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In this thesis we investigate the electronic band structures and the correla-

tions in chirally (ABC) stackedN-layer graphene withN ≥ 2. We useab initio

density-functional theory andk ·p theory to fit the parameters of aπ-band tight-

binding model. External potential differences between topand bottom layers are

strongly screened by charge transfer but still open an energy gap at overall neutral-

ity. Perpendicular magnetic field drives the system into thequantum Hall region

with 4N-fold zero energy Landau levels. We predict that Coulomb interactions

spontaneously break theSU(4N) symmetry and drive quantum Hall effects at all

integer fillingsν from−2N to 2N with exotic spin and pseudospin polarizations.
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Based on mean-field theory and perturbative renormalization group analysis,

we predict that the ground state of bilayer graphene spontaneously breaks inversion

symmetry for arbitrarily weak electron-electron interactions and conclude that this

instability is not suppressed by quantum fluctuations but that, because of trigonal

warping, it may occur only in high quality suspended bilayers. Remarkably flat

conduction and valence bands that touch at charge neutrality point and Bloch states

with large pseudospin chirality combine to make the bilayergraphene gapless band

state strongly susceptible to a family of broken symmetry states in which each spin-

valley flavor spontaneously transfers charge between layers. We explain how these

states are distinguished by their charge, spin, and valley Hall conductivities, by

their orbital magnetizations, and by their edge state properties. We further analyze

how these competing states are influenced by Zeeman fields that couple to spin

and by interlayer electric fields that couple to layer pseudospin, and comment on

the possibility of using response and edge state signaturesto identify the character

of the bilayer ground state experimentally. We demonstratethat similar insulating

broken symmetry states and spontaneous topological ordersalso occur in bilayer’s

thicker cousins, chirally stacked multilayer graphene systems.
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Chapter 1

Introduction

1.1 Few-layer graphene

Recent progress[1–3] in the isolation of nearly perfect monolayer and multilayer

graphene sheets has opened up a new topic in two-dimensionalelectron system-

s (2DES) physics. Graphene 2DES’s are remarkable for several different reasons.

The fact that they are truly two-dimensional (2D) on an atomic length scale elevates

2DES physics from the low-temperature world to the room-temperature world. Fur-

thermore, they are accurately described by very simple models over very wide ener-

gy ranges and yet have electronic properties that can be qualitatively altered simply

by stacking them in different arrangements[4–7]. In other words, each graphene

few-layer is a unique 2DES with fascinating electronic properties depending on its

layer number and stacking order.

The basic building block of all graphene 2DES’s is the isolated monolayer,

which is described by a massless Dirac~k ·~p Hamiltonian over a very wide energy

range∼ 3 eV. The massless Dirac model has chiral quasiparticles andperfect linear
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dispersions down to Dirac points. In the graphene case the chirality refers to the

relationship between the~k ·~p momentum and the direction of a pseudospin associ-

ated with the sublattice degree-of-freedom of graphene’s honeycomb lattice, that is

closely related to theπ Berry’s phase gained by a quasiparticle circling around a

Dirac point[8, 9]. Most of the exotic graphene properties directly involve the low-

energy physics close to the Dirac points where the conduction and valence bands

kiss each other and where the Fermi level lies for the charge neutral case. When

these honeycomb layers are stacked together, their low-energy electronic proper-

ties are strongly modified in a way that is controlled by the stacking order and the

number of layers. Among all the possibilities, we find that only the ABC (chiral)

arrangement maintains the following fascinating features[6]: (i) there are two low-

energy sublattice sites, implying that a two band model provides a useful tool to

describe its physics; (ii) the low energy sublattice sites are localized in the outer-

most layers, atA1 andBN, and can be separated energetically by an electric field

perpendicular to the film which breaks the inversion symmetry and opens an energy

gap at Dirac points; (iii) hopping between low energy sites via high energy states is

an N-step process which leads topN dispersion in conduction and valence bands,

sublattice pseudospin chiralityN and Berry’s phaseNπ ; (iv) the low energy Hamil-

tonian of a multilayer with any type of stacking can always bechiral-decomposed

to a direct sum of ABC-stacked layers; (v) The low-energy bands are increasingly

flat for largerN, at least when weak remote hopping processes are neglected,and

the opportunity for interesting interaction and disorder physics is therefore stronger.

Consequently, in the simplified chiral model, the density-of-statesD(E)∼E(2−N)/N

diverges asE approaches zero forN > 2 whereas it remains finite forN = 2 and

vanishes forN = 1, which means interactions are more and more relevant as the

number of layer increases. ABC-stacked multilayers are thechiral generalizations
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of monolayer and bilayer graphene, and we believe that they are likely to prove to

be fertile ground for new many-body physics[10], as we will show in this thesis.

For a chiral graphene withN > 1, external potential differences between the

top and bottom layers,e.g. interlayer electric fields, are strongly screened by charge

transfer within the layers, but still open an energy gap at overall neutrality[6]. The

created gap increases monotonically with the external interlayer potential differ-

ence and saturates around the strongest interlayer hoping energy scale∼ 0.4 eV.

On the other hand, when a perpendicular magnetic field is applied, these chiral

2DES’s are driven into quantum Hall region with 4N-fold zero energy Landau lev-

els. We predict[11] that Coulomb interactions spontaneously break theSU(4N)

symmetry and drive quantum Hall effects at all the integer fillings ν from−2N to

2N with exotic spin and pseudospin polarizations. Unlike a conventional 2DES,

both the magnetic field at which the chiral bands are quantized into Landau lev-

els and the critical field where the broken symmetry physics occurs are typically

smaller than 1 T for high quality suspended bilayer grapheneand its thicker chiral

cousins[12, 13]. These unusual phenomena in the presence of external fields, either

electrically or magnetically, are directly related to the following weak repulsive

interaction instabilities[10, 14] at zero fields.

Remarkably flat conduction and valence bands that touch at charge neutral-

ity point and Bloch states with large pseudospin chirality combine to make the

bilayer graphene gapless band state strongly susceptible to a family of broken sym-

metry states in which each spin-valley flavor spontaneouslytransfers charge be-

tween layers[9]. The underlying many-body physics can be explained elegantly

by perturbative renormalization group (PRG) analysis[10], analogous to the well

known non-Fermi-liquid states, interacting one-dimensional (1D) electron systems,

where the Fermi-surface consists of points, and divergences associated with low-

3



energy particle-hole excitations abound. Actually, electron-electron interactions in

2D bilayer graphene behave in many ways as if they were 1D, because they have

Fermi points instead of Fermi lines and because their particle-hole energies have

a quadratic dispersion which compensates for the difference between 1D and 2D

phase space. However, the detail PRG calculations prove that the interactions in bi-

layer graphene are marginally relevant at one-loop level. Because of the large layer

pseudospin chirality, the broken symmetry occurs in the perpendicular ˆz channel

rather than the in-planêφ channel[14, 15], which indicates in each spin-valley, lay-

er inversion symmetry is spontaneously broken[10] while in-plane rotational sym-

metry is not that reduced. Similar instabilities and brokensymmetry physics also

occur in bilayer’s thicker cousins, chirally stacked multilayer graphene systems.

Because of spontaneously breaking inversion symmetries, in a single spin-

valley of chiralN-layer graphene withN ≥ 2, the Dirac point is gapped with lay-

er polarization and the momentum-space Berry curvature becomes nontrivial[9].

The broken symmetry states are thus able to be classified by their spin-valley fla-

vor dependent layer polarization, by their orbital magnetizations and by their other

topological properties, such as various Hall conductivities and edge states[9]. More

interestingly, these topologically nontrivial states exhibit non-collinear spin flop in-

fluenced by Zeeman fields that couple to spin and undergo a firstorder transition

induced by interlayer electric fields that couple to layer pseudospin[16]. And in-

deed, these competing spontaneous quantum Hall states are able to be identified

and distinguished using response and edge state signatures.

The required access to the low-energy and many-body physicsin high qual-

ity graphene few-layer samples has been enabled by removingthe underlying sub-

strates and further annealing the devices. Not only the electric field induced energy

gap and the quantum Hall physics have been extensively explored in experiments,
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but also, more excitingly, the spontaneous gaps and insulating broken symmetry

states have been recently observed in suspended bilayer[13, 17–19] and trilayer[19]

graphene which have started to exhibit spontaneous quantumHall effects[9, 20].

We expect that even richer novel physics occurs near the charge neutrality point

of few-layer graphene, due to the interplay between electron-electron interactions,

disorders, and external fields.

1.2 Outline of the thesis

This thesis basically is a collection of my Ph.D papers [6, 9–11, 13, 14, 16, 19, 21–

25] from the spring of 2010 to the summer of 2011. Here we give a preview of the

materials contained in this thesis work and its organization:

In chapter 2 [6] we introduce the chirally (ABC) stacked few-layer graphene

2DES’s and specifically we investigate the band structures of chiral trilayer graphene.

We derive the low-energy continuum model, and extract the parameters of aπ-band

tight-binding model by fitting ourab initio density-functional theory results to the

effective model. We also study the interlayer electric fieldrelated screening effects

and induced energy gaps, comparing the chiral 2DES’s with different number of

layers.

In chapter 3 [10, 14] we use perturbative renormalization group to study

the weak repulsive interaction instability in bilayer graphene and to access the ro-

bustness of this instability, comparing with the closely related case of interacting

1D electron gas. We predict that the spontaneous gap openingand layer inversion

symmetry breaking is enhanced by quantum fluctuations and spin-valley flavors but

that, because of trigonal warping, it may occur only in high quality suspended bi-

layers. Furthermore, we calculate the layer pseudospin susceptibilities, compare

5



the divergences in different possible broken symmetry channels, and further confir-

m the inversion symmetry breaking physics that occurs in bilayer graphene and its

thicker cousins, chirally stacked multilayer graphene 2DES’s.

In chapter 4 [9, 16, 21, 22] we explore the momentum-space Berry curvature

of various insulating broken symmetry states to which chiral few-layer graphene

is strongly susceptible, and find that these non-Fermi-liquids exhibit spontaneous

quantized anomalous Hall effects with spin-valley flavor transfers between layers.

We explain how these states are distinguished by their charge, spin, and valley Hall

conductivities, by their orbital magnetizations, and by their edge state properties.

We investigate how the spontaneous quantum Hall edge statesdeform in the pres-

ence of electric fields and magnetic fields. We further analyze how these competing

states are influenced by Zeeman fields that couple to spin and by interlayer electric

fields that couple to layer pseudospin, and comment on the possibility of using re-

sponse and edge state signatures to identify the character of the bilayer ground state

experimentally.

In chapter 5 [11] we study the stacking-dependent interaction-driven quan-

tum Hall effects in ABC and ABA trilayer graphene. Particularly, we investigate

the zeroth Landau level that is 12-fold degenerate in the absence of interaction-

s and external fields. We predict that Coulomb interactions spontaneously break

the SU(12) symmetry and drive quantum Hall effects at all the integer fillings ν

from −6 to 6 with exotic spin and pseudospin polarizations. We alsodiscuss the

interlayer electric field driven phase transition between the spin- and layer(valley)-

polarizedν = 0 states in ABC trilayers, and address the pronounced influence of

the next-nearest layer tunnelings in ABA trilayers.

In chapter 6 [13, 19, 25] we conclude this thesis work by discussing the

recent experimental observations of insulating broken symmetry states and sponta-

6



neous quantum Hall effects in high quality suspended bilayer and trilayer graphene.

We also discuss some potential future works.
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Chapter 2

Band Structure of ABC-Stacked

Graphene Few-Layers

The ABC-stackedN-layer-graphene family of two-dimensional electron systems

is described at low energies by two remarkably flat bands withBloch states that

have strongly momentum-dependent phase differences between carbonπ-orbital

amplitudes on different layers, and large associated momentum space Berry phas-

es. These properties are most easily understood using a simplified model with only

nearest-neighbor inter-layer hopping which leads to gapless semiconductor elec-

tronic structure andpN dispersion in both conduction and valence bands. In this

chapter, we report on a study of the electronic band structures of trilayers which

usesab initio density functional theory andk ·p theory to fit the parameters of aπ-

band tight-binding model. We find that when remote interlayer hopping is retained,

the triple Dirac point of the simplified model is split into three single Dirac points

located along the threeKM directions. External potential differences between top

and bottom layers are strongly screened by charge transfer within the trilayer, but

8



still open an energy gap at overall neutrality.

2.1 Introduction

Success[1] in isolating nearly perfect monolayer and few layer sheetsfrom bulk

graphite, along with progress in the epitaxial growth of few-layer graphene samples,

has led to an explosion of experimental and theoretical[2, 3, 26, 27] interest in

this interesting class of quasi-two-dimensional electronsystems (2DES’s). Unique

aspects of the electronic structure of graphene based 2DES’s have raised a number

of new fundamental physics issues and raised hope for applications.

Monolayer graphene has a honeycomb lattice structure and isa gapless semi-

conductor. Hopping between its equivalentA andB sublattices gives rise to a mass-

less Dirac fermion band structure withJ = 1 chirality when the sublattice degree

of freedom is treated as a pseudospin. In this chapter we willfind it useful to view

the quantum two-level degree of freedom associated with twosublattice sites as a

pseudospin in the multi-layer case as well. In AB-stacked graphene bilayers, for

example, electrons on theA2 andB1 sublattices are repelled from the Fermi level

by a direct interlayer tunneling process with energyγ1, leaving[4] only states that

are concentrated on theA1 andB2 sites in the low-energy band-structure projection.

When direct hopping betweenA1 andB2 sites is neglected, the two-step hopping

process via high energy sites leads top2 conduction and valence band dispersion-

s and to a pseudospin chirality that is doubled,i.e. to a phase difference between

sublattice projections which is proportional to 2φp whereφp is the two-dimensional

momentum orientation. Pseudospin chirality has a substantial influence on interac-

tion physics[28] in both single-layer and bilayer graphene, and through theasso-

ciated momentum space Berry phases also on Landau quantization and the integer
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quantum Hall effect[4, 5, 29–31]. Because the two low-energy sublattices in bi-

layer graphene are located on opposite layers it is possibleto introduce[32–36] a

gap[37–44] in the electronic structure simply by using gates to inducea difference

in electric potential between layers. According to some theories a small gap could

even emerge spontaneously[10, 15, 45–48] in neutral graphene bilayers with weak

disorder because of layer inversion symmetry-breaking.

Graphene bilayer 2DES’s are quite distinct from single layer 2DES’s be-

cause of their flatter band dispersion and the possibility ofusing external potentials

to create gaps. Among all stacking possibilities, only the ABC arrangement (see be-

low) maintains the following features that make Bernal bilayer electronic structure

interesting in thickerN-layer films: (i) there are two low-energy sublattice sites,

implying that a two band model provides a useful tool to describe its physics; (ii)

the low energy sublattice sites are localized in the outermost layers, atA1 andBN,

and can be separated energetically by an electric field perpendicular to the film; (iii)

hopping between low energy sites via high energy states is anN-step process which

leads topN dispersion in conduction and valence bands, sublattice pseudospin chi-

rality N and Berry phaseNπ . The low-energy bands are increasingly flat for larger

N, at least when weak remote hopping processes are neglected,and the opportunity

for interesting interaction and disorder physics is therefore stronger. Consequently,

in the simplified chiral model, the density-of-statesD(E) ∼ E(2−N)/N diverges as

E approaches zero forN > 2 whereas it remains finite forN = 2 and vanishes for

N = 1. These properties also have some relevance to more generalstacking arrange-

ments since the low energy Hamiltonian of a multilayer with any type of stacking

can always be chiral-decomposed to a direct sum of ABC-stacked layers[5].

ABC-stacked multilayers are the chiral generalizations ofmonolayer and

Bernal bilayer graphene, and we refer them collectively as the chiral 2D electron
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system (C2DES) family. We believe that they are likely to prove to be fertile ground

for new physics. As a first step in the exploration of these materials we report in

this chapter on an effort to characterize the way in which thechirality N bands

of an N-layer C2DES are altered by remote hopping processes neglected in the

simplified model, focusing on theN = 3 trilayer case. We useab initio density

functional theory (DFT) calculations, combined with ak ·p expansion of the low-

energy bands near the Dirac point, to fit the parameters of a phenomenological

tight-binding method (PTBM) for theπ-bands of multilayer graphene.[5, 7, 49–51]

We find that details of the low-energy band dispersion can be used to fix rather

definite values for the model’s remote inter-layer hopping parameters.

This chapter is organized as follows. In section II we first sketch the deriva-

tion of the low energy effective band Hamiltonian of a trilayer, reserving details to

an Appendix and explain how the interlayer hopping parameters influence the shape

of constant energy surfaces. The values for these parameters obtained by fitting to

our DFT calculations are surprisingly different from the values for the analogous

hopping parameters in Bernal stacked layers, and are not yetavailable from experi-

ment. In Section II we also discuss the evolution of constantenergy surface pockets

with energy, concentrating on the Lifshitz transitions at which pockets combine, in

terms of Berry phase considerations and a competition between chiral dispersion

and trigonal warping. In section III we use DFT to estimate the dependence of

the trilayer energy gap on the external potential difference between top and bot-

tom layers and compare with predictions based on the simplified two-band model.

The simplified model picture is readily extended to higherN and we use it to dis-

cuss trends in thicker ABC multilayers. Finally, we conclude in Section IV with a

discussion of how Berry phases modify the integer quantum Hall effect and weak

localization in C2DES’s and with some speculations on the role of electron-electron

11



interactions in these two-dimensional materials.

2.2 Effective model

2.2.1 Low-energy effective model

In ABC-stacked graphene layers, each layer has inequivalent triangularA and B

sublattices. As illustrated in Fig.2.1(a), each adjacent layer pair forms a AB-

stacked bilayer with the upperB sublattice directly on top of the lowerA sublattice,

and the upperA above the center of a hexagonal plaquette of the layer below.Our

microscopic analysis uses the categorization of interlayer hopping processes illus-

trated in Fig.2.1(b), which is analogous to the Slonczewski-Weiss-McClure (SWM)

parametrization of the tight binding model of bulk graphitewith the Bernal stacking

order[52]. Following conventionγ0 andγ1 describe nearest neighbor intralayer and

interlayer hopping respectively,γ3 represents hopping between the low energy sites

of a AB-stacked bilayer (i.e. Ai ↔ Bi+1 (i = 1,2)), γ4 couples low and high energy

sites located on different layers (i.e. Ai ↔ Ai+1 andBi ↔ Bi+1 (i = 1,2)). We use

γ2 to denote direct hopping between the trilayer low energy sites, andδ as the on-

site energy difference ofA1 andB3 with respect to the high energy sites.γ5 andγ6

correspond to the presumably weaker couplingsB1↔ A3 and S1↔ S3 (S= A,B),

respectively andui is used to denote the average potential of theith layer.

The massless Dirac-Weyl quasiparticles of monolayer graphene are described

by a~k ·~p Hamiltonian,

Ĥ = v0





0 π†

π 0



 , (2.1)
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Figure 2.1: (a) Lattice structure of ABC-stacked graphene trilayer; blue/cyan/green
indicate links on the top/middle/bottom layers while purple/red distinguish the A/B
sublattices. (b) Schematic of the unit cell of ABC-stacked graphene trilayer and the
most important interlayer hopping processes.

whereπ = ξ px+ ipy andξ =+(−) for valley K(K′). (In this chapter we focus on

bands near Brillouin zone cornerK; the general result can be obtained by setting

px to ξ px.) The trilayerπ-bands are the direct produce of three sets of monolayer

bands, modified by the various interlayer coupling processes identified above. In

a representation of sublattice sites in the orderA1,B3,B1,A2,B2,A3, the trilayer

Hamiltonian near valleyK can then be expressed in the form:

Ĥ
ABC

trilayer=





























u1+δ 1
2γ2 v0π† v4π† v3π v6π

1
2γ2 u3+δ v6π† v3π† v4π v0π

v0π v6π u1 γ1 v4π† v5π†

v4π v3π γ1 u2 v0π† v4π†

v3π† v4π† v4π v0π u2 γ1

v6π† v0π† v5π v4π γ1 u3





























, (2.2)
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wherevi =
√

3aγi/2h̄ anda = 0.246nm.

The identification ofA1 andB3 as the low-energy sublattice sites is made by

neglecting the weaker remote interlayer hopping processesand settingπ → 0. We

treat coupling between the low and high-energy subspaces perturbatively by writing

the trilayer Greens function as

G = (Ĥ ABC
trilayer− ε)−1 =





H11− ε H12

H21 H22− ε





−1

(2.3)

where the indices 1 and 2 denote the 2×2 low-energy block and the 4×4 high-

energy block respectively. We then solve the Schrödinger equation,(G )−1
11 ψlow = 0,

by using the block matrix inversion rule(A−1)11 = (A11− A12(A22)
−1A21)

−1 to

obtain

(

(H11− ε)−H12(H22− ε)−1H21
)

ψlow(A1,B3) = 0. (2.4)

Since we are interested in the low-energy part of the spectrum we can viewε as

small compared toH22. Expanding Eq. (2.4) to first order inε, we find that(Heff−
ε)ψlow = 0, where

Heff =
(

1+H12(H22)
−2H21

)−1(
H11−H12(H22)

−1H21
)

. (2.5)

The terms in the second parenthesis capture the leading hopping processes be-

tween low energy sites, including virtual hopping via high-energy states, while

the first parenthesis captures an energy scale renormalization by a factor of or-

der 1− (v0p/γ1)
2 due to higher-order processes which we drop except in the terms

which arise from an external potential.
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Using Eq. (2.5) we find that for ABC trilayer graphene

Ĥeff = Ĥch+ Ĥs+ Ĥtr+ Ĥgap+ Ĥ ′s,

Ĥch =
v3

0

γ2
1





0 (π†)3

π3 0





=
(v0p)3

γ2
1

(cos(3ϕp)σx+sin(3ϕp)σy) ,

Ĥs =

(

δ − 2v0v4p2

γ1

)

σ0 ,

Ĥtr =

(

γ2

2
− 2v0v3p2

γ1

)

σx ,

Ĥgap = ud

(

1−
(

v0p
γ1

)2)

σz ,

Ĥ ′s =
ua

3

(

1−3

(

v0p
γ1

)2)

σ0 . (2.6)

Here we have chosen tanϕp = py/px, definedud = (u1− u3)/2 andua = (u1 +

u3)/2− u2, and neglected an overall energy scale associated with the external po-

tentials. σ0 is the identity matrix and theσi’s are Pauli matrices acting on the

low-energy pseudospin. We have retained leading terms withcubic, quadratic, and

constant dispersions, which are due respectively to three-step, two-step, and one-

step hopping processes between low energy sites. For trilayer graphene, the linear

term is absent because the one step hopping (γ2) is normal to the 2D space and

therefore independent of momentum.Ĥch is the only term which appears in the ef-

fective Hamiltonian in the simplified model with only nearest neighbor inter-layer

tunneling. This term has pseudospin chiralityJ = 3 and dominates at larger values

of p. It reflects coupling between low energy sites via a sequenceof three nearest

neighbor intralayer and interlayer hopping events.Ĥtr is proportional toσx and,
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because it is isotropic in 2D momentum space, is responsiblefor trigonal warping

of constant energy surfaces when combined with theJ = 3 chiral term. Notice that

the direct hoppingγ2 process opens a small gap at theK points so thatĤtr vanishes

at finite p if γ2 is positive. Ĥs arises from a weaker coupling between low ener-

gy and high energy states that is present in bilayers and for any N > 1 multilayer

system. This term in the effective Hamiltonian preserves layer inversion symmetry.

