413 20.027 288 1872 1.949 3647.699 1.005244

13 14 41 0.5413 22.192 676 2548 1.949 4964.924 1.004274

14 15 43 0.5413 23.274 392 2940 1.949 5728.758 1.003886

15 16 47 0.5413 25.439 900 3840 1.949 7482.459 1.003254

16 17 49 0.5413 26.522 512 4352 1.949 8480.121 1.002994

17 18 53 0.5413 28.687 1156 5508 1.949 10732.65 1.00256

f1 f2

TABLE 2-2: SHOWING REPRESENTATIVE ANALYSIS FOR HEXAGONAL-CELLED SAMPLES  
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distance from the neutral axis to the second row of cells.  Extending this to all the 

architectures we obtain a series of equations as shown below: 

Ὅὲ π Ὅᶻ        Equation 2.40 

Ὅὲ ρ ωὍᶻ φὃώ       Equation 2.41 

Ὅὲ ς ςυὍᶻ υπὃώ        Equation 2.42 

Ὅὲ σ τωὍᶻ ρωφὃώ       Equation 2.43 

Ὅὲ τ ψρὍᶻ υτπὃώ       Equation 2.44 

Ὅὲ ςὲ ρ Ὅᶻ ςςὲ ρВ ὲὃώ    Equation 2.45 

We can then derive the following relationships (see appendix for details of these 

calculations) 

Ὅᶻ         Equation 2.46 

ὃ  )        Equation 2.47 

ώ
ὲ π π

ὲ ρȟςȟσȟȣ
      Equation 2.48 

‰ὲ ρ ςὲ ρ ὃ        Equation 2.49 

Where ‰ὲ is the relative density of the honeycomb. Setting the relative 

density for all of the architectures in this set equal, we obtain: 

‰ὲ ‰ὲ ρ         Equation 2.50 

ςὲ ρ ὃ= ςὲ ρ ρ ὃ       Equation 2.51 
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ςὲ ρ ὃ= ςὲ ρ ὃ        Equation 2.52 

ςὲ ρ = ςὲ ρ     Equation 2.53 

(1- ςὲ ςὸ ρ ςὲὸ       Equation 2.54 

 ὸ ὸ          Equation 2.55 

ὸ ὸВ          Equation 2.56 

Substituting Equations 2.45, 2.46, and 2.47 into Equation 2.44 , we obtain 

Ὅὲ
ρ

ρς
ςὲ ρ

ρ

ρς

ρ ςὲ ςὸ

ςὲ ρ
 

ςςὲ ρВ ὲ
ὲ π π

ὲ ρȟςȟσȟȣ
   Equation 2.57 

And substituting Equation 2.57 into the above equations, 

 Ὅὲ ςὲ ρ
В

 

ςὲ ρВ ὲ
В

ὲ π π

ὲ ρȟςȟσȟȣ
В       

Equation 2.58 

And we can then find Ὅ  

Ὅ             Equation 2.59 

Ὅ          Equation 2.60 

Giving us  
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В
В

В

ȟȟȟȣ
В

  

Equation 2.61 

The results of the calculations for this architecture for n equal zero to 10 are 

summarized in Table 2-3. 

 

R t(0) t(n) A(n) Vf y(n)^2 I*(n) I(n) I(o) I(n)/i(0) 

