

Copyright

by

Syed Hamid Ali Tirmizi

2011

The Dissertation Committee for Syed Hamid Ali Tirmizi certifies that this is the

approved version of the following dissertation:

Ontology as a means for Systematic Biology

Committee:

Daniel Miranker, Supervisor

Don Batory

Kristen Grauman

Robin Gutell

Bruce Porter

Ontology as a means for Systematic Biology

by

Syed Hamid Ali Tirmizi, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2011

Dedicated to my parents

and to the memory of Hakeem Muhammad Saeed

v

Acknowledgments

My deepest gratitude goes to my advisor Professor Daniel Miranker. This

dissertation and any other accomplishments during the course of my Ph.D. would not

have been possible without his guidance, encouragement and support.

I would like to thank Professor Don Batory for his guidance, in particular during

the early stages of my doctoral studies. I also thank him and the rest of my dissertation

committee: Professors Bruce Porter, Robin Gutell and Kristen Grauman, for their

insightful comments and discussions on my work.

My thanks also go to all past and present members of my research group who

have helped me in my studies and research, particularly to Kerin Claeson, Juan Sequeda,

Smriti Ramakrishnan, Rui Mao, Willard Briggs and Lee Thompson. I also thank

Professor Timothy Rowe and Dr. Julian Humphries for educating me about systematic

biology and Professor Paula Mabee for providing me with the data from the

Cypriniformes Tree of Life project that was critical to the evaluation of my work.

I thank all my teachers from school and college for all the knowledge that forms

the foundation of my research. I especially thank Professors Waseem Ikram, Aftab

Maroof and Ayub Alvi for making computer science enjoyable for me during my

undergraduate years, and seeding the idea of a doctorate degree.

vi

I have a number of great friends whose company I have enjoyed over the years

and who have generously helped me in my various endeavors. I thank all of my friends.

In particular, Tauseef Rab, Bilal Janjua and Abbas Hassan deserve my gratitude for

making my daily life as a graduate student enjoyable. I also thank: Omar Zia, Omer

Shahid, Ramoza Ahsan and Farheen Omar for their help during my graduate admission

process; Adnan Wasim and Ali Ibrahim for helping me practice my dissertation proposal;

and Rashid Kaleem, Amber Hassaan, Faisal Iqbal and Owais Khan for their time and

comments on my dissertation defense rehearsal.

Ever since my arrival in the USA for graduate studies, my eldest aunt Khala

Sahab's place has been my home away from home. I have looked forward to visiting her

and her family during my vacations, during tough phases of my studies, and even for

having a surgery. They have always welcomed me and cared for me. I thank Khala Sahab

and each member of her family.

The greatest blessings in my life are my parents. Each of my successes is a tribute

to their infinite and unconditional love. I hope to be a source of comfort for them now

and for the rest of my life. I thank Ammi and Abba Jan, and the rest of my family: Dadi

Jan, Aapi, Akif bhai, Bhaiya, Samira, Marium and Hammad, for their love, support and

patience. They have enabled me to accomplish my goals.

Syed Hamid Ali Tirmizi

vii

Ontology as a means for Systematic Biology

Syed Hamid Ali Tirmizi, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Daniel P. Miranker

 Abstract

Biologists use ontologies as a method to organize and publish their acquired

knowledge. Computer scientists have shown the value of ontologies as a means for

knowledge discovery. This dissertation makes a number of contributions to enable

systematic biologists to better leverage their ontologies in their research.

Systematic biology, or phylogenetics, is the study of evolution. “Assembling a

Tree of Life” (AToL) is an NSF grand challenge to describe all life on Earth and estimate

its evolutionary history. AToL projects commonly include a study a taxon (organism) to

create an ontology to capture its anatomy. Such anatomy ontologies are manually curated

based on the data from morphology-based phylogenetic studies. Annotated digital

imagery, morphological characters and phylogenetic (evolutionary) trees are the key

components of morphological studies.

viii

Given the scale of AToL, building an anatomy ontology for each taxon manually

is infeasible. The primary contribution of this dissertation is automatic inference and

concomitant formalization required to compute anatomy ontologies. New anatomy

ontologies are formed by applying transformations on an existing anatomy ontology for a

model organism. The conditions for the transformations are derived from observational

data recorded as morphological characters. We automatically created the Cypriniformes

Gill and Hyoid Arches Ontology using the morphological character data provided by the

Cypriniformes Tree of Life (CTOL) project.

The method is based on representing all components of a phylogenetic study as an

ontology using a domain meta-model. For this purpose we developed Morphster, a

domain-specific knowledge acquisition tool for biologists.

Digital images often serve as proxies for natural specimens and are the basis of

many observations. A key problem for Morphster is the treatment of images in

conjunction with ontologies. We contributed a formal system for integrating images with

ontologies where images either capture observations of nature or scientific hypotheses.

Our framework for image-ontology integration provides opportunities for building

workflows that allow biologists to synthesize and align ontologies.

Biologists building ontologies often had to choose between two ontology systems:

Open Biomedical Ontologies (OBO) or the Semantic Web. It was critical to bridge the

gap between the two systems to leverage biological ontologies for inference. We created

a methodology and a lossless round-trip mapping for OBO ontologies to the Semantic

Web. Using the Semantic Web as a guide to organize OBO, we developed a mapping

system which is now a community standard.

ix

Table of Contents

Chapter 1 Introduction ... 1

1.1 State of Systematic Biology... 1

1.2 Goals and Scope of Research... 5

Chapter 2 Background ... 9

2.1 Introduction to Ontologies ... 9

2.2 Morphology-Based Phylogenetic Studies .. 15

2.3 Images in Learning and Science .. 19

Chapter 3 Automatic Creation of New Anatomy Ontologies 21

3.1 Understanding Characters and Character States ... 22

3.2 Inference based on Phylogeny Traversal .. 24

3.3 A Solution for Ontology Generation .. 27

3.4 Phylogenetic Tree as Ontology .. 29

3.5 Characters in Ontology .. 32

3.6 Transformations on Ontology .. 37

3.7 Implementation ... 41

3.8 Test Case: From Angiosperms to other Plants.. 43

3.9 Test Case: Cypriniformes Tree of Life... 44

3.10 Lessons from Existing Anatomy Ontologies .. 49

Chapter 4 Knowledge Acquisition using Morphster ... 53

x

4.1 Role in Phylogenetic Studies ... 54

4.2 A Meta-Model for Phylogenetic Studies .. 55

4.3 Knowledge Acquisition using Morphster ... 57

4.4 Image-Driven Phylogenetics.. 61

4.5 Development Challenges ... 62

4.6 Ontobrowser.. 64

4.7 Implementation and Use .. 65

Chapter 5 Capturing Biological Hypotheses using Imagery 66

5.1 Related Work .. 67

5.2 Framework for Integration of Images with Ontologies 70

5.3 Morphster Ontology Development Use Cases.. 79

5.4 Implementation for the Semantic Web ... 82

5.6 Conclusion .. 83

Chapter 6 Mapping between OBO and OWL ... 85

6.1 System Description ... 86

6.3 Transformation Metadata and Rules .. 90

6.4 Implementation and Evaluation ... 96

6.5 Implications of Transformation ... 97

6.6 Standardization of Mappings and Related Work .. 100

6.7 Conclusion .. 101

Chapter 7 Conclusions and Future Work .. 103

Appendix A Source Code of Jess Rules ... 106

Appendix B Input Data Files for Plants Test Case ... 114

Appendix C CTOL Matrix Worksheet .. 117

Appendix D Cypriniformes Gill & Hyoid Arches Anatomy 127

Appendix E Morphster Meta-Model in OWL... 131

xi

Appendix F Image Driven Ontology Source in RDF/OWL 136

Bibliography .. 138

Vita ... 150

1

Chapter 1

Introduction

The use of ontologies in biology can be recognized since at least as far back as the

work of Carolus Linnæus (Systema Naturæ, 1735-1758 [1, 2]) on the classification of

organisms in the form of a taxonomy now known as the Linnaean Taxonomy, and in

Charles Darwin’s sketches of evolutionary trees in his notebook on Transmutation of

Species in 1837-1838 [3]. However, the use of the term ‘ontology’ among biologists and

their efforts to express biological knowledge in ontological form seem to have gained

traction since the Gene Ontology project [4].

In this context, ontologies are an artificial intelligence tool for capturing the

concepts within a domain, as well as the attributes of the concepts and the relationships

among the concepts. They are a convenient tool for representing scientific knowledge [5,

6]. Ontology development is an expensive and error prone process that often requires the

involvement of trained knowledge engineers to solicit knowledge from domain experts,

understand it, and encode it into an ontology [7].

1.1 STATE OF SYSTEMATIC BIOLOGY

Systematic biology or phylogenetics is the study of biological diversity and its

origins. It focuses on understanding evolutionary relationships among taxa (organisms,

2

singular: taxon). One of the grand challenges in this domain is “Assembling a Tree of

Life” (AToL), i.e. to describe all life on Earth and estimate its evolutionary history [8].

Currently the most significant use of ontologies in systematic biology is to capture

the knowledge about taxon anatomies [9, 10]. These ontologies are called anatomy

ontologies or Nomina Anatomica. This compares with molecular biology where

ontologies such as the Gene Ontology are aimed at standardizing gene representation and

attributes across databases. Building anatomy ontology for the taxon under study is often

a significant part of an AToL project. However, building the ontology is a laborious

process.

Figure 1.1: Typical workflow for systematic biologists.

In morphology-based phylogenetic studies, it is common for systematic biologists

to go out in the field to collect specimens of taxa under study (Figure 1.1). These

specimens are often deposited into museums or other natural history collections, and

digital proxies created for further study. The digital proxies consist of 2D images and 3D

models obtained from computed tomography (CT) scans. This imagery is then carefully

3

segmented and annotated, and becomes the primary means for further study. Using this

imagery, biologists study anatomies of organisms, make scientific observations and

identify features of interest, called morphological characters and character states.

Characters and character states from multiple taxa are aligned in the form of a data matrix

(or character matrix). A tree reconstruction algorithm uses the data matrix to produce one

or more phylogenetic trees, each representing possible evolutionary relationships among

the taxa under consideration. These trees are then used to draw conclusions in the diverse

areas of biology, environment, medicine, agriculture etc.

Computer technology is extensively employed in each aspect of the workflow of

phylogenetics. This includes the use of popular graphics tools such as Adobe Photoshop

and Illustrator for image annotations, ontology editors such as OBO-Edit [11] and

Protégé [12] for building ontologies for domains such as taxon anatomies (Nomina

Anatomica), and building character matrices and generating phylogenetic trees using

tools like Mesquite [13] and an array of tree reconstruction algorithms based on

parsimony and maximum likelihood etc. [14, 15].

Figure 1.2: The workflow for systematic biologists starts with a lot of

imagery and explicit evidence, which remains disconnected from the

results of the later stages in the workflow.

4

While significant progress has been made in the use of technology in this domain,

each aspect of the workflow remains disconnected from the rest. To date, the images,

ontology and comparative studies all remain in isolated repositories or literature text, and

hence disconnected from each other. Consider the example of NIH designated model

organism Danio rerio (common name: zebrafish): as a model organism zebrafish has

been extensively studied. A mass of digital imagery has been produced for zebrafish. An

authoritative anatomy ontology called Zebrafish Anatomy ontology (ZFA) [9] has been

created and published. As a model organism, it has also been used in comparative studies

for building character matrices and generating trees.

The divide exists due to a lack of consideration for broader issues such as data

representation, storage, and integration for the overall workflow. Annotations are often

embedded onto the images. These images form the persistent authoritative definitions of

character states. Character states are subsequently integer coded and organized into

character matrices. Tree reconstruction algorithms use these matrices to generate trees

labeled only with integer coded features. Hence the computed representation loses all the

biological semantics in the process. In addition, ontologies such as Nomina Anatomica

are considered a final publication mechanism for the acquired knowledge, which is in

contrast to computer science or artificial intelligence where ontologies are a means for

inference and knowledge integration. As a result, the components and results of a study

are disconnected from the original images and observations, i.e. the evidence for the

results (Figure 1.2).

Biomedical ontology building projects are faced with a choice between the

available ontology languages provided by ontology-based systems Open Biomedical

Ontologies (OBO) [16] and the Semantic Web [17]. OBO emerged from the Gene

5

Ontology (GO) project [4], and hosts over 100 biomedical ontologies including model

ontologies such as Zebrafish Anatomy [9], Teleost Anatomy Ontology [10] and Adult

Mouse Gross Anatomy [18]. The Semantic Web is an evolving extension of the World

Wide Web based on ontologies. Some important biomedical ontologies such as NCI

Thesaurus [19] and BioPAX [20] have been modeled using Web Ontology Language

(OWL), the ontology language for the Semantic Web. The lack of a bridge between the

two ontology systems has been responsible for preventing biologists working with OBO

from reusing knowledge from existing ontologies in OWL, and vice versa.

Figure 1.3: A meta-model for phylogenetic studies.

1.2 GOALS AND SCOPE OF RESEARCH

This dissertation entails a vision where systematic biologists conduct their work,

find additional data, utilize relevant scientific data and publish results in an integrated

fashion. We consider ontologies to be a malleable and powerful tool suitable for

achieving these goals. Furthermore, we believe that this use of ontologies allows

6

systematic biologists to infer new knowledge that is contained but not obvious in their

data.

Maxilla, anterior process, presence: absent (0); present (1)

Maxilla, maxillary fenestra, shape: circular (0); oval (1)

Calyx, circumference: 1-2 cm (0); 3-5 cm (1)

Figure 1.4: Examples of character statements taken from biology literature [21].

Figure 1.5: A taxonomy of character types.

In this dissertation, we focus on using ontologies for knowledge discovery in

systematic biology. In order to achieve this goal, we also resolve issues regarding the

representation and integration of data in this domain.

Our main contribution is a framework for automatic inference of new Nomina

Anatomica ontologies based on an existing model organism anatomy and the knowledge

contained in a phylogenetic study. There are two key aspects to this problem.

First, in order to perform inference on the data in a phylogenetic study, it needs to

be represented as a unified knowledgebase, i.e. an ontology. We have created a meta-

7

model (see Figure 1.3) for phylogenetic studies that enables us to represent all aspects of

phylogenetic studies, i.e. anatomical entities, characters, character states etc., as a single

ontology. Character statements, i.e. characters and character states, are critical concepts

in this domain, typically expressed in natural language (Figure 1.4). It is critical for a

representation suitable for knowledge inference to provide means for precisely capturing

the meaning of each character statement. We realized that character statements can be

classified into different types. Hence, a novel contribution in this work is a taxonomy of

character types (Figure 1.5), and their corresponding logical signatures in the ontology. A

character statement represented in its appropriate signature is well-defined, i.e. no

information is lost in its transformation to its logical form, and its natural language

statement may be understood from its ontology representation.

Second, we have devised an algorithm for inferring a new anatomy ontology by

applying transformations on a model anatomy ontology. The knowledge in a

morphological character matrix informs the algorithm of the features of interest, i.e. the

features that may need to be transformed, and a phylogenetic tree provides the knowledge

of the exact evolutionary changes and hence the sequence of transformations for the

algorithm. A fully detailed explanation of this work is present in Chapter 3.

We have used our inference mechanism on the morphology data curated by the

biologists on the Cypriniformes Tree of Life (CTOL) project, and created an anatomy

ontology for Cypriniformes gill and hyoid arches from the model ontology Teleost

Anatomy Ontology.

In order to enable biologists to express their data in appropriate ontological form

for such knowledge inference opportunities, we have created a knowledge acquisition

tool, Morphster [22]. Our meta-model for phylogenetic studies is the underlying data

8

model for Morphster. A more detailed introduction to the Morphster project is present in

Chapter 4. Towards the creation of Morphster, we have made the following contributions.

We have created a formal system for integrating images with ontologies where

images either serve as exemplars for phylogenetic observations or for capturing

hypotheses in the workflow of a phylogenetic study (Chapter 5). Our framework for

image-ontology integration provides opportunities for building workflows that allow

biologists to build and align their ontologies without the involvement of knowledge

engineers. It also improves upon the image retrieval capabilities of existing ontology

based image retrieval systems.

We have also contributed a methodology and a lossless round-trip mapping for

OBO ontologies to the Semantic Web [23], bridging the gap between the two ontology

systems (Chapter 6). We use the organization of the Semantic Web as a guide to study

and organize OBO, hence making it easy to identify straightforward mappings as well as

the differences between the two ontology languages. We contributed our methodology

and the mapping towards the development of the official standard mapping of the Gene

Ontology project and the standard for biomedical ontologies. Our Java implementation of

the standard mapping is a part of the open-source Gene Ontology repository and used in

major ontology tools in this domain.

9

Chapter 2

Background

2.1 INTRODUCTION TO ONTOLOGIES

In philosophy, ontology is the study of existence. In knowledge-based systems, it

is a vocabulary of a set of objects and the describable relationships among them

[24].

One of the definitions of an ontology in computer science is as follows:

An ontology defines the terms used to describe and represent an

area of knowledge. Ontologies are used by people, databases, and

applications that need to share domain information (...). Ontologies

include computer-usable definitions of basic concepts in the domain

and the relationships among them (...). They encode knowledge in a

domain and also knowledge that spans domains. In this way, they

make that knowledge reusable. [25]

Ontologies are usually expressed in formal languages that allow detailed and

accurate descriptions of concepts and relationships. Another definition of ontology states:

In such an ontology, definitions associate the names of entities in

the universe of discourse (e.g., classes, relations, functions, or other

objects) with human-readable text describing what the names are

10

meant to denote, and formal axioms that constrain the interpretation

and well-formed use of these terms. [24]

Figure 2.1: A part of the mouse adult gross anatomy ontology that depicts classes

and relationships among them. This portion of the ontology describes ear: it is a

part of the face and the auditory system of mouse, it is also a head organ and a

sensory organ, and it has 3 parts.

Figure 2.1 provides an example of a simple ontology. It has been taken from

Mouse Adult Gross Anatomy ontology [18] and shows classes or terms (ear, face,

auditory system etc.) in boxes, and their relationships (is_a, part_of etc.) as labeled

directed edges.

Ontologies range from light taxonomies and classifications to fully axiomatized

theories. Recently, ontologies have been adapted in many research and business

communities as a tool for sharing and expressing domain knowledge. Among scientific

domains, ontologies are extensively used in areas like artificial intelligence [5, 6], the

Semantic Web [25, 26] and biology [4, 9, 27] as a form of knowledge representation in

intelligent systems.

11

Semantic Web Technology

The Semantic Web is an ontology-based extension of the World Wide Web.

While the current Web focuses on the interchange of documents, the Semantic Web

vision aims to create a universal medium for integration of data. In order to achieve this

goal, the Semantic Web provides expressive languages for recording information about

the data, and their relationships. This allows humans and machines to find, share and

integrate information easily.

Figure 2.2: The Semantic Web layer cake that lists and presents the organization of

the technologies provided by the Semantic Web.

Ontologies allow specification of semantics of data in a way that is usable by Web

applications and intelligent software agents. Therefore, ontologies can be used to improve

existing Web applications and to provide new ways of leveraging the content available on

the Web [17].

12

The key technologies in the Semantic Web infrastructure (see Figure 2.2) [28]

are:

• Extensible Markup Language (XML) [29] is a language that provides arbitrary

structure to documents by allowing user-defined markup tags.

• Resource Description Framework (RDF) [30] is used to express meaning of

data using triples. A triple is a binary predicate and defines a relationship

between two entities. RDF triples can be expressed using XML.

• Universal Resource Identifiers (URIs) [31] identify entities, either classes or

relationship types, present on the Semantic Web. This means that each entity

gets a globally unique identifier that can be accessed by everyone on the Web.

• RDF Schema (RDF-S) [32] and Web Ontology Language (OWL) [33, 34] are

used for describing ontologies. RDF Schema allows description of valid

classes and relationship types, and some properties like subclasses, domains,

ranges etc. OWL provides constructs for describing richer content and

provides ontology and concept level annotations, set combinations,

equivalences, cardinalities, deprecations etc.

• Languages like SPARQL are available for querying RDF-based ontologies

[35].

• Other important components in Semantic Web vision are rule languages and

inference methods [36, 37].

Ontologies in Biomedicine

Ontologies are very important to scientific research and discovery in biomedicine.

Over 200 biomedical ontologies are available on the NCBO BioPortal [38]. Typically,

these ontologies are used either for publishing results or as controlled vocabularies of

13

standard terms for use across biological studies. In particular, an early project on making

a controlled vocabulary was EcoCyc [39, 40], with the aim of providing a comprehensive

encyclopedia of Escherichia coli biology.

Open Biomedical Ontologies (OBO) Foundry [16] is an effort under the US

National Center for Biomedical Ontology (NCBO) to create and share ontologies for use

across different biomedical domains. OBO has its own ontology language that supports

many important ontologies including the Gene Ontology [4] and anatomies of model

organisms such as zebrafish [9] and mouse [18]. Most AToL funded projects investigate

evolutionary relationships among a group of related organisms. Building ontologies is

often central to these projects [9, 10, 41].

An ontology in the OBO format consists of two parts; the first part is the header

that contains tag-value pairs describing the ontology, and the second part contains the

domain knowledge described using term and typedef (more commonly known as a

relationship type) stanzas [42]. A stanza may define and describe a term, a typedef or an

instance using a collection of tag-value pairs. The terms and typedefs defined in an OBO

ontology are assigned local identifiers and namespaces. Relationships between different

terms are expressed using the ‘relationship’ tag.

The OBO format is human friendly. Therefore, it is easy for domain experts to

understand it and express their knowledge in this language. Useful GUI-based tools like

OBO-Edit [11] are available for building ontologies in the OBO format.

As OBO continues to evolve as a language and hosted content, there is emphasis

on formalizing the syntax and semantics of OBO format. Also, given the ongoing

adoption of ontologies by the biomedical community and emerging new ontology

building projects, OBO Foundry has developed standard ontologies such as the Relations

14

Ontology [27], which provide consistent and unambiguous formal definitions of the

typedefs used in such ontologies. While this effort is designed to assist developers and

users in avoiding errors in ontology building, it also promises to simplify the process of

ontology alignment in the future for the OBO community.

Ontology Engineering and Tools

Ontology engineering is a hard problem that requires interaction between subject

matter experts and knowledge engineers [7]. Subject matter experts are the primary

source of knowledge and knowledge engineers are trained in encoding the knowledge

into a formal ontological form. Hence, knowledge extracted from the subject matter

experts is encoded into ontologies by knowledge engineers. This two-step process of

ontology engineering is expensive in terms of time and efficiency, and sometimes

knowledge engineers may not fully understand the knowledge that can introduce errors in

the knowledge base.

Currently, common ontology editing tools work by providing a tree-like view of

the ontology. A knowledge engineer editing the ontology locates appropriate parts of the

ontology by navigating through its tree representation. In such a system, fundamental

ontology editing tasks become cumbersome and prone to errors. For example, in order to

add a new concept to the ontology, a class needs to be created independent of other parts

of the ontology, and then connected to various concepts in the ontology using predefined

or user defined relationship types. As the ontology grows, it becomes increasingly

difficult to keep track of the progress or to find out if an error has occurred.

Some ontology editing tools that are in common use today are the following:

• OBO-Edit [11] is an open source ontology editor written in Java, developed

by the Berkeley Bioinformatics and Ontologies Project, and is funded by the

15

Gene Ontology Consortium. It has been optimized for OBO ontology

language. It features a tree-based ontology editing interface, a graph visualizer

and search capabilities.

• The Protégé [12] system is an environment for ontology development capable

of running on multiple platforms. It supports customized user-interface

extensions through plug-ins. Protégé supports Semantic Web technologies like

OWL to build ontologies that can be made accessible to the Web. Protégé

implements a rich set of knowledge-modeling structures that support

visualization and editing of ontologies.

Ontology Matching or Alignment

Ontology matching or ontology alignment is the process of determining

correspondences between concepts across ontologies [43, 44]. Historically, the need for

ontology alignment rose out of the need to integrate independently developed

heterogeneous databases [45, 46]. With the advancement in ontology technology in the

form of the Semantic Web and OBO, and growing ontology content, aligning ontologies

is key to interoperability among heterogeneous resources.

2.2 MORPHOLOGY-BASED PHYLOGENETIC STUDIES

Definitions

• Taxon (pl. taxa): A taxon may be a single organism or a group of taxa that is

considered a unit by a systematic biologist. A taxon may or may not be

named. Usually, it is a group of organisms that are inferred to be

phylogenetically related and have characteristics in common.

16

Figure 2.3: Examples of a data matrix based on morphological

characters, and a phylogenetic tree obtained from that matrix. Example

data courtesy evolution.berkeley.edu

• Model Organism: A model organism is one that is extensively studied and

considered a representative for a class of organisms. For example, mouse and

zebrafish are model vertebrates, fruit fly is a model invertebrate, rice is a

17

model plant etc. Newly discovered organisms are often studied based on a

comparison with a model organism.

• Homology: Homology refers to a similarity among characteristics of taxa that

is due to their shared ancestry. For instance, anatomical structures that

perform the same function in different taxa and evolved from the same

structure in some ancestor taxon are homologous. Phylogenetic studies often

focus on identifying homologies among taxa in order to estimate better

evolutionary relationships.

• Convergent Evolution and Homoplasy: Convergent evolution refers to the

acquisition of similar biological structures in unrelated lineages (in contrast to

homology, which has a common origin). Similarity in structures that evolve

through convergent evolution is called homoplasy.

