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  Abstract 

Biologists use ontologies as a method to organize and publish their acquired 

knowledge. Computer scientists have shown the value of ontologies as a means for 

knowledge discovery. This dissertation makes a number of contributions to enable 

systematic biologists to better leverage their ontologies in their research. 

Systematic biology, or phylogenetics, is the study of evolution. “Assembling a 

Tree of Life” (AToL) is an NSF grand challenge to describe all life on Earth and estimate 

its evolutionary history. AToL projects commonly include a study a taxon (organism) to 

create an ontology to capture its anatomy. Such anatomy ontologies are manually curated 

based on the data from morphology-based phylogenetic studies. Annotated digital 

imagery, morphological characters and phylogenetic (evolutionary) trees are the key 

components of morphological studies. 
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Given the scale of AToL, building an anatomy ontology for each taxon manually 

is infeasible. The primary contribution of this dissertation is automatic inference and 

concomitant formalization required to compute anatomy ontologies. New anatomy 

ontologies are formed by applying transformations on an existing anatomy ontology for a 

model organism. The conditions for the transformations are derived from observational 

data recorded as morphological characters. We automatically created the Cypriniformes 

Gill and Hyoid Arches Ontology using the morphological character data provided by the 

Cypriniformes Tree of Life (CTOL) project. 

The method is based on representing all components of a phylogenetic study as an 

ontology using a domain meta-model. For this purpose we developed Morphster, a 

domain-specific knowledge acquisition tool for biologists. 

Digital images often serve as proxies for natural specimens and are the basis of 

many observations. A key problem for Morphster is the treatment of images in 

conjunction with ontologies. We contributed a formal system for integrating images with 

ontologies where images either capture observations of nature or scientific hypotheses. 

Our framework for image-ontology integration provides opportunities for building 

workflows that allow biologists to synthesize and align ontologies. 

Biologists building ontologies often had to choose between two ontology systems: 

Open Biomedical Ontologies (OBO) or the Semantic Web. It was critical to bridge the 

gap between the two systems to leverage biological ontologies for inference. We created 

a methodology and a lossless round-trip mapping for OBO ontologies to the Semantic 

Web. Using the Semantic Web as a guide to organize OBO, we developed a mapping 

system which is now a community standard. 
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Chapter 1 
  

Introduction 

The use of ontologies in biology can be recognized since at least as far back as the 

work of Carolus Linnæus (Systema Naturæ, 1735-1758 [1, 2]) on the classification of 

organisms in the form of a taxonomy now known as the Linnaean Taxonomy, and in 

Charles Darwin’s sketches of evolutionary trees in his notebook on Transmutation of 

Species in 1837-1838 [3]. However, the use of the term ‘ontology’ among biologists and 

their efforts to express biological knowledge in ontological form seem to have gained 

traction since the Gene Ontology project [4]. 

In this context, ontologies are an artificial intelligence tool for capturing the 

concepts within a domain, as well as the attributes of the concepts and the relationships 

among the concepts. They are a convenient tool for representing scientific knowledge [5, 

6]. Ontology development is an expensive and error prone process that often requires the 

involvement of trained knowledge engineers to solicit knowledge from domain experts, 

understand it, and encode it into an ontology [7]. 

1.1 STATE OF SYSTEMATIC BIOLOGY 

Systematic biology or phylogenetics is the study of biological diversity and its 

origins. It focuses on understanding evolutionary relationships among taxa (organisms, 
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singular: taxon). One of the grand challenges in this domain is “Assembling a Tree of 

Life” (AToL), i.e. to describe all life on Earth and estimate its evolutionary history [8]. 

Currently the most significant use of ontologies in systematic biology is to capture 

the knowledge about taxon anatomies [9, 10]. These ontologies are called anatomy 

ontologies or Nomina Anatomica. This compares with molecular biology where 

ontologies such as the Gene Ontology are aimed at standardizing gene representation and 

attributes across databases. Building anatomy ontology for the taxon under study is often 

a significant part of an AToL project. However, building the ontology is a laborious 

process. 

 

 

Figure 1.1: Typical workflow for systematic biologists. 

In morphology-based phylogenetic studies, it is common for systematic biologists 

to go out in the field to collect specimens of taxa under study (Figure 1.1). These 

specimens are often deposited into museums or other natural history collections, and 

digital proxies created for further study. The digital proxies consist of 2D images and 3D 

models obtained from computed tomography (CT) scans. This imagery is then carefully 
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segmented and annotated, and becomes the primary means for further study. Using this 

imagery, biologists study anatomies of organisms, make scientific observations and 

identify features of interest, called morphological characters and character states. 

Characters and character states from multiple taxa are aligned in the form of a data matrix 

(or character matrix). A tree reconstruction algorithm uses the data matrix to produce one 

or more phylogenetic trees, each representing possible evolutionary relationships among 

the taxa under consideration. These trees are then used to draw conclusions in the diverse 

areas of biology, environment, medicine, agriculture etc. 

Computer technology is extensively employed in each aspect of the workflow of 

phylogenetics. This includes the use of popular graphics tools such as Adobe Photoshop 

and Illustrator for image annotations, ontology editors such as OBO-Edit [11] and 

Protégé [12] for building ontologies for domains such as taxon anatomies (Nomina 

Anatomica), and building character matrices and generating phylogenetic trees using 

tools like Mesquite [13] and an array of tree reconstruction algorithms based on 

parsimony and maximum likelihood etc. [14, 15]. 

 

 

Figure 1.2: The workflow for systematic biologists starts with a lot of 

imagery and explicit evidence, which remains disconnected from the 

results of the later stages in the workflow. 
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While significant progress has been made in the use of technology in this domain, 

each aspect of the workflow remains disconnected from the rest. To date, the images, 

ontology and comparative studies all remain in isolated repositories or literature text, and 

hence disconnected from each other. Consider the example of NIH designated model 

organism Danio rerio (common name: zebrafish): as a model organism zebrafish has 

been extensively studied. A mass of digital imagery has been produced for zebrafish. An 

authoritative anatomy ontology called Zebrafish Anatomy ontology (ZFA) [9] has been 

created and published. As a model organism, it has also been used in comparative studies 

for building character matrices and generating trees. 

The divide exists due to a lack of consideration for broader issues such as data 

representation, storage, and integration for the overall workflow. Annotations are often 

embedded onto the images. These images form the persistent authoritative definitions of 

character states. Character states are subsequently integer coded and organized into 

character matrices. Tree reconstruction algorithms use these matrices to generate trees 

labeled only with integer coded features. Hence the computed representation loses all the 

biological semantics in the process. In addition, ontologies such as Nomina Anatomica 

are considered a final publication mechanism for the acquired knowledge, which is in 

contrast to computer science or artificial intelligence where ontologies are a means for 

inference and knowledge integration. As a result, the components and results of a study 

are disconnected from the original images and observations, i.e. the evidence for the 

results (Figure 1.2). 

Biomedical ontology building projects are faced with a choice between the 

available ontology languages provided by ontology-based systems Open Biomedical 

Ontologies (OBO) [16] and the Semantic Web [17]. OBO emerged from the Gene 
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Ontology (GO) project [4], and hosts over 100 biomedical ontologies including model 

ontologies such as Zebrafish Anatomy [9], Teleost Anatomy Ontology [10] and Adult 

Mouse Gross Anatomy [18]. The Semantic Web is an evolving extension of the World 

Wide Web based on ontologies. Some important biomedical ontologies such as NCI 

Thesaurus [19] and BioPAX [20] have been modeled using Web Ontology Language 

(OWL), the ontology language for the Semantic Web. The lack of a bridge between the 

two ontology systems has been responsible for preventing biologists working with OBO 

from reusing knowledge from existing ontologies in OWL, and vice versa. 

 

 

Figure 1.3: A meta-model for phylogenetic studies. 

1.2 GOALS AND SCOPE OF RESEARCH 

This dissertation entails a vision where systematic biologists conduct their work, 

find additional data, utilize relevant scientific data and publish results in an integrated 

fashion. We consider ontologies to be a malleable and powerful tool suitable for 

achieving these goals. Furthermore, we believe that this use of ontologies allows 



6 

systematic biologists to infer new knowledge that is contained but not obvious in their 

data. 

 

Maxilla, anterior process, presence: absent (0); present (1) 

Maxilla, maxillary fenestra, shape: circular (0); oval (1) 

Calyx, circumference: 1-2 cm (0); 3-5 cm (1) 

Figure 1.4: Examples of character statements taken from biology literature [21]. 

 

 

Figure 1.5: A taxonomy of character types. 

In this dissertation, we focus on using ontologies for knowledge discovery in 

systematic biology. In order to achieve this goal, we also resolve issues regarding the 

representation and integration of data in this domain. 

Our main contribution is a framework for automatic inference of new Nomina 

Anatomica ontologies based on an existing model organism anatomy and the knowledge 

contained in a phylogenetic study. There are two key aspects to this problem. 

