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Abstract

Size effects in oubf-plane bending in elastic
honeycombs fabricated using additive manufacturing:

modeling andexperimental results

James Kevin Mikulalh.D.

The University of Texas at Austin, 2011

Supervisor: Desiderio Kovar

Size effects in owdf-plane bending stiffness of honeycomb cellular materials
were studied using analytical mechanics of solids modédiatgication of samples and
mechanical testing. Analysis predicts a positive-sffert relative to continuum model
predictions in the flexure stiffness of a honeycombed beam loaded hobplane
bending. A method of determining the magnitude of tleffiect for several different
methods of constructing or assembling squaedled and hexagonalelled materials,
using both singlevalled and doubledvalled construction methods is presented.
Hexagonal and squaieelled honeycombs, with varying volumedt@ans were

fabricated in Nylon 12 using Selective Laser Sintering. The samples were mechanically
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tested in threepoint and four pointbending to measure flexure stiffness. The results

from standard threepoint flexure tests, did not agree with predictis based on a

mechanics of solids model for either square or hexagoeléd samples. Results for

four-point bending agreed with the mechanics of solids model for the sqoelted

geometries but not for the hexagonaklled geometries. A closed formlgion of an

elasticity model for the response of the fepoint bending configuration was

developed, which allows interpretation of recorded displacement data at two points and

allows separation the elastic bending from the localized, elastic/plastiameton that
200dz2NBA 06SG6SSy GKS t2FRAYy3I NRffSNAR FyR (KS
deformation was significant in the materials tested. With this analysis, thegdount

bending data agreed well with the mechanics of solids predictions
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Chapter 1 Introduction and motivation for research

INTRODUCTION

hyS RSTAYAGAZ2Y 2F OSftfdzZ I N a2t ARa Aa
LI O1 SR {2 3S (i KGHbdn énd Askiby 1907Mankdexéntplés of calar
solids exist in nature; cork, sponges, and coral are examples ofdmresnsional
cellular materials, while a beehive is an example of honeycomb cellular material. Man
made cellular materials have been produdesin many materials including metals,
ceramics, plastics and even composites. Interesting applications of manufactured
cellular structures include lightweight space and aerospace construction materials
(Labuhn 2005(Bianchi, Aglietti andiBhardson 201Q)materials for impact absorption
(Banhart 2001and materials used to provide reaction sites for catal{Gisippi and
Tronconi 2005)

A defining feature of cellular solidsthat they exhibit a high stiffnede-mass
ratio. Conventional theory predicts that this ratio depends on the properties of the solid
material used, the volume fraction of solid, and the shape of the 8llsson and Ashby
1997) Nature to date has succeeded in constructing cellular materials with far more
complex architectures than humaand; to paraphrase Sir Michael Ashby, nature builds
with cells while man builds with soligSimancik 2002)The point is that, until recently,
the ability to tailor the architectural parameters that define a cellular solid such as cell
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size, cell geometry and volume fraction has been limited by existing materials
processing technologies. So unlike what weisa®ature, the majority of existing

cellular solids and even appropriate tools to analyze the behavior of cellular solids have
been limited to materials that have uniform cell size, cell geometries, and relative
densities.

The first effective honeycomb mafacturing technique was developed by
Heilburn in 1901 As early as 1915, honeycomb cores were patented for aircraft
applications.(EconHP Holding GmbH 2011 }hese applications, honeycombs are very
often used in a core and sandwich arrangement in which the cellular matasalalls
parallel with the thickness direction amslsandwiched between solid sheets of material.
Typically in these configurationspneycombs have a relatively shéickness
compared to the width or length of the sandwich panel. These configurations have
been well studied and are generally treated as continuum materials because the
number of cells relative to the specimen sizeargié. In thisvork, we take a different
approach byexamining configurationwith long zaxis lengths

Recent advances in additive layered manufactu(Mgrcus and Bourell 1993)
and other new materials processing roui@&umm and Halloran 1998yan Hoy, et al.
1998)havegreatly enhancd the ability to tailor the defining parameters of cellular
materials. When building cellular materials with 3D &iden, additive ranufacturing
processes, the use of multale cells, varying wall thickness, mixed geometries of non

uniform relative densities is as easy as the use of uniform size, geometry, and density.
2



These parameters can now be varied so that cell topology are sffacts can now be
reasonably considered. However, to date there has been no design guidance available
to leverage these processing capabilities to build-naiform cellular materials with
properties that are superioto uniform cellular materials

Ofinterestin determining the influence of cellular architectures on stiffness is
the issue of a size effect that occurs when there is a small spedworesll size ratio.
This effect has been known alternatively as an edge effect and its recogitiam
effect seen in honeycondor foam materialstraces back to attempts to make accurate
YSFadz2NBYSyiGa 2F | 2dzy3Qa Y @BRIYW amGreF199S {  dzf I NJ
(Anderson and Lakes 1994 S| A dzNBYSy da YIRS 2y avltft al YL
aSyasSé yR AY LINIOGAOFE GSNXa&a FS¢ FFGOSYLWia ¢
properties below a certain speciméa-cell size ratio.

Size effects arknown into exist in the plastic deformation afense metals
Indentations,conducted by L.M. Browandreported by N.A. Flegkshowed the inferred
hardness of a sample increases with a decreasing indent size for indents in the micron to
submicron rangéFleck and Hutchinson 1993leck also reportedopper wires in the
12-170um diameter range showed the thinner wireshebiting stronger behavior than
the thicker wires in torsion testing. M.I. Idiart reports the effect in micemdng of
thin metallic foils in the 1450 um range(ldiart, et al. 2009) Mechanistically this

behaviorhas been explained arain hardening resultinffom the accumulation of

statistically stored or geometrically necessaisiacations while from a
3



phenomenologicastandpoint, conventional continuum theories of plasticity, like those
of elasticity possess no material length scale. In the case of plagtieitgeneralized
continuum theory has been expanded to account fdiigsize effeci(Fleck, et al. 1994)
(Fleck and Hutchinson 1997)hese modifications of the generalized continuum theory
are higher order theories such arain gradient theories

In general size effects are considered significant when two characteristic lengths
in amaterial are of the same ordef-or example, the characteristic length scale in
dense metals is of the order of 1 um while the length scales for commercially available
honeycombs can be closer to 1 mm. Assuming typical spe@mieaturedimensions
are 1 mm and above, then honeycombs are far more likegxpmerienceoverlap of the
macro-scale specimen or feature lengths with the misicale characteristic lengths.