Ĥgap captures the external potential processes which break layer inversion symme-

try and introduce a gap between electron and hole bands. The possibility of opening

a gap with an external potential is unique to ABC stacked multilayers, increasing

the possibility that they could be useful materials for future semiconductor devices.

The strength of the gap term decreases with increasing momentum (sincev0p≪ γ1)

so that the gap aroundK has a Mexican hat shape, as we will discuss later.Ĥ ′s is

non-zero when the potential of the middle layer deviates from the average of the

potentials on the outermost layers. UnlikeĤgap, this term preserves the layer inver-

sion symmetry and is not responsible for an energy gap. A non-zeroĤ ′s is relevant

when the electric fields in the two inter-layer regions are different. Further discus-

sion on the derivation of this effective Hamiltonian and on the physical meaning of

the various terms can be found in the Appendix. Note that for strict consistency the

constant termsδ andγ2/2 should be accompanied by the factor 1−(v0p)2/γ2
1 based

on Eq. (2.5) which does appear in̂Hgap. However we ignore this factor becauseδ

andγ2/2 are already small.

2.2.2 Diagrammatic derivation of the effective model

As a result of tight-binding model, each term of the effective Hamiltonian Eq. (2.6)

has a unique physical picture. Hereafter, we view the strongly stacked pairBiAi+1
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as a single dimer site and assume zero external potentials for simplicity. The gener-

al formula of effective low energy models Eq. (2.5) can be understood as following.

The terms in the second parenthesis represent the leading hopping processes, while

the terms in the first parenthesis are approximately 1− (v0p/γ1)
2 and give a small

correction. H11 is the unperturbed Hamiltonian of low energy sites and thus in-

cludes the direct hopping and on-site energy.H21 andH12 are hoppings from and

to low energy sites, respectively, describing the couplingto high energy ones.H22

contains the hoppings between high energy sites and is an intermediate process.

ThereforeH12(H22)
−1H21 together gives the general “three”-step hoppings which

start from and end at low energy sites by way of high energy ones. Note that the

intermediate process within high energy sites is zero for single layers, a constan-

t for bilayers, one-step for trilayers, and multi-step forN ≥ 3 layers. In bilayers

for example, the linear trigonal warping term arises fromH11, while the chiral ter-

m attributes toH12(H22)
−1H21. BecauseH22 gives no hopping and is simplyγ1,

H12(H22)
−1H21 is reduced to two-step and hence the chiral term is quadratic. In

the trilayer case, for the matrix elementB3A1, H11 provides the first term of̂Htr

shown in Fig.2.2(a) whileH12(H22)
−1H21 contributesĤch and the second term of

Ĥtr as depicted in Fig.2.2(b)-2.2(d), respectively.H12(H22)
−1H21 also gives rise to

the second term of̂Hs for the matrix elementA1A1 as presented in Fig.2.2(e) and

2.2(f).

Generally, in order to derive the low energy effective modelfor a gener-

al ABC-stackedN-layer graphene, we first need to write a 2N×2N Hamiltonian

matrix as Eq. (2.2), then we specify all the leading hopping processes in the dia-

grammatic language like Fig.2.2, instead of inverting the large Hamiltonian matrix.

The hopping diagrams are convenient for systematic calculations in a way similar

to the way Feynman diagrams help in perturbation theories. The exact coefficient
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of one hopping process can be easily calculated using Eq. (2.5) by picking up the
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Figure 2.2: Schematic of hoppings fromA1 to B3; (a) one-stepA1→ B3 and (b)
three-stepA1→ B1A2→ B2A3→ B3 and (c) (d) two-stepA1→ B1A2→ B3 and
A1→ B2A3→B3. Schematic of hoppings fromA1 to A1; (e) two-stepA1→ B1A2→
A1 and (f) two-stepA1→ A2B1→ A1.

18



starting and ending sites, setting matrix elements of unrelated sites as zero and turn-

ing off the unrelated hopping parameters. Frequently, one hopping process can be

neglected because its requirement of more than one sub-hopping with comparably

small amplitudes.

2.2.3 Ab initio density-functional theory calculations

We have performedab initio DFT calculations[53] for an isolated graphene trilayer

in the absence of a transverse external electric field which induces an electric po-

tential difference between the layers. (DFT calculations in the presence of electric

fields will be discussed in the next section.) Our electronicstructure calculation-
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Figure 2.3: Band structure of ABC-stacked graphene trilayers in the absence of an
external electric field. The zero of energy in this plot is at the Fermi energy of a
neutral trilayer. Notice the single low-energy band with extremely flat dispersion
near theK point.
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s were performed with plane wave basis sets and ultrasoft pseudopotentials [54].

The local density approximation (LDA) was used for the exchange and correlation

potential. We have used the layer separation at the experimental value 0.335 nm,

instead of allowing relaxation, because the layer separation is known to depend on

Van der Waals interactions that are not captured by the LDA. We note that the main

role of the Van der Waals interactions is to anchor the layersat a fixed distance

through its influence on the overall energy[55, 56]. Although DFT with local or

semi-local approximations does not reliably predict interlayer separations, the elec-

tronic structure at a given layer separation is not stronglyinfluenced by Van der

Waals forces[55, 56]. We placed bulk trilayer graphene in a supercell with a 40 nm

vacuum region, large enough to avoid intercell interactions. A 21× 21× 1 k-point

mesh in the full supercell Brillouin zone (FBZ) was used witha 408 eV kinetic

energy cut-off. The calculations were tested for largek-point meshes in the FBZ

and large energy cut-offs for convergence studies. Fig.2.3 shows the DFT energy

band structure of ABC stacked trilayer graphene in the absence of an external elec-

tric field. The low energy band dispersion is nearly cubic at the two inequivalent

cornersK and K′ of the hexagonal Brillouin zone, as predicted by theπ-orbital

tight-binding and continuum model phenomenologies. The conduction and valence

bands meet at the Fermi level. Close enough to Fermi level theband is nearly flat,

which indicates the important role interactions might playin this material.

2.2.4 Extracting hopping parameters from DFT

Previously, bulk graphite (with the Bernal stacking order)SWM hopping parame-

ters have been extensively studied using DFT and measured inexperiments. How-

ever, the values of the SWM parameters appropriate for ABC-stacked trilayer graphene
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were previously unknown. We extract their values by fitting the effective model

with the DFT data in the zero electric field limit. The eigenenergies of the Hamil-

tonian in Eq. (2.6) in the absence of external potentials are

E(±) = hs±
√

h2
ch+h2

tr +2cos(3ϕp)hchhtr , (2.7)

wherehch = (v0p)3/γ2
1, htr = γ2/2−2v0v3p2/γ1 andhs = δ −2v0v4p2/γ1. To ex-

tract the remote hopping parameters we first set the nearest neighbor in-plane hop-

ping parameterγ0 to 3.16eV to set the overall energy scale. The values ofδ and,

up to a sign,γ2 can then be obtained by comparing the band energies atp = 0 cal-

culated by the two different methods. Then comparingE(+)+E(−) from the DFT

data with Eq. (2.7), we obtain a value forγ4γ0/γ1. Finally we notice that Eq. (2.7)

implies that the gap between conduction (+) and valence (−) bands vanishes at

cos(3ϕp) = 1 if htr is negative and at cos(3ϕp) = −1 if htr is positive. Because of

this property the Fermi level of a neutral balanced ABC trilayer is at the energy of

three distinct Dirac points which are removed from the Diracpoint separated in di-

rection by 2π/3. The triple Dirac point of the trilayer’s simplified model is split into

three separate single Dirac points. The DFT theory result that the conduction va-

lence gap vanishes along theK′M directions for which cos(3ϕp) = 1 implies thathtr

is negative and helps to fix the sign ofγ2. Values forγ3γ0/γ1 andγ3
0/γ2

1 are provided

by the value ofp at the Dirac points and the size of the splitting between conduction

and valence bands (2
√

h2
ch+h2

tr) along the cos(3ϕp) = 0 directions. The best over-

all fit we obtained to the bands around theK point and the deformed Dirac cones is

summarized in Table2.1, where we compare with the corresponding fitting param-

eters for bulk graphite[3, 52]. Our fit is extremely good in the low energy region in

which we are interested, as shown in Fig.2.4, though there are still discrepancies
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Figure 2.4: The magenta curve is the DFT data while the Green one represents the
effective model using the extracted parameters shown in Table 2.1. G = 4π/(

√
3a)

is the length of the reciprocal vectors andk = 0 is the K point.

as higher energies are approached. These discrepancies areexpected because of the

perturbative nature of the effective model and can be partlycorrected by restoring

the 1− (v0p)2/γ2
1 correction factor in Eq. (2.5).

2.2.5 Electron(hole) pockets and Lifshitz transitions

With the effective model hopping parameters extracted fromDFT we study the

shape of the Fermi surface of a graphene trilayer. Fig.2.5 shows the constant en-

ergy contour plot of the electron band around zero energy. Clearly, under remote

hopping the J=3 Dirac points evolve into three separateJ = 1 Dirac points symmet-

rically shifted away a little bit in theKM directions (̂kx); each shifted Dirac point

resembles a linear cone like the ones in monolayer graphene.The property that total
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Table 2.1: Summary of SWM hopping parameters obtained by fitting DFT bands in
ABC-stacked trilayer graphene to a low-energy effective model. We compare with
bulk graphite values from References[3, 52].

Parameters graphite(eV ) ABC trilayer (eV )

δ 0.008 −0.0014

γ1 0.39 0.502

γ3 0.315 −0.377

γ4 −0.044 −0.099

γ2 −0.020 −0.0171

chirality is conserved can be established by evaluating Berry phases along circular

paths far from the Dirac points where the remote hopping processes do not play

an essential role. The Dirac point distortion occurs because the direct hoppingγ2

process does not involve 2D translations and therefore gives a momentum indepen-

dent contribution to the Hamiltonian which does not vanish at the Brillouin-zone

corners. A similar distortion of the simplified-model idealchirality Dirac point

occurs in any 3m-layer system of ABC stacked (m is a positive integer) graphene

sheets. Around each deformed Dirac cone there is a electron (hole)-like pocket in

the conduction(valence) band at low carrier densities and two Lifshitz transitions

as a function of carrier density. Take the conduction band for example. As shown

in Fig. 2.5, immediately above zero energy, the constant energy surface consists of

three separate Dirac pockets. At the first critical energy 6.7 meV, the three elec-

tron pockets combine and a central triangle-like hole pocket appears. (Energies are

measured from the Fermi energy of a neutral trilayer.) At this energy three band-

structure saddle points occur midway between the shifted Dirac points, and thus
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the density-of-states diverges. Fermi levels close to these 2D logarithmic van Hove

singularities could lead to broken symmetry states. At the second critical energy

7.2 meV, the central pocket and the three remote pockets merge into a single pocket

with a smoothed triangle shape. Fig.2.5is in excellent agreement with constant en-

ergy surfaces constructed directly from our DFT calculations (Figure not shown).

The two similar Lifshitz transition energies in the valenceband occur at−7.9 meV

and−9.9 meV. The constant energy surface at the second Lifshitz transition solves

E(±)(p 6= 0) = E(±)(p = 0) , (2.8)
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Figure 2.5: Constant energy (in units of eV) contour plots ofthe conduction band
near zero energy for ABC-valued Fermi surfaces of a ABC trilayer. G = 4π/(

√
3a)

is the length of the reciprocal vector andk = 0 is a K point. The energies of the
initial three electron pockets from inner to outer are 0.0, 2.5, 5.0, 6.0, and 6.7 meV;
The energies of the central triangles from outer to inner are6.8, 6.9, 7.0, 7.1 and
7.2 meV; The energies of the bigger triangles from inner to outer are 6.8, 6.9, 7.0,
7.1, 7.2, 7.5, 9.0, 10.0, 15.0, 20.0, and 30.0 meV.
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where+(−) refers to conduction and valence band cases. This critical condition

can be specified using the law of cosines as shown in Fig.2.6, where for trilayers

φBerry= 3π andh0 = |γ2/2|±2v0v4p2/γ1. This momentum-dependent trigonomet-

ric condition can be easily generalized to the case of any other graphene multilayer

and to the case with an external potential difference. Abovethe second Lifshitz

hch

h0

htr

3 p + Berry

Figure 2.6: A momentum-dependent trigonometric relationship which describes
how the shape of the constant energy surfaces near the Lifshitz transitions is collec-
tively governed by chiral dispersion, trigonal warping, and Berry phases.

transition, the constant energy surface is triangular in shape, with a trigonal distor-

tion that differs in orientation compared to the one obtained by plugging the bulk

graphite values for the hopping parameters into the same effective model Eq. (2.6)

as illustrated in Fig.2.7. The ABC-stacked trilayer trigonal distortion has a different

orientation and is weaker. The difference mainly reflects a difference in the sign of

γ3, which favors anti-bonding orbitals at low energies. The warping of the constant

energy surface becomes hexagonal at 8∼ 9 meV, which provides nearly parallel flat

pieces on the edges of the hexagon leading to strong nesting.This might support

some competing ground states and a density-wave ordered phase might then exist

at a small but finite interaction strength. The electronic properties of low-carrier

density systems in graphene trilayers will be sensitive to these detailed band fea-
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tures. Future ARPES experiments should be able to determinewhether or not these

features are predicted correctly by our DFT calculations.
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Figure 2.7: Constant energy (in units of eV) contour plots ofthe conduction band
near zero energy for bulk graphite valued Fermi surfaces of aABC trilayer. G =
4π/(

√
3a) is the length of the reciprocal vector andk = 0 is a K point. The energies

of the initial three electron pockets from inner to outer are1.0, 5.0, 7.5, 10.0, 10.2,
10.4 and 10.6 meV; The energies of the central triangles frominner to outer are
10.0, 10.2, 10.4 and 10.6 meV; The energies of the bigger triangles from inner to
outer are 10.8, 15.0, 20.0, and 30.0 meV.

2.3 Induced band gaps in trilayers

2.3.1 Energy bands with electric fields

Fig. 2.8 shows the energy band structure of a ABC-stacked graphene trilayer for

several external electric potential differences between the outermost layers. In the
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Figure 2.8: The band structures of a ABC graphene trilayer with external electric
potential differences between the outermost layers. The external potential differ-
enceUext values are 0.0(red), 0.2(blue), 1.0(green) and 2.0(magenta) eV, respec-
tively. G = 4π/(

√
3a) is the length of the reciprocal vectors andk = 0 is a K point.

presence of an external field, as in the graphene bilayer case, the energy gap is

direct but, because the low-energy spectrum develops aMexican hat structure as the

electric potential difference increases, occurs away fromtheK or K′ point. Charge

transfer from the high-potential layer to the low-potential layer partially screens the

external potential in both bilayer and multilayer cases. Fig.2.9(a) plots the screened

potentialU and Fig.2.9(b) the energy gap, as a function of the external potential

Uext for bilayers and trilayers calculated using both DFT and thefull band self-

consistent Hartree approximation. The simple model Hartree calculations agree

quite well with the DFT results generally. We find that the screening is stronger

in a trilayer system, and that the maximum energy gap is slightly smaller. In both

bilayer and trilayer, remote hopping suppresses the size ofthe energy gap but make

little difference to the screening.
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2.3.2 Self-consistent Hartree calculation

As in the bilayer case, it is interesting to develop a theory of gap formation and

external potential screening for ABC trilayers by combining the low-energy effec-

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

U
ext

 (eV)

U
 (

eV
)

 

 

Trilayer DFT
Trilayer Hartree(γ

1
)

Trilayer Hartree(γ
1
 γ

3
)

Bilayer DFT
Bilayer Hartree(γ

1
)

Bilayer Hartree(γ
1
 γ

3
)

(a) Potential Screening

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U
ext

 (eV)

E
ga

p (
eV

)

 

 

Trilayer DFT
Trilayer Hartree(γ

1
)

Trilayer Hartree(γ
1
 γ

3
)

Bilayer DFT
Bilayer Hartree(γ

1
)

Bilayer Hartree(γ
1
 γ

3
)

(b) Energy gap evolution

Figure 2.9: Evolution of (a) the screened electric potential difference and (b) the
energy gap, with respect to the increase of the external electric potential differ-
ence between the outermost layers.� represents the DFT calculations while †
(∗) denotes the full band self-consistent Hartree calculations without (with) remote
hoppingγ3.
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tive model with a Poisson equation which takes Hartree interactions into account.

This simplified approach provides a basis for discussing thedependence on layer

number for generalN. We therefore consider an isolated grapheneN-layer with an

interlayer separationd = 0.335nm under an external electric fieldEext perpendic-

ular to the layers, neglecting the finite thickness and crystalline inhomogeneity of

the graphene layers. In an isolated system charge can only betransferred between

layers so thatn = nt +nb = 0. Definingδn = nb = −nt and using a Poisson equa-

tion, we find that the screened electric potential differenceU between the outermost

layers is

U =Uext+4πe2(N−1)d δn . (2.9)

In the two-band effective model,δn is accumulated through the layer pseudospin

polarization of the valence band states and is thus given by the following integral

over momentum space:

δn = ∑
i∈v

2
∫

BZ

d2k
(2π)2

〈

ψi(k)
∣

∣

σz

2

∣

∣ψi(k)
〉

, (2.10)

where the factor 2 accounts for spin degeneracy,|ψi(k)〉 is a band eigenstate in

the presence ofEext, band indexi runs over all the filled valence band states, and

σz/2 denotes the layer-pseudospin. Any Hamiltonian of a two-band model can be

generally written asH = h0(p)+h(p) ·σ. Defining tanθp =
√

h2
1+h2

2/h3 and

tanφp = h2/h1 the conduction and valence band states in the sublattice representa-

tion are

|+,p〉=





cosθp
2

sinθp
2 eiφp



 , |−,p〉=





−sinθp
2

cosθp
2 eiφp



 . (2.11)
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It follows that

δn = 4
∫

|p|<pc

d2p
(2π h̄)2

〈

−,p
∣

∣

σz

2

∣

∣−,p
〉

= − 1

2π2h̄2

∫ 2π

0

∫ pc

0
cosθp pdpdϕp , (2.12)

wherepc = γ1/v0 is the high momentum cutoff of the effective model andϕp is the

angle ofp.

Let’s first discuss the simplified two-band model which has only the chiral

term. For generalN

Ĥ(N)
ch =

vN
0

(−γ1)N−1





0 (π†)N

πN 0





=
(v0p)N

(−γ1)N−1(cos(Nϕp)σx+sin(Nϕp)σy) . (2.13)

The electric potential in the two-band model is±Uext
2 σz. Inserting Eq. (2.13) in

Eq. (2.9) and Eq. (2.12), we obtain an algebraic formula for the self-consistent

Hartree potential valid for generalN:

Uext

γ1
=

U
γ1

+
4(N−1)d

a0

m2

me
F(N,U) , (2.14)

F(N,U) =
1
tc

∫ tc

0

d t√
tN +1

= 2F1(
1
N
,
1
2
,
1+N

N
,−(2γ1

U
)2) ,

wherea0 = 0.053nm is the Bohr radius,m2 is the effective mass of a graphene

bilayer,tc = (2γ1/U)2/N and2F1 is Gauss’ hypergeometric function. In the limit of
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largeN, F(N,U)→ 1 and thus the Hartree equation reduces to

U ≃Uext−
4(N−1)d

a0

m2

me
γ1 (2.15)

except at very smallU . For smallU andN = 2, the Hartree equation reads

Uext

U
≃ 2d

a0

m2

me
ln

4γ1

U
, (2.16)

which is consistent with previous Hartree calculations in graphene bilayers[33]. In

the limit of smallU for N > 2, the Hartree equation has the asymptotic form

U
2γ1
≃

(

Uext

2γ1

)
N
2

C , (2.17)

where the factorC = [2(N−1)d
a0

m2
me

(1− 2
2−N + 1

2−3N )]
−N/2. The larger the value of

N, the flatter the chiral bands, and the stronger the screening. ForN = 2 the screen-

ing response is linear up to a logarithmic factor, while for largerN, superlinear

screening leads to a screened potential difference which initially grows slowly with

external potential followingU ∝ UN/2
ext . The strongest possible screening reduction

of the external potential corresponds to the Hartree-potential due to transfer of all

the states in the energy regime≤ 2γ1 over which the low energy model applies to

one layer.

