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In this thesis we investigate the electronic band strustarel the correla-
tions in chirally (ABC) stackedN-layer graphene wittN > 2. We useab initio
density-functional theory anll - p theory to fit the parameters ofraband tight-
binding model. External potential differences betweendog bottom layers are
strongly screened by charge transfer but still open an grgag at overall neutral-
ity. Perpendicular magnetic field drives the system intoghantum Hall region
with 4N-fold zero energy Landau levels. We predict that Coulomleraattions
spontaneously break ti#J (4N) symmetry and drive quantum Hall effects at all

integer fillingsv from —2N to 2N with exotic spin and pseudospin polarizations.
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Based on mean-field theory and perturbative renormalizgtioup analysis,
we predict that the ground state of bilayer graphene spentasly breaks inversion
symmetry for arbitrarily weak electron-electron interans and conclude that this
instability is not suppressed by quantum fluctuations bat, thecause of trigonal
warping, it may occur only in high quality suspended bilayeRemarkably flat
conduction and valence bands that touch at charge neytaiiit and Bloch states
with large pseudospin chirality combine to make the bilagraphene gapless band
state strongly susceptible to a family of broken symmejestin which each spin-
valley flavor spontaneously transfers charge betweendayee explain how these
states are distinguished by their charge, spin, and valkgy ¢bnductivities, by
their orbital magnetizations, and by their edge state ptegse We further analyze
how these competing states are influenced by Zeeman fieldsdbple to spin
and by interlayer electric fields that couple to layer psepity and comment on
the possibility of using response and edge state signatoiidentify the character
of the bilayer ground state experimentally. We demonstreaesimilar insulating
broken symmetry states and spontaneous topological catker®ccur in bilayer’'s

thicker cousins, chirally stacked multilayer graphendeys.
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Chapter 1

Introduction

1.1 Few-layer graphene

Recent progres$f3] in the isolation of nearly perfect monolayer and multilaye
graphene sheets has opened up a new topic in two-dimens@uaton system-
s (2DES) physics. Graphene 2DES’s are remarkable for dediffiexent reasons.
The fact that they are truly two-dimensional (2D) on an atlength scale elevates
2DES physics from the low-temperature world to the roomgerature world. Fur-
thermore, they are accurately described by very simple leader very wide ener-
gy ranges and yet have electronic properties that can baajuedly altered simply
by stacking them in different arrangemedts{]. In other words, each graphene
few-layer is a unique 2DES with fascinating electronic ties depending on its
layer number and stacking order.

The basic building block of all graphene 2DES’s is the isdatonolayer,
which is described by a massless DiFacrj Hamiltonian over a very wide energy

range~ 3 eV. The massless Dirac model has chiral quasiparticleparidct linear



dispersions down to Dirac points. In the graphene case tinalithrefers to the
relationship between tHe p momentum and the direction of a pseudospin associ-
ated with the sublattice degree-of-freedom of grapher@®ircomb lattice, that is
closely related to ther Berry’s phase gained by a quasiparticle circling around a
Dirac point, 9]. Most of the exotic graphene properties directly involkie tow-
energy physics close to the Dirac points where the conduetna valence bands
kiss each other and where the Fermi level lies for the chaegeral case. When
these honeycomb layers are stacked together, their lovgpemdectronic proper-
ties are strongly modified in a way that is controlled by treecking order and the
number of layers. Among all the possibilities, we find thalyahe ABC (chiral)
arrangement maintains the following fascinating feafiije<i) there are two low-
energy sublattice sites, implying that a two band model igie a useful tool to
describe its physics; (ii) the low energy sublattice siteslacalized in the outer-
most layers, af\; andBy, and can be separated energetically by an electric field
perpendicular to the film which breaks the inversion symynaid opens an energy
gap at Dirac points; (iii) hopping between low energy sitishigh energy states is
anN-step process which leads pb' dispersion in conduction and valence bands,
sublattice pseudospin chirality and Berry’s phasblm, (iv) the low energy Hamil-
tonian of a multilayer with any type of stacking can alwayscheal-decomposed

to a direct sum of ABC-stacked layers; (v) The low-energydsaare increasingly
flat for largerN, at least when weak remote hopping processes are neglacizd,
the opportunity for interesting interaction and disordeygics is therefore stronger.
Consequently, in the simplified chiral model, the densitgtatesD (E) ~ E(2-N)/N
diverges a& approaches zero fd¥ > 2 whereas it remains finite fod = 2 and
vanishes folN = 1, which means interactions are more and more relevant as the

number of layer increases. ABC-stacked multilayers areltwl generalizations



of monolayer and bilayer graphene, and we believe that thelikely to prove to
be fertile ground for new many-body physit6], as we will show in this thesis.
For a chiral graphene with > 1, external potential differences between the
top and bottom layerg,g. interlayer electric fields, are strongly screened by charge
transfer within the layers, but still open an energy gap aral neutralityp]. The
created gap increases monotonically with the externatlayter potential differ-
ence and saturates around the strongest interlayer hopergyescale~ 0.4 eV.
On the other hand, when a perpendicular magnetic field isiexppthese chiral

2DES'’s are driven into quantum Hall region witN<4old zero energy Landau lev

els. We predict[1] that Coulomb interactions spontaneously break $b¢4N)
symmetry and drive quantum Hall effects at all the integéngk v from —2N to
2N with exotic spin and pseudospin polarizations. Unlike aveoional 2DES,
both the magnetic field at which the chiral bands are quashiize® Landau lev-
els and the critical field where the broken symmetry physasics are typically
smaller than 1 T for high quality suspended bilayer grapteereits thicker chiral
cousinsl2, 13]. These unusual phenomena in the presence of external #tlder
electrically or magnetically, are directly related to tledldwing weak repulsive
interaction instabilities[0, 14] at zero fields.

Remarkably flat conduction and valence bands that touchaagemeutral-
ity point and Bloch states with large pseudospin chiraliynbine to make the
bilayer graphene gapless band state strongly susceptibl&mily of broken sym-
metry states in which each spin-valley flavor spontaneotralysfers charge be-
tween layerd)]. The underlying many-body physics can be explained eligan
by perturbative renormalization group (PRG) analyidi[ analogous to the well
known non-Fermi-liquid states, interacting one-dimenald1D) electron systems,

where the Fermi-surface consists of points, and divergeassociated with low-



energy particle-hole excitations abound. Actually, el@ttelectron interactions in
2D bilayer graphene behave in many ways as if they were 1D3usecthey have
Fermi points instead of Fermi lines and because their pedticle energies have
a quadratic dispersion which compensates for the differdratween 1D and 2D
phase space. However, the detail PRG calculations provéhehanteractions in bi-
layer graphene are marginally relevant at one-loop leveta8se of the large layer
pseudospin chirality, the broken symmetry occurs in the@adicularz'channel
rather than the in-plan@ channellL4, 15|, which indicates in each spin-valley, lay-
er inversion symmetry is spontaneously broléhhile in-plane rotational sym-
metry is not that reduced. Similar instabilities and brokgmmetry physics also
occur in bilayer’s thicker cousins, chirally stacked maler graphene systems.

Because of spontaneously breaking inversion symmetnes single spin-
valley of chiralN-layer graphene wittN > 2, the Dirac point is gapped with lay-
er polarization and the momentum-space Berry curvaturerbes nontriviald].
The broken symmetry states are thus able to be classifiedelrysihin-valley fla-
vor dependent layer polarization, by their orbital magragtons and by their other
topological properties, such as various Hall conductgiaand edge stat&] More
interestingly, these topologically nontrivial states dsmon-collinear spin flop in-
fluenced by Zeeman fields that couple to spin and undergo afulst transition
induced by interlayer electric fields that couple to layesymospinl 6. And in-
deed, these competing spontaneous quantum Hall stateblareoabe identified
and distinguished using response and edge state signatures

The required access to the low-energy and many-body phiysiggh qual-
ity graphene few-layer samples has been enabled by remthengnderlying sub-
strates and further annealing the devices. Not only thereddeld induced energy

gap and the quantum Hall physics have been extensively plo experiments,
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but also, more excitingly, the spontaneous gaps and imsglatoken symmetry
states have been recently observed in suspended bil8y&7-19] and trilayer[L9]
graphene which have started to exhibit spontaneous quaralheffectsp, 20].
We expect that even richer novel physics occurs near theyehasutrality point
of few-layer graphene, due to the interplay between elaettectron interactions,

disorders, and external fields.

1.2 Outline of the thesis

This thesis basically is a collection of my Ph.D pap& 911, 13, 14, 16, 19, 21—
25] from the spring of 2010 to the summer of 2011. Here we giveexipw of the
materials contained in this thesis work and its organimatio

In chapter 2 §] we introduce the chirally (ABC) stacked few-layer grapben
2DES'’s and specifically we investigate the band structurekical trilayer graphene.
We derive the low-energy continuum model, and extract tharpaters of ar-band
tight-binding model by fitting ouab initio density-functional theory results to the
effective model. We also study the interlayer electric frelidted screening effects
and induced energy gaps, comparing the chiral 2DES’s witkrdnt number of
layers.

In chapter 3 10, 14] we use perturbative renormalization group to study
the weak repulsive interaction instability in bilayer ghape and to access the ro-
bustness of this instability, comparing with the closellated case of interacting
1D electron gas. We predict that the spontaneous gap opanthépyer inversion
symmetry breaking is enhanced by quantum fluctuations anelvgley flavors but
that, because of trigonal warping, it may occur only in higialify suspended bi-

layers. Furthermore, we calculate the layer pseudospicegtibilities, compare



the divergences in different possible broken symmetry obksy and further confir-
m the inversion symmetry breaking physics that occurs iayeit graphene and its
thicker cousins, chirally stacked multilayer graphene 3BE

In chapter 49, 16, 21, 22] we explore the momentum-space Berry curvature
of various insulating broken symmetry states to which dhea-layer graphene
is strongly susceptible, and find that these non-Fermidisjexhibit spontaneous
guantized anomalous Hall effects with spin-valley flavansfers between layers.
We explain how these states are distinguished by their ehapn, and valley Hall
conductivities, by their orbital magnetizations, and bgitltedge state properties.
We investigate how the spontaneous quantum Hall edge stetean in the pres-
ence of electric fields and magnetic fields. We further areah@v these competing
states are influenced by Zeeman fields that couple to spinyaimddslayer electric
fields that couple to layer pseudospin, and comment on th&lplity of using re-
sponse and edge state signatures to identify the chard¢ber loilayer ground state
experimentally.

In chapter 5 11] we study the stacking-dependent interaction-driven guan
tum Hall effects in ABC and ABA trilayer graphene. Partialjyawe investigate
the zeroth Landau level that is 12-fold degenerate in therades of interaction-

s and external fields. We predict that Coulomb interactigguntaneously break
the U (12) symmetry and drive quantum Hall effects at all the integéingk v
from —6 to 6 with exotic spin and pseudospin polarizations. We dlsouss the
interlayer electric field driven phase transition betwdengpin- and layer(valley)-
polarizedv = 0 states in ABC trilayers, and address the pronounced irdueh
the next-nearest layer tunnelings in ABA trilayers.

In chapter 6 13, 19, 25] we conclude this thesis work by discussing the

recent experimental observations of insulating brokenmsgtry states and sponta-



neous quantum Hall effects in high quality suspended hilagd trilayer graphene.

We also discuss some potential future works.



Chapter 2

Band Structure of ABC-Stacked

Graphene Few-Layers

The ABC-stacked\-layer-graphene family of two-dimensional electron syste

is described at low energies by two remarkably flat bands ®itth states that
have strongly momentum-dependent phase differences éetearbonrr-orbital
amplitudes on different layers, and large associated mamespace Berry phas-
es. These properties are most easily understood using &fschpnodel with only
nearest-neighbor inter-layer hopping which leads to gaptemiconductor elec-
tronic structure ang" dispersion in both conduction and valence bands. In this
chapter, we report on a study of the electronic band strestaf trilayers which
usesab initio density functional theory ankl- p theory to fit the parameters ofra
band tight-binding model. We find that when remote intentdyagping is retained,
the triple Dirac point of the simplified model is split intorée single Dirac points
located along the thre€M directions. External potential differences between top

and bottom layers are strongly screened by charge tran#f@nwhe trilayer, but



still open an energy gap at overall neutrality.

2.1 Introduction

Succesd]] in isolating nearly perfect monolayer and few layer shdéeim bulk
graphite, along with progress in the epitaxial growth offiewer graphene samples,
has led to an explosion of experimental and theore¢d| 26, 27] interest in
this interesting class of quasi-two-dimensional elecsgstems (2DES’s). Unique
aspects of the electronic structure of graphene based 2Da8é raised a number
of new fundamental physics issues and raised hope for apipins.

Monolayer graphene has a honeycomb lattice structure angepless semi-
conductor. Hopping between its equivalé&dndB sublattices gives rise to a mass-
less Dirac fermion band structure widh= 1 chirality when the sublattice degree
of freedom is treated as a pseudospin. In this chapter wdimdllit useful to view
the quantum two-level degree of freedom associated withstdattice sites as a
pseudospin in the multi-layer case as well. In AB-stackeapiene bilayers, for
example, electrons on th%® andB; sublattices are repelled from the Fermi level
by a direct interlayer tunneling process with eneygyleavingl] only states that
are concentrated on tiAg andB; sites in the low-energy band-structure projection.
When direct hopping betweel, andB; sites is neglected, the two-step hopping
process via high energy sites leadspfoconduction and valence band dispersion-
s and to a pseudospin chirality that is doubled, to a phase difference between
sublattice projections which is proportional tgAvhereg, is the two-dimensional
momentum orientation. Pseudospin chirality has a subatamiuence on interac-
tion physicspg] in both single-layer and bilayer graphene, and throughatso-

ciated momentum space Berry phases also on Landau quaontiaad the integer



guantum Hall effecq, 5, 29-31]. Because the two low-energy sublattices in bi-
layer graphene are located on opposite layers it is poswhllgroduceB2-36] a
gap[37-44] in the electronic structure simply by using gates to indackfference

in electric potential between layers. According to someties a small gap could
even emerge spontaneoudl§[ 15, 45-48] in neutral graphene bilayers with weak
disorder because of layer inversion symmetry-breaking.

Graphene bilayer 2DES’s are quite distinct from single ta83ES’s be-
cause of their flatter band dispersion and the possibilitysoig external potentials
to create gaps. Among all stacking possibilities, only tiBCAarrangement (see be-
low) maintains the following features that make Bernalymiaelectronic structure
interesting in thickeiN-layer films: (i) there are two low-energy sublattice sites,
implying that a two band model provides a useful tool to diéscits physics; (ii)
the low energy sublattice sites are localized in the outstriayers, a#A; andBy,
and can be separated energetically by an electric field pdipdar to the film; (iii)
hopping between low energy sites via high energy stateshsstep process which
leads topN dispersion in conduction and valence bands, sublatticeduspin chi-
rality N and Berry phasalrt. The low-energy bands are increasingly flat for larger
N, at least when weak remote hopping processes are neglantéthe opportunity
for interesting interaction and disorder physics is themettronger. Consequently,
in the simplified chiral model, the density-of-sta@&e) ~ E@-N)/N diverges as
E approaches zero fod > 2 whereas it remains finite fod = 2 and vanishes for
N = 1. These properties also have some relevance to more gstakihg arrange-
ments since the low energy Hamiltonian of a multilayer witly &/pe of stacking
can always be chiral-decomposed to a direct sum of ABC-sthtayers)).

ABC-stacked multilayers are the chiral generalizationsnainolayer and

Bernal bilayer graphene, and we refer them collectivelyhaschiral 2D electron

10



system (C2DES) family. We believe that they are likely toyerto be fertile ground
for new physics. As a first step in the exploration of theseenigs we report in
this chapter on an effort to characterize the way in whichdhieality N bands
of an N-layer C2DES are altered by remote hopping processes nedlét the
simplified model, focusing on th® = 3 trilayer case. We usab initio density
functional theory (DFT) calculations, combined witlkap expansion of the low-
energy bands near the Dirac point, to fit the parameters ofemghenological
tight-binding method (PTBM) for the-bands of multilayer grapheng,[7, 49-51]
We find that details of the low-energy band dispersion candsl uo fix rather
definite values for the model’s remote inter-layer hoppiaggmeters.

This chapter is organized as follows. In section Il we firstshk the deriva-
tion of the low energy effective band Hamiltonian of a trggyreserving details to
an Appendix and explain how the interlayer hopping pararsétduence the shape
of constant energy surfaces. The values for these parara@itained by fitting to
our DFT calculations are surprisingly different from théues for the analogous
hopping parameters in Bernal stacked layers, and are navgeable from experi-
ment. In Section Il we also discuss the evolution of constaetgy surface pockets
with energy, concentrating on the Lifshitz transitions &iat pockets combine, in
terms of Berry phase considerations and a competition legtwehiral dispersion
and trigonal warping. In section Ill we use DFT to estimate tiependence of
the trilayer energy gap on the external potential diffeeehetween top and bot-
tom layers and compare with predictions based on the simglifvo-band model.
The simplified model picture is readily extended to higNeand we use it to dis-
cuss trends in thicker ABC multilayers. Finally, we con@ud Section IV with a
discussion of how Berry phases modify the integer quantuthdffact and weak

localization in C2DES’s and with some speculations on theebelectron-electron
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interactions in these two-dimensional materials.

2.2 Effective model

2.2.1 Low-energy effective model

In ABC-stacked graphene layers, each layer has inequivaiengularA and B
sublattices. As illustrated in Fi.1(a), each adjacent layer pair forms a AB-
stacked bilayer with the upp@&sublattice directly on top of the lowéysublattice,
and the uppeA above the center of a hexagonal plaquette of the layer bébaw.
microscopic analysis uses the categorization of interlag@ping processes illus-
trated in Fig2.1(b), which is analogous to the Slonczewski-Weiss-McCIG&M)
parametrization of the tight binding model of bulk graphiéh the Bernal stacking
orderp2]. Following conventiong andy; describe nearest neighbor intralayer and
interlayer hopping respectively; represents hopping between the low energy sites
of a AB-stacked bilayerife. A; <> Bj11 (i = 1,2)), y4 couples low and high energy
sites located on different layerseg A <> Aj11 andB; <» Bj11 (i =1,2)). We use

yo to denote direct hopping between the trilayer low energgssiand as the on-
site energy difference d&; andBgz with respect to the high energy sitgg.and ys
correspond to the presumably weaker coupliBgs+ Az and § <+ S3 (S=A,B),
respectively andj is used to denote the average potential ofithéayer.

The massless Dirac-Weyl quasiparticles of monolayer graplare described

. 0 '
H = v , (2.1)
m O
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Figure 2.1: (a) Lattice structure of ABC-stacked grapheiteyer; blue/cyan/green
indicate links on the top/middle/bottom layers while pe/ptd distinguish the A/B
sublattices. (b) Schematic of the unit cell of ABC-stackeapdpene trilayer and the
most important interlayer hopping processes.

whererr= & px+ipy andé = +(—) for valley K(K'). (In this chapter we focus on
bands near Brillouin zone corn&r, the general result can be obtained by setting
px to & px.) The trilayerr-bands are the direct produce of three sets of monolayer
bands, modified by the various interlayer coupling procesgentified above. In

a representation of sublattice sites in the orderBs, B1,A2, By, Az, the trilayer

Hamiltonian near valleX can then be expressed in the form:

Ui+8 3% Vort' Valll vaIm VT
3V Ug+0O Vel Vel Va4l vom

L ABC VolT VT Uy yi  Vall vsTl

trilayer —

: (2.2)
VTl VBT Vi Up  Vorm vart!

VRl V4Tl W4T VoIT Ux Wi

V6Tl Vol VsTT ValT Vi W3
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wherey; = v/3ay;/2h anda = 0.246nm.