• Character and Character State: A character is an observable trait or feature

that may be of interest to a systematic biologist. A character state is a specific

value taken by a character in a specific taxon. For example, a character ‘skin

color’ may have states ‘black’ and ‘brown’ etc. Systematic biologists often

carefully choose characters that are potential indicators of homologies among

the taxa under study, in order to build more accurate evolutionary lineages.

• Data Matrix: A data matrix presents character state assignments to all the

taxa in a comparative study (see example in Figure 2.3). Each row usually

represents a taxon, and each column represents a character. A cell in the

matrix specifies the state assignment for a specific character to a specific

taxon. The row for each taxon represents its state vector. The matrix is also

called a morphological character matrix or simply character matrix.

18

• Phylogenetic Tree: A phylogenetic tree (or simply phylogeny, tree)

represents evolutionary relationships among the group of taxa contained in the

tree. Terminal nodes of such a tree usually represent extant organisms,

whereas internal nodes represent ancestral taxa. The ancestral nodes in the

phylogeny may be hypothetical. Figure 2.3 shows an example of a

phylogenetic tree.

• Tree Estimation: Phylogenetic trees represent some form of hierarchical

clustering over the character states of taxa in a data matrix. Various

techniques for clustering the character states have been developed for

estimation of phylogenetic trees. Common approaches are based on maximum

parsimony, maximum likelihood and Bayesian methods [14, 15], which are

applied to the state vectors in the data matrix.

• Internally Labeled Phylogeny (ILP): Even though the internal nodes of a

tree may be hypothetical, some tree algorithms also assign taxa to internal

(ancestral) nodes by inferring their state vectors when estimating the tree [47].

A phylogenetic tree which has all terminal and ancestral nodes labeled with

state vectors is called an internally labeled phylogeny (ILP) [48].

Kinds of Phylogenetic Studies

There are two kinds of studies in morphology-based phylogenetics:

• Single taxon studies: As the name suggests, these studies focus on an

individual taxon. Such studies produce annotated imagery as well as Nomina

Anatomica that explains the anatomy of the taxon. Often, the Nomina

Anatomica of a model organism is used to guide the development of a new

Nomina Anatomica.

19

• Multi-taxon studies: These studies compare different taxa with the help of

images as well as characters and character states. These character states are

used to populate data matrices that may be input to a phylogenetic tree

creation algorithm.

2.3 IMAGES IN LEARNING AND SCIENCE

Images have been an important instrument for human development and learning

for a long time.

Use of representational pictures is supported by the research and theory on the

potency of visual memory and the importance of providing examples when teaching

concepts [49].

In 1994, elaborate cave art was discovered in Chauvet Cave, in

France, art that is thought to be 35,000 years old. Far from being

primitive, these animal paintings, engravings, and drawings were

skillfully executed. As this find illustrates, from very early on people

have created pictures. Perhaps these early paintings served as

adjunct aids to storytellers, playing a role in humankind’s

development. Similarly, illustrations have been a part of our more

recent development via the picture storybooks of our childhoods.

[50]

20

Figure 2.4: Kinds of images used in natural sciences such as meteorology and

astronomy. The image on the left is an infrared satellite image taken by National

Weather Service for weather forecast. The image on the right is a NASA

photograph from its Mars mission that suggests presence of water on Mars.

In scientific studies, images are often treated as a definitive basis for a concept or

an observation. In particular, such use of images is anticipated in natural sciences where

the documentation of scientific observations is becoming increasingly reliant on digital

imagery. For instance, astronomers rarely observe very large objects directly through

telescopes, preferring imagery from sensitive electronic sensors than relying on the

human eye [51]. Such use of image is common in other sciences like systematic biology

[52, 53, 54], radiology [55], and Geographical Information Systems [56] etc. as well.

Figure 2.4 shows examples of images used in meteorology and astronomy.

Meteorologists often look at images (like Figure 2.4a) to understand and predict weather

patterns. Similarly, Figure 2.4b is an actual image from NASA’s Mars mission [51], with

labels that show how these images are used to build hypothesis such as: “Is there water

on Mars?”

21

Chapter 3

Automatic Creation of New Anatomy Ontologies

Building Nomina Anatomica or anatomy ontology for a taxon is important to

many AToL projects. Usually, this is a manual process that involves both subject matter

experts and knowledge engineers. Given the scale of AToL, this is not a feasible

methodology for building anatomy ontologies. We anticipated that the use of knowledge

from model organisms and existing comparative phylogenetic studies may provide a way

of automating the process of creating new anatomy ontologies.

Automating the creation of an anatomy ontology is a primary contribution of this

dissertation. We have identified that they key problem to solve is to understand

morphological character statements and representing them appropriately for knowledge

inference. In this regard, we have created a taxonomy of character types and defined

ontological signatures (or frames) for each type that allows us to precisely capture a

natural language character statement in a logical form. We have developed an algorithm

that uses the anatomy ontology of a designated model organism, a morphological

character matrix and a phylogenetic tree to generate anatomy ontologies for the other taxa

in the tree. In this chapter we present our work on this problem.

22

3.1 UNDERSTANDING CHARACTERS AND CHARACTER STATES

The first step towards solving this problem is based on clearly understanding and

unambiguously specifying different kinds and classes of morphological characters and

their states. Paul Sereno’s work on logical basis for characters [21] and the EQ model of

character matrices by Phenoscape group [57] are the two preceding efforts.

Character statement: Maxilla, anterior process, length relative to posterior process:
shorter (0); longer (1)

Logical components: L2 = maxilla, L1 = anterior process, V = length, q = relative to
the posterior process, v0 = shorter, v1 = longer

Figure 3.1: An example of a character statement and its logical components.

Sereno described morphological characters as statements with logical patterns

[21]. Per Sereno, a character is an independent variable and character states are mutually

exclusive conditions of a character. Each character statement is composed of up to four

kinds of logical components: locators Ln (representing morphological structures),

variable V, variable qualifier q, and character states vn (mutually exclusive values of the

variable). An example of a character statement and its logical pattern is shown in Figure

3.1.

Maxilla, anterior process, presence: absent (0); present (1) Neomorphic

Maxilla, maxillary fenestra, shape: circular (0); oval (1) Transformational

Calyx, circumference: 1-2 cm (0); 3-5 cm (1) Transformational

Figure 3.2: Kinds of character statements as identified by Sereno [21].

Sereno also identified two fundamental kinds of characters: neomorphic and

transformational. A neomorphic character is about de novo appearance of a

23

morphological structure or its loss without trace. A transformational character, on the

other hand, is about a transformation of a morphological structure from one state to

another comparable state. Examples of each kind of character are given in Figure 3.2.

Maxilla, anterior process, presence: absent (0); present (1)
 EQ statement 1: E1 = maxilla, E2 = anterior process, Q = absent
 EQ statement 2: E1 = maxilla, E2 = anterior process, Q = present

Maxilla, maxillary fenestra, shape: circular (0); oval (1)
 EQ statement 1: E1 = maxilla, E2 = maxillary fenestra, Q = circular
 EQ statement 2: E1 = maxilla, E2 = maxillary fenestra, Q = oval

Figure 3.3: Examples of EQ statements for some characters.

The EQ model for character matrices [57] describes character states (or

phenotypes) by identifying the morphological entities (E) and qualities or adjectives (Q)

involved in a character statement. Under the EQ model each character state is translated

into an EQ statement, composed of Es and Qs. Since a character statement lists multiple

possible character states, each character statement produces multiple EQ statements.

Compared to Sereno’s logical components, the EQ model has a simpler pattern

for character states: only En and Qn. However, the inability to capture the missing

components, i.e. the character (or variable) and qualifier, is a shortcoming that makes the

EQ statements of more complex characters (see Figure 3.1), incomplete and therefore

ambiguous. In other words, the EQ statements produced by two different characters will

be the same if they involve the same entities and qualities, irrespective of any qualifier on

the variable involved.

A strength of the EQ model is that it supports connections to ontologies to

disambiguate the given entities and qualities. The entities (Es) in an EQ statement come

from the anatomy ontologies of the relevant taxa. The qualities (Qs) are obtained from a

24

standard ontology of phenotypic qualities (adjectives used in morphological characters

and character states) called Phenotypic Quality Ontology (PATO) [58].

Figure 3.4: Phylogenetic trees depicting changes among taxa: (a) shows a

(hypothetical) phylogenetic tree containing zebrafish (an NIH model organism) and

other taxa; (b) shows the edges on a phylogeny as transformation functions fi.

3.2 INFERENCE BASED ON PHYLOGENY TRAVERSAL

The fundamental idea behind our algorithm is as follows:

A Nomina Anatomica describes a particular taxon. A phylogenetic tree captures

the evolutionary relationships among a group of taxa, and is developed based on the

character state assignments for each taxon in the phylogeny. Each edge in the phylogeny

represents some evolutionary change between the ancestor and descendent taxa, as

evident from the difference between the corresponding state vectors. Starting from the

existing anatomy ontology of a particular taxon (perhaps a model organism), applying the

changes in state vectors as transformations to the ontology will produce the anatomy

ontology for a different taxon.

Hence, starting from the anatomy ontology for some taxon (e.g. zebrafish

ontology called ZFA [9]), and a phylogeny that contains that taxon (Figure 3.4a), we can

produce anatomy ontologies for all the other terminal or ancestral nodes in the tree (e.g.

25

goldfish, teleost etc.) by traversing the tree and applying appropriate transforms to the

ontology at each step.

Let:

OM = ontology for M

OT = ontology for T

Path = A queue of steps between M to T in the tree.

N = No. of characters; or length of each character state vector.

Characters = The vector of characters.

States(X) = The character state vector of taxon X.

Algorithm:

O := OM

While Path not empty:

 Pop Step <X, Y> from Path

 Comment: O is the ontology for X in this step

 For each n from 1 to N:

 If States(X)[n] <> States(Y)[n]:

 Apply transformation for Character[n] on O

 Comment: O is now the ontology for Y in this step

OT := O

Figure 3.5: Algorithm for transformation the ontology for source taxon M to the

ontology for target taxon T.

More formally, given the phylogeny shown in Figure 3.4b, if M is the taxon with

an existing ontology O(M), and T is the target taxon for the new ontology O(T), we can

obtain O(T) in a step-wise fashion by applying transformations fi at each tree edge as

follows:

���� = �����	�

26

���� = �������
 = �� �����	�
�

���� = �������
 = �� ��� �����	�
��

���� = �������
 = �� ��� ��� �����	�
���

An outline of our algorithm is presented in Figure 3.5.

From Zebrafish to Milkfish Ontology

Consider the example presented in Figure 3.6. A phylogenetic tree contains

terminal taxa zebrafish and milkfish, and an ancestral taxon node A. We are also given the

anatomy ontology for zebrafish, and a set of character statements. The character state

assignments for each terminal and ancestral taxon are also provided as vectors (s1, s2) in

the tree, where s1 is the state for character 1 and s2 is the state for character 2. The goal is

to obtain the ontology for milkfish.

Figure 3.6: Sample input to the ontology generation algorithm: zebrafish anatomy

(ZFA) ontology, a set of character statements, and a synthetic phylogenetic tree

containing zebrafish and other taxa along with their character state assignments.

Since the path from zebrafish to milkfish in the phylogenetic tree contains two

steps (zebrafish to node A, node A to milkfish), two sets of transformations need to be

27

applied to the zebrafish ontology, based on the differences in the character state vectors

of the taxa involved, to obtain the milkfish ontology (Figure 3.7):

• In the first step, the zebrafish ontology is transformed to the node A ontology.

According to the character state vectors, the difference between the two taxa

is based on the state of character 2 changing from 3 to 4. In other words, the

number of b. rays has increased from 3 to 4. Adding another b. ray, i.e. b. ray

4, to the ontology gives the ontology for node A.

• In the second step, the node A ontology is transformed to the milkfish

ontology. Based on the change of state of character 1 from present to absent,

the levator process in the epi. 4 bone is no longer present. Removing the

levator process and its relationship with epi. 4 bone produces the milkfish

ontology.

Note that in this example, each step involved changing the character state for only

a single character. In reality, successive steps may involve a large number of character

state changes. Therefore at each step, a set of transformations may need to take place to

get the new ontology, each individual transformation based on understanding the

meaning of the corresponding character statement.

3.3 A SOLUTION FOR ONTOLOGY GENERATION

The solution to this problem is based on treating the components of phylogenetic

studies, in particular the character statements and phylogenetic trees, as a single ontology

based on our meta-model (see Figure 1.3). The following sub-problems were solved in

order to develop the algorithm for generating new anatomy ontologies:

28

Figure 3.7: Stepwise generation of ontologies to get the target ontology.

Transformations, based on character state changes, take place at each step.

1. Phylogenetic Tree as Ontology: As described in the earlier example, our

algorithm is based on traversing a phylogenetic tree. We represent the tree in

an ontological form in order to support connections between the tree and the

character data. It also allows us to provide logical definitions of some

important concepts in phylogenetics.

2. Characters in Ontology: Generating new anatomy ontologies requires a

detailed treatment of character statements as ontological concepts. This is

necessary in order to represent different kinds of characters in an

29

unambiguous form. We created a taxonomy of character types for this

purpose. Each type of character in the taxonomy has a unique signature that

enables its representation in an ontology.

3. Transformations on Ontology: A critical aspect of our solution is to perform

appropriate transformations on the ontologies based on understanding the

character. After distinguishing between different kinds of characters, we

identified and implemented transformation rules for each kind. These

transformations rules fire on changes in character state assignments. The

effects of these rules include adding new concepts, removing existing

concepts, or modifying existing concepts and/or their relationships.

In the following sections of this chapter, we provide detailed explanations of our

work on these problems.

3.4 PHYLOGENETIC TREE AS ONTOLOGY

A phylogenetic tree represents evolutionary relationships among taxa, i.e., it tells

us the ancestor of each taxon in the tree (except for the root). Our meta-model enables us

to capture phylogenetic trees as part of the ontology simply by a single association

“parent of” that links a taxon to its direct descendants (see Figure 1.3).

Figure 3.8 shows the ontological representation of a phylogenetic tree. Each

rectangle in the figure connects to its corresponding matrix cells (and hence character

states) and specimens per the meta-model. Our algorithm for automatically creation

ontologies works by traversing the “parent of” relationships among the taxa.

30

Figure 3.8: Representation of a phylogenetic tree (a) as a part of the ontology (b)

where each rectangle represents a taxon, and each edge is “is ancestor of”.

In addition, using this representation of the tree, formal definitions of some

important concepts in phylogenetics can be specified. Dictionary definitions (taken from

a commonly used source cited at the end of the definition), and formal definitions of such

concepts are provided below. In these definitions, T is the set of all taxa in a phylogenetic

tree of a phylogenetic study and CSt is the set of all character states in the given character

matrix. For first order logic representation, let ������������, �� be reflexive and mean

that taxon A is “parent of” taxon B. Also, since each taxon connects to its character states,

let ��!������, !� mean that taxon A exhibits character state S.

• Homology: A character state cs in different taxa, say t and u, is considered a

homology if it is similar because it was inherited from a common ancestor that

also had that feature [59].

 "#"$"%&�'�, �, (� ≡ '� ∈ �!� ∧ �, (∈ �

∧ ��!������, '�� ∧ ��!�����(, '�� ∧ ∃� ∈ �

�������������, �� ∧ ������������, (� ∧ ��!������, '��

31

• Homoplasy: A character state cs in different taxa t and u that has separate

evolutionary origins, but is superficially similar because it evolved to serve

the same function is called homoplasy or analogy. These are the result of

convergent evolution [59].

 "#"-$��&�'�, �, (� ≡ '� ∈ �!� ∧ �, (∈ �

∧ ��!������, '�� ∧ ��!�����(, '�� ∧ ¬ "#"$"%&�'�, �, (�

• Plesiomorphy: Same as primitive trait, i.e. a feature cs that is present in the

common ancestor of a group (or clade) g [60].

�$��/"#"�-ℎ&�'�, %� ≡ '� ∈ �!� ∧ % ⊆ � ∧ ��!�����#���%�, '��

• Symplesiomorphy: The possession of a character state cs that is primitive

(plesiomorphic) and shared between two or more taxa [61].

!&#-$��/"#"�-ℎ&�'�, %� ≡ �$��/"#"�-ℎ&�'�, %�

∧ ∃�, (∈ %�� ≠ (∧ ��!������, '�� ∧ ��!�����(, '��

• Apomorphy: An evolutionary trait cs that is unique to a particular taxon t and

its descendants and which can be used as a defining character for a species or

group in phylogenetic terms [62].

�-"�#"-ℎ&�'�, �� ≡ '� ∈ �!� ∧ � ∈ �

∧ ��!������, '�� ∧ ∀(∈ �� ��!�����(, '�� → ������������, (��

• Synapomorphy: An apomorphy that is shared by two or more taxa is termed

a synapomorphy [62].

!&��-"#"�-ℎ&�'�, �� ≡ �-"#"�-ℎ&�'�, �� ∧ ∃(, 5 ∈ �

�(≠ 5 ∧ ������������, (� ∧ ������������, 5�
∧ ��!�����(, '�� ∧ ��!�����5, '�� �

32

3.5 CHARACTERS IN ONTOLOGY

Here we provide a detailed treatment of character statements, i.e. characters and

character states, as ontological concepts. We have based our work on Paul Sereno's

logical basis for characters [21] and the EQ model for character states [57] discussed

earlier.

Figure 3.9: A taxonomy of character types.

A Taxonomy of Character Types

There are two fundamental types of characters: neomorphic and transformational.

Neomorphic characters are composed only of locators and refer to their absence or

presence. These locators are anatomical entities, and if derived from an anatomy

ontology, are the same as an entity (E) in the EQ model. Transformational character

statements, on the other hand, may take various forms within the logical pattern described

by Sereno (see Figure 3.1), depending upon the meaning of the character statement and

the kind of the variable involved. We have identified and named some of these particular

forms, and have organized them into a taxonomy of character types (Figure 3.9). This is

33

not an exhaustive set of character types. We have only considered the types that we have

identified as relevant to anatomy ontology transformations.

• Neomorphic Character (NE): A neomorphic character is about the absence

or presence of an entity. An example of a neomorphic character is “Manual

digit I: present (0); absent (1)”, character statement 16 in [21]. A neomorphic

character statement consists of a locator, which is an entity, and specific

character states: absent and present.

• Transformational Character (TR): As mentioned earlier, a transformational

character is about transformations of morphological structures between

comparable states. All the remaining types of characters in our taxonomy are

transformational.

• Classifying Character (CL): We define a classifying character as one that

applies simple adjectives (qualities) to an entity. For example, character 51 in

[63] is a classifying character: “Lateral eyes: no (0); simple (1); compound

(2); stalked-compound (3)”. More examples are character statements 7 and 8

in [21].

• Meristic Character (ME): A meristic character is about the count of a

particular entity. For example, character 52 in [63] is a meristic character:

“Median eyes: none (0), four (1), two (2)”. Another example is character

statement 15 in [21].

• Relative Character (RV): Relative character is a subcategory of

transformational characters which deals with relationships among multiple

entities. The remaining types of characters fall into this category.

34

• Propositional Character (PR): A propositional character concerns the

existence of a specified relationship between two entities. There are only two

possible character states: true or false, depending on whether the relationship

exists or not. An example for this type of character may be: “Seed is enclosed

in fruit: true (0), false (1)”.

• Relational Character (RE): A relational character concerns the existence of

a relationship of an entity with multiple alternative entities. The character

states for such a character are entities. For example, “Location of seed: fruit

(0), cone (1)” is a relational character.

• Compositional Character (CO): A compositional character concerns

expressing the parts of a particular entity. The character states in this case are

sets of entities. An example is given in Table 7 of [21]: “Medial distal carpal,

composition: distal carpal 1 (0); distal carpals 1 + 2 (1)”.

• Sequential Character (SE): A sequential character specifies the order of

occurrence of entities, which may be helpful in understanding their

organization. The character states for such a character are sequences of

entities. For example, character 55 in [63] “Ordering of fate map tissues:

anterior – stomodeum – midgut – mesoderm – posterior (0), anterior – midgut

– mesoderm – stomodeum – posterior (1)” is a sequence character. In our

research we have found that this type of character occurs rarely in

phylogenetic studies. While we have included it in the taxonomy of character

types, it does not appear further in this work.

35

Table 3.1: Forms and frames of character types.

Type Grammar Form Example Frame/Signature

Neomorphic

(NE)

E1 [R] E2, Q:

absent (S0);

present (S1)

Anterior process [part

of] maxilla, presence:

absent (0); present (1)

E1 = anterior process

R = part of

E2 = maxilla

Q = presence

S0 = absent

S1 = present

Meristic (ME) E Q: X0 (S0);

X1 (S1) ... Xn (Sn)

Manual digits,

number:

5 (0); 4 (1)

E = manual digit

Q = number/count

S0/X0 = 5

S1/X1 = 4

Classifying

(CL)

E Q: Q0 (S0);

Q1 (S1) ... Qn (Sn)

Dorsal fin, location:

anterior (0); posterior

(1)

E = dorsal fin

Q = location

S0/Q0 = anterior

S1/Q1 = posterior

Propositional

(PR)

E1 R E2:

true (S0); false

(S1)

Seed enclosed in fruit:

true (0); false (1)

E1 = seed

R = enclosed in

E2 = fruit

S0 = true

S1 = false

Relational

(RE)

E R: E0 (S0);

E1 (S1) ... En (Sn)

Seed, part of:

fruit (0); cone (1)

E = seed

R = part of

S0/E0 = fruit

S1/E1 = cone

Compositional

(CO)

E Q:

{E1 ... Ei} (S0); ...

{Ej ... En} (Sn)

Medial distal carpal

composition:

distal carpal 1 (0);

distal carpals 1 + 2 (1)

E = medial distal carpal

Q = composition

S0 = {distal carpal 1}

S1 = {distal carpal 1,

distal carpal 2}

36

Table 3.2: Examples of transformations based on character types.

Type Rule (fires when state changes) Illustration (difference between two possible states)

NE Absent to present: add E1 and its

relationship R with E2

Present to absent: delete E1, and its

relationship R with E2

ME S0 to S1:

If X0>X1, delete X0-X1 children of E

If X1>X0, add X1-X0 children for E

CL S0 to S1: delete child of E with

quality Q0 and add a new child of E

with quality Q1

PR False to true: add relationship R

between E1 and E2

True to false: delete relationship R

between E1 and E2

RE S0 to S1: delete relationship R

between E and E0, and add

relationship R between E and E1

CO S0 to S1: delete all parts of E that are

elements of S0, and add all elements

of S1 are parts of E

37

Signatures of Character Types

As mentioned earlier, each character type has its particular logical pattern,

signature or frame. In order to fully capture a character statement as an ontological

concept, it is necessary to identify its type and to populate its frame with the necessary

elements.

In Table 3.1, we list the natural forms, examples that fit the corresponding forms

and populated frames of the given character types. Our notation for forms and frames is

based on a combination of Sereno’s logic and EQ statements. Each E/Ei is an entity from

an anatomy ontology, and is the same as a locator in Sereno’s logic. Each Q/Qi is a

quality or adjective derived from PATO [58]. This includes the variable element in

Sereno’s logic, and the possible character states of some character types. Each R/Ri

belongs to the official OBO Relations Ontology (RO) [27]. OBO Relations Ontology

contains a set of relationship types for use across biomedical ontologies. We have

restricted our scope for relationship types to this ontology.

Now that we have explained how to represent character statements in ontologies,

we move on the transformation rules required to generate new ontologies.

3.6 TRANSFORMATIONS ON ONTOLOGY

When going from the Nomina Anatomica of one taxon to some other taxon, as

explained earlier, we consider the differences between the character states of each taxon.

Once a difference is identified, the next step is to make appropriate transformations on

the source ontology based on the meaning of that particular change in the character state.

The meaning is clear once the corresponding character statement is presented to the

system in its frame representation. Based on the type of the character and the fields in the

frame, we are able to make the necessary transformations on the source ontology to

38

produce the target ontology. These transformations are a result of firing appropriate

transformation rules.

Table 3.2 shows informal descriptions of the rules for each character type, and

also provides illustrations for changes in the ontology when the character state changes

from one value to the other (based on the examples provided in Table 3.1). Each rule

description in the table starts with an italicized label that states the change in the

character state. Some character types have multiple kinds of changes in character states,

and hence require multiple transformation rules.

Basic Definitions for Transformations

We have identified the transformation rules based on these six character types.

We present these rules using some basic definitions provided in Table 3.3.

Table 3.3: Definitions of predicates and functions involved in formal rules.

Predicate/Function Definition

Predicate ��&-��', �� Type of character c is t, where � ∈ {78, 	8, �9, �:, :8, ��} �ℎ��%��', �, �� Character c changed state from s to t

Function #���%� Returns the most recent ancestor of the set g of taxa

Each transformation rule has two parts, separated by a double headed arrow:

< �"�=/�/"�� >↠< �'�/"�� >

i.e., if a set of conditions is satisfied, perform the given set of actions.

A transformation rule can perform two kinds of actions: ADD and RETRACT. The

ADD action adds an entity or a relationship between two entities to the knowledgebase,

and the RETRACT action removes an entity or a relationship from the knowledgebase.

RETRACT on an entity removes all the relationships between that entity and other

39

entities. Some notational conventions regarding the use of actions with these objects are

presented in Table 3.4.

Table 3.4: Notational conventions regarding the use of actions and objects.