1 0.0013 0.0013 0.9950 0.005 0.00E+00 8.25E-02 8.30E-04 4.16E-04 2.00 

3  0.0006 0.1106 0.005 1.11E-01 1.02E-03 5.54E-04 4.16E-04 1.33 

5   0.0004 0.0398 0.005 4.00E-02 1.32E-04 4.99E-04 4.16E-04 1.20 

7  0.0003 0.0203 0.005 2.04E-02 3.44E-05 4.75E-04 4.16E-04 1.14 

9  0.0003 0.0123 0.005 1.23E-02 1.26E-05 4.62E-04 4.16E-04 1.11 

11  0.0002 0.0082 0.005 8.26E-03 5.64E-06 4.54E-04 4.16E-04 1.09 

13  0.0002 0.0059 0.005 5.92E-03 2.89E-06 4.48E-04 4.16E-04 1.08 

15  0.0002 0.0044 0.005 4.44E-03 1.63E-06 4.44E-04 4.16E-04 1.07 

17  0.0001 0.0034 0.005 3.46E-03 9.88E-07 4.41E-04 4.16E-04 1.06 

19  0.0001 0.0028 0.005 2.77E-03 6.33E-07 4.38E-04 4.16E-04 1.05 

21  0.0001 0.0023 0.005 2.27E-03 4.24E-07 4.36E-04 4.16E-04 1.05 

Table 2-3 Representative calculations evaluating Equation 2.61 
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RESULTS AND DISCUSSION 

The results of the calculations for all of the architectures considered are 

presented below. Figure 2-8 shows the effect of specimen-to-cell size variations of the 

square-celled, single walled honeycombs with a constant specimen size, where the 

normalized second moment or flexure stiffness, ὍὍ ϳ , is plotted versus the specimen-to-

cell size ratio, R.  From this plot, it is apparent that a significant size effect is predicted at 

small specimen-to-cell ratios.  For example, at a specimen-to-cell size ratio of one (R 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 N
o

rm
a

liz
e

d
  

M
o

m
e

n
t 

o
f 

In
e

rt
ia

 
I/

I 0
 

Specimen-to-cell size ratio, R 

Single-walled square celled   

 

0.5 percent

15 percent

30 percent

45 percent

60 percent

volume 
fractions 

FIGURE 2-8: GRAPH OF SINGLE WALLED SQUARE CELLED HONEYCOMBS SHOWING THE CALCULATED NORMALIZED 
MOMENT OF INERTIA VERSUS SPECIMEN-TO-CELL RATIO FOR FIVE VOLUME FRACTIONS 
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equal one), the structures with a small volume fraction of solid have an 

 ὍὍ ϳ approaching two, which represents a hundred percent increase in flexural stiffness 

over the continuum model.  At sixty percent volume fraction of solid, which would 

represent a thick-walled honeycomb, ὍὍ ϳ  = 1.4 which is a forty percent increase over 

the continuum predictions. This drops off as the specimen-to-cell ratio 

increases, until at a specimen-to-cell size ratio of ten to one, it is reduced to only a ten 

percent increase over continuum estimates even at low volume fractions.  One range of 

interest is for volume fractions of less than thirty percent (thin-walled honeycombs).  

For these architectures we predict a significant size effect persisting until at least R 
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FIGURE 2-9:  GRAPH OF SINGLE WALLED SQUARE-CELLED HONEYCOMBS SHOWING THE CALCULATED NORMALIZED 
MOMENT OF INERTIA VERSUS VOLUME FRACTION OF SOLID FOR FOUR SAMPLES WITH SPECIMEN-TO-CELL SIZE RATIOS 

OF ONE TO FOUR 
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equals ten. Full agreement with the continuum calculations (ὍὍ ϳ ­ 1) occurs at Rs 

greater than twenty, although the size effect between R equal ten and R equal twenty is 

minor.  

Figure 2-9 shows the results of the calculations for the same square-celled 

honeycombs, but here the relative stiffness is plotted versus volume fraction for R equal 

one to R equal four.  For R equal one -- ὍὍ ϳ  is approximately two and this value drops 

as volume fraction increases until it reaches one, as expected at a hundred percent 

volume fraction.  In a similar manner we can see that for R equal two, ὍὍ ϳ equal to one 
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FIGURE 2-10: GRAPH OF DOUBLE AND SINGLE WALLED SQUARE CELLED HONEYCOMBS SHOWING NORMALIZED MOMENT OF 
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and a half, dropping to  ὍὍ ϳ  is equal to one and quarter for R equal four.   

Figure 2-10 shows that the size effect is much larger for the single-walled 

architecture than for the double-walled architecture. This results from differences in 

how the solid material is distributed across the cross section of beams, i.e. there is more 

mass further from the neutral axis at a given volume fraction for the single-walled 

architectures than for the double-walled architectures.  