Experiments have demonstrated that some loading configuratiorieese size
effects cannot be ignored when characterizing the elastic response of cellulara@olids
foam (Lakes 1983)Andrews, Gioux, &l. 2001Anderson and Lakes 1998rezny and
Green 199Q) Greatly varyng, both positive and negatiaze effects have been
documented in different loading conditions such as uniaxial aesgon, torsia,
indentation, bending andround notches and holegAndrews & Gibsorg001)(Mora
and Waas 2000)ike in the case of plasticity of dense metals, the elasttinuum
analysis of cellular materials as deysd by Gibson and Ashby does not include a

length scale and does not account &orysize effec{Gibson and Ashby 1997)



Thepossible loading configurations, together with the geometries of cellular
solids, honeycombs or foantheir volume fractions, their cell shapes, and whether
loading is implane or outof-plane creates a large space to examine. Some reduction in
the number of possible configurations is possible by recognizing that foams and cellular
honeycomb structures caact as models for each other in some confajians that lend
themselves to two dimensionahalyses Foams loaded in compression and
honeycombs loaded in iplane compression are examples. However, other
configurations require more complicaté@yo anda half dimensionabr three
dimensionaknalyses.Our interest is in honeycomibype cellular solids with a focus on

out-of-plane bending which requirehigher order analyses.

BACKGROUND ANBEYIOUS WORK

Both analytical and discretevo dimensionaimodels have been proposd€@®nck,
Andrews and Gibson 200(Mekoglu & Onck, 2008pai and Zhang 2008)ekoglu &
Onck 2008 to characterize the elastic behavior of honeycombs. These models have
been compared to a small set of experiments, most of which yweréormedon foams.
Onck et al. developed an analysis for infinitely long, regugxagonal honeycombs
loadedl) inplane uniaxially in compressi@md?2) in sheaOnck, Andrews and Gibson
2001) They used a combination of analytical analysis and 2D finite element modeling
using a commercial FEM code. Their model used a combination of conventional beam

bending analysis, rigid body assumptions, and equationsrapatibility of deformation

5



to predict an elastic size effect in uniaxial compression and shear uBeel their
modelto predictenhanced compliance in compression and enhanced stiffness relative
to the predictions of thecontinuum model of Gibson and sy for cellular materials
loaded in shear. Thus, the size effect can be either positive or negative, but the
predicted shear stiffening was short lived, being observed only for very small values of
specimento-cell size ratio. It was also shown that fbeation of specimen edge
relative to the cellular architecture was important. For example, specimens can
terminate at a closed cell or an open cell. The weakening effect seen in compression
was attributed to decreased constraint from open cells ancc#dls located near a free
surface. The mechanism for the shear stiffening was not explicitly addressed.

Experimental work was done in conjunction with the previously described
modeling(Andrews & Gibson, 2001A sevenvolume percent 20 pore per inchopert
cell Al 6101T6 (trade name Duocel) foam and 8% dense, clasgddAl foam (trade
name Alpora) were tested in compression and in shear at different size ratios of
specimento-cell size. Their results shodiqualitativeagreement with therends in he
modeling, but with quantitative differences.

Tekoglu et al. considered extensions to the generalized continuum theories to
determine a theory that could best match the results of discrete mo@e&oglu &
Onck 200§. They addressed both higherdertheories, such as micropolar theory,
micromorphic theory and microstrech theory and higiggade theories, such as strain

gradient theory, stress couple theory and a variation of the stress couple theory that
6



they call strain divergence theory. Both thigtrerorder and highegrade theories

require an introduction of additional degrees of freedom into the continuum. The
higher order theories do this by introducing a new independent degree of freedom. In
the case of micropolar theory, a rotational degm@fefreedom is introduced. The higher
grade theories introduce the new degreef freedomby tying the deformation

measures to additional gradients in the strain. Tekoglu evaluated two potential
extensions of generalized continuum theory, the micropolar rotation and strain
divergence theory, against numerical modeling. For shear, the twarigtgeconverged,

i.e. the fit characteristic length was of the same order as the cell size, and they reported
excellent agreement in strain fields. However for pure bending, this was not the case,
i.e. the analytical solution using micpmlar and strairdivergence theories both

predicted an increase in stiffness while the discrete analysis predicted a reduction in
stiffness.

Dai and Zhan{pPai and Zhang 2008)odeled the elastic behavior of cellular
materials using an analyitbending energy method for4plane bending of four types
cellular structures built with different unit cells including rectangular, hexagonal,
triangular and Kagome structures, and compared those results to the predictions of two
continuum calculationsT'he two continuum models included a general homogenization
method and what the authors described as a mesechanics method that was based
2y DA0&z2y YR ! aKodQa g2NJ] o bSAGKSNI O2y (Ayd

their bending energy method didl'hey reported different responses for the differing
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cell shapes. The rectangular cells showed an increase in stiffness, while the triangular
and kagome cells showed a decrease in stiffness, and the hexagonal cells at low
specimento-cell size ratios fat exhibited a decrease in stiffness then an increase in
stiffness before converging with the continuum predictions.

The motivation for this research is to understand of how cell architectural
features; specimeito-cell size ratio, geometry, and volumedtmn influence the final
stiffness of honeycomb cellular materiddgdedin out-of-plane bending To this end,
we have conducted preliminary experiments by fabricating using selective laser
sintering, differing sets of honeycomb structures. These hooeyps contain a solid
fraction of between 15 and 45 percent, have uniform cell sizes, and have varying shapes
and specimenio-cell size ratios. We then experimentally measured theadtglane
bending stiffness with the aim of documenting a size effect datermining what
models can be used to correctly predict the effect. Ultimately, this information can be
used to design and test materials with raniform architectures whicimay out-

perform their more conventional counterparts.