First, in order to perform inference on the data in a phylogenetic study, it needs to 

be represented as a unified knowledgebase, i.e. an ontology. We have created a meta-
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model (see Figure 1.3) for phylogenetic studies that enables us to represent all aspects of 

phylogenetic studies, i.e. anatomical entities, characters, character states etc., as a single 

ontology. Character statements, i.e. characters and character states, are critical concepts 

in this domain, typically expressed in natural language (Figure 1.4). It is critical for a 

representation suitable for knowledge inference to provide means for precisely capturing 

the meaning of each character statement. We realized that character statements can be 

classified into different types. Hence, a novel contribution in this work is a taxonomy of 

character types (Figure 1.5), and their corresponding logical signatures in the ontology. A 

character statement represented in its appropriate signature is well-defined, i.e. no 

information is lost in its transformation to its logical form, and its natural language 

statement may be understood from its ontology representation. 

Second, we have devised an algorithm for inferring a new anatomy ontology by 

applying transformations on a model anatomy ontology. The knowledge in a 

morphological character matrix informs the algorithm of the features of interest, i.e. the 

features that may need to be transformed, and a phylogenetic tree provides the knowledge 

of the exact evolutionary changes and hence the sequence of transformations for the 

algorithm. A fully detailed explanation of this work is present in Chapter 3. 

We have used our inference mechanism on the morphology data curated by the 

biologists on the Cypriniformes Tree of Life (CTOL) project, and created an anatomy 

ontology for Cypriniformes gill and hyoid arches from the model ontology Teleost 

Anatomy Ontology. 

In order to enable biologists to express their data in appropriate ontological form 

for such knowledge inference opportunities, we have created a knowledge acquisition 

tool, Morphster [22]. Our meta-model for phylogenetic studies is the underlying data 
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model for Morphster. A more detailed introduction to the Morphster project is present in 

Chapter 4. Towards the creation of Morphster, we have made the following contributions. 

We have created a formal system for integrating images with ontologies where 

images either serve as exemplars for phylogenetic observations or for capturing 

hypotheses in the workflow of a phylogenetic study (Chapter 5). Our framework for 

image-ontology integration provides opportunities for building workflows that allow 

biologists to build and align their ontologies without the involvement of knowledge 

engineers. It also improves upon the image retrieval capabilities of existing ontology 

based image retrieval systems. 

We have also contributed a methodology and a lossless round-trip mapping for 

OBO ontologies to the Semantic Web [23], bridging the gap between the two ontology 

systems (Chapter 6). We use the organization of the Semantic Web as a guide to study 

and organize OBO, hence making it easy to identify straightforward mappings as well as 

the differences between the two ontology languages. We contributed our methodology 

and the mapping towards the development of the official standard mapping of the Gene 

Ontology project and the standard for biomedical ontologies. Our Java implementation of 

the standard mapping is a part of the open-source Gene Ontology repository and used in 

major ontology tools in this domain. 
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Chapter 2 

  

Background 

2.1 INTRODUCTION TO ONTOLOGIES 

In philosophy, ontology is the study of existence. In knowledge-based systems, it 

is a vocabulary of a set of objects and the describable relationships among them 

[24]. 

One of the definitions of an ontology in computer science is as follows: 

An ontology defines the terms used to describe and represent an 

area of knowledge. Ontologies are used by people, databases, and 

applications that need to share domain information (...). Ontologies 

include computer-usable definitions of basic concepts in the domain 

and the relationships among them (...). They encode knowledge in a 

domain and also knowledge that spans domains. In this way, they 

make that knowledge reusable. [25] 

Ontologies are usually expressed in formal languages that allow detailed and 

accurate descriptions of concepts and relationships. Another definition of ontology states: 

In such an ontology, definitions associate the names of entities in 

the universe of discourse (e.g., classes, relations, functions, or other 

objects) with human-readable text describing what the names are 
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meant to denote, and formal axioms that constrain the interpretation 

and well-formed use of these terms. [24] 

 

 

Figure 2.1: A part of the mouse adult gross anatomy ontology that depicts classes 

and relationships among them. This portion of the ontology describes ear: it is a 

part of the face and the auditory system of mouse, it is also a head organ and a 

sensory organ, and it has 3 parts. 

Figure 2.1 provides an example of a simple ontology. It has been taken from 

Mouse Adult Gross Anatomy ontology [18] and shows classes or terms (ear, face, 

auditory system etc.) in boxes, and their relationships (is_a, part_of etc.) as labeled 

directed edges. 

Ontologies range from light taxonomies and classifications to fully axiomatized 

theories. Recently, ontologies have been adapted in many research and business 

communities as a tool for sharing and expressing domain knowledge. Among scientific 

domains, ontologies are extensively used in areas like artificial intelligence [5, 6], the 

Semantic Web [25, 26] and biology [4, 9, 27] as a form of knowledge representation in 

intelligent systems. 
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Semantic Web Technology 

The Semantic Web is an ontology-based extension of the World Wide Web. 

While the current Web focuses on the interchange of documents, the Semantic Web 

vision aims to create a universal medium for integration of data. In order to achieve this 

goal, the Semantic Web provides expressive languages for recording information about 

the data, and their relationships. This allows humans and machines to find, share and 

integrate information easily. 

 

 

Figure 2.2: The Semantic Web layer cake that lists and presents the organization of 

the technologies provided by the Semantic Web. 

Ontologies allow specification of semantics of data in a way that is usable by Web 

applications and intelligent software agents. Therefore, ontologies can be used to improve 

existing Web applications and to provide new ways of leveraging the content available on 

the Web [17]. 
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The key technologies in the Semantic Web infrastructure (see Figure 2.2) [28] 

are: 

• Extensible Markup Language (XML) [29] is a language that provides arbitrary 

structure to documents by allowing user-defined markup tags. 

• Resource Description Framework (RDF) [30] is used to express meaning of 

data using triples. A triple is a binary predicate and defines a relationship 

between two entities. RDF triples can be expressed using XML. 

• Universal Resource Identifiers (URIs) [31] identify entities, either classes or 

relationship types, present on the Semantic Web. This means that each entity 

gets a globally unique identifier that can be accessed by everyone on the Web. 

• RDF Schema (RDF-S) [32] and Web Ontology Language (OWL) [33, 34] are 

used for describing ontologies. RDF Schema allows description of valid 

classes and relationship types, and some properties like subclasses, domains, 

ranges etc. OWL provides constructs for describing richer content and 

provides ontology and concept level annotations, set combinations, 

equivalences, cardinalities, deprecations etc. 

• Languages like SPARQL are available for querying RDF-based ontologies 

[35]. 

• Other important components in Semantic Web vision are rule languages and 

inference methods [36, 37]. 

Ontologies in Biomedicine 

Ontologies are very important to scientific research and discovery in biomedicine. 

Over 200 biomedical ontologies are available on the NCBO BioPortal [38]. Typically, 

these ontologies are used either for publishing results or as controlled vocabularies of 
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standard terms for use across biological studies. In particular, an early project on making 

a controlled vocabulary was EcoCyc [39, 40], with the aim of providing a comprehensive 

encyclopedia of Escherichia coli biology. 

Open Biomedical Ontologies (OBO) Foundry [16] is an effort under the US 

National Center for Biomedical Ontology (NCBO) to create and share ontologies for use 

across different biomedical domains. OBO has its own ontology language that supports 

many important ontologies including the Gene Ontology [4] and anatomies of model 

organisms such as zebrafish [9] and mouse [18]. Most AToL funded projects investigate 

evolutionary relationships among a group of related organisms. Building ontologies is 

often central to these projects [9, 10, 41]. 

An ontology in the OBO format consists of two parts; the first part is the header 

that contains tag-value pairs describing the ontology, and the second part contains the 

domain knowledge described using term and typedef (more commonly known as a 

relationship type) stanzas [42]. A stanza may define and describe a term, a typedef or an 

instance using a collection of tag-value pairs. The terms and typedefs defined in an OBO 

ontology are assigned local identifiers and namespaces. Relationships between different 

terms are expressed using the ‘relationship’ tag. 

The OBO format is human friendly. Therefore, it is easy for domain experts to 

understand it and express their knowledge in this language. Useful GUI-based tools like 

OBO-Edit [11] are available for building ontologies in the OBO format. 

As OBO continues to evolve as a language and hosted content, there is emphasis 

on formalizing the syntax and semantics of OBO format. Also, given the ongoing 

adoption of ontologies by the biomedical community and emerging new ontology 

building projects, OBO Foundry has developed standard ontologies such as the Relations 
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Ontology [27], which provide consistent and unambiguous formal definitions of the 

typedefs used in such ontologies. While this effort is designed to assist developers and 

users in avoiding errors in ontology building, it also promises to simplify the process of 

ontology alignment in the future for the OBO community. 

Ontology Engineering and Tools 

Ontology engineering is a hard problem that requires interaction between subject 

matter experts and knowledge engineers [7]. Subject matter experts are the primary 

source of knowledge and knowledge engineers are trained in encoding the knowledge 

into a formal ontological form. Hence, knowledge extracted from the subject matter 

experts is encoded into ontologies by knowledge engineers. This two-step process of 

ontology engineering is expensive in terms of time and efficiency, and sometimes 

knowledge engineers may not fully understand the knowledge that can introduce errors in 

the knowledge base. 