The other cases we considered are the hexagonal-celled honeycombs which are 

presented in Figure 2-11 and Figure 2-12.  From  Figure 2-11, we see that response of 

the hexagonal cells is similar to the  response of the square celled honeycombs. For 
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example, for R equal one, ὍὍ ϳ  approaches two at low volume fractions, decreasing 

with both specimen-to-cell size ratio and volume fraction.  In Figure 2-11, the relative 

stiffness is plotted for single walled hexagonal-celled architectures for R = 1 to R = 4.  

Figure 2-12 the relative stiffness of the double walled is plotted for R = 1 to R = 3.  These 

figures again show that the size effect is greatest for single-walled architectures and 

decreases with both wall thickness and volume fraction. 
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CONCLUSIONS 

As we mentioned earlier, the goals of this part of our work are to 1) determine 

the magnitude of the size effect for specimens with small specimen-to-cell size ratios 2) 

determine the necessary specimen-to-cell size ratio where a continuum model can be 

used to predict effective stiffness, 3) examine the influence of relative density on the 

size effect and 4) examine the effects of cell geometry by varying the cell shape and 
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configuration choices such as single versus double-walled structures.  We predicted an 

increase in stiffness of up to a hundred percent for both the square and hexagonal 

samples at   equal one and decreasing with both specimen-to-cell size ratio and volume 

fraction.  For volume fractions of less than the thirty percent (thin-walled honeycombs) 

with single wall architectures, we predict a significant size effect persisting until at least 

R equal ten.  Full agreement with the continuum calculations (ὍὍ ϳ approaches one) 

occurs at R is greater than twenty, although the size effect between R equal ten and R 

equal twenty is minor.  The effect of choosing between double walled or single-walled 

construction is significant and shows that the size effect is much larger for the single-

walled architecture than for the double-walled architecture.  Again this results from 

differences in how the solid material is distributed across the cross section of beams, 

with more mass further from the neutral axis at a given volume fraction for the single-

walled architectures than for the double-walled architectures.   
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Chapter 3: Characterization of the size effect in the elastic 
response of honeycomb beams in bending. 

MOTIVATION AND SCOPE 

Measurement of the ̧ ƻǳƴƎΩǎ modulus of foam and honeycomb structures has 

been recognized as a difficult task when the size of the sample being tested becomes 

too small in relation to the size of the cells in the foam or honeycomb. (Brezny and 

Green 1990)  tǊŜǾƛƻǳǎ ƳŜŀǎǳǊŜƳŜƴǘǎ ƳŀŘŜ ƻƴ ǎƳŀƭƭ ǎŀƳǇƭŜǎ άǎƛƳǇƭȅ ŘƛŘƴΩǘ ƳŀƪŜ 

ǎŜƴǎŜέ ŀƴŘ ƛƴ ǇǊŀŎǘƛŎŀƭ ǘŜǊƳǎΣ ŦŜǿ ŀǘǘŜƳǇǘǎ ǿŜǊŜ ƳŀŘŜ ǘƻ ƳŜŀǎǳǊŜ ŀƴŘ ŎƘŀǊŀŎǘŜǊƛȊŜ ǘƘŜ 

elastic properties of samples below a certain specimen size.  This effect which is also 

known as an edge effect has not been studied in detail previously.  

We have designed, built and tested polyamide honeycombs to characterize the 

effect of specimen-to-cell size ratio variation on the ̧ƻǳƴƎΩǎ ƳƻŘǳƭǳǎ of a honeycomb in 

out-of-plane bending.  The test sample sets were designed using a 3D CAD program, 

converted to digital files, and then transferred to and built using a free form fabrication 

process from a polyamide powder.  The samples were tested on a mechanical test frame 

in three-point bending and four-point bending.  Results of experiments are compared to 

the predicted behavior using three models, an elastic continuum model as described by 

Gibson and Ashby (Gibson and Ashby 1997), a conventional mechanics of solid analysis, 

and a full elastic analysis.  Finally, additional issues associated with the difficulty in 

measuring the ̧ ƻǳƴƎΩǎ modulus of honeycomb structures are addressed and discussed. 
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DESIGN AND FABRICATION OF SAMPLES 

