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Mathematics of Origami 

 

Kyoyong Song, MA 
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Supervisor:  Efraim Armendariz 

Co-supervisor: Mark Daniels 

 

This report examines the mathematics of paper folding.  One can solve cubic 

polynomials by folding a common tangent to two distinct parabolas.  This then leads to 

constructions that cannot be done with a straightedge and compass such as angle 

trisection and doubling a cube.  
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Chapter 1:  Introduction 

 

Origami is a traditional Japanese art of paper folding.  Typically, origami artists 

use a piece of square, bicolored paper, and after a series of carefully calculated folds, the 

paper is transformed into birds, flowers, animals and other familiar shapes.  Origami is a 

very popular hobby among Japanese children and its popularity spread to other countries 

around the world.  Even with its growing popularity, many people think of origami as 

simple paper folding or childish activity.  Recently, however, growing understanding of 

the mathematical and computational aspect of origami has allowed expert folders to 

create shapes that are incredibly complex and realistic from a single sheet of paper [2, 

p.168].   

The connection between origami and Euclidean geometry is quite obvious.  

Creases and edges of paper represent lines, and intersections of creases and edges 

represent points. Some origami constructions are more intuitive and easier to perform 

than constructions with straightedge and compass.  For example, finding a midpoint or 

constructing a perpendicular bisector of a segment is much easier with paper folding.  

Thus paper folding can be used in geometry classes to introduce constructions of points, 

lines and angles.  

The types of folding operations that are possible have been enumerated by several 

mathematicians.  A list of origami operations is presented in the following chapters.  

Based on these operations, paper folders can trisect angles and double the volume of a 

cube which cannot be done with a straightedge and compass [5].  
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Folding and unfolding of two- or three-dimensional objects has application well 

beyond paper folding. A foldable telescope lens is being developed so it can be sent into 

space.  Car manufacturing companies use origami to test and produce safer ways to fold 

airbags [9].  
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Chapter 2:  Folding Binary Fractions 

 

In paper folding, folding a fraction, 
 

 
 where a and b are positive integers, is 

defined as locating a point 
 

 
 of the way along an edge.  For example, folding a fraction  

 

 
 

is equivalent to locating a point that is 
 

 
 of the side length away from the bottom edge.       

Often in practical paper folding, there is a need to fold a fraction 
 

 
, where n is a natural 

number.  The simplest example of this is when n = 2, i.e. folding a square paper in half.  

It is evident that by repeatedly folding a piece of paper in half, one can divide a side into 

proportion of 
 

   where n is some positive integer.  Then it follows that one can also fold a 

fraction of the form 
 

  , for some positive integers m and n, and m     , by dividing a 

side into    equal parts and counting up m creases from the bottom.  But this method of 

folding takes      folds and leaves the paper with many unnecessary crease lines.  

There is a more efficient method of constructing a binary fraction, a rational fraction 

whose denominator is a power of two.  Binary fraction is first converted to binary 

notation (e.g. 
  

  
         .  Then, starting from the least significant digit, which is 

always 1, fold the top of the paper down.  For each remaining digit, fold the top down to 

the previous crease for 1 and unfold, and fold the bottom up to the previous crease and 

unfold for 0.  This method is explained by writing the binary notation as a nested series.  
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The nested series is a string of operations of either adding 1 and multiplying by 
 

 
 or 

adding 0 and multiplying by 
 

 
.  The former is equivalent to folding the top down and the 

latter is equivalent to folding the bottom up to the previous crease as shown in Figure 1 [3 

pp. 5-9].  In Figure 1, x is the distance from the previous crease to the bottom edge, and 

the dotted lines are the new fold lines. 

   

 

 

 

 

 

 

 

 

 

Figure 1. Binary Folding [3, p. 10]. 

Folding the top down to the previous crease is adding half of     to       Thus, 

 

(2) 

 

A binary fraction, when reduced to its simplest form, will have n digits in its binary 

notation.  Therefore, it is clear that for a fraction 
 

  , the method of repeatedly folding in 

half and counting up takes      folds, whereas the binary folding method takes n folds.   
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Chapter 3:  Folding Other Rational Numbers 

 

Constructing the number 
 

 
, or trisecting a segment, can be done with a 

straightedge and compass.  It can also be done in origami by taking a vertex of a square 

and folding it onto the midpoint of a nonadjacent side as shown in Figure 2.  This simple 

and elegant fold is Haga’s First Theorem fold.   