Currently, common ontology editing tools work by providing a tree-like view of 

the ontology. A knowledge engineer editing the ontology locates appropriate parts of the 

ontology by navigating through its tree representation. In such a system, fundamental 

ontology editing tasks become cumbersome and prone to errors. For example, in order to 

add a new concept to the ontology, a class needs to be created independent of other parts 

of the ontology, and then connected to various concepts in the ontology using predefined 

or user defined relationship types. As the ontology grows, it becomes increasingly 

difficult to keep track of the progress or to find out if an error has occurred. 

Some ontology editing tools that are in common use today are the following: 

• OBO-Edit [11] is an open source ontology editor written in Java, developed 

by the Berkeley Bioinformatics and Ontologies Project, and is funded by the 
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Gene Ontology Consortium. It has been optimized for OBO ontology 

language. It features a tree-based ontology editing interface, a graph visualizer 

and search capabilities. 

• The Protégé [12] system is an environment for ontology development capable 

of running on multiple platforms. It supports customized user-interface 

extensions through plug-ins. Protégé supports Semantic Web technologies like 

OWL to build ontologies that can be made accessible to the Web. Protégé 

implements a rich set of knowledge-modeling structures that support 

visualization and editing of ontologies. 

Ontology Matching or Alignment 

Ontology matching or ontology alignment is the process of determining 

correspondences between concepts across ontologies [43, 44]. Historically, the need for 

ontology alignment rose out of the need to integrate independently developed 

heterogeneous databases [45, 46]. With the advancement in ontology technology in the 

form of the Semantic Web and OBO, and growing ontology content, aligning ontologies 

is key to interoperability among heterogeneous resources. 

2.2 MORPHOLOGY-BASED PHYLOGENETIC STUDIES 

Definitions 

• Taxon (pl. taxa): A taxon may be a single organism or a group of taxa that is 

considered a unit by a systematic biologist. A taxon may or may not be 

named. Usually, it is a group of organisms that are inferred to be 

phylogenetically related and have characteristics in common. 
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Figure 2.3: Examples of a data matrix based on morphological 

characters, and a phylogenetic tree obtained from that matrix. Example 

data courtesy evolution.berkeley.edu 

• Model Organism: A model organism is one that is extensively studied and 

considered a representative for a class of organisms. For example, mouse and 

zebrafish are model vertebrates, fruit fly is a model invertebrate, rice is a 
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model plant etc. Newly discovered organisms are often studied based on a 

comparison with a model organism. 

• Homology: Homology refers to a similarity among characteristics of taxa that 

is due to their shared ancestry. For instance, anatomical structures that 

perform the same function in different taxa and evolved from the same 

structure in some ancestor taxon are homologous. Phylogenetic studies often 

focus on identifying homologies among taxa in order to estimate better 

evolutionary relationships. 

• Convergent Evolution and Homoplasy: Convergent evolution refers to the 

acquisition of similar biological structures in unrelated lineages (in contrast to 

homology, which has a common origin). Similarity in structures that evolve 

through convergent evolution is called homoplasy. 

• Character and Character State: A character is an observable trait or feature 

that may be of interest to a systematic biologist. A character state is a specific 

value taken by a character in a specific taxon. For example, a character ‘skin 

color’ may have states ‘black’ and ‘brown’ etc. Systematic biologists often 

carefully choose characters that are potential indicators of homologies among 

the taxa under study, in order to build more accurate evolutionary lineages. 

• Data Matrix: A data matrix presents character state assignments to all the 

taxa in a comparative study (see example in Figure 2.3). Each row usually 

represents a taxon, and each column represents a character. A cell in the 

matrix specifies the state assignment for a specific character to a specific 

taxon. The row for each taxon represents its state vector. The matrix is also 

called a morphological character matrix or simply character matrix. 
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• Phylogenetic Tree: A phylogenetic tree (or simply phylogeny, tree) 

represents evolutionary relationships among the group of taxa contained in the 

tree. Terminal nodes of such a tree usually represent extant organisms, 

whereas internal nodes represent ancestral taxa. The ancestral nodes in the 

phylogeny may be hypothetical. Figure 2.3 shows an example of a 

phylogenetic tree. 

• Tree Estimation: Phylogenetic trees represent some form of hierarchical 

clustering over the character states of taxa in a data matrix. Various 

techniques for clustering the character states have been developed for 

estimation of phylogenetic trees. Common approaches are based on maximum 

parsimony, maximum likelihood and Bayesian methods [14, 15], which are 

applied to the state vectors in the data matrix. 

• Internally Labeled Phylogeny (ILP): Even though the internal nodes of a 

tree may be hypothetical, some tree algorithms also assign taxa to internal 

(ancestral) nodes by inferring their state vectors when estimating the tree [47]. 

A phylogenetic tree which has all terminal and ancestral nodes labeled with 

state vectors is called an internally labeled phylogeny (ILP) [48]. 

Kinds of Phylogenetic Studies 

There are two kinds of studies in morphology-based phylogenetics: 

• Single taxon studies: As the name suggests, these studies focus on an 

individual taxon. Such studies produce annotated imagery as well as Nomina 

Anatomica that explains the anatomy of the taxon. Often, the Nomina 

Anatomica of a model organism is used to guide the development of a new 

Nomina Anatomica. 
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• Multi-taxon studies: These studies compare different taxa with the help of 

images as well as characters and character states. These character states are 

used to populate data matrices that may be input to a phylogenetic tree 

creation algorithm. 

2.3 IMAGES IN LEARNING AND SCIENCE 

Images have been an important instrument for human development and learning 

for a long time. 

Use of representational pictures is supported by the research and theory on the 

potency of visual memory and the importance of providing examples when teaching 

concepts [49]. 

In 1994, elaborate cave art was discovered in Chauvet Cave, in 

France, art that is thought to be 35,000 years old. Far from being 

primitive, these animal paintings, engravings, and drawings were 

skillfully executed. As this find illustrates, from very early on people 

have created pictures. Perhaps these early paintings served as 

adjunct aids to storytellers, playing a role in humankind’s 

development. Similarly, illustrations have been a part of our more 

recent development via the picture storybooks of our childhoods. 

[50] 
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Figure 2.4: Kinds of images used in natural sciences such as meteorology and 

astronomy. The image on the left is an infrared satellite image taken by National 

Weather Service for weather forecast. The image on the right is a NASA 

photograph from its Mars mission that suggests presence of water on Mars. 

In scientific studies, images are often treated as a definitive basis for a concept or 

an observation. In particular, such use of images is anticipated in natural sciences where 

the documentation of scientific observations is becoming increasingly reliant on digital 

imagery. For instance, astronomers rarely observe very large objects directly through 

telescopes, preferring imagery from sensitive electronic sensors than relying on the 

human eye [51]. Such use of image is common in other sciences like systematic biology 

[52, 53, 54], radiology [55], and Geographical Information Systems [56] etc. as well. 

Figure 2.4 shows examples of images used in meteorology and astronomy. 

Meteorologists often look at images (like Figure 2.4a) to understand and predict weather 

patterns. Similarly, Figure 2.4b is an actual image from NASA’s Mars mission [51], with 

labels that show how these images are used to build hypothesis such as: “Is there water 

on Mars?” 
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Chapter 3 

  

Automatic Creation of New Anatomy Ontologies 

Building Nomina Anatomica or anatomy ontology for a taxon is important to 

many AToL projects. Usually, this is a manual process that involves both subject matter 

experts and knowledge engineers. Given the scale of AToL, this is not a feasible 

methodology for building anatomy ontologies. We anticipated that the use of knowledge 

from model organisms and existing comparative phylogenetic studies may provide a way 

of automating the process of creating new anatomy ontologies. 

Automating the creation of an anatomy ontology is a primary contribution of this 

dissertation. We have identified that they key problem to solve is to understand 

morphological character statements and representing them appropriately for knowledge 

inference. In this regard, we have created a taxonomy of character types and defined 

ontological signatures (or frames) for each type that allows us to precisely capture a 

natural language character statement in a logical form. We have developed an algorithm 

that uses the anatomy ontology of a designated model organism, a morphological 

character matrix and a phylogenetic tree to generate anatomy ontologies for the other taxa 

in the tree. In this chapter we present our work on this problem. 
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3.1 UNDERSTANDING CHARACTERS AND CHARACTER STATES 

The first step towards solving this problem is based on clearly understanding and 

unambiguously specifying different kinds and classes of morphological characters and 

their states. Paul Sereno’s work on logical basis for characters [21] and the EQ model of 

character matrices by Phenoscape group [57] are the two preceding efforts. 

 

Character statement: Maxilla, anterior process, length relative to posterior process: 
shorter (0); longer (1) 
 
Logical components: L2 = maxilla, L1 = anterior process, V = length, q = relative to 
the posterior process, v0 = shorter, v1 = longer 

Figure 3.1: An example of a character statement and its logical components. 

Sereno described morphological characters as statements with logical patterns 

[21]. Per Sereno, a character is an independent variable and character states are mutually 

exclusive conditions of a character. Each character statement is composed of up to four 

kinds of logical components: locators Ln (representing morphological structures), 

variable V, variable qualifier q, and character states vn (mutually exclusive values of the 

variable). An example of a character statement and its logical pattern is shown in Figure 

3.1. 