Chapter 2Modeling size effects of honeycombs loaded elastically
in tension and bending

MOTIVATION AND SCOPE
From a practical standpoint, the design of honeycomb and foam structures has

been limited by available manufacturing routes. When producing honeycomb
structures from ceramics, plastics and metals, there are only a limited number of
processing routes thagxist for each material clas§everal recent advances in
manufacturing techniques such as additive manufacturing and riyocation by ce
extrusion have opened up new and as of yet unexplored methods for creating
honeycomb structuresvith more complexarchitectures(Marcus and Bourell 1993)
These methods allow much greater customization of the defining parameters of a
honeycomb tharthe current methods that includexpansion, corrugation, moldijnar
direct extrusion(Banhart 2001jWadley 2003)

We start by looking at the parameters that define a honeyco@bll size, cell
shape, and volume fraction or wall thickness are typically used to define the hanbyco
architecture. For most commercially available honeycombs, these parameters are
usually constant throughout the specimen. Thathe cell size, shape, wall thickness
and thus volume fraction all remain the same throughout the structure, mainly becaus
the manufacturing or processing route makes these parameters difficult or expensive to

vary. However newer processing routes do not have these limitatidDsadditive



manufacture methods such as selective laser sinte(idgraus and Bourell 1993)
(Deckard 19863D printing(Rosochowski 200@nd fused deposition modelingrump
1989)allow the fabrication of structures with varying cgflapes, sizes and volume
fractions without a differential production cost.

The combination of manufacturing and measuremeonstraintshas resulted in
limitation of the analysis of the elastic properties of honeycombs to configurations that
have large spamento-cell size ratios. Expanding the use of honeycomb structures
beyond the current architecturesith uniform cell sizefo use them more effectively
leads to designs with a longefaxis length.This increases the exposure of these types
of structures to bending as a limiting loading condition.

As discussed in the preceding chapter, one well established starting point for
predicting the elastic response of cellular structures is the work of Gibson and Ashby
(Gibson and Ashby 29). These models are continuum analyses that do not include a
length scale in the effective modulus. Instead, the-ofiplane elastienodulusO is
predicted to depend only on 1) the relative density of the honeycdnp; and 2) the
. 2 dzyimoduls of the solid portion of the honeycomb.

As part of this work, we will compare the effective stiffness predicted from
DA6&az2y FyR ! aKoéQa O2yldAydzdzy Y2RSt 6AGK
using a conventional mechanics of solids techrigTo do this we consider multiple
sets of sample structures chosen to highlight these effects. The goals of this part of our

work are to 1) determine the magnitude of the size effect for specimens with small
10
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specimento-cell size ratios 2) determine threecessary specimeto-cell size ratio
where a continuum model can be used to predict effective stiffness, 3) examine the
influence of relative density on the size effect and 4) examine the effects of cell
geometry by varying the cell shape and configunatthoices such a single verses

double-walled structures.

CALCULATIONS
TENSION

We begin by employing a mechanics of solids analysis and considering
honeycombs with small speciméa-cell size ratios loaded in tension or compression
and comparing these matials to a solid material, as shownHRigure 21. The top part
of Figure 21 shows a side view and cross section of a solid. The bottom part of the
figure shows the side view and cross section of a squaiked honeycomb consisting of
a single cell. Ae single celled honeycomb is considered here because, if iharsize
effect, it is expected that this architecture would show the largest effect. Both beams
have the same perimeter and are loaded by an axial fbrd@éey have areasandAs

A

respech @St & @ 2S | faz2z RSTAYS (GKS Eahdtifed Qa
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FIGURRE-1: SINGLE CELL SQUABREYCOMB AND SOLODRN TENSION

The stress on each of these beams is

w = Equation2.1
» — Equation2.2
and assuming linear elasticity

S — Equation2.3
- Equation2.4
Since the areas of the cross sections are the same

0 %00 Equation2.5

Where,%ds the volume fraction of solid in the honeycomb. Comparing the

stresses and the strains and we obtain

— — %o Equation2.6

- — — — Equation2.7
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Thus, for the axial strains in each specimen toHsegame under a loalg
O %0 Equation2.8

and substitutingEquation 2.7into Equation 2.8we obtain
- — P Equation2.9

This calculation shows that we do not expect to observe a size effect in tension
or compression Thus, we expect that the continuum analysis of Gibson and Ashby
should be capable of predicting the elastic response of honeycombs loaded axially in

tension and compression, independent of their specimen-gzeell size ratie.

BENDING

To compare theredictions of the Gibson and Ashby continuum model to those
obtained from amechanics of solids analysésmethod for normalizing the stiffness is
required. Recognizing that several normalization schemes are possible and that no one
normalization methods intrinsically superior to another, the following method of
normalizing bending stiffness and comparing the two methods was selected.

The flexure rigidity is defined as

00 Equation2.10

whereO is a material property an@@s the structuredependent second
moment of inertia. A continuum mechanics equivalent of the same flexure rigidity

would be

z

o0 —-070 Equation2.11
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whereOis the second moment of inertia of the entire enclosed or filled cross
sectional area, and is the continuum effective modulus antfj ” is the relative
density or equivalently, the volume fraction of solid in the honeycomb.

To compare the two results we define a continuuneefive second moment of

inertia, 'O, such tlat

z

‘0 -0 Equation2.12

The ratio of the two flexure rigidities can then be expressed as

- - — - Equation2.13

7 A

withOhRi KS | 2dzy3Q& Y2Rdz dza 2F (K a2zt AR OlFyoO
When nornalized in this manner the mechanics of solids analysis converges with

the continuum solution when the ratio &"Ois equal to one. Thus, predicting the size

effect of the elastic response of these structures is reduced to calculating the ratios

"©"Oas a function of specimeto-cell size ratio. There were several approaches taken to

determining this ratio. First for the single walled sample s&gs calculated using the

output of the SolidWorka 3D CADsystem(Dassault Systemes SolidWorks Corp.,

Concord MAdn which the geometriesiere drawn. These calculations where then

checked usingnalyticalcalculations. For the double walled structures, each sample set

was analyzed by first developing an expressioritfersecond moment of each member

in the sample set, then examining thoseriyedrelationships to findyeneralized

14



expressiosfor the second moment for the entire set as well as defining a relationship
for "O. This relationships were then evaluateddahe ratio of “‘©"Oreported.