Expression Explanation
 8 @→ A A relationship of type R between entities E and F.

�BB�8� Add entity E.

�BB 8 @→ A� Add relationship of type R between E and F.

:8�:�����, C� If condition n holds, RETRACT x.

:8�:��� 8 @→ A, D� Remove G if there is a relationship of type R between E and F.

Transformation Rules

Here is the listing of the transformation rules in our system. We discuss the

implementation of these rules in the next section. Each rule assumes the existence of a

character c:

• Rule NE-1: This rule is activated when a neomorphic character changes state

from absent to present.

��&-��', 78� ∧ �ℎ��%��', �E����, -������� ↠
�BB�'. 8�� , �BB '. 8� H.@IJ '. 8��

• Rule NE-2: This rule is activated when a neomorphic character changes state

from present to absent.

��&-��', 78� ∧ �ℎ��%��', -������, �E����� ↠ :8�:������(�, '. 8��
• Rule ME-1: This rule is activated when a meristic character changes state

from X to Y, 0<X<Y.

40

��&-��', 	8� ∧ �ℎ��%��', K, L� ∧ K < L ↠
∀�, �K < � ≤ L� ��BB��N� , �BB �N OP QIJ '. 8��

• Rule ME-2: This rule is activated when a meristic character changes state

from X to Y, 0<Y<X.

��&-��', 	8� ∧ �ℎ��%��', K, L� ∧ L < K ↠
∀�, �L < � ≤ K� �:8�:��� �N OP QIJ '. 8, �N��

• Rule CL-1: This rule is activated when a classifying character changes state

from V to W.

��&-��', �9� ∧ �ℎ��%��', R, S� ↠
:8�:��� �T OP QIJ '. 8, �T� , �BB��U�, �BB �U OP QIJ '. 8�

• Rule PR-1: This rule is activated when a propositional character changes state

from false to true.

��&-��', �:� ∧ �ℎ��%��', ��$��, ��(�� ↠ �BB '. 8� H.@IJ '. 8��

• Rule PR-2: This rule is activated when a propositional character changes state

from true to false.

��&-��', �:� ∧ �ℎ��%��', ��(�, ��$��� ↠ :8�:��� ��(�, '. 8� H.@IJ '. 8��

• Rule RE-1: This rule is activated when a relational character changes state

from G to H.

��&-��', :8� ∧ �ℎ��%��', D, � ↠
:8�:��� ��(�, '. 8 H.@IJ D� , �BB '. 8 H.@IJ �

41

• Rule CO-1: This rule is activated when a compositional character changes

state from Gs to Hs.

��&-��', ��� ∧ �ℎ��%��', D�, �� ↠
∀D ∈ D� �:8�:��� ��(�, G WQXY Z[I\\\\J '. 8��,
∀ ∈ � ��BB WQXY Z[I\\\\J '. 8��

In some cases, the naming/identifier conventions for the objects are not very

obvious in the formal representation. These can be clarified using the examples given in

Table 3.2 or by looking at the implemented source code listing provided as Appendix A.

3.7 IMPLEMENTATION

The transformation rules are implemented in Jess scripting language run by the

Jess Rule Engine [64] for the Java Platform. For the transformation rules listed in formal

notation earlier, we have a total of 16 rules encoded in Jess. The main body of the

algorithm and the data model it operates upon is implemented as a Java program.

(defrule rule-03-effect-of-neomorphic-character

 "State change from present to absent in a neomorphic character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (CharNE (id ?chid) (entity ?nee))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (State (id ?fsid) (name "present"))

 (State (id ?tsid) (name "absent"))

 ?theentity <- (NAEntity (id ?eid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?nee) ?eid))

=>

 (retract ?theentity)

 (printout t "*** NE :: (03) - [E:" ?nee "] ==> " ?chid crlf))

Figure 3.10: A transformation rule (for neomorphic character state change) in its Jess

script form.

42

A sample Jess transformation rule is shown in Figure 3.10. Each rule has two

parts: the conditions are listed in the first part, and actions in the second. The two parts

are separated by the ‘=>’ symbol. As a convention we have implemented the last action

for each rule to be an explanation generation instruction for the actions performed by the

rule.

Our program outputs all the ontologies generated on the path from the source

taxon to the target taxon. These ontologies are exported to our Ontobrowser tool for web

based browsing. The target taxon ontology is also generated in OWL format. In addition,

the program produces an explanation for each transformation at each step in the

algorithm. A sample explanation is shown in Figure 3.11.

From N10 to N02

* ME :: (13) + [E:branchiostegal-ray#4]

 [R:branchiostegal-ray#4 is_a branchiostegal-ray] ==> C54-

* NE :: (03) - [E:epibranchial-4-bone-uncinate-process] ==> C36-

* CL :: (06) + [E:straight-epibranchial-bone]

 [R:straight-epibranchial-bone is_a epibranchial-bone] ==> C27-

Figure 3.11: A sample explanation output.

Each line of the explanation gives the type of the character involved, a rule

number that caused the change, addition or retraction of appropriate entities and/or

relationships, and finally the identifier of the character that caused that particular

transformation.

We provide the source listing for our Jess rules as Appendix A.

In order to evaluate the results produced by our algorithm, i.e. the new ontologies

generated, we have examined the following test cases.

43

3.8 TEST CASE: FROM ANGIOSPERMS TO OTHER PLANTS

This test case is based on the Plant Structure Ontology (PSO) [65] for flowering

plants (angiosperms). This is a synthetic test case developed for the specific purpose of

testing and demonstrating the algorithm on a small amount of data. We created a

phylogenetic tree of 9 (terminal and ancestral) taxa based on the data available on

PLANTS Classification Report [66, 67]. The tree is rooted at embryophyte (or land

plants). An intermediate ancestral taxon in the tree is angiosperm, which serves as the

source (or model) taxon for the test case.

We created a character matrix comprising 10 morphological character statements

of various kinds. We also labeled the taxa with their corresponding character state

vectors. Also, we extracted a portion of PSO (36 entities, 36 relationships) into a small

ontology that is suitable for our character statements. We also populated the frames for

our character statements with the appropriate elements from PSO and other ontologies,

PATO and RO.

Table 3.5: Ontologies generated by the plants test case.

The test case starts from a portion of Plant Structure Ontology for angiosperms

containing 36 entities and 36 relationships among entities. The Added/Retracted columns

list the number of terms or relationships added or removed from the angiosperm ontology

to get the new ontology.

Ontology

(Taxon)

Terms (Entities) Relationships (Triples)

Count Added Retracted Count Added Retracted

Embryophyte 34 2 4 36 2 2

Fern 35 3 4 37 3 2

Spermatophyte 35 2 3 36 2 2

Gymnosperm 36 3 3 37 3 2

Conifer 38 5 3 40 6 2

Cycad 36 3 3 37 3 2

Eudicot 39 4 1 39 4 1

Monocot 35 0 1 35 0 1

44

We generated ontologies for all the other taxa in the tree. Table 3.5 lists the

ontologies created, the number of entities and relationships in the ontology for each

taxon, and the number of additions and retractions involved in producing the ontology,

starting from the ontology for angiosperms.

The raw input data for this test case is attached as Appendix B.

3.9 TEST CASE: CYPRINIFORMES TREE OF LIFE

This test case is based on the phylogenetic data provided by the biologists

working on the Cypriniformes Tree of Life (CTOL) project [68]. This dataset

corresponds to a study on the diversity of a particular anatomical region, i.e. gill arch and

hyoid arch, across cypriniformes. The key taxa to remember for this test case are teleosts,

cypriniformes and zebrafish (Danio rerio). Cypriniformes form a group of fish species

that are studied under the CTOL project. Zebrafish is an NIH designated model organism,

and is a species in the cypriniformes group. Teleosts are a broader group of fishes that

includes cypriniformes. The CTOL project does not cover all teleosts.

The data from CTOL consists of two parts. First, we have a morphological

character matrix containing 62 character statements and the character state assignments

for 65 terminal taxa, including zebrafish. From this matrix, we have identified 39

character statements that fall under our taxonomy of character types, i.e., are relevant to

anatomy ontology. We have only used these 39 characters in our tests (see our CTOL

character matrix worksheet, Appendix C). Second, based on the character matrix, the

biologists have produced a phylogenetic tree with ancestral character state assignments.

The tree contains a total of 85 (terminal and ancestral) taxa. The tree contains zebrafish,

cypriniformes and an ancestor of cypriniformes (root of the tree, henceforth called

CTOL-root taxon), but not teleosts.

45

In addition to the phylogenetic data (character matrix and phylogenetic tree), we

have used two authoritative ontologies in this test case: the Zebrafish Anatomy ontology

(ZFA) [9], and the Teleost Anatomy Ontology (TAO) [10]. In addition to the anatomy of

teleosts, TAO also provides a list of synonym cross-references between ZFA and TAO.

While ZFA and TAO are large ontologies, we have extracted portions from each that

correspond to the anatomical region of gill and hyoid arches.

Based on this data, we perform the following tests. First, using the teleost

ontology (TAO) as the starting point, we generate a new zebrafish ontology (ZFA*) and

compare it with the authoritative zebrafish ontology (ZFA). Second, we produce the

ontology for cypriniformes gill and hyoid arches anatomy (CGO). We use TAO as the

starting point to create CGO, and then use ZFA to create another version of CGO and

compare the two versions. We have performed the comparisons between ontologies in a

semi-automatic manner: we have used AgreementMaker ontology matching tool [69] to

create some initial mappings between the ontologies being compared, and have

performed the remaining work manually.

From Teleost to Zebrafish

This test is based on using the Teleost Anatomy Ontology (TAO) as a starting

point for building a zebrafish ontology (ZFA*) for the relevant anatomical region. Since

the given phylogenetic tree does not include the teleost node, as a first step we use the

data in the morphological character matrix to manually modify TAO and create the

ontology for the CTOL-root taxon. This modified TAO is used in the automated

transformations in our algorithm. It contains 129 entities and 171 relationships among

entities.

46

Since we have identified the types of relevant characters, in the second step we

populate the frames for each character statement using the modified TAO, Phenotypic

Quality Ontology (PATO) and OBO Relations Ontology (RO), as described earlier.

Once we have the source ontology and the populated character frames, we run the

algorithm on the phylogenetic tree, going from CTOL-root to zebrafish, and produce a

zebrafish ontology, called ZFA*. This ontology contains 112 entities and 157

relationships among entities. The portion of the original ZFA that we have extracted for

comparison contains 103 entities and 142 relationships among entities.

Table 3.6: Synonym cross-references from TAO to ZFA and ZFA*.

Cross-References Difference

TAO-ZFA* TAO-ZFA Overall Design Entities

107 67 40 27 13

Table 3.7: Summary of newly discovered entities for ZFA.

Reason Count

Difference in cross-referenced entities (from Table 3.6) 13

New entities without sufficient evidence 7

New entities with evidence 6

Other evident new entities not cross-referenced from TAO 4

Total number of evident new entities discovered 10

Synonym cross-references: As mentioned earlier, TAO provides synonym cross-

references to the authoritative ZFA. Our system also keeps track of synonyms between

source and target ontologies during transformations. We have compared our synonyms to

the synonym cross-references provided by the authoritative TAO. This objective of this

evaluation is to find any discrepancies between the two synonym lists and to pinpoint the

reasons behind them. Table 3.6 shows a summary of our evaluation.

47

Figure 3.12: Difference in modeling approaches between ZFA and TAO. In

terms of biology, there is little difference between the structures since the

basibranchial part in ZFA already signifies a basibranchial-element. TAO has

a number of -element entities, none of which are modeled in ZFA.

Table 3.8: New entities for ZFA.

No. Entity (Term) Evidence (Character)

1. Hypobranchial 3 element ventral process Neomorphic (C58A)

2. Epibranchial 4 bone uncinate process Neomorphic (C36-)

3. Epibranchial 4 bone levator process Neomorphic (C39-)

4. Urohyal ventral plate Classifying (C61A)

5. Fully developed urohyal ventral plate Classifying (C61B)

6. Rod-like basibranchial 2 bone Classifying (C09-)

7. Spathiform branchiostegal ray Classifying (C55-)

8. Straight epibranchial bone Classifying (C27-)

9. Hooked-with-wear-surface ceratobranchial 5 tooth Classifying (C25-)

10. Tapered-tipped gill raker Classifying (C47-)

The newly created ZFA* contains 107 cross-references to entities in TAO. Only

67 of those entities are cross-referenced between TAO and ZFA. The additional 40 cross-

references between TAO and ZFA* are among the entities that do not exist in ZFA. Our

investigation shows that 27 of these entities exist due to a difference of modeling

approaches between TAO and ZFA. Since ZFA* is built from TAO, it inherits its

48

modeling approach and also contains these entities. However, these entities do not

represent significant additions to the knowledgebase, as elaborated in Figure 3.12. Of the

remaining 13 new cross-references between ZFA* and TAO, 6 are due to the discovery

of new candidate entities for ZFA based on the evidence from the given character

statements. The other 7 are due to the presence of entities in TAO that are not referenced

in the given set of character statements, hence making it impossible for us to decide

whether to delete them from ZFA* during the transformation process or to treat them as

candidates for ZFA (Table 3.7).

Newly discovered knowledge: We have also examined the transformations at

each step during the process of the creation of ZFA*. As the other criteria for the

evaluation of our work, we have examined the retracted entities to identify any possible

errors made during the creation of ZFA or the given morphological character matrix, and

the added entities to identify any candidates for addition into the authoritative ZFA. We

have found that all the retractions made by our transformations are consistent with the

content of the authoritative ZFA. However, as explained in Table 3.7, we have identified

10 new candidate entities for addition into ZFA. These entities are listed in Table 3.8,

along with the identifier for the character statement that serves as the evidence for its

existence.

Cypriniformes Gill and Hyoid Arches Anatomy Ontology

Using our algorithm, we have generated the Cypriniformes Gill and Hyoid Arches

Anatomy Ontology (CGO). As a new biological knowledgebase, and as the title suggests,

this ontology captures the anatomical structure of the gill and hyoid arches of

cypriniformes based on the knowledge captured in the CTOL character matrix. The

ontology starts from the description of parts and subclasses of pharyngeal arches. Gill

49

arch and hyoid arch are pharyngeal arches. In addition to capturing the parts of these

anatomical regions, the ontology also captures the composition of most anatomical

entities involved, which seems to be a recurring feature of interest in the character matrix.

Hence, entities are appropriately described as being bones or cartilages, and in some

cases, teeth. CGO consists of 139 terms and 2 relationship types (is_a and part_of). A

full listing of this ontology is provided as Appendix D.

Once again, our starting point for the new CGO ontology is the ontology for

CTOL-root taxon obtained by manually updating the Teleost Anatomy Ontology using

the character matrix. In order to double check the correctness of our ontology, we also

started from the Zebrafish Anatomy ontology to produce another version of CGO. The

purpose of this exercise is not to establish a formal equality of the two versions, but to

examine the structure of the two ontologies to identify any discrepancies.

We manually examined the topology of the two ontologies and found them to be

consistent. As an additional exercise, we generated the ontologies for all the taxa in the

path from CTOL-root taxon to zebrafish starting from TAO, and the ontologies for the

same taxa in the opposite direction, zebrafish to CTOL-root, starting from ZFA. We

manually examined the pair of ontologies produced for each taxon in the path and found

them to be consistent.

3.10 LESSONS FROM EXISTING ANATOMY ONTOLOGIES

Based on our investigation of many different anatomy ontologies in the course of

capturing the background knowledge, developing the algorithm and performing the

evaluation, we have encountered some ontology design choices or practices that, in our

opinion, warrant discussion. These practices have an impact, positive or negative, on the

ability of the ontologies in question to integrate and interoperate with the other ontologies

50

in the domain. Most existing anatomy ontologies were developed by biologists with little

training in ontology engineering practices. Therefore, while some practices may be

deliberate, it is possible that others happened simply because they seemed like the easiest

way forward to the biologists looking at a single ontology in isolation from the rest of the

domain.

Figure 3.13: A more consistent use of ‘-element’ type entities across single

taxon ontology can improve ontology alignment.

• We find the use of ‘-element’ entities in the Teleost Anatomy Ontology

(TAO) a significant new practice in anatomy ontologies (Figure 3.12). As

mentioned earlier, the Zebrafish Anatomy (ZFA) does not have ‘-element’

entities. One of the reasons for this difference is that TAO is a multi-taxon

ontology, and needs to capture the variation across all the taxa in the teleost

group. On the other hand, ZFA is a single taxon ontology and does not deal

with such variation. For example, TAO contains interhyal-element

(TAO:0001892) as well as both of its possible variations, interhyal-bone

(TAO:0000171) and interhyal-cartilage (TAO:0001511). ZFA does not need to

capture the variation and contains only interhyal-cartilage (ZFA:0001511).

51

However, we believe that a better way to model interhyal-cartilage in a single

taxon ontology such as ZFA is to have an interhyal-element and a relationship

interhyal-element is_a cartilage. This enables easy alignment of multiple

single taxon ontologies by making interhyal-element an anchor (i.e. a possible

homology) among them. This example is depicted in Figure 3.13.

Figure 3.14: Better modeling practices can improve ontology alignment.

• Anatomy ontologies often contain terms that include adjectives in their names

or definitions, e.g. the term smooth-muscle (TAO:0005274) in TAO consists of

the adjective smooth and an entity muscle. Given the existing conventions, our

algorithm also produces such terms, in particular when classifying characters

are involved (see Table 3.8). As we mentioned earlier Phenotypic Quality

Ontology (PATO) provides the commonly used adjectives for this domain. A

better way to model such terms may be to model the adjective as a

relationship to an appropriate term in PATO, for instance as muscle

has_quality smooth, where smooth (PATO:0000701) comes from PATO. Once

again, having the term in its primitive form can help ontology alignment

algorithms (Figure 3.14).

52

• Sequences of similar entities are often captured by numbering them. For

example, ZFA contains multiple Weberian-vertebra (ZFA:0001190) named as

vertebra 1 (ZFA:0001167), vertebra 2 (ZFA:0001168), vertebra 3

(ZFA:0001169) etc. The ontology does not capture the relationships among

these entities. Vertebra 2 has the following definition: “vertebra that is

posteriorly adjacent to vertebra 1”. However, there is no formal relationship

between the two entities in the ontology, making the definition inaccessible to

an inference engine. Given that PATO defines qualities for related entities

such as adjacent to (PATO:0002259) and posterior to (PATO:0001633),

ontology developers should strive to capture these relationships as well.

Our algorithm allows automatic generation of single taxon anatomy ontologies

based on an existing anatomy ontology and a related phylogenetic study captured in the

Morphster meta-model. Our algorithm can be easily extended to produce multi-taxon

ontologies as well.

53

Chapter 4

Knowledge Acquisition using Morphster

Morphster is a domain-specific ontology editor for conducting morphology based

phylogenetics research. Unlike general purpose ontology editors such as Protégé [12] and

OBO-Edit [11], Morphster builds ontologies that capture knowledge about phylogenetics.

The goal of Morphster is to enable biologists to conduct their studies in a way that makes

it possible for them to perform knowledge inference across the components of a study. In

particular, Morphster is a tool for creating the input knowledge for our inference process

for automatically creating new anatomy ontologies. We have defined a meta-model for

morphology based phylogenetics that describes domain entities and their relationships,

which is the basis for the ontologies created using Morphster.

Images play an increasingly significant role in phylogenetic studies, thus they are

at the center of the data model and the user interface of Morphster. Images are commonly

used in phylogenetic studies as the definitive basis or exemplars for concepts and are

annotated to express hypotheses that may later be validated through the phylogenetic

inference methods. Images are used in Morphster as placeholders along a morphologist’s

normal workflow, capturing initial facts, intermediate hypotheses and final results in the

ontology using image annotations. In other words, Morphster is an image-driven

ontology editor.

54

We have implemented the ontology editing actions as side effects of the steps a

user takes through the workflow. As a result of this approach, the user interface of

Morphster is much more intuitive to morphologists than to knowledge engineers. This is

in contrast to conventional ontology building methodology, where a knowledge engineer

is often required to assist in the process of encoding the domain knowledge into an

ontology. A goal of Morphster is to enable subject matter experts to build their own

ontologies, without any assistance from a knowledge engineer.

4.1 ROLE IN PHYLOGENETIC STUDIES

Figure 4.1: Workflow of phylogenetics, and the role of Morphster.

Figure 4.1 presents an outline of steps involved in phylogenetics research and

clarifies the role of Morphster in this domain. Being a natural science, research work in

systematic biology starts in the field where biologists observe and identify taxa in their

natural ecosystems and collect specimens for further study. These studies may be about a

55

single newly discovered taxon, or multi-taxon studies that involve placing the new taxon

in its evolutionary context.

Figure 4.2: Morphster meta-model for phylogenetic studies. The ‘shows’

associations are shown in dotted lines because they represent a collection of

association types called the ‘Shows’ hierarchy (Chapter 5).

Morphster supports both single and multi-taxon studies. For single taxon studies,

Morphster supports preparing annotated image collections from curated specimens, and

creating the Nomina Anatomica. For multi taxon studies, Morphster supports comparative

viewing of imagery from different specimens, as well as anatomy ontologies from

multiple taxa, helping scientists identify characters and character states, and building data

matrices.

4.2 A META-MODEL FOR PHYLOGENETIC STUDIES

Morphster provides a meta-model for morphology based phylogenetic studies,

making it possible to capture the body of scientific knowledge for an entire phylogenetic

study as an ontology. We present this meta-model in Figure 4.2 (and its OWL-encoded

ontology version as Appendix E).

56

This meta-model is the foundation of Morphster. It presents the key concepts such

as taxon, matrix, character, character state, etc., that form the core of scientific statements

developed by morphologists. It also presents other concepts (anatomical entity,

phenotypic quality etc.) and relationships (is entity of, is quality of etc.) that are key to

properly defining the concepts in the domain.

Figure 4.3: An ontology built using Morphster, showing some of the

concept types allowed by the meta-model.

The central piece of our meta-model is the image concept and its relationships

with other components such as anatomical entities, characters and character states. This

model allows morphologists to relate taxa (through specimens) to relevant features

(anatomical entities, character states etc.) using images as basis or evidence of the

observations.

The case of characters and character states is also of particular significance. A

character is a variable often represented as a descriptive statement describing certain

qualities of some specific anatomical entities, and character states are the possible values

57

for that variable or character. As explained in Chapter 3, we treat characters as compound

concepts, best captured as a composition of different kinds of terms, such as anatomical

entities and qualities or adjectives.

Knowledge from the scientific work done using Morphster is represented in this

ontological form (see Figure 4.3 for an example). However, like all other domains,

morphologists are trained to recognize and understand certain visualizations of this

knowledge, such as in the form of a data matrix. By default, Morphster queries the

knowledgebase to produce those specific visualizations of the ontology.

Figure 4.4: Images of Sarcoglanis simplex documenting observations. Outlined

labels highlight characters or character states, or documented hypotheses.

4.3 KNOWLEDGE ACQUISITION USING MORPHSTER

Morphster’s knowledge acquisition process is different from conventional

ontology editors such as OBO-Edit [11] and Protégé [12]. Images play a central role in

the knowledge acquisition process of Morphster. The process of building an ontology is

based on annotating different collections of images at various stages in the workflow.

58

Image-driven Knowledge Acquisition

We have identified two roles served by images in the morphology workflow. An

image may serve as a concept exemplar, or as a record of a scientist’s conjecture. For

example, Claeson et al. [70] describe a rare catfish called Sarcoglanis simplex using

images obtained from an adult specimen (see Figure 4.4). These images not only

document anatomical entities and possible character states (e.g. slit-like gap) but also new

hypotheses (e.g. is the present entity a supraorbital).

In order to support different roles of images we have developed a framework,

named the ‘Shows’ hierarchy, for integrating images with ontologies. In short, the

‘shows’ relationship for images shown in Figure 4.2 represents a set of relationship types

that may be used for image associations depending upon the intended role of an image at

a particular point during the study.

Based on the ‘Shows’ hierarchy, we have implemented image-driven ontology

editing actions. The idea is quite straightforward: Image annotations cause updates to the

knowledgebase and the progress of the user through the workflow decides the precise

actions that are triggered when an annotation takes place.

Figure 4.5: Image collections are used as checklists that take a biologist

through the workflow, building the knowledgebase in the process.

59

Figure 4.6: Screenshot of Morphster image gallery. Each image goes through its

role at a particular step in the workflow and disappears from the gallery. The

image collection serves as a check list of to-do items at each step in the workflow.

Iterative Population of the Ontology

Conventionally, knowledge is acquired in a frame-by-frame manner, i.e. a

knowledge engineer populates a particular concept before moving on to the next. We

refer to this a depth-first approach to ontology building. Applied to a domain like

systematic biology, that would mean populating the knowledge base with all the

information about a particular taxon, from identifying anatomical entities to recognizing

and defining characters and states etc., before moving on to another taxon. This process

contradicts with the conventions of systematic biologists.

In systematic biology studies, often a goal is to study new taxa by means of

comparing them with each other as well as with known and well described model taxa.

This entails that knowledge about each taxon is not available in isolation from other taxa.

60

In other words, the knowledge about all the taxa is discovered in parallel as they are

investigated in comparative settings, using similar images from each taxon. These

comparative settings are sometimes called 3-taxon statements, where three taxa are

compared to identify which two of the three may be more closely related to each other.