For the trilayer case we can perform a similar calculation using the full low-

31



energy Hamiltonian derived in Eq. (2.6). In this case we find that

Uext

γ1
=

U
γ1

+
8d
a0

m2

me
G(U) , (2.18)

G(U) =
2
π

∫ 1

0
dt

hgapK
( 4

√
2hchhtr

(hch+
√

2htr)2+h2
gap

)

√

(hch+
√

2htr)2+h2
gap

,

wherehch = t
3
2 , htr = | γ2

2γ1
− 2v3

v0
t|, hgap=

U
2γ1

(1− t), t = ( v0p
γ1
)2, andK(x) is the

complete elliptic integral of the first kind. Fig.2.10compares the screening prop-

erties of the full low-energy effective model for trilayersto the chiral model results

for N = 2,3,4,5. ForUext < γ1/2, the energy regime over which the low-energy

effective model applies, we see that screening increases systematically withN be-

cause of smaller gaps between conduction and valence band orbitals which make

the occupied valence band orbitals more polarizable. The comparison between the

simplified chiral model and the low-energy effective model for N = 3 demonstrates

that remote hopping processes suppress screening because they tend to increase

the gap between conduction and valence bands at momenta nearthe Brillouin-zone

corner.

In concluding this section we caution that occupiedσ orbitals, neglected in

the low-energy effective model andπ-band tight-binding models, will contribute

slightly to polarization by an external electric field and therefore to screening. Fur-

thermore exchange potentials will also be altered by an external electric field and in-

fluence the screening. Since exchange interactions are attractive, they always work

against screening and will make a negative contribution to the screening ratio we

have discussed in multilayers. Because the low energy eigenstates in multilayers are

coherent superpositions of states localized in different layers, our DFT calculations
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Figure 2.10:U v.s. Uext plot describes the screening effect in different chiral-N
systems. The Chiral model results refer to the Hamiltonian in Eq. (2.13) while the
full model results refer to the Hamiltonian in Eq. (2.6).

which employ a local exchange approximation, might also yield inaccurate results

for the screening ratio. In fact simple measurements of the screening properties

might provide a valuable window on many-body physics in ABC-stacked graphene

multilayers which lies outside the scope of commonly employed approximations.

2.4 Discussion

We have derived an effective model for the low-energy conduction and valence

bands of an ABC-stacked graphene multilayer. The low-energy model can be

viewed as a momentum-dependent pseudospin Hamiltonian, with the pseudospin

constructed from the low energy sites on the top and bottom layers. The simplified

version of this model starts from aπ-band tight-binding model with only nearest

neighbor hopping and yields a pseudospin magnetic field whose magnitude varies

as momentumpN in an N-layer stack and whose direction isNφp whereφp is the
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momentum orientation. The likely importance of electron-electron interactions in

multilayers can be judged by comparing the characteristic band and interaction en-

ergies in a system with carrier densityn and Fermi wavevectorpF ∝
√

n. The

characteristic Coulomb interaction energy per-particle in all cases goes likee2n1/2,

while the band energy goes likenN/2. For low-carrier densities the band energy s-

cale is always smaller. In the case of trilayer ABC graphene,the interaction energy

scale is larger than the band energy scale for carrier density n < 1012cm−2.

Although interactions are clearly important and can potentially introduce

new physics, the chiral band model is not valid at low-densities because of the in-

fluence of remote hopping processes which we have estimated in this article by

carefully fitting a low-energy effective model to DFT bands.The Hamiltonian

in Eq. (2.6) combined with the parameters in Table I should be used to describe

graphene trilayers with low carrier densities. In a realistic system the Fermi surface

of a ABC trilayer with a low carrier density consists of threeelectron pockets cen-

tered away from the K point. As the carrier density grows these pockets convert via

a sequence of two closely spaced Lifshitz transitions into asingle K-centered pock-

et. The carrier density at the Lifshitz transition is∼ 1011cm−2, which translates to

a Coulomb interaction scale of∼ 45 meV, compared to a Fermi energy of∼ 7 meV.

The Berry phase associated with the momentum-dependence ofthe pseu-

dospin orientation field,π for a full rotation in single-layers and 2π in the bi-

layer chiral model for example, is known[57–63] to have an important influence

on quantum corrections to transport. Because of their very different Berry phases

time-reversed paths are expected to interfere destructively for N-odd systems while

constructively forN-even system, leading to weak anti-localization for oddN and

weak localization for evenN. This general tendency will however be altered by

trigonal and other corrections to the low-energy effectiveHamiltonian, like those
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we have derived for trilayers. The influence of these band features on quantum

corrections to transport can be evaluated starting from theresults obtained here.

Another important consequence of Berry phases in the chiralmodel is the

unconventional Landau level structure it yields[4, 5, 29–31]. In the chiral model

for ABC trilayers there is a three-fold degeneracy at the Dirac point, in addition

to the usual spin and valley degeneracies. This grouping of Landau level leads

to the expectation that quantum Hall studies in trilayers will reveal plateaus that

jump from one at−6e2/h to one at 6e2/h. Electron-electron interactions act-

ing alone are expected to lift these degeneracies and give rise to quantum Hall

ferromagnetism[12, 64, 65]. These interaction effects will act in concert with s-

mall corrections to the Landau level structures due to the remote hopping terms that

have been quantified in this chapter.

Although we have discussed the case of ABC stacked trilayers, we expect

qualitatively similar results for ABC stacking sequences of general thicknessN. At

low energies the band structure will consist of a conductionand a valence band with

pN dispersion and a gap in the presence of an external electric field across the film.

In the presence of a magnetic fieldN Landau levels are pinned to the neutral system

Fermi level for each spin and valley. At the lowest energies,within around 10meV

of the neutral system Fermi level, constant energy surfaceswill be strongly influ-

enced by remote hopping processes which will also split the Dirac point Landau

levels. The remote hopping terms give rise to saddle-pointsin the band structure

at which the density-of-states will diverge. Broken symmetry electronic states are

mostly likely to occur when the Fermi level is coincident with these saddle points.

The energy range over which the low-energy effective model applies will, however,

decrease with film thickness. We expect both disorder and interaction effects to be

strong within this family of low-dimensional electron systems, which should be ac-
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cessible to experimental study in samples for which disorder is weak on the energy

scale over which the low-energy effective model applies.

In summary, we have derived an effective model for trilayers, extracted the

hopping parameters for ABC-stacked multilayers, from DFT and studied the trilay-

er Fermi surfaces. Furthermore, we have explored the screening effect in trilayers

and then explained and compared with other C2DES cases by a tight-binding mod-

el self-consistent Hartree method. Lastly, we have argued the importance of Berry

phases and interactions in C2DES.
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Chapter 3

Electron-Electron Interactions in

Bilayer Graphene

In a mean-field-theory treatment the ground state of a graphene bilayer sponta-

neously breaks inversion symmetry for arbitrarily weak electron-electron interac-

tions when trigonal warping terms in the band structure are ignored. This chap-

ter first details a perturbative renormalization group calculation which assesses

the robustness of this instability, comparing with the closely related case of the

charge-density-wave instability incorrectly predicted by mean-field theory in a one-

dimensional electron gas. Two dimensional bilayer graphene systems behave in

many ways as if they were one dimensional, although the interactions become

marginally relevant in the one loop level, unlike the case ofLuttinger liquids. It

turns out that the mean-field instability is not suppressed by quantum fluctuations

but that, because of trigonal warping, it may occur only in high quality suspended

bilayers. We then explain the influences of spin and pseudospin degrees of freedom,

trigonal warping and external interlayer potential difference on the RG flows of the
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interaction parameters. Based on a layer pseudospin susceptibility calculation, we

further conclude that the ground states of bilayer grapheneand its thicker chiral

cousins spontaneously break their layer inversion symmetry with a spontaneous

gap opening at Dirac points via the weak repulsive interaction instability. Lastly,

we details various broken symmetry states in bilayer graphene and compare them

with the state observed in recent experiments. This analysis leads to the conclusion

that the gaps[10, 15, 46] observed[13, 17, 18] in the quasiparticle spectrum of bi-

layer graphene likely reflect the formation of spontaneous quantum Hall states[9]

in which inversion symmetry is broken[10] in opposite senses for different spins or

valleys.

3.1 Introduction

Electrons most often organize into Fermi-liquid states in which interactions play

an inessential role. A well known exception is the case of one-dimensional (1D)

electron systems (1DES). In 1D, the electron Fermi-surfaceconsists of points,

and divergences associated with low-energy particle-holeexcitations abound when

electron-electron interactions are described perturbatively. In higher space dimen-

sions, the corresponding divergences occur only when Fermilines or surfaces sat-

isfy idealized nesting conditions. In this article we discuss electron-electron in-

teractions in 2D graphene bilayer systems which behave in many ways as if they

were one-dimensional, because they have Fermi points instead of Fermi lines and

because their particle-hole energies have a quadratic dispersion which compensates

for the difference between 1D and 2D phase space.

Recent progress in isolation of nearly perfect single and multilayer graphene

sheets[2, 3, 26, 27] has opened up a new topic in two-dimensional electron sys-
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tems (2DES) physics. There is to date little unambiguous experimental evidence

that electron-electron interactions play an essential role in the graphene family of

2DES’s. However, as pointed out by Minet al.[15] graphene bilayers near neutral-

ity should be particularly susceptible to interaction effects because of their peculiar

massive-chiral[4] band Hamiltonian, which has an energy-splitting between valence

and conduction bands that vanishes atq = 0 and grows quadratically withq = |q|:

HB =− ∑
qσ ′σ

h̄2q2

2m∗
c†
qσ ′

[

cos(Jφq)τx
σ ′σ +sin(Jφq)τy

σ ′σ
]

cqσ . (3.1)

In Eq. (3.1) theτ is are Pauli matrices and the Greek labels refer to the two bilay-

er graphene sublattice sites, one in each layer, which do nothave a neighbor in

the opposite graphene layer. (See Fig.3.1.) The other two sublattice site energies

are repelled from the Fermi level by interlayer hopping and irrelevant at low ener-

gies. It is frequently useful to view quantum two-level layer degree of freedom as a

pseudospin. TheJ = 2 pseudospin chirality of bilayer graphene contrasts with the

J = 1 chirality[26, 28] of single-layer graphene and is a consequence of the two-

step process in which electrons hop between low-energy sites via the high-energy

sites. The massive-chiral band-structure model applies atenergies smaller than the

interlayer hopping scale[3] γ1∼ 0.3 eV but larger than the trigonal-warping scale[3]

γ3(γ1/γ0)
2∼ 0.003 eV below which direct hopping between low-energy sites plays

an essential role. The body of this section concerns the roleof interactions in the

massive-chiral model; we return at the end to explain the important role played by

trigonal warping.
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Figure 3.1:a, The massive chiral fermion model describes the low-energy sites in
a AB-stacked graphene bilayer, those atom sites (top layerB sites and bottom layer
A′ sites) which do not have a neighbor in the opposite layer.b, The conduction and
valence bands of a graphene bilayer touch at the Brillouin-zone corner wavevectors,
taken as zero-momentum in continuum model theories, and separate quadratically
with increasing wavevector.c, In a 1DES left and right going electrons cross the
Fermi energy at a single point; The momentum of right-going (left-going) electrons
is plotted relative toqF (−qF ) whereqF is the Fermi wavevector.

3.2 Similarities and differences between 1DES and

bilayer graphene

Similarities and differences between graphene bilayers and 1DES are most easily

explained by temporarily neglecting the spin, and in the case of graphene also the

additional valley degree of freedom. As illustrated in Fig.3.1 in both cases the

Fermi sea is point-like and there is a gap between occupied and empty free-particle
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states which grows with wavevector, linearly in the 1DES case. These circum-

stances are known to support a mean-field broken symmetry state in which phase

coherence is established between conduction and valence band states for arbitrari-

ly weak repulsive interactions. In the case of a 1DES, the broken symmetry state

corresponds physically to a charge density-wave (CDW) state, while in the case of

bilayer graphene[15] it corresponds to state in which charge is spontaneously trans-

ferred between layers. This mean-field theory prediction isfamously incorrect in

the 1DES case, and the origin of the failure can be elegantly identified[66, 67] using

a perturbative renormalization group (PRG) approach. We show below that when

applied to bilayer graphene, the same considerations lead to a different conclusion.

The reliability of the mean-field theory prediction[15] of a weak-interaction

instability in bilayer graphene can be systematically assessed using PRG[67]. We

outline the main steps in the application of PRG to bilayer graphene, pointing out

essential differences compared to the 1DES case. We assume short-range interac-

tions1 between electrons in the same (S) and different (D) layers.

The PRG analysis centers on the four point scattering function defined in

terms of Feynman diagrams in Fig.3.2. Since the Pauli exclusion principle implies

that (in the spinless valleyless case) no pair of electrons can share the same 2D po-

sition unless they are in opposite layers, intralayer interactions cannot influence the

particles; there is therefore only one type of interaction generated by the RG flow,

interactions between electrons in opposite layers with therenormalized coupling

parameterΓD. The direct and exchange first order processes in Fig.3.2 have the

valuesVD (bare coupling parameter) and 0 respectively.

The PRG analysis determines howVD is renormalized in a RG procedure

1We replace the bare Coulomb interactions by short-range momentum-independent
interactions[67] by evaluating them at typical momentum transfers at the model’s high-energy limit.
We believe that this approximation is not serious because ofscreening.
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Figure 3.2:a, The renormalized interactionΓD. b, c, The direct and exchange bare
interactions.d, e, f, They are the one-loop diagrams labelled ZS, ZS’ and BCS,
respectively. The external and internal Green’s function labels refer to layer in the
case of graphene and to chirality in 1DES’ case.

in which high energy degrees of freedom are integrated out and the fermion fields

of the low energy degrees of freedom are rescaled to leave thefree-particle action

invariant. The effective interactionΓD is altered by coupling between low and high

energy degrees of freedom. At one loop level this interaction is described[67] by

the three higher order diagrams labeled ZS, ZS’, and BCS in Fig. 3.2. The inter-

nal loops in these diagrams are summed over the high-energy labels. In the case

of 1DES the ZS loop vanishes and the ZS’ and BCS diagrams cancel, implying

that the interaction strengths do not flow to large values andthat neither the CD-

W repulsive interaction nor the BCS attractive interactioninstabilities predicted by

mean-field theory survive the quantum fluctuations they neglect. The key message

of this section is summarized by two observations about the properties of these

one-loop diagrams in the bilayer graphene case: (i) the particle-particle (BCS) and

particle-hole (ZS, ZS’) loops have the same logarithmic divergences as in the 1DES
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case in spite of the larger space dimension and (ii) the ZS loop, which vanishes in

the 1DES case, is finite in the bilayer graphene case and the BCS loop vanishes

instead. Both of these changes are due to a layer pseudospin triplet contribution

to the single-particle Green’s function as we explain in thenext subsections. The

net result is that interactions flow to strong coupling even more strongly than in

the mean-field approximation. The following paragraphs outline key steps in the

calculations which support these conclusions.

3.3 Perturbative renormalization group analysis in

bilayer graphene

3.3.1 Green’s functions and frequency sums

Starting from the low-energy massive chiral band Hamiltonian3.1, an elementary

calculation shows that the single-particle Matsubara Green’s function correspond-

ing to the Hamiltonian in Eq. (3.1) is

G (q, iωn) =





Gs(q, iωn) −Gt(q, iωn)e−iJφq

−Gt(q, iωn)eiJφq Gs(q, iωn)



 (3.2)

whereh̄ωq = ξq = h̄q2/2m∗ and

Gs,t(q, iωn)≡
1
2

(

1
iωn−ωq

± 1
iωn +ωq

)

. (3.3)

The pseudospin-singlet component of the Green’s functionGs, which is diagonal in

layer index, changes sign under frequency inversion whereas the triplet component

Gt, which is off-diagonal, is invariant.
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The loop diagrams are evaluated by summing the product of twoGreen’s

functions (corresponding to the two arms of the Feynman diagram loops) over mo-

mentum and frequency. The frequency sums are standard and yield (β = (kBT )−1)

1

β h̄2 ∑
ωn

G
2
s,t(iωn) =∓

tanh(βξq/2)
4ξq

−→
T→0
∓ 1

4ξq
1

β h̄2 ∑
ωn

Gs(iωn)Gt(iωn)−→
T→0

0 (3.4)

whereq is the momentum label shared by the Green’s functions. Note that the

singlet-triplet product sum vanishes in the low-temperature limit in which we are

interested. Each loop diagram is multiplied by appropriateinteraction constants

(discussed below) and then integrated over high energy momentum labels up to the

massive chiral fermion model’s ultraviolet cutoffΛ:

∫

Λ/s<q<Λ

d2q

(2π)2

tanh(βξq/2)
4ξq

−→
T→0

1
2

ν0 ln(s) (3.5)

whereν0 = m∗/2π h̄2 is the graphene bilayer density-of-states. Becauseωq ∝ q2,

this integral grows logarithmically when the high-energy cut-off is scaled down by

a factor ofs in the RG transformation, exactly like the familiar 1DES case. This

rather surprising property of bilayer graphene is directlyrelated to its unusual band

structure with Fermi points rather than Fermi lines and quadratic rather than linear

dispersion.

The key differences between bilayer graphene and the 1DES appear upon

identifying the coupling factors which are attached to the loop diagrams. The exter-

nal legs in the scattering function Feynman diagrams (Fig.3.2) are labeled by layer

index (T = top layer andB = bottom layer) in bilayer graphene. The corresponding

labels for the 1DES are chirality (R = right-going andL = left going); we call these
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interaction labels when we refer to the two cases generically. Since only opposite

layer interactions are relevant, all scattering functionshave two incoming particles

with opposite layer labels and two outgoing particles with opposite layer labels.

3.3.2 PRG analysis for a singlespin-valley

ZS

B

T

B

T

TT

B B

(a) a

ZS′

B

T

B

T

B

T T

B

(b) a

Figure 3.3:(a) ZS, (b) ZS’ loop corrections in the one-loop PRG calculation.

The character of the marginally relevant interactions in bilayer graphene is

most easily explained by PRG analysis for a single spin-valley, as we will see in this

subsection. As shown in Fig.3.3(a), at the upper vertex of ZS diagram the incoming

and the outgoingT particles induce aB particle-hole pair in the loop while the

incoming and outgoingB particles at the lower vertex induce aT particle-hole pair.

The corresponding labels in the 1DES case areL, R for left and right chirality. The

ZS contribution is absent in the 1DES case[66, 67] because propagation is always

diagonal in interaction labels. However, this correction survives for GBS because

the single-particle Green’s function has a triplet contribution [see Eq. (3.4)] which
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is off-diagonal in layer index. Here we find

ΓZS
D =

Γ2
D

β h̄2

∫

d2q

(2π)2 ∑
ωn

G
2
t (q, iωn)

= Γ2
D

∫

d2q

(2π)2

tanh(βξq/2)
4ξq

=
1
2

Γ2
D ν0 ln(s) , (3.6)

whereν0 = m∗/2π h̄2 is the graphene bilayer density-of-states (per spin and valley)

and the integral is carried out in the momentum shellΛ/s < q < Λ.

The ZS’loop shown in Fig.3.3(b) corresponds to repeated interaction be-

tween aT particle and aB hole. This is the channel responsible for the 1DES

mean-field CDW instability [67] in which coherence is established betweenR and

L particles[66]. In both 1DES and GBS cases it has the effect of enhancing repul-

sive interactions. Its evaluations for the two cases correspond quite closely, because

this loop diagram involves only particle-propagation thatis diagonal in interaction

labels, namely, singlet contribution. We find

ΓZS′
D = − Γ2

D

β h̄2

∫

d2q

(2π)2 ∑
ωn

G
2
s (q, iωn)

= Γ2
D

∫

d2q

(2π)2

tanh(βξq/2)
4ξq

=
1
2

Γ2
D ν0 ln(s) . (3.7)

The BCS channel corresponds to repeated interaction between the two in-

coming particles. In the 1DES case the contribution from this loop (see Fig.3.4)

cancels the ZS’ contribution[67], leading to marginal interactions and Luttinger liq-
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Figure 3.4: BCS(particle-particle) loop correction for singlet propagation in the
one-loop PRG calculation.

uid behavior. This same kind of BCS correction for graphene bilayer reads

ΓBCS1
D = − 1

2
Γ2

D

β h̄2

∫

d2q

(2π)2 ∑
ωn

Gs(q, iωn)Gs(−q,−iωn)

− 1
2
(−ΓD)

2

β h̄2

∫

d2q

(2π)2 ∑
ωn

Gs(q, iωn)Gs(−q,−iωn)

= − 1
2

Γ2
D ν0 ln(s) . (3.8)
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Figure 3.5: BCS(particle-particle) loop correction for triplet propagation in the one-
loop PRG calculation.
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In the graphene bilayer case, however, there is an additional contribution

(see Fig.3.5) to the BCS loop contribution in which the incomingT andB particles

both change layer labels before the second interaction. This contribution is possible

because of the triplet layer pseudospin propagation and, inlight of Eq. (3.4), gives

a BCS contribution of opposite sign to the normal contribution:

ΓBCS2
D = −1

2
ΓD(−ΓD)

β h̄2

∫

d2q

(2π)2 ∑
ωn

Gt(q, iωn)Gt(−q,−iωn)

−1
2
(−ΓD)ΓD

β h̄2

∫

d2q

(2π)2 ∑
ωn

Gt(q, iωn)Gt(−q,−iωn)

=
1
2

Γ2
D ν0 ln(s) . (3.9)

It follows that the BCS loop contribution is absent in the graphene bilayer

case because

ΓBCS
D = ΓBCS1

D +ΓBCS2
D = 0. (3.10)

Therefore, at one-loop level, the renormalization of interlayer interaction is

Γone−loop
D = ΓZS

D +ΓZS′
D +ΓBCS

D = Γ2
D ν0 ln(s) . (3.11)

These results and comparison with 1DES are summarized in Table 3.1 and imply

the following RG flow equation for GBS:

dΓD

ν0 d ln(s)
= Γ2

D . (3.12)

Combined with the bare interlayer interactionVD and integrating the flow equation
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we obtain that

ΓD =
VD

1−VDν0 ln(s)
(3.13)

which diverges ifVD ν0 ≥ 1/ ln(s). This equation serves as an instability criterion

similar with Stoner criterion in ferromagnetism.