Honeycombs with two different cellular geometries, square and hexagonal, each 

with two different volume fractions, were designed using SolidWorksϰ.  The geometries 

of honeycombs with square unit cross section cells are shown in Figure 3-1 and the 

geometries of honeycombs with regular hexagonal cross section unit cells are shown in 

Figure 3-2.  The lengths of the samples, out of the plane of the page, were standardized 

at a length of 200 mm.  The square-celled samples had cross-sectional dimensions of 

twenty mm by twenty mm while the dimensions of the hexagonal-celled samples varied, 

FIGURE 3-2: CROSS SECTION GEOMETRY OF HEXAGONAL-CELLED 
HONEYCOMB SAMPLE SET, WITH SINGLE WALL CONSTRUCTION AND 

CONSTANT CELL SIZE, R= 1-5 

FIGURE 3-1: CROSS-SECTION GEOMETRY OF SQUARE-
CELLED HONEYCOMB SAMPLE SET, SINGLE-WALLED 

WITH R = 1-4 
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as described below.  

Two differing approaches were taken in designing the square and hexagonal-

celled honeycombs.  The square-celled samples had a constant specimen size and the 

variation in the specimen-to-cell size ratio was accomplished by varying the size of the 

cell.  This required varying the wall thickness for each sample set to maintain a constant 

volume fraction for all values of R.  However, the geometry of a hexagon does not allow 

construction of an analogous sample set.  Thus, for the hexagons, the samples were 

built using a constant cell size of eight millimeters and the variation in the specimen-to-

cell size ratio was accomplished by increasing the height and width of the specimens.  A 

summary of the sample set construction rules is provided in Table 3-1. 

The samples were built using a Hi-Q Selective Laser Sintering System (3D 

Systems, Rockhill SC).  Selective Laser Sintering (SLS) is a powder-based, layer-based, 

additive manufacturing process shown schematically below in Figure 3-3.  SLS is one of 

several competitive additive manufacturing processes that have been invented and 

commercialized during the past twenty years.  In the SLS process a part is constructed 

one layer at a time inside a thermally controlled process chamber which is held a 

temperature slightly below the melting point of the polymer being used.  A laser beam is 

raster scanned across the surface of a layer of powder, turning on and off to selectively 

sinter or fuse the polymer powder particles into a shape defined by a computer which 

has converted a three dimensional CAD image into profile slices equal in thickness to the 

powder layer thickness.  The powder is deposited in thin layers, in the range of 0.15 to 
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0.25 mm deep, uniformly across a piston.  After a given layer has been fused, the piston 

is lowered and a new layer of powder is added on top of the just completed layer.  The 

new layer is then fused, based on the defined shaped, and in this manner a three-

dimensional object can be fabricated from multiple layers.  (Beaman 1997)  

Two grades of polyamide 12 were used in building the parts.  The first is 3D 

Systems Corporation, Duraform® PA and the second is an equivalent PA 12 made by 

Advanced Laser Materials LLC, (Belton, Texas).  The published mechanical data for both 

polymers is presented in Appendices B and C.   

Table 3-2:  Selective Laser Sintering Processing Parameters 

 Units  Quantity 

Part Bed Temperature    όх/ύ 170 

Feed Bed Temperature όх/ύ 140 

Laser Power Watts 40 

Powder Layer Level (mm) 7 

Table 3-1: Honeycomb sample set design rules  

 

Cell Shape 
Specimen-to-cell size  

ratio (R) 

Fabrication 

Method 

Volume  

fraction of solid 

Square 1 to 4 
Constant Specimen Size, 

Variable Cell Size   
Constant = 0.15 

Square 1 to 4 
Constant Specimen Size, 

Variable Cell Size 
Constant= 0.25 

Regular Hexagon 1 to 6 
Constant Cell Size 

Variable Specimen Size 
Varying = 0.30 to 0.19 

Regular Hexagon 1 to 6 
Constant Cell Size 

Variable Specimen Size 
Varying = 0.49 to 0.35 
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While the two polymers appear nearly identical and they are from the same 

primary polymer supplier, all data was analyzed separately for each.  Only virgin, non-

recycled powder was used.   