The identification ofA; andBs3 as the low-energy sublattice sites is made by
neglecting the weaker remote interlayer hopping procemsésettingt — 0. We
treat coupling between the low and high-energy subspactspatively by writing

the trilayer Greens function as

~1
N B Hii—€& Hp
G = (Hgiayer— €)' = (23)
Ha1  Hxp—¢
where the indices 1 and 2 denote the 2 low-energy block and the 4 4 high-
energy block respectively. We then solve the Schrodingeaton,(& )Illl,tqow =0,
by using the block matrix inversion rulg@d—1);; = (A1 — Ar2(Az) 1Az1) 1 to

obtain

((H11— &) — Hia(Ha2— &) " *Ha1) iow(a, 85 = O- (2.4)

Since we are interested in the low-energy part of the spectme can viewe as
small compared télo,. Expanding Eqg.Z.4) to first order ing, we find that(Hef —

) Yiow = 0, where
Hetr = (1+H12(H22) 2Ha1) " (H11— Hia(H22) "Ha1). (2.5)

The terms in the second parenthesis capture the leadingrigpppocesses be-
tween low energy sites, including virtual hopping via higmergy states, while
the first parenthesis captures an energy scale renormatizay a factor of or-

der 1— (Vop/y1)? due to higher-order processes which we drop except in thester

which arise from an external potential.
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Using Eq. .5 we find that for ABC trilayer graphene

I

ch+ HAs‘i‘ HAtr + HAgap"‘ I:Iév
m 0

3
(V(;Fz) (cog3¢p) ox + sin(3¢p) oy ) ,
1

ol
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(2.6)

Here we have chosen tép = py/px, definedug = (U1 — uz)/2 andug = (U +
uz)/2 — up, and neglected an overall energy scale associated withxteenal po-
tentials. gy is the identity matrix and thes;’s are Pauli matrices acting on the
low-energy pseudospin. We have retained leading termsawuitic, quadratic, and
constant dispersions, which are due respectively to thiee- two-step, and one-
step hopping processes between low energy sites. Foreritagphene, the linear
term is absent because the one step hoppwgig nhormal to the 2D space and
therefore independent of momentuly, is the only term which appears in the ef-
fective Hamiltonian in the simplified model with only nearesighbor inter-layer
tunneling. This term has pseudospin chirallty: 3 and dominates at larger values
of p. It reflects coupling between low energy sites via a sequehderee nearest

neighbor intralayer and interlayer hopping evenith is proportional tooy and,



because it is isotropic in 2D momentum space, is responfibkeigonal warping
of constant energy surfaces when combined withJtke3 chiral term. Notice that
the direct hoppings process opens a small gap at Ki@oints so that;, vanishes
at finite p if y» is positive. Hs arises from a weaker coupling between low ener-
gy and high energy states that is present in bilayers andnfpiNa> 1 multilayer
system. This term in the effective Hamiltonian preservgeiaversion symmetry.
I:|gap captures the external potential processes which break ilaye&rsion symme-
try and introduce a gap between electron and hole bands. dds#yility of opening

a gap with an external potential is unique to ABC stacked ilaykrs, increasing
the possibility that they could be useful materials for fetsemiconductor devices.
The strength of the gap term decreases with increasing momegsincevgp < y1)

so that the gap arourid has a Mexican hat shape, as we will discuss Iaﬂgris
non-zero when the potential of the middle layer deviatemftbe average of the
potentials on the outermost layers. Unllﬁgap, this term preserves the layer inver-
sion symmetry and is not responsible for an energy gap. Azmamnl-:lg is relevant
when the electric fields in the two inter-layer regions afeedent. Further discus-
sion on the derivation of this effective Hamiltonian and ba physical meaning of
the various terms can be found in the Appendix. Note thattfatsonsistency the
constant termé andy,/2 should be accompanied by the facter (vop)?/yZ based
on Eq. .5 which does appear iﬁgap However we ignore this factor becaude

andy,/2 are already small.

2.2.2 Diagrammatic derivation of the effective model

As a result of tight-binding model, each term of the effeetiamiltonian Eq.Z.6)

has a unique physical picture. Hereafter, we view the styostgcked paiB;A;_ 1

16



as a single dimer site and assume zero external potentradsriplicity. The gener-
al formula of effective low energy models EQ.%) can be understood as following.
The terms in the second parenthesis represent the leadopgigoprocesses, while
the terms in the first parenthesis are approximately(op/y1)? and give a small
correction. Hy1 is the unperturbed Hamiltonian of low energy sites and tinds i
cludes the direct hopping and on-site energy; andHi, are hoppings from and
to low energy sites, respectively, describing the couplangigh energy oned-,»
contains the hoppings between high energy sites and is amiatliate process.
ThereforeH;(H2) ~1H,; together gives the general “three”-step hoppings which
start from and end at low energy sites by way of high energy.oiote that the
intermediate process within high energy sites is zero foglsilayers, a constan-
t for bilayers, one-step for trilayers, and multi-step ko> 3 layers. In bilayers
for example, the linear trigonal warping term arises fridm, while the chiral ter-
m attributes taH1o(Hz2) "tHp1. BecauseHy, gives no hopping and is simphy,
H12(H22)*1H21 is reduced to two-step and hence the chiral term is quadrhtic
the trilayer case, for the matrix elemedtA;, Hy1 provides the first term OFly
shown in Fig.2.2(a) while H12(H22)*1H21 contributesH, and the second term of
Hy as depicted in Fig2.2(b)-2.2(d), respectivelyH1o(Hz2) ~tHy1 also gives rise to
the second term dfis for the matrix elemenf;A; as presented in Fi@.2e) and
2.2().

Generally, in order to derive the low energy effective moidela gener-
al ABC-stackedN-layer graphene, we first need to write d 2 2N Hamiltonian
matrix as Eqg. 2.2), then we specify all the leading hopping processes in the di
grammatic language like Fig.2, instead of inverting the large Hamiltonian matrix.
The hopping diagrams are convenient for systematic calongin a way similar

to the way Feynman diagrams help in perturbation theorié® élxact coefficient
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of one hopping process can be easily calculated usingZ%). gy picking up the
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Figure 2.2: Schematic of hoppings frofg to Bs; (a) one-stepA; — Bz and (b)
three-stepA; — B1A>» — BoAsz — B3 and (c) (d) two-step\; — B1A», — B3 and
A1 — B2As — Bs. Schematic of hoppings fromy, to A1; (e) two-stepA; — B1A» —
A; and (f) two-stepA; — AxB1 — Aq.
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starting and ending sites, setting matrix elements of atedlIsites as zero and turn-
ing off the unrelated hopping parameters. Frequently, appimg process can be
neglected because its requirement of more than one subrwppith comparably

small amplitudes.

2.2.3 Abinitio density-functional theory calculations

We have performedb initio DFT calculationsp3] for an isolated graphene trilayer
in the absence of a transverse external electric field wimdhdes an electric po-
tential difference between the layers. (DFT calculationghe presence of electric

fields will be discussed in the next section.) Our electratiacture calculation-

-5 Il Il I Il Il I Il Il =

r M K r

Figure 2.3: Band structure of ABC-stacked graphene triayethe absence of an
external electric field. The zero of energy in this plot iste Fermi energy of a
neutral trilayer. Notice the single low-energy band withremely flat dispersion
near theK point.
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s were performed with plane wave basis sets and ultrasofidpgetentials $4].
The local density approximation (LDA) was used for the exgeand correlation
potential. We have used the layer separation at the expetainealue 0.335 nm,
instead of allowing relaxation, because the layer separasi known to depend on
Van der Waals interactions that are not captured by the LD&n@te that the main
role of the Van der Waals interactions is to anchor the lag¢ra fixed distance
through its influence on the overall energy| 56]. Although DFT with local or
semi-local approximations does not reliably predict ilatger separations, the elec-
tronic structure at a given layer separation is not stromgflyienced by Van der
Waals forced5, 56]. We placed bulk trilayer graphene in a supercell with a 40 nm
vacuum region, large enough to avoid intercell interagigh21 x 21 x 1 k-point
mesh in the full supercell Brillouin zone (FBZ) was used wati#08 eV kinetic
energy cut-off. The calculations were tested for lakggoint meshes in the FBZ
and large energy cut-offs for convergence studies. E@shows the DFT energy
band structure of ABC stacked trilayer graphene in the alesehan external elec-
tric field. The low energy band dispersion is nearly cubichattwo inequivalent
cornerskK andK’ of the hexagonal Brillouin zone, as predicted by therbital
tight-binding and continuum model phenomenologies. Theloation and valence
bands meet at the Fermi level. Close enough to Fermi levdddhd is nearly flat,

which indicates the important role interactions might glathis material.

2.2.4 Extracting hopping parameters from DFT

Previously, bulk graphite (with the Bernal stacking ordevyYM hopping parame-
ters have been extensively studied using DFT and measueegariments. How-

ever, the values of the SWM parameters appropriate for ABCked trilayer graphene
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were previously unknown. We extract their values by fittihng effective model
with the DFT data in the zero electric field limit. The eigeargies of the Hamil-

tonian in Eg. 2.6) in the absence of external potentials are

EG) — het \/ hZ,+h? +2cog3¢p ) henher, (2.7)

wherehe, = (Vop)3/ V2, hy = Y2/2 — 2Vovap?/ya andhs = & — 2vgv4p?/y1. To ex-
tract the remote hopping parameters we first set the neaemgtbor in-plane hop-
ping parametey to 3.16€V to set the overall energy scale. The value® @ind,
up to a signy» can then be obtained by comparing the band energips=ad cal-
culated by the two different methods. Then compait) +E(~) from the DFT
data with Eq. 2.7), we obtain a value foysyo/y1. Finally we notice that Eq.27)
implies that the gap between conductien) (and valence {) bands vanishes at
cog3¢p) = 1if hy is negative and at c63¢,) = —1 if hy is positive. Because of
this property the Fermi level of a neutral balanced ABC yelais at the energy of
three distinct Dirac points which are removed from the Dpatt separated in di-
rection by 21/3. The triple Dirac point of the trilayer’s simplified modslsplitinto
three separate single Dirac points. The DFT theory resattttre conduction va-
lence gap vanishes along tKéM directions for which co8¢,) = 1 implies thaty

is negative and helps to fix the signyef Values forysyo/ y1 andyg/yZ are provided
by the value ofp at the Dirac points and the size of the splitting between ootidn
and valence bands(ﬁhthr h2) along the co8¢p) = 0 directions. The best over-
all fit we obtained to the bands around goint and the deformed Dirac cones is
summarized in Tabl2.1, where we compare with the corresponding fitting param-
eters for bulk graphitd, 52]. Our fit is extremely good in the low energy region in

which we are interested, as shown in F2g4, though there are still discrepancies
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Figure 2.4: The magenta curve is the DFT data while the Greenrepresents the
effective model using the extracted parameters shown iteah G = 41/(1/3a)
is the length of the reciprocal vectors akek 0 is the K point.

as higher energies are approached. These discrepanceeganted because of the
perturbative nature of the effective model and can be padiyected by restoring

the 1— (vop)?/y? correction factor in Eq.2.5).

2.2.5 Electron(hole) pockets and Lifshitz transitions

With the effective model hopping parameters extracted fl@RT we study the

shape of the Fermi surface of a graphene trilayer. Zigshows the constant en-
ergy contour plot of the electron band around zero energgar@), under remote
hopping the J=3 Dirac points evolve into three sepaiatel Dirac points symmet-
rically shifted away a little bit in thé&KM directions k); each shifted Dirac point

resembles a linear cone like the ones in monolayer grapfémeproperty that total
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Table 2.1: Summary of SWM hopping parameters obtained lydiFT bands in
ABC-stacked trilayer graphene to a low-energy effectivaleloWe compare with
bulk graphite values from Referencgsh2].

Parameters graphig() ABC trilayer (V)
o 0.008 —0.0014
Vi 0.39 0502
Vs 0.315 —0.377
Ya —0.044 —0.099
V% —0.020 —0.0171

chirality is conserved can be established by evaluatingyB#rases along circular
paths far from the Dirac points where the remote hoppinggsses do not play
an essential role. The Dirac point distortion occurs beedhs direct hoppings
process does not involve 2D translations and thereforesgiveomentum indepen-
dent contribution to the Hamiltonian which does not vanisktha Brillouin-zone
corners. A similar distortion of the simplified-model idezdirality Dirac point
occurs in any Brlayer system of ABC stackeadn(is a positive integer) graphene
sheets. Around each deformed Dirac cone there is a eledim@){like pocket in
the conduction(valence) band at low carrier densities amdLtifshitz transitions
as a function of carrier density. Take the conduction bamefample. As shown
in Fig. 2.5 immediately above zero energy, the constant energy fucaasists of
three separate Dirac pockets. At the first critical energyréeV, the three elec-
tron pockets combine and a central triangle-like hole pbakeears. (Energies are
measured from the Fermi energy of a neutral trilayer.) A4 imergy three band-

structure saddle points occur midway between the shifteddoints, and thus
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the density-of-states diverges. Fermi levels close toet@&slogarithmic van Hove
singularities could lead to broken symmetry states. At #word critical energy
7.2 meV, the central pocket and the three remote pockets metiga single pocket
with a smoothed triangle shape. F&J5is in excellent agreement with constant en-
ergy surfaces constructed directly from our DFT calculai¢Figure not shown).
The two similar Lifshitz transition energies in the valemaad occur at-7.9 meV

and—9.9 meV. The constant energy surface at the second Lifshitsitran solves

E®(p#£0)=E®(p=0), (2.8)

0.025

0.02

[ 10.015

0.01

r 10.005

Figure 2.5: Constant energy (in units of eV) contour plotshef conduction band
near zero energy for ABC-valued Fermi surfaces of a ABCyteitaG = 411/ (+/3a)

is the length of the reciprocal vector akd= 0 is a K point. The energies of the
initial three electron pockets from inner to outer are 0.6, 8.0, 6.0, and 6.7 meV,
The energies of the central triangles from outer to inner6a8e 6.9, 7.0, 7.1 and
7.2 meV; The energies of the bigger triangles from inner teoare 6.8, 6.9, 7.0,
7.1,7.2,7.5,9.0, 10.0, 15.0, 20.0, and 30.0 meV.

24



where+(—) refers to conduction and valence band cases. This critaradition
can be specified using the law of cosines as shown inZ&where for trilayers
@Berry = 3rmandhy = |y»/2| + 2vov4p?/y1. This momentum-dependent trigonomet-
ric condition can be easily generalized to the case of amgra@taphene multilayer

and to the case with an external potential difference. Alibeesecond Lifshitz

h(‘h

Figure 2.6: A momentum-dependent trigonometric relatigmsvhich describes
how the shape of the constant energy surfaces near thetkitedmsitions is collec-
tively governed by chiral dispersion, trigonal warpingdderry phases.

transition, the constant energy surface is triangular apshwith a trigonal distor-
tion that differs in orientation compared to the one obtdibg plugging the bulk
graphite values for the hopping parameters into the sareetefé model Eq.4.6)
as illustrated in Fig2.7. The ABC-stacked trilayer trigonal distortion has a difflet
orientation and is weaker. The difference mainly reflect#farénce in the sign of
y3, which favors anti-bonding orbitals at low energies. Thepirag of the constant
energy surface becomes hexagonal at®meV, which provides nearly parallel flat
pieces on the edges of the hexagon leading to strong ne&thig.might support
some competing ground states and a density-wave orderee phight then exist
at a small but finite interaction strength. The electronigperties of low-carrier

density systems in graphene trilayers will be sensitivéhesé detailed band fea-
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tures. Future ARPES experiments should be able to detemvtiether or not these

features are predicted correctly by our DFT calculations.
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Figure 2.7: Constant energy (in units of eV) contour plotshef conduction band
near zero energy for bulk graphite valued Fermi surfacesAB@ trilayer. G =
41t/ (\/3a) is the length of the reciprocal vector ake- 0 is a K point. The energies
of the initial three electron pockets from inner to outer h@ 5.0, 7.5, 10.0, 10.2,
10.4 and 10.6 meV; The energies of the central triangles iromar to outer are
10.0, 10.2, 10.4 and 10.6 meV, The energies of the biggergies from inner to
outer are 10.8, 15.0, 20.0, and 30.0 meV.

2.3 Induced band gaps in trilayers

2.3.1 Energy bands with electric fields

Fig. 2.8 shows the energy band structure of a ABC-stacked graphiayetr for

several external electric potential differences betwéenoutermost layers. In the
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Figure 2.8: The band structures of a ABC graphene trilayén @xternal electric
potential differences between the outermost layers. Thermal potential differ-
enceUgy; values are 0.0(red), 0.2(blue), 1.0(green) and 2.0(mayewt respec-
tively. G = 411/(+/3a) is the length of the reciprocal vectors ake 0 is a K point.

presence of an external field, as in the graphene bilayer, tase=nergy gap is
direct but, because the low-energy spectrum develdpexecan hat structure as the
electric potential difference increases, occurs away fitee or K’ point. Charge
transfer from the high-potential layer to the low-poterager partially screens the
external potential in both bilayer and multilayer caseg. Ei9(a) plots the screened
potentialU and Fig.2.9b) the energy gap, as a function of the external potential
Ue for bilayers and trilayers calculated using both DFT andftiileband self-
consistent Hartree approximation. The simple model Hart&culations agree
quite well with the DFT results generally. We find that theeseiing is stronger
in a trilayer system, and that the maximum energy gap is thjigimaller. In both
bilayer and trilayer, remote hopping suppresses the siteeanergy gap but make

little difference to the screening.
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2.3.2 Self-consistent Hartree calculation

As in the bilayer case, it is interesting to develop a thedrgap formation and

external potential screening for ABC trilayers by combgthe low-energy effec-
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Figure 2.9: Evolution of (a) the screened electric potéwtiference and (b) the
energy gap, with respect to the increase of the externatriglgmtential differ-
ence between the outermost layels. represents the DFT calculations while t
() denotes the full band self-consistent Hartree calculatigithout (with) remote

hoppingys.
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tive model with a Poisson equation which takes Hartree &otéyns into account.
This simplified approach provides a basis for discussingigEendence on layer
number for generdl. We therefore consider an isolated graphEA@ayer with an
interlayer separatiod = 0.335nm under an external electric fieidy; perpendic-
ular to the layers, neglecting the finite thickness and atlise inhomogeneity of
the graphene layers. In an isolated system charge can onigrisderred between
layers so thah = n; + np = 0. Definingdn = np, = —ny and using a Poisson equa-
tion, we find that the screened electric potential diffeedthdetween the outermost

layers is
U = Uext+4me?(N—1)d on. (2.9)

In the two-band effective modedn is accumulated through the layer pseudospin
polarization of the valence band states and is thus givemd&ydllowing integral
over momentum space:
on-y2 )] %2 k) (2.10)
Z BZ (27T)2 ! 2 ! ’ .

lev

where the factor 2 accounts for spin degeneragyk)) is a band eigenstate in
the presence dEqy;, band index runs over all the filled valence band states, and
0/2 denotes the layer-pseudospin. Any Hamiltonian of a twedb@odel can be
generally written a#d = ho(p) + h(p) - . Defining tarf, = ,/hZ +h2/hs and

tang, = hy/h; the conduction and valence band states in the sublatticesepta-

tion are
cos% —sin%
|+7p>: . B |_7p>_ 6. (211)
S|n7pe"f’p cos%’e"”ﬂ
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It follows that

Uz
on = 4/ =
/Zn/pc 8, pdpdo (2.12)
= — cos :
2m2R? Jo Jo P PEPEEe

wherepe = y1/Vo is the high momentum cutoff of the effective model ahgds the
angle ofp.
Let’s first discuss the simplified two-band model which haly dine chiral

term. For general

aN _ W 0 (m)"
ch (—Y1>N_l T[N 0

(Vop) N

(_yl>N_l(cos(N¢p) ox +Sin(Ngp) oy) . (2.13)

The electric potential in the two-band modeljié%Xt oz. Inserting Eqg. 2.13 in
Eqg. 2.9 and Eq. 2.12, we obtain an algebraic formula for the self-consistent

Hartree potential valid for generhl:

Uext U 4N-1)dm

= 4+ _2F(N), (2.14)
)21 Vi ao Me
1 [t dt
FIN,U) = —/
N =) A1
B 1 114N 2y,
= ARGy T

whereag = 0.053nm is the Bohr radiusy, is the effective mass of a graphene

bilayer,tc = (2y1/U)%N and,F; is Gauss’ hypergeometric function. In the limit of
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largeN, F(N,U) — 1 and thus the Hartree equation reduces to

4N—-1)d
U :uext—%%vl (2.15)

except at very small. For smallu andN = 2, the Hartree equation reads

Uext  2dmp 4 (2.16)

U am U

which is consistent with previous Hartree calculationsriapipene bilayer8]. In

the limit of smallU for N > 2, the Hartree equation has the asymptotic form

N
U Uext) 2
~ ~ (=) "¢, 2.17
2% <2V1 (2.17)
2(N-1)d my

where the facto€ = | (1— 52 + 52)] V2. The larger the value of

a M
N, the flatter the chiral bands, and the stronger the screeRordN = 2 the screen-
ing response is linear up to a logarithmic factor, while fargkerN, superlinear
screening leads to a screened potential difference whitaliyp grows slowly with
external potential followingJ [ Ué\'x{z. The strongest possible screening reduction
of the external potential corresponds to the Hartree-piatietiue to transfer of all
the states in the energy regire2y; over which the low energy model applies to
one layer.

For the trilayer case we can perform a similar calculatiangighe full low-
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energy Hamiltonian derived in EqR.©). In this case we find that

Uoa _ U _ 8dmpyy, (2.18)
)21 Yo ag Me

ha 4\/§hchhtr )
GU) — / dgap hch+f her)2+2ap

\/ hCh + \/éhtr> + hgap

wherehe, = t2, hy = |12 — 25t|, hgap= (1 1), t = (®)2, andK(x) is the

|2V1
complete elliptic integral of the first kind. Fig@.10compares the screening prop-
erties of the full low-energy effective model for trilaydosthe chiral model results
for N =2,3,4,5. ForUex < ¥1/2, the energy regime over which the low-energy
effective model applies, we see that screening increastsragtically withN be-
cause of smaller gaps between conduction and valence baidl®which make
the occupied valence band orbitals more polarizable. Thgpeoison between the
simplified chiral model and the low-energy effective moaeIN = 3 demonstrates
that remote hopping processes suppress screening bebtaystend to increase
the gap between conduction and valence bands at momenténadzillouin-zone
corner.