Morphster’s knowledge acquisition process has been derived from this

methodology. We use images as placeholders for updates to the ontology (see Figure

4.5). The collections (or queues) of images serve as checklists for work to do. Per the

stages in the workflow, images may belong to the registration queue, description queue or

the comparison queue. The user interface of Morphster provides a metaphor to manage

these image collections to keep track of progress (see Figure 4.6).

Images belonging to the registration queue go through a registration process to

identify the taxon and specimen it belongs to, as well as the metadata fields. As each

image is registered, it moves to the description queue. Images in the description queue are

used to identify anatomical entities, resulting in the development of the Nomina

Anatomica for each taxon. As each of these images is annotated, it updates the relevant

Nomina Anatomica with frames corresponding to anatomical entities and their slots that

represent anatomical relationships. This step corresponds to single taxon studies. Finally,

the images go into the comparison queue for multi-taxon analysis. Each image at this

stage starts as a placeholder for incomplete definitions of one or more characters. As the

image is annotated, the relevant characters get further populated with their character

states. Finally, these annotations contribute towards automatically producing the

character data matrix. So, in an iterative style, the ontology is populated with the domain

knowledge.

61

4.4 IMAGE-DRIVEN PHYLOGENETICS

Single Taxon Study: Describing a Taxon

Morphster supports single taxon studies using digital imagery belonging to a

particular taxon. In these studies, the imagery is annotated with corresponding anatomical

entities and features that belong to a Nomina Anatomica. Figure 4.7 presents a sample

screenshot showing imagery being annotated with anatomical entities drawn from a

Nomina Anatomica.

There are usually two ways in which the digital imagery is annotated. One of the

ways is to use an existing Nomina Anatomica, which may belong to a similar model

organism, and derive terms from that ontology for the annotation of the taxon under

study. For example, given a picture of a catfish skull and the ontology for zebrafish, a

morphologist may need to use the zebrafish ‘skull’ ontology term to describe the

homologous catfish skull shown in the image.

Another method of image annotation involves not only the association of images

with appropriate terms, but also the creation of a new Nomina Anatomica ontology in

parallel. Our work on associating images with ontology terms is one of the contributions

of this dissertation and is explained in detail later (see Chapter 5).

Multi-Taxon Study: Characters and Character States

For multi-taxon studies, Morphster provides ways for morphologists to identify

characters and character states, and build matrices.

As shown in Figure 4.7, users can view multiple images side-by-side in order to

identify variations of features across taxa. They can create characters and character states

by drawing ontology terms of different kinds (anatomical entities, phenotypic qualities

etc.), and annotating the images them. A specific user interface titled ‘concept

62

workspace’ allows the users to compose the necessary terms as new characters and/or

character states.

Figure 4.7: Screenshot of comparative use of images and concept

workspace (bottom panel). The workspace enables formation of new

concepts through the composition of existing ontology terms.

Also, once a complete set of characters and character states has been created, the

associations of registered images with character states are used to build a data matrix by

inferring the values of the matrix cells automatically.

4.5 DEVELOPMENT CHALLENGES

The development of Morphster faced challenges regarding support for ontology

languages as well as storage and querying of large ontologies. During the development of

Morphster, we have developed solutions and practical experience for these challenges.

63

OBO and OWL ontology languages are both used in the biology community. We

learned from our early experiences in the Morphster project that it is essential to build a

system that is not only capable of serving both ontology languages, but also of integrating

ontologies represented across languages.

Our solution to this challenge was to create a round-trip transformation of OBO

ontologies to OWL. This is a contribution of this dissertation and is explained in detail in

Chapter 6. We developed a methodology for translating OBO ontologies to OWL using

the organization of the Semantic Web. The approach enabled us to create quickly create

transformation rules and identify potential mismatches. We have collaborated with other

OBO community members and our mapping is now an accepted and widely used

standard for the biomedical community.

Morphster maintains all the data produced during phylogenetic studies as a part of

a single central ontology. The second challenge for Morphster was to identify the best

way to manage this ontology.

Most of the meta-model could easily be modeled into a relational database.

However, anatomical entities and phenotypic qualities come from arbitrary ontologies

that may be imported into Morphster, making it infeasible to use a purely relational

structure. On the other hand, storing an arbitrary ontology in a relational DBMS is

possible, and a specific solution called a triple store, is often used for this purpose. It was

possible to store the entire ontology in a triple store. We experimented with the most

widely used framework at the time, Jena [71] and its triple store implementation Jena

SDB [72]. In this setting, we quickly ran into scalability issues, especially with large

ontologies (25k+ concepts and 50k+ relationships).

64

Not wanting to rely completely on Jena as our generic framework, we made two

changes: First, we retracted partially from using only a triple store. Only the imported

ontologies are now stored in the triple store, while the rest of the data stored in a

relational schema, using URIs to maintain references. Second, instead of using Jena’s

API to query the data from the triple table, we created a more efficient API to suit our

application needs. Compared to Jena’s memory intensive approach, our API pushed most

of the work to the RDBMS query engine, dramatically improving query performance.

Leading with these lessons on the use of triple stores and RDBMS, we have been

working on bridging the gap between SQL databases and ontologies. A representative

publication of our work in this direction is [73].

4.6 ONTOBROWSER

Ontologies created in Morphster are publishable on the Internet using a

companion component called Ontobrowser [74]. Ontobrowser allows users to browse

ontologies and images and search for terms in the ontologies. Annotations on imagery

created through Morphster are rendered as hot links for efficient browsing. Ontobrowser

also serves as the query front-end to the Morphbank database of natural specimen images

[75]. Given image annotations, terms are sent to Morphbank and matching images

returned. This feature is currently being extended so that if matching images are not

initially found, the search terms are automatically generalized (based on the ontology)

and as assessed by ontology similarity measures, similar images are retrieved from

Morphbank [76].

65

4.7 IMPLEMENTATION AND USE

Morphster is a Java based application built using the Eclipse SWT API for user

interface. At the back-end, we deployed a Microsoft SQL Server database, which is

accessed by a JDBC API. For communicating with external services we use an XML-

based Web Service infrastructure.

Morphster is a productivity tool for systematic biologists. A full evaluation

requires their feedback on the tool and joint assessment of quality of the resulting

ontologies. Such activities are just starting, including deployment on the Fishes of Texas

project [77]. Even so, we have exploited the system for smaller activities as follows.

These studies represent a promising beginning to the application of Morphster in

phylogenetics.

Two NSF funded AToL efforts have created ontology representations of their

Nomina Anatomica: Spider Ontology by Spider AToL [78] and Hymenoptera Anatomy

Ontology by the Hymenoptera group HymAToL [79]. Illustrated versions of these

ontologies (“Spider with Images” and “Hymenoptera with Images”) can be found at the

Ontobrowser web site [74]. “Spider with Images” contains over 550 terms illustrated with

139 images. “Hymenoptera with Images” contains over 1000 terms illustrated with 369

images.

Morphster has been used to create a plant ontology using the stack-of-photos use

case, building characters and character states as well as a final matrix for 5 plant taxa. We

have also created a short Nomina Anatomica for Herrerasaurus, one of the earliest

dinosaurs, using imagery obtained from fossils. These studies appear in unpublished

tutorial materials.

66

Chapter 5

Capturing Biological Hypotheses using Imagery

Digital imagery often serves as a proxy for biological specimens and is the

foundation for all the scientific work in such phylogenetic studies. These images

(computed tomography (CT) scans, field photographs, sketches etc.) are used to capture

the ground facts, and more importantly are the basis for building and recording scientific

conjectures that are studied and proved or disproved at the conclusion of analytic work.

We have already provided an example of these uses of images in Chapter 4 (see Figure

4.4).

In another case, Ramírez et al [80] provided a protocol for documenting newly

discovered spider taxa. They defined approximately 400 standard views on spiders. They

proposed that when a spider species is newly discovered a set of standard view images be

deposited in an online digital collection at the same time the prototype specimen is

deposited into a museum collection. The online collection categorized by taxon (species)

and standard view serves as a basis for an ontology of all spiders.

While anatomy ontologies are another means for capturing the ground facts, the

lack of means for capturing hypotheses using ontologies has been a major hindrance in

building ontology based tools for conducting phylogenetic studies. A practical solution

67

requires a framework for capturing scientific facts and hypotheses by integration of

images with ontologies.

In this context we explore the connection between images and ontology terms.

Usually, ontology terms are annotated with textual definitions of the concepts they

represent. These definitions may be ambiguous or open to many different interpretations.

In biology, illustrations are often employed in place of textual descriptions to

unambiguously define concepts. In order to integrate images with ontologies, it is

necessary to understand their roles, and to develop a framework that captures these roles.

Our work provides a solution for integrating scientific images with ontologies.

We recognize the need for identifying and formally defining different roles of images in

ontologies and provide multiple ways of connecting images to classes based on the

intended roles of images. This enables us to build richer ontologies capable of inferring

more accurate results on common scientific queries than existing ontology based image

retrieval systems based on ontologies. It also gives an opportunity for creating scientific

use cases based on images that simplify ontology creation and alignment for subject

matter experts.

5.1 RELATED WORK

Ontology based image annotation and retrieval is an active area of research. The

existing body of work in this area ranges from the simple use of domain ontologies to

annotate images to the development of sophisticated mechanisms to describe and infer

spatial and temporal relationships of depicted objects.

Schreiber et al. [81] explored the use of a photo annotation ontology and a domain

ontology to index and search collections of photographs. In a qualitative comparison

between ontology based and keyword based systems they showed that ontology based

68

retrieval returned more accurate results. Hyvönen et al. [82] also annotated images using

domain-specific ontologies.

The PhotoStuff project [83, 84] was motivated by the need for toolkits that would

allow annotation of multimedia content on the Web. The PhotoStuff tool provides users

the ability to annotate whole or regions of images to identify instances of ontological

classes.

Pastra et al. [85] demonstrated the use of ontologies to describe crime scene

photos. They used a domain ontology called OntoCrime to translate natural language

photo captions that often describe spatial relationships, into relational facts. By applying

the same translation on queries to the knowledgebase, they were able to use pattern

matching on the facts to retrieve images. In a later work, Pastra used a similar approach

to describe 3D indoor scenes depicted in 2D pictures [86].

Petridis et al. [87] and Hudelot et al. [88] worked on bridging the gap between

low level descriptive features of images (e.g. dominant color) and content descriptions

based on ontologies. MPEG-7 is a standard for creating audiovisual descriptions [89].

Petridis et al presented an approach based on prototype instances for integrating MPEG-7

descriptions expressed in RDF with domain ontologies, using a tool called M-OntoMat-

Annotizer. Hudelot et al. used an ontology backed by fuzzy logic to capture spatial

relationships among objects depicted in pictures. They demonstrated the use of ontologies

and fuzzy logic to perform reasoning on medical images.

Bertini et al. [90] further investigated the problem of obtaining a complete

expression of information in digital media, and included support for maintaining spatial

as well as temporal relationships among entities. They used domain ontologies to

69

annotate instances found in the media, and used rule based pattern matching for

inference.

The existing work in the area of image-ontology integration clearly demonstrates

the value of ontologies in describing the contents and semantics of images and other

multimedia. A common feature of these efforts is the use of existing domain ontologies to

identify instances of given concepts.

Our approach and solution is based on the use of images in scientific work. Our

concern is to capture the roles of images as exemplars (to capture scientific facts) and as

placeholders for recording conjectures. We aim to integrate images into ontologies by

providing formally defined constructs for capturing these roles, and using them as a basis

for developing ontologies that capture scientific knowledge. Moreover, while it is typical

for images to be used to identify instances of domain concepts, in scientific work images

often define the concepts themselves. Specifically, some kinds of images, such as hand-

drawn sketches, are often used in scientific work. These images are identified as

depictions of concepts that ultimately belong in the ontologies, and are not depictions of

any real world instances of those concepts.

In addition, the role of images to record conjectures means that the class for an

image may be unknown to the scientist. In this situation, it may be inaccurate and often

impossible to associate the image with an instance, since the actual class for the image

may not even exist in the knowledgebase. In such cases, the scientist may choose to

express similarity with an existing class. A way to implement this scenario in a system

that associates images to instances is to introduce an unknown class into the ontology and

to mark the image as its instance. However, at the stage of recording conjectures, it is

70

unknown whether that class should exist or not, and can only be determined once the

scientific process has taken its course.

These uses of images are inherent to our work; hence image annotations are made

directly with the domain concepts. Our inference rules also work on these direct

associations between images and ontologies.

Figure 5.1: Representing class hierarchy and its effect on relationships and image

associations using an ontology of common shapes as an example. Arrows with solid

lines represent subclass relations, dashed lines show explicitly defined relations, and

dotted lines are implicit relations.

5.2 FRAMEWORK FOR INTEGRATION OF IMAGES WITH ONTOLOGIES

We have defined specific roles of images in ontologies and formalized unique

semantic properties of image associations to build a framework for image ontology

integration. Ontology systems provide standard mechanisms for creating class

relationships (triples that connect two classes to each other) and metadata attributes (e.g.

textual definitions of classes). A comparison of metadata attributes with image

associations is straightforward. Metadata attributes belong to a class, whereas images can

exist as independent entities in the ontology. Hence image associations are not similar to

71

metadata attributes. Compared to class relationships, image associations have different

semantics. Here we elaborate on this point.

Unique Semantic Properties of Image Associations

Consider a section of an ontology of common shapes shown in Figure 5.1a. The

ontology expresses class relationships such as SubClassOf(Rectangle,Polygon),

SubClassOf(Triangle,Polygon) and Has(Polygon,Side). Because class relationships

follow inheritance rules we can infer Has(Rectangle,Side) and Has(Triangle,Side). Figure

5.1b shows the same Polygon, Rectangle and Triangle classes, connected to their

respective images using ShownIn associations and ShownIn(Polygon,P),

ShownIn(Rectangle,R) and ShownIn(Triangle,T) hold.

If we apply inheritance, we get ShownIn(Rectangle,P) and ShownIn(Triangle,P),

which are obviously incorrect statements. However, there is a different possibility:

ShownIn(Rectangle,R) and ShownIn(Triangle,T) imply ShownIn(Polygon,R) and

ShownIn(Polygon,T). In other words, an image that shows a rectangle also shows a

polygon as well as an image that shows a triangle also shows a polygon. Accordingly,

image associations of children may imply image associations of the parent class which is

in contrast to inheritance where a relationship of a parent class implies a relationship for

its children. Clearly, image associations have different semantics than class relationships.

We refer to this property of image associations as the contra-inheritance property.

It is important to note that this property is novel only in the context of our

approach and within the given domain. In the systems that operate on instance

associations, the effect of collecting images from the instances of child classes is similar

to the contra-inheritance property.

72

Figure 5.2: Hierarchy of image roles in ontologies, and inheritance hierarchy of image

association types, called ‘Shows’ hierarchy. Show-Similar-Role is captured by

association types in white background, and Show-Exemplar-Role is captured by

association types in grey background.

Specification of Image Roles

Images can play two key roles (Figure 5.2a): an image is used as a definitive

example (or exemplar) of an entity (Show-Exemplar-Role), or an image is used to

hypothesize similarity between two entities (Show-Similar-Role). While it is easy to

understand Show-Exemplar-Role, the use of similarity in Show-Similar-Role requires

further explanation.

In the context of systematic biology, we can define similarity in terms of shared

evolutionary origin of two entities (homology) or convergent evolutionary origin

(homoplasy). In other words, an assertion that ‘two entities are similar’ is a hypothesis

that may lead to establishing a homology or homoplasy between the entities in question,

with continued investigation.

‘Shows’ Hierarchy

After organizing the roles of images in an inheritance hierarchy (Figure 5.2a) we

proceed to define types of associations that will enable us to capture image roles in

ontologies.

73

Table 5.1: Basic predicates and associations needed for defining image associations.

Predicate Definition
 �$��C� True when x is a class, otherwise false.

 �#%�C� True when x is an image, otherwise false.

 !(E�$����C, &� x is a subclass of y. It is transitive, reflexive and anti-symmetric.

 �������C, &� x is a part of y. It is transitive, reflexive and anti-symmetric.

 ������'����C, &� x is an instance of y.

 !/#/$���"�C, &� x is similar to y. It is transitive, reflexive and symmetric.

 8C�#-$�����C, &� x is an exemplar of y. It is reflexive and anti-symmetric. Also, by

definition: 8C�#-$�����C, &� → !/#/$���"�C, &�

 �$�&��C, &� x plays role y, as defined by Fan et al. [91]. A similar property

exists in a later work by Mizoguchi et al. [92].

We have identified four types of associations between images and ontological

concepts, henceforth called image association types. We have organized them into an

inheritance hierarchy, called the ‘Shows’ hierarchy (Figure 5.2b). Image association

types towards the top of the hierarchy are more general than the ones further down the

hierarchy. Hence, Shows Similar is the most generic type, and Entirety Shows Exemplar

is the most specific. Here we list and define these associations:

• Shows Similar (m, x): some part of image m plays Show-Similar-Role for

class x. This is the most general association type used to record conjectures.

• Entirety Shows Similar (m, x): the entire image m plays Show-Similar-Role

for class x. This association type is also used to record conjectures. Notice that

the entire image is considered a part of itself, thus making this association

type more specific than the previous one.

74

• Shows Exemplar (m, x): some part of image m plays Show-Exemplar-Role

for class x. This association type is used to identify exemplars. It is a

specialization of Shows Similar considering that an exemplar association

depicts a hypothesis that has been proved through a scientific process.

• Entirety Shows Exemplar (m, x): the entire image m plays Show-Exemplar-

Role for class x.

Table 5.2: Formal rules for image associations introduced by the ‘Shows’ hierarchy.

Associations & Definitions
 !ℎ"]�!/#/$���#, C� → �$�&��#, !ℎ"] − !/#/$�� − :"$��

 8��/���&!ℎ"]�!/#/$���#, C� → !ℎ"]�!/#/$���#, C� ∧ 8��/���&!ℎ"]�8C�#-$���#, &� ∧ !/#/$���"�&, C�

 !ℎ"]�8C�#-$���#, C� → �$�&��#, !ℎ"] − 8C�#-$�� − :"$�� ∧ !ℎ"]�!/#/$���#, C�

 8��/���&!ℎ"]�8C�#-$���#, C� → !ℎ"]�8C�#-$���#, C� ∧ 8��/���&!ℎ"]�8C�#-$���#, C� ∧ ∀����������, #� ∧ 8��/���&!ℎ"]�8C�#-$����, C� → � = #�

Formal Semantics of Image Association Types

In Table 5.1 we present a listing of the basic predicates and their definitions that

will be used in formalizing semantics for image association types introduced above.

Some concepts, like is-a (SubClass) and part-of (PartOf), are commonly used in

biomedical ontologies and are therefore standardized by the biomedical community [27].

In Table 5.2 we further define the formal rules that govern the use of image associations.

These rules include a formal specification of the inheritance relationships shown in

Figure 5.2b.

75

In addition, we define the following key rules that make common scientific

queries possible:

• Equality of Images: Trivially, two images may be considered equal if they

have the same identifier or have the same bits in the image file. Here we

define a non-trivial equality. Two images x and y are equal, or Equal(x,y), if

they serve as exemplars for exactly the same set of ontological classes.

�#%�C� ∧ �#%�&� ∧ �$��]� ∧

!ℎ"]�8C�#-$���C,]� ≡ !ℎ"]�8C�#-$���&,]� → 8_(�$�C, &�

The notion of equality in this rule does not refer to the two images being the

same; it rather presents a way of recognizing content-wise equality of a pair of

images.

• Similarity of Images: Two images x and y that capture similarity hypotheses

for exactly the same set of ontological classes, are similar.

�#%�C� ∧ �#%�&� ∧ �$��]� ∧

!ℎ"]�!/#/$���C,]� ≡ !ℎ"]�!/#/$���&,]� → !/#/$���"�C, &�

This is a very basic way of defining similarity between images used in

morphology. Based on the needs of a particular domain, different kinds of

similarity rules may be defined. For example, it may be possible to introduce a

similarity index in the rule to quantify the similarity between the images.

• Sub-Image: If an image y serves as exemplar for all the classes exemplified

by image x, image x is considered a sub-image of image y, or SubImage(x,y).

76

This property is very similar to the subclass relationship among classes, or the

sub-property relationship among properties.

�#%�C� ∧ �#%�&� ∧ �$��]� ∧

�!ℎ"]�8C�#-$���C,]� → !ℎ"]�8C�#-$���&,]�
 → !(E�#�%��C, &�

• Contra-Inheritance: If x is a subclass of y, and an image w shows x, then

image w also shows y. This is the scenario that was discussed earlier as well

(see Figure 5.1).

�$��C� ∧ �$��&� ∧ !(E�$����C, &� ∧ �#%�]� ∧

!ℎ"]�∗�], C� → !ℎ"]�∗�], &�

Notice the use of predicate Shows in this rule. It represents any of the four

association types present in the ‘Shows’ hierarchy. In essence, this rule

represents four independent rules, one for each image association type.

Querying Ontologies using Image Association Semantics

Given the formally defined association types and inference rules, we present an

example fish ontology (Figure 5.3) and present a list of possible scientific queries that are

better handled by our framework compared to the previous work (Table 5.3). For each

listed query we indicate relevant association types and rules involved in providing the

answer.

Because image association types were defined based on the roles of images, it is

necessary to present queries to the system in a way that clarifies the role of concerned

images. To keep the query statements simple, Show-Exemplar-Role is assumed by

default unless Show-Similar-Role is explicitly mentioned in the query (e.g. Q6).

77

Figure 5.3: A small fish ontology. Images are associated to the concepts in multiple

ways, unlike the other ontology based image retrieval systems. Abbreviations:

ESE=EntiretyShowsExemplar, SE=ShowsExemplar, ESS=EntiretyShowsSimilar,

IsA=Subclass relationship.

Table 5.3: Selected queries and results comparing our work (Shows) to the other systems.

Query Shows Other

Q1. What are the pictures of Zebrafish? {B, D} {B, D, E}

Q2. Find model pictures (exemplars) of Bowfin. {C, D} { }

Q3. What are the pictures of fish? {A, B, C, D} {A}

Q4. Find some possible exemplar images of Fish. {A, B, C, D} { }

Q5. Show sub-images of picture D. {B, C, D} {B, C, D}

Q6. Show some pictures that are similar to the picture A. {A, B, C, D, E} { }

Q1 (‘what are the pictures of Zebrafish?’) will give us images B and D in our

system, given the use of an exemplar association type for the images. Other IR systems,

where there is no distinction between association types, will additionally return image E,

even though it is not an exemplar for class Zebrafish.

78

Q2 (‘find model pictures (exemplars) of Bowfin’) will find images C and D. It

will require the system to find each image m that plays exemplar role, i.e. satisfies

Plays(m,Show-Exemplar-Role), for class Bowfin.

Q3 (‘what are the pictures of Fish?’) and Q4 (‘find some possible exemplar

images of Fish’) are identical queries for our system, given the exemplar role assumption.

Inference for these queries makes use of the contra-inheritance rule and marches down

the hierarchy to collect exemplar images. For other IR systems, only Q3 is answerable

(image A), since Q4 explicitly requires use of exemplar role which is undefined.

Q5 (‘show sub-images of picture D’) requires the use of sub-image rule to find

images that serve as exemplars of only the things exemplified by image D. This is an

example of querying-by-example where an image itself serves as a part of the query. This

particular query demonstrates the use of an image as a universal set of concepts. All the

images retrieved should be annotated only with the concepts in the given universal set.

These kinds of queries are supported in most systems that perform inference on the image

annotations.

Q6 (‘show some pictures that are similar to the picture A’) is another image based

query. It addresses the similarity role of images. This particular query makes use of the

rules for similarity of images and contra-inheritance to go down the hierarchy starting

from Fish and produce the set of all images {A, B, C, D, E}. If we modify the query to

finding pictures similar to image B instead, we will get the same result even though using

contra-inheritance from image B (or Zebrafish) does not include going to parent class

Fish and hence finding image A, for instance. However, symmetric and transitive

properties of similarity enable us to finding the complete set in this case as well. In other

words, since Q6 tells us that SimilarTo(B,A), it implies SimilarTo(A,B). By transitivity,

79

for any image x such that SimilarTo(x,A) holds, SimilarTo(x,B) holds as well. Hence the

modified query can be readily transformed back to finding images similar to image A, i.e.

Q6.

5.3 MORPHSTER ONTOLOGY DEVELOPMENT USE CASES

Our modeling of the image-ontology integration framework is driven by the needs

of phylogenetics studies, and hence Morphster workflows. Here we present three use

cases that are made possible by our framework. The first one, called stack-of-photos, is a

trivial use case that is of great value to biologists as a means for quickly building and

publishing their ontologies. For the sake of presenting a comprehensive description of our

work, we present that use case first and then move on to the other use cases.

Algorithm:

1. Compile a collection of images

2. Initialize a new ontology by providing a starting point (a root class)

3. Import the images into the system

4. Associate and annotate each image

a. Attach image to a class in the ontology

b. Label contents on the image

c. Mark image as complete

5. Publish a finished ontology

Figure 5.4: Outline of the algorithm for the stack-of-photos use case.

Building Ontology with Stack-of-Photos

The stack-of-photos use case demonstrates the utility of our work to simplify

anatomy ontology building for a biologist. Compared to a typical scenario where a

knowledge engineer would be required to assist in encoding the ontology, our work

80

translates typical image annotation actions of a biologist into updates to the ontology.

Given a collection of images that are exemplars of anatomical entities of a taxon, creating

its ontology is straightforward (see Figure 5.4).