Table 3.1: Summary of contrasting the contributions (in units of the related density-
of-states) of the three one-loop diagrams in 1DES and graphene bilayer cases

diagrams 1DEG Graphene Bilayer

ZS 0 1
2 Γ2

D ln(s)

ZS’ u2 ln(s) 1
2 Γ2

D ln(s)

BCS −u2 ln(s) 0

Mean Field u2 ln(s) 1
2 Γ2

D ln(s)

Quantum Fluctuations −u2 ln(s) 1
2 Γ2

D ln(s)

Full One-Loop 0 Γ2
D ln(s)

For the Feynman diagrams drawing conventions we have chosen, the inter-

action correction to the layer pseudospin response function χzz, which diverges at

the pseudospin ferromagnet phase boundary, is obtained by closing the scattering

function with aτz vertex at top and bottom. Theτz operator measures the charge

difference betweenT andB layers. Because it is an effective single-particle theory,

fermion mean-field theory[15] corresponds to response function diagrams with at

most a single particle-hole pair. It follows that mean-fieldtheory is equivalent to a

single-loop PRG calculation in which the BCS and ZS’ channels, namely, the quan-

tum fluctuations are neglected and only the ZS channel is retained. In mean-field

theory[15] the ideal graphene bilayer has an instability to a state in which charge is
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spontaneously transferred between the layers which is signalled by the divergence

of χzz. The PRG analysis demonstrates that the mean-field theory instability is

enhanced by reinforcing ZS’ channel contribution.

Therefore, the net result is that interactions flow to strongcoupling even

more strongly than in the mean-field approximation. Taking guidance from the

mean-field theory[15], the strong coupling state at each spin-valley is likely a pseu-

dospin ferromagnet which has an energy gap and spontaneous charge transfer be-

tween layers, spontaneously breaking the inversion symmetry. The following sub-

sections outline how spin and valley degrees of freedom influence the RG flows

and which pseudospin channel has the most divergent susceptibility which support

these conclusions.

3.3.3 Spins pseudospins and distinct interaction parameters

In the low-energy continuum model of bilayer graphene electrons carry spin, and

both layer and valley pseudospin labels. In a scattering event, both the two incoming

and two outgoing particles can therefore have one of eight labels and the general

scattering function therefore has 84 possible low-energy long-wavelength values.

The number of distinct coupling constants in the RG flow equations is much smaller,

however, because many values are zero and others are relatedto each other by

symmetry. One simplification is that interactions conservespin, and both layer and

valley pseudospin, at each vertex. Interactions are however dependent on whether

the interacting particles are in the same (S) or in different (D) layers. The internal

loops in the perturbative RG calculation contain two fermion propagator (Green’s

function) lines. These propagators conserve both spin and valley pseudospin, but as

we have seen above, not the layer pseudospin. It is clear thenthat the incoming and
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outgoing total spin must be preserved for real spin and for the valley pseudospin, but

the layer pseudospin case requires a more elaborate consideration. From Eq. (3.2)

we see that a phase factore±2iφq is gained when the propagator transfers electrons

between layer index with the+ for top to bottom evolution and the− for bottom

to top. Unless these transfers enter an equal number of timesin each direction, the

integrand in a Feynman diagram will contain a net phase factor related to chirality

and vanish under momentum integration. The total layer pseudospin is therefore

also conserved in collisions.

ΓS

↑

↑

↑

↑

ΓD

↓

↑

↓

↑

ΓX

↑

↑

↓

↓

Figure 3.6: Electron-electron scattering processes for a system with one
pseudospin-1/2 degree of freedom.

In identifying distinct coupling constants, we start with the simplest case

in which the valley and spin labels are absent. There are thenthree possibilities,

as illustrated in Fig.3.6. When the two incoming pseudospins are parallel (ΓS

in Fig. 3.6), the outgoing pseudospins must also be parallel. Because of Fermi

statistics interchanging the outgoing lines inΓS changes the diagrams’s sign. Since

the diagram is invariant under this operation, it must vanish. The second possibility

is opposite incoming pseudospins, which requires oppositeoutgoing pseudospins

in one of the two configurations labelled byΓD andΓX in Fig. 3.6. In this case

Fermi statistics implies thatΓD =−ΓX . It follows that the only distinct interaction
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Figure 3.7: Distinct interaction channels for systems withtwo pseudospin-1/2 de-
grees of freedom. In this figure the first spin is denoted by| ↑〉 or | ↓〉 while the
second by| →〉 or | ←〉. The one-dimensional electron gas system can be viewed
as being in this class if the chirality index is regarded as a pseudospin.

parameter isΓD.

If more than one pseudospin is present, we have to recognize more sepa-

rate interacting processes. For example, for systems with two relevant pseudospins,

the interaction parameters can be labeled in the same way as in Fig. 3.6 but by

doublets which account for the different pseudospins separately. For instance, two

pseudospin interactions might includeΓSD, ΓDS, ΓDD andΓXD (see Fig.3.7). A-

gainΓSS is absent due to Pauli exclusion principle. If the labels represent layer and

spin respectively, interpreting their physical meaning,ΓS(D)D(S) denotes the inter-

action between the particles within the same (different) layer(s) carrying different

(same) spin flavor(s) respectively;ΓXD corresponds to the layer-flipping interacting

process between particles having different spin flavors. Inmodels for which prop-
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agators and interactions preserve all pseudospin labels, we would haveΓXD = 0

since all pseudospin flavors are preserved along each fermion line. For graphene

bilayers, however, we must keepΓXD 6= 0 because the layer pseudospin has triplet

propagation. Following this line of argument, consideringPauli exclusion principle

and the fermionic antisymmetry between outgoing particles, we conclude that in

graphene bilayers, with its three different pseudospins, there are ten distinct non-

zero interaction parameters:ΓSSD, ΓSDS, ΓSDD, ΓDSS, ΓDSD, ΓDDS, ΓDDD, ΓXSD,

ΓXDS andΓXDD, where the first label refers to layer pseudospin, and the following

labels to real spin and valley.

3.3.4 RG flow equations for distinct interaction parameters

The one-loop flow equations are derived in the same way as in the spinless val-

leyless case, except for the necessity of keeping track of the many-possible con-

figurations of the end labels on the loop propagators. We summarize the RG flow

equations in Eq.(3.14).

dΓSSD

ν0d ln(s)
= −1

2
Γ2

SSD−ΓDSS(ΓDSD−ΓSSD)

−(ΓDDS−ΓSDS)(ΓDDD−ΓSDD)+
1
2
(ΓXSD−ΓSSD)

2

dΓSDS

ν0d ln(s)
= −1

2
Γ2

SDS−ΓDSS(ΓDDS−ΓSDS)

−(ΓDSD−ΓSSD)(ΓDDD−ΓSDD)+
1
2
(ΓXDS−ΓSDS)

2

dΓSDD

ν0d ln(s)
= −1

2
Γ2

SDD−ΓDSS(ΓDDD−ΓSDD)

−(ΓDSD−ΓSSD)(ΓDDS−ΓSDS)+
1
2
(ΓXDD−ΓSDD)

2
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dΓDSS

ν0 d ln(s)
= Γ2

DSS+
1
2
(ΓDSD−ΓSSD)

2+
1
2
(ΓDDS−ΓSDS)

2

+
1
2
(ΓDDD−ΓSDD)

2+
1
2

Γ2
XSD+

1
2

Γ2
XDS+

1
2

Γ2
XDD

dΓDSD

ν0 d ln(s)
=

1
2

Γ2
DSD+ΓDSS(ΓDSD−ΓSSD)

+(ΓDDD−ΓSDD)(ΓDDS−ΓSDS)−
1
2
(ΓDSD+ΓXSD)

2

dΓDDS

ν0 d ln(s)
=

1
2

Γ2
DDS+ΓDSS(ΓDDS−ΓSDS)

+(ΓDDD−ΓSDD)(ΓDSD−ΓSSD)−
1
2
(ΓDDS+ΓXDS)

2

dΓDDD

ν0 d ln(s)
=

1
2

Γ2
DDD +ΓDSS(ΓDDD−ΓSDD)

+(ΓDDS−ΓSDS)(ΓDSD−ΓSSD)−
1
2
(ΓDDD+ΓXDD)

2

dΓXSD

ν0 d ln(s)
= ΓDSSΓXSD−ΓXDSΓXDD

−1
2
(ΓXSD−ΓSSD)

2− 1
2
(ΓXSD+ΓDSD)

2

dΓXDS

ν0 d ln(s)
= ΓDSSΓXDS−ΓXSDΓXDD

−1
2
(ΓXDS−ΓSDS)

2− 1
2
(ΓXDS+ΓDDS)

2

dΓXDD

ν0 d ln(s)
= ΓDSSΓXDD−ΓXSDΓXDS

−1
2
(ΓXDD−ΓSDD)

2− 1
2
(ΓXDD +ΓDDD)

2 . (3.14)

The only fixed point that we have identified is the non-interacting one. These

ten coupled flow equations can be integrated numerically starting from bare interac-

tions. In order to represent the property that same layer interactions will be slightly

stronger than different layer interactions we set the bare values of the scattering am-

plitudes to 1.1, 0.9 and 0 forν0VS (representsVSSD, VSDS, VSDD) , ν0VD (represents

VDSS, VDSD, VDDS, VDDD) andν0VX (representsVXSD, VXDS, VXDD), respectively.
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(The motivation for this choice is explained in the next section.) We find that the

interaction parameters flow away from the non-interacting fixed point and diverge

at a finite value ofs as illustrated in Fig.3.8. The instability criterion implied by this

one-loop PRG calculation isVD ν0 ≃ 0.6/ ln(s). The instability tendency is there-

fore enhanced by the spin and valley degrees of freedom sincethe criterion was

VD ν0≃ 1/ ln(s) for the spinless and valleyless case.
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Γ
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Figure 3.8: This illustration plots the inverse interaction strength(ν0Γεeff)
−1 ver-

sus the scaling parameter ln(s)/εeff. εeff is the effective dielectric constant of
the graphene bilayer andΓ = Γvacuum/εeff. Interlayer interaction parametersΓDSS

(green) andΓXSD,ΓXDS,ΓXDD (cyan) flow to large values most quickly. According
to this estimate the normal state becomes unstable forν0VD ≥ 0.6/ ln(s).

When spin and valley is included, the tendency of the instability is actually

enhanced, based on the above analysis. However, we should becareful to express

the final ground state. In this full mode, there are four species of electrons, one for

each valley and each spin, and each of them undergoes the spontaneous inversion

symmetry breaking. The most stable final state is that two species transfer to one
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layer and the other two species transfer to the other layer, although it is possible to

have other possible states, all the four species transfer toone layer, or three species

and the fourth one transfer to different layers respectively. The formation of a layer

pseudospin ferromagnetic phase has an electrostatic energy cost. This broken sym-

metry phase, like the formation of exciton condensates in normal bilayer systems,

is driven by interlayer exchange energy. A consideration ofthe full exchange in-

teraction shows that it can overcome the electrostatic contribution. Therefore, the

broken symmetry phase is stable and favored.

3.3.5 Influence of trigonal warping and external potential

The conclusions which can be drawn from the PRG calculation presented here are

sensitive to the upper and lower momentum and energy cutoffs, which limit the

applicability of the massive chiral fermion model for bilayer graphene, and to the

strength of bare electron-electron scattering amplitudes. Below we estimate the

range ofs over which the RG flows discussed above apply, and the strength of the

bare interactionVD. We caution that, given the nature of the PRG calculations, the

estimates presented below should be regarded as qualitative.

In practice the upper cutoff is the interlayer hopping energy EH = γ1 ∼
0.4 eV; at higher energies it is essential to account for two sublattice sites in each

layer. We have in addition ignored the trigonal-warping part in the full Hamiltoni-

an, due to a direct hopping process between the low-energy sites which has energy

scale[3, 26] γ3∼ 0.3 eV. Inserting the expression for the effective mass of the mas-

sive chiral Fermion model we find that the model we have studied is appropriate

for

h̄ vFq
γ3

γ0
≤ h̄2q2

2m∗
=

h̄2 q2v2
F

γ1
≤ γ1 (3.15)
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wherevF∼ 108 cm/s is the Fermi velocity near the Dirac point in the single-layer-

graphene continuum model, andγ0 ∼ 3 eV is the intralayer near neighbor hopping

energy. It follows that the high energy momentum cutoffqH = γ1/h̄vF and that the

low energy momentum cutoffqL = (γ3γ1/γ0)/h̄vF, which gives the maximum value

of the scaling parameter ln(s). Using accepted values for the hopping parameters[3,

26], it follows that the scaling relations we derive should apply approximately over

a wavevector range corresponding to ln(s)max= ln(qH/qL)≃ ln(γ0/γ3)≃ 2.3.

If a small external potential difference 2U , whereU = η γ1 andη ≪ 1, is

applied between the layers, it adds a single-particle termU τz[4, 6, 33] to the single-

particle Hamiltonian, and hence breaks inversion symmetry. Then the low energy

limit is

EL = max

{

ηγ1 ,(
γ3

γ0
)2γ1

}

. (3.16)

It’s easily to find thatηL = (γ3/γ0)
2∼ 0.01 is the critical value above which the low

energy limit is determined by the external potential difference between the layers

rather than the intrinsic trigonal warping.

We estimate the strength of the bare interactions by evaluating the 2D Coulom-

b scattering potential at the cutoff wavevectorqH:

ν0VS≃
m∗

2π h̄2

2πe2

qH
=

αee

2
(3.17)

whereαee= e2/h̄vF≃ 2.2 is graphene’s fine structure constant. Based on the insta-

bility criterion, larger interactions are more likely to break symmetry. Evaluating

the interaction strength at high cutoff gives the minimal value. We argue that the

instability occurs even at minimal interactions. The initial values used in the RG
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flows is motivated by this estimate. The value used forVD is reduced by a factor

of exp(−qHd) compared toVS to account for the layer separationd = 3.35Å. Tak-

ing into account both the direct and exchange contributions, we easily get the bare

values of the scattering amplitudes we use in the last section.

If no external potential difference is applied between the layers, according to

these estimates the bare value ofν0VD exceeds the stability limit of∼0.6/ ln(s)max∼
0.25 by approximately a factor of four. The above estimates arefor the case of a

graphene bilayer in vacuum. For graphene layers on the surface of a substrate

with dielectric constantε, interactions are expected to be reduced by a factor of

∼ (ε +1)/2. In the case of SiO2 substratesε ∼ 4 and the interaction strength ex-

ceeds the stability limit by a much narrower margin.

Applying potential difference between the layers does giverise a small ener-

gy gap. There is another critical value ofηH ∼ 1/3, namely, ln(s)max=−(lnηH)/2

and it satisfyν0VD = 0.6/ ln(s)max. Above this value, the momentum shell valid

for the chiral model is too narrow to support the occur of spontaneous symmetry

breaking. Therefore the small energy gap around the Dirac points are governed

dominantly by this large potential difference. Both electron-electron interactions

and the potential difference between the layers have the potential to open a ener-

gy gap around the Dirac points in suspended GB, however, the larger the potential

difference, the less possibility of the occur of the spontaneous layer inversion sym-

metry breaking. We summarize in the Table3.2 how interactions and potential

differences play their roles in the model we use and determine whether breaking

inversion symmetry occurs in suspended GBS.

The strength of the instabilities, at least for high qualitysuspended graphene

bilayers and small external potential differences betweenthe layers, are large e-

nough to lead some consequences which can be observed in experiments, although
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Table 3.2: Summary of whether the electron-electron interactions drive a suspend-
ed graphene bilayer, with different values of the potentialdifference between the
layers, to a spontaneous layer inversion symmetry breakingstate and hence open a
gap

η Chiral Model EL/γ1 Instability Dominant

0≤ η < ηL Valid (γ3/γ0)
2 Yes VD

ηL ≤ η < ηH Valid η Yes VD

ηH ≤ η < 1 Valid η No U τz

η ≥ 1 Beyond Chiral \ No U τz

trigonal warping effect does give rise some inhomogeneities and anisotropy, and

the external potential difference breaks inversion symmetry and transfers charge

between layers.

3.4 Spontaneous layer inversion symmetry breaking

3.4.1 Susceptibilities and which symmetry is broken

There must be a spontaneous broken symmetry in bilayer graphene since the in-

teraction coupling constants blow up in the RG flows. To show which symme-

try is broken, we need to investigate the pseudospin susceptibilities, namely, the

pseudospin-pseudospin response functions defined as following

χTB(q, iω) =
∫ β

0
dτeiωτ 〈Tτ ST(q,τ)SB(−q,0)〉 , (3.18)

Sα(q,τ) = ∑
k

c†
k+q,iσ

(α)
ij ck,j , (3.19)
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whereSα is the spin-density operator forα = x,y,z component. The odering ten-

dencies are determined by the logarithmical divergencies in the normal state pseu-

dospin susceptibilities.〈Sz(r)〉 is the order parameter of a gapped phase with in-

version symmetry breaking and pseudospin ferromagnetism perpendicular to the

graphene layers for a single spin-valley. We will show this phase has fine classi-

fications and each class exhibits different nontrivial spontaneous Hall conductivi-

ty. 〈Sx(r)〉 or
〈

Sy(r)
〉

describe a gapless phase with in-plane rotational symmetry

breaking. This nematic phase breaks the lattice point groupsymmetry by split-

ting the original vorticityN = 2 (Berry phase 2π) Dirac point (or say the valley

cone including the center Berry phaseπ Dirac point and three Berry phase−π

Dirac points symmetrically surrounded the center one when trigonal warping effect

is considered) into two vorticityN = 1 Dirac points along the easy axes. But we

will demonstrate that this gapless nematic phase is not the physical case in bilay-

er graphene because the dominance of broken inversion symmetry. Therefore it is

of utmost importance to compare the divergencies ofχzz and χxx (or χyy). The

calculations of these pseudospin-pseudospin response functions can be systemati-

cally done with the Feynman diagrams specified in Fig.3.9. Fig.3.9(a) denotes the

non-interacting pseudospin susceptibilityχ0
TB and Fig.3.9(b) shows the interaction

mediated pseudospin susceptibilityχ I
TB. In the long wavelength and static limit, the

susceptibilities explicitly read

χ0
TB = −

∫

d2q

(2π)2(β h̄2)
∑
ω

∑
αTβT

∑
αBβB

GαBαT(q, iω)σ (T)
αTβT

GβTβB
(q, iω)σ (B)

βBαB
,

χ I
TB = −

∫

d2q1d2q2

(2π)4(β h̄2)2 ∑
ω1ω2

∑
allαβ

Gα1αT(q1, iω1)σ
(T)
αTβT

GβTβ1
(q1, iω1)

×Γβ1α1
α2β2

Gβ2βB
(q2, iω2)σ

(B)
βBαB

GαBα2(q2, iω2) . (3.20)
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Figure 3.9: Feynman diagrams for the pseudospin susceptibilities. (a) χ0
TB the non-

interacting susceptibility and(b) χ I
TB the interacting correction to the susceptibility.

In bilayer graphene systems, near charge neutrality, the layer pseudospin

susceptibilities are simplified as following

χ(0)
zz = 2χ(0)

xx = 2χ(0)
yy ,

χ(I)
zz = 4χ(I)

xx = 4χ(I)
yy , (3.21)

which indicates that the divergence inχzz channel would be dominant. Note that

the transverse channels,χxx andχyy, are relatively suppressed by the large pseu-

dospin chirality. In result, the ground state of bilayer graphene is a gapped phase

with spontaneously breaking layer inversion symmetry in each spin-valley. We will

discuss in the next chapter that this insulating state is a topologically nontrivial state

with spontaneous quantum Hall effects[9, 13, 17] at zero external fields.
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3.4.2 Mean-field pseudospin orientation

When interactions are neglected, a neutral chiral grapheneis a gapless semiconduc-

tor. The ground state has a full valence band of pseudospinors aligned at eachq

to the pseudospin field direction(cos(Nφq),sin(Nφq),0), forming the momentum-

space vortex. Note that the chirality of the vortices are opposite at valleyK andK′

and we focus on a single spin-valley. The vortex exacts a large interaction energy

penalty because of its rapid pseudospin-orientation variation. We propose[9, 10, 15]

that, like its real-space counterpart, the momentum-spacevortex sidesteps this en-

ergy cost by forming a vortex core in which the pseudospin orientation is out of

plane in either the ˆz or −ẑ direction. Since we have known from the PRG and

susceptibility analysis that the mean fields generated by interactions are propor-

tional toσz, mean-field calculations would be sufficient to provide correct pictures.

We summarize the results in Fig.3.10using weak electron-electron interactions in

chirally-stackedN-layer graphene withN = 1,2,3 and 4, respectively.

Clearly, a vortex core only forms in chiral graphene with layer numberN ≥ 2

where the weak repulsive interaction instability occurs atcharge neutrality point.