In concluding this section we caution that occupgedrbitals, neglected in
the low-energy effective model amad-band tight-binding models, will contribute
slightly to polarization by an external electric field anérdfore to screening. Fur-
thermore exchange potentials will also be altered by anmeakelectric field and in-
fluence the screening. Since exchange interactions aaetate, they always work
against screening and will make a negative contributiorméosicreening ratio we
have discussed in multilayers. Because the low energy stiges in multilayers are

coherent superpositions of states localized in differayis, our DFT calculations
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Figure 2.10:U v.s. Uey plot describes the screening effect in different chival-
systems. The Chiral model results refer to the Hamiltonmelag. .13 while the
full model results refer to the Hamiltonian in EQ.§).

which employ a local exchange approximation, might alsédyiileaccurate results
for the screening ratio. In fact simple measurements of tiheesiing properties
might provide a valuable window on many-body physics in AB@eked graphene

multilayers which lies outside the scope of commonly emetbgipproximations.

2.4 Discussion

We have derived an effective model for the low-energy cotidocand valence
bands of an ABC-stacked graphene multilayer. The low-gnengdel can be
viewed as a momentum-dependent pseudospin Hamiltonidh,the pseudospin
constructed from the low energy sites on the top and bottgersa The simplified
version of this model starts from mband tight-binding model with only nearest
neighbor hopping and yields a pseudospin magnetic field zhzagnitude varies

as momentunp" in an N-layer stack and whose directionNg}, whereg, is the

33



momentum orientation. The likely importance of electrd@eton interactions in
multilayers can be judged by comparing the characteristi@and interaction en-
ergies in a system with carrier densityand Fermi wavevectopg [0 \/n. The
characteristic Coulomb interaction energy per-particlali cases goes like?nt/2,
while the band energy goes lik&'/2. For low-carrier densities the band energy s-
cale is always smaller. In the case of trilayer ABC graphémejnteraction energy
scale is larger than the band energy scale for carrier gemsit10%cm—2.

Although interactions are clearly important and can paddigtintroduce
new physics, the chiral band model is not valid at low-déesibecause of the in-
fluence of remote hopping processes which we have estimattdsi article by
carefully fitting a low-energy effective model to DFT band$he Hamiltonian
in Eq. 2.6) combined with the parameters in Table | should be used torithes
graphene trilayers with low carrier densities. In a realisystem the Fermi surface
of a ABC trilayer with a low carrier density consists of thidectron pockets cen-
tered away from the K point. As the carrier density grows ¢ryasckets convert via
a sequence of two closely spaced Lifshitz transitions irgimgle K-centered pock-
et. The carrier density at the Lifshitz transitiornsl0lcm=2, which translates to
a Coulomb interaction scale ef 45 meV, compared to a Fermi energy~of7 meV.

The Berry phase associated with the momentum-dependertbe piseu-
dospin orientation fieldjt for a full rotation in single-layers andr2in the bi-
layer chiral model for example, is knowsy}-63] to have an important influence
on quantum corrections to transport. Because of their véfgrent Berry phases
time-reversed paths are expected to interfere destriycfmeN-odd systems while
constructively forN-even system, leading to weak anti-localization for ddend
weak localization for eveN. This general tendency will however be altered by

trigonal and other corrections to the low-energy effectiamiltonian, like those
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we have derived for trilayers. The influence of these bantufea on quantum
corrections to transport can be evaluated starting frometbiglts obtained here.

Another important consequence of Berry phases in the cimaalel is the
unconventional Landau level structure it yielisp, 29-31]. In the chiral model
for ABC trilayers there is a three-fold degeneracy at theaDipoint, in addition
to the usual spin and valley degeneracies. This groupingaoidau level leads
to the expectation that quantum Hall studies in trilayert i@veal plateaus that
jump from one at—6€?/h to one at &/h. Electron-electron interactions act-
ing alone are expected to lift these degeneracies and geetoi quantum Hall
ferromagnetisni2, 64, 65. These interaction effects will act in concert with s-
mall corrections to the Landau level structures due to thte hopping terms that
have been quantified in this chapter.

Although we have discussed the case of ABC stacked trilaye¥sexpect
gualitatively similar results for ABC stacking sequencégeneral thickneshl. At
low energies the band structure will consist of a conductiotha valence band with
pN dispersion and a gap in the presence of an external eleetdcatross the film.
In the presence of a magnetic fidld_andau levels are pinned to the neutral system
Fermi level for each spin and valley. At the lowest energigthin around 10meV
of the neutral system Fermi level, constant energy surfagése strongly influ-
enced by remote hopping processes which will also split thed)point Landau
levels. The remote hopping terms give rise to saddle-pamntse band structure
at which the density-of-states will diverge. Broken symmeiectronic states are
mostly likely to occur when the Fermi level is coincidenthvihese saddle points.
The energy range over which the low-energy effective moplies will, however,
decrease with film thickness. We expect both disorder amaadntion effects to be

strong within this family of low-dimensional electron sgsts, which should be ac-
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cessible to experimental study in samples for which disosl@eak on the energy
scale over which the low-energy effective model applies.

In summary, we have derived an effective model for trilayexdracted the
hopping parameters for ABC-stacked multilayers, from DRd@ studied the trilay-
er Fermi surfaces. Furthermore, we have explored the dogeeffect in trilayers
and then explained and compared with other C2DES cases dlytebinding mod-
el self-consistent Hartree method. Lastly, we have arghedmportance of Berry

phases and interactions in C2DES.
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Chapter 3

Electron-Electron Interactions In

Bilayer Graphene

In a mean-field-theory treatment the ground state of a graplidayer sponta-

neously breaks inversion symmetry for arbitrarily weakctfen-electron interac-
tions when trigonal warping terms in the band structure gn@iied. This chap-
ter first details a perturbative renormalization group @laton which assesses
the robustness of this instability, comparing with the elgselated case of the
charge-density-wave instability incorrectly predictgchibean-field theory in a one-
dimensional electron gas. Two dimensional bilayer graphgystems behave in
many ways as if they were one dimensional, although theaotems become
marginally relevant in the one loop level, unlike the casé.wttinger liquids. It

turns out that the mean-field instability is not suppressedumntum fluctuations
but that, because of trigonal warping, it may occur only ighhguality suspended
bilayers. We then explain the influences of spin and pseudodggrees of freedom,

trigonal warping and external interlayer potential diffiece on the RG flows of the
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interaction parameters. Based on a layer pseudospin gilskgpcalculation, we
further conclude that the ground states of bilayer graplaemkits thicker chiral
cousins spontaneously break their layer inversion synyneith a spontaneous
gap opening at Dirac points via the weak repulsive inteoacinstability. Lastly,
we details various broken symmetry states in bilayer graptend compare them
with the state observed in recent experiments. This arsllgads to the conclusion
that the gapd[0, 15, 46] observed]3, 17, 18] in the quasiparticle spectrum of bi-
layer graphene likely reflect the formation of spontaneawsngum Hall state§]

in which inversion symmetry is brokeh()] in opposite senses for different spins or

valleys.

3.1 Introduction

Electrons most often organize into Fermi-liquid states mok interactions play
an inessential role. A well known exception is the case ofdingnsional (1D)
electron systems (1DES). In 1D, the electron Fermi-surfamesists of points,
and divergences associated with low-energy particle-axtgations abound when
electron-electron interactions are described perturblgti In higher space dimen-
sions, the corresponding divergences occur only when Heres or surfaces sat-
isfy idealized nesting conditions. In this article we dissielectron-electron in-
teractions in 2D graphene bilayer systems which behave mymays as if they
were one-dimensional, because they have Fermi pointsahsteFermi lines and
because their particle-hole energies have a quadratiedigm which compensates
for the difference between 1D and 2D phase space.

Recent progress in isolation of nearly perfect single antlilayer graphene

sheets?, 3, 26, 27] has opened up a new topic in two-dimensional electron sys-
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tems (2DES) physics. There is to date little unambiguousexgental evidence
that electron-electron interactions play an essenti@ iokhe graphene family of
2DES'’s. However, as pointed out by Méhal.[15] graphene bilayers near neutral-
ity should be particularly susceptible to interaction eféebecause of their peculiar
massive-chira§] band Hamiltonian, which has an energy-splitting betwesence

and conduction bands that vanisheg at 0 and grows quadratically with= |q/:

My = — Z ﬁc:;o, [cogIgy) T +Sin(dgy) T, | Cqo- (3.1)
qo7o
In Eq. 3.1) the T's are Pauli matrices and the Greek labels refer to the twg-bila
er graphene sublattice sites, one in each layer, which ddvane a neighbor in
the opposite graphene layer. (See Bd.) The other two sublattice site energies
are repelled from the Fermi level by interlayer hopping anelévant at low ener-
gies. Itis frequently useful to view quantum two-level lagegree of freedom as a
pseudospin. Thd = 2 pseudospin chirality of bilayer graphene contrasts with t
J =1 chirality[26, 28] of single-layer graphene and is a consequence of the two-
step process in which electrons hop between low-energy gi¢ethe high-energy
sites. The massive-chiral band-structure model appliesatgies smaller than the
interlayer hopping scal8] y; ~ 0.3 eV but larger than the trigonal-warping sc&le[
¥5(y1/¥6)? ~ 0.003 eV below which direct hopping between low-energy sitagp
an essential role. The body of this section concerns theofalgeractions in the
massive-chiral model; we return at the end to explain theoimant role played by

trigonal warping.
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(a)

(b) (c)

Figure 3.1:a, The massive chiral fermion model describes the low-eneitgg s

a AB-stacked graphene bilayer, those atom sites (top Bgées and bottom layer
A’ sites) which do not have a neighbor in the opposite ldygFhe conduction and
valence bands of a graphene bilayer touch at the Brilloomezorner wavevectors,
taken as zero-momentum in continuum model theories, amatagpquadratically
with increasing wavevector, In a 1DES left and right going electrons cross the
Fermi energy at a single point; The momentum of right-golafi-going) electrons

is plotted relative t@r (—gr) wheregg is the Fermi wavevector.

3.2 Similarities and differences between 1DES and
bilayer graphene

Similarities and differences between graphene bilayedsI&ES are most easily
explained by temporarily neglecting the spin, and in theeazgyraphene also the
additional valley degree of freedom. As illustrated in R3gl in both cases the

Fermi sea is point-like and there is a gap between occupig@apty free-particle
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states which grows with wavevector, linearly in the 1DESecaShese circum-
stances are known to support a mean-field broken symmetgyistavhich phase
coherence is established between conduction and valenceskates for arbitrari-
ly weak repulsive interactions. In the case of a 1DES, th&dmwsymmetry state
corresponds physically to a charge density-wave (CDWegstaliile in the case of
bilayer graphend[5] it corresponds to state in which charge is spontaneoueshgstr
ferred between layers. This mean-field theory predictidiansously incorrect in
the 1DES case, and the origin of the failure can be elegadeiytifiedp6, 67] using

a perturbative renormalization group (PRG) approach. Véevdielow that when
applied to bilayer graphene, the same considerations ¢eadlifferent conclusion.

The reliability of the mean-field theory predictidi of a weak-interaction
instability in bilayer graphene can be systematically sssé using PR®[/]. We
outline the main steps in the application of PRG to bilay@ptene, pointing out
essential differences compared to the 1DES case. We as$umeange interac-
tions' between electrons in the san® énd different D) layers.

The PRG analysis centers on the four point scattering fonalefined in
terms of Feynman diagrams in F§2 Since the Pauli exclusion principle implies
that (in the spinless valleyless case) no pair of electranssbare the same 2D po-
sition unless they are in opposite layers, intralayer aggons cannot influence the
particles; there is therefore only one type of interactienayated by the RG flow,
interactions between electrons in opposite layers withrémermalized coupling
parametef p. The direct and exchange first order processes inFRhave the
valuesVp (bare coupling parameter) and 0 respectively.

The PRG analysis determines h&y is renormalized in a RG procedure

IWe replace the bare Coulomb interactions by short-range entum-independent
interactionsp7] by evaluating them at typical momentum transfers at theeti@tigh-energy limit.
We believe that this approximation is not serious becausereening.
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B

Figure 3.2:a, The renormalized interactidip. b, ¢, The direct and exchange bare
interactions.d, e, f, They are the one-loop diagrams labelled ZS, ZS’ and BCS,
respectively. The external and internal Green’s functaiels refer to layer in the
case of graphene and to chirality in 1DES’ case.

in which high energy degrees of freedom are integrated aditfae fermion fields
of the low energy degrees of freedom are rescaled to leavieggarticle action
invariant. The effective interactidinp is altered by coupling between low and high
energy degrees of freedom. At one loop level this interacisodescribedj7] by
the three higher order diagrams labeled ZS, ZS’, and BCSgn¥2 The inter-
nal loops in these diagrams are summed over the high-enabgysl In the case
of 1DES the ZS loop vanishes and the ZS’ and BCS diagrams lgangaying
that the interaction strengths do not flow to large valuestaatineither the CD-
W repulsive interaction nor the BCS attractive interaciimstabilities predicted by
mean-field theory survive the quantum fluctuations theyeawtglThe key message
of this section is summarized by two observations about topearties of these
one-loop diagrams in the bilayer graphene case: (i) thecpagarticle (BCS) and
particle-hole (ZS, ZS’) loops have the same logarithmiedjences as in the 1DES
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case in spite of the larger space dimension and (ii) the Zf, iathich vanishes in
the 1DES case, is finite in the bilayer graphene case and tl&I8ap vanishes
instead. Both of these changes are due to a layer pseudogbet tontribution

to the single-particle Green’s function as we explain inrtle&t subsections. The
net result is that interactions flow to strong coupling evesrenstrongly than in
the mean-field approximation. The following paragraphsioetkey steps in the

calculations which support these conclusions.

3.3 Perturbative renormalization group analysis in

bilayer graphene

3.3.1 Green’s functions and frequency sums

Starting from the low-energy massive chiral band HamikoBil, an elementary
calculation shows that the single-particle Matsubara Gsefeinction correspond-

ing to the Hamiltonian in Eq.3.1) is

. gs(% Ia)ﬂ) _gt(q7im1)e_iJ¢q
9(q,iah) = . (3.2)
wherehw, = &, = hg?/2m* and
. 1 1 1
duiaion =3 (o Fara ) 33)

The pseudospin-singlet component of the Green'’s funéfipwhich is diagonal in
layer index, changes sign under frequency inversion wisdfesatriplet component

%, which is off-diagonal, is invariant.
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The loop diagrams are evaluated by summing the product ofGvezn’s
functions (corresponding to the two arms of the Feynmanrdradoops) over mo-
mentum and frequency. The frequency sums are standard eldd§i= (ks T)?)

1 o _tanhBE,/2) 1
BR %gs,t('%) =+ 4z, -:6:':4Eq
1

Bi7 ;%(M)%(M);go (3.4)

whereq is the momentum label shared by the Green’s functions. Nwiethe
singlet-triplet product sum vanishes in the low-tempegtimit in which we are
interested. Each loop diagram is multiplied by appropriateraction constants
(discussed below) and then integrated over high energy mamelabels up to the

massive chiral fermion model’s ultraviolet cutdff

[ o e
N/s<q<A (21T)? 44 T—0 2

Vo In(s) (3.5)

wherevg = m*/2nﬁ2 is the graphene bilayer density-of-states. Becauygél o,
this integral grows logarithmically when the high-energy-off is scaled down by
a factor ofsin the RG transformation, exactly like the familiar 1DES &€ad his
rather surprising property of bilayer graphene is diregtlgted to its unusual band
structure with Fermi points rather than Fermi lines and gai@drather than linear
dispersion.

The key differences between bilayer graphene and the 1DR&aaupon
identifying the coupling factors which are attached to thegpl diagrams. The exter-
nal legs in the scattering function Feynman diagrams &®).are labeled by layer
index (T = top layer andB = bottom layer) in bilayer graphene. The corresponding

labels for the 1DES are chiralitiR(= right-going and. = left going); we call these
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interaction labels when we refer to the two cases geneyic8lhce only opposite
layer interactions are relevant, all scattering functibage two incoming particles

with opposite layer labels and two outgoing particles wipipasite layer labels.

3.3.2 PRG analysis for a singlepin-valley

’
7

(a) (b)

Figure 3.3:(a) ZS, (b) ZS’ loop corrections in the one-loop PRG calculation.

The character of the marginally relevant interactions layar graphene is
most easily explained by PRG analysis for a single spireyails we will see in this
subsection. As shown in Fi§.3(a), at the upper vertex of ZS diagram the incoming
and the outgoindl particles induce &8 particle-hole pair in the loop while the
incoming and outgoin® particles at the lower vertex inducd garticle-hole pair.
The corresponding labels in the 1DES caselaiR for left and right chirality. The
ZS contribution is absent in the 1DES c&®[67] because propagation is always
diagonal in interaction labels. However, this correctiarvsses for GBS because

the single-particle Green’s function has a triplet conitidn [see Eq.3.4)] which
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is off-diagonal in layer index. Here we find

r2
ZS _ 'D

d2
F%/ (27;12 tanr(4/zq/2) - % rpvoln(s). (3:6)

wherevg = m*/2nﬁ2 is the graphene bilayer density-of-states (per spin arldyal
and the integral is carried out in the momentum shel < q < A.

The ZS’loop shown in Fig3.3(b) corresponds to repeated interaction be-
tween aT particle and & hole. This is the channel responsible for the 1DES
mean-field CDW instability§7] in which coherence is established betwéeand
L particlespg]. In both 1DES and GBS cases it has the effect of enhancing-rep
sive interactions. Its evaluations for the two cases cpoed quite closely, because
this loop diagram involves only particle-propagation tisadiagonal in interaction

labels, namely, singlet contribution. We find

: M2
r%s — _—Bhgz 27_[22 (gq,ian)
d?q t 2 1
r%/(zzg2 a”“égj‘?/ )zér% voln(s). (3.7)

The BCS channel corresponds to repeated interaction bettheetwo in-
coming particles. In the 1DES case the contribution frors thop (see Fig3.4)

cancels the ZS’ contributiof[], leading to marginal interactions and Luttinger lig-

46



Figure 3.4: BCS(particle-particle) loop correction fonglet propagation in the
one-loop PRG calculation.

uid behavior. This same kind of BCS correction for grapheteybr reads

BCS _
I_D -_—

rg rd? . i
g0 G o i
Ch

o2 2
2 g | e Ml
Ch

_ %r% voln(s). (3.8)

Figure 3.5: BCS(particle-particle) loop correction foptet propagation in the one-

loop PRG calculation.
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In the graphene bilayer case, however, there is an additcamribution
(see Fig3.5) to the BCS loop contribution in which the incomifigandB particles
both change layer labels before the second interactiors. cdmtribution is possible
because of the triplet layer pseudospin propagation arayhnof Eq. 3.4), gives

a BCS contribution of opposite sign to the normal contrituiti

scs, _ 1lp(-Tp) [ d’q i i
3] e
1(-Tp)lp [ d?q : -
2w /(271)2%%(q’Iwﬂ)gt(_q’_lwn>
— %FzDvoln(s). (3.9)

It follows that the BCS loop contribution is absent in thegirane bilayer

case because
rBeS=rg"® +rg** =o. (3.10)
Therefore, at one-loop level, the renormalization of ilatger interaction is

rgne—loop — 1284128 4 rBCS_ 2 yoin(s). (3.11)

These results and comparison with 1DES are summarized il Baband imply

the following RG flow equation for GBS:

er o 2
Todin(s r3. (3.12)

Combined with the bare interlayer interactigs and integrating the flow equation
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we obtain that
Vb

M=
° 1—-Vpwln(s)

(3.13)

which diverges ifVp vo > 1/In(s). This equation serves as an instability criterion

similar with Stoner criterion in ferromagnetism.

Table 3.1: Summary of contrasting the contributions (irisiof the related density-
of-states) of the three one-loop diagrams in 1DES and grepbigayer cases

diagrams 1DEG Graphene Bilayer
ZS 0 32 In(s)
ZS u? In(s) 3r3In(s)
BCS —u?In(s) 0
Mean Field u? In(s) 312 In(s)
Quantum Fluctuations  —u? In(s) 33 1In(s)
Full One-Loop 0 2 In(s)

For the Feynman diagrams drawing conventions we have chtdsemter-
action correction to the layer pseudospin response fumgtig which diverges at
the pseudospin ferromagnet phase boundary, is obtainetbbiyng the scattering
function with at, vertex at top and bottom. The operator measures the charge
difference betweem andB layers. Because it is an effective single-particle theory,
fermion mean-field theoryf] corresponds to response function diagrams with at
most a single particle-hole pair. It follows that mean-figldory is equivalent to a
single-loop PRG calculation in which the BCS and ZS’ chasjtehmely, the quan-
tum fluctuations are neglected and only the ZS channel isnegta In mean-field

theory[L5] the ideal graphene bilayer has an instability to a statehitkvcharge is
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spontaneously transferred between the layers which isibeghby the divergence
of xzz. The PRG analysis demonstrates that the mean-field thestagbitity is
enhanced by reinforcing ZS’ channel contribution.