After initializing an ontology with a root term like whole organism, start with an

image that can serve as an exemplar of the root, and create an Entirety Shows Exemplar

association between the image and the root. For each new term T labeled by the user on

the exemplar image, create a Shows Exemplar association between T and the image. In

the workflow, it also implies a part-of relationship between T and whole organism.

Iteratively, each of the new terms can be attached to an image in the collection using

Entirety Shows Exemplar association, and any new classes on those images will create

further parts of these classes. When this process is completed for the entire collection of

images, the result will be a hierarchical ontology consisting of all labeled classes based

on part-of relationships.

Aligning or Matching Ontologies

Determining correspondences between classes in multiple ontologies is a

significant semantic integration problem [93, 46] and is significant to systematic biology.

Bodenreider et al. [94] and Mork et al. [95] provided solutions for creating alignments

between mouse and human anatomies. A common feature of their approaches was to first

create a lexical alignment by identifying shared reference concepts or anchors in the

ontologies using a dictionary. These anchors, which are either proven homologies or

simply hypothesis, are then used for further alignment of ontologies.

81

Figure 5.5: Image associations simplify creating anchors for ontology alignment. Terms in

rectangles belong to human anatomy, and the ones in rounded boxes are from mouse

anatomy. Abbreviations: ESE = EntiretyShowsExemplar, ESS = EntiretyShowsSimilar,

SimTo = SimilarTo. Solid lines: explicit relationships; dotted lines: implied relationships

resulting from application of formal semantics. Double lined box: anchor.

In Figure 5.5, we demonstrate the use of image associations and their semantics to

create anchors between human and mouse anatomies. Starting from the human anatomy

ontology, we use the similarity associations to connect shared concepts. Figure 5.5a

shows the initial state of the ontology, where M is a new image that has not been

connected to any classes so far. If a new association Entirety Shows Similar is created

between image M and class Upper Extremity, the semantics imply that the class Upper

Extremity is similar to an unknown class X (see Figure 5.5b). Finally, if image M is

explicitly connected as an exemplar of a class, say Forelimb, in mouse ontology. This

may result in identifying the unknown class X as Forelimb, and a similarity is established

between Forelimb and Upper Extremity, marking them as anchors. In other words,

Forelimb and Upper Extremity are marked as possibly homologous entities.

82

Extracting New Ontologies from Model Ontologies

While building new ontologies of anatomies is very common [16], such efforts

often build around existing ontologies of model organisms. For example, Dahdul et al.

[10] developed a multi-species Teleost Anatomy Ontology (TAO) using the Zebrafish

Anatomical Ontology (ZFA) as a reference. Starting as a clone of ZFA, TAO now

contains over 400 new terms that describe teleost fishes. The Amphibanat project [41] is

another example of building a new ontology, an ontology of amphibian anatomy, from a

model organism ontology. They extracted relevant portions of the class hierarchy and

other relationships from ZFA to form the initial framework for their ontology.

We believe that the similarity capturing role (Show-Similar-Role) of images in

our work can simplify the task of using existing ontologies to extract relevant classes and

relationships for new ontologies. It also promises to maintain cross-references between

the two ontologies seamlessly by automatically using image associations to maintain

anchors.

A common feature of the use cases mentioned above is that it becomes simpler for

a subject matter expert to develop ontologies without requiring assistance from a

knowledge engineer. Our specification of roles of images and novel image association

types allow users to develop knowledge bases while following the customary method of

using images to observe and document knowledge.

5.4 IMPLEMENTATION FOR THE SEMANTIC WEB

In order to demonstrate our work on the Semantic Web, we provide an

implementation of the ‘Shows’ hierarchy and relevant constructs (see Appendix F for

complete implementation) in RDF and OWL. In this section, we discuss some parts of

this implementation. Since the existing relationship types are not suitable for image

83

associations, we provide a new kind of association to support relationships between

images and classes. We have called this association ShowsProperty. Image associations

in the ‘Shows’ hierarchy are instances of ShowsProperty.

<rdfs:Class rdf:ID="ShowsProperty">

 <rdfs:label>ShowsProperty</rdfs:label>

 <rdfs:subClassOf rdf:resource="&rdf;Property"/>

</rdfs:Class>

<ido:ShowsProperty rdf:ID="showsSimilar" />

<ido:ShowsProperty rdf:ID="entiretyShowsSimilar" />

<ido:ShowsProperty rdf:ID="showsExemplar" />

<ido:ShowsProperty rdf:ID="entiretyShowsExemplar" />

In order to ensure that the associations in the ‘Shows’ hierarchy always associate

an image to a concept in the ontology, we have associated a domain with the Shows

Similar property.

<ido:ShowsProperty rdf:about="#showsSimilar">

 <rdfs:label>Shows Similar</rdfs:label>

 <rdfs:domain rdf:resource="&ido;Image" />

</ido:ShowsProperty>

The rest of the image associations inherit from the Shows Similar association, and

thus also have instances of images their domain.

5.6 CONCLUSION

We provide a novel way of associating images with ontologies by providing

formally defined image association types. As a result, these ontologies provide interesting

inference and content based querying opportunities on images. Existing ontology based

84

image retrieval systems do not provide this kind of formalism and are therefore limited in

terms of querying and inference.

In natural sciences, especially systematic biology, images often serve as an

authoritative basis for definition of concepts. Our approach towards the integration of

images and ontologies allows us to use images as building blocks for ontologies in such

domains. This allows for easy development of ontologies by domain experts, reducing the

overhead of involving knowledge engineers in the process. Our stack-of-photos use case

provides a simple example. While it is a straightforward procedure, the absence of the

ability to build even primitive ontologies using other image-ontology integration systems

demonstrates the novelty of our approach.

Even though extending existing systems to create anatomy ontologies may be a

simple matter, this alone does not serve the purpose of conducting science using images

as a fundamental source of knowledge. Identification of the possible roles for images is

critical. While in existing systems images are used to tag instances of ontology concepts,

we have identified two key roles that are implicit in scientific approach. When images

serve as exemplars of concepts, they help in building a domain knowledge base. On the

other hand, when an image serves as a means to document scientific hypothesis, it not

only supports scientific workflow, but also building a knowledge base for a broader

domain or bridging the gaps between ontologies by matching concepts in different but

scientifically related domains.

85

Chapter 6

Mapping between OBO and OWL

Ontology systems Open Biomedical Ontologies (OBO) [16] and the Semantic

Web [17], each provide different ontology languages and tools and are widely used by

biologists. However, the absence of a bridge between the two systems is cause for lack of

interoperability between biomedical ontologies developed by different systems. This also

causes problems for new biology projects that have to pick a technology with a view that

choosing one system over the other will restrict them to the tools and existing ontology

content provided by that particular system only.

Given the volume and growth of OBO content, OBO Foundry may rightly be

called the backbone for biomedical ontology content. Semantic Web, on the other hand,

is intended to facilitate search and information integration by providing formally defined

semantics, global identifiers and expressive languages for querying ontologies and

reasoning on them to infer new knowledge. Integrating the features promised by the

Semantic Web with OBO content would provide significant benefit to the biomedical

community. One way to provide those features is to create a system that allows back and

forth translation of OBO ontologies between the two systems. We have developed such a

round-trip between OBO format and the Semantic Web’s Web Ontology Language

(OWL).

86

We provide a methodology for organizing a mapping between two systems such

as OBO and OWL, and a lossless round-trip mapping between OBO and OWL for

ontologies originally developed in OBO. Through collaboration with other people in the

OBO community, our work has grown into a community standard, and is now the official

mapping supported by the Gene Ontology project and OBO Foundry [23]. Our source

code for transformation software is also a part of the Gene Ontology source repository on

SourceForge [96].

Figure 6.1: A layer cake for OBO (layers for OBO Core, OBO Vocabulary and OBO

Ontology Extensions), with some examples and the corresponding layers in the

Semantic Web layer cake.

6.1 SYSTEM DESCRIPTION

OBO and Semantic Web Layers

The Semantic Web was envisioned as an expressive hierarchy that is often

illustrated as a layer cake [97] (see Figure 2.2). At the beginning of this research it was

our conjecture that the precise organization of the hierarchy transcends the Semantic Web

and could be used, retroactively, to formalize the structure of other data and concept

modeling systems. Thus, as a first step towards the creation of a transformation

mechanism between OBO and OWL, we created a layer cake for OBO whose structure

87

mirrored that of the Semantic Web layer cake. This allowed us to identify straightforward

mappings between OBO and OWL as well as the cases that do not match very well. We

term this the ‘two layer cakes’ methodology. This methodology has also been

successfully applied towards the transformation of SQL databases into OWL ontologies

[73].

OBO Layer Cake

We methodically examined each of the constructs of OBO. We find that most of

the OBO format can be decomposed into layers with direct correspondence to the

Semantic Web. We call these layers OBO Core, OBO Vocabulary, and OBO Ontology

Extensions (see Figure 6.1).

1. OBO Core: In OBO, a concept can either be a term (class) or a typedef

(relationship type). OBO Core deals with assigning IDs and ID spaces to

concepts, and representing relationships as triples.

2. OBO Vocabulary: OBO Vocabulary allows annotating concepts with

metadata such as names and comments. It also supports describing subclass

and sub-property relationship types, as well as the domains and ranges for

typedefs.

3. OBO Ontology Extensions: In addition to concept-level tags, OBO Ontology

Extensions (OBO-OE) layer defines tags for expressing metadata on the entire

ontology as well. It also allows defining synonyms and equivalences and

supports deprecation of concepts. OBO-OE layer can also express specific

properties of OBO terms (e.g. set combinations, disjoints etc.), and typedefs

(e.g. transitivity, uniqueness, symmetry, cardinalities).

88

Table 6.1: Layer cake assignments for OBO constructs.

Layer List of constructs

OBO Core id, idspace, relationship

OBO Vocabulary name, definition, comment, is_a, domain, range

OBO Ontology

Extensions

format-version, version, date, saved-by, auto-

generated-by, namespace, default-namespace,

subsetdef, alt_id, relationship, subset,

synonym, is_obsolete, is_cyclic, is_transitive,

is_symmetric, import, synonymtypedef,

intersection_of, union_of, disjoint_from,

replaced_by, consider, inverse_of,

transitive_over

Table 6.1 provides assignments of OBO constructs to appropriate layers in the

OBO layer cake. Since we mostly have an exact mapping of layers between the two

languages (Figure 6.1), deciding which constructs to use for each kind of transformation

is simplified. OBO Core tags can be transformed using RDF. OBO Vocabulary tags

require using RDF Schema constructs. OBO Ontology Extensions tags require constructs

defined in OWL.

Incompatibilities between OBO and OWL

We classify incompatibilities between the two languages into one of the two

categories. First, in certain cases, the semantic equivalent of a construct in one language

is missing from the other language. Second, sometimes the semantics of constructs in

OBO are not sufficiently well-defined to map to a formally defined OWL construct,

which forces us to define new vocabulary in OWL in order to allow the lossless

transformation.

1. Entities in OWL have globally unique identifiers (URIs). On the other hand,

OBO allows local identifiers. Transforming OBO into OWL requires

transforming the local identifiers in an OBO ontology into URIs. Also, in

89

order to make the round-trip possible, it is necessary to extract the local

identifier back from the URI.

2. OBO language has the ‘subset’ construct, which does not have an equivalent

construct in OWL. An OBO subset is a collection of terms, and is defined as a

part of an ontology. An ontology can contain multiple subsets and each term

can be a part of multiple subsets. In order to make the transformation possible,

we need to define an OWL construct equivalent to OBO subset, and some

relationship concepts to represent terms being in a subset, and a subset being a

part of an ontology.

3. There are multiple kinds of synonym tags in OBO, e.g. related, narrow, broad,

exact etc. The differences between these constructs are not formally

documented. This requires defining new concepts in OWL, which can perhaps

be mapped to new or already existing constructs in OWL.

Elements of OBO “missing” in Semantic Web are few, and can still be

constructed in OWL. Thus, OBO ontologies may be translated to Semantic Web.

However, in order to make the round-trip possible, we find it important to store some

ancillary in-formation about the OBO ontology in the OWL file, e.g. a base URI etc., so

it can be translated back without any loss of knowledge. It is important to note that even

changing a local identifier within the whole knowledgebase is counted as loss of

knowledge from the original source, even if the overall structure of the ontology remains

intact. The presence of such incompatibilities requires us to make some complex

mapping choices explained later.

90

OBO and Sublanguages of OWL

OWL has three increasingly expressive sublanguages; OWL Lite, OWL DL and

OWL Full. Each of these sublanguages extends its simpler predecessor with richer

constructs that affect the computational completeness and decidability of the ontology.

Our investigation shows that a major portion of OBO Ontology Extensions maps

to OWL Lite and provides similar level of expressiveness. Overall, OBO features are a

strict subset of OWL DL. In OBO, the definition of a term or a typedef is rigid and not as

expressive as OWL Full. OWL Full allows restrictions to be applied on the language

elements themselves [33, 34]. In other words, an OWL Full Class can also be an OWL

Full Property and an Instance and vice versa. Such features are not supported in OBO.

Recall, the primary concern is the use of the Semantic Web technology and tools

for OBO ontologies. Thus, that OBO is less expressive than OWL is the convenient

direction of containment. It does mean that round-trips cannot be supported unless the

editing of any OBO ontology while in OWL representation is restricted. We talk about

the editing of transformed ontologies while in OWL language in a later section as well.

While transforming OBO ontologies into OWL, we must ensure producing a

representation that can be used by description logic based inference engines. One of the

intended goals of our transformation is to produce OWL DL, and not OWL Full.

6.3 TRANSFORMATION METADATA AND RULES

In this section, we present some of the rules for the transformation of OBO

ontologies into OWL. For more complex transformations we describe the transformations

and explain our approach.

91

In order to facilitate the transformation, we have defined a set of OWL meta-

classes that correspond to the vocabulary of OBO tags. Complete listing of mappings

between OBO and OWL are available in a Google Spreadsheet [98].

Table 6.2: Some OBO elements (taken from ZFA) and their mappings in OWL.

OBO OWL

[Typedef]

id: part_of

name: part of

is_transitive: true

<owl:TransitiveProperty

 rdf:about="…#part_of">

 <rdfs:label>part of</rdfs:label>

</owl:TransitiveProperty>

Example A Simple transformations: name, transitivity

[Term]

id: ZFA:0000434

name: skeletal

system

is_a: ZFA:0001439

<owl:Class rdf:about="...#ZFA_0000434">

 <rdfs:label>skeletal system</rdfs:label>

 <rdfs:subClassOf

 rdf:resource="...#ZFA_0001439"/>

</owl:Class>

Example B Transformation of ‘is-a’

[Term]

id: ZFA:0001439

name: anatomical

system

relationship:

part_of ZFA:0001094

<owl:Class rdf:about=“…#ZFA_0001439”>

 <rdfs:label>anatomical

system</rdfs:label>

 <rdfs:subClassOf><owl:Restriction>

 <owl:onProperty

 rdf:resource=“…#part_of” />

 <owl:someValuesFrom

 rdf:resource=“…#ZFA_0001094” />

 </owl:Restriction></rdfs:subClassOf>

</owl:Class>

Example C Transformation of a relationship

[Term]

id: ZFA:0000437

name: stomach

is_obsolete: true

<owl:Class

 rdf:about="&oboInOwl;ObsoleteClass"/>

 <owl:Class rdf:about="...#ZFA_0000437">

 <rdfs:label>stomach</rdfs:label>

 <rdfs:subClassOf

rdf:resource="&oboInOwl;ObsoleteClass"/>

</owl:Class>

Example D Transformation of obsolete term

92

Simple Transformation Rules

Most of the transformations follow simple rules. For most header and

term/typedef tags, there is a one-to-one correspondence between OBO tags and OWL

elements, either pre-existing or newly defined. In this section, we list the elements with

this kind of simple transformation. Table 6.2 Example A provides some examples.

Header: The set of tag-value pairs at the start of an OBO file, before the

definition of the first term or typedef, is the header of the ontology. When translated into

OWL language, each of the OBO header tags gets translated into the corresponding OWL

markup element. The whole ontology header is contained in the owl:Ontology element

in the new OWL file, and can appear anywhere within the file, as opposed to the start of

file in OBO language.

Terms: A term in OBO is a class in OWL. So a term declaration is translated into

an owl:Class element and the tags associated with a term are contained within this

element. Some tags that have straightforward transformations to OWL elements are:

1. The elements for name and comment about a term fall into the OBO

Vocabulary layer, and are translated into rdfs:label and rdfs:comment

respectively. A definition tag is translated into hasDefinition annotation

property, and is therefore placed in the OBO Ontology Extensions layer.

2. The is_a tag in OBO specifies a subclass relationship, and is placed in the

OBO Vocabulary layer. It is translated into an rdfs:subClassOf element

(Table 6.2 Example B).

Typedefs: A typedef in OBO is an object property in OWL. A typedef stanza in

an OBO file is translated into an owl:ObjectProperty element in OWL. The other

information associated with the typedef is expressed as elements nested within this

element. Some simple transformations are:

93

1. OBO typedefs can have associated domains and ranges. These are expressed

by domain and range tags, and are in the OBO Vocabulary layer. These tags

are translated into RDF Schema elements rdfs:domain and rdfs:range

respectively.

2. Just like subclasses for terms, a property can be a sub-property to another

property. A sub-property relationship is expressed using the is_a tag, from

OBO Vocabulary layer, in a typedef stanza. This tag is translated into an

rdfs:subPropertyOf element defined in RDF Schema.

3. Typedefs may be cyclic (is_cyclic tag), transitive (is_transitive tag) or

symmetric (is_symmetric tag). These tags fall into the OBO Ontology

Extensions layer. The corresponding elements in OWL are annotation

property isCyclic, and property types owl:TransitiveProperty and

owl:SymmetricProperty respectively. The isCyclic property specifies a

Boolean value.

Identifiers and ID Spaces

OBO has a local identifier scheme. As OBO evolves, ID spaces have been

introduced to allow specifying global identifiers. OBO identifiers have no defined syntax,

but they are recommended to be of the form:

“<IDSPACE>:<LOCALID>”

However, existing OBO ontologies may contain flat identifiers, ones that do not

mention the ID space. OBO identifiers must be converted to URIs for use in OWL. The

rules for converting OBO identifiers to URIs in the current mapping are as follows:

94

If the OBO header declares an ID space of the form: “idspace: GO

http://www.go.org/owl#”, all OBO identifiers with the prefix GO: will be mapped to

the provided URI, e.g. “http://www.go.org/owl#GO_0000001”.

If an OBO ID space prefix does not have a declaration in the header, all identifiers

that mention that prefix will be transformed using a default base URI, for example an

identifier of the form “SO:0000001” will become “<default-base-uri>SO_0000001”.

In case the OBO identifier is flat, e.g. foo, the transformation again uses the default base

URI to create “<default-base-uri>UNDEFINED_foo”. Notice that the URI contains

“UNDEFINED_”, which clarifies that the URI should be translated into a flat identifier

when translating the OWL version back to OBO.

Recall that OBO Relations Ontology [27] standardizes certain typedefs for use

across OBO ontologies. Such typedefs have OBO identifiers prefixed with ID space

OBO_REL. OBO ontology assumes the presence of this ID space with URI

“http://www.obofoundry.org/ro/ro.owl” even if it is not explicitly stated. When

translated into OWL, an XML namespace xmlns:oboRel with the same URI is added to

the ontology, and the newly created object property is assigned that namespace. As a

result, we ensure that all Relations Ontology constructs are mapped to the same URIs

across ontologies.

Relationships

Relationships between OBO terms can be defined using the relationship tag.

A defined relationship is like a binary predicate and consists of a subject (the term being

described in the stanza), a relationship type and an object.

There are multiple kinds of restrictions on relationships that can be expressed

using OWL. OBO specifications do not specify any formal semantics of the

95

relationship tag that match a specific relationship type restriction defined in OWL.

Therefore, based on the use of relationships in existing ontologies, we selected the

appropriate element, the owl:someValuesFrom restriction in our mappings. This

restriction is similar to the existential quantifier of predicate logic [33, 34]. An example

of relationship transformation is shown in Table 6.2 Example C.

Subsets

Terms in an OBO ontology can be organized into subsets. A term can belong to

multiple subsets. In order to declare a subset, a value for the tag subsetdef is specified

in the OBO ontology header. This value consists of a subset ID and a quoted description

about the subset. A term can be assigned to a defined subset using the subset tag.

Multiple subset tags are used to assign the term to multiple subsets of the ontology.

When the ontology is translated into OWL, the mapping of subsets is one of the

more complex processes. This is due to the fact that subsets do not have a semantic

equivalent in OWL. Therefore, we use some OWL features to construct elements that

serve as subsets. Subsets fall in the OBO Ontology Extensions in the OBO layer cake.

The local ID assigned to the subset becomes the OWL ID of a subset resource. A

subset resource is declared using an oboInOwl:Subset element. The inSubset

annotation is used to assign terms to a subset, and it is expressed within the owl:Class

element.

Obsolete Content

OBO format supports obsolete content. A term or typedef can be marked as

obsolete using the is_obsolete tag with a true Boolean value. The is_obsolete tag

is in the OBO Ontology Extensions. Obsolete terms and typedefs are not allowed to have

96

any relationships with other terms or typedefs, including the subclass and sub-property

relationships.

When translated into OWL, an obsolete term becomes a subclass of

oboInOwl:ObsoleteClass (Table 6.2 Example D). Similarly, an obsolete typedef

becomes a sub-property of oboInOwl:ObsoleteProperty.

Table 6.3: Results from evaluation of our round-trip transformation on some ontologies.
1,

2

Ontology Original OBO OWL Translation Round-trip OBO

ZFA Terms: 2219

Typedefs: 4

Classes: 2219

Object Properties: 4

Terms: 2219

Typedefs: 4

MA Terms: 2882

Typedefs: 1

Classes: 2882

Object Properties: 1

Terms: 2882

Typedefs: 1

SPD Terms: 494

Typedefs: 1

Classes: 494

Object Properties: 1

Terms: 494

Typedefs: 1

GO Terms: 28667

Typedefs: 5

Classes: 28667

Object Properties: 5

Terms: 28667

Typedefs: 5

6.4 IMPLEMENTATION AND EVALUATION

Based on the mapping rules, we have implemented a Java implementation of the

transformation. Our implementation is part of the official Gene Ontology project source

[96]. Gene Ontology project is an open source project on Sourceforge.net, and is home to

the OBO ontology editor OBO-Edit. Our implementation is part of the OBO API that

provides data structures for storing OBO ontologies, as well as read and write capabilities

1 ZFA = Zebrafish Anatomy ontology, MA = Adult Mouse Gross Anatomy ontology, SPD = Spider

Ontology, and GO = Gene Ontology.
2 Class counts do not include obsolete classes, or ancillary information required for round-trips.

97

for OBO and OWL, among other operations. The source code for our transformation tool

is available at [99]. Our mapping tool is also used in Morphster.

Finally, we have deployed our transformation as a web service for general use:

http://www.cs.utexas.edu/~hamid/oboowl.html

In the OBO API, we have created NCBOOboInOWLMetadataMapping class in the

package org.obo.owl.datamodel.impl. This class implements the round-trip mapping

between OBO and OWL. In order to provide console-based use of the transformation

tool, we have created Obo2Owl and Owl2Obo classes in org.obo.owl.test package.

In order to evaluate the OWL output of our implementation, we have tested our

tool on Gene Ontology, Zebrafish Anatomical Ontology, Spider Ontology and Adult

Mouse Gross Anatomy, obtained from NCBO BioPortal. After transformation of these

ontologies into OWL, we have successfully loaded the OWL files into Protégé [12], an

ontology development tool for the Semantic Web. Using the ‘summary’ feature of

Protégé, we have compared the overall class and object property count with the term and

typedef count obtained for the original OBO file, using OBO-Edit’s ‘extended

information’ feature The results of the comparison (Table 6.3) show equal values for both

versions of the ontologies. Similarly, for testing the round-trip, we compared the original

OBO file with the round-trip version, again using OBO-Edit’s feature. Our evaluation

showed that the two OBO ontologies had the same term and typedef counts (Table 6.3).

6.5 IMPLICATIONS OF TRANSFORMATION

OBO Semantics by Transformation

The transformation system has the additional effect of formalizing the semantics

of the OBO language. The semantics of OBO are operationally defined by means of GO

and the software systems that support GO. The semantics of OWL have been formally

98

defined using model theory [32, 100]. Though we have not written it out, a formal

document specifying OBO semantics can be created, mechanically, from the contents of

this paper and the OWL semantics documents. The contents of that document would

comprise an enumeration of the pairwise mapping of constructs between the two

languages, restating, in each mapping, the semantics stated for the involved OWL

construct.

Table 6.4: Identifying the semantics for OBO constructs using OWL mappings.
3

Description OBO OWL Semantics

x is a subclass

of y

is_a rdfs:subClassOf �8K��C� ⊆ �8K��&�

x is a sub-

property of y

is_a rdfs:subPropertyOf 8K��C� ⊆ 8K��&�

x is domain of

property y

domain rdfs:domain < a,] >∈ 8K��&� ⇒ a ∈ �8K��C�

x is disjoint

from y

disjoint_

from

owl:disjointWith �8K��C� ∩ �8K��&� = {}

p is a transitive

property

is_

transitive

owl:Transitive

Property
< C, & >, < &, a >∈ 8K��-� ⇒< C, a >∈ 8K��-�

In Table 6.4, we present a few examples where our transformation mapping could

provide formal semantics for OBO constructs, taken directly from OWL semantics

specifications.