 

Maxilla, anterior process, presence: absent (0); present (1) Neomorphic 

Maxilla, maxillary fenestra, shape: circular (0); oval (1) Transformational 

Calyx, circumference: 1-2 cm (0); 3-5 cm (1) Transformational 

Figure 3.2: Kinds of character statements as identified by Sereno [21]. 

Sereno also identified two fundamental kinds of characters: neomorphic and 

transformational. A neomorphic character is about de novo appearance of a 
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morphological structure or its loss without trace. A transformational character, on the 

other hand, is about a transformation of a morphological structure from one state to 

another comparable state. Examples of each kind of character are given in Figure 3.2. 

 

Maxilla, anterior process, presence: absent (0); present (1) 
 EQ statement 1: E1 = maxilla, E2 = anterior process, Q = absent 
 EQ statement 2: E1 = maxilla, E2 = anterior process, Q = present 

Maxilla, maxillary fenestra, shape: circular (0); oval (1) 
 EQ statement 1: E1 = maxilla, E2 = maxillary fenestra, Q = circular 
 EQ statement 2: E1 = maxilla, E2 = maxillary fenestra, Q = oval 

Figure 3.3: Examples of EQ statements for some characters. 

The EQ model for character matrices [57] describes character states (or 

phenotypes) by identifying the morphological entities (E) and qualities or adjectives (Q) 

involved in a character statement. Under the EQ model each character state is translated 

into an EQ statement, composed of Es and Qs. Since a character statement lists multiple 

possible character states, each character statement produces multiple EQ statements. 

Compared to Sereno’s logical components, the EQ model has a simpler pattern 

for character states: only En and Qn. However, the inability to capture the missing 

components, i.e. the character (or variable) and qualifier, is a shortcoming that makes the 

EQ statements of more complex characters (see Figure 3.1), incomplete and therefore 

ambiguous. In other words, the EQ statements produced by two different characters will 

be the same if they involve the same entities and qualities, irrespective of any qualifier on 

the variable involved. 

A strength of the EQ model is that it supports connections to ontologies to 

disambiguate the given entities and qualities. The entities (Es) in an EQ statement come 

from the anatomy ontologies of the relevant taxa. The qualities (Qs) are obtained from a 
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standard ontology of phenotypic qualities (adjectives used in morphological characters 

and character states) called Phenotypic Quality Ontology (PATO) [58]. 

 

 

Figure 3.4: Phylogenetic trees depicting changes among taxa: (a) shows a 

(hypothetical) phylogenetic tree containing zebrafish (an NIH model organism) and 

other taxa; (b) shows the edges on a phylogeny as transformation functions fi. 

3.2 INFERENCE BASED ON PHYLOGENY TRAVERSAL 

The fundamental idea behind our algorithm is as follows: 

A Nomina Anatomica describes a particular taxon. A phylogenetic tree captures 

the evolutionary relationships among a group of taxa, and is developed based on the 

character state assignments for each taxon in the phylogeny. Each edge in the phylogeny 

represents some evolutionary change between the ancestor and descendent taxa, as 

evident from the difference between the corresponding state vectors. Starting from the 

existing anatomy ontology of a particular taxon (perhaps a model organism), applying the 

changes in state vectors as transformations to the ontology will produce the anatomy 

ontology for a different taxon. 

Hence, starting from the anatomy ontology for some taxon (e.g. zebrafish 

ontology called ZFA [9]), and a phylogeny that contains that taxon (Figure 3.4a), we can 

produce anatomy ontologies for all the other terminal or ancestral nodes in the tree (e.g. 
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goldfish, teleost etc.) by traversing the tree and applying appropriate transforms to the 

ontology at each step. 

 

Let: 
 

OM   = ontology for M 

OT   = ontology for T 

Path   = A queue of steps between M to T in the tree. 

N   = No. of characters; or length of each character state vector. 

Characters = The vector of characters. 

States(X)  = The character state vector of taxon X. 

 
Algorithm: 
 

O := OM 

 

While Path not empty: 

  Pop Step <X, Y> from Path 

 
  Comment: O is the ontology for X in this step 

 

  For each n from 1 to N: 

    If States(X)[n] <> States(Y)[n]: 

      Apply transformation for Character[n] on O 

 
  Comment: O is now the ontology for Y in this step 

 

OT := O 

Figure 3.5: Algorithm for transformation the ontology for source taxon M to the 

ontology for target taxon T. 

More formally, given the phylogeny shown in Figure 3.4b, if M is the taxon with 

an existing ontology O(M), and T is the target taxon for the new ontology O(T), we can 

obtain O(T) in a step-wise fashion by applying transformations fi at each tree edge as 

follows: 

���� = �����	�
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���� = �������
 = �� �����	�
� 

���� = �������
 = �� ��� �����	�
�� 

���� = �������
 = �� ��� ��� �����	�
��� 

An outline of our algorithm is presented in Figure 3.5. 

From Zebrafish to Milkfish Ontology 

Consider the example presented in Figure 3.6. A phylogenetic tree contains 

terminal taxa zebrafish and milkfish, and an ancestral taxon node A. We are also given the 

anatomy ontology for zebrafish, and a set of character statements. The character state 

assignments for each terminal and ancestral taxon are also provided as vectors (s1, s2) in 

the tree, where s1 is the state for character 1 and s2 is the state for character 2. The goal is 

to obtain the ontology for milkfish. 

 

 

Figure 3.6: Sample input to the ontology generation algorithm: zebrafish anatomy 

(ZFA) ontology, a set of character statements, and a synthetic phylogenetic tree 

containing zebrafish and other taxa along with their character state assignments. 

Since the path from zebrafish to milkfish in the phylogenetic tree contains two 

steps (zebrafish to node A, node A to milkfish), two sets of transformations need to be 
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applied to the zebrafish ontology, based on the differences in the character state vectors 

of the taxa involved, to obtain the milkfish ontology (Figure 3.7): 

• In the first step, the zebrafish ontology is transformed to the node A ontology. 

According to the character state vectors, the difference between the two taxa 

is based on the state of character 2 changing from 3 to 4. In other words, the 

number of b. rays has increased from 3 to 4. Adding another b. ray, i.e. b. ray 

4, to the ontology gives the ontology for node A. 

• In the second step, the node A ontology is transformed to the milkfish 

ontology. Based on the change of state of character 1 from present to absent, 

the levator process in the epi. 4 bone is no longer present. Removing the 

levator process and its relationship with epi. 4 bone produces the milkfish 

ontology. 

Note that in this example, each step involved changing the character state for only 

a single character. In reality, successive steps may involve a large number of character 

state changes. Therefore at each step, a set of transformations may need to take place to 

get the new ontology, each individual transformation based on understanding the 

meaning of the corresponding character statement. 

3.3 A SOLUTION FOR ONTOLOGY GENERATION 

The solution to this problem is based on treating the components of phylogenetic 

studies, in particular the character statements and phylogenetic trees, as a single ontology 

based on our meta-model (see Figure 1.3). The following sub-problems were solved in 

order to develop the algorithm for generating new anatomy ontologies: 
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Figure 3.7: Stepwise generation of ontologies to get the target ontology. 

Transformations, based on character state changes, take place at each step. 

1. Phylogenetic Tree as Ontology: As described in the earlier example, our 

algorithm is based on traversing a phylogenetic tree. We represent the tree in 

an ontological form in order to support connections between the tree and the 

character data. It also allows us to provide logical definitions of some 

important concepts in phylogenetics. 

2. Characters in Ontology: Generating new anatomy ontologies requires a 

detailed treatment of character statements as ontological concepts. This is 

necessary in order to represent different kinds of characters in an 
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unambiguous form. We created a taxonomy of character types for this 

purpose. Each type of character in the taxonomy has a unique signature that 

enables its representation in an ontology. 

3. Transformations on Ontology: A critical aspect of our solution is to perform 

appropriate transformations on the ontologies based on understanding the 

character. After distinguishing between different kinds of characters, we 

identified and implemented transformation rules for each kind. These 

transformations rules fire on changes in character state assignments. The 

effects of these rules include adding new concepts, removing existing 

concepts, or modifying existing concepts and/or their relationships. 

In the following sections of this chapter, we provide detailed explanations of our 

work on these problems. 

3.4 PHYLOGENETIC TREE AS ONTOLOGY 

A phylogenetic tree represents evolutionary relationships among taxa, i.e., it tells 

us the ancestor of each taxon in the tree (except for the root). Our meta-model enables us 

to capture phylogenetic trees as part of the ontology simply by a single association 

“parent of” that links a taxon to its direct descendants (see Figure 1.3). 

Figure 3.8 shows the ontological representation of a phylogenetic tree. Each 

rectangle in the figure connects to its corresponding matrix cells (and hence character 

states) and specimens per the meta-model. Our algorithm for automatically creation 

ontologies works by traversing the “parent of” relationships among the taxa. 
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Figure 3.8: Representation of a phylogenetic tree (a) as a part of the ontology (b) 

where each rectangle represents a taxon, and each edge is “is ancestor of”. 