For the singlewalled architecturesQvas calculated usin§olidWorka 3D CAD
system This software calculates numerically the valu&dybm the geometry of the
crosssection. These numerical solutions where then cked using analytical
calculations. For the doublgalled structures, each architecture was analytically
modeledby first deriving an expression for the second moment of each member in the
sample set for values &tfrom one to six. These relationskigzere then examined to
determine generalized expressions f@s a function of. The value othfor each

architecture waslsodetermined.

R=1 R=2 R=3 R=4

FIGURR-2: SINGLE WALLED SQUEBRH.ED MODELED SET
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FIGURE-3: DOUBLE WALLED 3RECELLED MODELED SET

OC838§3

R=3 R=4

FIGURE-4 SINGLE WALLED HEXNGIECELLED
MODELEBET

SAMPLEDESIGNS

Two different basic gometries were examined, squacelled haneycombs and
regular, hexagonatelled honeycombs. Within eaci these geometries, the cellular
architectures were varied systematically to explore their effects on effective stiffness.
For example, ifrigure 22, a set of squareelled samples is shown with a single wall
thickness. In this case the sample siZexed and the celsizeto-specimen size is varied
by reducing the cell size proportionallifzigure 23 shows an example of alternative
construction rule for squareelled honeycombs. In this case the cell size is fixed and

the specimero-cell size isaried by adding cells, which resultsaidouble-walled
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FIGURR-5: DOUBLED WALLED RGRNAICELLED MODCHDSET
¢ CONFIGURATION B

geometry. These construction rules result in a sample set that only has odd vaRes of
i.e.R=1,3,5 and 7.

Figure2-4 shows an example of a set of hexagecelled honeycombs with
single wall thicknesses f&= 1 to5, with two configurations shown fd&®=2. And
Figure 25 shows a sample set of hexagonal double walled architecture that also has odd
values oRi.e.R=1, 3,5, and 7.Figure 26 andFigure 27 are hexagonatelled
honeycombs built using the double wall, constant cell size approigjure 25 shows
an architecture that uses construction rules that also yield only an odd set of specimen
to-cell sizeatios. Howeverfrigure 26 andFigure 27 are constructed in a slightly
different way, with the intent of definingraarchitecture that has botkven and odd
specimento-cell size ratios, yet the second moment of inedém still be varied One
additional design rule was used for all of the different geometry:shishalf or quarter

cells were used, onlyhole or complete cellsvere allowed

17
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S &

To illustrate the methodology for utilizing a mechanics of solids approach to
analyzing the elastic bending response, we present two cases below. First the-double
walled, hexagonal celled stttures shown irFigure 25 are presented. This case is
representative of the calculation method used when analyzing architectures where the
cell size was held constant and the specimen size was increased to vary the specimen
to-cell size ratio. Theecord case presented is f@inglewalled, square honeycombs
that weredesigned to keep the specimen stmstant andwvith decreasing the cell size

as shown irFigure 22. A summary of the results of the analyses for theestbases are

then presented in Tiale 2-1.

We start by calculatin@dor each of the samples using the parallel axis theorem

to obtain an expression fo@n terms of Q the second moment of one unit cell, and

18



0w , whereo is the area of the unit cell and is the square of the dtance from the
neutral axigo the second row of cells. Extending this to all the architectures we obtain

a series of equations as shown below:

e n 0 Equation2.14
T« p XO pow Equation2.15
® ¢ pO® WP Equation2.16
e o oY oxaw Equation2.17
™ 1 9O pmoOd Equation2.18

In these expressions it is important to note thais not the specimeito-cell size
ratio but rather a counting variable and that, the specimercell sizeR is given by

R=¢¢ p. Equation2.19

From these equations we can generalize an expressiofdorsuch that

CE ot o0t p‘O Bcgeuve pow Equation2.20

Equation 2.2@epresents the value d@or a crosssection that has the outer
perimeter shown irFigure 25, but is solid rather than cellular. To obtain the values of
‘Ce for the cellular architecture, the values @ for the open portions of the cellular
structure,"O , must besubtracted from théC¢ for the solid to obtairiO .

O ; O ; 0 Equation2.21

Substituting forGandow in terms of 'Yand™Ywhich are the outer and inner

side dimensions of the hexagon as and sgfbr'O ; and ‘O
19



0 ; ot Ot pl"Y Bguove p — 7Y -7

Equation2.22

O ot ot P Ay B CE LE P Aoy vy
Equation2.23
Subtracting the two results in:
© 0; O 5 O ;
. . o o C - o~ = o
o o p — Y Y B ¢ u p — -YY Y
Equation2.24
‘G andPOcan then be calculated
o o~ . . m C -
-0 5 Y YY o o0 p — B ¢Eue p — -
Equation2.25
v B wo_
g o Equation2.26
To simplify the expression we define
Q¢ ot Ot P A Equation2.27
Qe ceuve p /N Equation2.28

O 10 E AHtcan then be expressed as

B

Equation2.29
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This expression can be further simplifietvf p, where™Y is equal to the
length of the outer side of and individual cell:

5 5 Equation2.30

Similar calculations were performed for the all the doutalled architectures

and the results presented in Tal#tel

TABLER-1 EXPRESSIONS FOR D@VBALLED ARCHITECTURES

Double o & P u/io B 5 ofic o
Hex o0 25 = i
EQUATIONR.31 EQUATIONR.32
= P
Hex 3 Double p . u/o =
wide ¢ 26 = ¢ p c — o ovioc o
dd wall S ® < I
0 EQUATIONR.33
EQUATIONR.34
RS Double ) (ps P ° “G -
wide ¢ wall 2.7 o - 5 oo Y
even ¢ T
EQUATIONR.35 EQUATIONR.36
Square Double , 5 — G P gge p &
wall EQUATIONR.37
EQUATIONR.38

Thesquare celled architecture shownkilgure 23 has the summation term

inside thef;, function and this slightly changes the final formi@fOso that for this case

Equation2.39

Also note that for squareelled architectures, we have replacédx E QE

where0 representsthe length of the inside of the square unit cell.
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These functions were evaluated by varying the spechtoecell size ratios and

the volume fractions. A representative setaailculations is presented ifable 22.