Prior to beginning to build the samples used for this project, the thermal 

distribution characteristics and the laser power levels of the SLS system were calibrated 

and adjusted to bring the platform into operating specifications.  This required 

replacement of the part piston seal and refocusing of the laser.  The build and part 

processing parameters were held constant between all runs and are presented in Table 

3-2.  The samples were built with a 2.5 cm (one inch) powder warm up layer and utilized 

a heat shield which was used to create a uniform temperature distribution before 

building the first layer.  Fabrication of the samples was started 0.625 cm (0.25 inches) 

FIGURE 3-3: SCHEMATIC OF SELECTIVE LASER SINTERING PROCESS 
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above the heat shield.  A slow, fully controlled cool down process was used to increase 

the uniformity of temperature and thus increase the uniformity of the resulting 

mechanical properties of the finished part.  

Initially, several solid test parts were built to evaluate the influence of the build 

orientation on the elastic properties of the polymer.  The test parts were built in three 

FIGURE 3-4: ORIENTATIONS OF PARTS RELATIVE TO THE BUILD 
DIRECTION (Z-AXIS) 

FIGURE 3-5: A SQUARE-CELLED HONEYCOMB SAMPLE SET FABRICATED USING SLS 
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orientations as shown in Figure 3-4.  Two of these samples were built with the long axis 

of the specimen parallel to the x-y plane.  In one case the largest face of the specimen 

was parallel to the x-y plane.  In the other case the specimen was rotated forty-five 

ŘŜƎǊŜŜǎ ǎƻ ǘƘŀǘ ƛǘ ǿŀǎ άōǳƛƭǘ ƻƴ ŀ ŎƻǊƴŜǊΦέ  ¢ƘŜ ǘƘƛǊŘ ǎŀƳǇƭŜ ǿŀǎ ōǳƛƭǘ so that the long 

axis was parallel to the z-axis. 

A photograph of a representative set of square samples, built using SLS is shown 

In Figure 3-5 and a photograph of a representative set of hexagonal samples is shown in 

Figure 3-6.  An item to note is that two of the square-celled samples with specimen-to-

cell sizes of three and four and with solid fractions of fifteen percent had wall 

thicknesses that were too thin to be successfully built using the SLS system.  Thus, these 

samples could not be tested and these data points do not appear in the presented 

results.   

FIGURE 3-6: A HEXAGONAL-CELLED HONEYCOMB SAMPLE SET FABRICATED USING SLS 
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TESTING OF SAMPLES 

Three-point bending and four-point bending tests were performed to determine 

FIGURE 3-7: PHOTOGRAPH OF TEST FRAME SHOWING SAMPLE 
UNDERGOING FOUR- POINT BENDING 

FIGURE 3-8:BENDING TEST FIXTURE, USED FOR 
BOTH  3PT. AND 4PT. TESTING, SHOWN 

CONFIGURED FOR 4 PT TESTING 
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the elastic response of the samples.  Testing of the samples was performed on a MTS 

Sintech 2/G test frame shown in Figure 3-7 equipped with a 10,000N load cell and an 

MTS Model 642.01A bend bending jig shown in Figure 3-8.  The bending jig was outfitted 

with 2.5 mm diameter, spring-retained, steel rollers and a MTS Model 632.06H-20 

deflectometer.  Testing methods generally followed ASTM standards for measuring 

flexural properties in plastics (D790 n.d.) (D6272 n.d.), although there were some 

modifications to account for the differences required for testing on honeycomb 

structures rather than solid samples and differences in the sample sizes. 

THREE-POINT BENDING TESTS 

The three-point bending setup is shown schematically in Figure 3-9.  The sample 

rests on two supports and is loaded by means of a roller located midway between the 

supports.  The span between the supports, ὒ, is 150 mm and steel rollers with a 

diameter of 2.5 mm are used to both support and load the sample.  The deflectometer 

is placed at the center-point of the sample on the bottom face of the sample and 

FIGURE 3-9:  GEOMETRY USED FOR THREE-POINT BENDING TESTS 
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directly beneath the load point.  All samples were tested at a constant displacement 

rate of 1 mm/min.  The load cell and deflectometer were calibrated prior to testing.  