Therefore, the net result is that interactions flow to strongpling even
more strongly than in the mean-field approximation. Takingdgnce from the
mean-field theory]5], the strong coupling state at each spin-valley is likel\sayp
dospin ferromagnet which has an energy gap and spontanbargedransfer be-
tween layers, spontaneously breaking the inversion symymehe following sub-
sections outline how spin and valley degrees of freedomentte the RG flows
and which pseudospin channel has the most divergent sistigptvhich support

these conclusions.

3.3.3 Spins pseudospins and distinct interaction paramets

In the low-energy continuum model of bilayer graphene etexs carry spin, and
both layer and valley pseudospin labels. In a scatteringteketh the two incoming
and two outgoing particles can therefore have one of eidiglsaand the general
scattering function therefore ha$ Bossible low-energy long-wavelength values.
The number of distinct coupling constants in the RG flow eiguatis much smaller,
however, because many values are zero and others are redagaath other by
symmetry. One simplification is that interactions consespi@, and both layer and
valley pseudospin, at each vertex. Interactions are hawde@endent on whether
the interacting particles are in the san® qr in different O) layers. The internal
loops in the perturbative RG calculation contain two fenrmpyopagator (Green’s
function) lines. These propagators conserve both spin alhepvpseudospin, but as

we have seen above, not the layer pseudospin. It is cleathihethe incoming and
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outgoing total spin must be preserved for real spin and fvétiey pseudospin, but
the layer pseudospin case requires a more elaborate caatgide From Eq. 3.2)

we see that a phase fac®r?% is gained when the propagator transfers electrons
between layer index with the for top to bottom evolution and the for bottom

to top. Unless these transfers enter an equal number of thmezsch direction, the
integrand in a Feynman diagram will contain a net phase faetated to chirality
and vanish under momentum integration. The total layer gisgin is therefore

also conserved in collisions.

Figure 3.6: Electron-electron scattering processes forystesn with one
pseudospin-12 degree of freedom.

In identifying distinct coupling constants, we start witietsimplest case
in which the valley and spin labels are absent. There arettitee possibilities,
as illustrated in Fig3.6. When the two incoming pseudospins are paraligj (
in Fig. 3.6), the outgoing pseudospins must also be parallel. Becaubermi
statistics interchanging the outgoing linedigchanges the diagrams’s sign. Since
the diagram is invariant under this operation, it must Vanihe second possibility
IS opposite incoming pseudospins, which requires oppasitgoing pseudospins
in one of the two configurations labelled by, andl'x in Fig. 3.6. In this case

Fermi statistics implies thditp = —I'x. It follows that the only distinct interaction
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L= L= T L=

Figure 3.7: Distinct interaction channels for systems with pseudospin-12 de-
grees of freedom. In this figure the first spin is denoted byor | |) while the
second by —) or | +-). The one-dimensional electron gas system can be viewed
as being in this class if the chirality index is regarded aseudospin.

parameter i$ p.

If more than one pseudospin is present, we have to recognize sepa-
rate interacting processes. For example, for systems wihiglevant pseudospins,
the interaction parameters can be labeled in the same way fig).i3.6 but by
doublets which account for the different pseudospins stelgr For instance, two
pseudospin interactions might inclul@ep, Nps, Npp andlMxp (see Fig.3.7). A-
gainl ssis absent due to Pauli exclusion principle. If the labelsesent layer and
spin respectively, interpreting their physical meanifgp)p(s) denotes the inter-
action between the particles within the same (differentgiés) carrying different
(same) spin flavor(s) respectivelyyp corresponds to the layer-flipping interacting

process between particles having different spin flavorsnddels for which prop-
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agators and interactions preserve all pseudospin labelsyould havel xp = 0
since all pseudospin flavors are preserved along each fernie. For graphene
bilayers, however, we must ke€gp # 0 because the layer pseudospin has triplet
propagation. Following this line of argument, considefauli exclusion principle
and the fermionic antisymmetry between outgoing partjohes conclude that in
graphene bilayers, with its three different pseudospimsiet are ten distinct non-
zero interaction parameter§ssp, Nsps spp, 'bss MNosos [ops, Moops ['xsp,
I'xps andl xpp, where the first label refers to layer pseudospin, and thewaig

labels to real spin and valley.

3.3.4 RG flow equations for distinct interaction parameters

The one-loop flow equations are derived in the same way aseirsginless val-
leyless case, except for the necessity of keeping trackeohtany-possible con-
figurations of the end labels on the loop propagators. We sanamthe RG flow

equations in Eq3.14.

dlssp 1

— >0 — T4y Tpss(Tpsp—T
vodin(s) 5T Ssp pss(Tbsp—ssp)

1
—(M'ops—Tsps)(Mopp — Mspp) + é(rXSD —Tssp)?
dlsps 1

oY __r2 r r or
vodIn(s) 2" SDS pss('ops —Isps)
1
—(F'osp—ssp)(Moop — Mspp) + é(rxos —Tsp9)®
dl'spp 1,
———— = —Sl5pp—Ipss(loop—T
vodin(s) 51 Spp—Tpss(Fopp — 'spp)

1
—(F'psp—Issp)(Fpbps—Msps) + é(rXDD —Tspp)?
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dlMpss

vodIn(s)

dlMpsp

vodIn(s)

dlMpps

vodIn(s)

dlMpopp

vodIn(s)

dlMxsp

VodIn(s)

dlMxps

vodIn(s)

dlMxpp

vodIn(s)

1 1
M3sst E(FDSD— Mssp)? + E(FDDS —Tsps)?
1 1 1 1
JFE(FDDD —Tspp)® + §r>2<SD+ ér)z(DS+ §r>2<DD
1

> M3sp+ Moss(Mbsp — Mssp)

1
+("'opb —M'spp) (Mbps— 'sps) — E(FDSDJr Mxsp)?
1

> M3ps+ Moss(Mobs — M'sps)

+("'opob —M'spp) (Mbsp—'ssp) — E(rDDS‘f‘ Mxps)?

EFZDDD +Ipss(MToop — 'spp)

1
+(Mops—Tsps)(Mbsp—MNssp) — é(rDDD +xpp)?

Nbsd xsp — Mxpsl xpp

1 1
—é(rxso —Tssp)?— é(rxsoJr Mbsp)?

Nbsd xps — I'xspl xpp

1 1
_E(FXDS —Tsps)?— é(rxos +bps)?
Nbsd xpp — I'xspl xps

1

1
_E(FXDD —Tspp)?— é(rXDD +bop)?. (3.14)

The only fixed point that we have identified is the non-intérerone. These

ten coupled flow equations can be integrated numericalitirsgefrom bare interac-

tions. In order to represent the property that same layerantions will be slightly

stronger than different layer interactions we set the balges of the scattering am-

plitudes to 11, 0.9 and 0 forvgVs (representsVssp, Vsps, Vspp) , Vo Vb (represents

Vbss Vbsp: Vbps, Vbpp) and voVx (representsVxsp, Vxps, Vxbp), respectively.
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(The motivation for this choice is explained in the next s@t) We find that the
interaction parameters flow away from the non-interactirgdipoint and diverge
at afinite value of as illustrated in Fig3.8 The instability criterion implied by this
one-loop PRG calculation Mp vo ~ 0.6/In(s). The instability tendency is there-
fore enhanced by the spin and valley degrees of freedom #ireceriterion was

Vb Vo =~ 1/In(s) for the spinless and valleyless case.

1.5 J r
1 .
osfp N
-« ™\ T---.
IA . -
5 0 0N_ -
w
—~ —_
° FSSD’ FSDS’ rSDD
o5k —Tbss
_FDSD’ FDDS’ FDDD
-1F _FXSD’ FXDS’ FXDD J
---rD
15 . / . reference line
0 0.2 0.4 0.6 0.8 1

In(s)/seff

Figure 3.8: This illustration plots the inverse interantigtrength(vol get) ~* ver-
sus the scaling parameter(§)/cer. eff iS the effective dielectric constant of
the graphene bilayer arfd= I'yacuun/ Eeff- INterlayer interaction parametergss
(green) and xsp, I'xps, 'xpp (cyan) flow to large values most quickly. According
to this estimate the normal state becomes unstableyds > 0.6/In(s).

When spin and valley is included, the tendency of the inBtalg actually
enhanced, based on the above analysis. However, we shoultdfal to express
the final ground state. In this full mode, there are four sgpeof electrons, one for
each valley and each spin, and each of them undergoes th&aspoas inversion

symmetry breaking. The most stable final state is that twaispdransfer to one

55



layer and the other two species transfer to the other lajtegugh it is possible to
have other possible states, all the four species transtargdayer, or three species
and the fourth one transfer to different layers respectivithe formation of a layer
pseudospin ferromagnetic phase has an electrostaticyeo@syy This broken sym-
metry phase, like the formation of exciton condensates rmaobbilayer systems,
is driven by interlayer exchange energy. A consideratiotheffull exchange in-
teraction shows that it can overcome the electrostaticribution. Therefore, the

broken symmetry phase is stable and favored.

3.3.5 Influence of trigonal warping and external potential

The conclusions which can be drawn from the PRG calculatiesgnted here are
sensitive to the upper and lower momentum and energy cutefigch limit the
applicability of the massive chiral fermion model for biaygraphene, and to the
strength of bare electron-electron scattering amplitudgslow we estimate the
range ofs over which the RG flows discussed above apply, and the strarighe
bare interactioVp. We caution that, given the nature of the PRG calculatidres, t
estimates presented below should be regarded as quaitativ

In practice the upper cutoff is the interlayer hopping egefgy = y1 ~
0.4 eV; at higher energies it is essential to account for twdadtibe sites in each
layer. We have in addition ignored the trigonal-warpingt pathe full Hamiltoni-
an, due to a direct hopping process between the low-endrg/8hich has energy
scaleB, 26] y5 ~ 0.3 eV. Inserting the expression for the effective mass of the-m
sive chiral Fermion model we find that the model we have studieappropriate
for

A2 2 B R2q

2\ 2
V3 VE
LAY = < .
a2 < 20 - TRE < (3.15)
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whereve ~ 108 cm/s is the Fermi velocity near the Dirac point in the singleciay
graphene continuum model, aggl~ 3 eV is the intralayer near neighbor hopping
energy. It follows that the high energy momentum cutpff= y1 /hve and that the
low energy momentum cutoff. = (ysy1/w)/hve, which gives the maximum value
of the scaling parameter(s). Using accepted values for the hopping paramelers|
26, it follows that the scaling relations we derive should lg@pproximately over
a wavevector range corresponding t@s)ax = In(qn/aL) ~ In(y/ys) ~ 2.3.

If a small external potential differencd)2 whereU = ny, andn <« 1, is
applied between the layers, it adds a single-particle t&mf{4, 6, 33] to the single-
particle Hamiltonian, and hence breaks inversion symm@then the low energy

limitis
_ Y32
EL= maX{nvl,(%> Vl} : (3.16)

It's easily to find that). = (ys/y)? ~ 0.01 is the critical value above which the low
energy limit is determined by the external potential degfeze between the layers
rather than the intrinsic trigonal warping.

We estimate the strength of the bare interactions by evafytite 2D Coulom-
b scattering potential at the cutoff waveveagpr
m' 2me®  Oee

i 3.17
2nh? Oy 2 (317

VoVs ~

wheredee = € /hvg ~ 2.2 is graphene’s fine structure constant. Based on the insta-
bility criterion, larger interactions are more likely todatk symmetry. Evaluating
the interaction strength at high cutoff gives the minimdbea We argue that the

instability occurs even at minimal interactions. The mlitvalues used in the RG
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flows is motivated by this estimate. The value usedstis reduced by a factor
of exp(—qnd) compared td/s to account for the layer separatidn= 3.35A. Tak-
ing into account both the direct and exchange contributiaeseasily get the bare
values of the scattering amplitudes we use in the last sectio

If no external potential difference is applied between #yefs, according to
these estimates the bare valuegfp exceeds the stability limit of 0.6/ In(S)max~
0.25 by approximately a factor of four. The above estimated@aréhe case of a
graphene bilayer in vacuum. For graphene layers on thecgudaa substrate
with dielectric constang, interactions are expected to be reduced by a factor of
~ (e+1)/2. In the case of Si@substrateg ~ 4 and the interaction strength ex-
ceeds the stability limit by a much narrower margin.

Applying potential difference between the layers does gsea small ener-
gy gap. There is another critical valuemj ~ 1/3, namely, ItiS)max= —(InnNw) /2
and it satisfyvoVp = 0.6/In(S)max. Above this value, the momentum shell valid
for the chiral model is too narrow to support the occur of $gppaous symmetry
breaking. Therefore the small energy gap around the Diraatpare governed
dominantly by this large potential difference. Both eleatelectron interactions
and the potential difference between the layers have thenpat to open a ener-
gy gap around the Dirac points in suspended GB, howeveratigei the potential
difference, the less possibility of the occur of the spoatars layer inversion sym-
metry breaking. We summarize in the Tald& how interactions and potential
differences play their roles in the model we use and detexminether breaking
inversion symmetry occurs in suspended GBS.

The strength of the instabilities, at least for high quaingpended graphene
bilayers and small external potential differences betwtbenlayers, are large e-

nough to lead some consequences which can be observed imespts, although
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Table 3.2: Summary of whether the electron-electron icteyas drive a suspend-
ed graphene bilayer, with different values of the poterditierence between the
layers, to a spontaneous layer inversion symmetry breadtatg and hence open a

gap

n Chiral Model | E_/y1 | Instability | Dominant
0<n<n Valid (3/y0)? Yes b
nL<n<ny Valid n Yes A5
nm<n<l1 Valid n No Urt?
n>1 Beyond Chiral \ No Urt?

trigonal warping effect does give rise some inhomogersedied anisotropy, and
the external potential difference breaks inversion symynand transfers charge

between layers.

3.4 Spontaneous layer inversion symmetry breaking

3.4.1 Susceptibilities and which symmetry is broken

There must be a spontaneous broken symmetry in bilayer gnapsince the in-
teraction coupling constants blow up in the RG flows. To shduwciv symme-
try is broken, we need to investigate the pseudospin subdéjgs, namely, the

pseudospin-pseudospin response functions defined awiiodjo

. B
Xte(qiw) = /0 dre“ (T;Sr(q, T)Ss(~q.0)) , (3.18)

Su(@.1) = Y b, g0 k), (3.19)
k
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whereS, is the spin-density operator far = X,y,z component. The odering ten-
dencies are determined by the logarithmical divergenci¢se normal state pseu-
dospin susceptibilities(S;(r)) is the order parameter of a gapped phase with in-
version symmetry breaking and pseudospin ferromagnetetpepdicular to the
graphene layers for a single spin-valley. We will show thisige has fine classi-
fications and each class exhibits different nontrivial gpoaous Hall conductivi-
ty. (S(r)) or <S),(fr)> describe a gapless phase with in-plane rotational symmetry
breaking. This nematic phase breaks the lattice point geympmetry by split-
ting the original vorticityN = 2 (Berry phase &) Dirac point (or say the valley
cone including the center Berry phageDirac point and three Berry phasern
Dirac points symmetrically surrounded the center one whganal warping effect

is considered) into two vorticitiN = 1 Dirac points along the easy axes. But we
will demonstrate that this gapless nematic phase is notllgsigal case in bilay-

er graphene because the dominance of broken inversion syyrberefore it is

of utmost importance to compare the divergencieggfand xxx (or xyy). The
calculations of these pseudospin-pseudospin responsgdug can be systemati-
cally done with the Feynman diagrams specified in Bi§. Fig. 3.9(a) denotes the
non-interacting pseudospin susceptibib'(lgf3 and Fig.3.9(b) shows the interaction
mediated pseudospin susceptibilitls. In the long wavelength and static limit, the

susceptibilities explicitly read

d2q . .
o [ dq (M) (B)
X8 = /(ZIT)Z(BHZ) ;a%%a;sg%‘”(qa|w)GaTBTgﬁTﬁB(q’Iw)GBBUB’

d2q102q, : T :
X'II'B = —/lez@ Hzﬁ%rlm(‘h,IM)UéT)ﬁTgﬁTﬁl(qul)
alla

) B )
X e (02,102) O Do, (a2, 100) (3.20)
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Figure 3.9: Feynman diagrams for the pseudospin suscipsi(a) X‘?B the non-
interacting susceptibility anb) X'II'B the interacting correction to the susceptibility.

In bilayer graphene systems, near charge neutrality, tyer lpseudospin

susceptibilities are simplified as following

XD = 2% =2x,
X = axl =axy, (3.21)

which indicates that the divergence g, channel would be dominant. Note that
the transverse channelg. and xyy, are relatively suppressed by the large pseu-
dospin chirality. In result, the ground state of bilayergirane is a gapped phase
with spontaneously breaking layer inversion symmetry rhespin-valley. We will
discuss in the next chapter that this insulating state ipaltgically nontrivial state

with spontaneous quantum Hall effe@slL3, 17] at zero external fields.
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3.4.2 Mean-field pseudospin orientation

When interactions are neglected, a neutral chiral grapiseangapless semiconduc-
tor. The ground state has a full valence band of pseudospalmned at eacly

to the pseudospin field directiqeogNg; ), sin(N¢,),0), forming the momentum-
space vortex. Note that the chirality of the vortices areasjite at valleyK andK’
and we focus on a single spin-valley. The vortex exacts & langgraction energy
penalty because of its rapid pseudospin-orientation tranaWe proposé], 10, 15|
that, like its real-space counterpart, the momentum-spaxtex sidesteps this en-
ergy cost by forming a vortex core in which the pseudospierddtion is out of
plane in either the or —Z direction. Since we have known from the PRG and
susceptibility analysis that the mean fields generated tgrantions are propor-
tional to gz, mean-field calculations would be sufficient to provide eotipictures.
We summarize the results in F&y10using weak electron-electron interactions in
chirally-stackedN-layer graphene withl = 1,2, 3 and 4, respectively.

Clearly, a vortex core only forms in chiral graphene withrdagumbeiN > 2
where the weak repulsive interaction instability occurslarge neutrality point.
Furthermore, the instability is stronger for a largéisystem, which results from
the fact that the interactions are marginally relevant atlmop level in bilayer and
relevant even at tree-level M > 2 layers. However, as the number of layers grows,
the interlayer bare interactions start to be suppressed@eéned, and the remote
hopping processes become more and more important and #hakital description
starts to break down. Therefore, we only expect the brokemnsstry states in
chiral few-layers withN < 5. Recently, the gapped broken symmetry ground states

have been observed in high quality graphene bilay8r4[7, 18] and trilayersf8].
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In the Hartree Fock mean-field calculations, we use long-

Figure 3.10: The pseudospin orientation of chirally stacgeaphene few-layers
is stronger for largeN.

with @) N =1, (b) N = 2, () N = 3 and(d) N

length of an arrow denotes the pseudospin in
the background intensity represents the amplitude of éplame pseudspin. The

range we plot here is from the Dirac point (the originpte: y1/(hvg).

broken symmetry foN
range Coulomb interactions and choose a dielectric constarn2.2. The broken

symmetries would be even stronger in the suspended case.

for N > 2 in the nonzero intensit



3.5 Bilayer graphene Dirac-point gaps and symmetry-

breaking states

3.5.1 Introduction

This section details the analysis which leads to the comuthat the gapsio,
15, 46] observed in the quasiparticle spectrum of bilayer graphikely reflect the
formation of spontaneous quantum Hall sta®e8p, 21]. Because of the relatively
small value of the observed gap, we conclude that it must keathe physics of
low-energy band states near tkeand K’ valley Dirac points. We therefore ana-
lyze the properties of these states using bilayer grapbemgitinuumk-p model.
When a broken symmetry state is formed the Hamiltonian thatibes quasipar-
ticles can have additional terms due to interactions withdbndensate. Because
electron-electron interactions within a valley are mucbrgger than inter-valley in-
teractions we restrict our attention to condensates thabtloouple quasiparticles
in different valleys. Since the gap forms near the Dirac puie neglect the mo-
mentum dependence of the interaction with the condensatghwshould not play
an essential role. We allow the interaction with the conde® be spin-dependent,
but assume collinearity. Non-collinear states are indaiyl when Zeeman cou-
pling is includedl§], but allowing this possibility does not increase the gaesi
Given these assumptions, we can analyze the gap propestiesiated with differ-
ent types of order quite thoroughly, both in the absence aritlé presence of a
magnetic field. In the following discussion we follow commasage in referring to
points in momentum space at which the gap between conduantibwalence bands
vanishes as Dirac points.