TABLE-2: SHOWINREPRESENTATIVE AR . FOR HEXAGONALLED SAMPLES

n Rank 1 2 si Vi Inet/lo
f1/C1 Cl f1 f2n/C2 HTYK]H C2 H T y| 1>si>0 (1-si"2)
(o} (n+1) | 1/2(6n+ (-1)N(n+1)+3) (5*3".5)/16 ((-1)X(n-1)+3)n"2 ((3*310.5)/2)(3/4) 09od 00394

808 n Rank fla cl f1 f2a f2b c2 2 a
8?8 0 1 1 05413 0.541 0 0 1.94¢ 0 1.9604
0 1 2 5 05413 2.706 4 4 1.94¢ 7.794229 1.247526
o OO 2 3 7 05413 3.78¢ 8 12 1.94¢ 23.38269 1.13392
q:P 3 4 11 05413 5.954 36 48 1.94¢ 93.53074 1.057478
(@] 4 5 13 05413 7.036 32 80 1.94¢ 155.8846 1.041479
(8] 5 6 17 05413 9.202 100 180 1.94¢ 350.7403 1.024552
080 6 7 19 0.5413 10.284 72 252 1.94¢ 491.0364 1.019702
@ 7 8 23 05413 12.449 196 448 1.94¢ 872.9536 1.013504
(o 8 9 25 05413 13.532 128 576 1.94¢ 1122.369 1.011441.
(o] 9 10 29 05413 15.697 324 900 1.94¢ 1753.701 1.00852
O 10 11 31 0.5413 16.779 200 1100 1.94¢ 2143.413 1.00746
11 12 35 0.5413 18.944 484 1584 1.94¢ 3086.515 1.005859
Ctp 12 13 37 05413 20.027 288 1872 1.94¢ 3647.699 1.005244
8 13 14 41 05413 22192 676 2548 1.949 4964.924 1.004274
8 0 14 15 43 0.5413 23.274 392 2940 1.94¢ 5728.758 1.003886
15 16 47 05413 25.439 900 3840 1.949 7482.459 1.003254
16 17 49 05413 26.522 512 4352 1.94¢ 8480.121. 1.002994
17 18 53 05413 28.687 1156 5508 1.94¢ 10732.65 1.00256

Next we present the calculations for the architecture where the specitoerell
size ratio was varied by decreasing the cell size. The beginning of the sample set
analyzed is shown iRigure 22. However only theodd values of the specimeio-cell
size ratiosR were analyzed, i.&k=1, 3, 5, 7 and 9 which correspondton =0, 1, 2, 3
and 4 . Alspin these calculations we have let the outer size of the specimen, which is
constant in this arrangemenérbitrarily setequal one, thus creating a urstzed cell.

We again start by calculatirior each of the architectures using the parallel axis

theorem to obtain an expression fé@n terms of O 1 KS aSO02y R Y2YSy i

in the unit cell, and « , whereo is the area of the hole ang is the square of the

22
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distance from the neutral axis to the second row of cells. Extending this to all the

architectures we obtain a series of equations as shown below:

® n — 0 Equation2.40
T p — O @ w Equation2.41
T ¢ — ¢ viow Equation2.42
® o — 1T pwpw Equation2.43
T 1 — YO uvidw Equation2.44
® — ¢ p O ¢ pBe&ow Equation2.45

We can then derive the following relationships (see appendix for details of these

calculations)

° - Equation2.46

0 ) Equation2.47
E T i |

@ ¢ plefofB —— Equation2.48

%0 € P G p O Equation2.49

Where%o & is the relative density of the honeycomb. Setting the relative
density for all of the architectures in this set equal, we obtain:

%oE %€ P Equation2.50

¢¢c poO6=¢geg p p o Equaton 2.51
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C¢ p O=¢gt p O Equation2.52

c¢E p — =¢ p Equation2.53
(- ¢c¢ co P CEO Equation2.54
0 0 Equation2.55
0 0B —— Equation2.56

Substitutingequations2.45, 2.46 and2.47into Equation 2.44 we obtain

g 0
O P ¢ p PP C S
P Cq pC e p
E T T _
¢ce pBe ¢ plgfofs Equation2.57

And substitutingequation 2.57nto the above equatios,

T« - ¢ p -
E T T
1 1 B
¢¢ pBE . pEJ;EUFB B
Equation2.58
And we can then findD
0o — Equation2.59
O Equation2.60

Giving us
24



¢
5¢
e«

Equation2.61
The results of the calculations for this architectureri@qual zero to 10 are

summarized inMable 23.

R | t0) t(n) A(n) | Vf y(n)"2 *(n) 1) 1(0) I(n)/i(0)
1 [0.0013 |0.0013 | 0.9950 | 0.005 | 0.00E+00 | 8.25E02 | 8.30E04 | 4.16E04 | 2.00
3 0.0006 | 0.1106| 0.005 | 1.11E01 | 1.02E03 | 5.54E04 | 4.16E04 | 1.33
5 0.0004 | 0.0398 | 0.005 | 4.00E02 | 1.32E04 | 4.99E04 | 4.16E04 | 1.20
7 0.0003 | 0.0203| 0.005 | 2.04E02 | 3.44E05 | 4.75E04 | 4.16E04 | 1.14
9 0.0003 | 0.0123| 0.005 | 1.23E02 | 1.26E05 | 4.62E04 | 4.16E04 | 1.11
11 0.0002 | 0.0082| 0.005 | 8.26E03 | 5.64E06 | 4.54E04 | 4.16E04 | 1.09
13 0.0002 | 0.0059 | 0.005 | 5.92E03 | 2.89E06 | 4.48E04 | 4.16E04 | 1.08
15 0.0002 | 0.0044 | 0.005 | 4.44E03 | 1.63E06 | 4.44E04 | 4.16E04 | 1.07
17 0.0001 | 0.0034 | 0.005 | 3.46E03 | 9.88E07 | 4.41E04 | 4.16E04 | 1.06
19 0.0001 | 0.0028 0.005 | 2.77E03 | 6.33E07 | 4.38E04 | 4.16E04 | 1.05
21 0.0001 | 0.0023| 0.005 | 2.27E03 | 4.24E07 | 4.36E04 | 4.16E04 | 1.05

Table2-3 Representative calculations evaluating Equation 2.61
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RESULTS AND DISCUSSIO