In addition, using this representation of the tree, formal definitions of some 

important concepts in phylogenetics can be specified. Dictionary definitions (taken from 

a commonly used source cited at the end of the definition), and formal definitions of such 

concepts are provided below. In these definitions, T is the set of all taxa in a phylogenetic 

tree of a phylogenetic study and CSt is the set of all character states in the given character 

matrix. For first order logic representation, let ������������, �� be reflexive and mean 

that taxon A is “parent of” taxon B. Also, since each taxon connects to its character states, 

let  ��!������, !� mean that taxon A exhibits character state S. 

• Homology: A character state cs in different taxa, say t and u, is considered a 

homology if it is similar because it was inherited from a common ancestor that 

also had that feature [59]. 

 

 "#"$"%&�'�, �, (� ≡ '� ∈ �!� ∧ �, ( ∈ � 

∧  ��!������, '�� ∧  ��!�����(, '�� ∧ ∃� ∈ � 

�������������, �� ∧ ������������, (� ∧  ��!������, '��
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• Homoplasy: A character state cs in different taxa t and u that has separate 

evolutionary origins, but is superficially similar because it evolved to serve 

the same function is called homoplasy or analogy. These are the result of 

convergent evolution [59]. 

 "#"-$��&�'�, �, (� ≡ '� ∈ �!� ∧ �, ( ∈ � 

∧  ��!������, '�� ∧  ��!�����(, '�� ∧ ¬ "#"$"%&�'�, �, (� 

• Plesiomorphy: Same as primitive trait, i.e. a feature cs that is present in the 

common ancestor of a group (or clade) g [60]. 

�$��/"#"�-ℎ&�'�, %� ≡ '� ∈ �!� ∧ % ⊆ � ∧  ��!�����#���%�, '�� 

• Symplesiomorphy: The possession of a character state cs that is primitive 

(plesiomorphic) and shared between two or more taxa [61]. 

!&#-$��/"#"�-ℎ&�'�, %� ≡ �$��/"#"�-ℎ&�'�, %� 

∧ ∃�, ( ∈ %�� ≠ ( ∧  ��!������, '�� ∧  ��!�����(, '��
 

• Apomorphy: An evolutionary trait cs that is unique to a particular taxon t and 

its descendants and which can be used as a defining character for a species or 

group in phylogenetic terms [62]. 

�-"�#"-ℎ&�'�, �� ≡ '� ∈ �!� ∧ � ∈ � 

∧  ��!������, '�� ∧ ∀( ∈ �� ��!�����(, '�� → ������������, (�� 

• Synapomorphy: An apomorphy that is shared by two or more taxa is termed 

a synapomorphy [62]. 

!&��-"#"�-ℎ&�'�, �� ≡ �-"#"�-ℎ&�'�, �� ∧ ∃(, 5 ∈ � 

�( ≠ 5 ∧ ������������, (� ∧ ������������, 5�
∧  ��!�����(, '�� ∧  ��!�����5, '�� � 
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3.5 CHARACTERS IN ONTOLOGY 

Here we provide a detailed treatment of character statements, i.e. characters and 

character states, as ontological concepts. We have based our work on Paul Sereno's 

logical basis for characters [21] and the EQ model for character states [57] discussed 

earlier. 

 

 

Figure 3.9: A taxonomy of character types. 

A Taxonomy of Character Types 

There are two fundamental types of characters: neomorphic and transformational. 

Neomorphic characters are composed only of locators and refer to their absence or 

presence. These locators are anatomical entities, and if derived from an anatomy 

ontology, are the same as an entity (E) in the EQ model. Transformational character 

statements, on the other hand, may take various forms within the logical pattern described 

by Sereno (see Figure 3.1), depending upon the meaning of the character statement and 

the kind of the variable involved. We have identified and named some of these particular 

forms, and have organized them into a taxonomy of character types (Figure 3.9). This is 
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not an exhaustive set of character types. We have only considered the types that we have 

identified as relevant to anatomy ontology transformations. 

• Neomorphic Character (NE): A neomorphic character is about the absence 

or presence of an entity. An example of a neomorphic character is “Manual 

digit I: present (0); absent (1)”, character statement 16 in [21]. A neomorphic 

character statement consists of a locator, which is an entity, and specific 

character states: absent and present. 

• Transformational Character (TR): As mentioned earlier, a transformational 

character is about transformations of morphological structures between 

comparable states. All the remaining types of characters in our taxonomy are 

transformational. 

• Classifying Character (CL): We define a classifying character as one that 

applies simple adjectives (qualities) to an entity. For example, character 51 in 

[63] is a classifying character: “Lateral eyes: no (0); simple (1); compound 

(2); stalked-compound (3)”. More examples are character statements 7 and 8 

in [21]. 

• Meristic Character (ME): A meristic character is about the count of a 

particular entity. For example, character 52 in [63] is a meristic character: 

“Median eyes: none (0), four (1), two (2)”. Another example is character 

statement 15 in [21]. 

• Relative Character (RV): Relative character is a subcategory of 

transformational characters which deals with relationships among multiple 

entities. The remaining types of characters fall into this category. 
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• Propositional Character (PR): A propositional character concerns the 

existence of a specified relationship between two entities. There are only two 

possible character states: true or false, depending on whether the relationship 

exists or not. An example for this type of character may be: “Seed is enclosed 

in fruit: true (0), false (1)”. 

• Relational Character (RE): A relational character concerns the existence of 

a relationship of an entity with multiple alternative entities. The character 

states for such a character are entities. For example, “Location of seed: fruit 

(0), cone (1)” is a relational character. 

• Compositional Character (CO): A compositional character concerns 

expressing the parts of a particular entity. The character states in this case are 

sets of entities. An example is given in Table 7 of [21]: “Medial distal carpal, 

composition: distal carpal 1 (0); distal carpals 1 + 2 (1)”. 

• Sequential Character (SE): A sequential character specifies the order of 

occurrence of entities, which may be helpful in understanding their 

organization. The character states for such a character are sequences of 

entities. For example, character 55 in [63] “Ordering of fate map tissues: 

anterior – stomodeum – midgut – mesoderm – posterior (0), anterior – midgut 

– mesoderm – stomodeum – posterior (1)” is a sequence character. In our 

research we have found that this type of character occurs rarely in 

phylogenetic studies. While we have included it in the taxonomy of character 

types, it does not appear further in this work. 
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Table 3.1: Forms and frames of character types. 

Type Grammar Form Example Frame/Signature 
    

Neomorphic 

(NE) 

E1 [R] E2, Q: 

absent (S0); 

present (S1) 

Anterior process [part 

of] maxilla, presence: 

absent (0); present (1) 

E1 = anterior process 

R = part of 

E2 = maxilla 

Q = presence 

S0 = absent 

S1 = present 
    

Meristic (ME) E Q: X0 (S0); 

X1 (S1) ... Xn (Sn) 

Manual digits, 

number: 

5 (0); 4 (1) 

E = manual digit 

Q = number/count 

S0/X0 = 5 

S1/X1 = 4 
    

Classifying 

(CL) 

E Q: Q0 (S0); 

Q1 (S1) ... Qn (Sn) 

Dorsal fin, location: 

anterior (0); posterior 

(1) 

E = dorsal fin 

Q = location 

S0/Q0 = anterior 

S1/Q1 = posterior 
    

Propositional 

(PR) 

E1 R E2: 

true (S0); false 

(S1) 

Seed enclosed in fruit: 

true (0); false (1) 

E1 = seed 

R = enclosed in 

E2 = fruit 

S0 = true 

S1 = false 
    

Relational 

(RE) 

E R: E0 (S0); 

E1 (S1) ... En (Sn) 

Seed, part of: 

fruit (0); cone (1) 

E = seed 

R = part of 

S0/E0 = fruit 

S1/E1 = cone 
    

Compositional 

(CO) 

E Q: 

{E1 ... Ei} (S0); ... 

{Ej ... En} (Sn) 

Medial distal carpal 

composition: 

distal carpal 1 (0); 

distal carpals 1 + 2 (1) 

E = medial distal carpal 

Q = composition 

S0 = {distal carpal 1} 

S1 = {distal carpal 1, 

distal carpal 2} 
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Table 3.2: Examples of transformations based on character types. 

Type Rule (fires when state changes) Illustration (difference between two possible states) 

NE Absent to present: add E1 and its 

relationship R with E2 

Present to absent: delete E1, and its 

relationship R with E2  
   

ME S0 to S1: 

If X0>X1, delete X0-X1 children of E 

If X1>X0, add X1-X0 children for E 

 
   

CL S0 to S1: delete child of E with 

quality Q0 and add a new child of E 

with quality Q1 
 

   

PR False to true: add relationship R 

between E1 and E2 

True to false: delete relationship R 

between E1 and E2  
   

RE S0 to S1: delete relationship R 

between E and E0, and add 

relationship R between E and E1 
 

   

CO S0 to S1: delete all parts of E that are 

elements of S0, and add all elements 

of S1 are parts of E 
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Signatures of Character Types 

As mentioned earlier, each character type has its particular logical pattern, 

signature or frame. In order to fully capture a character statement as an ontological 

concept, it is necessary to identify its type and to populate its frame with the necessary 

elements. 