 

 

Figure 2.  Haga’s First Theorem fold [1, p. 3]. 

 

Since p is the midpoint of AB, the length of AP and BP are both 
 

 
   Letting the 

length of AS be equal to x and using the Pythagorean Theorem yields the following 

equation.  
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Solving equation (3) for x yields 
 

 
.  Since      is similar to      the length of BT can 

be found by solving 
 

 
 

 

 
 

 

  
, which yields BT = 

 

 
.  Thus, point T trisects the segment BC.  

Another interesting result of Haga’s fold is that      is a Pythagorean triangle, a right 

triangle whose sides are integers.  The ratio of sides of      is 
 

 
 to 

 

 
 to 

 

 
.  And 

therefore      is a 3-4-5 triangle [1, pp. 4-5].  

 By loosening the restriction on Haga’s First Theorem fold, one can generalize the 

fold and find other rational numbers. Instead of folding one of the vertices to the 

midpoint of a nonadjacent side, it is folded to a different reference point, namely 

distances of binary fractions.  

 

Figure 3. Generalization of Haga’s First Theorem fold [1, p. 9]. 
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Depending on the value of the distance    a generalized Haga’s fold yields 

different    values.  Table 1 shows rational numbers constructed by Haga’s fold with 

various initial reference points. 

Table 1.  Rational numbers constructed from generalized Haga’s first theorem fold 

x ½ 1/4 3/4 1/8 3/8 5/8 7/8 

y1 3/8 15/32 7/32 63/128 55/128 39/128 15/128 

y2 2/3 2/5 6/7 2/9 6/11 10/13 14/15 

y3 5/6 17/20 25/28 65/72 73/88 89/104 113/120 

y4 1/8 9/32 1/32 49/128 25/128 9/128 1/128 

y5 5/24 51/160 25/224 47/119 7/27 56/349 1/17 

1-y1 5/8 17/32 25/32 65/128 73/128 89/128 113/128 

1-y2 1/3 3/5 1/7 7/9 5/11 3/13 1/15 

1-y3 1/6 3/20 3/28 7/72 15/88 15/104 7/120 

1-y4 7/8 23/32 31/32 79/128 103/128 119/128 127/128 

There are other ways to start from a binary fraction and construct fractions whose 

denominator is not a power of 2.  One such method uses two crossing diagonals.  Starting 

from a unit square, two bottom corners are connected to points on the opposite sides, as 

shown in Figure 4.   

Figure 4.  Crossing diagonals construction [3, p. 15]. 
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The two diagonals have different slopes and thus intersect.  Coordinates of the 

intersection can be found by solving a system of equation.  From Figure 4, 

                                                  (4) 

The idea is to choose reference points that are easily constructible, i.e. binary fractions.  

Let   
 

 
, and   

 

 
, where m and n are integers and p is a power of 2.  Then, 

                                          (5) 

Table 2 shows some of constructible rational numbers by the two crossing diagonals 

method [3, pp.15- 16].   

Table 2. Construction of rational numbers by crossing diagonals. 

w ½ ¼ 1/8 1/8 1/8 1/16 

x 1 1 5/8 3/4 1 9/16 

y 1/3 1/5 1/6 1/7 1/9 1/10 

z 2/3 4/5 5/6 6/7 8/9 9/10 
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Chapter 4:  Axiomatic Origami 

In practical paper folding, a few basic procedures are repeated in different 

combinations to create crease lines, and as a final product, origami figures.  In modern 

origami, crease patterns are incredibly complex, and it is necessary to break down the 

pattern into basic steps that are easily understood.  After all, the point of creating a crease 

pattern is to communicate folding procedures with others.  Mathematicians have agreed 

upon a set of basic folding operations.  In addition to being a communication tool, this set 

of operations helps mathematicians to compare origami operations with Euclidean ones.  

This set of operations define the following list.    