The results of the calculations for all of the architectures considered are
presented belowFigure 28 shows the effect of specimeto-cell size ariations of the
squarecelled, single walled honeycombs with a constant specimenwizere the
normalized second moment or flexure stiffne§3’0, is plotted versus the specimea-
cell size ratioR From this plot, it is apparent that a signifitaize effect is predicted at

small specime#to-cell ratios. For example, at a specirtercell size ratio of oneR

N

=
©

Singlewalled square celled

1.8 -

1.7 1 volume

16 - fractions

1.5 - —o—0.5 percent

14 =-15 percent

30 percent
1.3 -
=>=45 percent

1.2 -
=#=60 percent

Normalized Moment of Inerti#ll,

1.1

1 23 456 7 8 9 1011121314 1516 17 18 19 20 21 22
Specimerto-cell size ratioR

FIGURE-8: GRAPH OF SINGLHWED SQUARE GEHHONEYCOMBHOWING THE CALCUEHDNORMALIZELC
MOMENT OF INERTIARES SPECIMENDCELL RATIO FOR M@EUME FRACTIONS
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FIGURE-9: GRAPH OF SINGLE VEALEQUAREELLED HONEYCOMB3VBING THE CALCULARBEIRMALIZED
MOMENT OF INERTIARAES VOLUME FRACTIBNSOLID FOR FOURIBIAES WITH SPECIMENCELL SIZE RAT
OF ONE TO FOUR

equal one), the structures with a small volume fraction of solid have an
"‘©"Oapproaching two, which represents a hundred percent insecia flexural stiffness
over the continuum modelAt sixty percent volume fraction of solid, which would
represent a thickwalled honeycomb®O = 1.4 which is a forty percent increase over
the continuum predictions. This drops off as the specifteenell ratio

increases, until at a speciméa-cell size ratio of ten to one, it reduced to only a ten
percentincrease over continuum estimates even at low volume fradidOne range of
interest is for wlume fractions of less thathirty percent (thinrwalled honeycombs).

For these architectures we predict a significant size effect persisting until aReast
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equals ten. Full agreement with the continuum calculatio@8@- 1) occurs aRs
greater than twenty, although the size effect betwedRequal ten andRequal twentyis
minor.

Figure 29 shows the results of the calculations for the same sqiaiéed
honeycombs, but here the relative stiffness is plotted versus volume fractidRdqual
one toRequal four. ForRequal one-- Q"0 is approximately two and this value drops
as volume fraction increases until it reaches one, as expected at a hundred percent

volume fraction. In a similar manner we can see thaReqgual two,"©"Oequal to one

1.35
= 13- Double and single walled square cell
o
@ 1.25
c
— == R=3, single
o 12 wall
E .
GE) —#—R=3, double
O 1.15 - walled
=
e
8 11
E
5 1.05 -
Z
l T T T T 1
0 0.2 0.4 0.6 0.8 1

Volume Fraction*/’

FIGURE-10: GRAPH OF DOUBLIDANNGLE WALLED SRELEHED HONEYCOMBBOWING NORMALIZEDWENT OF
INERTIA AS A FUNOGV'IOF THE VOME FRACTION

28



and a half, dropping t6dQ"O is equa to one and quarter foRequal four.

Figure 210 shows that the size effect is much larger for the sirvgidled
architecture than for the doublevalled architecture. This results from differences in
how the solid material is distributed across the gssection of beams, i.e. there is more
mass further from the neutral axis at a given volume fraction for the siwgléed
architectures than for the doubtevalled architectures.

The other cases we considered are the hexagorfiéd honeycombs which are
presented inFigure2-11 and Figure-22. Fron Figure 211, we see that response of

the hexagonal cells is similar to the response of the square celled honeycombs. For

1.8 -
TS Single walled hexagons
pe
= 16 -
kwd .
) specimento-
S 15- cell
- \ size ratio
e 147 —a—R=1
o
g 1.3 - & =4=—R=2 single wall
A
E \ " _ .
N R=3 single wall

5 12 9
GN') 11 =o—R=4 single wall
© ]
£
O 1 T T T T 1
=z 0 0.2 0.4 0.6 0.8 1

Volume Fraction*/ *,
FIGURR-11: GRAPHOR SINGMEALLEMEXAGONACELLED HONEYCOMB3VBINGTHE CALCULATED NORKRD

MOMENT OF INERTIARBES VOLUME FRACTHOR FOUR SAMPLESHMIPECIMENGCELL SIZE RATIO®TETO
FOUR
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example, folRequal one PO approachedwo at low volume fractions, decreasing
with both specimerto-cell ske ratio and volura fraction. In Figure 211, the relative
stiffness is plottedor single wallechexagonakelled architectures foR= 1to R= 4
Figure 212the relative stiffness of the double walled is plotted R+ 1to R= 3. These
figures again shovthat the siz effect is greatest for singl@alled architectures and

decreases with both wall thickness and volume fraction.
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CONCLUSIONS

As we mentioned earliethe goals of this part of our work are to 1) determine
the magnitude of the size effect for specimens with small specitoerel size ratios 2)
determine the necessary specim#mcell size ratio where a continuum model can be
used to predict effective stiffness, 3) examine the influence of relative density on the

size effect and 4) examine the effects of cell geometry by vatliggell shape and

Double-walled hexagonatelled honeycombs

2 -
specimento-cell
1.9 - size ratio
1.8 - R=1

1.7

1.6 - R=2 double wall 3

15 - wide

—R=3, double walled

1.2 -
1.1

Normalized Moment of Inerti#ll,
=
N

l T T T
0 0.2 0.4 0.6 0.8 1
Volume Fraction*/ "

2-12: GRAPI OFDOUBLE WALLED HEXRGIECELLED HONEYCOMBO®WING THE CALCUUIANDRMALIZE
MOMEN' OF INERTIA VERSO8UME FRACTION FORJIR SAMPLES WITH@RIENTOCELL SIZE RATIOS
ONETO THREE
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configuration choices suctsaingle veras doublewalled structures. Weredicted an
increase in stiffness of up to a hundred percent for both the square and hexagonal
samples at equal one and decreasing with both specirtercell sze ratio and volume
fraction. For volume fractions of less than the thirty percent @halled honeycombs)
with single wall architecturesve predict a significant size effect persisting until at least
Requal ten. Ell agreement with the continuum caltations {(Q"Oapproaches one)
occurs aRis greater than twenty, although the size effect betwdeequal ten andR
equaltwenty is minor. Theffect of choosing betweedouble walled or singlevalled
construction is significardgnd shows that the size effect is much larger for the single
walled architecture than for the doubiealled architecture.Again this results from
differences in how the solid material is distributed acrdss ¢ross section of beams,
with more mass furthefrom the neutral axis at a given volume fraction for the single

walled architectures than for the double@alled architectures.
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Chapter 3Characterization of the size effect in the elastic
response of honeycomb beams in bending.