While the identification is straightforward in these cases, in some other situations

it is not very clear. Finding the semantics of relationships in OBO is one such case. As

mentioned earlier, OBO specifications do not provide the semantics of the construct used

to specify relationships between two terms using a typedef. Therefore, it is hard to decide

3 CEXT(c): the set of instances of class c; EXT(p): the set of pairs <x,y> related by property p

99

which of the available relationship constraints in OWL (owl:allValuesFrom,

owl:someValuesFrom) to use, the former being similar to a universal quantifier, and the

latter to an existential quantifier. In our transformations, we use owl:someValuesFrom,

since already built ontologies show examples of use of OBO relationship construct in a

compatible way. We recommend that the semantics of relationships should always be

defined to match the owl:someValuesFrom restriction.

Other OBO tags that do not clearly match with OWL elements, such as synonyms

and subsets, as well as the semantics for the is_obsolete tag also present a more

significant challenge in the identification of semantics.

Updating OBO Ontologies in OWL

The set of constructs for ontology representation provided by OWL is

considerably larger than the set of constructs provided by OBO. Therefore, in order to

allow round-trip transformations on OBO ontologies, it is important to restrict the editing

of such ontologies per some guidelines while they are being represented in OWL.

Our transformation mappings essentially provide a subset of OWL elements that

may be used for adding or updating contents of the ontology. We refer to this subset of

OWL as OWL-Bio, for biomedical ontologies hosted by OBO. Since our mapping

produces OWL DL, OWL-Bio is a subset of OWL DL by definition.

Compared to the general use of OWL, there are two key points to keep in mind:

1. To create relationships, use owl:someValuesFrom relations. Since OBO does

not have a corresponding relationship mechanism for owl:allValuesFrom, it

is not a part of OWL-Bio.

100

2. Obsolescence of terms in the ontology should be done using the obsolete

elements oboInOwl:ObsoleteClass and oboInOwl:ObsoleteProperty

instead of built in deprecation elements in OWL.

6.6 STANDARDIZATION OF MAPPINGS AND RELATED WORK

We have collaborated with Stuart Aitken, Chris Mungall, Dilvan Moreira and

Nigam Shah to produce a standardized mapping. Each of our collaborators, as well as

Mikel Egana, Erick Antezana, and LexBio group at Mayo Clinic, contributed

unpublished independent effort at creating a transformation system. The results of these

efforts are documented in our spreadsheet. No single effort survived in its entirety in the

common mapping [98]. Our methodology and mapping choices, however, were fully

adopted. The difference between our original work and the standardized mapping is

mainly that of different strings (names) for mapping annotations.

Another independent and important effort was that of Golbreich et al. [101, 102]

(hereafter Golbreich). Note that this group did not participate in the community effort to

standardize the mapping. Golbreich developed a BNF grammar for OBO syntax, as well

as a mapping between OBO and OWL 1.1 (now known as OWL 2). The differences

between the Golbreich work and the common mapping effort presented in this paper

comprise a difference of methodology and practical focus. Golbreich’s work laid out

valuable syntactic groundwork to formalize the semantics of a large subset of OBO.

Much like most of the other first efforts, a complete transformation system was not

specified. This particular effort deferred resolving OBO annotations, synonyms, subsets,

and deprecation tags. Golbreich’s work also did not address the mapping of local

identifiers in OBO into global identifiers. The transformations that are specified by

Golbreich are largely consistent with the common mappings.

101

6.7 CONCLUSION

Building ontologies is not a new idea for the biology community, and precedes

the development of the Semantic Web. While ontologies are a central part of the

architecture of the Semantic Web, the Semantic Web vision includes a broad range of

technologies from the Artificial Intelligence field, such as inference and querying

mechanisms, as well as anticipating additional elements of distributed computation, such

as global identifiers and the use of XML and HTTP as middleware. OBO, on the other

hand, has appropriate tool support for building ontologies and hosts a number of

important biomedical ontologies. Hence the OBO community has the biggest and most

immediate need for the features being developed by the Semantic Web community.

We have standardized the mapping between the two systems to allow the OBO

community to utilize the tool base developed for the Semantic Web world, and will also

standardize the transformation across OBO tools. We have indirectly formalized the

semantics of OBO by creating a round-trip transformation between OBO and OWL. We

have also implemented our transformation tool in Java and it is available as a part of open

source Gene Ontology project, and also as a web service. We believe our work is an

important step towards building interoperable knowledge bases be-tween OBO and the

Semantic Web communities.

The implications of our work in providing semantics to OBO as well as in

defining a “biomedical flavor” for OWL strongly suggest the use of this mapping as a

potential bridge between the OBO and the Semantic Web worlds. Our ability to make

round-trips between OBO and OWL-Bio could enable fluid interconnections between the

two worlds. While OWL-Bio could serve as a common ground for the two languages, our

round-trip tool could be used as a validator for ontologies updated in OWL.

102

A key difference between the OBO community and the Semantic Web is the

methodology for content development across ontologies. The Semantic Web has adapted

a completely distributed development mechanism for ontologies that may be integrated

using URIs. On the other hand, the OBO community uses a hybrid of centralized and

distributed development. While the users of OBO develop ontologies independently, the

OBO foundry has the goal of creating a suite of orthogonal interoperable reference

ontologies, such as the Relations Ontology, in the biomedical domain. Our transformation

system enriches the Semantic Web by providing this this addition-al structured ontology

content and the access to the wealth of data annotated using it.

103

Chapter 7

Conclusions and Future Work

Ontologies have been used to model biological knowledge for centuries under

other names, going at least as far back as the Linnaean taxonomy and Charles Darwin’s

sketches of evolutionary trees. More recently, the development of ontology systems such

as the Semantic Web and the Open Biomedical Ontology (OBO) Foundry have made

ontologies the tool of choice for capturing and publishing knowledge in systematic

biology.

At the highest level, this dissertation represents an attempt to demonstrate the

strengths and benefits of ontologies in biology. As the use of ontologies grows in the

community, it is crucial to understand the utility of ontologies as a tool for capturing

domain knowledge. Most biologists understand only the knowledge representation aspect

of ontologies and hence see them as another way of publishing their data and results to

the world. Our primary goal is to demonstrate the value of the other aspects of ontologies,

knowledge inference and knowledge integration, in the context of scientific research in

systematic biology. Each of the problems we have addressed in this dissertation lead us

towards this fundamental goal.

Our work represents a beginning, and there is significant progress to be made to

help biologists truly utilize ontologies.

104

• Capturing knowledge in ontological form

A significant part of our work in this dissertation as well as on the Morphster

project as a whole focuses on enabling our users, biologists, to capture their

scientific data, hypotheses and results in ontological form. While the

Morphster meta-model and use cases such as stack-of-photos represent

progress in this area, there is need for better domain-specific tools that

integrate ontology building at each stage in the workflow of a phylogenetic

study. A particular case in this regard is that of character statements –

capturing biological facts and scientific observations as ontological concepts.

Our taxonomy for types of characters represents a major step forward in

explaining and capturing character statements. However, it is focused towards

building anatomy ontologies. A short-term research direction is to expand the

taxonomy to a broader set of character types and investigate its applications to

a broader set of biological inference problems.

• Bringing legacy knowledge from the literature into the knowledgebase

In addition to developing tool support for new knowledge acquisition in

biology, there is a great need for importing the existing literature and legacy

data such as character matrices and trees into the ontology domain. Scientists

conducting new studies are always interested in finding legacy work on

similar anatomical regions or organisms, and as the ontological content grows,

there is need to connect the legacy data to it. One of the ways to achieve this

goal is to use natural language processing techniques to identify character

statements and matrix data in the literature, and extract the frames for

appropriate concepts based on our meta-model. This data is typically

105

represented in a stylized natural language. Starting from the frames for the

character types in our taxonomy, more character types and their frames can be

identified to capture a broader set of characters in this stylized language.

• Capturing and integrating molecular biology with morphology

Connecting results in molecular biology with morphology is a significant

problem in evolutionary biology. An increasing number of molecular

biologists are working with ontologies. Investigations into the use of

ontologies to connect the results from molecular biology with morphology

may provide interesting results.

• Integrating biological databases through ontologies

There are a large number of independent relational databases managed by

biologists for recording their data. Schemas of these databases vary greatly.

Ontologies, or federated schemas, have been used in other domains for

schema matching. Community developed ontologies may be needed to

provide a solution to interconnect these biology databases.

106

Appendix A

Source Code of Jess Rules

(import edu.utexas.cs.morphology.model.*)

(deftemplate Tree (declare (from-class Tree) (include-variables TRUE)))

(deftemplate Taxon (declare (from-class Taxon) (include-variables TRUE)))

(deftemplate NA (declare (from-class NA) (include-variables TRUE)))

(deftemplate Rel (declare (from-class Rel) (include-variables TRUE)))

(deftemplate NAEntity (declare (from-class NAEntity) (include-variables TRUE)))

(deftemplate NARel (declare (from-class NARel) (include-variables TRUE)))

(deftemplate Quality (declare (from-class Quality) (include-variables TRUE)))

(deftemplate Char (declare (from-class Char) (include-variables TRUE)))

(deftemplate State (declare (from-class State) (include-variables TRUE)))

(deftemplate CharNE extends Char (declare (from-class CharNE) (include-

variables TRUE)))

(deftemplate CharTR extends Char (declare (from-class CharTR) (include-

variables TRUE)))

(deftemplate CharCL extends CharTR (declare (from-class CharCL) (include-

variables TRUE)))

(deftemplate CharME extends CharTR (declare (from-class CharME) (include-

variables TRUE)))

(deftemplate CharRE extends CharTR (declare (from-class CharRE) (include-

variables TRUE)))

(deftemplate CharBR extends CharRE (declare (from-class CharBR) (include-

variables TRUE)))

(deftemplate CharRO extends CharRE (declare (from-class CharRO) (include-

variables TRUE)))

(deftemplate CharCO extends CharRE (declare (from-class CharCO) (include-

variables TRUE)))

(deftemplate CharSE extends CharRE (declare (from-class CharSE) (include-

variables TRUE)))

(deftemplate StateEL extends State (declare (from-class StateEL) (include-

variables TRUE)))

(deftemplate StateELElement (slot sid) (slot entity))

(deftemplate StateNU extends State (declare (from-class StateNU) (include-

variables TRUE)))

107

(deftemplate StateE extends State (declare (from-class StateE) (include-

variables TRUE)))

(deftemplate Cell (declare (from-class Cell) (include-variables TRUE)))

(deftemplate StateChange (slot character) (slot fromState) (slot toState))

(deftemplate Params (slot model) (slot target) (slot direction) (slot baseUri))

(defrule rule-01-effect-of-neomorphic-character

 "State change from absent to present in a neomorphic character when the

parent is present"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharNE (id ?chid) (entity ?nee) (vicinity ?nev) (relation ?ner))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (State (id ?fsid) (name "absent"))

 (State (id ?tsid) (name "present"))

 (NAEntity (id ?vid) (na ?naid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?nev) ?vid))

 =>

 (bind ?newid (str-cat ?baseuri ?tgt "/" ?nee))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?newid ?nee

?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?vid ?newid ?ner

?naid))

 (add ?robj)

 ;(assert (NAEntity (id ?newid) (name ?nee) (na ?naid))

 ; (NARel (na ?naid) (child ?newid) (relation "part_of") (parent ?vid)))

 (printout t "*** NE :: (01) + [E:" ?nee "] [R:" ?nee " " ?ner " " ?nev "]

==> " ?chid crlf))

(defrule rule-02-effect-of-neomorphic-character

 "State change from absent to present in a neomorphic character when the

parent is missing"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharNE (id ?chid) (entity ?nee) (vicinity ?nev))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (State (id ?fsid) (name "absent"))

 (State (id ?tsid) (name "present"))

 (forall (NAEntity (na ?naid) (id ?vid))

 (test (neq (str-cat ?baseuri ?tgt "/" ?nev) ?vid)))

 =>

 (bind ?newid (str-cat ?baseuri ?tgt "/" ?nee))

 (bind ?wholeid (str-cat ?baseuri ?tgt "/whole"))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?newid ?nee

?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?wholeid ?newid

"part_of" ?naid))

 (add ?robj)

 ;(assert (NAEntity (id ?newid) (name ?nee) (na ?naid))

 ; (NARel (na ?naid) (child ?newid) (relation "part_of") (parent

?wholeid)))

108

 (printout t "*** NE :: (02) + [E:" ?nee "] [R:" ?nee " part_of whole] ==> "

?chid crlf))

(defrule rule-03-effect-of-neomorphic-character

 "State change from present to absent in a neomorphic character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (CharNE (id ?chid) (entity ?nee))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (State (id ?fsid) (name "present"))

 (State (id ?tsid) (name "absent"))

 ?theentity <- (NAEntity (id ?eid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?nee) ?eid))

 =>

 (retract ?theentity)

 (printout t "*** NE :: (03) - [E:" ?nee "] ==> " ?chid crlf))

(defrule rule-04-effect-of-binaryrelationship-character

 "State change from yes to no in a binaryrelationship character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (CharBR (id ?chid) (child ?ce) (relation ?rid) (parent ?pe))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (State (id ?fsid) (name "yes"))

 (State (id ?tsid) (name "no"))

 ?therelation <- (NARel (child ?cid) (relation ?rid) (parent ?pid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?ce) ?cid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?pe) ?pid))

 =>

 (retract ?therelation)

 (printout t "*** BR :: (04) - [R:" ?ce " " ?rid " " ?pe "] ==> " ?chid

crlf))

(defrule rule-05-effect-of-binaryrelationship-character

 "State change from no to yes in a binaryrelationship character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharBR (id ?chid) (child ?ce) (relation ?rid) (parent ?pe))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (State (id ?fsid) (name "no"))

 (State (id ?tsid) (name "yes"))

 (forall (NARel (na ?naid) (child ?cid) (relation ?rid) (parent ?pid))

 (or (test (neq (str-cat ?baseuri ?tgt "/" ?ce) ?cid))

 (test (neq (str-cat ?baseuri ?tgt "/" ?pe) ?pid))))

 =>

 (bind ?newcid (str-cat ?baseuri ?tgt "/" ?ce))

 (bind ?newpid (str-cat ?baseuri ?tgt "/" ?pe))

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?newpid ?newcid ?rid

?naid))

 (add ?robj)

 ;(assert (NARel (na ?naid) (child ?newcid) (relation ?rid) (parent

?newpid)))

 (printout t "*** BR :: (05) + [R:" ?ce " " ?rid " " ?pe "] ==> " ?chid

crlf))

(defrule rule-06-effect-of-classifying-character

 "State change from ? to some other quality in a classifying character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

109

 (NA (taxon ?tgt) (id ?naid))

 (CharCL (id ?chid) (entity ?cle))

 (StateChange (character ?chid) (fromState "?") (toState ?tsid))

 (State (id ?tsid) (name ?tsname))

 =>

 (bind ?parenteid (str-cat ?baseuri ?tgt "/" ?cle))

 (bind ?neweid (str-cat ?baseuri ?tgt "/" ?tsname "-" ?cle))

 (bind ?newename (str-cat ?tsname "-" ?cle))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?neweid ?newename

?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?parenteid ?neweid

"is_a" ?naid))

 (add ?robj)

 ;(assert (NAEntity (id ?neweid) (name ?newename) (na ?naid))

 ; (NARel (na ?naid) (child ?neweid) (relation "is_a") (parent

?parenteid)))

 (printout t "*** CL :: (06) + [E:" ?tsname "-" ?cle "] [R:" ?tsname "-"

?cle " is_a " ?cle "] ==> " ?chid crlf))

(defrule rule-07-effect-of-classifying-character

 "State change from a quality to ? in a classifying character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharCL (id ?chid) (entity ?cle))

 (StateChange (character ?chid) (fromState ?fsid) (toState "?"))

 (State (id ?fsid) (name ?fsname))

 ?theentity <- (NAEntity (id ?neweid) (name ?newename) (na ?naid))

 ?therelation <- (NARel (na ?naid) (child ?neweid) (relation "is_a") (parent

?parenteid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?cle) ?parenteid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?fsname "-" ?cle) ?neweid))

 (test (eq (str-cat ?fsname "-" ?cle) ?newename))

 =>

 (retract ?therelation

 ?theentity)

 (printout t "*** CL :: (07) - [E:" ?newename "] [R:" ?newename " is_a "

?cle "] ==> " ?chid crlf))

(defrule rule-08-effect-of-classifying-character

 "State change from a quality to another quality in a classifying character,

neither state is ?"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharCL (id ?chid) (entity ?cle))

 (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid))

 (not (or (test (eq ?fsid "?")) (test (eq ?tsid "?"))))

 (State (id ?tsid) (name ?tsname))

 (State (id ?fsid) (name ?fsname))

 ?oldentity <- (NAEntity (id ?oldeid) (name ?oldename) (na ?naid))

 ?oldrelation <- (NARel (na ?naid) (child ?oldeid) (relation "is_a") (parent

?parenteid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?cle) ?parenteid))

 (test (eq (str-cat ?baseuri ?tgt "/" ?fsname "-" ?cle) ?oldeid))

 (test (eq (str-cat ?fsname "-" ?cle) ?oldename))

 =>

110

 (bind ?neweid (str-cat ?baseuri ?tgt "/" ?tsname "-" ?cle))

 (bind ?newename (str-cat ?tsname "-" ?cle))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?neweid ?newename

?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?parenteid ?neweid

"is_a" ?naid))

 (add ?robj)

 ;(assert (NAEntity (id ?neweid) (name ?newename) (na ?naid))

 ; (NARel (na ?naid) (child ?neweid) (relation "is_a") (parent

?parenteid)))

 (retract ?oldrelation ?oldentity)

 (printout t "*** CL :: (08) - [E:" ?oldename "] [R:" ?oldename " is_a "

?cle "] ==> " ?chid crlf

 " + [E:" ?newename "] [R:" ?newename " is_a " ?cle "] ==>

" ?chid crlf))

(defrule rule-09-effect-of-compositional-character

 "Found an entity that should not be a part of the parent entity of a

compositional character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharCO (id ?chid) (entity ?coe))

 (NAEntity (id ?coeid) (name ?coe) (na ?naid))

 (StateChange (character ?chid) (toState ?tsid))

 (StateEL (id ?tsid))

 ?therelation <- (NARel (na ?naid) (child ?cheid) (relation "part_of")

(parent ?coeid))

 (NAEntity (id ?cheid) (name ?chename))

 (not (StateELElement (sid ?tsid) (entity ?chename)))

 =>

 (retract ?therelation)

 (printout t "*** CO :: (09) - [R:" ?chename " part_of " ?coe "] ==> " ?chid

crlf))

(defrule rule-10-effect-of-compositional-character

 "Found a new entity that should be added as a part of the parent entity of

a compositional character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharCO (id ?chid) (entity ?coe))

 (NAEntity (id ?coeid) (name ?coe) (na ?naid))

 (StateChange (character ?chid) (toState ?tsid))

 (StateEL (id ?tsid))

 (StateELElement (sid ?tsid) (entity ?chename))

 (not (NAEntity (name ?chename) (na ?naid)))

 =>

 (bind ?cheid (str-cat ?baseuri ?tgt "/" ?chename))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?cheid ?chename

?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?coeid ?cheid

"part_of" ?naid))

 (add ?robj)

 ;(assert (NAEntity (na ?naid) (id ?cheid) (name ?chename))

111

 ; (NARel (na ?naid) (child ?cheid) (relation "part_of") (parent

?coeid)))

 (printout t "*** CO :: (10) + [E:" ?chename "] [R:" ?chename " part_of "

?coe "] ==> " ?chid crlf))

(defrule rule-11-effect-of-compositional-character

 "Found an existing entity that should be added as a part of the parent

entity of a compositional character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharCO (id ?chid) (entity ?coe))

 (NAEntity (id ?coeid) (name ?coe) (na ?naid))

 (StateChange (character ?chid) (toState ?tsid))

 (StateEL (id ?tsid))

 (StateELElement (sid ?tsid) (entity ?chename))

 (NAEntity (name ?chename) (na ?naid) (id ?cheid))

 (not (NARel (na ?naid) (child ?cheid) (relation "part_of") (parent

?coeid)))

 =>

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?coeid ?cheid

"part_of" ?naid))

 (add ?robj)

 ;(assert (NARel (na ?naid) (child ?cheid) (relation "part_of") (parent

?coeid)))

 (printout t "*** CO :: (11) + [R:" ?chename " part_of " ?coe "] ==> " ?chid

crlf))

(defrule rule-12-effect-of-meristic-character

 "Effect of meristic character when state changes to 1 and there are

entities to be removed. State cannot be zero for this character."

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharME (id ?chid) (entity ?mee))

 (NAEntity (id ?meeid) (name ?mee) (na ?naid))

 (StateChange (character ?chid) (toState ?tsid))

 (StateNU (id ?tsid) (value 1))

 ?extrarel <- (NARel (na ?naid) (parent ?meeid) (relation "is_a") (child

?meechid))

 (test (?meechid startsWith (str-cat ?meeid "#")))

 ?extraentity <- (NAEntity (na ?naid) (id ?meechid) (name ?meech))

 =>

 (retract ?extraentity ?extrarel)

 (printout t "*** ME :: (12) - [E:" ?meech "] [R:" ?meech " is_a " ?mee "]

==> " ?chid crlf))

(defrule rule-13-effect-of-meristic-character

 "Effect of meristic character when state changes from low to high value."

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharME (id ?chid) (entity ?mee))

 (NAEntity (id ?meeid) (name ?mee) (na ?naid))

 (StateChange (character ?chid) (toState ?tsid) (fromState ?fsid))

 (StateNU (id ?tsid) (value ?tval))

 (StateNU (id ?fsid) (value ?fval))

 (test (> ?tval ?fval))

112

 (test (>= ?fval 1))

 =>

 (printout t "*** ME :: (13) ")

 (bind ?white "")

 (if (= ?fval 1) then

 (bind ?no1id (str-cat ?meeid "#1"))

 (bind ?no1name (str-cat ?mee "#1"))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?no1id ?no1name

?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?meeid ?no1id

"is_a" ?naid))

 (add ?robj)

 ;(assert (NAEntity (na ?naid) (id ?no1id) (name ?no1name))

 ; (NARel (na ?naid) (child ?no1id) (relation "is_a") (parent

?meeid)))

 (printout t "+ [E:" ?no1name "] [R:" ?no1name " is_a " ?mee "] ==> "

?chid crlf)

 (bind ?white " "))

 (for (bind ?i (+ 1 ?fval)) (<= ?i ?tval) (++ ?i)

 (bind ?nextid (str-cat ?meeid "#" ?i))

 (bind ?nextname (str-cat ?mee "#" ?i))

 (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity ?nextid

?nextname ?naid))

 (add ?eobj)

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?meeid ?nextid

"is_a" ?naid))

 (add ?robj)

 ;(assert (NAEntity (na ?naid) (id ?nextid) (name ?nextname))

 ; (NARel (na ?naid) (child ?nextid) (relation "is_a") (parent

?meeid)))

 (printout t ?white "+ [E:" ?nextname "] [R:" ?nextname " is_a " ?mee "]

==> " ?chid crlf)

 (bind ?white " "))

)

(deffunction to-integer (?str)

 (bind ?hashindex (?str lastIndexOf "#"))

 (bind ?piece (?str substring (++ ?hashindex)))

 (bind ?val (call java.lang.Integer parseInt ?piece))

 (return ?val))

(defrule rule-14-effect-of-meristic-character

 "Effect of meristic character when state changes from high to low value

greater than 1."