Since the strains were small enough that no measurable plastic deformation took place, 

each sample was tested multiple times.  Data from the load cell, the deflectometer and 

the cross head position was collected for each test.  To verify that the system was 

ƻǇŜǊŀǘƛƴƎ ŎƻǊǊŜŎǘƭȅΣ ǘƘŜ ¸ƻǳƴƎΩǎ ƳƻŘǳƭǳǎ ŦƻǊ ŀ ƳƛƭŘ ǎǘŜŜƭ ǎŀƳǇƭŜ ǿŀǎ ƳŜŀǎǳǊŜŘ ŀƴŘ 

evaluated.  The measured modulus for the mild steel test sample was 198 GPa which 

agrees well with the expected values of approximately 200 GPa.  

In Figure 3-10 a representative graph shows the load versus center-point 

deflection from a three-point test on a hexagonal-celled honeycomb.  This data is from 

the loading curve only, and we see generally that the response is linear.  In this figure 
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the sample designations a, b and c in the legend represents the three sides, 120 degrees 

apart, that each hexagonal sample was tested on.  The variation in this data was then 

used to bracket the error or uncertainty in the measurements.  It is interesting to note 

that the unloading data for the three-point testing showed hysteresis, where at the 

beginning of the unloading curve, the slope was greater than the slope for the loading 

line.  This variation in slope upon unloading occurs for only a small displacement before 

ǊŜǘǳǊƴƛƴƎ ǘƻ ǘƘŜ ǎƭƻǇŜ ƳŜŀǎǳǊŜŘ ŘǳǊƛƴƎ ƭƻŀŘƛƴƎΦ  ¢Ƙƛǎ ŀǇǇŀǊŜƴǘ άǎǘƛŦŦŜƴƛƴƎέ ǳǇƻƴ 

reversing of the loading, is thought to be a result of sticking of the rollers and is not 

addressed further. 

FOUR-POINT BENDING TESTS  

The four-point bending was conducted on the same test frame and bend fixture as used 

for the three-point bending described previously.  The four-point bending configuration 

is shown in Figure 3-11.  The sample is supported by two lower support rollers with a 

diameter of 2.5 mm positioned on the outside of the bend fixture and separated by a 

FIGURE 3-11 GEOMETRY USED FOR FOUR-POINT BENDING TESTS 
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distance of 150 mm.  The sample is then loaded from the top by two additional 2.5 mm 

diameter rollers, which are separated from each other by 75 mm (ὒ/2) and are inset 

from the bottom support roller by 37.5 mm.  A deflectometer is used to measure the 

center-point deflection while the displacement of the upper rollers is captured using the 

cross head displacement.  Like for the three-point tests, all samples were tested at a 

constant displacement rate of 1 mm/min.   

The load cell and deflectometer were calibrated prior to beginning the testing.  

Each sample again was tested in multiple orientations and each sample was tested 

multiple times.  Data from the load cell, the deflectometer and the cross head position 

were collected for each test.  In Figure 3-12 representative data collected from a four-

point test from a hexagonal solid sample is presented.  Both center-point data taken 

with the deflectometer and crosshead displacement are shown.  These points are 

labeled Ὗ  and Ὗ , respectively, as shown in Figure 3-13.  The a, b and c designations 

represent three successive tests on each of the three sides of the hexagonal beam.  The 

nearly linear data in Figure 3-12 are from the deflectometer while the crosshead 

displacement data appears as two piece-wise linear curve sections.  The first section of 

the croǎǎ ƘŜŀŘ ǊŜǎǇƻƴǎŜ ǊŜǎǳƭǘǎ ŦǊƻƳ ŀ άǎŜǘǘƭƛƴƎ-ƛƴέ ƻŦ ǘƘŜ ǎǘŜŜƭ ǊƻƭƭŜǊǎ ƛƴ ǘƘŜ ǎŀƳǇƭŜ 

caused by localized deformation.  Additional discussion about localized deformation 

follows in Chapter 4.  


































































































