MOTIVAION ANCBCOPE

Measurement of the 2 dzyhiduls of foam and honeycomb structures has
been recognized as a difficult task when the size of the sample being tested becomes
too small in relation to the size of the cells in the foam or honeycdBitezny and
Green 1990t NBE @A 2dza YSIF ada2NBYSyida YIRS 2y avrtft &l
aSyasSé¢ YR AY LINFYOGAOFET GSN¥Yaz FS¢ FGGSYLNWa
elastic properties of samples below a certain specimen sikgs. effect which is also
known as an edge effect has not been studied in detail previously.
We have designed, built and tested polyamide honeycombs to characterize the
effect of specimerio-cell size ratio variation on the 2 dzy’ 3 Q & of'¥a AdRejatoiii
out-of-plane bending. The test sample sets were designed using a 3D CAD program,
converted to digital files, and then transferred to and built using a free form fabrication
process from a polyamide powder. The samples were tested on a mechanicehmest f
in three-point bendingandfour-point bending Results of experiments are compared to
the predicted behavior using three models, an elastic continuum model as described by
Gibson and AshbiGibson and Ashby 19974 convenibnal mechanics of solid analysis,
and a full elastic analysis. Finally, additional issues associated with the difficulty in

measuring the 2 dzyfmedukis of honeycomb structures are addressed and discussed.
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DESIGN AND FABRICATIOF SAMPLES

Honeycombs with two different cellular geometries, square and hexagonal, each
with two different volume fractions, were designed usiBglidWorkg. The geometries
of honeycombs wih square unit cross section cells are shown in Figetead the
geometries of honeycombs with regular hexagonal cross section unit cells are shown in
Figure 32. The lengths of the samples, out of the plane of the page, were standardized
at a length o200 mm. The squareelled samples had crosgctional dimensions of

twenty mm by twenty mm while the dimensions of the hexagecelled samplesaried,

R=1 R=2 R=3 R=4

FIGURB-1: CROSSECTIOSEOMETRY OF SQUA
CELLED HONEYCOMB BAMSET, SINGNELLED
WITHR= 1-4

O EE
5 5

FIGURB-2: CROSS SECTION GEGMEIF HEXAGONZELLED
HONEYCOMB SAMPLE SHTH SINGLE WAIONSTRUCTION Al
CONSTANT CELL $2H;5
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as described below.

Two differing approaches were taken in designing the square and hexagonal
celledhoneycombs. The squarelled samples had a constant specimen size and the
variation in the specimetn-cell size ratio was accomplished by varying the size of the
cell. This required varying the wall thickness for each sample set to maintain a constant
volume fraction for all values & However, the geometry of a hexagon does not allow
construction of an analogous sample set. Thus, for the hexagons, the samples were
built using a constant cell size of eight millimetand the variation in the speciem-to-
cell size ratio was accomplished by increasing the height and width of the specimens. A
summary of the sample set construction rules is provided in Talhle 3

The samples were built using a@liSelective Laser Sintering Syst&m (
SystemsRockhillSC) Selective Laser Sintering (SLS) is a powdsed, layebased,
additive manufacturingrocess sawn schematically below in FiguB-3. SLS is one of
several competitive additive manufacturing processes that have been invented and
commercializediuring the past twenty years. In the SLS process a part is constructed
one layer at a time inside a thermally controlled process chamber which is held a
temperature slightly below the melting point of the polymer being used. A laser beam is
raster scannd across the surface of a layer of powder, turning on and off to selectively
sinter or fuse the polymer powdgrarticles into a shape defined by a computer which
has converted a three dimensional CAD image into profile slices equal in thickness to the

powder layer thickness. The powder is deposited in thin layers, in the range of 0.15 to
35



0.25 mm deep, uniformly across a piston. After a given layer has been fused, the piston
is lowered and a new layer of powder is added on top of the just completed layer.

new layer is then fused, based on the defined shaped, and in this manner a three
dimensional object can be fabricated from multiple laygiBeaman 1997)

Table3-1: Honeycomb sample set design rules

Cell Shape Specimerto-cell size Fabrication Volume
P ratio (R) Method fraction of solid
Constant Specimen Size :
Square lto4 Variable Cell Size Constant = 0.15
Constant Specimen Size
Square 1to4 P Constant= 0.25

Variable Cell Size

Constant Cell Size
Regular H 1to6 Varying = 0.30 to 0.19
eguiar Hexagon © Variable Specimen Size aning ©

Constant Cell Size
Regular H 1to6 Varying= 0.49 to 0.35
eguiar Hexagon ° Variable Specimen Size aning °

Two grades of polyamide 12 were used in building the parts. The first is 3D
Systems Corporatiouraforn®PA and the second is an equivalent PA 12 made by
Advanced Laser Materials LLC, (Belton, TeXd®.published mechanical data for both

polymers is presented iAppendices B and C

Table3-2: Selective Laser Sintering Processing Parameters

Units Quantity
Part Bed Temperature 0x/ 0 170
Feed Bed Temperature ox/ 0 140
Laser Power Watts 40
Powder Layer Level (mm) 7
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While the two polymers appear nearly identical and they are from the same
primary polymer supplierll data was analyzed separately for each. Only virgin, non
recycled powder was used.