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharME (id ?chid) (entity ?mee))

 (NAEntity (id ?meeid) (name ?mee) (na ?naid))

 (StateChange (character ?chid) (toState ?tsid) (fromState ?fsid))

 (StateNU (id ?tsid) (value ?tval))

 (StateNU (id ?fsid) (value ?fval))

 (test (< ?tval ?fval))

 (test (> ?tval 1))

 ?extrarel <- (NARel (na ?naid) (parent ?meeid) (relation "is_a") (child

?meechid))

 (test (?meechid startsWith (str-cat ?meeid "#")))

113

 ?extraentity <- (NAEntity (na ?naid) (id ?meechid) (name ?meech))

 (test (> (to-integer ?meechid) ?tval))

 =>

 (retract ?extraentity ?extrarel)

 (printout t "*** ME :: (14) - [E:" ?meech "] [R:" ?meech " is_a " ?mee "]

==> " ?chid crlf))

(defrule rule-15-effect-of-relationshipoptions-character

 "Effect of a relationshipoptions character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharRO (id ?chid) (child ?ce) (relation ?rid))

 (NAEntity (na ?naid) (name ?ce) (id ?ceid))

 (StateChange (character ?chid) (toState ?tsid))

 (StateE (id ?tsid) (entity ?tse))

 (NAEntity (na ?naid) (name ?tse) (id ?tseid))

 =>

 (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?tseid ?ceid ?rid

?naid))

 (add ?robj)

 ;(assert (NARel (na ?naid) (parent ?tseid) (relation ?rid) (child ?ceid)))

 (printout t "*** RO :: (15) + [R:" ?ce " " ?rid " " ?tse "] ==> " ?chid

crlf))

(defrule rule-16-effect-of-relationshipoptions-character

 "Effect of a relationshipoptions character"

 (Params (target ?tgt) (baseUri ?baseuri))

 (Taxon (id ?tgt))

 (NA (taxon ?tgt) (id ?naid))

 (CharRO (id ?chid) (child ?ce) (relation ?rid))

 (NAEntity (na ?naid) (name ?ce) (id ?ceid))

 (StateChange (character ?chid) (fromState ?fsid))

 (StateE (id ?fsid) (entity ?fse))

 (NAEntity (na ?naid) (name ?fse) (id ?fseid))

 ?extrarel <- (NARel (na ?naid) (parent ?fseid) (relation ?rid) (child

?ceid))

 =>

 (retract ?extrarel)

 (printout t "*** RO :: (16) - [R:" ?ce " " ?rid " " ?fse "] ==> " ?chid

crlf))

114

Appendix B

Input Data Files for Plants Test Case

Plants tree file

embryophyte land plant

fern fern

spermatophyte seed plant or phanerogam

gymnosperm naked-seed plant

angiosperm flowering plant

conifer cone bearing plant

cycad cycad

eudicot eudicot

monocot monocot

embryophyte fern spermatophyte

spermatophyte angiosperm gymnosperm

gymnosperm conifer cycad

angiosperm eudicot monocot

Plants ontology file

whole

seed

leaf

simple-leaf

stem

petal

flower

inflorescence

cotyledon

fruit

root

root-cap

root-cortex

exodermis

root-endodermis

shoot

115

bud

floral-bract

androecium

stamen

gynoecium

carpel

perianth

calyx

sepal

corolla

nectary

phyllome

compound-leaf

leaflet

shoot-apex

shoot-internode

shoot-node

tuber

embryo

seedling

root part_of whole

root-cap part_of root

root-cortex part_of root

exodermis part_of root-cortex

root-endodermis part_of root-cortex

shoot part_of whole

bud part_of shoot

inflorescence part_of shoot

floral-bract part_of inflorescence

flower part_of inflorescence

androecium part_of flower

stamen part_of androecium

gynoecium part_of flower

carpel part_of gynoecium

perianth part_of flower

calyx part_of perianth

sepal part_of calyx

corolla part_of perianth

petal part_of corolla

nectary part_of shoot

phyllome part_of shoot

leaf is_a phyllome

simple-leaf is_a leaf

compound-leaf is_a leaf

leaflet part_of compound-leaf

shoot-apex part_of shoot

shoot-internode part_of shoot

shoot-node part_of shoot

stem part_of shoot

tuber part_of shoot

seed part_of whole

embryo part_of seed

seedling part_of embryo

cotyledon part_of seedling

fruit part_of whole

seed contained_in fruit

116

Plants matrix file

C1 NE "produces seeds" seed part_of whole

C2 CL "leaf structure" leaf

C3 NE "stem has wood" wood part_of stem

C4 ME "merosity of flower petals" petal

C5 NE "has flowers" flower part_of inflorescence

C6 ME "number of cotyledons" cotyledon

C7 CL "type of wood" wood

C8 NE "produces fruit" fruit part_of whole

C9 RO "seed contained in" seed contained_in

C10 NE "produces cones" cone part_of whole

S11 "absent" C1

S12 "present" C1

S21 "simple" C2

S22 "compound" C2

S31 "present" C3

S32 "absent" C3

S41 "3" C4

S42 "4" C4

S51 "absent" C5

S52 "present" C5

S61 "1" C6

S62 "2" C6

S71 "hardwood" C7

S72 "softwood" C7

S81 "present" C8

S82 "absent" C8

S91 "fruit" C9

S92 "cone" C9

S101 "present" C10

S102 "absent" C10

angiosperm S12 S21 S32 ? S52 S61 ? S81 S91 S102

embryophyte S11 ? S32 ? S51 S62 ? S82 ? ?

spermatophyte S12 ? S32 ? S51 S62 ? S82 ? ?

gymnosperm S12 ? S31 ? S51 S62 ? S82 ? S102

conifer S12 ? S31 ? S51 S62 S72 S82 S92 S101

fern S11 S22 S32 ? S51 S62 ? S82 ? ?

cycad S12 ? S31 ? S51 S62 ? S82 ? S102

eudicot S12 ? S31 S42 S52 S62 S71 S81 S91 S102

monocot S12 ? S32 S41 S52 S61 ? S81 S91 S102

117

Appendix C

CTOL Matrix Worksheet

List of characters and their signatures: (Each line starts with the ID of the

character, followed by its type, text and frame elements. Character states are listed later).

C01- NE "Basihyal element presence" basihyal-element part_of ventral-hyoid-arch

C07- NE "Basibranchial 1-3 toothplate presence" basibranchial-1-3-toothplate

part_of gill-arch-1-5-skeleton

C08A NE "Basibranchial 1 element presence" basibranchial-1-element is_a

basibranchial-element

C08B RO "Basibranchial 1 element composition" basibranchial-1-element is_a

C09- CL "Basibranchial 2 bone shape" basibranchial-2-bone

C11- RO "Basibranchial 4 element composition" basibranchial-4-element is_a

C12- RO "Basibranchial 5 element composition" basibranchial-5-element is_a

C14- NE "Post-ceratobranchial cartilage presence" post-ceratobranchial-

cartilage is_a pharyngeal-arch-cartilage

C15- RO "Hypobranchial 1 element composition" hypobranchial-1-element is_a

C16- NE "Hypobranchial 1 bone antero-medial process presence" hypobranchial-1-

bone-antero-medial-process part_of hypobranchial-1-element

C17- RO "Hypobranchial 3 element composition" hypobranchial-3-element is_a

C18- BR "Hypobranchial 4 cartilage presence" hypobranchial-4-element is_a

hypobranchial-cartilage

C21- NE "Ceratobranchial 5 tooth presence" ceratobranchial-5-tooth part_of

ceratobranchial-5-bone

C24- ME "Ceratobranchial 5 tooth number" ceratobranchial-5-tooth

C25- CL "Ceratobranchial 5 tooth shape" ceratobranchial-5-tooth

C27- CL "Epibranchial bone curvature" epibranchial-bone

C29- NE "Epibranchial 1 bone anterior membranous flange presence" epibranchial-

1-bone-anterior-membranous-flange part_of epibranchial-1-bone

C33- NE "Epibranchial 1 bone uncinate process presence" epibranchial-1-bone-

uncinate-process part_of epibranchial-1-bone

C34- NE "Epibranchial 2 bone uncinate process presence" epibranchial-2-bone-

uncinate-process part_of epibranchial-2-bone

C35- NE "Epibranchial 3 bone uncinate process presence" epibranchial-3-bone-

uncinate-process part_of epibranchial-3-bone

C36- NE "Epibranchial 4 bone uncinate process presence" epibranchial-4-bone-

uncinate-process part_of epibranchial-4-bone

C38- NE "Epibranchial 4 bone, efferent artery flange presence" epibranchial-4-

bone-efferent-artery-flange part_of epibranchial-4-bone

118

C39- NE "Epibranchial 4 bone, levator process, presence" epibranchial-4-bone-

levator-process part_of epibranchial-4-bone

C40A NE "Pharyngobranchial 1 element presence" pharyngobranchial-1-element

part_of gill-arch-1-skeleton

C40B RO "Pharyngobranchial 1 element composition" pharyngobranchial-1-element

is_a

C41A NE "Pharyngobranchial 4 element presence" pharyngobranchial-4-element

part_of gill-arch-4-skeleton

C41B RO "Pharyngobranchial 4 element composition" pharyngobranchial-4-element

is_a

C46- NE "Pharyngobranchial 3 tooth plate presence" pharyngobranchial-3-tooth-

plate part_of gill-arch-3-skeleton

C47- CL "Gill raker tip shape" gill-raker

C50- NE "Sublingual(s) presence" sublingual is_a endochondral-bone

C52A NE "Interhyal element presence" interhyal-element part_of ventral-hyoid-

arch

C52B RO "Interhyal element composition" interhyal-element is_a

C54- ME "Branchiostegal rays number" branchiostegal-ray

C55- CL "Branchiostegal rays shape" branchiostegal-ray

C56- NE "Gill filament ossifications presence" gill-filament-ossification

part_of gill

C58A NE "Hypobranchial 3 element ventral process presence" hypobranchial-3-

element-ventral-process part_of hypobranchial-3-element

C58B RO "Hypobranchial 3 element ventral process composition" hypobranchial-3-

element-ventral-process is_a

C61A NE "Urohyal ventral plate presence" urohyal-ventral-plate part_of urohyal

C61B CL "Urohyal ventral plate state" urohyal-ventral-plate

List of character states: (Each line starts with the ID of the character state,

followed by its text and character).

C01-v0 "present" C01-

C01-v1 "absent" C01-

C07-v0 "present" C07-

C07-v1 "absent" C07-

C08Av0 "absent" C08A

C08Av1 "present" C08A

C08Bv0 "basibranchial-bone" C08B

C08Bv1 "cartilage" C08B

C09-v0 "hourglass" C09-

C09-v1 "rodlike" C09-

C09-v2 "spathulate" C09-

C09-v3 "anvil" C09-

C09-v4 "hourglass-with-flange" C09-

C09-v5 "rodlike-with-protrusions" C09-

C09-v6 "round" C09-

C11-v0 "cartilage" C11-

C11-v1 "basibranchial-bone" C11-

C12-v0 "cartilage" C12-

C12-v1 "basibranchial-bone" C12-

C14-v0 "absent" C14-

C14-v1 "present" C14-

C15-v0 "hypobranchial-bone" C15-

C15-v1 "hypobranchial-cartilage" C15-

119

C16-v0 "absent" C16-

C16-v1 "present" C16-

C17-v0 "hypobranchial-bone" C17-

C17-v1 "hypobranchial-cartilage" C17-

C18-v0 "no" C18-

C18-v1 "yes" C18-

C21-v0 "absent" C21-

C21-v1 "present" C21-

C24-v0 "1" C24-

C24-v1 "16" C24-

C24-v2 "26" C24-

C25-v0 "needle-like" C25-

C25-v1 "bicuspid" C25-

C25-v2 "hooked-with-no-wear-surface" C25-

C25-v3 "hooked-with-wear-surface" C25-

C25-v4 "molariform" C25-

C25-v5 "molariform-with-serrations" C25-

C25-v6 "bicuspid-and-hooked" C25-

C27-v0 "straight" C27-

C27-v1 "dorsally-arched" C27-

C29-v0 "absent" C29-

C29-v1 "present" C29-

C33-v0 "absent" C33-

C33-v1 "present" C33-

C34-v0 "absent" C34-

C34-v1 "present" C34-

C35-v0 "absent" C35-

C35-v1 "present" C35-

C36-v0 "absent" C36-

C36-v1 "present" C36-

C38-v0 "absent" C38-

C38-v1 "present" C38-

C39-v0 "absent" C39-

C39-v1 "present" C39-

C40Av0 "absent" C40A

C40Av1 "present" C40A

C40Bv0 "cartilage" C40B

C40Bv1 "pharyngobranchial-bone" C40B

C41Av0 "absent" C41A

C41Av1 "present" C41A

C41Bv0 "cartilage" C41B

C41Bv1 "pharyngobranchial-bone" C41B

C46-v0 "present" C46-

C46-v1 "absent" C46-

C47-v0 "tapered-tipped" C47-

C47-v1 "expanded-tipped" C47-

C50-v0 "absent" C50-

C50-v1 "present" C50-

C52Av0 "absent" C52A

C52Av1 "present" C52A

C52Bv0 "bone" C52B

C52Bv1 "interhyal-cartilage" C52B

C54-v0 "4" C54-

C54-v1 "3" C54-

C55-v0 "spathiform" C55-

C55-v1 "acinaciform" C55-

C56-v0 "absent" C56-

C56-v1 "present" C56-

120

C58Av0 "absent" C58A

C58Av1 "present" C58A

C58Bv0 "bone" C58B

C58Bv1 "cartilage" C58B

C61Av0 "absent" C61A

C61Av1 "present" C61A

C61Bv0 "reduced" C61B

C61Bv1 "fully-developed" C61B

Matrix: (Each line starts with the ID of the taxon, followed by its character state

vector. Each element is an ID of a character state, or a ? to designate unknown or

inapplicable).

N02 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 ? C27-v0 C29-v0 ? ? C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv1

N03 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 ? ? C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv1

N04 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 ? ? C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v0 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv1

N05 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v5 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v2 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v0 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N06 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v0 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v1 C58Av0 ? C61Av1 C61Bv1

N07 C01-v1 C07-v1 ? ? C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv1

N08 C01-v1 C07-v1 C08Av0 ? C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v0 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv1

N09 C01-v1 C07-v1 C08Av1 C08Bv1 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv0

N10 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 ? ? C29-v0 ? C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av1 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv1

N11 C01-v0 C07-v1 C08Av1 C08Bv0 ? C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 ? C29-v0 ? C34-v1 C35-v1 C36-v1 C38-

121

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N12 C01-v0 C07-v1 C08Av1 C08Bv0 ? C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N13 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N14 C01-v0 C07-v1 C08Av0 ? C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 ? C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N15 C01-v0 C07-v1 C08Av0 ? C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv0

N16 C01-v0 C07-v1 C08Av0 ? ? ? ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv0

N17 C01-v0 C07-v1 C08Av0 ? ? ? ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? ? ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv0

N18 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? ? ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N19 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N20 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N21 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv0

N22 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av0 ?

N23 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N24 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v6 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v0 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N25 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? ? ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

122

N26 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? ? ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N27 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v1 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N28 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av0 ? C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N29 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av0 ? C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N30 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v0 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av0 ? C54-

v1 C55-v0 C56-v1 C58Av1 C58Bv0 C61Av1 C61Bv0

N31 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av1 C58Bv0 C61Av1 C61Bv0

N32 C01-v0 C07-v1 C08Av0 ? C09-v2 C11-v1 ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ? C61Av1 C61Bv0

N33 C01-v0 C07-v1 C08Av0 ? C09-v0 ? ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv0

N34 C01-v0 C07-v1 C08Av0 ? C09-v2 ? ? C14-v0 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ? C61Av0 ?

N35 C01-v0 C07-v1 C08Av0 ? C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ? C61Av1 C61Bv0

N36 C01-v0 C07-v1 C08Av0 ? C09-v3 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N37 C01-v0 C07-v1 C08Av0 ? C09-v3 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N38 C01-v0 C07-v1 C08Av0 ? C09-v3 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N39 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N40 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v5 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

123

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N41 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N42 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N43 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N44 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N45 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N46 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N47 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N48 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v0 C39-v0 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N49 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N50 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N51 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N52 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v1 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv1 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N53 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N54 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

124

N55 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N56 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N57 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N58 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N59 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N60 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N61 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v1 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N62 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v5 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av0 ? C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N63 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N64 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N65 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N66 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N67 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N68 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 ? C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av0 ? C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N69 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

125

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N70 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N71 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N72 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv1 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N73 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ? C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N74 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N75 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv0

N76 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N77 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v6 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v1 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N78 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N79 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N80 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N81 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0

N82 C01-v0 C07-v1 C08Av0 ? C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v0 C24-v2 ? C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av1 C40Bv1 C41Av0 ? C46-v1 C47-v0 C50-v0 C52Av0 ? C54-

v1 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv1

N83 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v0 C24-v2 ? C27-v0 C29-v0 ? ? C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv1

126

N84 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v0 C24-v2 ? C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av0 ? C54-

v0 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1

N85 C01-v0 C07-v0 C08Av1 C08Bv1 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v0 C24-v2 ? C27-v1 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ? C61Av1 C61Bv0

127

Appendix D

Cypriniformes Gill & Hyoid Arches Anatomy

Each line contains a single term. Each term has an identifier in square brackets to

indicate the sequence where it first occurred in the ontology. The relationships between

terms are indicated by indentation. Each term (except the root whole) is connected to the

last term at the previous level by either is_a or part_of relationship, indicated as (i)

and (p) respectively.

[1] whole

 (p) [2] bone

 (i) [3] interhyal-element

 (i) [4] replacement-bone

 (i) [5] hypobranchial-bone

 (i) [6] hypobranchial-1-element

 (i) [7] basibranchial-bone

 (i) [8] basibranchial-2-bone

 (i) [9] hourglass-with-flange-basibranchial-2-bone

 (i) [10] basibranchial-1-bone

 (i) [11] endochondral-bone

 (i) [12] ceratobranchial-bone

 (i) [13] ceratobranchial-5-bone

 (p) [14] ceratobranchial-5-tooth

 (i) [15] ceratobranchial-5-tooth#16

 (i) [16] ceratobranchial-5-tooth#22

 (i) [17] ceratobranchial-5-tooth#15

 (i) [18] ceratobranchial-5-tooth#18

 (i) [19] ceratobranchial-5-tooth#17

 (i) [20] ceratobranchial-5-tooth#1

 (i) [21] ceratobranchial-5-tooth#8

 (i) [22] ceratobranchial-5-tooth#10

 (i) [23] ceratobranchial-5-tooth#2

 (i) [24] ceratobranchial-5-tooth#20

 (i) [25] ceratobranchial-5-tooth#12

128

 (i) [26] ceratobranchial-5-tooth#23

 (i) [27] ceratobranchial-5-tooth#9

 (i) [28] ceratobranchial-5-tooth#19

 (i) [29] ceratobranchial-5-tooth#25

 (i) [30] ceratobranchial-5-tooth#21

 (i) [31] ceratobranchial-5-tooth#4

 (i) [32] ceratobranchial-5-tooth#5

 (i) [33] ceratobranchial-5-tooth#14

 (i) [34] ceratobranchial-5-tooth#6

 (i) [35] ceratobranchial-5-tooth#13

 (i) [36] ceratobranchial-5-tooth#3

 (i) [37] ceratobranchial-5-tooth#26

 (i) [38] ceratobranchial-5-tooth#11

 (i) [39] ceratobranchial-5-tooth#7

 (i) [40] ceratobranchial-5-tooth#24

 (i) [41] epibranchial-bone

 (i) [42] epibranchial-3-bone

 (p) [43] epibranchial-3-bone-uncinate-process

 (i) [44] epibranchial-4-bone

 (p) [45] epibranchial-4-bone-uncinate-process

 (p) [46] epibranchial-4-bone-levator-process

 (i) [47] epibranchial-2-bone

 (p) [48] epibranchial-2-bone-uncinate-process

 (i) [49] epibranchial-1-bone

 (p) [50] epibranchial-1-bone-uncinate-process

 (p) [51] epibranchial-bone-uncinate-process

 (i) [52] intramembranous-bone

 (i) [53] dermal-bone

 (i) [54] branchiostegal-ray

 (i) [55] branchiostegal-ray#1

 (i) [56] branchiostegal-ray#3

 (i) [57] spathiform-branchiostegal-ray

 (i) [58] branchiostegal-ray#2

 (p) [59] skeletal-element

 (i) [60] basibranchial-element

 (i) [61] basibranchial-4-element

 (i) [62] basibranchial-4-cartilage

 (i) [63] basibranchial-5-element

 (i) [64] basibranchial-5-cartilage

 (i) [65] basibranchial-1-element

 (i) [10] basibranchial-1-bone

 (i) [66] basibranchial-3-element

 (i) [67] basibranchial-2-element

 (i) [8] basibranchial-2-bone

 (i) [68] ceratobranchial-element

 (i) [69] ceratobranchial-3-element

 (i) [70] ceratobranchial-1-element

 (i) [71] ceratobranchial-4-element

 (i) [72] ceratobranchial-2-element

 (i) [73] ceratobranchial-5-element

 (i) [13] ceratobranchial-5-bone

 (i) [74] epibranchial-element

129

 (i) [75] epibranchial-1-element

 (i) [49] epibranchial-1-bone

 (i) [76] epibranchial-4-element

 (i) [44] epibranchial-4-bone

 (i) [77] epibranchial-2-element

 (i) [47] epibranchial-2-bone

 (i) [78] epibranchial-3-element

 (i) [42] epibranchial-3-bone

 (i) [3] interhyal-element

 (i) [79] pharyngobranchial-element

 (i) [80] pharyngobranchial-4-element

 (i) [81] pharyngobranchial-1-element

 (i) [82] hypobranchial-element

 (i) [83] hypobranchial-3-element

 (i) [6] hypobranchial-1-element

 (i) [84] hypobranchial-4-element

 (i) [85] hypobranchial-4-cartilage

 (i) [86] hypobranchial-2-element

 (i) [87] basihyal-element

 (p) [88] pharyngeal-arch

 (p) [89] pharyngeal-musculature

 (p) [90] pharyngeal-vasculature

 (p) [91] splanchnocranium

 (p) [92] suspensorium

 (i) [93] mandibular-arch

 (i) [94] hyoid-arch

 (p) [95] ventral-hyoid-arch

 (p) [3] interhyal-element

 (p) [96] urohyal

 (p) [97] urohyal-ventral-plate

 (i) [98] fully-developed-urohyal-ventral-plate

 (p) [87] basihyal-element

 (p) [99] dorsal-hyoid-arch

 (p) [100] pharyngeal-arch-cartilage

 (i) [101] hypobranchial-cartilage

 (i) [83] hypobranchial-3-element

 (i) [102] epibranchial-cartilage

 (i) [103] ceratobranchial-cartilage

 (i) [104] gill-arch-1-5-skeleton

 (p) [41] epibranchial-bone

 (i) [105] gill-arch-5-skeleton

 (p) [12] ceratobranchial-bone

 (p) [102] epibranchial-cartilage

 (p) [60] basibranchial-element

 (p) [106] gill-raker-row

 (p) [74] epibranchial-element

 (p) [107] copula

 (p) [108] ceratobranchial-series

 (p) [68] ceratobranchial-element

 (p) [109] epibranchial-series

 (i) [110] gill-arch-3-skeleton

 (p) [83] hypobranchial-3-element

130

 (i) [111] gill-arch-1-skeleton

 (p) [6] hypobranchial-1-element

 (p) [81] pharyngobranchial-1-element

 (p) [112] pharyngobranchial-cartilage

 (p) [103] ceratobranchial-cartilage

 (p) [113] gill-raker

 (i) [114] tapered-tipped-gill-raker

 (p) [115] basibranchial-4-tooth-plate

 (p) [116] basibranchial-2-tooth-plate

 (p) [7] basibranchial-bone

 (p) [117] pharyngobranchial-bone

 (p) [118] pharyngobranchial-tooth-plate

 (i) [119] gill-arch-2-skeleton

 (p) [86] hypobranchial-2-element

 (p) [5] hypobranchial-bone

 (p) [82] hypobranchial-element

 (p) [101] hypobranchial-cartilage

 (p) [79] pharyngobranchial-element

 (i) [120] gill-arch-4-skeleton

 (p) [80] pharyngobranchial-4-element

 (p) [84] hypobranchial-4-element

 (i) [121] pharyngeal-arch#1

 (p) [93] mandibular-arch

 (p) [122] mandibular-muscle

 (i) [123] gill-arch

 (p) [124] branchial-muscle

 (i) [125] gill-arch#3

 (i) [126] gill-arch#5

 (i) [127] gill-arch#2

 (i) [128] gill-arch#4

 (p) [104] gill-arch-1-5-skeleton

 (i) [129] gill-arch#1

 (p) [130] gill-ray

 (i) [131] pharyngeal-arch#2

 (p) [94] hyoid-arch

 (i) [132] synovial-joint

 (i) [133] fibrous-joint

 (p) [134] hyoid-muscle

 (p) [135] pharyngeal-pouch

 (p) [136] gill

 (p) [113] gill-raker

 (p) [123] gill-arch

 (p) [137] cartilage

 (i) [63] basibranchial-5-element

 (i) [138] cranial-cartilage

 (i) [100] pharyngeal-arch-cartilage

 (i) [80] pharyngobranchial-4-element

 (i) [61] basibranchial-4-element

 (p) [139] tooth

 (i) [14] ceratobranchial-5-tooth

131

Appendix E

Morphster Meta-Model in OWL

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Prefix: xml: <http://www.w3.org/XML/1998/namespace>

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Prefix: skos: <http://www.w3.org/2004/02/skos/core#>

Prefix: morphster: <http://www.cs.utexas.edu/~hamid/ontology/morphster#>

Ontology: <http://www.cs.utexas.edu/~hamid/ontology/morphster>

AnnotationProperty: rdfs:label

ObjectProperty: <morphster:isSpecimenOf>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:Specimen>

 Range:

 <morphster:Taxon>

ObjectProperty: <morphster:registeredTo>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:Image>

 Range:

 <morphster:Specimen>

ObjectProperty: <morphster:associatedTo>

 SubPropertyOf:

132

 owl:topObjectProperty

 Domain:

 <morphster:MatrixCell>

ObjectProperty: owl:topObjectProperty

ObjectProperty: <morphster:belongsTo>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:MatrixCell>

 Range:

 <morphster:Matrix>

ObjectProperty: <morphster:shows>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:Image>

 InverseOf:

 <morphster:shownIn>

ObjectProperty: <morphster:shownIn>

 SubPropertyOf:

 owl:topObjectProperty

 InverseOf:

 <morphster:shows>

ObjectProperty: <morphster:isEntityOf>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:AnatomicalEntity>

 InverseOf:

 <morphster:appearsInEntity>

ObjectProperty: <morphster:appearsInEntity>

 SubPropertyOf:

 owl:topObjectProperty

133

 InverseOf:

 <morphster:isEntityOf>

ObjectProperty: <morphster:isStateOf>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:CharacterState>

 Range:

 <morphster:Character>

ObjectProperty: <morphster:hasQuality>

 SubPropertyOf:

 owl:topObjectProperty

 InverseOf:

 <morphster:isQualityOf>

ObjectProperty: <morphster:isAncestorOf>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:Taxon>

 Range:

 <morphster:Taxon>

ObjectProperty: <morphster:isQualityOf>

 SubPropertyOf:

 owl:topObjectProperty

 Domain:

 <morphster:PhenotypicQuality>

 InverseOf:

 <morphster:hasQuality>

Class: <morphster:AnatomicalEntity>

 Annotations:

 rdfs:label "Anatomical Entity"@en

 SubClassOf:

 <morphster:shownIn> some <morphster:Image>

134

Class: <morphster:Character>

 Annotations:

 rdfs:label "Character"@en

 SubClassOf:

 <morphster:appearsInEntity> some <morphster:AnatomicalEntity>,

 <morphster:hasQuality> some <morphster:PhenotypicQuality>,

 <morphster:shownIn> some <morphster:Image>

Class: <morphster:CharacterState>

 Annotations:

 rdfs:label "Character State"@en

 SubClassOf:

 <morphster:appearsInEntity> some <morphster:AnatomicalEntity>,

 <morphster:hasQuality> some <morphster:PhenotypicQuality>,

 <morphster:isStateOf> some <morphster:Character>,

 <morphster:shownIn> some <morphster:Image>

Class: <morphster:PhenotypicQuality>

 Annotations:

 rdfs:label "Phenotypic Quality"@en

Class: <morphster:Taxon>

 Annotations:

 rdfs:label "Taxon"@en

 SubClassOf:

 <morphster:isAncestorOf> some <morphster:Taxon>

Class: <morphster:Matrix>

 Annotations:

 rdfs:label "Matrix"@en

Class: <morphster:Image>

 Annotations:

 rdfs:label "Image"@en

 SubClassOf:

 <morphster:registeredTo> some <morphster:Specimen>

Class: <morphster:MatrixCell>

 Annotations:

 rdfs:label "Matrix Cell"@en

135

 SubClassOf:

 <morphster:associatedTo> some <morphster:CharacterState>,

 <morphster:associatedTo> some <morphster:Taxon>,

 <morphster:belongsTo> some <morphster:Matrix>

Class: <morphster:Specimen>

 Annotations:

 rdfs:label "Specimen"@en

 SubClassOf:

 <morphster:isSpecimenOf> some <morphster:Taxon>

DisjointClasses:

<morphster:AnatomicalEntity>,<morphster:Character>,<morphster:CharacterState>,<

morphster:Image>,<morphster:Matrix>,<morphster:MatrixCell>,<morphster:Phenotypi

cQuality>,<morphster:Specimen>,<morphster:Taxon>

136

Appendix F

Image Driven Ontology Source in RDF/OWL

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY ido "http://www.morphster.org/ontology/2008/ido#" >

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:owl="&owl;"

xmlns:ido="&ido;" xmlns="&ido;"

xml:base="http://www.morphster.org/ontology/2008/ido#">

<owl:Ontology rdf:ID="ido-meta">

</owl:Ontology>

<!-- *** Start of IDO declarations *** -->

<owl:Class rdf:ID="Image" />

<rdfs:Class rdf:ID="ShowsProperty">

<rdfs:label>ShowsProperty</rdfs:label>

<rdfs:subClassOf rdf:resource="&rdf;Property"/>

</rdfs:Class>

<ido:ShowsProperty rdf:ID="showsSimilar" />

<ido:ShowsProperty rdf:ID="entiretyShowsSimilar" />

<ido:ShowsProperty rdf:ID="showsExemplar" />

<ido:ShowsProperty rdf:ID="entiretyShowsExemplar" />

<!-- *** End of IDO declarations *** -->

<!-- *** Full definitions follow *** -->

<owl:Class rdf:about="#Image">

<rdfs:label>Image</rdfs:label>

<rdfs:comment>The image entity. All images are instances of this

class.</rdfs:comment>

</owl:Class>

<ido:ShowsProperty rdf:about="#showsSimilar">

<rdfs:label>Shows Similar</rdfs:label>

137

<rdfs:comment>Shows Similar (m, x): This association asserts that image m

contains a concept similar to class x.</rdfs:comment>

<rdfs:domain rdf:resource="&ido;Image" />

</ido:ShowsProperty>

<ido:ShowsProperty rdf:about="#entiretyShowsSimilar">

<rdfs:label>Entirety Shows Similar</rdfs:label>

<rdfs:comment>Entirety Shows Similar (m, x): This association asserts that

image m, in its entirety, depicts a concept similar to class x.</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="&ido;showsSimilar" />

</ido:ShowsProperty>

<ido:ShowsProperty rdf:about="#showsExemplar">

<rdfs:label>Shows Exemplar</rdfs:label>

<rdfs:comment>Shows Exemplar (m, x): This association asserts than image m

contains exemplar of class x.</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="&ido;showsSimilar" />

</ido:ShowsProperty>

<ido:ShowsProperty rdf:about="#entiretyShowsExemplar">

<rdfs:label>Entirety Shows Exemplar</rdfs:label>

<rdfs:comment>Entirety Shows Exemplar (m, x): This association asserts that

image m, in its entirety, depicts exemplar of class x.</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="&ido;showsExemplar" />

<rdfs:subPropertyOf rdf:resource="&ido;entiretyShowsSimilar" />

</ido:ShowsProperty>

</rdf:RDF>

138

Bibliography

[1] C. Linnæus. Systema naturæ, sive regna tria naturæ systematice proposita per

classes, ordines, genera, & species. Lugduni Batavorum, (Haak), 1-12, 1735.

[2] C. Linnæus. Systema naturæ per regna tria naturæ, secundum classes, ordines,

genera, species, cum characteribus, differentiis, synonymis, locis. (Translated:

System of nature through the three kingdoms of nature, according to classes,

orders, genera and species, with characters, differences, synonyms, places).

Tomus I. Editio decima, reformata, pp [1-4], 1-824, Holmiæ, (Salvius), 1758.

[3] C. Darwin. Transmutation of Species. Notebook B, 1837-1838.

[4] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G.

M. Rubin, G. Sherlock. Gene Ontology: tool for the unification of biology.

Nature Genetics, 25, 25-29, 2000.

[5] P. Clark, B. W. Porter. Building Concept Representations from Reusable

Components. National Conference on Artificial Intelligence, AAAI, 369-376,

1997.

[6] K. Barker, B. W. Porter, P. Clark. A Library of Generic Concepts for Composing

139

Knowledge Bases. In Proceedings of 1st International Conference on Knowledge

Capture, Victoria, B.C., Canada, 2001.

[7] K. Barker, S. Y. Chaw, J. Fan, B. Porter, D. Tecuci, P. Yeh, V. K. Chaudhri, D.

Israel, S. Mishra, P. Romero, P. E. Clark. A Question-Answering System for AP

Chemistry: Assessing KR&R Technologies. In Proceedings of the Ninth

International Conference on the Principles of Knowledge Representation and

Reasoning, Whistler, 488-497, 2004.

[8] Assembling the Tree of Life (AToL). http://www.phylo.org/atol/

[9] J. Sprague, L. Bayraktaroglu, D. Clements, T. Conlin, D. Fashena, K. Frazer, M.

Haendel, D. Howe, P. Mani, S. Ramachandran, K. Schaper, E. Segerdell, P.

Song, B. Sprunger, S. Taylor, C. Van Slyke, M. Westerfield. The Zebrafish

Information Network: the zebrafish model organism database. Nucl. Acids Res.

34, D581-D585, 2006.

[10] W. M. Dahdul, J. G. Lundberg, P. E. Midford, J. P. Balhoff, H. Lapp, T. J.

Vision, M. A. Haendel, M. Westerfield, P. M. Mabee. The Teleost Anatomy

Ontology: Anatomical Representation for the Genomics Age. Systematic

Biology, 59 (4), 369-383, 2010.

[11] OBO-Edit: The OBO Ontology Editor. http://oboedit.org/

[12] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy, H.

Eriksson, N. F. Noy, S. W. Tu. The Evolution of Protégé: An Environment for

Knowledge-Based Systems Development. International Journal of Human-

Computer Studies, 58 (1), 89-123, 2003.

[13] W. P. Maddison, D. R. Maddison. Mesquite: a modular system for evolutionary

analysis. 2010. http://mesquiteproject.org

140

[14] T. Warnow. Constructing phylogenetic trees efficiently using compatibility

criteria. New Zealand Journal of Botany, Vol. 31, pp. 239-248, 1993.

[15] T. Warnow. Large-scale phylogenetic reconstruction. Book chapter, in S. Aluru

(editor), Handbook of Computational Biology, Chapman & Hall, CRC Computer

and Information Science Series, 2005.

[16] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. J.

Goldberg, K. Eilbeck, A Ireland, C. J. Mungall, OBI Consortium, N. Leontis, P.

Rocca-Serra, A. Ruttenberg, S. A. Sansone, R. H. Scheuermann, N. Shah, P. L.

Whetzel, S. Lewis. The OBO Foundry: coordinated evolution of ontologies to

support biomedical data integration. Nature Biotechnology, 25 (11), 1251-1255,

2007.

[17] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American,

284 (5), 34-43, 2001.

[18] Mouse adult gross anatomy.

http://bioportal.bioontology.org/visualize/40819/MA%253A0000001

[19] NCI Thesaurus. http://ncit.nci.nih.gov/

[20] G. D. Bader, M. Cary, C. Sander. BioPAX – Biological Pathway Data Exchange

Format. Encyclopedia of Genomics, Proteomics and Bioinformatics, New York:

John Wiley & Sons, Ltd, 2006.

[21] P. C. Sereno. Logical basis for morphological characters in phylogenetics.

Cladistics 23 (6), 565-587, 2007.

[22] Morphster project.

http://www.cs.utexas.edu/~miranker/studentWeb/MorphsterHomePage.html

[23] S. H. Tirmizi, S. Aitken, D. A. Moreira, C. Mungall, J. Sequeda, N. H. Shah, D.

141

P. Miranker. OBO & OWL: Roundtrip Ontology Transformations. In

Proceedings of the Workshop of Semantic Web Applications and Tools for Life

Sciences (SWAT4LS), Amsterdam, The Netherlands, November 20, 2009.

[24] T. R. Gruber. A Translation Approach to Portable Ontology Specification.

Knowledge Acquisition, 5 (2), 199-220, 1993.

[25] W3C Recommendation. OWL Web Ontology Language Use Cases and

Requirements. J. Heflin, ed. 2004. http://www.w3.org/TR/2004/REC-webont-

req-20040210/

[26] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen. From SHIQ and RDF to

OWL: The Making of a Web Ontology Language. Journal of Web Semantics, 1

(1), 7-26, 2003.

[27] B. Smith, W. Ceusters, B. Klagges, J. Kohler, A. Kumar, J. Lomax, C. J.

Mungall, F. Neuhaus, A. Rector, C. Rosse. Relations in Biomedical Ontologies.

Genome Biology, 6:R46, 2005.

[28] G. Antoniou, F. van Harmelen. A Semantic Web Primer. MIT Press, 2004.

[29] W3C Recommendation. Extensible Markup Language (XML) 1.1 (Second

Edition). Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.,

& Cowan, J., eds. 2006. http://www.w3.org/TR/2006/REC-xml11-20060816/

[30] W3C Recommendation. Resource Description Framework (RDF): Concepts and

Abstract Syntax. Klyne, G., & Carroll, J. J., eds. 2004.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[31] T. Berners-Lee, R. Fielding, L. Masinter. Uniform Resource Identifiers (URI):

Generic Syntax. RFC 2396, Network Working Group, August, 1998.

[32] W3C Recommendation. RDF Semantics. P. Hayes, ed. 10 Feb, 2004.

142

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[33] W3C Recommendation. OWL Web Ontology Language. D.L. McGuinness and

F. van Harmelen, eds. 10 Feb, 2004. http://www.w3.org/TR/2004/REC-owl-

features-20040210/

[34] W3C Recommendation. OWL Web Ontology Language Reference. M. Dean and

G. Schreiber, eds. 10 Feb, 2004. http://www.w3.org/TR/2004/REC-owl-ref-

20040210/

[35] W3C Recommendation. SPARQL Query Language for RDF. Prud’hommeaux,

E., & Seaborne, A., eds. 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-

query-20080115/

[36] W3C Working Group Note. RIF Overview. Kifer, M., & Boley, H., eds. 2010.

http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/

[37] W3C Member Submission. SWRL: A Semantic Web Rule Language Combining

OWL and RuleML. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,

Grosof, B., & Dean, M., eds. 2004.

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[38] NCBO BioPortal. http://www.bioontology.org/bioportal.html

[39] P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, J. Collado-Vides, S. M. Paley, A.

Pellegrini-Toole, C. Bonavides, S. Gama-Castro. The EcoCyc Database. Nucleic

Acids Research, 30 (1), 56-58, 2002.

[40] I. M. Keseler, C. Bonavides-Martinez, J. Collado-Vides, S. Gama-Castro, R. P.

Gunsalus, D. A. Johnson, M. Krummenacker, L. M. Nolan, S. Paley, I. T.

Paulsen, M. Peralta-Gil, A. Santos-Zavaleta, A. G. Shearer, P. D. Karp. EcoCyc:

A comprehensive view of Escherichia coli biology. Nucleic Acids Research, vol

143

37 (1), D464-D470, 2009.

[41] A. M. Maglia, J. L. Leopold, L. A. Pugener, S. Gauch, S. An anatomical

ontology for amphibians. Proc. Pacific Symposium on Biocomputing, 12, 367-

378, 2007.

[42] OBO Flat File Format Specifications.

http://www.geneontology.org/GO.format.shtml

[43] Y. Kalfoglou, M. Schorlemmer. Ontology Mapping: The State of the Art. The

Knowledge Engineering Review, 18 (1), 1-31, 2003.

[44] N. Choi, I. Y. Song, H. Han. A Survey on Ontology Mapping. SIGMOD Record,

2006.

[45] T. Catarci, M. Lenzerini. Representing and Using Interschema Knowledge in

Cooperative Information Systems. Journal of Intelligent and Cooperative

Information Systems, 1993.

[46] E. Rahm, P. Bernstein. A Survey of Approaches to Automatic Schema Matching

The VLDB Journal, 2001.

[47] P. L. Foreym, C. J. Humphries, I. L. Kitching, R. W. Scotland, D. J. Siebert, D.

M. Williams. Tree-building Techniques. Cladistics: A Practical Course in

Systematics. Oxford University Press Inc., New York, 44-71, ISBN 0198557664,

1993.

[48] D. Fernandez-Baca. The Perfect Phylogeny Problem. Steiner Trees in Industry.

Cheng, X., & Du, D. editors. Springer-Verlag, New York, LLC, ISBN

9781402000997, 2002.

[49] K. L. Alesandrini. Pictures and adult learning. Instructional Science, 13 (1), 63-

77, 1984.

144

[50] R. N. Carney, J. R. Levin. Pictorial Illustrations Still Improve Students' Learning

From Text. Educational Psychology Review, 14 (1), 5-26, 2002.

[51] National Aeronautics and Space Administration, Mars Mission. NASA Images

Suggest Water Still Flows in Brief Spurts on Mars. 2006.

http://www.nasa.gov/mission_pages/mars/news/mgs-20061206.html

[52] T. Rowe. Phylogenetic systematics and the early history of mammals. (F. S.

Szalay, M. J. Novacek, & M. C. McKenna, Eds.) Mammalian Phylogeny, 129-

145, 1993.

[53] T. Macrini. Monodelphis domestica. Digital Morphology, 2001.

http://digimorph.org/specimens/Monodelphis_domestica/adult/

[54] M. Demarest, N. Simmons. Cynopterus brachyotis. Digital Morphology, 2003.

http://digimorph.org/specimens/Cynopterus_brachyotis/head/

[55] M. Giger, H. MacMahon. Image processing and computer-aided diagnosis.

Radiologic Clinics of North America, 34 (3), 565-596, 1996.

[56] C. B. Medeiros, F. Pires. Databases for GIS. ACM SIGMOD Record, 23 (1),

107-115, 1994.

[57] EQ for character matrices.

http://www.phenoscape.org/wiki/EQ_for_character_matrices

[58] Phenotypic Quality Ontology (PATO).

http://obofoundry.org/wiki/index.php/PATO:Main_Page

[59] Understanding Evolution. Welcome to Evolution 101! University of California

Museum of Paleontology. http://evolution.berkeley.edu/evolibrary/article/evo_01

[60] Virtual Paleontology Laboratory Glossary. University of California Museum of

Paleontology. http://www.ucmp.berkeley.edu/IB181/VPL/Glossary.html

145

[61] A Dictionary of Earth Sciences, Oxford University Press, 1999.

[62] A Dictionary of Biology, Oxford University Press, Market House Books Ltd.,

2000.

[63] W. C. Wheeler, P. Cartwright, C. Hayashi. Arthropod phylogeny: A combined

approach. Cladistics 9 (1), 1-39, 1993.

[64] Jess, the Rule Engine for the Java™ Platform. http://www.jessrules.com/

[65] K. Ilic, E. A. Kellogg, P. Jaiswal, F. Zapata, P. F. Stevens, L. P. Vincent, S.

Avraham, L. Reiser, A. Pujar, M. M. Sachs, N. T. Whitman, S. R. McCouch, M.

L. Schaeffer, D. H. Ware, L. D. Stein, S. Y. Rhee. The Plant Structure Ontology,

a unified vocabulary of anatomy and morphology of a flowering plant. Plant

Physiology, 143: 587-599, 2007.

[66] Plants Database at United States Department of Agriculture, Natural Resources

Conservation Service. http://plants.usda.gov/classification_about.html

[67] P. H. Raven, R. F. Evert, S. E. Eichhorn. Biology of Plants. Worth Publishers,

Inc., NY, pp. 775, 1986.

[68] Cypriniformes Tree of Life Project (CTOL).

http://bio.slu.edu/mayden/cypriniformes/home.html

[69] I. F. Cruz, F. P. Antonelli, C. Stroe. AgreementMaker: Efficient Matching for

Large Real-World Schemas and Ontologies. International Conference on Very

Large Databases (Demo), Lyon, France, September 2009.

[70] K. M. Claeson, J. W. Hagadorn, K. Luckenbill, J. G. Lundberg. Anatomy of the

Very Tiny: First Description of the Head Skeleton of the Rare South American

Catfish Sarcoglanis simplex (Siluriformes: Trichomycteridae). Palaeontologia

Electronica, 11 (2), 2008.

146

[71] Jena Semantic Web Framework. http://jena.sourceforge.net/

[72] SDB – A SPARQL Database for Jena. http://openjena.org/SDB/

[73] S. H. Tirmizi, J. Sequeda, D. P. Miranker. Translating SQL Applications to the

Semantic Web. In Bhowmick, S.S., Küng, J., Wagner, R. (eds.), DEXA 2008.

LNCS, 5181, 450-464. Springer-Verlag, Berlin, Heidelberg, 2008.

[74] Ontobrowser.

http://www.cs.utexas.edu/~miranker/studentWeb/OntobrowserHomePage.html

[75] Morphbank. http://www.morphbank.net/

[76] G. Riccardi, A. Mast, D. Miranker, F. Cilloniz. OntoMorphBankSter: Image-

driven Ontology and/or Ontology-driven Image Annotation. Proceedings of

TDWG, 2008.

[77] Fishes of Texas Collection. http://www.fishesoftexas.org/

[78] AToL: Phylogeny of Spiders. http://research.amnh.org/atol/files/

[79] Hymenoptera – Assembling the Tree of Life. http://www.hymatol.org/

[80] M. J. Ramírez, J. A. Coddington, W. P. Maddison, P. E. Midford, L. Prendini, J.

Miller, C. E. Griswold, G. Hormiga, P. Sierwald, N. Scharff, S. P. Benjamin, W.

C. Wheeler. Linking of Digital Images to Phylogenetic Data Matrices Using a

Morphological Ontology. Systematic Biology, 56 (2), 283-294, 2007.

[81] A. T. Schreiber, B. Dubbeldam, J. Wielemaker, B. Wielinga. Ontology-based

photo annotation. IEEE Intelligent Systems, 16 (3), 66-74, 2001.

[82] E. Hyvönen, A. Styrman, S. Saarela. Ontology-based image retrieval. Helsinki

Institute for Information Technology. Helsinki, Finland: HIIT Publications,

2002.

[83] C. Halaschek-Wiener, A. Schain, J. Golbeck, M. Grove, B. Parsia, J. Hendler. A

147

Flexible Approach for Managing Digital Images on the Semantic Web. In

Proceedings of the Fifth International Workshop on Knowledge Markup and

Semantic Annotation. Galway, Ireland, 2005.

[84] C. Halaschek-Wiener, J. Golbeck, A. Schain, M. Grove, B. Parsia, J. Hendler.

Annotation and provenance tracking in semantic web photo libraries.

International Provenance and Annotation Workshop. Chicago, IL, USA, 2006.

[85] K. Pastra, H. Saggion, Y. Wilks. Intelligent Indexing of Crime-Scene

Photographs. IEEE Intelligent Systems Special Issue on Advances in Natural

Language Processing, 18 (1), 55-61, 2003.

[86] K. Pastra. Image-Language association: are we looking at the right features? In

Proc. of the OntoImage LREC Workshop, Genoa, Italy, 2006.

[87] K. Petridis, D. Anastasopoulos, C. Saathoff, N. Timmermann, I. Kompatsiaris, S.

Staab. M-OntoMat-Annotizer: Image Annotation. Linking Ontologies and

Multimedia Low-Level Features. In KES 2006, Part III, LNAI 4253, 633-640,

2006.

[88] C. Hudelot, J. Atif, I. Bloch. Fuzzy spatial relation ontology for image

interpretation. Fuzzy Sets Syst. 159, 15, 1929-1951, 2008.

[89] J. Martinez. Overview of the MPEG-7 Standard (version 5.0). ISO/IEC

JTC1/SC29/WG11 N4031, Singapore, 2001.

[90] M. Bertini, A. D. Bimbo, G. Serra, C. Torniai, R. Cucchiara, C. Grana, R.

Vezzani. Dynamic Pictorially Enriched Ontologies for Digital Video Libraries.

In IEEE Multimedia, 42-51, 2009.

[91] J. Fan, K. Barker, B. Porter, P. Clark. Representing roles and purpose. In

Proceedings of the 1st International Conference on Knowledge Capture

148

(Victoria, British Columbia, Canada, October 22 - 23, 2001), ACM, New York,

NY, 38-43, 2001.

[92] R. Mizoguchi, E. Sunagawa, K. Jozaki, Y. Kitamura. The model of roles within

an ontology development tool: Hozo. Applied Ontology, 1-21, IOS Press, 2007.

[93] N. F. Noy. Semantic integration: a survey of ontology-based approaches. ACM

SIGMOD Record, 33(4), 65-70, 2004.

[94] O. Bodenreider, T. F. Hayamizu, M. Ringwald, S. D. Coronado, S. Zhang. Of

Mice and Men: Aligning Mouse and Human Anatomies. In Proceedings of AMIA

Annual Symposium, 61-65, 2005.

[95] P. Mork, R. Pottinger, P. A. Bernstein. Challenges in precisely aligning models

of human anatomy using generic schema matching. In Proceedings of MedInfo,

San Francisco, CA, 2004.

[96] Gene Ontology at Sourceforge. https://sourceforge.net/projects/geneontology/

[97] T. Berners-Lee. Semantic Web Status and Direction. Keynote at the

International Semantic Web Conference, 2003.

[98] OBO2OWL Mappings.

http://spreadsheets.google.com/ccc?key=0AqAZUdKw1IVHcFdOXzRzQnJk

OWwxVW1uMUxOOFd1UVE&hl=en

[99] OBO-Edit Source Wiki. http://wiki.geneontology.org/index.php/OBO-

Edit:_Getting_the_Source_Code

[100] W3C Recommendation. OWL Web Ontology Language: Semantics and Abstract

Syntax. P.F. Patel-Schneider, P. Hayes and I. Horrocks, eds. 20 Feb, 2004.

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/

[101] C. Golbreich, I. Horrocks. The OBO to OWL mapping, GO to OWL 1.1!

149

Workshop on OWL: Experiences and Directions, Innsbruck, Austria, Jun 6-7,

2007.

[102] C. Golbreich, M. Horridge, I. Horrocks, B. Motik, R. Shearer. OBO and OWL:

Leveraging Semantic Web Technologies for the Life Sciences. ISWC/ASWC,

169-182, 2007.

150

Vita

Syed Hamid Ali Tirmizi was born in Jeddah, Kingdom of Saudi Arabia, on

October 4, 1981, the son of Syed Basit Ali Tirmizi and Syeda Fatima Safia. He received

the degree of Bachelor of Science in Computer Science, with highest honor, from

National University of Computer and Emerging Sciences (FAST), Islamabad, Pakistan,

in 2003. In the following year he developed Radix Academics Suite for National

University of Computer and Emerging Sciences as the lead software engineer.

In August 2004, he moved to the United States of America to pursue graduate

studies, and began doctoral studies in Computer Science at The University of Texas at

Austin. He received the Master of Science degree in 2009 from the Department of

Computer Science at The University of Texas at Austin. He conducted his doctoral

research under the supervision of Prof. Daniel P. Miranker.

Permanent Address: C-270, Block 6, Federal B. Area, Karachi, Pakistan

This dissertation was typed by the author.