Experimentally the observed gap is an even function of actritefield be-
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tween the layerd[3, 17], implying that the broken symmetry state does not break
overall inversion symmetry. Inversion symmetry that iskem[10] in opposite
senses for different spins or valleys, is however consistéh experiment. Indeed

we will argue that only this type of broken symmetry can prelthe observed

gaps.

3.5.2 Fullk- p Hamiltonian of bilayer graphene

The starting point of our analysis is the massless Diract\Wey Hamiltonian for

monolayer graphen8[:

Hyvei = Vo on , (3.22)
m O

where 1T = 1,px +ipy and 1, = +(—) for valley K(K’). The matrix operator in
this Hamiltonian acts on the single-layer sublattice degrefreedom. We focus
on bands near Brillouin zone cornkr, results for valleyK’ can be obtained by
settingpy to —py The bilayerr-bands are a direct product of two sets of monolayer
bands, modified by the various interlayer coupling procesgentified below. In
the representation in which the bilayer sublattice sitesomdered{A;, B1,A2, By},

the bilayer Hamiltonian near valldy can be written in the form:

0 wvortl W v

) Vot O Yl

Aneo= | e (3.23)
V7% 0 vorr

vt wam Vo O
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wherey;, = v/3ay;/2h anda = 0.246nm. The band parameter valu&B[ yo = 3.16
eV, y1 =0.40 eV, 3 = 0.315 eV, y4 = —0.044 eV are generally accepted to be
reasonably accurate. We treat finitesoupling between the low- and high-energy
subspaces of this Hamiltonian, which are separated by anager tunneling en-
ergy scale, perturbatively. For this purpose it is conveiie change the sublattice
order to one which lists the low-energy sites fir§tA1,B2)1, (B1,A2)2} . In this

notation the low-energy effective band Hamiltonian at &émitis[6]
Mt = |14 Hia(Hz2) ~?Har]~H[H11 — Hia(Hz2) tHa1). (3.24)

The second factor on the right-hand side of this equatioucap the effects of
direct hopping between the low-energy sifgsandB, and of virtual hopping via
high-energy states, while the first captures an inessesieigy scale renormaliza-
tion by a factor of order L (vop/y1)? which is usually droppedj 6]. We find that

the low-energyk-p Hamiltonian for bilayer graphene can be written in the form

2

H = _v%Tp [cog2¢,) 0x + sin(2¢,) oy ]
|

24V p?
i

+v3p [cog @) Oy — sin(@p) gy | — 0p. (3.25)

The Pauli matrices in this Hamiltonian act on the low-enesgplattice degrees of
freedom which forms a layer pseudospin. The first term onitjie hand side of
Eq.@3.25 dominates at largp and the second term at smallWhen the two terms
are of comparable size their interference leads to angal#ation in the bands that
is invariant under a 120rotation (trigonal warping). The term proportional y§
breaks particle-hole symmetry, but is usually ignored welb@cause it does not

materially alter the gap properties on which we focus.
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The general form of the low energy bilayer quasiparticle Hi@mmian can be

written in the following compact manner:

H(k) = N e +A o +A- o (3.26)
2m\? o 0
where the coefficiem = v3 is an indirect measure of the trigonal warping strength
andA = (Ay, Ay, ;) parameterizes interactions with the condensateAddy term
must be also present, but plays no role apart from a shiftdrzéno of energy.)

The low-energy band-structure of bilayer graphene in treabte of inter-
actions and external fields is therefore gapless. The gapteperty and the degen-
eracy at the Dirac poinp = O is protected by inversion symmetry with respect to
a point midway betweeA; andB;. As we explain in the following sections, any
perturbation of the bilayer graphene quasiparticle Hamién that does not break

this inversion symmetry can not open a gap at the Dirac @ih€, 15, 20, 21, 46].

3.5.3 Trigonal warping does not yield a gapped state

The trigonal warping effect dominates at energies belotvmeV. Physics on this
energy scale is likely to be smeared by unintended disondey electron-electron
interactions even in the highest quality samples curreabilable,i.e. bilayer-

s on h-BN substrates and suspended current-annealedrbilavée nevertheless
consider the ideal case of a perfectly clean sample with tepantions. When trig-
onal warping is neglected the chiral Hamiltonian has a silijfac point app = 0,
the spectrum is rotationally invariant, and the phase iffee between sublattices
changes by Awhen the quasiparticle-momentum circles the Dirac poiptoper-

ty we refer to ag = 2 chirality. When trigonal warping is included the gap betwe

67



(@) Y, = OeV (b) Y, = 0.315eV
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Figure 3.11: Constant energy contour plots of the condnckiand of bilayer
graphene near valle. (a) The gap vanishes at one point in momentum space
and the spectrum is rotationally invariant whgn= 0; (b) The gap vanishes at
four points in momentum space and the spectruniastational symmetry when

ys = 0.315 eV. The contour energies are 32, 16, 8, 4, 1, and 0 meV fudeT ¢t0
inner. The total spectrum has particle-hole symmetryesypdras been set to zero.

conduction and valence bands vanisheg at0 and also at three additional# O
points where the coefficients of bath anday sublattice-pseudospin operators van-
ish. The central Dirac point at = 0 has J=-1 whereas the three surrounding points
at p = vay1/v3 and ¢ = 0,4-271/3 haveJ = 1. These features are illustrated in
Figure3.11 In general a gap in the quasiparticle spectrum can occuyribitie
coefficients of thegy, oy ando; pseudospin operators do not vanish simultaneously

at any value op.

3.5.4 Nematic order does not yield a gapped state

The o; layer-pseudospin operator measures the density differleetwveen top and
bottom layers whereas, andoy, measure interlayer coherence. When its inessen-
tial momentum dependence is dropped, the interactions adiparticles of a par-

ticular valley and spin with the condensate can be expamdems of these Pauli
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matrices, as mentioned earlier. Researchers have reaiteedrtt conclusions con-
cerning the character of the broken symmetry state. Somneanazersf7, 69] have
concluded that the interaction with the condensate leadspseudospin effective
magnetic field in thex—y plane which lowers the rotational symmetry of the bands.
This ordered state is therefore referred to as a nematic asdhie quasiparticle-

condensate interaction

Hematic= DxOx + Dy Oy . (3.27)

The quasiparticle spectrum 6 + S ematic (Aroppingys is)

2
E? = {(Vop)zcos(z%)—v;e,pcos((pp)—AX]

vop)2 . . 2
+ {% sin(2g,) + vapsin(@,) —Ay} . (3.28)
1
This spectrum is gapless for any value/gfandAy, since we are always able to
locate points in momentum space at which the total pseudesfactive field, and
hence the gap, vanishes. To see this note that the gap vamitiea the following

two equations are solved simultaneously:

2 2
Vayi > Myr VEYE
_ 2 Yan 3.29
( ZVg) \V i iV (3.29)
Va1 Ayyr
sy oy 3.30
Py (px+ 2\%) 2 (3.30)

Eq.3.29 describes a hyperbola with orthogonal asymptpies py —vayi/ (2v5) =
0 whereas Eq3(30 describes a hyperbola with orthogonal asymptotes wjts 0

andpy +v3y1/(2v§) = 0. Since their asymptotes intersect, there must be at lgast t
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(a) AX =-2meV; Ay =0 meV (b) AX =0 meV, Ay =0 meV
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Figure 3.12: Constant energy contour plots of the condndi@nd near valleK
of bilayer graphene foox nematic order. Nonzery, breaks thesz symmetry but
the spectrum is still gapless. The contour energies ar2%4,2,1,0 meV from
outside to inside. There are 2, 4, 4, and 2 Dirac points in (@), (c) and (d)
respectively. These plots were constructed using 0.315 eV andy; = 0.

points of intersection between the two curves. It followatttine spectrum defined
by Eq.B.28 is gapless with at least two Dirac points.

The influence of nematic order on the bands can be understoqudlysin
the illustrative special cagi, = 0. It then follows from Eq3.30 that Dirac points
can occur only along the lings, = 0 andpy = —v3y1/(2v§). Substitutingpy = 0
into Eq.@.29, we find two Dirac points witld = +1 chirality if A > —V3y1/(4v3)
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which annihilate when this inequality is not satisfied. (Seire3.12a) and (b).)

The other pair of Dirac points appeargt= i\/svgyf/(m/g) — Dyyi/v3 andpy =
—v3y1/(2v3) which implies that, < 3v3yi/(4v3) is a necessary condition for the
appearance of these two gapless Dirac points. Move@yes —V3y1/ (2v§) and
Ay = 3v3y1/(4v3) indicatepy = 0. Three Dirac points (one with= —1 and a pair
of points withJ = 1) fuse into a singld = 1 Dirac point whem, > 3v3y/(4v3),
as illustrated in Figur&.12b)-(d). The sum of the chirality of the Dirac points is
Jot = 2 for any value of the order parameter fields.

We conclude that the nematic order is not consistent withpa ga

3.5.5 Relative layer displacement does not yield a gappecase

(a) the conduction band (b) the valence band

VoPy Iy,

Figure 3.13: Constant energy contour plots of (a) the cotmluband and (b) the
valence band near valldy in a bilayer graphene samples in which one layer has
been dispaced relative to the other. This illustration isdadisplacement with
magnituded = 0.05a/+/3 and orientationg; = 0. The relative displacement breaks
the %3 and particle-hole symmetries. However, the spectrum lisgstpless. The
increment between constant energy contours in this plom&¥. This illustration

is for the parameteng = 0.315 eV andy; = —0.044 eV.

In order to achieve high mobility, suspended bilayer grajghgamples are
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annealed by large currents. The consequent Joule heatingem@ve adsorbates
but could potentially alter the bilayer structure, for exdeby displacing one layer
relative to the other. Only very simple and systematic cleang structure have any
chance of inducing a gap in the spectrum. Here we explorefthet ®f displacing
one layer relative to the other and appeal tokhe analysis of Ref]0], which im-
plies the interlayer hopping Hamiltonian (see BR@) is altered in the following

way:

+ T
VaTl VT VaTll  VaTT ty t3
4 4 T ) . (3.31)

Vi Vart Vi Varth th tg

Thet;’'s account for the change in the interlayer tunneling Hammikin evaluated at

m=0:
ta 3 _n 11 +ﬁeiGdcos(qo—5n/6) g2m/3  g-izny/3
Vit t 3\l11 3 1 23
_ ei2m/3 213
_f_%elGdCOE{QH-&T/G) N 7 (3.32)
1 g i /3

whereG = 41/(1/3a) andd is the sliding vectoi]0]. When this contribution to the
interlayer tunneling Hamiltonian is treated perturbdiivwee obtain the following

result for thesliding correction to the interlayer tunneling Hamiltonian:

v 1( 0 (Vort) 2t1) ( t3t4/y1)
i\ (o2 ts—t:%/yn 0
0
1

[t4(Vo7T)+t4(Vo7T )} /N ( ; ) (3.33)
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Similar results have been obtained previously for bilayera/hich the structure
has been altered by slidingf], or uniaxial strainf2]. The first term in this e-
guation makes an unimportant change in dhe 2 chiral Hamiltonian. The sec-
ond momentum-independent term is equivalent to nematierosith Ay — iAy =

ts —tZ/y1, which reduces rotational symmetry #,, while the third term breaks
particle-hole symmetry but preserves the topology of trecgpm. The equations
for the Dirac points are similar to Eq8.29 and @.30 although the hyperbolic
asymptotes are different. Importantly, the two sets of gaptes are never parallel
the two curves therefore always have points of intersecfidrerefore, the sliding
case is similar to the nematic order, although the partidke-symmetry is broken.

As illustrated in Figure8.13 sliding does not produce a gap.

3.5.6 Broken inversion symmetry yield gap and Berry curvatuie
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Figure 3.14: Low-energy dispersion near valleyor bilayer graphene with, = 2
meV andys = 0. Nonzerd); breaks inversion symmetry and introduces ag&a,
atp=0.

73



150
100
50
0
-50
-100
-150

10 _;/ ; ) \ :10 0.2 \J/%

v.p fy, 0
0. - 0 0%y 1 -02 02 Vp/v
IO/Y 01 01 NpJ o
VoPy/ T . . oPy!71

Energy Dispersion [meV]
Energy Dispersion [meV]

-100

Figure 3.15: The low-energy dispersion near vakeyf bilayer graphene with, =
2 meV andys = 0.315 eV. Nonzerd\; breaks inversion symmetry and introduces a
gap~ 2A; atp = 0. The spectrum hdsj; rotational symmetry whegg # 0.

When layer inversion symmetry is broken within the four egispin fla-
vors, either spontaneous$[10, 15, 46] or by external electric fields, a term of the
form 4 = A,0; appears in the quasiparticle Hamiltonian. Because there 1&
dependent band energy contribution that is proportional tthere will always be
a gap between conduction and valence bands wheA0. The energy dispersion

for generalA is

2 2
E? = {(V(;/f) cos(Z(pp)—vspcos((pp)—Ax]

2
+[( ‘;p) Sln(2(pp)+V3pS|n(qap)—Ay} +A2, (3.34)
1

which opens a band gap at Dirac points giving ris&te: —|A;| on the top of the
valence band an# = |A,| at the bottom of the conduction band. A ga®4; is

clearly visible in Figure3.14and Figure3.15where trigonal warping is included
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but has little influence. The valence band pseudospin pwiritee +2 direction for

p =0, and in thex=y plane at largep when the band terms in the Hamiltonian
dominates. It follows that the pseudospin direction coestiser the northern or
southern hemisphere of the pseudspin Bloch sphere upayratitegy over a small
region ofp near theK andK’ valleys, and hence that this region of momentum has

large momentum space Berry curvatuggshat vanish whey, — 0.
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Chapter 4

Spontaneous Quantum Hall States

Chirally stackedN-layer graphene witlN > 2 is susceptible to a variety of distinct
broken symmetry states in which each spin-valley flavor sgpweously transfers
charge between layers. We explain in the first section hosetlstates are distin-
guished by their charge, spin, and valley Hall conducteitiby their orbital mag-
netizations, and by their edge state properties. We alsgedlt valley Hall states
have[N/2] edge channels per spin-valley. In the second section, wesfoo the
edge states in the spinless case. We explicitly show thaguhetum anomalous
and valley Hall states are favored by a weak magnetic fieldograeh electric field
between the graphene layers, respectively. More exotjcallinterfaces between
different phases one dimensional gapless modes exhibé hontinger liquid be-
haviors. In section Ill, we analyze how the LAF and other cetimg states are
influenced by Zeeman fields that couple to spin and by interlalectric fields that
couple to layer pseudospin, and comment on the possibfiixsimg response and
edge state signatures to identify the character of theduilgsound state experimen-

tally.
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4.1 Spontaneous quantum Hall states

4.1.1 Introduction

In the early 1980s, following the discovery of the quantuntl idfiect (QHE)[73],

it was recognized4] that electronic states can be characterized by topolbifica
dices, in particular by the integer valued Chern numberceslithat distinguish
guantum Hall states. Quantum Hall states have non-zeronGhenbers and can
occur only if time reversal symmetry (TRS) is broken; urgtently they have been
observed only when TRS is explicitly broken by an externafjnaic field. In this
article we discuss a class of broken symmetry states, fiopigsed theoreticall{,
15, 75] and recently discovered experimentally] 76|, which appear in chirally
stacked graphene systems and are characterized by spialé&yddependent spon-
taneous layer polarization. The aim of the present sectida explain how these
states are distinguished by their chaR§®[77, 78], spin[79], and valleyB0] quan-
tized Hall conductances, by their orbital magnetizaticarsj by their edge state
properties.

Success in isolating monolayer and few-layer sheets frolk ¢gmaphite,
combined with progress in the epitaxial growth of few-lagamples, has opened
up a rich new topid}] in two-dimensional electron physics. Electron-electiraer-
action effects are most interesting in ABC-stackeg 2 layer systemg-6], partly
becaus€l0, 15, 21, 45-47] their conduction and valence bands are very flat near the
neutral system Fermi level. For this special stacking gider-energy electrons are
concentrated on top and bottom layers and the low-energsighgf aN-layer sys-
tem is described approximately by a two band model wil dispersion and large
associated momentum-space Berry curvat8iesfVhen these band states are de-

scribed in a pseudospin language, the broken symmetryistdtaracterizeds] by
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a momentum-space vortex with vorticityand a vortex-core which is polarized in
the top-or-bottom layers. For AB stacked bilayers, for egbaninteractions lead to

a broken symmetry ground stat€[ 15, 46] with a spontaneous gap in which charge
is transferred between top and bottom layers. ABC-stacklayer graphene has
even flatter bands and is expected to be even more unstabigetadtion driven
broken symmetrie§], but samples that are clean enough to reveal its interactio

physics have not yet been studied.

4.1.2 Classification of broken symmetry states

We discuss the electronic properties dflayer ABC-stacked systems using the
ordered state quasiparticle Hamiltonians suggested by+field calculations]5,

46] and renormalization group analysi€]

(vop)N

I = —
NNt

[cogNgy, )y + sin(N@,) gy | +ma; . (4.1)

We have used the notation ags= 1,px/p and sing, = py/p wheretr, = 1 labels
valleysK andK’, the two inequivalent Brillouin zone corners. The Pauli ricas
o act on awhich-layer pseudospin degree-of-freedom apd= +1 denotes the two
spin flavors. In Eq.4.1) the first termél, 6] is the low-energ¥ - p band Hamiltonian
for a single valley. Weak remote hopping processes have temped with the
view that they do not play an essential role in the broken sgimynstates[Q].
The second term is an interaction-induced d@p[L5, 21, 46] term which defines
the direction of layer polarization in the momentum spaceeyocore. Since the
pseudospin chirality frustrates off-diagonal symmetrgakingfl5], we consider
only the pertinent types of diagonal symmetry-breaking. dach spin and valley,

symmetry is broken by choosing a sign for We have dropped the momentum
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(d) QSH (2D TI) (e) “ALL”

Figure 4.1: For cases (a-e) the lower panel describes tlse sétayer polarization
for each spin-valley combinations while the upper panetés@itically indicates the
corresponding Hall conductivity contributioi®] (a) a valley Hall insulator with
a net layer polarization and a mas®z; (b) an anomalous Hall insulator with a
valley-dependent massr,0;; (c) a layer-antiferromagnetic insulator with a spin-
dependent masss;o;; (d) a quantum spin Hall (or 2D Topological) insulator with
a valley and spin dependent mass tenms, o; () an exotic Hall state with a valley
and spin dependent mass temm% + %sz)az.

dependence ah because, as we will see, it does not play an essential rabsvbel
2|m| is the size of the spontaneous gapjs the Fermi velocity in graphene, and
vi ~ 0.4 eV is the interlayer hopping energy. TpE dispersion is a consequence
of the N-step process in which electrons hop between low-energg sittop and

bottom layers via high-energy states.
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When spin and valley degrees-of-freedom are taken intoetcthe system
has sixteen distinct broken symmetry states in which the gfgnis chosen sepa-
rately for(K 1), (K 1), (K’ 1) and(K’ ]) flavors. We take the view that any of these
states could be stable, depending on details that are beywreht knowledge and
might be tunable experimentally. The sixteen states candssified according to
their total layer-polarization which is proportional tcetsum over spin-valley of
the sign ofm. Six of the sixteen states have no net layer charge transferelen
top and bottom layers and are likely to be lowest in energyhenabsence of an
external electric field. These six states can be separatedhiree doublets which
differ only by layer inversion in every spin-valley. Thugele essentially distinc-
t states compete for the broken symmetry ground state: tbmalous Hall state
in which the sign oimis valley-dependent but not spin-dependemy{ — mt, o),
the layer-antiferromagnetic state in whietis only spin-dependenirio; — ms,05)
and the topological insulator (TI) state in whichs both spin and valley dependent
(mo; — m1;5,07). These states are distinguished by their spin and vallpgrten-

t Hall conductivities and orbital magnetizations indichtehematically in Fig4.1

and summarized in Tabke 1l

4.1.3 Hall conductivities and orbital magnetizations

The three broken symmetry states on which we focus are digshed by the signs
of the Berry curvature§] contributions from near th& andK’ valleys oft and
1 spin bands; we note that the Berry curvatures are non-zdyonren inversion
symmetry is spontaneously broken. Using the Berry cureatuwe evaluate the

orbital magnetizations and Hall conductivities of all thrgtates. For momentum-
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independent masa the Berry curvature of thH-layer chiral model is

2
() __ Tzm/oh
Q5 (P, T2,S) = —O’Eh—tg (é‘—p ) (4.2)
where symbobr = 4 (—) denotes the conduction (valence) band, and the transverse
and total pseudospin fields ane= (vop)N/yy' * andh, = , /m?+ h?. The orbital
magnetic moment carried by a Bloch elect@jris m,) = efe(@ Q! for a two-

band model with particle-hole symmetry. For the chiral baratlel

ahp\ 2
t

wheremg is the electron mass ang is the Bohr magnetoeh/2me. Like the Berry
curvature the orbital magnetization changes sign whenaheyabel changeand
when the sign of the mass term (the sense of layer polarpatitangesi.e. both

are proportional ta,sgnm). The orbital magnetization is however independent
of the band indexa. As illustrated in Fig4.3, in the case ofm| = 10 meV, the

orbital magnetic moment close to each Dirac point has a synorgharp peak

Table 4.1: Summary] of spin-valley layer polarizations (T or B) and correspend
ing charge, spin, and valley Hall conductivitieZ (h units) and insulator types for
the three distinct states (b-d) with no overall layer palation, for a state in which
every spin-valley is polarized toward the top layer (a), &orda state with partial
layer polarization (e).