Prior to beginning to build the samples used for this project, the thermal
distribution characteristics and the laser power leva&ishe SLS system were calibrated
and adjusted to bring the platform into operating specifications. This required
replacement of the part piston seal and refocusing of the laser. The build and part
processing parameters were held constant between alkrand are presented in Table

3-2. The samples were built with a 2.5 cm (one inch) powder warm up layer and utilized

SCANNER

POWDER

)

PART

FIGURB-3: SCHEMATIOF SELECTIVE LASERERING PROCESS

a heat shield which was used to create a uniform temperature distribution before

building the first layer. Fabrication of the samples wtasted 0.625 cm (0.25 inches)
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74 long dimension
in xy plane
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FIGURB-4: ORIENTATIONS G¥RFS RELAE TO THE BUILD
DIRECTION-AXIS)

above the heat shield. A slow, fully controlled cool down process was used to increase
the uniformity of temperature and thus increase the uniformity of the resulting
mechanical properties of the finished part.

Initially, several solid test parts were built to evaluate the influence of the build

orientation on the elastic properties of the polymer. The test parts were built in three

FIGURE-5: A SQUAREELLED HONEYCOMB RIAMSET FABRICATEING SLS

38



orientations as shown in Figure43 Two of these samples were built with tload) axis
of the specimen parallel to they plane. In one case the largest face of the specimen
was parallel to thex-y plane. In the other case the specimen was rotated fhitg
RSANBSa a2 OGKFG Ad &1 a aodzhf (sotRaythelongd2 N S NXb ¢
axis was parallel to theaxis.

A photograph of a representative set of square samples, built using SLS is shown
In Figure & and a photograph of a representagiget of hexagonal samples is shown in
Figure 36. An item to note is that two of the squacelled samples with specimen-
cell sizes of three and four and with solid fractions of fifteen percent had wall
thicknesses that were too thin to be successfllliilt using the SLS system. Thus, these
samples could not be tested and these data points do not appear in the presented

results.

FIGURB-6: A HEXAGONAIELLED HONEYCOMB BIAMSET FABRICATEING SLS
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TESTING OF SAMPLES

Threepoint bending andour-point bending tess were performed to determine

Sintech 2/G

FIGURB-7: PHOTOGRAPH OF THAME SHOWING SAMPL
UNDERGOING FOB®INT BENDING

FIGURB-8:BENDING TEST FIXTUREED FOR
BOTH 3PT. AND 4HESING, SHOWN
CONFIGURED FOR ABSTING
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the elastic response of the samples. Testing of the samples was performed on a MTS
Sinech 2/G test frame shown in Figurez3®quipped with a 10,000N load cell and an
MTS Model 642.01A berimending jig shown in Figure&8 The bending jig was outfitted
with 2.5 mmdiameter, springretained, steel rollers and MTS Model 632.0620
deflectometer Testing methods generally followed ASTM standards for measuring
flexural properties in plastiq®©790 n.d.JD6272 n.d.)dthough there were some
modificationsto account for the differences required for testing on honeycomb

structures ratheithan solid samples and differences in the sample sizes.

THREEPOINT BENDING TESTS

The threepoint bending setups shown schematically in Figuré®3 The sample
rests on two supports and is loaded by means of a roller located midway between the
supports. The span between the suppofisis 150 mm and steel rollers with a
diameter of 2.5 mm are used to both suppand load the sample. The deflectometer

is placed at the centepoint of the sample on the bottom face of the sample and

1/2 — 12 —,|

FIGURB-9: GEOMETRY USED FABREPOINT BENDINKESS
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FIGURE-30 THREEOINT BENDING OF@GNEYCOMB WITH REGRIHEXAGONAL CELLS

directly beneath the load point. All samples were tested at a constant displacement
rate of 1. mm/min. The load cell and deflectoreetvere calibrated prior to testing.

Since the strains weremallenough that no measurable plastic deformation took place,
each sample was tested multiple times. Data from the load cell, the deflectometer and
the cross head position was collected fochdest. To verify that the system was

A

2LISNF GAy3 O2NNBOlfesr GKS |, 2dzy3Qa Y2Rdz dza F2 N
evaluated. The measured modulus for the mild steel test sample was 198 GPa which
agrees well with the expected values of approxima@00 GPa.

In Figure 310 a representative graph shows the load versus ceptent

deflection from a thregooint teston a hexagonatelled haneycomb This data is from

the loading curve onlyand we see generally that the response is linear. In this figure
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the sample designatiors b andcin the legend represents the three sides, 120 degrees

apart, that each hexagonal sample was tested on. The variation in this dathevas

used to bracket the error or unceinty in the measurements. I§ interesting to note

that the unloading data for the threpoint testing showed hysteresis, where at the

beginning of the unloading curve, the slope was greater than the slopeddo#ding

line. This variation in slope upon unloading occurs for only a small displacement before
NBOGdZNYyAYy3 G2 GKS at2LIS YSI&dzZNER RdzZNAYy3I 21 RA

reversing of the loading, is thought to be a result of sticking of thenolind is not

addressed further.

P2 P2
/2 |

FIGURB-11 GEOMETRY USED FOBRRDINT BENDING TESTS
FOURPOINT BENDING TESTS
The fourpoint bending was conducted on the same test frame and bend fixture as used
for the three-point bending described previouslithe fourpoint bending configuration
is shown in Figure-31. The sample is supported by two lower support rollers with a
diameter of 2.5 mm positioned on the outside of the bend fixture and separated by a
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distance of 150 mm. The sample is then loadedfthe top by two additional 2.5 mm
diameter rollers, which are separated from each other by 75 wi®) @nd are inset
from the bottom support roller by 37.5 mm. A deflectometer is used to measure the
center-point deflection while the displacement of thgper rollers is captured using the
cross head displacement. Like for the thy@nt tests, all samples were tested at a
constant displacement rate of 1 mm/min.

The load cell and deflectometer were calibrated prior to beginning the testing.
Each samle again was tested in multiple orientations and each sample was tested
multiple times. Data from the load cell, the deflectometer and the cross head position
were collected for each test. In Figuré 3 representative data collected from a feur
point test from a hexagonal solid sample is presented. Both cemiert data taken
with the deflectometer and crosshead displacement are shown. These points are
labeled™Y and"Y, respectively, as shown in Figurd3. Thea, b andc designations
representthree successive tests on each of the three sides of the hexagonal beam. The
nearly linear data in FigureI® are from the deflectometer while the crosshead
displacement data appears as two piesese linear curve sections. The first section of
thecraid KSI R NBaLlR2yasS NB&adZ2TtalRINRPHG S adms 3 NE
caused by localized deformation. Additional discussion about localized deformation

follows in Chapter 4.
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