(O1) Given two intersecting lines, a unique point of intersection         can be 

determined. 

(O2) Given two parallel lines l1 and l2, line m parallel to and equidistant from them can 

be constructed. 

(O3) Given two intersecting lines l1 and l2, an angle bisector can be constructed 

(O4) Given two non-identical points P and Q, a line connecting the two can be folded. 

(O5) Given two non-identical points P and Q, a unique perpendicular bisector of the 

segment PQ can be folded.  

(O6) Given a point P and a line l, a unique line l' perpendicular to l and containing P 

can be folded. 

(O7) Given two points P and Q and a line l, P can be folded onto l such that Q lies on 

the fold. 

(O7*) Given two points P1 and P2 and two lines l1 and l2, one can simultaneously fold P1 

onto l1 and P2 onto l2.  [5] 
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Any Euclidean constructions can be done with a combination of basic origami 

operations, i.e. origami procedures (O1) – (O7).  And any origami constructions done by 

origami procedures (O1) – (O7) can be achieved by Euclidean methods [5, pp. 362 - 

365].  In that sense, Euclidean constructions are equivalent to constructions done by (O1) 

through (O7) of the origami procedures.   

There are a few differences between origami operations and the Euclidean 

procedures.  For instance, the basic entity of origami is a line, and a point is defined as an 

intersection of two lines.  In Euclidean geometry, however, a point is the basic entity, and 

two points define a line. What really sets origami constructions apart from Euclidean 

construction is the origami procedure (O7*).  The procedure (O7) describes folding a 

point onto a line in a specific way.  A crease line resulting from such fold is a 

perpendicular bisector of a point P1 and a point of a line l1.  Then, the set of these crease 

lines is precisely the set of tangents to the parabola with focus P1 and the directrix l1.  As 

shown in Figure 5, (O7*) is a procedure for folding two points onto two lines, and thus it 

is equivalent to finding a simultaneous tangent of two parabolas with foci P1 and P2 and 

directrices l1 and l2 respectively [5].      

 

Figure 5.  Common tangent of two parabolas [2, p. 288]. 
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Finding a common tangent of two parabolas is equivalent to solving a cubic 

polynomial.  This is impossible to do by the straightedge-and-compass method which can 

only solve quadratics [3].  Since (O7*) is the operation that allows for such a solution, it 

is reasonable to believe that (O7*) can be used to find cube roots [5].    
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Chapter 5:  Solving A General Cubic Equation 

 

Suppose two parabolas exist with equations 

(6) 

and,   

(7) 

where a,b, x, m, and n are real numbers. 

The common tangent of    and    is  

(8) 

where c and d are real numbers. 

Let P1 (x1, y1) be the tangent point of (6) and (8). The tangent line can also be represented 

as  

(9) 

and solving (9) for y yields 
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(12) 

Solving (11) for    and (12) for    yields, 

(13) 

Substituting (13) in (6) and solving for a yields, 

(14) 

Suppose P2(x2, y2) is the point where (8) is tangent to (7).  Then (8) can be expressed as 

(15) 

and solving for y yields, 

(16) 

The slope of the line tangent to parabola    is  

(17) 

and the y-intercept is 

(18) 

Solving (17) for    and (18) for   yields, 

(19) 

Substituting    for x and    for y in (7), and solving for d yields, 
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Combining (20) and (14) produces 
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.211 m
c

nd
xand

c

nca
y 







 .2 cmndca 

22 bybyxx 

.2
2 yx

b

x
y 

,2

b

x
c 

.2yd 

.22 dyandbcx 

2

2bc
d 

.
2

2
2









 cmn

bc
ca

.
2

1

1

ny

amax
nd








 14 

From (21), distributing 2c and subtracting a from both sides then dividing both sides of 

the equation by b yields 

(22) 

 

Therefore, the slope of the tangent line c is the solution of the cubic equation in (22). 