Furthermore, the instability is stronger for a largerN system, which results from

the fact that the interactions are marginally relevant at one-loop level in bilayer and

relevant even at tree-level inN > 2 layers. However, as the number of layers grows,

the interlayer bare interactions start to be suppressed andscreened, and the remote

hopping processes become more and more important and thus the chiral description

starts to break down. Therefore, we only expect the broken symmetry states in

chiral few-layers withN < 5. Recently, the gapped broken symmetry ground states

have been observed in high quality graphene bilayers[13, 17, 18] and trilayers[68].
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Figure 3.10: The pseudospin orientation of chirally stacked graphene few-layers
with (a) N = 1, (b) N = 2, (c) N = 3 and(d) N = 4 in momentum space. The
length of an arrow denotes the pseudospin in-plane amplitude and orientation while
the background intensity represents the amplitude of out-of-plane pseudspin. The
range we plot here is from the Dirac point (the origin) toq = γ1/(h̄vF). There is no
broken symmetry forN = 1 while the inversion symmetry is spontaneously broken
for N ≥ 2 in the nonzero intensity region centered at the Dirac point. The instability
is stronger for largerN. In the Hartree Fock mean-field calculations, we use long-
range Coulomb interactions and choose a dielectric constant ε = 2.2. The broken
symmetries would be even stronger in the suspended case.
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3.5 Bilayer graphene Dirac-point gaps and symmetry-

breaking states

3.5.1 Introduction

This section details the analysis which leads to the conclusion that the gaps [10,

15, 46] observed in the quasiparticle spectrum of bilayer graphene likely reflect the

formation of spontaneous quantum Hall states[9, 20, 21]. Because of the relatively

small value of the observed gap, we conclude that it must be due to the physics of

low-energy band states near theK andK′ valley Dirac points. We therefore ana-

lyze the properties of these states using bilayer graphene’s continuumk·p model.

When a broken symmetry state is formed the Hamiltonian that describes quasipar-

ticles can have additional terms due to interactions with the condensate. Because

electron-electron interactions within a valley are much stronger than inter-valley in-

teractions we restrict our attention to condensates that donot couple quasiparticles

in different valleys. Since the gap forms near the Dirac point we neglect the mo-

mentum dependence of the interaction with the condensate which should not play

an essential role. We allow the interaction with the condensate to be spin-dependent,

but assume collinearity. Non-collinear states are indeed likely when Zeeman cou-

pling is included[16], but allowing this possibility does not increase the gap size.

Given these assumptions, we can analyze the gap properties associated with differ-

ent types of order quite thoroughly, both in the absence and in the presence of a

magnetic field. In the following discussion we follow commonusage in referring to

points in momentum space at which the gap between conductionand valence bands

vanishes as Dirac points.

Experimentally the observed gap is an even function of an electric field be-
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tween the layers[13, 17], implying that the broken symmetry state does not break

overall inversion symmetry. Inversion symmetry that is broken[10] in opposite

senses for different spins or valleys, is however consistent with experiment. Indeed

we will argue that only this type of broken symmetry can produce the observed

gaps.

3.5.2 Full k · p Hamiltonian of bilayer graphene

The starting point of our analysis is the massless Dirac-Weyl k·p Hamiltonian for

monolayer graphene[3]:

ĤN=1 = v0





0 π†

π 0



 , (3.22)

whereπ = τzpx + ipy and τz = +(−) for valley K(K′). The matrix operator in

this Hamiltonian acts on the single-layer sublattice degree-of-freedom. We focus

on bands near Brillouin zone cornerK; results for valleyK′ can be obtained by

settingpx to−px The bilayerπ-bands are a direct product of two sets of monolayer

bands, modified by the various interlayer coupling processes identified below. In

the representation in which the bilayer sublattice sites are ordered{A1,B1,A2,B2},
the bilayer Hamiltonian near valleyK can be written in the form:

ĤN=2 =

















0 v0π† v4π† v3π

v0π 0 γ1 v4π†

v4π γ1 0 v0π†

v3π† v4π v0π 0

















, (3.23)
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wherevi =
√

3aγi/2h̄ anda = 0.246nm. The band parameter values[52], γ0 = 3.16

eV, γ1 = 0.40 eV, γ3 = 0.315 eV, γ4 = −0.044 eV are generally accepted to be

reasonably accurate. We treat finite-π coupling between the low- and high-energy

subspaces of this Hamiltonian, which are separated by an interlayer tunneling en-

ergy scale, perturbatively. For this purpose it is convenient to change the sublattice

order to one which lists the low-energy sites first:{(A1,B2)1,(B1,A2)2} . In this

notation the low-energy effective band Hamiltonian at finite π is[6]

Heff = [1+H12(H22)
−2H21]

−1[H11−H12(H22)
−1H21] . (3.24)

The second factor on the right-hand side of this equation captures the effects of

direct hopping between the low-energy sitesA1 andB2 and of virtual hopping via

high-energy states, while the first captures an inessentialenergy scale renormaliza-

tion by a factor of order 1− (v0p/γ1)
2 which is usually dropped[4, 6]. We find that

the low-energyk·p Hamiltonian for bilayer graphene can be written in the form

H = −v2
0p2

γ1

[

cos(2φp)σx+sin(2φp)σy
]

+v3p
[

cos(φp)σx−sin(φp)σy
]

− 2v4v0p2

γ1
σ0 . (3.25)

The Pauli matrices in this Hamiltonian act on the low-energysublattice degrees of

freedom which forms a layer pseudospin. The first term on the right hand side of

Eq.(3.25) dominates at largep and the second term at smallp. When the two terms

are of comparable size their interference leads to angular variation in the bands that

is invariant under a 120◦ rotation (trigonal warping). The term proportional toγ4

breaks particle-hole symmetry, but is usually ignored below because it does not

materially alter the gap properties on which we focus.

66



The general form of the low energy bilayer quasiparticle Hamiltonian can be

written in the following compact manner:

H(k) = − 1
2m





0 π†2

π2 0



+λ





0 π

π† 0



+∆ ·σ (3.26)

where the coefficientλ = υ3 is an indirect measure of the trigonal warping strength

and∆ = (∆x,∆y,∆z) parameterizes interactions with the condensate. (A∆0σ0 term

must be also present, but plays no role apart from a shift in the zero of energy.)

The low-energy band-structure of bilayer graphene in the absence of inter-

actions and external fields is therefore gapless. The gapless property and the degen-

eracy at the Dirac pointp = 0 is protected by inversion symmetry with respect to

a point midway betweenA1 andB2. As we explain in the following sections, any

perturbation of the bilayer graphene quasiparticle Hamiltonian that does not break

this inversion symmetry can not open a gap at the Dirac point[9, 10, 15, 20, 21, 46].

3.5.3 Trigonal warping does not yield a gapped state

The trigonal warping effect dominates at energies below∼ 1 meV. Physics on this

energy scale is likely to be smeared by unintended disorder or by electron-electron

interactions even in the highest quality samples currentlyavailable,i.e. bilayer-

s on h-BN substrates and suspended current-annealed bilayers. We nevertheless

consider the ideal case of a perfectly clean sample with no interactions. When trig-

onal warping is neglected the chiral Hamiltonian has a single Dirac point atp = 0,

the spectrum is rotationally invariant, and the phase difference between sublattices

changes by 4π when the quasiparticle-momentum circles the Dirac point, aproper-

ty we refer to asJ = 2 chirality. When trigonal warping is included the gap between
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Figure 3.11: Constant energy contour plots of the conduction band of bilayer
graphene near valleyK. (a) The gap vanishes at one point in momentum space
and the spectrum is rotationally invariant whenγ3 = 0; (b) The gap vanishes at
four points in momentum space and the spectrum hasC3 rotational symmetry when
γ3 = 0.315 eV. The contour energies are 32, 16, 8, 4, 1, and 0 meV from outer to
inner. The total spectrum has particle-hole symmetry, since γ4 has been set to zero.

conduction and valence bands vanishes atp = 0 and also at three additionalp 6= 0

points where the coefficients of bothσx andσy sublattice-pseudospin operators van-

ish. The central Dirac point atp= 0 has J=-1 whereas the three surrounding points

at p = v3γ1/v2
0 and φ = 0,±2π/3 haveJ = 1. These features are illustrated in

Figure3.11. In general a gap in the quasiparticle spectrum can occur only if the

coefficients of theσx, σy andσz pseudospin operators do not vanish simultaneously

at any value ofp.

3.5.4 Nematic order does not yield a gapped state

Theσz layer-pseudospin operator measures the density difference between top and

bottom layers whereasσx andσy measure interlayer coherence. When its inessen-

tial momentum dependence is dropped, the interactions of quasiparticles of a par-

ticular valley and spin with the condensate can be expanded in terms of these Pauli
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matrices, as mentioned earlier. Researchers have reached different conclusions con-

cerning the character of the broken symmetry state. Some researchers[47, 69] have

concluded that the interaction with the condensate leads toa pseudospin effective

magnetic field in thex−y plane which lowers the rotational symmetry of the bands.

This ordered state is therefore referred to as a nematic and has the quasiparticle-

condensate interaction

HNematic= ∆xσx +∆yσy . (3.27)

The quasiparticle spectrum ofH +HNematic(droppingγ4 is)

E2 =

[

(v0p)2

γ1
cos(2φp)− v3pcos(φp)−∆x

]2

+

[

(v0p)2

γ1
sin(2φp)+ v3psin(φp)−∆y

]2

. (3.28)

This spectrum is gapless for any value of∆x and∆y, since we are always able to

locate points in momentum space at which the total pseudospin effective field, and

hence the gap, vanishes. To see this note that the gap vanishes when the following

two equations are solved simultaneously:

(

px−
v3γ1

2v2
0

)2

− p2
y =

∆xγ1

v2
0

+
v2

3γ2
1

4v4
0

, (3.29)

py

(

px +
v3γ1

2v2
0

)

=
∆yγ1

2v2
0

. (3.30)

Eq.(3.29) describes a hyperbola with orthogonal asymptotespx± py−v3γ1/(2v2
0) =

0 whereas Eq.(3.30) describes a hyperbola with orthogonal asymptotes withpy = 0

andpx+v3γ1/(2v2
0)= 0. Since their asymptotes intersect, there must be at least two

69



v
0
p

x
 /γ

1

v 0p y /γ
1

(a) ∆
x
 = −2 meV; ∆

y
 = 0 meV

 

 

−0.3 0 0.3
−0.3

0

0.3

5

10

15

v
0
p

x
 /γ

1

v 0p y /γ
1

(b) ∆
x
 = 0 meV; ∆

y
 = 0 meV

 

 

−0.3 0 0.3
−0.3

0

0.3

5

10

15

v
0
p

x
 /γ

1

v 0p y /γ
1

(c) ∆
x
 = 1.5 meV; ∆

y
 = 0 meV

 

 

−0.3 0 0.3
−0.3

0

0.3

5

10

15

v
0
p

x
 /γ

1

v 0p y /γ
1

(d) ∆
x
 = 5 meV; ∆

y
 = 0 meV

 

 

−0.3 0 0.3
−0.3

0

0.3

5

10

15

Figure 3.12: Constant energy contour plots of the conduction band near valleyK
of bilayer graphene forσx nematic order. Nonzero∆x breaks theC3 symmetry but
the spectrum is still gapless. The contour energies are 16,12,8,4,2,1,0 meV from
outside to inside. There are 2, 4, 4, and 2 Dirac points in (a),(b), (c) and (d)
respectively. These plots were constructed usingγ3 = 0.315 eV andγ4 = 0.

points of intersection between the two curves. It follows that the spectrum defined

by Eq.(3.28) is gapless with at least two Dirac points.

The influence of nematic order on the bands can be understood simply in

the illustrative special case∆y = 0. It then follows from Eq.(3.30) that Dirac points

can occur only along the linespy = 0 andpx = −v3γ1/(2v2
0). Substitutingpy = 0

into Eq.(3.29), we find two Dirac points withJ =±1 chirality if ∆x >−v2
3γ1/(4v2

0)
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which annihilate when this inequality is not satisfied. (SeeFigure3.12(a) and (b).)

The other pair of Dirac points appear atpy =±
√

3v2
3γ2

1/(4v4
0)−∆xγ1/v2

0 andpx =

−v3γ1/(2v2
0) which implies that∆x < 3v2

3γ1/(4v2
0) is a necessary condition for the

appearance of these two gapless Dirac points. Moveover,px = −v3γ1/(2v2
0) and

∆x = 3v2
3γ1/(4v2

0) indicatepy = 0. Three Dirac points (one withJ =−1 and a pair

of points withJ = 1) fuse into a singleJ = 1 Dirac point when∆x ≥ 3v2
3γ1/(4v2

0),

as illustrated in Figure3.12(b)-(d). The sum of the chirality of the Dirac points is

Jtot = 2 for any value of the order parameter fields.

We conclude that the nematic order is not consistent with a gap.

3.5.5 Relative layer displacement does not yield a gapped state
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Figure 3.13: Constant energy contour plots of (a) the conduction band and (b) the
valence band near valleyK in a bilayer graphene samples in which one layer has
been dispaced relative to the other. This illustration is for a displacement with
magnituded = 0.05a/

√
3 and orientationφd = 0. The relative displacement breaks

theC3 and particle-hole symmetries. However, the spectrum is still gapless. The
increment between constant energy contours in this plot is 1meV. This illustration
is for the parametersγ3 = 0.315 eV andγ4 =−0.044 eV.

In order to achieve high mobility, suspended bilayer graphene samples are
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annealed by large currents. The consequent Joule heating may remove adsorbates

but could potentially alter the bilayer structure, for example by displacing one layer

relative to the other. Only very simple and systematic changes in structure have any

chance of inducing a gap in the spectrum. Here we explore the effect of displacing

one layer relative to the other and appeal to thek·p analysis of Ref.[70], which im-

plies the interlayer hopping Hamiltonian (see Eq.(3.23)) is altered in the following

way:





v4π† v3π

γ1 v4π†



 =⇒





v4π† v3π

γ1 v4π†



+





t4 t3

t1 t4



 . (3.31)

Theti ’s account for the change in the interlayer tunneling Hamiltonian evaluated at

π = 0:





t4 t3

γ1+ t1 t4



 =
γ1

3





1 1

1 1



+
γ1

3
eiGdcos(φ−5π/6)





ei2π/3 e−i2π/3

1 ei2π/3





+
γ1

3
eiGdcos(φ+5π/6)





e−i2π/3 ei2π/3

1 e−i2π/3



 , (3.32)

whereG = 4π/(
√

3a) andd is the sliding vector[70]. When this contribution to the

interlayer tunneling Hamiltonian is treated perturbatively we obtain the following

result for thesliding correction to the interlayer tunneling Hamiltonian:

H
′ =

1

γ2
1





0 (v0π†)2t∗1

(v0π)2t1 0



+





0 t3− t2
4/γ1

t∗3− t∗4
2/γ1 0





−
[

t4(v0π)+ t∗4(v0π†)
]

/γ1





1 0

0 1



 . (3.33)
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Similar results have been obtained previously for bilayersin which the structure

has been altered by sliding[71], or uniaxial strain[72]. The first term in this e-

quation makes an unimportant change in theJ = 2 chiral Hamiltonian. The sec-

ond momentum-independent term is equivalent to nematic order with ∆x− i∆y =

t3− t2
4/γ1, which reduces rotational symmetry toC2v, while the third term breaks

particle-hole symmetry but preserves the topology of the spectrum. The equations

for the Dirac points are similar to Eqs.(3.29) and (3.30) although the hyperbolic

asymptotes are different. Importantly, the two sets of asymptotes are never parallel

the two curves therefore always have points of intersection. Therefore, the sliding

case is similar to the nematic order, although the particle-hole symmetry is broken.

As illustrated in Figure3.13, sliding does not produce a gap.

3.5.6 Broken inversion symmetry yield gap and Berry curvature

Figure 3.14: Low-energy dispersion near valleyK for bilayer graphene with∆z = 2
meV andγ3= 0. Nonzero∆z breaks inversion symmetry and introduces a gap∼ 2∆z

atp= 0.
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Figure 3.15: The low-energy dispersion near valleyK of bilayer graphene with∆z=
2 meV andγ3 = 0.315 eV. Nonzero∆z breaks inversion symmetry and introduces a
gap∼ 2∆z atp= 0. The spectrum hasC3 rotational symmetry whenγ3 6= 0.

When layer inversion symmetry is broken within the four valley-spin fla-

vors, either spontaneously[9, 10, 15, 46] or by external electric fields, a term of the

form HI = ∆zσz appears in the quasiparticle Hamiltonian. Because there isno π-

dependent band energy contribution that is proportional toσz there will always be

a gap between conduction and valence bands when∆z 6= 0. The energy dispersion

for general∆ is

E2 =

[

(v0p)2

γ1
cos(2φp)− v3pcos(φp)−∆x

]2

+

[

(v0p)2

γ1
sin(2φp)+ v3psin(φp)−∆y

]2

+∆2
z , (3.34)

which opens a band gap at Dirac points giving rise toE = −|∆z| on the top of the

valence band andE = |∆z| at the bottom of the conduction band. A gap∼ 2∆z is

clearly visible in Figure3.14and Figure3.15where trigonal warping is included
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but has little influence. The valence band pseudospin pointsin the±ẑ direction for

p = 0, and in the ˆx− ŷ plane at largep when the band terms in the Hamiltonian

dominates. It follows that the pseudospin direction coverseither the northern or

southern hemisphere of the pseudspin Bloch sphere upon integrating over a small

region ofp near theK andK′ valleys, and hence that this region of momentum has

large momentum space Berry curvatures[9] that vanish when∆z→ 0.
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Chapter 4

Spontaneous Quantum Hall States

Chirally stackedN-layer graphene withN ≥ 2 is susceptible to a variety of distinct

broken symmetry states in which each spin-valley flavor spontaneously transfers

charge between layers. We explain in the first section how these states are distin-

guished by their charge, spin, and valley Hall conductivities, by their orbital mag-

netizations, and by their edge state properties. We also argue that valley Hall states

have[N/2] edge channels per spin-valley. In the second section, we focus on the

edge states in the spinless case. We explicitly show that thequantum anomalous

and valley Hall states are favored by a weak magnetic field andby an electric field

between the graphene layers, respectively. More exotically, at interfaces between

different phases one dimensional gapless modes exhibit novel Luttinger liquid be-

haviors. In section III, we analyze how the LAF and other competing states are

influenced by Zeeman fields that couple to spin and by interlayer electric fields that

couple to layer pseudospin, and comment on the possibility of using response and

edge state signatures to identify the character of the bilayer ground state experimen-

tally.
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4.1 Spontaneous quantum Hall states

4.1.1 Introduction

In the early 1980s, following the discovery of the quantum Hall effect (QHE)[73],

it was recognized[74] that electronic states can be characterized by topological in-

dices, in particular by the integer valued Chern number indices that distinguish

quantum Hall states. Quantum Hall states have non-zero Chern numbers and can

occur only if time reversal symmetry (TRS) is broken; until recently they have been

observed only when TRS is explicitly broken by an external magnetic field. In this

article we discuss a class of broken symmetry states, first proposed theoretically[10,

15, 75] and recently discovered experimentally[17, 76], which appear in chirally

stacked graphene systems and are characterized by spin and valley dependent spon-

taneous layer polarization. The aim of the present section is to explain how these

states are distinguished by their charge[20, 77, 78], spin[79], and valley[80] quan-

tized Hall conductances, by their orbital magnetizations,and by their edge state

properties.

Success in isolating monolayer and few-layer sheets from bulk graphite,

combined with progress in the epitaxial growth of few-layersamples, has opened

up a rich new topic[3] in two-dimensional electron physics. Electron-electroninter-

action effects are most interesting in ABC-stackedN ≥ 2 layer systems[4–6], partly

because[10, 15, 21, 45–47] their conduction and valence bands are very flat near the

neutral system Fermi level. For this special stacking order, low-energy electrons are

concentrated on top and bottom layers and the low-energy physics of aN-layer sys-

tem is described approximately by a two band model with±pN dispersion and large

associated momentum-space Berry curvatures[8]. When these band states are de-

scribed in a pseudospin language, the broken symmetry stateis characterized[15] by
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a momentum-space vortex with vorticityN and a vortex-core which is polarized in

the top-or-bottom layers. For AB stacked bilayers, for example, interactions lead to

a broken symmetry ground state[10, 15, 46] with a spontaneous gap in which charge

is transferred between top and bottom layers. ABC-stacked trilayer graphene has

even flatter bands and is expected to be even more unstable to interaction driven

broken symmetries[6], but samples that are clean enough to reveal its interaction

physics have not yet been studied.

4.1.2 Classification of broken symmetry states

We discuss the electronic properties ofN-layer ABC-stacked systems using the

ordered state quasiparticle Hamiltonians suggested by mean-field calculations[15,

46] and renormalization group analysis[10]

HN =
(v0p)N

(−γ1)N−1

[

cos(Nφp)σx+sin(Nφp)σy
]

+mσz . (4.1)

We have used the notation cosφp = τz px/p and sinφp = py/p whereτz =±1 labels

valleysK andK′, the two inequivalent Brillouin zone corners. The Pauli matrices

σ act on awhich-layer pseudospin degree-of-freedom andsz =±1 denotes the two

spin flavors. In Eq. (4.1) the first term[4, 6] is the low-energyk ·p band Hamiltonian

for a single valley. Weak remote hopping processes have beendropped with the

view that they do not play an essential role in the broken symmetry states[10].

The second term is an interaction-induced gap[10, 15, 21, 46] term which defines

the direction of layer polarization in the momentum space vortex core. Since the

pseudospin chirality frustrates off-diagonal symmetry-breaking[15], we consider

only the pertinent types of diagonal symmetry-breaking. For each spin and valley,

symmetry is broken by choosing a sign form. We have dropped the momentum
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Figure 4.1: For cases (a-e) the lower panel describes the sense of layer polarization
for each spin-valley combinations while the upper panel schematically indicates the
corresponding Hall conductivity contributions[9]. (a) a valley Hall insulator with
a net layer polarization and a massmσz; (b) an anomalous Hall insulator with a
valley-dependent massmτzσz; (c) a layer-antiferromagnetic insulator with a spin-
dependent massmszσz; (d) a quantum spin Hall (or 2D Topological) insulator with
a valley and spin dependent mass termmτzszσz; (e) an exotic Hall state with a valley
and spin dependent mass termm(1+τz

2 + 1−τz
2 sz)σz.

dependence ofm because, as we will see, it does not play an essential role below.