In Table 3.1, we list the natural forms, examples that fit the corresponding forms 

and populated frames of the given character types. Our notation for forms and frames is 

based on a combination of Sereno’s logic and EQ statements. Each E/Ei is an entity from 

an anatomy ontology, and is the same as a locator in Sereno’s logic. Each Q/Qi is a 

quality or adjective derived from PATO [58]. This includes the variable element in 

Sereno’s logic, and the possible character states of some character types. Each R/Ri 

belongs to the official OBO Relations Ontology (RO) [27]. OBO Relations Ontology 

contains a set of relationship types for use across biomedical ontologies. We have 

restricted our scope for relationship types to this ontology. 

Now that we have explained how to represent character statements in ontologies, 

we move on the transformation rules required to generate new ontologies. 

3.6 TRANSFORMATIONS ON ONTOLOGY 

When going from the Nomina Anatomica of one taxon to some other taxon, as 

explained earlier, we consider the differences between the character states of each taxon. 

Once a difference is identified, the next step is to make appropriate transformations on 

the source ontology based on the meaning of that particular change in the character state. 

The meaning is clear once the corresponding character statement is presented to the 

system in its frame representation. Based on the type of the character and the fields in the 

frame, we are able to make the necessary transformations on the source ontology to 
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produce the target ontology. These transformations are a result of firing appropriate 

transformation rules. 

Table 3.2 shows informal descriptions of the rules for each character type, and 

also provides illustrations for changes in the ontology when the character state changes 

from one value to the other (based on the examples provided in Table 3.1). Each rule 

description in the table starts with an italicized label that states the change in the 

character state. Some character types have multiple kinds of changes in character states, 

and hence require multiple transformation rules. 

Basic Definitions for Transformations 

We have identified the transformation rules based on these six character types. 

We present these rules using some basic definitions provided in Table 3.3. 

 

Table 3.3: Definitions of predicates and functions involved in formal rules. 

Predicate/Function Definition 
  

Predicate  ��&-��', �� Type of character c is t, where � ∈ {78, 	8, �9, �:, :8, ��} �ℎ��%��', �, �� Character c changed state from s to t 

  

Function  #���%� Returns the most recent ancestor of the set g of taxa 
  

Each transformation rule has two parts, separated by a double headed arrow: 

< �"�=/�/"�� >↠< �'�/"�� > 

i.e., if a set of conditions is satisfied, perform the given set of actions. 

A transformation rule can perform two kinds of actions: ADD and RETRACT. The 

ADD action adds an entity or a relationship between two entities to the knowledgebase, 

and the RETRACT action removes an entity or a relationship from the knowledgebase. 

RETRACT on an entity removes all the relationships between that entity and other 
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entities. Some notational conventions regarding the use of actions with these objects are 

presented in Table 3.4. 

 

Table 3.4: Notational conventions regarding the use of actions and objects. 

Expression Explanation 
  8 @→ A A relationship of type R between entities E and F. 

�BB�8� Add entity E. 

�BB 8 @→ A� Add relationship of type R between E and F. 

:8�:�����, C� If condition n holds, RETRACT x. 

:8�:��� 8 @→ A, D� Remove G if there is a relationship of type R between E and F. 

  

Transformation Rules 

Here is the listing of the transformation rules in our system. We discuss the 

implementation of these rules in the next section. Each rule assumes the existence of a 

character c: 

• Rule NE-1: This rule is activated when a neomorphic character changes state 

from absent to present. 

��&-��', 78� ∧ �ℎ��%��', �E����, -������� ↠ 
�BB�'. 8�� , �BB '. 8� H.@IJ '. 8�� 

• Rule NE-2: This rule is activated when a neomorphic character changes state 

from present to absent. 

��&-��', 78� ∧ �ℎ��%��', -������, �E����� ↠ :8�:������(�, '. 8��  
• Rule ME-1: This rule is activated when a meristic character changes state 

from X to Y, 0<X<Y. 
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��&-��', 	8� ∧ �ℎ��%��', K, L� ∧ K < L ↠ 
∀�, �K < � ≤ L� ��BB��N� , �BB �N OP QIJ '. 8�� 

• Rule ME-2: This rule is activated when a meristic character changes state 

from X to Y, 0<Y<X. 

��&-��', 	8� ∧ �ℎ��%��', K, L� ∧ L < K ↠ 
∀�, �L < � ≤ K� �:8�:��� �N OP QIJ '. 8, �N�� 

• Rule CL-1: This rule is activated when a classifying character changes state 

from V to W. 

��&-��', �9� ∧ �ℎ��%��', R, S� ↠ 
:8�:��� �T OP QIJ '. 8, �T� , �BB��U�, �BB �U OP QIJ '. 8�  

• Rule PR-1: This rule is activated when a propositional character changes state 

from false to true. 

��&-��', �:� ∧ �ℎ��%��', ��$��, ��(�� ↠ �BB '. 8� H.@IJ '. 8�� 

• Rule PR-2: This rule is activated when a propositional character changes state 

from true to false. 

��&-��', �:� ∧ �ℎ��%��', ��(�, ��$��� ↠ :8�:��� ��(�, '. 8� H.@IJ '. 8�� 

• Rule RE-1: This rule is activated when a relational character changes state 

from G to H. 

��&-��', :8� ∧ �ℎ��%��', D,  � ↠ 
:8�:��� ��(�, '. 8 H.@IJ D� , �BB '. 8 H.@IJ  � 
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• Rule CO-1: This rule is activated when a compositional character changes 

state from Gs to Hs. 

��&-��', ��� ∧ �ℎ��%��', D�,  �� ↠ 
∀D ∈ D� �:8�:��� ��(�, G WQXY Z[I\\\\J '. 8��, 
∀ ∈  � ��BB  WQXY Z[I\\\\J '. 8�� 

In some cases, the naming/identifier conventions for the objects are not very 

obvious in the formal representation. These can be clarified using the examples given in 

Table 3.2 or by looking at the implemented source code listing provided as Appendix A. 

3.7 IMPLEMENTATION 

The transformation rules are implemented in Jess scripting language run by the 

Jess Rule Engine [64] for the Java Platform. For the transformation rules listed in formal 

notation earlier, we have a total of 16 rules encoded in Jess. The main body of the 

algorithm and the data model it operates upon is implemented as a Java program. 

 

(defrule rule-03-effect-of-neomorphic-character 

   "State change from present to absent in a neomorphic character" 

   (Params (target ?tgt) (baseUri ?baseuri)) 

   (CharNE (id ?chid) (entity ?nee)) 

   (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

   (State (id ?fsid) (name "present")) 

   (State (id ?tsid) (name "absent")) 

   ?theentity <- (NAEntity (id ?eid)) 

   (test (eq (str-cat ?baseuri ?tgt "/" ?nee) ?eid)) 

=> 

   (retract ?theentity) 

   (printout t "*** NE :: (03) - [E:" ?nee "] ==> " ?chid crlf)) 

Figure 3.10: A transformation rule (for neomorphic character state change) in its Jess 

script form. 
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A sample Jess transformation rule is shown in Figure 3.10. Each rule has two 

parts: the conditions are listed in the first part, and actions in the second. The two parts 

are separated by the ‘=>’ symbol. As a convention we have implemented the last action 

for each rule to be an explanation generation instruction for the actions performed by the 

rule. 

Our program outputs all the ontologies generated on the path from the source 

taxon to the target taxon. These ontologies are exported to our Ontobrowser tool for web 

based browsing. The target taxon ontology is also generated in OWL format. In addition, 

the program produces an explanation for each transformation at each step in the 

algorithm. A sample explanation is shown in Figure 3.11. 

 

From N10 to N02 

 

* ME :: (13) + [E:branchiostegal-ray#4] 

  [R:branchiostegal-ray#4 is_a branchiostegal-ray] ==> C54- 

 

* NE :: (03) - [E:epibranchial-4-bone-uncinate-process] ==> C36- 

 

* CL :: (06) + [E:straight-epibranchial-bone] 

  [R:straight-epibranchial-bone is_a epibranchial-bone] ==> C27- 

Figure 3.11: A sample explanation output. 

Each line of the explanation gives the type of the character involved, a rule 

number that caused the change, addition or retraction of appropriate entities and/or 

relationships, and finally the identifier of the character that caused that particular 

transformation. 

We provide the source listing for our Jess rules as Appendix A. 

In order to evaluate the results produced by our algorithm, i.e. the new ontologies 

generated, we have examined the following test cases. 
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3.8 TEST CASE: FROM ANGIOSPERMS TO OTHER PLANTS 

This test case is based on the Plant Structure Ontology (PSO) [65] for flowering 

plants (angiosperms). This is a synthetic test case developed for the specific purpose of 

testing and demonstrating the algorithm on a small amount of data. We created a 

phylogenetic tree of 9 (terminal and ancestral) taxa based on the data available on 

PLANTS Classification Report [66, 67]. The tree is rooted at embryophyte (or land 

plants). An intermediate ancestral taxon in the tree is angiosperm, which serves as the 

source (or model) taxon for the test case. 