Fig. | Kt Kl K1t K| oS | oV | g | gSVH | |nsulator
4.1(b) T T B B 0 0 2N 0 QAH
4.1(c) T B T B 0 0 0 2N LAF
4xd)| T B B T || 2N 0 0 0 QSH
4.1(a) T T T T 0 2N 0 0 QVH
48) | T T T B N N N N Al
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(b)m3>mO:O

N W b 0O N

Figure 4.2: Berry curvature (an effective magnetic field iomentum space) as
a function of momentum-space position in the bilayer gragh@rillouin zone9).
(a) For a quantum valley Hall state; (b) for a quantum anoosaldall state. Large
energy gaps are chosen deliberately in order to visualeslhpe of the peaks and
the trigonal warping effect.

at which individual states carry moments twenty times latgan ug. The state
in which m — mrt; therefore has overall orbital magnetization and brokeretim
reversal symmetry, even though it does not have a finite gpiarization. Inte-
grating over the valence band, we obtain a total orbital ratigation per area
~ (Nmme/2m?) In(y1/|m|) s, that is~ 0.002ug per carbon atom fofm| = 10
meV.

In the presence of an in-plane electric field, an electromiaeg an anoma-
lous transverse velocity proportional to the Berry curvatwgiving rise to an in-
trinsic Hall conductivityB, 78]. Using Eq. #.3), we find that the intrinsic Hall

conductivity contribution from a given valley and spin is

(@) N/ m m
Oy ' (12,%) = >Th (ht (pe) - m5a,+) ; (4.4)

whereh(pr) is the total pseudospin field at the Fermi wavevector. Pexvithat

the Fermi level lies in the mass gap, each spin and valleyiboesNe? /2h to the
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Figure 4.3: The magnitude of orbital magnetic moments edroy individual states
versus in-plane momentum, for each spin and valley flavor BCAyraphene\N-
layers. Here the moments are in unitgugfand|m| = 10 meV.

Hall conductivity, with the sign given by,sgnm).

In Fig. 4.1(a) we consider the case in which each spin-valley is padriz
in the same sense. The total Hall conductivity is then zerdofih spins, with
the K and K’ valleys making Hall conductivity and magnetiaatcontributions of
opposite sign, preserving time reversal symmetry. Thiselaan be viewed as
having a valley Hall effec§0] and, even though it does not break time-reversal
symmetry, we argue later that this designation has physigalficance.

As shown in Fig.4.1(b), the casenog; — mr,0; implies Hall conductivity
and orbital magnetization contributions of the same sigreéch spin and valley.
This state breaks time reversal symmetry but its spin dersssurprisingly is every-
where zero. The total Hall conductivity has the quantizede/aNe?/h. Similarly,
the orbital magnetic moment has the same sign for all flaxvesrefer to this state
as the quantized anomalous Hall state. In addition to itsehous Hall effect, this
state has a substantial orbital magnetization. The anas&lall states is probably
most simply identified experimentally by observing a 2N QHE which persists

to zero magnetic field.
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For mo, — ms,0;, depicted in Fig4.1(c) the two spins have valley Hall
effects of opposite sign, and the two layers have spin-paiaons of opposite sign.
This layer-antiferromagnetic state has broken time raleygnmetry and opposite
spin-polarizations on top and bottom layers.

Fig. 4.1(d) describes the third type of state with effective intémacmo, —
m1;S,0z. This state does not break time reversal invariance andaddias anoma-
lous Hall effects of opposite signs in the two spin subspdaesa spin Hall effect.
Neither the top nor the bottom layer has spin or valley pa&ion. Quite interest-
ingly if we only consider one layer, there are both spin Hal aalley Hall effects,
however, the orientations of the Hall currents in the top #redbottom layers are
the same for the spin Hall effects but opposite for the valall effects.

Table 4.1 includes as well the case in which one flavors polarizes in the
opposite sense of the other three; charge, valley, and spireffects coexist in this

state which can be favored by a small potential differen¢e/éen the layers.

4.1.4 Edge states

The physical significance of spontaneous charge, valleysaim anomalous Hal-

| effects is illustrated in Figd.4. Graphene has very weak spin-orbit interactions,
which in our case we ignore altogether. Fdgd compares the edge electronic struc-
ture ofN = 1, 2, 3 spinless models with a quantized anomalous Hall effextwith
opposite layer polarizations at two valleys) and with a dguzax valley Hall effect.
The states with anomalous Hall effects h&i/eopologically protected robust chiral
edge states associated with the QHE, as shown indk4{d)(e)(f). The edge state
structure associated with the valley Hall states is morer@sting. In theN =1

valley Hall state the Hall conductivity contribution asgded with each valley is
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1/2 in € /h units; the full unit of Hall conductance requires the twolews to act
in concert. Because they act in opposition in the valley iate, there is no edge
state, as shown in Fig.4(a). ForN = 2 on the other hand, each valley contributes
a full quantum Hall effect, and as we see in Higd(b) we find two chiral edge
states with opposite chirality, one associated with eatleywaFor N = 3 depicted
in Fig. 4.4(c), the additional half quantum Hall effect from each walig insuffi-
cient to produce a new chiral edge state branch. In generakpect/N /2] chiral
edge state branches at each valley iMalayer stack. Of course valley Hall edge
states are topologically protected only when the edgeztiime projections oK and
K’ valleys are not coincident and inter-valley scattering thudisorder is absent.
Nevertheless, we expect robust edge states to be presealieg tall states, as
found[81] in numerical studies of valley Hall states induced by aremdl electric

field without interactions.

4.1.5 Discussion

At the level of continuum-model mean-field thedty], the three charge balanced s-
tates we have discussed are degenerate. In addition tamgeakersion symmetry,
each breaks two of three additional symmetries; time rev€rg), spin rotational
invariance 8J (2)), and the valley Ising symmetry?(). The Tl state preserves on-
ly .7, the AH phase preserves only spin-rotational invariancd the AF state has
%> symmetry. Both Tl and AF phases break the continu8ui§&2) symmetry and
therefore Goldstone modes emef#| The actual ground state is dependent on
subtle correlation and microscopic physics issues thabeyend the scope of this
section. We note however that it might be possible to induaesitions between

different possible states using external fields. For exantpke energy of the quan-
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0 1/2 1
ka/2m

Figure 4.4: Intra-valley and inter-valley edge states immadly-stacked graphene
systems. (a)(d) for a single layer, (b)(e) for a bilayer ac)f) for a trilayer. To
visualize the edge states, the intralayer and interlayaras¢ neighbor hoppings
are chosen ag = 1 andy, = 0.3, respectivelym = 0.25 for Fig.(a,b,c) andn =
0.3v/31; for Fig.(d,e,f).

tized anomalous Hall state will be lowered by a perpendiceidernal magnetic
field because it has a large orbital magnetization. The fafger polarized state
will be favored by an external electric field which producgsoéential difference
between the layers. Increasing the magnetic field furtheult® in quantum Hall
ferromagnetisni[2, 64, 65]. Recent experiments}, 76] in bilayers appear to pro-
vide definitive proof that the ground state at very weak éxdkemagnetic fields is
the quantized anomalous Hall state.

The quantum spin Hall effect we discuss in this section igiresal respects
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different from that discussed in the well known pap@éss[r9] which foreshadowed

the identification of topological insulators.

(i) The quantum spin Hall effect is driven by broken symmesrproduced by
electron-electron interactions, rather than by spintanibéractionsf9 which
we neglect. The effective spin-orbit couplimg,s,d; due to electron-electron

interactions can be f@imes larger than the intrinsic org].

(i) Unlike the previous interaction induced Tl phas®[ which appears only at
finite interaction strengths, here the instability to thepfbkse is present even

for weak interactions.

(i) The broken symmetry occurs only fod > 2 systems which have weak re-
pulsive interaction instabilities, rather than in the $&ayer systemsls, 79

which require strong spin-orbit interactions or strong [@mb interactions.

(iv) Our states are also distinguished topologically, sitiey are characterized by
Chern numbers which can have any integer value, rather than%s label.
Of course, only N-odd layers are strong TI's, because thedleddge modes
are likely to localize in aN-even system due to the backscattering process
allowed by.7[83].

When Rashba spin-orbital interactions (RSOI) are strdrggspin Hall state is like-
ly to be selected as the ground state and the Hall conductaiticeo longer be
precisely quantized. The estimated strength of R82)B4] in most experimental
systems studied to date is much smaller than the estimatedaspeous gafl],

so its influence will normally be marginal.
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4.2 Deformation of edge states

4.2.1 Landau levels

In the spinless case, there are only two broken symmetmgsstahmely, the anoma-
lous Hall state and the valley Hall state. In the case of seydHall state, valley
K andK’ have the same mas0d,, and each valley is layer polarized in the same
sense)]. Mass terms with the valley Hall form can be generated syniyyl a po-
tential difference between the layers, so the valley Haliests an easily generated
non-interacting electron state. The total Hall conduttiaf this state is zero, i.e.
v = 0 for bilayer graphene, with th€ andK’ valleys making Hall conductivity and
magnetization contributions of opposite sign, presenting reversal symmetry.
The valley Hall states can be favored experimentally by ydpgla perpendicular
electric fieldP], as shown in Fig4.5a).

In the anomalous Hall state, on the other hand, one valleg pasitive mass
mgo; while the other has a negative masso,. Correspondingly the two valleys
spontaneously choose different layer polarizti@hs[ herefore the Hall conductiv-
ity and orbital magnetization contributions have the saige for each valleyj).
This state breaks time reversal symmetry. The total Haltloetivity has the quan-
tized valuet2Ne?/h, i.e. v = +4 in the case of bilayer graphene. In addition to
its anomalous Hall effect, this state has a substantiatairbiagnetization. The
anomalous Hall state is probably most simply identified expentally[17, 76] by
observing av = 2N QHE which persists to zero magnetic fidd[L7, 20, 76, as
depicted in Fig4.5b).

The spectra of translationally invariant two-dimensioakgctron systems
are quantized into Landau levels in the presence of a finifggoelicular magnetic

field. In a gapless chirally stacked graphéiéayer, the zero energy Landau level
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(a)m0>0,m3:O,BZ:O (b)mO:O,m3>O,BZ:O (c)mO:O,m3:0,82>O

(d)m0>0,m3:O,BZ>O (e)mO:O,m3>0,BZ>O (f)mO:O,m3>O,BZ<O
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Figure 4.5: (a) Ribbon quantum valley Hall states and ()aibquantum anoma-
lous Hall states in the absence of magnetic fields; (c) Rikh@antum Hall states
for a gapless bilayer graphene; (d}= 0 quantum Hall states for a gapped bilayer
graphene in QVH phase; (e) and (= +4 quantum Hall states for a gapped bi-
layer graphene in QAH phase. To visualize the edge statessea zigzag ribbon,
the intralayer and interlayer nearest neighbor hoppingschosen ag, = 1 and

y1 = 0.3, respectively, and nonzenois fixed as 0.15.

A

ka/2m

(Fig. 4.5(c)) is AN fold degenerate. In the case of a valley Hall insulator, thges
aroundK andK’ valleys have very large orbital magnetic moments with ofipos
sign, which couple to the out-of-plane magnetic field anckgisise to the relative
energy shift between vallelt andK’. Consequently, the two-fold valley degen-

eracy is lifted and there is an asymmetry between those laledals around two
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Dirac points, as described in Fig.5d). The energy spectrum of a quantum valley
Hall insulator is adiabatically connected to that of the: 0 quantum Hall state. In
contrast, as shown in Fi¢g.5e)(f), the valley degeneracy is unbroken in the pres-
ence of magnetic field, because the nature of the orbital gtalgmoments near the
two Dirac points are the same. The energy gap in a quantumaoamHall state

is adiabatically connected to that of the= +4 quantum Hall state where the sign
is a choice of whether the magnetic field isziar'—Z direction relative tans.

When spin is taken into account, the quantized Landau |efeise three
additional phase9] are obtained by each spin choosing to be a quantum valley
Hall state or a quantum anomalous Hall state. For the caseodatum spin Hall
state, one spin flavor is the = 2 QAH state and the other flavor is tlve= —2
QAH state. For the layer-antiferromagnetic state, eaah #g@vor is av =0 QVH
state but with the opposite layer polarization to the othardit. In contrast, one

spin flavor is a QVH state while the other is a QAH state in thé#"étate.

4.2.2 Electric field effects

By continuously lowering the magnetic field to zero, an anlows Hall state is
adiabatically identified[7, 76]. When a perpendicular electric field is switched
on, the quantum valley Hall phase starts to compete with tlamtym anomalous
Hall phase. The sizes of the gap at the two valleys|aget+ mg| and [mg — mg|,
respectively. The state is still within the anomalous Hakge but with two unequal
gaps atk andK’ for |mp| < |mg| as seen in Figd.6a). Beyond the critical point
where |mg| = |mg| as depicted in Fig4.6(c), the state jumps to the valley Hall
phase instead. In the quantum phase transition region asluEs by Fig.4.6(b),

the energy gap is enhanced at one valley while it closes atttiex valley, where
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guantum anomalous and valley Hall effects coexist.

(a)m3>m0>0

(©) m,>m >0
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Figure 4.6: The competition between the quantum anomalalsdthte (intra-
valley edge state) and the quantum valley Hall (inter-yadlége state) state in bro-
ken symmetry bilayer graphene. (a) a quantum anomalousskéad with unequal
gaps aK andK’; (b) a critical point with an enhanced gapkaaind a closed gap at
K’, where quantum anomalous and valley Hall effects coexisg uantum valley
Hall state with a reopened gapkt To visualize the edge states, we use a zigzag
ribbon with the samg andy; values as in Figd.5.

In the quantum spin Hall sta®@| the helical edge modes are likely to local-
ize in aN-even system, due to the possible backscattering procegsiamn N left
movers andN right movers scatter into each other allowed by time reVesga-
metry. Therefore, the QSH phase is topologically protecteshirally stacked odd
number of graphene layers. Besides the effective spirt-oduipling induced by
interlayer interaction, Rashba interactidg( ,0xS, — 0ySy) is possibly induced by
inversion symmetry breaking, and a small staggered paiengio; is also present

due to coupling to substrates. These interactions lift #geederate zero energy to

Mgy + As, —Mgy =+ 4 /4/\F%+)\SZ. The topological-nontrivial phase persists as long
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as the effective spin-orbit gap is not closed, or in otherdspr

ARV A
() e
MsH MsH

which is independent of layer numbierand determines the phase diagram. Trigo-

<1, (4.5)

nal warping and other remote hopping terms are time revargatiant, not disfa-

voring the Tl phase.

4.2.3 Edge states along domain walls

At zero temperature, in a clean chirally stacked few-lay@pgene system, there
are 16 possible broken symmetry states and they are cldsa#i® distinct phases,
as discussed in the section Il. In the presence of disorddreosmal fluctuations,
different phase are likely to appear locally in differenttpaof the system. There
are 240 possible domain walls and they can be classified thttistinct types. In
the spinless case, as only valley Hall phase and anomalduphéae are allowed,
there are 2 types of intra-phase and 1 type of inter-phaseitowalls. At each
type of domain wall, we argue that a unique Luttinger liquidegges; the spinless
bilayer examples of which are illustrated in F@y7.

In a quantum valley Hall state, the Chern numb@r3{] of the two val-
leys aretN/2, respectively. For the case of a quantum anomalous Had, stee
Chern numbe#f, 74] is N/2 at both valleys with a uniform sign. These features
are equivalently shown in Figt.2 At the domain wall separating two quantum
valley Hall regions with the opposite layer polarizatidmg Chern numbers change
by £N for a single valley and hend¢ parallel zero modes appear at each valley as
depicted in Fig4.7(a). These one dimensional zero modes fotropies of full

Luttinger liquids and the valley-pseudospin becomes éxdoe left-or-right chi-
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rality. This QVH-QVH domain walls and the generated Lutengquids are likely
to be formed in the electron-hole puddles, and can be easilized and tuned by

an external electric field.

Figure 4.7: Three distict Luttinger liquids at domain wailts spinless bilayer
graphene with broken symmetry. The red lines denotes tleernedes localized
at domain walls between (a) two quantum valley Hall regioith wpposite layer
polarization; (b) two quantum anomalous Hall regions wilpasite total Hall con-
ductance; (c) a quantum valley Hall region and a quantum atmm Hall region.
The green lines represent the edge states on the outerrgeag4roundaries and
note that they are doubly degenerate in (a) and (b) for thezigmag boundaries.
To visualize the edge states, we use a zigzag ribbon witheime g andy; values
as in Fig.4.5and|m| = 0.25.

At a domain wall separating two quantum anomalous Hall regiwith op-
posite total Hall conductance, the change of Chern numbé(reglecting spin) for
both valleys. Therefore, we expect tiparallel zero modes appear at each valley
as seen in Figd.7(b). Each valley has a copy of a purely chiral ”spiJM’z*—1 like
Luttinger liquid. At the domain wall between a quantum walall and a quantum
anomalous Hall regions, the chern number is changeld fiyr one valley while it
is preserved for the other. Thus the edge states at theanéedre purely chiral at

one valley while they completely disappear at the other. Weeet the Luttinger
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liquid behaviors of the one dimensional zero modes at thdgpdomain walls are

much more exotic.

4.2.4 Discussion

The trigonal warping effect is sometimes ignored in thaocatiefforts to identify
the broken symmetry physics based on mean field theory ormealization group
analysis. This is reasonably justified in the bilayer casetfe following two rea-
sons. (i) The trigonal warping effect dominates only belomé&V[4], compared
to relevant band broadening not much smaller than 1 meVomeagwarping effect
are therefore likely to be smeared and become inessentialtadresidue disorder
and fluctuations at higher energies. (ii) The infrared dutbfthe RG flows can
be reasonably set at where the quadratic band dispersiowlo®ins the trigonal
warping effect. For chirally stacked graphene with the fayenbeN > 2, the trig-
onal warping energy scale is increased by almost a facto®@] Wwhile the even
flatter gapless bands are much more unstable to interlagggaations. Interaction
effects are expected to dominate at low carrier dens@iies|d to drive the sponta-
neous inversion symmetry breaking, but samples that aa@m @rough to reveal its
interaction physics have not yet been studied. We commantlte broken sym-
metry is likely to occur only in low disorder and high qualggmples, since large
disorder can destroy the perfect nesting conditions angceethe parameter space
of the RG flows.

Recent experimentsy, 76] in bilayers appear to provide definitive proof
that, atv = +4, the ground state at very weak external magnetic fieldseis|tian-
tized anomalous Hall state. (A= 0, LAF state (or called SDW state) and QSH

state are competing for the ground state at zero magnetit)fi@ven though a
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QAH state does not have a finite spin-polarization, the aflmtagnetic moment
close to each Dirac point has a symmetric sharp @ailt[which individual states
carry moments twenty times larger thag, and a total orbital magnetization per
area goes as (NAme/2m?)In(y1/|A|) g, that is~ 0.002ug per carbon atom for
Im| = 10 meVP]. Thus the energy of the quantized anomalous Hall statebeill
lowered by a perpendicular external magnetic field. Latnean field theory shows
the size of the gap can be as large as 30 r2éMput the actual ground state is de-
pendent on subtle correlation and microscopic physicesstVe estimate that a
magnetic field of the order of.004 T is sufficient to favor the QAH state over
the QVH state?1]. Increasing the magnetic field further results in quantuatl H
ferromagnetisn2, 64, 65]. The fully layer polarized QVH state will be favored
by an external electric field which produces a potentiatdéhce between the layer-
s. The turning point of the band gap is approximately 7 mV/omefperpendicular
electric filedR1].

We close this discussion by pointing out that the edge stdi@broken sym-
metry state have physical significan@e[ (i) The edge states for QAH phase are
inter-valley one dimensional gapless modes while the zeyde® are intra-valley
like for QVH phase]. (ii) The states with anomalous Hall effects haveéopolog-
ically protected robust chiral edge states associatedthdlfQHEPR]. (iii) For the
valley Hall effects, in general we expeltd/2] chiral edge state branches at each
valley in anN-layer stackg); the full € /h unit of Hall conductance requires the two
valleys to act in concert; the additional half quantum Héi#& from each valley in
theN-odd layers is insufficient to produce a new chiral edge $iedach. Thisis a
novel manifestation of the chiral anomaly in condensed enatgstems. Of course
valley Hall edge states are topologically protected onlyemwlithe edge-direction

projections ofK andK’ valleys are not coincident and inter-valley scattering tdue
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disorder is absent.