Note that cubic polynomials can be written as 

(23) 

where p, q and r are real numbers.  Without loss of generality, let b in (7) be the unit 

length 1.  Then  

(24) 

Thus, (23) can be written as (22).  Once m, n and r are calculated, one can substitute these 

values in (6) and find the focus and directrix of one of the parabolas.  The focus, F1, and 

the directrix, l1, of parabola    is given by 

(25) 

The focus F2 of    and its directrix l2 is  

(26) 

Simultaneously folding foci of parabolas    and   onto directrices l1 and l2 respectively, 

gives the common tangent to the two parabolas    and    whose slope is the solution of 

the given cubic equation in (23) [5, pp. 366 – 369]. 
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Chapter 6:  Trisecting angles  

Using the previously defined set of operations for origami, trisecting an angle can 

be done by solving the Chebychev equation [4]. The equation  

(27) 

is equivalent to  

(28) 

Then, assuming          is known, and using (25), one can fold the focus  

(29) 

onto the directrix  

(30) 

 (26) is used for the focus and the directrix of the second parabola [5, p370].  This method 

does violate Euclidean postulates relating to constructions.  A purely origami 

construction is given by Abe [7] and is shown in Figure 6 and 7.   

 

 

 

 

 

 

 

 

Figure 6.  Abe’s angle trisection method [7]. 
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Figure 7.  Abe’s trisection explained [2, p. 287]. 

 

From Figure 7, since b is the midpoint of segment ac by construction and a' is on 

L1,  aa'c is an isosceles triangle and segment a'b bisects the ∠ aa'c.  Note that   a'ac' is 

a reflection of the   aa'c across the crease line Lf, and thus   a'ac' is also an isosceles 

triangle and segment ab' bisects the ∠ a'ac'.  Therefore ∠ c'ab' and ∠ a'ab' are congruent.  

Let the m∠ c'ab' and the m∠ a'ab' be α.  Since segment a'c' is perpendicular to segment 

ab', and ∠ c'a'd is a 90° angle, m∠ aa'd is also α. But segment ad and segment a'd are 

congruent, triangle ada' is an isosceles triangle making the m∠ a'ad equal to α.  

Therefore,  

(31) 
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Chapter 7:  Doubling a cube  

 

It can be shown that doubling a cube is a matter of solving a rather simple cubic 

equation 

(32) 

It can be done by constructing a common tangent between two parabolas. One with 

focus         , and directrix x=1, and the other parabola with focus and directrix as in 

(26).  This is displayed in Figure 8.  
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Chapter 8:  Conclusion 

 

  The connection between paper folding and its applications to mathematics have 

been shown.  Efficient methods of locating a reference point in the form of a binary 

fraction were presented.  It was also shown that other rational numbers can be folded.  

There were many different folds that can construct rational numbers.  Haga’s First 

theorem and the crossing diagonals method were discussed.  Surprisingly, Haga’s fold 

can construct so many rational numbers with only one crease.  The crossing diagonals 

method, which uses the fact that two intersecting lines have different slope, has shown to 

fold rational numbers 
 

 
 for natural numbers n such that n ≤ 10. 

Axioms, or allowed operations, of origami were presented.  Operations (O7) and 

(O7*) show surprising connection between origami and tangents of conic sections.  It was 

seen that (O7*) is equivalent to finding a common tangent to two parabolas, and is 

analytically a cubic problem.  Thus, it was shown that origami can solve cubic problems 

that cannot be solved by straightedge and compass.  Solutions to two of the three such 

problems, namely trisecting an angle, and doubling a cube, were also presented which 

shows that paper folding can be a more powerful tool than simply using Euclidean 

construction with straightedge and compass.   

Paper folding can be used in classrooms to introduce concepts in geometry.  Some 

constructions are much easier to do with paper folding.  For example, finding a midpoint, 

constructing a perpendicular bisector of a segment and constructing an angle bisector are 
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matters of folding a point onto a point or a line onto a line.  Also, parallel lines and 

transversals can be studied using paper folding.   

Another benefit of teaching geometry with origami is that students already have 

experience folding paper.  Everyone has folded a piece of paper before, and no one is 

intimidated with folding paper, which is not the case with straightedge and compass.  In 

that sense, paper folding levels the playing field for all learners inviting all to participate.  

Paper folding also encourages students to make conjectures about a certain fold and 

convince others why it is so, which is a great way to introduce the mathematical concept 

of proof.   
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