We created a character matrix comprising 10 morphological character statements 

of various kinds. We also labeled the taxa with their corresponding character state 

vectors. Also, we extracted a portion of PSO (36 entities, 36 relationships) into a small 

ontology that is suitable for our character statements. We also populated the frames for 

our character statements with the appropriate elements from PSO and other ontologies, 

PATO and RO. 

 

Table 3.5: Ontologies generated by the plants test case. 

The test case starts from a portion of Plant Structure Ontology for angiosperms 

containing 36 entities and 36 relationships among entities. The Added/Retracted columns 

list the number of terms or relationships added or removed from the angiosperm ontology 

to get the new ontology. 

Ontology 

(Taxon) 

Terms (Entities) Relationships (Triples) 

Count Added Retracted Count Added Retracted 
       

Embryophyte 34 2 4 36 2 2 

Fern 35 3 4 37 3 2 

Spermatophyte 35 2 3 36 2 2 

Gymnosperm 36 3 3 37 3 2 

Conifer 38 5 3 40 6 2 

Cycad 36 3 3 37 3 2 

Eudicot 39 4 1 39 4 1 

Monocot 35 0 1 35 0 1 
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We generated ontologies for all the other taxa in the tree. Table 3.5 lists the 

ontologies created, the number of entities and relationships in the ontology for each 

taxon, and the number of additions and retractions involved in producing the ontology, 

starting from the ontology for angiosperms. 

The raw input data for this test case is attached as Appendix B. 

3.9 TEST CASE: CYPRINIFORMES TREE OF LIFE 

This test case is based on the phylogenetic data provided by the biologists 

working on the Cypriniformes Tree of Life (CTOL) project [68]. This dataset 

corresponds to a study on the diversity of a particular anatomical region, i.e. gill arch and 

hyoid arch, across cypriniformes. The key taxa to remember for this test case are teleosts, 

cypriniformes and zebrafish (Danio rerio). Cypriniformes form a group of fish species 

that are studied under the CTOL project. Zebrafish is an NIH designated model organism, 

and is a species in the cypriniformes group. Teleosts are a broader group of fishes that 

includes cypriniformes. The CTOL project does not cover all teleosts. 

The data from CTOL consists of two parts. First, we have a morphological 

character matrix containing 62 character statements and the character state assignments 

for 65 terminal taxa, including zebrafish. From this matrix, we have identified 39 

character statements that fall under our taxonomy of character types, i.e., are relevant to 

anatomy ontology. We have only used these 39 characters in our tests (see our CTOL 

character matrix worksheet, Appendix C). Second, based on the character matrix, the 

biologists have produced a phylogenetic tree with ancestral character state assignments. 

The tree contains a total of 85 (terminal and ancestral) taxa. The tree contains zebrafish, 

cypriniformes and an ancestor of cypriniformes (root of the tree, henceforth called 

CTOL-root taxon), but not teleosts. 
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In addition to the phylogenetic data (character matrix and phylogenetic tree), we 

have used two authoritative ontologies in this test case: the Zebrafish Anatomy ontology 

(ZFA) [9], and the Teleost Anatomy Ontology (TAO) [10]. In addition to the anatomy of 

teleosts, TAO also provides a list of synonym cross-references between ZFA and TAO. 

While ZFA and TAO are large ontologies, we have extracted portions from each that 

correspond to the anatomical region of gill and hyoid arches. 

Based on this data, we perform the following tests. First, using the teleost 

ontology (TAO) as the starting point, we generate a new zebrafish ontology (ZFA*) and 

compare it with the authoritative zebrafish ontology (ZFA). Second, we produce the 

ontology for cypriniformes gill and hyoid arches anatomy (CGO). We use TAO as the 

starting point to create CGO, and then use ZFA to create another version of CGO and 

compare the two versions. We have performed the comparisons between ontologies in a 

semi-automatic manner: we have used AgreementMaker ontology matching tool [69] to 

create some initial mappings between the ontologies being compared, and have 

performed the remaining work manually. 

From Teleost to Zebrafish 

This test is based on using the Teleost Anatomy Ontology (TAO) as a starting 

point for building a zebrafish ontology (ZFA*) for the relevant anatomical region. Since 

the given phylogenetic tree does not include the teleost node, as a first step we use the 

data in the morphological character matrix to manually modify TAO and create the 

ontology for the CTOL-root taxon. This modified TAO is used in the automated 

transformations in our algorithm. It contains 129 entities and 171 relationships among 

entities. 
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Since we have identified the types of relevant characters, in the second step we 

populate the frames for each character statement using the modified TAO, Phenotypic 

Quality Ontology (PATO) and OBO Relations Ontology (RO), as described earlier. 

Once we have the source ontology and the populated character frames, we run the 

algorithm on the phylogenetic tree, going from CTOL-root to zebrafish, and produce a 

zebrafish ontology, called ZFA*. This ontology contains 112 entities and 157 

relationships among entities. The portion of the original ZFA that we have extracted for 

comparison contains 103 entities and 142 relationships among entities. 

 

Table 3.6: Synonym cross-references from TAO to ZFA and ZFA*. 

Cross-References Difference 

TAO-ZFA* TAO-ZFA Overall Design Entities 
     

107 67 40 27 13 
     

 

Table 3.7: Summary of newly discovered entities for ZFA. 

Reason Count 

Difference in cross-referenced entities (from Table 3.6) 13 

New entities without sufficient evidence 7 

New entities with evidence 6 

Other evident new entities not cross-referenced from TAO 4 

Total number of evident new entities discovered 10 

Synonym cross-references: As mentioned earlier, TAO provides synonym cross-

references to the authoritative ZFA. Our system also keeps track of synonyms between 

source and target ontologies during transformations. We have compared our synonyms to 

the synonym cross-references provided by the authoritative TAO. This objective of this 

evaluation is to find any discrepancies between the two synonym lists and to pinpoint the 

reasons behind them. Table 3.6 shows a summary of our evaluation. 
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Figure 3.12: Difference in modeling approaches between ZFA and TAO. In 

terms of biology, there is little difference between the structures since the 

basibranchial part in ZFA already signifies a basibranchial-element. TAO has 

a number of -element entities, none of which are modeled in ZFA. 

 

Table 3.8: New entities for ZFA. 

No. Entity (Term) Evidence (Character) 
   

1. Hypobranchial 3 element ventral process Neomorphic (C58A) 
   

2. Epibranchial 4 bone uncinate process Neomorphic (C36-) 
   

3. Epibranchial 4 bone levator process Neomorphic (C39-) 
   

4. Urohyal ventral plate Classifying (C61A) 
   

5. Fully developed urohyal ventral plate Classifying (C61B) 
   

6. Rod-like basibranchial 2 bone Classifying (C09-) 
   

7. Spathiform branchiostegal ray Classifying (C55-) 
   

8. Straight epibranchial bone Classifying (C27-) 
   

9. Hooked-with-wear-surface ceratobranchial 5 tooth Classifying (C25-) 
   

10. Tapered-tipped gill raker Classifying (C47-) 
   

The newly created ZFA* contains 107 cross-references to entities in TAO. Only 

67 of those entities are cross-referenced between TAO and ZFA. The additional 40 cross-

references between TAO and ZFA* are among the entities that do not exist in ZFA. Our 

investigation shows that 27 of these entities exist due to a difference of modeling 

approaches between TAO and ZFA. Since ZFA* is built from TAO, it inherits its 
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modeling approach and also contains these entities. However, these entities do not 

represent significant additions to the knowledgebase, as elaborated in Figure 3.12. Of the 

remaining 13 new cross-references between ZFA* and TAO, 6 are due to the discovery 

of new candidate entities for ZFA based on the evidence from the given character 

statements. The other 7 are due to the presence of entities in TAO that are not referenced 

in the given set of character statements, hence making it impossible for us to decide 

whether to delete them from ZFA* during the transformation process or to treat them as 

candidates for ZFA (Table 3.7). 

Newly discovered knowledge: We have also examined the transformations at 

each step during the process of the creation of ZFA*. As the other criteria for the 

evaluation of our work, we have examined the retracted entities to identify any possible 

errors made during the creation of ZFA or the given morphological character matrix, and 

the added entities to identify any candidates for addition into the authoritative ZFA. We 

have found that all the retractions made by our transformations are consistent with the 

content of the authoritative ZFA. However, as explained in Table 3.7, we have identified 

10 new candidate entities for addition into ZFA. These entities are listed in Table 3.8, 

along with the identifier for the character statement that serves as the evidence for its 

existence. 

Cypriniformes Gill and Hyoid Arches Anatomy Ontology 

Using our algorithm, we have generated the Cypriniformes Gill and Hyoid Arches 

Anatomy Ontology (CGO). As a new biological knowledgebase, and as the title suggests, 

this ontology captures the anatomical structure of the gill and hyoid arches of 

cypriniformes based on the knowledge captured in the CTOL character matrix. The 

ontology starts from the description of parts and subclasses of pharyngeal arches. Gill 
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arch and hyoid arch are pharyngeal arches. In addition to capturing the parts of these 

anatomical regions, the ontology also captures the composition of most anatomical 

entities involved, which seems to be a recurring feature of interest in the character matrix. 