4.3 Distinguish spontaneous quantum Hall states in

bilayer graphene

4.3.1 Introduction

Bilayer graphend], 4] and its thickerN-layer cousins, chirally (or ABC) stacked
multilayersp, 6, 9, 50], have attracted considerable theoreti@all0, 15, 20, 21, 46,
47,69 and experimental[3, 17, 18, 68, 76] attention because of their susceptibility
to broken symmetries that are accompanied by large momesyaice Berry cur-
vatures and different types of topological order. In a gwniim model mean-field
theory, the ground state j] an Ising layer-pseudospin ferromagnet in which each
spin-valley flavor isL0, 15, 46] layer polarized. The quasiparticle Hamiltonian in
these states develops mass gaps that change the charattemafvefunctions at
small momentum and produ&R0Q] Berry curvature. The integral of Berry curva-
ture over a suitably defined region of momentum space neaea galley is nearly
exactly quantized at-2rt. This property can be interpreted as saying that each val-
ley contributest€? /h to the Hall conductivity with a sign that reverses with vglle
index and with the sense of layer polarization. States vatal tHall conductivity
|€?/h evolve smoothly into quantum Hall ferromagnets witk- | in the presence
of a perpendicular magnetic field.

When spin is ignored only two different types of states cadibgnguished,
ones in which thek andK’ valleys are layer polarized in the opposite sense pro-
ducing a quantum anomalous Hall (QAH) st&e]0, 77] with broken time reversal

(7)) symmetry and orbital magnetizati@] and ones in which the two valleys have
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the same sense of layer polarization producing an inve(sfonsymmetry break-
ing quantum valley Hall (QVH) stat®] 20] with zero total Hall conductivity. When
spin is included, there are three distinct states with neaMayer polarization as
summarized in Tabld.2 i) a QAH state with Hall effect contributions of the same
sign for opposite spins, ii) a quantum spin Hall (QSH) s&t&p, 75, 79, 85, 86|
with opposite QAH signs for opposite spins, and iii) a LAFRs[9] that has QVH
states with opposite layer polarization signs for oppaspias. Among these possi-
bilities, lattice mean-field theory calculatio24] suggest that inter-valley exchange
weakly favors QVH states in the spinless case and LAF statdsei spinful case.
In this section we analyze how all three states respond tmZreoupling to their
spin and to electric-field coupling to their layer pseudosgjagrees-of-freedom. We
find that the Zeeman field response distinguishes QAH states QSH and LAF
states. In the LAF, the Zeeman field induces a non-collingarsate in which the
components of the spin-density perpendicular to the fieddogiposite in opposite
layers, while those along the field direction grow smoothithviield strength and
are identical. The three states respond similarly to antr&deiield between the
layers, which can induce first order transitions at whichttial layer polarization

jumps.

Table 4.2: Summarg] of spin-valley layer polarizationg ©r b), broken symme-
tries, charge (C) and spin (S) Hall conductivitie$/f units) and insulator types for
the three distinct states with no overall layer polarizatio

Kt K|l K1 K| | o9 | d©@) | Broken Symm.| Insulator
t t b b 0 2N T, 2 QAH
t b t b 0 0 T, V2 LAF
t b b t 2N 0 Zo, (2) QSH

There is already some suggestive experimental evidencspimmntaneous
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guantum Hall states in graphene multilayers that is comsistith mass gapa ~
2—8 meV in recent studies of suspended bilayE3sl7, 18, 76] and trilayersf8]

. Since the gaps are se&B8[ 17, 68] only at temperatures well below/kg they
appear to be of many-body origin. Moreover, measuremenislafers in a per-
pendicular magnetic fiel® appear to show that both= +4 andv = 0 quantum
Hall states can persist to zero-magnetic fig8I[18], implying that spontaneous
guantum Hall states with total Hall conductivity quanturmrher! = 0,4 can be

stabilized by interactions & = 0.

4.3.2 Continuum model mean-field theory

In single-layer graphene the band dispersion remainsrlioeézr a broad range of
energy surrounding the charge neutrality point. When gegapls honeycomb layers
are chirally stacked only two sublattice sites, one locateithe top layer and one
in the bottom layer, are not connected to near-neighborghardayers and are
therefore relevant at low energies. Hopping between thiss, 8.g. from top

(t) Ato bottom p) B, becomes ailN-step process, leading to two remarkably flat
bands with+kN dispersion and layer pseudospin chiralj6, 9]. These unique
band features are encoded in the low-en&rgyHamiltonian given below. Because
of the flat bands and the large pseudospin chirality, intemas become dominant
at low energies in few-layes[ 9] chiral graphene. In mean-field theory inversion

symmetry is brokerd[0] within each spin and valley, leading in a contact interacti
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model to the following Hamiltonian:

A =S aslho+hu+he]cips (4.6a)
kapss

hg = sk[cos(Nrpk)afB+sin(N<p,€)o)7B}6sg, (4.6b)

hy = [Volod™ +Vi0,07"] b, (4.6¢)

he = —[Vo+Ve0l?aPP]nbs, (4.6d)

wheregy, = (Vohk)N/(—y1)N~1 is the band dispersioNg ; = (Vs+Vp)/2 denotes
the average (difference) of intralayer and interlayemetgons, and density matrix
Agg = A*lzk<c:;ﬁgckas>f must be determined self-consistently,, is the density
sum (difference) of the top and bottom layers. @ot= 1k /ky and1,(+1) labels
valleysK andK’. The Pauli matricesr act on thewhich-layer pseudospin and
S(+1) denotes the real spin. Because of the in-plane rotatiomah®try of the
continuum model, it is easy to verify that this mean-field Heonian does not
generate Hartree (H) or Fock (F) potentials that are offjoifl in layer index.

We seek self-consistent solutions for tNe= 2 QAH, QSH, and LAF s-
tates. When Zeeman coupling is neglected the Hartree arkldémdributions to
the Hamiltonian are mass terms proportionabto the four flavors decouple, and
the mean-field equations are readily solved. For LAF, QSH, @AH states the
mass terms have the respective forss, ® 0;, —MT; R S; ® 0z, and—MT; ® Oy
wheres; is a spin Pauli matrix, as summarized in TaBle Using the constan-

t density-of-states per flavep = y1/ (4nﬁ2v§) of the normal state, introducing an

ultraviolet cutoff at the inter-layer hopping enengy and assuming weak-coupling,
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the gap equation can be solved to yield

m= 2V1 eXp(—Z/V()VS) . (4.7)

4.3.3 Influence of Zeeman field
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Non-Collinear LAF Order
Figure 4.8: Upper panel: (Left axis) LAF tilt angk (green) and total effective-
field tilt angle including both exchange and external fieldnponents (cyanys.
in-plane magnetic field. (Right axis) Field aligned exchengosf (green) and
total effective-fieldM +mcos6O (cyan)vs. in-plane field. Lower panel: sketch of

the LAF tilt angles obtained from the upper panel. We assufdmaV spontaneous
gap atB = 0 throughout the section, corresponding/gv's ~ 0.334.

When Zeeman coupling is included, the QAH state quasipestisimply
spin-split, leaving the ground state unchanged but thegehgap reduced. For a

4 meV spontaneous gap at zero-field, corresponding to dior@ass interaction
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VoVs ~ 0.334 - close to the value expected to be appropriate for sece€oulomb
interactions, a field of- 35 T drives the gap to zero. The QSH and LAF states, on
the other hand, have more interesting non-collinear magfietd induced states.
We apply a Zeeman field in thedirection and allow spin-densities in tkxe-2
plane. In practice this amounts to keep'mﬁ real but allowing spin off-diagonal
terms. In this case we find that for a 4 meV spontaneous gap,AReilt angle

6 relative to thexdirection decreases fromy/2 at zero field tarr/3 at 100 T. The
mass terms are correspondingly spin-dependent with coemgernn thex and Z
directions. For the LAF

hF = hg — msinf's,® g; — [M 4+ mcosf] s,® gy, (4.8)

where 2M = gugB denotes the Zeeman splitting andand 6 are determined by

solving
msing = VS y Msing (4.9)
4AL &L Es
Ve M + mcosf + s¢
mcosf = -> > i ki k. (4.10)
4Ak’S:i Es

with EL = \/(M +mcosh = &, )2 +m? sirf 0. The four quasiparticle energies are
+E., so the gap isE_ evaluated at;, = M +mcos0, i.e.,, 2Zmsinf.

For weak fields the quasiparticle spins are nearly perpatatito the Zee-
man field. As the field strength is increased the quasipatelte spin-polarizations,
which aresandk-dependent, all rotate toward theifection and the exchange field

follows suit. Assuming thays > m M we find that the perpendicular LAF mass
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Figure 4.9: Canted LAF state quasiparticle bands for asefien-plane magnetic

field strengths:10 T (blue), 50 T (red) and 100 T (green). Tdshdd purple curve

for 100 T shows the quasiparticle bands when the unaligneldagrge fieldnsind
is neglected.

componeninsing is still given by the right hand side of Eq.{), and that

V.
Yo¥s (4.11)

mcosf = ——
2— VoVs ’

implying that the LAF tilt angle is

4V1 . (2 — V()VS) ) e—z/(VOVS)

0 = arctan
gusB- voVs

(4.12)

This solution was confirmed numerically and is summarizeeig.8.

The gap is nearly independentdf, in clear contrast to the QAH case. As
M increases th& = 0 quasiparticle band extrema of the LAF move to largér
v/M+mcosB as illustrated in Figt.9. ForM >> msin6 the non-collinear LAF state
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can be viewed as an exciton condensate formed by pairing@hsdan the bilayer
majority spin band with holes in the minority spin band. Iistimit the LAF state
is therefore similar to the Zeeman-coupling induced excttondensate considered

previously in the single-layer graphene case by Aleeiet.[87).

4.3.4 Influence of electric field

Because they all have, layer pseudospin order, LAF, QAH, and QSH states re-
spond similarly to an electric field perpendicular to theelay which adds ayo;
term to the single-particle Hamiltonian. For the LAF, foeexple, the LAF masses
my | for mp = O differ only by a sign. When a perpendicular electric fieldpplied,
masses are enhanced for one spin and suppressed for thelotbar mean-field
calculations first order phase transitions occur betweatestvith distinct broken
symmetries as illustrated in Fg1Q leading eventually to a state in which the sense
of layer polarization is the same for all spin-valle§8[ Experimental behavior in
an external electric field will likely be sensitive to the ping energies of domain
walls that separate different spontaneous quantum Hadissta

When an in-plane magnetic field and a perpendicular elefo#lit are both
present, the field aligned LAF order parameterosf is little changed compared
to theE = 0 case. The electric field dependencengf, is mainly determined
by a competition betweemyo;, andmsinfs,® g;. The noncollinear LAF phase
is, however, strengthened by its field-aligned order-patamcomponent and is
more robust against a perpendicular electric field when #enan field is large,
as illustrated in Figd.10 Fig 4.10 also shows that the LAF state stability can
be dependent on the order in which the two fields are applie@. ndte that a

small electric field between the layers can stabilize a statehich one flavor is
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Figure 4.10: LAF exchange-interaction masses at parallel magnetic fiel@ =

0 T (magenta), 20 T (green) and 40 T (cyam) perpendicular electric-field mass
mp. The solid and dashed curves were obtained by following thie €volution
vs. electric field at fixed Zeeman field and. Zeeman field at fixed electric field.
The inner panel indicates the LAF (magenta) and fully laysapzed (green) state
stability rangews. electric-field mass at zero magnetic field.

polarized in a sense opposite to the other three and chaafley,vand spin Hall
conductivities are all non-zer®j. This state is not represented in Figl0where

we have assumed that the two valleys have the same layeizadiain.

4.3.5 Discussion

Low-energy electrons in bilayer graphene have spin, vadleg layer two-component
guantum degrees of freedom. Because it appears in the banitbétaan, the layer
pseudospin plays a different role in bilayer graphene misyian spin or valley.

Flat conduction and valence bands and Bloch states 3wt layer-pseudospin
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chirality combine to make the band state unstable towarthédyfaf insulating bro-
ken symmetry states that have independent spontaneouplalgezations in each
spin-valley component. Three distinct states have no dveser polarization, a
guantum anomalous Hall state, a quantum spin Hall statea éager antiferromag-
net stated)]. In this Letter we have shown that the QAH state can be djsished
from the QSH and LAF states by examining the dependence afhtheyed quasi-
particle gap on the strength of Zeeman coupling to an ingolaagnetic field. In
the QAH case, the ground state is unchanged but the quasipayap is reduced
- vanishing when the Zeeman coupling strength is equal tagtband state gap
via a mechanism reminiscent of the Clogston limit in supedtators. The QSH
and LAF states respond to Zeeman fields in a more interestyghy establishing
non-collinear spin states within each valley and evolvimgard an unusual kind
of exciton condensate in the strong Zeeman coupling limite §ap of QSH and
LAF states is independent of Zeeman coupling strength eh@avisharp distinction
with the QAH case. When combined with probes that are sgaditi edge state
transport, which is topologically protectd&d in QAH and QSH cases but not in
the LAF case, this property should enable any of the thrdesta be uniquely
identified.

It appears clear that bilayer graphene is exhibiting newystardy physics.
This Letter points out that experimental studies of the Zaeenergy dependence
of the gap could help to distinguish between different gmbses in bilayers, and
also in largerN chiral few-layer graphene. As mentioned previously sone®th
retical authors have concluddd] 69| that the ground state of a neutral bilayer
should be aematic XY-plane layer-pseudospin ferromagnet which breaks ineplan
rotational symmetry, rather thanzadirection Ising pseudospin ferromagnet. (The

z-component of the layer pseudospin density is the diffexeén density between
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the top and bottom layers while an x- or y-component indeatéerlayer coher-
ence.) The nematic states are most strongly distinguigioad the .7 -symmetry
breaking spontaneous quantum Hall st&@e$), 15, 20, 21, 46] by the absence of
a charged quasiparticle gap in the former case. In the nerstie interactions
generate mean fields that are off-diagonal in layer indexraddce the symmetry
of the bands, splitting ther2K(K’) Dirac points into tworr-Dirac points that are
displaced fronK(K’) in an arbitrary direction. The mean-field-theory propehitt
lower energy states are obtained with Ising comparedXopseudospin order is
related to the larger susceptibility associated with tsisyalospin component. (The
band eigenstates are perpendicular toztdeéction for allk, so all band states are
easily rotated toward pseudospin polarization.) Other potential explanatiams f
the anomalies observed to date can be sought in trigonalingagifects, which
are relevant below. 1 meV in bilayers and have been ignored for simplicity in the
present discussion, and in structural changes unintailjanduced by current an-
nealing of suspended samples. There is however not yet aesdlexplanation of
how either of these might result in a gap at Dirac point. Theeobed gaps appears
to be of many-body origin, in any event, since they appear anlemperatures that

are much lower than observed g&l3[18, 68, 76].
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Chapter 5

Broken 3J (12) Symmetry Quantum

Hall Ferromagnets

Trilayer graphene provides a novel two-dimensional etecyas with markedly
different low energy behaviors determined by its stackindea The four spin-
valley flavors and the B Berry’s phase give rise to Hall plateaus with quantized
steps of 4°/h and 12-fold degeneracy at the zeroth Landau Level. We preic
electron-electron interactions spontaneously breal8th@d 2) symmetry and drive
guantum Hall effects at all the integer fillingsfrom —6 to 6 following the Hund’s
rules. Atv = 0 of ABC trilayers, electric fields can drive phase transii®etween
spin- and layer(valley)-polarized states with a criticale linear in (perpendicular)
magnetic fieldB. In ABA trilayers, we find that the Hund'’s rules and the- 1,2

LL crossings depend on the next-nearest layer tunnelingshtenmagnetic field.
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5.1 Introduction

Recent experimental advances with remarkable control singile layers of bulk
materials have ushured in new members of the two-dimenisitetwiron gas (2DEG)
family, such as graphene, bilayer graph&h@jnd the nontrivial surfaces of topo-
logical insulatorsB5, 89, that have even more peculiar properties than the usual
2DEGs. Intriguingly, many of the exotic features in thesevrBDEGs are re-
lated to the quantized Berry's phase gained by quasipesticircling around the
Dirac points. As in the case of semiconductor 2DEG in a petjpethar magnetic
field, when disorder is weak, Coulomb interactions inducangum Hall ferromag-
netism,i.e., spontaneous spin polarizations with gaps much larger theaman
energies)0, 91]. The additional degrees of freedom of the new members, asch
layers (surfacesy—94], valleys|29, 30, 95] or zero energy degenerate Landau Lev-
el (LL) orbitalsf, 31], separately double the degeneracy near the Fermi eneayy of
neutral 2DEG and lead to novel phenomena such as excitorensation96, 97,
canted antiferromagnetism, and valley or LL polarizatj@@s64, 65]. Trilayer
graphenegj, 50], which has become experimentally feasible rece68yB4, 98-
103, offers a brand-new degree of freedom deriving from thelstay order of the
layers that has far-reaching consequences at low energies.

At first glance, both ABA-stacked and ABC (or chiral)-stagkieilayers
should have Hall plateaus at= +4(n+ 3/2) with 12-fold zero energy LLs in
the simplest model, because of the 4 flavors in spin-vallags@and because of the
3t Berry’s phase, 50]. However, microscopic structures, low-energy physias an
interacting pictured, 68] are strikingly distinct in graphene trilayers with diféart
stacking orders. ABC trilayers are the next chiral geneadilon of monolayer and

bilayer graphene. Only two sites located in the top and botayers remain at low
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energy and in a single spin-valley the energy degeneradyeddirac point is thus
protected by inversion symmet@d]. Any perturbation breaking it creates an ener-
gy gap at the Dirac point and thus supports a layer-polastai. The quantized
LL energies are unique aﬁ(]?’) ~ B%2,/n(n—1)(n—2). On the other hand, the

band structure of an ABA trilayer consists of a massless nayeo and a massive
bilayer graphene subbands. A unbiased ABA trilayer hasamsymmetry with
respect to the middle layer and an interlayer electric figlly increases the band
overlap instead of opening a gap. The LL spectrum can be dese superposi-
tion of monolayer-like LLEY ~ BY/2,/nand bilayer-like LLEP ~B n(n—1)
with different cyclotron frequencies, leading to the LL ssong[L04, 105.

In this chapter, we first provide effective models that gave low-energy
behaviors of trilayer graphene, then predict the Hundss@bllowing which electron-
electron interactions induce quantum Hall effects at adl dnodectet integer fill-
ings, and determine the critical electric field that drivies tirst order phase tran-
sition between spin- and layer(valley)-polarized stateg & 0 of ABC trilayers.
We find that next-nearest layer tunnelings have pronountdécence on determin-
ing the details of Hund'’s rules and LL crossings in ABA trigatg while other weak

hoppings are negligible.

ABC Trilayer AB Bilayer ABA Trilayer
Al &2 @ pj Al & ® pj
A1l & ® p]

A2 @~ @ B2 A2 @ —e B2
A2 @ —e B2
A3 e —e B3 A3 e—"e® B3

Figure 5.1: Schematic of the unit cells of few-layer graphand the most important
interlayer hoppingsy).
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5.2 Quantum Hall ferromagnetism in ABC trilayer
graphene

When trigonal warping and Zeeman effect are neglected,amatisence of inter-
actions the low energy properties of ABC trilayer graphereedetermined by the
band Hamiltoniar, 50]

v 0 s
o )
ABC V12<n3 0 )

1 0 B[ nm o
0 -1 v\ o —nn

In Eq.6.1) the 2x 2 matrices act on the low energy sites of the ABC trilayer #Ad

+  Ug (5.1)

Bs in the leftmost panel of Figh.1). w = hk +eA/c is the 2D kinetic momentum
whererr = 11, + 75, and1?(+1) represents vallel((K’). vq is the Fermi velocity
in monolayers angy ~ 0.5 eV[6, 10Q is the interlayer nearest neighbor hopping.
2uq4 is the potential difference between the outermost lay@rs)gyrise to an energy
gap at Dirac points.