2|m| is the size of the spontaneous gap,v0 is the Fermi velocity in graphene, and

γ1 ∼ 0.4 eV is the interlayer hopping energy. ThepN dispersion is a consequence

of theN-step process in which electrons hop between low-energy sites in top and

bottom layers via high-energy states.
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When spin and valley degrees-of-freedom are taken into account, the system

has sixteen distinct broken symmetry states in which the sign of m is chosen sepa-

rately for(K ↑), (K ↓), (K′ ↑) and(K′ ↓) flavors. We take the view that any of these

states could be stable, depending on details that are beyondcurrent knowledge and

might be tunable experimentally. The sixteen states can be classified according to

their total layer-polarization which is proportional to the sum over spin-valley of

the sign ofm. Six of the sixteen states have no net layer charge transfer between

top and bottom layers and are likely to be lowest in energy in the absence of an

external electric field. These six states can be separated into three doublets which

differ only by layer inversion in every spin-valley. Thus three essentially distinc-

t states compete for the broken symmetry ground state: the anomalous Hall state

in which the sign ofm is valley-dependent but not spin-dependent (mσz→ mτzσz),

the layer-antiferromagnetic state in whichm is only spin-dependent (mσz→mszσz)

and the topological insulator (TI) state in whichm is both spin and valley dependent

(mσz→mτzszσz). These states are distinguished by their spin and valley dependen-

t Hall conductivities and orbital magnetizations indicated schematically in Fig.4.1

and summarized in Table4.1.

4.1.3 Hall conductivities and orbital magnetizations

The three broken symmetry states on which we focus are distinguished by the signs

of the Berry curvatures[8] contributions from near theK andK′ valleys of↑ and

↓ spin bands; we note that the Berry curvatures are non-zero only when inversion

symmetry is spontaneously broken. Using the Berry curvatures, we evaluate the

orbital magnetizations and Hall conductivities of all three states. For momentum-
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independent massm the Berry curvature of theN-layer chiral model is

Ω(α)
ẑ (p,τz,sz) =−α

τz

2
m

h3
t

(∂h‖
∂ p

)2

, (4.2)

where symbolα =+(−) denotes the conduction (valence) band, and the transverse

and total pseudospin fields areh‖ = (v0p)N/γN−1
1 andht =

√

m2+h2
‖. The orbital

magnetic moment carried by a Bloch electron[8] is m(α)
ẑ = eh̄ε(α)Ω(α)

ẑ for a two-

band model with particle-hole symmetry. For the chiral bandmodel

m(α)
ẑ (p,τz,sz) =

[

− τz
m

h2
t

(∂h‖
∂ p

)2

me

]

µB , (4.3)

whereme is the electron mass andµB is the Bohr magnetoneh̄/2me. Like the Berry

curvature the orbital magnetization changes sign when the valley label changesand

when the sign of the mass term (the sense of layer polarization) changes,i.e. both

are proportional toτzsgn(m). The orbital magnetization is however independent

of the band indexα. As illustrated in Fig.4.3, in the case of|m| = 10 meV, the

orbital magnetic moment close to each Dirac point has a symmetric sharp peak

Table 4.1: Summary[9] of spin-valley layer polarizations (T or B) and correspond-
ing charge, spin, and valley Hall conductivities (e2/h units) and insulator types for
the three distinct states (b-d) with no overall layer polarization, for a state in which
every spin-valley is polarized toward the top layer (a), andfor a state with partial
layer polarization (e).

Fig. K ↑ K ↓ K′ ↑ K′ ↓ σ (SH) σ (VH) σ (CH) σ (SVH) Insulator

4.1(b) T T B B 0 0 2N 0 QAH

4.1(c) T B T B 0 0 0 2N LAF

4.1(d) T B B T 2N 0 0 0 QSH

4.1(a) T T T T 0 2N 0 0 QVH

4.1(e) T T T B N N N N All
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Figure 4.2: Berry curvature (an effective magnetic field in momentum space) as
a function of momentum-space position in the bilayer graphene Brillouin zone[9].
(a) For a quantum valley Hall state; (b) for a quantum anomalous Hall state. Large
energy gaps are chosen deliberately in order to visualize the shape of the peaks and
the trigonal warping effect.

at which individual states carry moments twenty times larger thanµB. The state

in which m → mτz therefore has overall orbital magnetization and broken time

reversal symmetry, even though it does not have a finite spin-polarization. Inte-

grating over the valence band, we obtain a total orbital magnetization per area

∼ (Nmme/2π h̄2) ln(γ1/|m|)µB, that is∼ 0.002µB per carbon atom for|m| = 10

meV.

In the presence of an in-plane electric field, an electron acquires an anoma-

lous transverse velocity proportional to the Berry curvature, giving rise to an in-

trinsic Hall conductivity[8, 78]. Using Eq. (4.3), we find that the intrinsic Hall

conductivity contribution from a given valley and spin is

σ (α)
H (τz,sz) =

τz

2
Ne2

h

(

m
ht (pF)

− m
|m|δα,+

)

, (4.4)

whereht(pF) is the total pseudospin field at the Fermi wavevector. Provided that

the Fermi level lies in the mass gap, each spin and valley contributesNe2/2h to the
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Figure 4.3: The magnitude of orbital magnetic moments carried by individual states
versus in-plane momentum, for each spin and valley flavor in ABC grapheneN-
layers. Here the moments are in units ofµB and|m|= 10 meV.

Hall conductivity, with the sign given byτzsgn(m).

In Fig. 4.1(a) we consider the case in which each spin-valley is polarized

in the same sense. The total Hall conductivity is then zero for both spins, with

the K and K’ valleys making Hall conductivity and magnetization contributions of

opposite sign, preserving time reversal symmetry. This phase can be viewed as

having a valley Hall effect[80] and, even though it does not break time-reversal

symmetry, we argue later that this designation has physicalsignificance.

As shown in Fig.4.1(b), the casemσz→ mτzσz implies Hall conductivity

and orbital magnetization contributions of the same sign for each spin and valley.

This state breaks time reversal symmetry but its spin density is surprisingly is every-

where zero. The total Hall conductivity has the quantized value 2Ne2/h. Similarly,

the orbital magnetic moment has the same sign for all flavors.We refer to this state

as the quantized anomalous Hall state. In addition to its anomalous Hall effect, this

state has a substantial orbital magnetization. The anomalous Hall states is probably

most simply identified experimentally by observing aν = 2N QHE which persists

to zero magnetic field.
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For mσz→ mszσz, depicted in Fig.4.1(c) the two spins have valley Hall

effects of opposite sign, and the two layers have spin-polarizations of opposite sign.

This layer-antiferromagnetic state has broken time reversal symmetry and opposite

spin-polarizations on top and bottom layers.

Fig. 4.1(d) describes the third type of state with effective interaction mσz→
mτzszσz. This state does not break time reversal invariance and instead has anoma-

lous Hall effects of opposite signs in the two spin subspaces, i.e. a spin Hall effect.

Neither the top nor the bottom layer has spin or valley polarization. Quite interest-

ingly if we only consider one layer, there are both spin Hall and valley Hall effects,

however, the orientations of the Hall currents in the top andthe bottom layers are

the same for the spin Hall effects but opposite for the valleyHall effects.

Table 4.1 includes as well the case in which one flavors polarizes in the

opposite sense of the other three; charge, valley, and spin Hall effects coexist in this

state which can be favored by a small potential difference between the layers.

4.1.4 Edge states

The physical significance of spontaneous charge, valley, and spin anomalous Hal-

l effects is illustrated in Fig.4.4. Graphene has very weak spin-orbit interactions,

which in our case we ignore altogether. Fig.4.4compares the edge electronic struc-

ture ofN = 1,2,3 spinless models with a quantized anomalous Hall effect (i.e. with

opposite layer polarizations at two valleys) and with a quantized valley Hall effect.

The states with anomalous Hall effects haveN topologically protected robust chiral

edge states associated with the QHE, as shown in Fig.4.4(d)(e)(f). The edge state

structure associated with the valley Hall states is more interesting. In theN = 1

valley Hall state the Hall conductivity contribution associated with each valley is
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1/2 in e2/h units; the full unit of Hall conductance requires the two valleys to act

in concert. Because they act in opposition in the valley Hallstate, there is no edge

state, as shown in Fig.4.4(a). ForN = 2 on the other hand, each valley contributes

a full quantum Hall effect, and as we see in Fig.4.4(b) we find two chiral edge

states with opposite chirality, one associated with each valley. For N = 3 depicted

in Fig. 4.4(c), the additional half quantum Hall effect from each valley is insuffi-

cient to produce a new chiral edge state branch. In general weexpect[N/2] chiral

edge state branches at each valley in anN-layer stack. Of course valley Hall edge

states are topologically protected only when the edge-direction projections ofK and

K′ valleys are not coincident and inter-valley scattering dueto disorder is absent.

Nevertheless, we expect robust edge states to be present in valley Hall states, as

found[81] in numerical studies of valley Hall states induced by an external electric

field without interactions.

4.1.5 Discussion

At the level of continuum-model mean-field theory[15], the three charge balanced s-

tates we have discussed are degenerate. In addition to breaking inversion symmetry,

each breaks two of three additional symmetries; time reversal (T ), spin rotational

invariance (SU(2)), and the valley Ising symmetry (Z2). The TI state preserves on-

ly T , the AH phase preserves only spin-rotational invariance, and the AF state has

Z2 symmetry. Both TI and AF phases break the continuousSU(2) symmetry and

therefore Goldstone modes emerge[20]. The actual ground state is dependent on

subtle correlation and microscopic physics issues that arebeyond the scope of this

section. We note however that it might be possible to induce transitions between

different possible states using external fields. For example, the energy of the quan-
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Figure 4.4: Intra-valley and inter-valley edge states in chirally-stacked graphene
systems. (a)(d) for a single layer, (b)(e) for a bilayer and (c)(f) for a trilayer. To
visualize the edge states, the intralayer and interlayer nearest neighbor hoppings
are chosen asγ0 = 1 andγ1 = 0.3, respectively;m = 0.25 for Fig.(a,b,c) andm =
0.3
√

3τz for Fig.(d,e,f).

tized anomalous Hall state will be lowered by a perpendicular external magnetic

field because it has a large orbital magnetization. The fullylayer polarized state

will be favored by an external electric field which produces apotential difference

between the layers. Increasing the magnetic field further results in quantum Hall

ferromagnetism[12, 64, 65]. Recent experiments[17, 76] in bilayers appear to pro-

vide definitive proof that the ground state at very weak external magnetic fields is

the quantized anomalous Hall state.

The quantum spin Hall effect we discuss in this section is in several respects
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different from that discussed in the well known papers[75, 79] which foreshadowed

the identification of topological insulators.

(i) The quantum spin Hall effect is driven by broken symmetries produced by

electron-electron interactions, rather than by spin-orbit interactions[79] which

we neglect. The effective spin-orbit couplingmτzszσz due to electron-electron

interactions can be 104 times larger than the intrinsic one[82].

(ii) Unlike the previous interaction induced TI phase[75] which appears only at

finite interaction strengths, here the instability to the TIphase is present even

for weak interactions.

(iii) The broken symmetry occurs only forN ≥ 2 systems which have weak re-

pulsive interaction instabilities, rather than in the single-layer systems[75, 79]

which require strong spin-orbit interactions or strong Coulomb interactions.

(iv) Our states are also distinguished topologically, since they are characterized by

Chern numbers which can have any integer value, rather than by a Z2 label.

Of course, only N-odd layers are strong TI’s, because the helical edge modes

are likely to localize in aN-even system due to the backscattering process

allowed byT [83].

When Rashba spin-orbital interactions (RSOI) are strong, the spin Hall state is like-

ly to be selected as the ground state and the Hall conductancewill no longer be

precisely quantized. The estimated strength of RSOI[82, 84] in most experimental

systems studied to date is much smaller than the estimated spontaneous gap [21],

so its influence will normally be marginal.
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4.2 Deformation of edge states

4.2.1 Landau levels

In the spinless case, there are only two broken symmetry states, namely, the anoma-

lous Hall state and the valley Hall state. In the case of a valley Hall state, valley

K andK′ have the same massm0σz, and each valley is layer polarized in the same

sense[9]. Mass terms with the valley Hall form can be generated simply by a po-

tential difference between the layers, so the valley Hall state is an easily generated

non-interacting electron state. The total Hall conductivity of this state is zero, i.e.

ν = 0 for bilayer graphene, with theK andK′ valleys making Hall conductivity and

magnetization contributions of opposite sign, preservingtime reversal symmetry.

The valley Hall states can be favored experimentally by applying a perpendicular

electric field[9], as shown in Fig.4.5(a).

In the anomalous Hall state, on the other hand, one valley hasa positive mass

m3σz while the other has a negative mass−m3σz. Correspondingly the two valleys

spontaneously choose different layer polariztions[9]. Therefore the Hall conductiv-

ity and orbital magnetization contributions have the same sign for each valley[9].

This state breaks time reversal symmetry. The total Hall conductivity has the quan-

tized value±2Ne2/h, i.e. ν = ±4 in the case of bilayer graphene. In addition to

its anomalous Hall effect, this state has a substantial orbital magnetization. The

anomalous Hall state is probably most simply identified experimentally[17, 76] by

observing aν = 2N QHE which persists to zero magnetic field[9, 17, 20, 76], as

depicted in Fig.4.5(b).

The spectra of translationally invariant two-dimensionalelectron systems

are quantized into Landau levels in the presence of a finite perpendicular magnetic

field. In a gapless chirally stacked grapheneN-layer, the zero energy Landau level
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Figure 4.5: (a) Ribbon quantum valley Hall states and (b) ribbon quantum anoma-
lous Hall states in the absence of magnetic fields; (c) Ribbonquantum Hall states
for a gapless bilayer graphene; (d)ν = 0 quantum Hall states for a gapped bilayer
graphene in QVH phase; (e) and (f)ν = ±4 quantum Hall states for a gapped bi-
layer graphene in QAH phase. To visualize the edge states, weuse a zigzag ribbon,
the intralayer and interlayer nearest neighbor hoppings are chosen asγ0 = 1 and
γ1 = 0.3, respectively, and nonzerom is fixed as 0.15.

(Fig. 4.5(c)) is 4N fold degenerate. In the case of a valley Hall insulator, the states

aroundK andK′ valleys have very large orbital magnetic moments with opposite

sign, which couple to the out-of-plane magnetic field and gives rise to the relative

energy shift between valleyK andK′. Consequently, the two-fold valley degen-

eracy is lifted and there is an asymmetry between those Landau levels around two
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Dirac points, as described in Fig.4.5(d). The energy spectrum of a quantum valley

Hall insulator is adiabatically connected to that of theν = 0 quantum Hall state. In

contrast, as shown in Fig.4.5(e)(f), the valley degeneracy is unbroken in the pres-

ence of magnetic field, because the nature of the orbital magnetic moments near the

two Dirac points are the same. The energy gap in a quantum anomalous Hall state

is adiabatically connected to that of theν =±4 quantum Hall state where the sign

is a choice of whether the magnetic field is in ˆz or−ẑ direction relative tom3.

When spin is taken into account, the quantized Landau levelsof the three

additional phases[9] are obtained by each spin choosing to be a quantum valley

Hall state or a quantum anomalous Hall state. For the case of aquantum spin Hall

state, one spin flavor is theν = 2 QAH state and the other flavor is theν = −2

QAH state. For the layer-antiferromagnetic state, each spin flavor is aν = 0 QVH

state but with the opposite layer polarization to the other flavor. In contrast, one

spin flavor is a QVH state while the other is a QAH state in the ”All” state.

4.2.2 Electric field effects

By continuously lowering the magnetic field to zero, an anomalous Hall state is

adiabatically identified[17, 76]. When a perpendicular electric field is switched

on, the quantum valley Hall phase starts to compete with the quantum anomalous

Hall phase. The sizes of the gap at the two valleys are|m0+m3| and |m0−m3|,
respectively. The state is still within the anomalous Hall phase but with two unequal

gaps atK andK′ for |m0| < |m3| as seen in Fig.4.6(a). Beyond the critical point

where |m0| = |m3| as depicted in Fig.4.6(c), the state jumps to the valley Hall

phase instead. In the quantum phase transition region as described by Fig.4.6(b),

the energy gap is enhanced at one valley while it closes at theother valley, where
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quantum anomalous and valley Hall effects coexist.
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Figure 4.6: The competition between the quantum anomalous Hall state (intra-
valley edge state) and the quantum valley Hall (inter-valley edge state) state in bro-
ken symmetry bilayer graphene. (a) a quantum anomalous Hallstate with unequal
gaps atK andK′; (b) a critical point with an enhanced gap atK and a closed gap at
K′, where quantum anomalous and valley Hall effects coexist; (c) a quantum valley
Hall state with a reopened gap atK′. To visualize the edge states, we use a zigzag
ribbon with the sameγ0 andγ1 values as in Fig.4.5.

In the quantum spin Hall state[9], the helical edge modes are likely to local-

ize in aN-even system, due to the possible backscattering process inwhich N left

movers andN right movers scatter into each other allowed by time reversal sym-

metry. Therefore, the QSH phase is topologically protectedin chirally stacked odd

number of graphene layers. Besides the effective spin-orbit coupling induced by

interlayer interaction, Rashba interactionλR(τzσxsy−σysx) is possibly induced by

inversion symmetry breaking, and a small staggered potential mSσz is also present

due to coupling to substrates. These interactions lift the degenerate zero energy to

mSH±λS, −mSH±
√

4λ 2
R+λ 2

S. The topological-nontrivial phase persists as long
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as the effective spin-orbit gap is not closed, or in other words,

(

λR

mSH

)2

+

∣

∣

∣

∣

λS

mSH

∣

∣

∣

∣

≤ 1, (4.5)

which is independent of layer numberN and determines the phase diagram. Trigo-

nal warping and other remote hopping terms are time reversalinvariant, not disfa-

voring the TI phase.

4.2.3 Edge states along domain walls

At zero temperature, in a clean chirally stacked few-layer graphene system, there

are 16 possible broken symmetry states and they are classified as 5 distinct phases,

as discussed in the section II. In the presence of disorder orthermal fluctuations,

different phase are likely to appear locally in different parts of the system. There

are 240 possible domain walls and they can be classified into 16 distinct types. In

the spinless case, as only valley Hall phase and anomalous Hall phase are allowed,

there are 2 types of intra-phase and 1 type of inter-phase domain walls. At each

type of domain wall, we argue that a unique Luttinger liquid emerges; the spinless

bilayer examples of which are illustrated in Fig.4.7.

In a quantum valley Hall state, the Chern numbers[9, 74] of the two val-

leys are±N/2, respectively. For the case of a quantum anomalous Hall state, the

Chern number[9, 74] is N/2 at both valleys with a uniform sign. These features

are equivalently shown in Fig.4.2. At the domain wall separating two quantum

valley Hall regions with the opposite layer polarization, the Chern numbers change

by±N for a single valley and henceN parallel zero modes appear at each valley as

depicted in Fig.4.7(a). These one dimensional zero modes formN copies of full

Luttinger liquids and the valley-pseudospin becomes exactly the left-or-right chi-
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rality. This QVH-QVH domain walls and the generated Luttinger liquids are likely

to be formed in the electron-hole puddles, and can be easily realized and tuned by

an external electric field.
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Figure 4.7: Three distict Luttinger liquids at domain wallsin spinless bilayer
graphene with broken symmetry. The red lines denotes the zero modes localized
at domain walls between (a) two quantum valley Hall regions with opposite layer
polarization; (b) two quantum anomalous Hall regions with opposite total Hall con-
ductance; (c) a quantum valley Hall region and a quantum anomalous Hall region.
The green lines represent the edge states on the outermost zigzag boundaries and
note that they are doubly degenerate in (a) and (b) for the twozigzag boundaries.
To visualize the edge states, we use a zigzag ribbon with the sameγ0 andγ1 values
as in Fig.4.5and|m|= 0.25.

At a domain wall separating two quantum anomalous Hall regions with op-

posite total Hall conductance, the change of Chern number isN (neglecting spin) for

both valleys. Therefore, we expect thatN parallel zero modes appear at each valley

as seen in Fig.4.7(b). Each valley has a copy of a purely chiral ”spin”-N−1
2 like

Luttinger liquid. At the domain wall between a quantum valley Hall and a quantum

anomalous Hall regions, the chern number is changed byN for one valley while it

is preserved for the other. Thus the edge states at the interface are purely chiral at

one valley while they completely disappear at the other. We expect the Luttinger
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liquid behaviors of the one dimensional zero modes at the spinfull domain walls are

much more exotic.

4.2.4 Discussion

The trigonal warping effect is sometimes ignored in theoretical efforts to identify

the broken symmetry physics based on mean field theory or renormalization group

analysis. This is reasonably justified in the bilayer case for the following two rea-

sons. (i) The trigonal warping effect dominates only below 1meV[4], compared

to relevant band broadening not much smaller than 1 meV. Trigonal warping effect

are therefore likely to be smeared and become inessential, due to residue disorder

and fluctuations at higher energies. (ii) The infrared cutoff of the RG flows can

be reasonably set at where the quadratic band dispersion overwhelms the trigonal

warping effect. For chirally stacked graphene with the layer numberN > 2, the trig-

onal warping energy scale is increased by almost a factor of 10[6] while the even

flatter gapless bands are much more unstable to interlayer interactions. Interaction

effects are expected to dominate at low carrier densities[6] and to drive the sponta-

neous inversion symmetry breaking, but samples that are clean enough to reveal its

interaction physics have not yet been studied. We comment that the broken sym-

metry is likely to occur only in low disorder and high qualitysamples, since large

disorder can destroy the perfect nesting conditions and reduce the parameter space

of the RG flows.

Recent experiments[17, 76] in bilayers appear to provide definitive proof

that, atν =±4, the ground state at very weak external magnetic fields is the quan-

tized anomalous Hall state. (Atν = 0, LAF state (or called SDW state) and QSH

state are competing for the ground state at zero magnetic field.) Even though a
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QAH state does not have a finite spin-polarization, the orbital magnetic moment

close to each Dirac point has a symmetric sharp peak[9] at which individual states

carry moments twenty times larger thanµB, and a total orbital magnetization per

area goes as∼ (Nλme/2π h̄2) ln(γ1/|λ |)µB, that is∼ 0.002µB per carbon atom for

|m| = 10 meV[9]. Thus the energy of the quantized anomalous Hall state willbe

lowered by a perpendicular external magnetic field. Latticemean field theory shows

the size of the gap can be as large as 30 meV[21] but the actual ground state is de-

pendent on subtle correlation and microscopic physics issues. We estimate that a

magnetic field of the order of 0.004 T is sufficient to favor the QAH state over

the QVH state[21]. Increasing the magnetic field further results in quantum Hall

ferromagnetism[12, 64, 65]. The fully layer polarized QVH state will be favored

by an external electric field which produces a potential difference between the layer-

s. The turning point of the band gap is approximately 7 mV/nm for a perpendicular

electric filed[21].

We close this discussion by pointing out that the edge statesof a broken sym-

metry state have physical significance[9]. (i) The edge states for QAH phase are

inter-valley one dimensional gapless modes while the zero modes are intra-valley

like for QVH phase[9]. (ii) The states with anomalous Hall effects haveN topolog-

ically protected robust chiral edge states associated withthe QHE[9]. (iii) For the

valley Hall effects, in general we expect[N/2] chiral edge state branches at each

valley in anN-layer stack[9]; the full e2/h unit of Hall conductance requires the two

valleys to act in concert; the additional half quantum Hall effect from each valley in

theN-odd layers is insufficient to produce a new chiral edge statebranch. This is a

novel manifestation of the chiral anomaly in condensed matter systems. Of course

valley Hall edge states are topologically protected only when the edge-direction

projections ofK andK′ valleys are not coincident and inter-valley scattering dueto
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disorder is absent.

4.3 Distinguish spontaneous quantum Hall states in

bilayer graphene

4.3.1 Introduction

Bilayer graphene[3, 4] and its thickerN-layer cousins, chirally (or ABC) stacked

multilayers[5, 6, 9, 50], have attracted considerable theoretical[9, 10, 15, 20, 21, 46,

47, 69] and experimental[13, 17, 18, 68, 76] attention because of their susceptibility

to broken symmetries that are accompanied by large momentumspace Berry cur-

vatures and different types of topological order. In a continuum model mean-field

theory, the ground state is[15] an Ising layer-pseudospin ferromagnet in which each

spin-valley flavor is[10, 15, 46] layer polarized. The quasiparticle Hamiltonian in

these states develops mass gaps that change the character ofthe wavefunctions at

small momentum and produce[9, 20] Berry curvature. The integral of Berry curva-

ture over a suitably defined region of momentum space near a given valley is nearly

exactly quantized at±2π . This property can be interpreted as saying that each val-

ley contributes±e2/h to the Hall conductivity with a sign that reverses with valley

index and with the sense of layer polarization. States with total Hall conductivity

Ie2/h evolve smoothly into quantum Hall ferromagnets withν = I in the presence

of a perpendicular magnetic field.

When spin is ignored only two different types of states can bedistinguished,

ones in which theK andK′ valleys are layer polarized in the opposite sense pro-

ducing a quantum anomalous Hall (QAH) state[9, 20, 77] with broken time reversal

(T ) symmetry and orbital magnetization[9], and ones in which the two valleys have
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the same sense of layer polarization producing an inversion(I ) symmetry break-

ing quantum valley Hall (QVH) state[9, 20] with zero total Hall conductivity. When

spin is included, there are three distinct states with no overall layer polarization as

summarized in Table4.2: i) a QAH state with Hall effect contributions of the same

sign for opposite spins, ii) a quantum spin Hall (QSH) state[9, 20, 75, 79, 85, 86]

with opposite QAH signs for opposite spins, and iii) a LAF state[9] that has QVH

states with opposite layer polarization signs for oppositespins. Among these possi-

bilities, lattice mean-field theory calculations[21] suggest that inter-valley exchange

weakly favors QVH states in the spinless case and LAF states in the spinful case.

In this section we analyze how all three states respond to Zeeman coupling to their

spin and to electric-field coupling to their layer pseudospin degrees-of-freedom. We

find that the Zeeman field response distinguishes QAH states from QSH and LAF

states. In the LAF, the Zeeman field induces a non-collinear spin state in which the

components of the spin-density perpendicular to the field are opposite in opposite

layers, while those along the field direction grow smoothly with field strength and

are identical. The three states respond similarly to an electric field between the

layers, which can induce first order transitions at which thetotal layer polarization

jumps.

Table 4.2: Summary[9] of spin-valley layer polarizations (t or b), broken symme-
tries, charge (C) and spin (S) Hall conductivities (e2/h units) and insulator types for
the three distinct states with no overall layer polarization.

K ↑ K ↓ K′ ↑ K′ ↓ σ (S) σ (C) (I) Broken Symm. Insulator

t t b b 0 2N T , Z2 QAH

t b t b 0 0 T , SU(2) LAF

t b b t 2N 0 Z2, SU(2) QSH

There is already some suggestive experimental evidence forspontaneous
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quantum Hall states in graphene multilayers that is consistent with mass gaps∆ ∼
2−8 meV in recent studies of suspended bilayers[13, 17, 18, 76] and trilayers[68]

. Since the gaps are seen[13, 17, 68] only at temperatures well below∆/kB they

appear to be of many-body origin. Moreover, measurements ofbilayers in a per-

pendicular magnetic fieldB appear to show that bothν = ±4 andν = 0 quantum

Hall states can persist to zero-magnetic field[13, 18], implying that spontaneous

quantum Hall states with total Hall conductivity quantum numberI = 0,4 can be

stabilized by interactions atB = 0.

4.3.2 Continuum model mean-field theory

In single-layer graphene the band dispersion remains linear over a broad range of

energy surrounding the charge neutrality point. When graphene’s honeycomb layers

are chirally stacked only two sublattice sites, one locatedin the top layer and one

in the bottom layer, are not connected to near-neighbors in other layers and are

therefore relevant at low energies. Hopping between these sites, e.g. from top

(t) A to bottom (b) B, becomes anN-step process, leading to two remarkably flat

bands with±kN dispersion and layer pseudospin chiralityN[6, 9]. These unique

band features are encoded in the low-energyk·pHamiltonian given below. Because

of the flat bands and the large pseudospin chirality, interactions become dominant

at low energies in few-layer[6, 9] chiral graphene. In mean-field theory inversion

symmetry is broken[10] within each spin and valley, leading in a contact interaction
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model to the following Hamiltonian:

H
HF = ∑

kαβ ss′
c†
kαs

[

h0+hH +hF
]

ckβs′ , (4.6a)

h0 = εk
[

cos(Nφk)σ
αβ
x +sin(Nφk)σ

αβ
y

]

δss′ , (4.6b)

hH =
[

V0∆0δ αβ +Vz∆zσ αβ
z

]

δss′ , (4.6c)

hF = −
[

V0+Vzσ αα
z σ ββ

z
]

∆βs′
αs , (4.6d)

whereεk = (v0h̄k)N/(−γ1)
N−1 is the band dispersion,V0,z = (VS±VD)/2 denotes

the average (difference) of intralayer and interlayer interactions, and density matrix

∆βs′
αs = A−1 ∑k〈c†

kβs′ckαs〉f must be determined self-consistently.∆0,z is the density

sum (difference) of the top and bottom layers. cotφk = τzkx/ky andτz(±1) labels

valleysK and K′. The Pauli matricesσ act on thewhich-layer pseudospin and

s(±1) denotes the real spin. Because of the in-plane rotational symmetry of the

continuum model, it is easy to verify that this mean-field Hamiltonian does not

generate Hartree (H) or Fock (F) potentials that are off-diagonal in layer index.

We seek self-consistent solutions for theN = 2 QAH, QSH, and LAF s-

tates. When Zeeman coupling is neglected the Hartree and Fock contributions to

the Hamiltonian are mass terms proportional toσz, the four flavors decouple, and

the mean-field equations are readily solved. For LAF, QSH, and QAH states the

mass terms have the respective forms−msz⊗σz, −mτz⊗ sz⊗σz, and−mτz⊗σz

wheresz is a spin Pauli matrix, as summarized in Table4.2. Using the constan-

t density-of-states per flavorν0 = γ1/(4π h̄2v2
0) of the normal state, introducing an

ultraviolet cutoff at the inter-layer hopping energyγ1, and assuming weak-coupling,
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the gap equation can be solved to yield

m = 2γ1exp(−2/ν0VS) . (4.7)

4.3.3 Influence of Zeeman field
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Figure 4.8: Upper panel: (Left axis) LAF tilt angleθ (green) and total effective-
field tilt angle including both exchange and external field components (cyan)vs.
in-plane magnetic field. (Right axis) Field aligned exchange mcosθ (green) and
total effective-fieldM +mcosθ (cyan)vs. in-plane field. Lower panel: sketch of
the LAF tilt angles obtained from the upper panel. We assume a4 meV spontaneous
gap atB = 0 throughout the section, corresponding toν0VS ∼ 0.334.

When Zeeman coupling is included, the QAH state quasiparticles simply

spin-split, leaving the ground state unchanged but the charge gap reduced. For a

4 meV spontaneous gap at zero-field, corresponding to dimensionless interaction
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ν0VS ∼ 0.334 - close to the value expected to be appropriate for screened Coulomb

interactions, a field of∼ 35 T drives the gap to zero. The QSH and LAF states, on

the other hand, have more interesting non-collinear magnetic-field induced states.

We apply a Zeeman field in the ˆx direction and allow spin-densities in the ˆx− ẑ

plane. In practice this amounts to keeping∆βs′
αs real but allowing spin off-diagonal

terms. In this case we find that for a 4 meV spontaneous gap, theLAF tilt angle

θ relative to the ˆx direction decreases fromπ/2 at zero field toπ/3 at 100 T. The

mass terms are correspondingly spin-dependent with components in the ˆx and ẑ

directions. For the LAF

hHF
Z = h0−msinθ sz⊗σz− [M+mcosθ ]sx⊗σ0 , (4.8)

where 2M = gµBB denotes the Zeeman splitting andm andθ are determined by

solving

msinθ =
VS

4A ∑
k,s=±

msinθ
Es

, (4.9)

mcosθ =
VS

4A ∑
k,s=±

M+mcosθ + sεk
Es

, (4.10)

with E±=
√

(M+mcosθ ± εk)2+m2sin2 θ . The four quasiparticle energies are

±E±, so the gap is 2E− evaluated atεk = M+mcosθ , i.e., 2msinθ .

For weak fields the quasiparticle spins are nearly perpendicular to the Zee-

man field. As the field strength is increased the quasiparticle state spin-polarizations,

which ares andk-dependent, all rotate toward the ˆx direction and the exchange field

follows suit. Assuming thatγ1≫ m,M we find that the perpendicular LAF mass
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is neglected.

componentmsinθ is still given by the right hand side of Eq. (4.7), and that

mcosθ =
ν0VS

2−ν0VS
M , (4.11)

implying that the LAF tilt angle is

θ = arctan

[

4γ1 · (2−ν0VS)

gµBB ·ν0VS
· e−2/(ν0VS)

]

. (4.12)

This solution was confirmed numerically and is summarized inFig 4.8.

The gap is nearly independent ofM, in clear contrast to the QAH case. As

M increases thek = 0 quasiparticle band extrema of the LAF move to largerk ∝
√

M+mcosθ as illustrated in Fig.4.9. ForM≫msinθ the non-collinear LAF state
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can be viewed as an exciton condensate formed by pairing electrons in the bilayer

majority spin band with holes in the minority spin band. In this limit the LAF state

is therefore similar to the Zeeman-coupling induced exciton condensate considered

previously in the single-layer graphene case by Aleineret al.[87].

4.3.4 Influence of electric field

Because they all haveσz layer pseudospin order, LAF, QAH, and QSH states re-

spond similarly to an electric field perpendicular to the layers, which adds am0σz

term to the single-particle Hamiltonian. For the LAF, for example, the LAF masses

m↑,↓ for m0 = 0 differ only by a sign. When a perpendicular electric field isapplied,

masses are enhanced for one spin and suppressed for the other. In our mean-field

calculations first order phase transitions occur between states with distinct broken

symmetries as illustrated in Fig4.10, leading eventually to a state in which the sense

of layer polarization is the same for all spin-valleys[88]. Experimental behavior in

an external electric field will likely be sensitive to the pinning energies of domain

walls that separate different spontaneous quantum Hall states.

When an in-plane magnetic field and a perpendicular electricfield are both

present, the field aligned LAF order parametermcosθ is little changed compared

to the E = 0 case. The electric field dependence ofm↑,↓ is mainly determined

by a competition betweenm0σz andmsinθ sz⊗σz. The noncollinear LAF phase

is, however, strengthened by its field-aligned order-parameter component and is

more robust against a perpendicular electric field when the Zeeman field is large,

as illustrated in Fig4.10. Fig 4.10 also shows that the LAF state stability can

be dependent on the order in which the two fields are applied. We note that a

small electric field between the layers can stabilize a statein which one flavor is
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The inner panel indicates the LAF (magenta) and fully layer polarized (green) state
stability rangesvs. electric-field mass at zero magnetic field.

polarized in a sense opposite to the other three and charge, valley, and spin Hall

conductivities are all non-zero[9]. This state is not represented in Fig.4.10where

we have assumed that the two valleys have the same layer polarization.

4.3.5 Discussion

Low-energy electrons in bilayer graphene have spin, valley, and layer two-component

quantum degrees of freedom. Because it appears in the band Hamiltonian, the layer

pseudospin plays a different role in bilayer graphene physics than spin or valley.

Flat conduction and valence bands and Bloch states withJ = 2 layer-pseudospin
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chirality combine to make the band state unstable toward a family of insulating bro-

ken symmetry states that have independent spontaneous layer polarizations in each

spin-valley component. Three distinct states have no overall layer polarization, a

quantum anomalous Hall state, a quantum spin Hall state, anda layer antiferromag-

net state[9]. In this Letter we have shown that the QAH state can be distinguished

from the QSH and LAF states by examining the dependence of thecharged quasi-

particle gap on the strength of Zeeman coupling to an in-plane magnetic field. In

the QAH case, the ground state is unchanged but the quasiparticle gap is reduced

- vanishing when the Zeeman coupling strength is equal to theground state gap

via a mechanism reminiscent of the Clogston limit in superconductors. The QSH

and LAF states respond to Zeeman fields in a more interesting way, by establishing

non-collinear spin states within each valley and evolving toward an unusual kind

of exciton condensate in the strong Zeeman coupling limit. The gap of QSH and

LAF states is independent of Zeeman coupling strength drawing a sharp distinction

with the QAH case. When combined with probes that are sensitive to edge state

transport, which is topologically protected[85] in QAH and QSH cases but not in

the LAF case, this property should enable any of the three states to be uniquely

identified.

It appears clear that bilayer graphene is exhibiting new many-body physics.

This Letter points out that experimental studies of the Zeeman energy dependence

of the gap could help to distinguish between different possibilities in bilayers, and

also in largerN chiral few-layer graphene. As mentioned previously some theo-

retical authors have concluded[47, 69] that the ground state of a neutral bilayer

should be anematic XY -plane layer-pseudospin ferromagnet which breaks in-plane

rotational symmetry, rather than a ˆz-direction Ising pseudospin ferromagnet. (The

z-component of the layer pseudospin density is the difference in density between
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the top and bottom layers while an x- or y-component indicates interlayer coher-

ence.) The nematic states are most strongly distinguished from the I -symmetry

breaking spontaneous quantum Hall states[9, 10, 15, 20, 21, 46] by the absence of

a charged quasiparticle gap in the former case. In the nematic state interactions

generate mean fields that are off-diagonal in layer index andreduce the symmetry

of the bands, splitting the 2π K(K′) Dirac points into twoπ-Dirac points that are

displaced fromK(K′) in an arbitrary direction. The mean-field-theory property that

lower energy states are obtained with Ising compared toXY pseudospin order is

related to the larger susceptibility associated with this pseudospin component. (The

band eigenstates are perpendicular to the ˆz-direction for allk, so all band states are

easily rotated toward ˆz pseudospin polarization.) Other potential explanations for

the anomalies observed to date can be sought in trigonal warping effects, which

are relevant below∼ 1 meV in bilayers and have been ignored for simplicity in the

present discussion, and in structural changes unintentionally induced by current an-

nealing of suspended samples. There is however not yet a coherent explanation of

how either of these might result in a gap at Dirac point. The observed gaps appears

to be of many-body origin, in any event, since they appear only at temperatures that

are much lower than observed gaps[13, 18, 68, 76].
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Chapter 5

Broken SU(12) Symmetry Quantum

Hall Ferromagnets

Trilayer graphene provides a novel two-dimensional electron gas with markedly

different low energy behaviors determined by its stacking order. The four spin-

valley flavors and the 3π Berry’s phase give rise to Hall plateaus with quantized

steps of 4e2/h and 12-fold degeneracy at the zeroth Landau Level. We predict that

electron-electron interactions spontaneously break theSU(12) symmetry and drive

quantum Hall effects at all the integer fillingsν from−6 to 6 following the Hund’s

rules. Atν = 0 of ABC trilayers, electric fields can drive phase transitions between

spin- and layer(valley)-polarized states with a critical value linear in (perpendicular)

magnetic fieldB. In ABA trilayers, we find that the Hund’s rules and theJ = 1,2

LL crossings depend on the next-nearest layer tunnelings and the magnetic field.
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5.1 Introduction

Recent experimental advances with remarkable control oversingle layers of bulk

materials have ushured in new members of the two-dimensional electron gas (2DEG)

family, such as graphene, bilayer graphene[3] and the nontrivial surfaces of topo-

logical insulators[85, 89], that have even more peculiar properties than the usual

2DEGs. Intriguingly, many of the exotic features in these new 2DEGs are re-

lated to the quantized Berry’s phase gained by quasiparticles circling around the

Dirac points. As in the case of semiconductor 2DEG in a perpendicular magnetic

field, when disorder is weak, Coulomb interactions induce quantum Hall ferromag-

netism, i.e., spontaneous spin polarizations with gaps much larger than Zeeman

energies[90, 91]. The additional degrees of freedom of the new members, suchas

layers (surfaces)[92–94], valleys[29, 30, 95] or zero energy degenerate Landau Lev-

el (LL) orbitals[4, 31], separately double the degeneracy near the Fermi energy ofa

neutral 2DEG and lead to novel phenomena such as exciton condensation[96, 97],

canted antiferromagnetism, and valley or LL polarizations[12, 64, 65]. Trilayer

graphene[6, 50], which has become experimentally feasible recently[68, 84, 98–

103], offers a brand-new degree of freedom deriving from the stacking order of the

layers that has far-reaching consequences at low energies.

At first glance, both ABA-stacked and ABC (or chiral)-stacked trilayers

should have Hall plateaus atν = ±4(n+ 3/2) with 12-fold zero energy LLs in

the simplest model, because of the 4 flavors in spin-valley space and because of the

3π Berry’s phase[6, 50]. However, microscopic structures, low-energy physics and

interacting pictures[9, 68] are strikingly distinct in graphene trilayers with different

stacking orders. ABC trilayers are the next chiral generalization of monolayer and

bilayer graphene. Only two sites located in the top and bottom layers remain at low

108



energy and in a single spin-valley the energy degeneracy at the Dirac point is thus

protected by inversion symmetry[10]. Any perturbation breaking it creates an ener-

gy gap at the Dirac point and thus supports a layer-polarizedstate. The quantized

LL energies are unique asE(3)
n ∼ B3/2

√

n(n−1)(n−2). On the other hand, the

band structure of an ABA trilayer consists of a massless monolayer and a massive

bilayer graphene subbands. A unbiased ABA trilayer has mirror symmetry with

respect to the middle layer and an interlayer electric field only increases the band

overlap instead of opening a gap. The LL spectrum can be viewed as a superposi-

tion of monolayer-like LLsE(1)
n ∼ B1/2√n and bilayer-like LLsE(2)

n ∼ B
√

n(n−1)

with different cyclotron frequencies, leading to the LL crossing[104, 105].

In this chapter, we first provide effective models that govern the low-energy

behaviors of trilayer graphene, then predict the Hund’s rules following which electron-

electron interactions induce quantum Hall effects at all the duodectet integer fill-

ings, and determine the critical electric field that drives the first order phase tran-

sition between spin- and layer(valley)-polarized states at ν = 0 of ABC trilayers.

We find that next-nearest layer tunnelings have pronounced influence on determin-

ing the details of Hund’s rules and LL crossings in ABA trilayers while other weak

hoppings are negligible.
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Figure 5.1: Schematic of the unit cells of few-layer graphene and the most important
interlayer hoppings (γ1).
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5.2 Quantum Hall ferromagnetism in ABC trilayer

graphene

When trigonal warping and Zeeman effect are neglected, in the absence of inter-

actions the low energy properties of ABC trilayer graphene are determined by the

band Hamiltonian[6, 50]

HABC =
v3

0

γ2
1





0 π†3

π3 0





+ ud









1 0

0 −1



− v2
0

γ2
1





π†π 0

0 −ππ†







 . (5.1)

In Eq.(5.1) the 2×2 matrices act on the low energy sites of the ABC trilayer (A1 and

B3 in the leftmost panel of Fig.5.1). π = h̄k+ eA/c is the 2D kinetic momentum

whereπ = τzπx+ iπy andτz(±1) represents valleyK(K′). v0 is the Fermi velocity

in monolayers andγ1 ∼ 0.5 eV[6, 100] is the interlayer nearest neighbor hopping.