There are three zero energy eigenstates of unbigggst in each valley,
i.e, (0,¢ghk) with LL pseudospinn = 0,1,2 and and(@k’,0) for the other val-
ley. The dozen degenerate states follow from the directywmbdf LL orbital
J(3) triplet, real spinSJ (2) doublet andvhich-layer SU (2) doublet, where val-
ley and layer pseudospins coincide. Zeeman coupling pexiteal spin-splitting
2Ezpm = gusB = 0.116x B[T| meV whileug induces LL energ¥, | = —1%uqg(1—
n(Ras/y1)%?) which splits LLs by distinguishing their layer and LL orHigseu-
dospins. han = (vV2vh/yilg)Nyi is the cyclotron frequency of quasiparticles in
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chiral N-layer graphene.
The self-consistent Hartree-Fock Hamiltonian that dessrthe dozen zero
energy states contains single-particle pseudospinisgliftelds and Hartree and

exchange interaction contributions:

(ans| ARgc|BN'S) = (ELL 8ss — Ezm 0Z) Onri Oup
+ En(Dg — A1) T 3 Os¢ Onrr
s
- EF Z ar}f’nln/AgRéS 583 ’ (52)
NNz

where we have used the notatian= 0,1,2 to denote LL orbitals, indes and
Pauli matrixg? act on spin space, and, 3 = B(K) or T(K') are layer(valley)
indices.Eg = e2/£IB is the strength of exchange interactions and the Hartre fiel
En = (2d/2Ig)Ef captures the electrostatic capacitance between the topcdiohn
layers, whergg = 25.6nm(,/B[T]) ! is the magnetic lengthd = 0.335 nm is the
separation between adjacent graphene layé&gs.= S ,A%ns Where the density
matrix Agﬂf = (cgn,gcang must be determined self-consistently by occupying the
lowestv + 6 eigenstates o##yF.. The exchange integra]ﬁ“nf’nln, capture fermion
guantum statistics and are defined as

2 GB
ap - d<k 27Te2n
Xnnz,nln’_/Wanz(_k)Fnln’(’@? Er (5.3)

wheren®? becomes 1 foor = B ande 24 for a # B. F,y(k) are the LL Form
factors in terms of associated Laguerre polynomials thatuca the spatial profile
of the LL wavefunctions.

The self-consistent solution of the Hartree-Fock theorytfalanced ABC

trilayers is summarized in Fig.2 usingB = 20 T. The gaps typically much larger
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thanEzy justify our weak-coupling theory. The duodectet fillingspgeeding in
integer increments starting from filling factor= —6 to 6, follows the Hund’s
rule behavior: first maximize the spin polarization; thenximaze layer (valley)
polarization to the greatest extent possible; and finallximee the Landau Level
polarization to the extend allowed by the first two rules. $tages with spins along
the field direction (say spif) have lower energies than the spin down states via
the Coulomb exchange enhanced spin splitting. For balaA&«d trilayers, the
layer symmetric states (S) are filled before the layer antragtric states (AS). The
three distinct Landau Level orbitals are filled in smaihefirst order if the other
two quantum numbers are exactly the same. Therefore, theifirélled LLs are
IS 01), |S 11) and|S,21) followed by the AS counterparts; the next six filled LLs
are the spin. states in the same order.

The Hund'’s rules imply that the interaction driven integaagtum Hall s-
tates are spin and pseudospin polarized at—5 to 5, as depicted in Fi§.2 All
these 11 states are spirpolarized ferromagnets with a maximumuwat= O driven
by the exchange enhanced spin splitting. Provided by the éppeddence of the
microscopic Hamiltoniann = 0 LL pseudospin is polarized except at filling fac-
tors that are multiples of 3 while = 1 is polarized only ab = +1 and+4. LL
prefers to occupy both layers simultaneously in absencateflayer bias, giving
rise to XY type layer polarization with spontaneous intgelacoherence. XY phase
breaks in-plane rotational symmetry and takes the advarghgo Hartree energy
cost while Ising polarization breaks inversion symmetrgl gains more exchange
due to its intralayer character. Both the Hartree energytlaadlifference between
intralayer and interlayer exchanges are the same oevdbfig - €/1g, and it turns
out that Hartree energy slightly dominates over exchanfferdnce, leading to a

XY layer-ferromagnet whengq = O.
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Figure 5.2: Upper panel: filling factor dependence of thettdarFock ernergies
of occupied and unoccupied LLs for a balanced ABC trilaye(all. Energies are
in units of (11/2)1/2€?/elg. Unoccupied LLs are sextets (blue), triplets (green),
or singlets (cyan); occupied LLs are doublets (magentajnglets (red); LLs at

v = +6 have an extra double degeneracy due to Zeeman splittingger_panel:
filling factor dependence of the polarizations of up spiru€ symmetric layer
(red),n=0and 1 LL orbitals (green and cyan). LL polarizations aratre¢ to the
n= 2 orbital.

Duodectet quantum Hall ferromagnets have fascinating reigoece on the
interlayer electric field. A very small potential differenbetween the top and bot-
tom layers is sufficient to change the character of the lagéefy) polarization from
the XY spontaneous-coherence form to an Ising polarizdtion in which one lay-
er is occupied before the other. If the induced potentidétthce between the top

and bottom layers becomes dominant over the exchange iddpoe splitting be-
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tween the highest occupied spin up and the lowest unoccgpieddown LLs at
filling factor v = 0, there is a quantum phase transition from the spin poldrize
ferromagnet state into the layer(valley) polarized stdter instance, aB = 20T

(¢ = 1) the layer polarized state has the lowest energy if thenpialedifference
between the top and bottom layers excee@g¥. The gap between the highest oc-
cupied LL|T,2,1) and the lowest unoccupied LB,0,|) is 0.46eV for zero bias
and is reduced to only.P8eV near the critical point. We find that the critical elec-
tric field for this first order phase transition is 15 mV/(fijy comparable to the
experimental value in bilayerkg, 17, 88, 106. The linear dependence of the crit-
ical field onB follows from the fact that both bias supported enerdgigsandE, |
are linear functions oB.

In high mobility and low disorder suspended samples, weciuatie that
the states at = +6,0 persist down to zero magnetic field exhibiting spontaneous
guantum Hall effectd]], because the chiral trilayers are susceptible to broken sy
metries that are accompanied by large momentum space Bawgtares and dif-
ferent types of topological order. Remote weaker hopping&BC trilayers that
have been ignored so far mainly result in trigonal warpirigatfat energy scale 7
meV[6]. This effect is likely to be washed out by excharige~ 56,/B[T]/e meV,

if not smeared by disorder.

5.3 Quantum Hall ferromagnetism in ABA trilayer

graphene

Unlike ABC trilayer quasiparticles with pure chiralityglvand structure of an ABA

trilayer consists of a massless monolay&1) and a massive bilayed & 2)
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subbands. Unbiased ABA trilayers have mirror symmetry eespo the middle
layer and their low energy physics is governedl/

0o mt — 0
JNBA = |Vo +
m 0 0 o- .

_ —2 [ 0 m'? 2o ]
® + , 5.4
_ﬁvl ( 7 0 00/ . &4

where the] = 1 subbands are layer antisymmetric sté#as — |Ag) and|B1) — |B3)

NI

™
Nl

while the J = 2 subbands are layer symmetric staf@s) + |Az) and |By) with

1 enhanced by a factor of2. Clearly, the mirror symmetry leads to layer co-
herence with XY form even in the single-particle level. Thextanearest layer
tunnelingsl04, i.e, y» = —20 meV, y5 = 40 meV andd’ = 50 meV, lead to a
band gap for each chiral branch separately but no direct gamal. In the pres-
ence of a magnetic field, valley and linearly combined stk coincide, and
the self-consistent Hartree-Fock Hamiltonian that déssrithe broken symmetry

zero-energy duodectet states is

(inis|.Zagia|injs) = (E[| 8ss — Ezm0%) Bun Oy

E
+ 7HA52 (208,,i — 1) 354 Onin; Oy

_EF Z Xginz,nlnjAgzigésga (55)
NniN2
where LL indexn; depends on its atomic orbitgli.e., n = 0 only forJ = 1 branch
while n = 0,1 for J = 2 branch. Exchange integra{d is still defined by Eq5.3)
but with a more general definition!! = 5 ,cmVin/Vo, WhereVo 1, respectively

denote intralayer, nearest interlayer, and next-neanestayer interactions in mo-
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mentum space, ang, is obtained from the interaction matrix element decomposi-
tion (ij|V]ij) = ¥ mCmVm. Otherwise the notation in E&.©) is the same as in the
ABC case. Since we focus on the balanced case wjth 0, E; | is absent and
replaced byE[, which is the diagonal elements in Eg4) from next-nearest layer
couplings.

We find that the duodectet fillings follow the same Hund’s ro&havior

(@B=10T
I=E======- = 1
L
I
]
>-0.1r B
o
(]
c
LU_O.Z’ —_— — : — ; — — — ]
0 — — — = = =
L _—em == =
-0.3F I
-6 -4 -2 0 2 4 6
(b)B=15T c)B=25T (dB=35T
Of === — —_—
[T
I —
wi — —
>-0.2 — — —
<) — —
<5} — —
c — —
w-0.4 _— —_— — —
n —
I — — — —
-0.6 — —
-S> -4 -3 -5 -4 -3 -5 -4 -3

Filling Factor v

Figure 5.3: (a) Filling factor dependence of the HartreekHd1F) ernergies (eV) of
occupied and unoccupied LLs for a balanced ABA trilayer at 1l0noccupied LLs
are quartets (green), doublets (blue), or singlets (cyagupied LLs are doublets
(magenta) or singlets (red). (b)-(d) Field dependencee®Hh energies (eV) of the
lowest four LLs atv = —5,—4 and—3. We use 15T in (b), 25 Tin (c) and 35 T in
(d). Magenta and red respectively denotertke0 and 1 orbitals of LUA; + Az 1);
green and blue respectively denote the 0 and 1 orbitals of LLIB, 1). Zeeman
splitting is small enough to ignore and we assume 1.
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as the ABC case while influenced significantly by next-nedesger tunnelings.
This Hund'’s rule prefers symmetric layer polarization se ih= 2 LLs are filled
first. When the magnetic field is smaller thBg = 17 T (¢ = 1 hereafter), the
first six filled LLs are|A; + Az 1) with n=0 and 1, therB; 1) with n =0 and

1, and lastly/A; — Az 1) and|B; — Bz 1) with n= 0. The next six filled LLs are
the spin| states following the same order. The above pictures are suinea in
Fig5.3@). Atv = -5 and—4 |A; +As 1) LLs would be occupied first, taking
advantage of gaining exchange, avoiding Hartree energyasuk being favored
by E/,. At v=-3B0,1) LL is then occupied, which lowers the total energy
by gaining intralyer exchange and negative Hartree eneogy, @and also being
favored byE/[, . There is a3J (2) symmetry in the highest occupied LL between
theJ =1 spinf LLs atv = —1. Itis the single-particle ter/  , originated from
the next-nearest layer tunnelings, that malkas- Az 1) more favorable. We note
that similar symmetries emerge at= +1 and+5 and are lifted byE/, which is
independent of spin, LL orbitad and magnetic field.

While the Hund's rule behaviors at> —3 are universal, the filling of LLs
atv = —5,—4 and—3 becomes rather field dependent, as indicated irbFAgAs
the field strength becomes larger thBn, atv = —4, the pair of LLs|B, 1) are
filled before the other paifA; + Az 1). This results from that Coulomb physics
overwhelms the next-nearest layer tunneling effects, hatihtralayer exchange
dominates interlayer exchange and Hartree energy costhdfarore, when the
field is turned up t@.; =33 T, atv = —5 LL |B20 1) instead of A1 +A30 1) would
be filled first. The two critical fields are roughly determirgdE /2 ~ AE/ | , since
the difference between intralayer and interlayer exchsutgeEy) competes with
the combination of Hartree enerdy /2 and single-particle LL energy difference

AE[| . The solution is in agreement with the self-consistent mizakresults Bc;
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andBcy).

Unlike in ABC trilayers where only) = 3 bands are present at low ener-
gies, both]J = 1 and 2 subbands appear at all energies in ABA trilayers,rgad
to LL crossingP9, 104, 105 between the two chiral branches when/w, =

v/ne(nz — 1) /2m is satisfied. We anticipate Coulomb physics would open gaps
at LL crossing points, whose characteristics would depenthe orbital indices

of the crossing LLs. The measurement of Shubnikov-de Haflatamns is able to
probe the chirality of different subbands and the LL crog®ffect, in which the
coexistence of two 4-fold LLs doubles the degeneracy anceases the density-
of-state peaks. Because of the LL crossing, the sequende gfiateaus in ABA
trilayers highly depend on the magnetic field strength.

We stress here that for ABA trilayers, it is important to unbg next-nearest
layer couplings since these tunnelings play an essentgirdetermining the ABA
Hund’s rule and the LL crossings. In contrast, the effedtiigonal warping in the
J =2 subbands is relevant belewl meV and can be fairly ignored in the presence

of disorders and interactions.
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Chapter 6

Conclusion

6.1 Experimental observations

Intensity (a.u.)
1

2600 wavenumber (cm) 2800

Figure 6.1: Raman spectroscopy of two trilayer graphenécdswith ABA and
ABC stacking orders respective6g).

After electrical measurements, graphene devices arefigeinising Raman
spectroscopy to be bilayer, ABA-stacked or ABC-stackelhyter graphendg.

As shown in Fig6.1, the 2D peak of an ABC trilayer is more asymmetric with a
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pronounced shoulder, compared to that of the ABA counterppais experimental
advance opens the door to discover a large family of diffegeaphene 2DES's,
by identifying their layer numbers and their stacking osdas well. The electric
field induced gap openin@[50] in trilayers have started to be observed in optical

experiments[03 recently.

——Insulating-BLG
20 ——Noninsulating-BLG
- 16
=
K
v 10
5
0 . -
-5 0 5
V,, (mV)

Figure 6.2: The observed spontaneous gap in suspendedrui@phend[3)].

Recent experimentsB, 17, 18, 76] have provided convincing evidence of
strong electronic correlations near the charge neutrpbiwt in bilayer graphene,
although the presence of gaps is difficult to establish. Tisedirect spectroscop-
ic measurement&p] in ultra-clean double-gated bilayer graphene, has resbdv
gap of~ 2—3 meV at charge neutral point using source-drain bias aspbet®-
scopic tool. This anomalous insulating broken symmetriestaclearly shown in
Fig.6.2with double peaks. This unique feature bears a strikingmétance to the
BCS superconducting density of states and strongly suggiestformation of an

ordered phase with an energy gap. Importantly, this gap eacldsed by appli-
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cation ofE; ~ 13 mV/nm of either polarity, as shown in F&gg3(@). Conductance
G increases with smalE | ; upon application of moderaté, ~ 13 mV/nm, the
BCS-like structure completely vanishes and the conduetamaches a finite mini-
mum of ~ 100 uS at zero carrier density. Eventually, for sufficiently kg , G
starts to decrease with increasing fields, reverting to #ékmown single-particle
behavior. The absence of edge states is the most unambiggpasmental sig-

nature, since the two-terminal conductivity is as low €326 /h. It is judged that

(a) Finite E reduces spontaneous gap (b) Spontaneous gapses with B

V(mV)

-0.5 B(T) 0.5

Rl .3
S0 g (mvinm) 0

Figure 6.3: The influence of electric fields and magnetic $&d the spontaneous
gap of suspended bilayer graphet@}]
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among the proposed stat@f[the observations are most consistent with a layer-
antiferromagnet state (LAF). LAF state that breaks inwsrgsymmetry and time
reversal symmetry. Fi§.3(b) shows that this LAF state continuously evolves to the
v = 0 quantum Hall state with a gap that increases monotonigatly a magnet-

ic field field. Further experiments might demonstrate thetexice of non-collinear
LAF order at finite magnetic field,e. LAF state at zero field is smoothly connected
to thev = 0 quantum Hall ferromagnet state at infinite field. Althouglsidiffi-

cult to explain the particle-hole asymmetry in the expenibdata, this experiment

provides the first mapping of the ground states in ultrarclatayer graphene.

300

51G
0=
- Dev 2

G (1)

0 i
-10 V, (V) 10

Figure 6.4: The observed spontaneous gap in suspended ABgyetr
graphen&4§].

As the spontaneous inversion symmetry breaking and thdtaeswener-
gy gap have been predicted in all the chiral graphene 2DE®s layer number
N > 2[9, 10], the experiments have also investigated the thicker coofsbilayer
graphene—ABC (chiral) trilayer graphene. Big.displays the two-terminal con-
ductance of two different suspended trilayers devicesreéteone (device 1) with
ABA stacking and the blue (device 2) with ABC stacking, asraction of back gate
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voltageVy at T = 1.5 K. Both curves are V-shaped, characteristic of high mtybili
samples. Interestingly, the two devices display dradyichfferent minimum con-
ductanceGn at the charge neutrality poinGnmn is ~ 50 uS for the ABA trilayer
but is close to zero for ABC trilayer. This striking contrastminimum conduc-
tivity, which differs by several orders of magnitude, notyolabels the stacking
orders of high mobility trilayer graphene samples, but &tsbtime discovered8]
the predicted), 10] insulating broken symmetry state in ABC (or chiral) statke

trilayer graphene.

6.2 Future directions

The prediction®] of spontaneous quantum Hall states and the observaBph)

of insulating broken symmetry states are just the startirfigscinating physics in
few-layer graphene 2DES'’s, we close this thesis by poirdingsome potential fu-
ture directions that interest both theorists and experiaiisits in condensed matter

physics.

() Apparently, electric or magnetic fields, carrier deiesif temperatures and
disorders are all able to drive phase transiti@8spetween different spon-
taneous quantum Hall states. Some of these transitionslesare observed
to date, but more are waiting to be explored! ParticulaHg, phase diagram
for v = O state in bilayer graphene is expected to be very rich. Agretigu-
lar electric field drives the antiferromagnet state at zeagmnetic field or the
ferromagnet state at high magnetic field to a layer polarsgate. At small
magnetic field, antiferromagnet state is driven to quantoonelous Hall s-
tate when the system deviates from charge neutrality. Afgehaeutrality, as

the perpendicular magnetic increases, the non-collimgariantiferromagnet
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ground state smoothly evolv@g] into the quantum Hall ferromagnet state
with spins rotating to align with the field. On the other haimdthe presence
of parallel magnetic field[6], the non-collinear layer-antiferromagnet state
can be viewed as an Zeeman-coupling induced exciton coatteftsmed by
pairing electrons in the bilayer majority spin band withdsin the minority

spin band.

(i) Topological order usually has protected edge or s@fsiates against weak
disorders or interactions. For the five predicted spontasiemantum Hal-
| states, only quantum anomalous Hall and quantum spin Hatés are in
company with topologically protected edge states alongpthendaries while
the others’ edge states are only robust for zigzag ternoinsti However, a-
long a domain wall or an interfac2®] that separates different spontaneous
guantum Hall states, novel one-dimensional solitonic zecales do appear
and the number of the modes are related to the change of hotkowgical
properties. It's also intriguing to study the pining eneafyhe domain walls,
and how a domain wall moves under external perturbationsegshe energy
differences between different spontaneous quantum Haésare only 1%

of their condensate energi2g].

(i) Spontaneous quantum Hall states are predicted toroecuahiral graphene
with more than one layer8]. So it would be useful to investigate whether the
layer number has an influence on the character of the groatessthow the
critical temperature changes with the film thickness, and/hat conditions
chiral trilayer graphene is a two-dimensional topologiogllator. Quantum
spin Hall effect has been proposed in monolayer graphengagtogically

nontrivial consequence of the intrinsic spin-orbital maigtion, preserving and
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(iv)

v)

protected by the time-reversal symmetry. Unfortunatéig, quite fascinating
phase is not likely to emerge in graphene since the spinabribieractions
have been proved to be smaller tharrd@neV, namely, the critical tempera-
ture is below 102 K even in the clean graphene. However, this effect might
be realized in chiral odd-few-layer graphe@lejia spontaneously symmetry
breaking physics, as quantum spin Hall state is one of thdidate ground

states.

One of the essential reason we use current annealingn heparing the
suspended bilayer graphene devices is that the broken slyynpig/sics in
charge neutral bilayers is very fragile if disorder is présérom theoretical
calculations and also experimental observations, thermum conductivity in
bilayers has a quite universal value3€? /R in both suspended and substrate-
supported bilayer graphene, as an influence of charge itrgsurlt turns out
that this minimum conductivity can be strongly reduced-t6.02¢?/h after
current annealind[3]. It is highly desired to know the influence of magnet-
ic disorder and the interplay between broken symmetry gkyand charge
disorder]L9].

Each graphene few-layer is a unique 2DES depending ostatking order
and layer number. This fact opens the door for studying 2BE&h differ-

ent chiral quasiparticles. It's very interesting to studg tunneling behaviors
between different chiral 2DES’s or to study the subtle datrens between d-
ifferent chiral quasiparticles in different sub-bands ééa-layer with a pure
stacking order. One example of the latter is the ABA-stadkialyer where

monolayer-like and bilayer-like sub-bands coexist at lomergies. It is also

likely to have a stacking disord@4|, a new type of topological disorder, in
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mechanically exfoliated multilayer graphene sampies, grain boundaries
or lattice mismatching lines separate regions with difiéitacking orders.
Topologically protected edge (interface) states are drpeto emerge, sup-

ported by external fields or even by electron-electron adeons.

Few-layer graphene systems are unique 2DES’s and have on@@sss in

store for us to discover.
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