2ud is the potential difference between the outermost layers, giving rise to an energy

gap at Dirac points.

There are three zero energy eigenstates of unbiasedHABC in each valley,

i.e., (0,φnK) with LL pseudospinn = 0,1,2 and and(φnK′,0) for the other val-

ley. The dozen degenerate states follow from the direct product of LL orbital

SU(3) triplet, real spinSU(2) doublet andwhich-layer SU(2) doublet, where val-

ley and layer pseudospins coincide. Zeeman coupling produces real spin-splitting

2EZM = gµBB = 0.116×B[T ] meV whileud induces LL energyELL =−τzud(1−
n(h̄ω3/γ1)

2/3) which splits LLs by distinguishing their layer and LL orbital pseu-

dospins. h̄ωN = (
√

2v0h̄/γ1lB)Nγ1 is the cyclotron frequency of quasiparticles in
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chiral N-layer graphene.

The self-consistent Hartree-Fock Hamiltonian that describes the dozen zero

energy states contains single-particle pseudospin splitting fields and Hartree and

exchange interaction contributions:

〈αns|H HF
ABC|βn′s′〉=(ELL δss′−EZMσz

ss′)δnn′δαβ

+EH(∆B−∆T)τz
αβ δss′δnn′

−EF ∑
n1n2

Xαβ
nn2,n1n′∆

βn1s′
αn2s δss′ , (5.2)

where we have used the notationn = 0,1,2 to denote LL orbitals, indexs and

Pauli matrixσz act on spin space, andα,β = B(K) or T (K′) are layer(valley)

indices.EF = e2/εlB is the strength of exchange interactions and the Hartree field

EH = (2d/2lB)EF captures the electrostatic capacitance between the top andbottom

layers, wherelB = 25.6nm(
√

B[T ])−1 is the magnetic length.d = 0.335 nm is the

separation between adjacent graphene layers.∆α = ∑ns∆αns
αns where the density

matrix ∆βn′s′
αns = 〈c†

βn′s′cαns〉 must be determined self-consistently by occupying the

lowestν +6 eigenstates ofH HF
ABC. The exchange integralsXαβ

nn2,n1n′ capture fermion

quantum statistics and are defined as

Xαβ
nn2,n1n′ =

∫

d2k

(2π)2Fnn2(−k)Fn1n′(k)
2πe2

εk
ηαβ

EF
, (5.3)

whereηαβ becomes 1 forα = β ande−2kd for α 6= β . Fnn′(k) are the LL Form

factors in terms of associated Laguerre polynomials that capture the spatial profile

of the LL wavefunctions.

The self-consistent solution of the Hartree-Fock theory for balanced ABC

trilayers is summarized in Fig.5.2 usingB = 20 T. The gaps typically much larger
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thanEZM justify our weak-coupling theory. The duodectet fillings, proceeding in

integer increments starting from filling factorν = −6 to 6, follows the Hund’s

rule behavior: first maximize the spin polarization; then maximize layer (valley)

polarization to the greatest extent possible; and finally maximize the Landau Level

polarization to the extend allowed by the first two rules. Thestates with spins along

the field direction (say spin↑) have lower energies than the spin down states via

the Coulomb exchange enhanced spin splitting. For balancedABC trilayers, the

layer symmetric states (S) are filled before the layer antisymmetric states (AS). The

three distinct Landau Level orbitals are filled in smallern first order if the other

two quantum numbers are exactly the same. Therefore, the first six filled LLs are

|S,0↑〉, |S,1↑〉 and|S,2↑〉 followed by the AS counterparts; the next six filled LLs

are the spin↓ states in the same order.

The Hund’s rules imply that the interaction driven integer quantum Hall s-

tates are spin and pseudospin polarized atν = −5 to 5, as depicted in Fig.5.2. All

these 11 states are spin↑ polarized ferromagnets with a maximum atν = 0 driven

by the exchange enhanced spin splitting. Provided by the LL dependence of the

microscopic Hamiltonian,n = 0 LL pseudospin is polarized except at filling fac-

tors that are multiples of 3 whilen = 1 is polarized only atν = ±1 and±4. LL

prefers to occupy both layers simultaneously in absence of interlayer bias, giving

rise to XY type layer polarization with spontaneous interlayer coherence. XY phase

breaks in-plane rotational symmetry and takes the advantage of no Hartree energy

cost while Ising polarization breaks inversion symmetry and gains more exchange

due to its intralayer character. Both the Hartree energy andthe difference between

intralayer and interlayer exchanges are the same order∼ d/lB · e2/lB, and it turns

out that Hartree energy slightly dominates over exchange difference, leading to a

XY layer-ferromagnet whenud = 0.
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Figure 5.2: Upper panel: filling factor dependence of the Hartree-Fock ernergies
of occupied and unoccupied LLs for a balanced ABC trilayer at20 T. Energies are
in units of (π/2)1/2e2/εlB. Unoccupied LLs are sextets (blue), triplets (green),
or singlets (cyan); occupied LLs are doublets (magenta) or singlets (red); LLs at
ν = ±6 have an extra double degeneracy due to Zeeman splitting. Lower panel:
filling factor dependence of the polarizations of up spin (blue), symmetric layer
(red),n = 0 and 1 LL orbitals (green and cyan). LL polarizations are relative to the
n = 2 orbital.

Duodectet quantum Hall ferromagnets have fascinating dependence on the

interlayer electric field. A very small potential difference between the top and bot-

tom layers is sufficient to change the character of the layer(valley) polarization from

the XY spontaneous-coherence form to an Ising polarizationform in which one lay-

er is occupied before the other. If the induced potential difference between the top

and bottom layers becomes dominant over the exchange induced spin splitting be-
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tween the highest occupied spin up and the lowest unoccupiedspin down LLs at

filling factor ν = 0, there is a quantum phase transition from the spin polarized

ferromagnet state into the layer(valley) polarized state.For instance, atB = 20T

(ε = 1) the layer polarized state has the lowest energy if the potential difference

between the top and bottom layers exceeds 0.2eV. The gap between the highest oc-

cupied LL |T,2,↑〉 and the lowest unoccupied LL|B,0,↓〉 is 0.46eV for zero bias

and is reduced to only 0.28eV near the critical point. We find that the critical elec-

tric field for this first order phase transition is 15 mV/(nm·T), comparable to the

experimental value in bilayers[13, 17, 88, 106]. The linear dependence of the crit-

ical field onB follows from the fact that both bias supported energiesEH andELL

are linear functions ofB.

In high mobility and low disorder suspended samples, we anticipate that

the states atν = ±6,0 persist down to zero magnetic field exhibiting spontaneous

quantum Hall effects[9], because the chiral trilayers are susceptible to broken sym-

metries that are accompanied by large momentum space Berry curvatures and dif-

ferent types of topological order. Remote weaker hoppings in ABC trilayers that

have been ignored so far mainly result in trigonal warping effect at energy scale∼ 7

meV[6]. This effect is likely to be washed out by exchangeEF∼ 56
√

B[T ]/ε meV,

if not smeared by disorder.

5.3 Quantum Hall ferromagnetism in ABA trilayer

graphene

Unlike ABC trilayer quasiparticles with pure chirality, the band structure of an ABA

trilayer consists of a massless monolayer (J = 1) and a massive bilayer (J = 2)
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subbands. Unbiased ABA trilayers have mirror symmetry respect to the middle

layer and their low energy physics is governed by[104]

HABA =



v0





0 π†

π 0



+





− γ2
2 0

0 δ ′− γ5
2









J=1

⊕





−v2
0√

2γ1





0 π†2

π2 0



+





γ2
2 0

0 0









J=2

, (5.4)

where theJ = 1 subbands are layer antisymmetric states|A1〉−|A3〉 and|B1〉−|B3〉
while the J = 2 subbands are layer symmetric states|A1〉+ |A3〉 and |B2〉 with

γ1 enhanced by a factor of
√

2. Clearly, the mirror symmetry leads to layer co-

herence with XY form even in the single-particle level. The next-nearest layer

tunnelings[104], i.e., γ2 = −20 meV, γ5 = 40 meV andδ ′ = 50 meV, lead to a

band gap for each chiral branch separately but no direct gap overall. In the pres-

ence of a magnetic field, valley and linearly combined sublattices coincide, and

the self-consistent Hartree-Fock Hamiltonian that describes the broken symmetry

zero-energy duodectet states is

〈ini s|H HF
ABA | j nj s

′〉=
(

E ′LL δss′−EZMσz
ss′
)

δninj δij

+
EH

2
∆B2

(

2δB2,i−1
)

δss′δninj δij

−EF ∑
n1n2

X ij
nin2,n1nj ∆

jn1s′

in2s δss′ , (5.5)

where LL indexni depends on its atomic orbitali, i.e., n = 0 only for J = 1 branch

while n = 0,1 for J = 2 branch. Exchange integralsX ij is still defined by Eq.(5.3)

but with a more general definitionη ij = ∑mcmVm/V0, whereV0,1,2 respectively

denote intralayer, nearest interlayer, and next-nearest interlayer interactions in mo-

115



mentum space, andcm is obtained from the interaction matrix element decomposi-

tion 〈i j|V |i j〉= ∑mcmVm. Otherwise the notation in Eq.(5.5) is the same as in the

ABC case. Since we focus on the balanced case withud = 0, ELL is absent and

replaced byE ′LL which is the diagonal elements in Eq.(5.4) from next-nearest layer

couplings.

We find that the duodectet fillings follow the same Hund’s rulebehavior
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Figure 5.3: (a) Filling factor dependence of the Hartree-Fock (HF) ernergies (eV) of
occupied and unoccupied LLs for a balanced ABA trilayer at 10T. Unoccupied LLs
are quartets (green), doublets (blue), or singlets (cyan);occupied LLs are doublets
(magenta) or singlets (red). (b)-(d) Field dependence of the HF energies (eV) of the
lowest four LLs atν =−5,−4 and−3. We use 15 T in (b), 25 T in (c) and 35 T in
(d). Magenta and red respectively denote then = 0 and 1 orbitals of LL|A1+A3 ↑〉;
green and blue respectively denote then = 0 and 1 orbitals of LL|B2 ↑〉. Zeeman
splitting is small enough to ignore and we assumeε = 1.
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as the ABC case while influenced significantly by next-nearest layer tunnelings.

This Hund’s rule prefers symmetric layer polarization so the J = 2 LLs are filled

first. When the magnetic field is smaller thanBc1 = 17 T (ε = 1 hereafter), the

first six filled LLs are|A1+A3 ↑〉 with n = 0 and 1, then|B2 ↑〉 with n = 0 and

1, and lastly|A1−A3 ↑〉 and |B1−B3 ↑〉 with n = 0. The next six filled LLs are

the spin↓ states following the same order. The above pictures are summarized in

Fig.5.3(a). At ν = −5 and−4 |A1+ A3 ↑〉 LLs would be occupied first, taking

advantage of gaining exchange, avoiding Hartree energy cost and being favored

by E ′LL . At ν = −3 |B20,↑〉 LL is then occupied, which lowers the total energy

by gaining intralyer exchange and negative Hartree energy cost, and also being

favored byE ′LL . There is aSU(2) symmetry in the highest occupied LL between

theJ = 1 spin↑ LLs at ν = −1. It is the single-particle termE ′LL , originated from

the next-nearest layer tunnelings, that makes|A1−A3 ↑〉 more favorable. We note

that similar symmetries emerge atν = ±1 and±5 and are lifted byE ′LL which is

independent of spin, LL orbitaln and magnetic field.

While the Hund’s rule behaviors atν > −3 are universal, the filling of LLs

at ν = −5,−4 and−3 becomes rather field dependent, as indicated in Fig.5.3. As

the field strength becomes larger thanBc1, at ν = −4, the pair of LLs|B2 ↑〉 are

filled before the other pair|A1+A3 ↑〉. This results from that Coulomb physics

overwhelms the next-nearest layer tunneling effects, and that intralayer exchange

dominates interlayer exchange and Hartree energy cost. Furthermore, when the

field is turned up toBc2=33 T, atν =−5 LL |B20 ↑〉 instead of|A1+A30 ↑〉would

be filled first. The two critical fields are roughly determinedby EH/2∼ ∆E ′LL , since

the difference between intralayer and interlayer exchanges (∼ EH) competes with

the combination of Hartree energyEH/2 and single-particle LL energy difference

∆E ′LL . The solution is in agreement with the self-consistent numerical results (Bc1
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andBc2).

Unlike in ABC trilayers where onlyJ = 3 bands are present at low ener-

gies, bothJ = 1 and 2 subbands appear at all energies in ABA trilayers, leading

to LL crossing[99, 104, 105] between the two chiral branches whenω1/ω2 =
√

n2(n2−1)/2n1 is satisfied. We anticipate Coulomb physics would open gaps

at LL crossing points, whose characteristics would depend on the orbital indices

of the crossing LLs. The measurement of Shubnikov-de Hass ocillations is able to

probe the chirality of different subbands and the LL crossing effect, in which the

coexistence of two 4-fold LLs doubles the degeneracy and increases the density-

of-state peaks. Because of the LL crossing, the sequence of the plateaus in ABA

trilayers highly depend on the magnetic field strength.

We stress here that for ABA trilayers, it is important to include next-nearest

layer couplings since these tunnelings play an essential role in determining the ABA

Hund’s rule and the LL crossings. In contrast, the effectivetrigonal warping in the

J = 2 subbands is relevant below∼ 1 meV and can be fairly ignored in the presence

of disorders and interactions.
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Chapter 6

Conclusion

6.1 Experimental observations

Figure 6.1: Raman spectroscopy of two trilayer graphene devices with ABA and
ABC stacking orders respectively[68].

After electrical measurements, graphene devices are identified using Raman

spectroscopy to be bilayer, ABA-stacked or ABC-stacked trilayer graphene[68].

As shown in Fig.6.1, the 2D peak of an ABC trilayer is more asymmetric with a
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pronounced shoulder, compared to that of the ABA counterpart. This experimental

advance opens the door to discover a large family of different graphene 2DES’s,

by identifying their layer numbers and their stacking orders as well. The electric

field induced gap opening[6, 50] in trilayers have started to be observed in optical

experiments[103] recently.

Figure 6.2: The observed spontaneous gap in suspended bilayer graphene[13].

Recent experiments[13, 17, 18, 76] have provided convincing evidence of

strong electronic correlations near the charge neutralitypoint in bilayer graphene,

although the presence of gaps is difficult to establish. The first direct spectroscop-

ic measurements[13] in ultra-clean double-gated bilayer graphene, has resolved a

gap of∼ 2−3 meV at charge neutral point using source-drain bias as the spectro-

scopic tool. This anomalous insulating broken symmetry state is clearly shown in

Fig.6.2with double peaks. This unique feature bears a striking resemblance to the

BCS superconducting density of states and strongly suggests the formation of an

ordered phase with an energy gap. Importantly, this gap can be closed by appli-
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cation ofE⊥ ∼ 13 mV/nm of either polarity, as shown in Fig.6.3(a). Conductance

G increases with smallE⊥; upon application of moderateE⊥ ≃ 13 mV/nm, the

BCS-like structure completely vanishes and the conductance reaches a finite mini-

mum of∼ 100 µS at zero carrier density. Eventually, for sufficiently large E⊥, G

starts to decrease with increasing fields, reverting to the well known single-particle

behavior. The absence of edge states is the most unambiguousexperimental sig-

nature, since the two-terminal conductivity is as low as 0.02e2/h̄. It is judged that

(a) Finite E reduces spontaneous gap (b) Spontaneous gap increases with B

Figure 6.3: The influence of electric fields and magnetic fields on the spontaneous
gap of suspended bilayer graphene[13].
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among the proposed states[9], the observations are most consistent with a layer-

antiferromagnet state (LAF). LAF state that breaks inversion symmetry and time

reversal symmetry. Fig.6.3(b) shows that this LAF state continuously evolves to the

ν = 0 quantum Hall state with a gap that increases monotonicallywith a magnet-

ic field field. Further experiments might demonstrate the existence of non-collinear

LAF order at finite magnetic field,i.e. LAF state at zero field is smoothly connected

to theν = 0 quantum Hall ferromagnet state at infinite field. Although it is diffi-

cult to explain the particle-hole asymmetry in the experiment data, this experiment

provides the first mapping of the ground states in ultra-clean bilayer graphene.

Figure 6.4: The observed spontaneous gap in suspended ABC trilayer
graphene[68].

As the spontaneous inversion symmetry breaking and the resultant ener-

gy gap have been predicted in all the chiral graphene 2DES’s with layer number

N ≥ 2[9, 10], the experiments have also investigated the thicker cousin of bilayer

graphene–ABC (chiral) trilayer graphene. Fig.6.4 displays the two-terminal con-

ductance of two different suspended trilayers devices, thered one (device 1) with

ABA stacking and the blue (device 2) with ABC stacking, as a function of back gate
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voltageVg at T = 1.5 K. Both curves are V-shaped, characteristic of high mobility

samples. Interestingly, the two devices display drastically different minimum con-

ductanceGmin at the charge neutrality point.Gmin is∼ 50 µS for the ABA trilayer

but is close to zero for ABC trilayer. This striking contrastin minimum conduc-

tivity, which differs by several orders of magnitude, not only labels the stacking

orders of high mobility trilayer graphene samples, but alsofirst time discovered[68]

the predicted[9, 10] insulating broken symmetry state in ABC (or chiral) stacked

trilayer graphene.

6.2 Future directions

The prediction[9] of spontaneous quantum Hall states and the observation[13, 19]

of insulating broken symmetry states are just the starting of fascinating physics in

few-layer graphene 2DES’s, we close this thesis by pointingout some potential fu-

ture directions that interest both theorists and experimentalists in condensed matter

physics.

(i) Apparently, electric or magnetic fields, carrier densities, temperatures and

disorders are all able to drive phase transitions[19] between different spon-

taneous quantum Hall states. Some of these transitions havebeen observed

to date, but more are waiting to be explored! Particularly, the phase diagram

for ν = 0 state in bilayer graphene is expected to be very rich. A perpendicu-

lar electric field drives the antiferromagnet state at zero magnetic field or the

ferromagnet state at high magnetic field to a layer polarizedstate. At small

magnetic field, antiferromagnet state is driven to quantum anomalous Hall s-

tate when the system deviates from charge neutrality. At charge neutrality, as

the perpendicular magnetic increases, the non-collinear layer-antiferromagnet
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ground state smoothly evolves[25] into the quantum Hall ferromagnet state

with spins rotating to align with the field. On the other hand,in the presence

of parallel magnetic field[16], the non-collinear layer-antiferromagnet state

can be viewed as an Zeeman-coupling induced exciton condensate formed by

pairing electrons in the bilayer majority spin band with holes in the minority

spin band.

(ii) Topological order usually has protected edge or surface states against weak

disorders or interactions. For the five predicted spontaneous quantum Hal-

l states, only quantum anomalous Hall and quantum spin Hall states are in

company with topologically protected edge states along theboundaries while

the others’ edge states are only robust for zigzag terminations. However, a-

long a domain wall or an interface[22] that separates different spontaneous

quantum Hall states, novel one-dimensional solitonic zeromodes do appear

and the number of the modes are related to the change of bulk topological

properties. It’s also intriguing to study the pining energyof the domain walls,

and how a domain wall moves under external perturbations, since the energy

differences between different spontaneous quantum Hall states are only∼ 1%

of their condensate energies[21].

(iii) Spontaneous quantum Hall states are predicted to occur in chiral graphene

with more than one layers[9]. So it would be useful to investigate whether the

layer number has an influence on the character of the ground states, how the

critical temperature changes with the film thickness, and inwhat conditions

chiral trilayer graphene is a two-dimensional topologicalinsulator. Quantum

spin Hall effect has been proposed in monolayer graphene as atopologically

nontrivial consequence of the intrinsic spin-orbital interaction, preserving and
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protected by the time-reversal symmetry. Unfortunately, this quite fascinating

phase is not likely to emerge in graphene since the spin-orbital interactions

have been proved to be smaller than 10−3 meV, namely, the critical tempera-

ture is below 10−2 K even in the clean graphene. However, this effect might

be realized in chiral odd-few-layer graphene[9] via spontaneously symmetry

breaking physics, as quantum spin Hall state is one of the candidate ground

states.

(iv) One of the essential reason we use current annealing when preparing the

suspended bilayer graphene devices is that the broken symmetry physics in

charge neutral bilayers is very fragile if disorder is present. From theoretical

calculations and also experimental observations, the minimum conductivity in

bilayers has a quite universal value∼ 3e2/h̄ in both suspended and substrate-

supported bilayer graphene, as an influence of charge impurities. It turns out

that this minimum conductivity can be strongly reduced to∼ 0.02e2/h̄ after

current annealing[13]. It is highly desired to know the influence of magnet-

ic disorder and the interplay between broken symmetry physics and charge

disorder[19].

(v) Each graphene few-layer is a unique 2DES depending on itsstacking order

and layer number. This fact opens the door for studying 2DES’s with differ-

ent chiral quasiparticles. It’s very interesting to study the tunneling behaviors

between different chiral 2DES’s or to study the subtle correlations between d-

ifferent chiral quasiparticles in different sub-bands of afew-layer with a pure

stacking order. One example of the latter is the ABA-stackedtrilayer where

monolayer-like and bilayer-like sub-bands coexist at low energies. It is also

likely to have a stacking disorder[24], a new type of topological disorder, in
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mechanically exfoliated multilayer graphene samples,i.e. grain boundaries

or lattice mismatching lines separate regions with different stacking orders.

Topologically protected edge (interface) states are expected to emerge, sup-

ported by external fields or even by electron-electron interactions.

Few-layer graphene systems are unique 2DES’s and have more surprises in

store for us to discover.
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