Hence, entities are appropriately described as being bones or cartilages, and in some 

cases, teeth. CGO consists of 139 terms and 2 relationship types (is_a and part_of). A 

full listing of this ontology is provided as Appendix D. 

Once again, our starting point for the new CGO ontology is the ontology for 

CTOL-root taxon obtained by manually updating the Teleost Anatomy Ontology using 

the character matrix. In order to double check the correctness of our ontology, we also 

started from the Zebrafish Anatomy ontology to produce another version of CGO. The 

purpose of this exercise is not to establish a formal equality of the two versions, but to 

examine the structure of the two ontologies to identify any discrepancies. 

We manually examined the topology of the two ontologies and found them to be 

consistent. As an additional exercise, we generated the ontologies for all the taxa in the 

path from CTOL-root taxon to zebrafish starting from TAO, and the ontologies for the 

same taxa in the opposite direction, zebrafish to CTOL-root, starting from ZFA. We 

manually examined the pair of ontologies produced for each taxon in the path and found 

them to be consistent. 

3.10 LESSONS FROM EXISTING ANATOMY ONTOLOGIES 

Based on our investigation of many different anatomy ontologies in the course of 

capturing the background knowledge, developing the algorithm and performing the 

evaluation, we have encountered some ontology design choices or practices that, in our 

opinion, warrant discussion. These practices have an impact, positive or negative, on the 

ability of the ontologies in question to integrate and interoperate with the other ontologies 
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in the domain. Most existing anatomy ontologies were developed by biologists with little 

training in ontology engineering practices. Therefore, while some practices may be 

deliberate, it is possible that others happened simply because they seemed like the easiest 

way forward to the biologists looking at a single ontology in isolation from the rest of the 

domain. 

 

 

Figure 3.13: A more consistent use of ‘-element’ type entities across single 

taxon ontology can improve ontology alignment. 

• We find the use of ‘-element’ entities in the Teleost Anatomy Ontology 

(TAO) a significant new practice in anatomy ontologies (Figure 3.12). As 

mentioned earlier, the Zebrafish Anatomy (ZFA) does not have ‘-element’ 

entities. One of the reasons for this difference is that TAO is a multi-taxon 

ontology, and needs to capture the variation across all the taxa in the teleost 

group. On the other hand, ZFA is a single taxon ontology and does not deal 

with such variation. For example, TAO contains interhyal-element 

(TAO:0001892) as well as both of its possible variations, interhyal-bone 

(TAO:0000171) and interhyal-cartilage (TAO:0001511). ZFA does not need to 

capture the variation and contains only interhyal-cartilage (ZFA:0001511). 
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However, we believe that a better way to model interhyal-cartilage in a single 

taxon ontology such as ZFA is to have an interhyal-element and a relationship 

interhyal-element is_a cartilage. This enables easy alignment of multiple 

single taxon ontologies by making interhyal-element an anchor (i.e. a possible 

homology) among them. This example is depicted in Figure 3.13. 

 

 

Figure 3.14: Better modeling practices can improve ontology alignment. 

• Anatomy ontologies often contain terms that include adjectives in their names 

or definitions, e.g. the term smooth-muscle (TAO:0005274) in TAO consists of 

the adjective smooth and an entity muscle. Given the existing conventions, our 

algorithm also produces such terms, in particular when classifying characters 

are involved (see Table 3.8). As we mentioned earlier Phenotypic Quality 

Ontology (PATO) provides the commonly used adjectives for this domain. A 

better way to model such terms may be to model the adjective as a 

relationship to an appropriate term in PATO, for instance as muscle 

has_quality smooth, where smooth (PATO:0000701) comes from PATO. Once 

again, having the term in its primitive form can help ontology alignment 

algorithms (Figure 3.14). 
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• Sequences of similar entities are often captured by numbering them. For 

example, ZFA contains multiple Weberian-vertebra (ZFA:0001190) named as 

vertebra 1 (ZFA:0001167), vertebra 2 (ZFA:0001168), vertebra 3 

(ZFA:0001169) etc. The ontology does not capture the relationships among 

these entities. Vertebra 2 has the following definition: “vertebra that is 

posteriorly adjacent to vertebra 1”. However, there is no formal relationship 

between the two entities in the ontology, making the definition inaccessible to 

an inference engine. Given that PATO defines qualities for related entities 

such as adjacent to (PATO:0002259) and posterior to (PATO:0001633), 

ontology developers should strive to capture these relationships as well. 

 

Our algorithm allows automatic generation of single taxon anatomy ontologies 

based on an existing anatomy ontology and a related phylogenetic study captured in the 

Morphster meta-model. Our algorithm can be easily extended to produce multi-taxon 

ontologies as well. 
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Chapter 4 

  

Knowledge Acquisition using Morphster 

Morphster is a domain-specific ontology editor for conducting morphology based 

phylogenetics research. Unlike general purpose ontology editors such as Protégé [12] and 

OBO-Edit [11], Morphster builds ontologies that capture knowledge about phylogenetics. 

The goal of Morphster is to enable biologists to conduct their studies in a way that makes 

it possible for them to perform knowledge inference across the components of a study. In 

particular, Morphster is a tool for creating the input knowledge for our inference process 

for automatically creating new anatomy ontologies. We have defined a meta-model for 

morphology based phylogenetics that describes domain entities and their relationships, 

which is the basis for the ontologies created using Morphster. 

Images play an increasingly significant role in phylogenetic studies, thus they are 

at the center of the data model and the user interface of Morphster. Images are commonly 

used in phylogenetic studies as the definitive basis or exemplars for concepts and are 

annotated to express hypotheses that may later be validated through the phylogenetic 

inference methods. Images are used in Morphster as placeholders along a morphologist’s 

normal workflow, capturing initial facts, intermediate hypotheses and final results in the 

ontology using image annotations. In other words, Morphster is an image-driven 

ontology editor. 
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We have implemented the ontology editing actions as side effects of the steps a 

user takes through the workflow. As a result of this approach, the user interface of 

Morphster is much more intuitive to morphologists than to knowledge engineers. This is 

in contrast to conventional ontology building methodology, where a knowledge engineer 

is often required to assist in the process of encoding the domain knowledge into an 

ontology. A goal of Morphster is to enable subject matter experts to build their own 

ontologies, without any assistance from a knowledge engineer. 

4.1 ROLE IN PHYLOGENETIC STUDIES 

 

 

Figure 4.1: Workflow of phylogenetics, and the role of Morphster. 

Figure 4.1 presents an outline of steps involved in phylogenetics research and 

clarifies the role of Morphster in this domain. Being a natural science, research work in 

systematic biology starts in the field where biologists observe and identify taxa in their 

natural ecosystems and collect specimens for further study. These studies may be about a 
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single newly discovered taxon, or multi-taxon studies that involve placing the new taxon 

in its evolutionary context. 

 

 

Figure 4.2: Morphster meta-model for phylogenetic studies. The ‘shows’ 

associations are shown in dotted lines because they represent a collection of 

association types called the ‘Shows’ hierarchy (Chapter 5). 

Morphster supports both single and multi-taxon studies. For single taxon studies, 

Morphster supports preparing annotated image collections from curated specimens, and 

creating the Nomina Anatomica. For multi taxon studies, Morphster supports comparative 

viewing of imagery from different specimens, as well as anatomy ontologies from 

multiple taxa, helping scientists identify characters and character states, and building data 

matrices. 

4.2 A META-MODEL FOR PHYLOGENETIC STUDIES 

Morphster provides a meta-model for morphology based phylogenetic studies, 

making it possible to capture the body of scientific knowledge for an entire phylogenetic 

study as an ontology. We present this meta-model in Figure 4.2 (and its OWL-encoded 

ontology version as Appendix E). 
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This meta-model is the foundation of Morphster. It presents the key concepts such 

as taxon, matrix, character, character state, etc., that form the core of scientific statements 

developed by morphologists. It also presents other concepts (anatomical entity, 

phenotypic quality etc.) and relationships (is entity of, is quality of etc.) that are key to 

properly defining the concepts in the domain. 

 

 

Figure 4.3: An ontology built using Morphster, showing some of the 

concept types allowed by the meta-model. 

The central piece of our meta-model is the image concept and its relationships 

with other components such as anatomical entities, characters and character states. This 

model allows morphologists to relate taxa (through specimens) to relevant features 

(anatomical entities, character states etc.) using images as basis or evidence of the 

observations. 

The case of characters and character states is also of particular significance. A 

character is a variable often represented as a descriptive statement describing certain 

qualities of some specific anatomical entities, and character states are the possible values 
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for that variable or character. As explained in Chapter 3, we treat characters as compound 

concepts, best captured as a composition of different kinds of terms, such as anatomical 

entities and qualities or adjectives. 

Knowledge from the scientific work done using Morphster is represented in this 

ontological form (see Figure 4.3 for an example). However, like all other domains, 

morphologists are trained to recognize and understand certain visualizations of this 

knowledge, such as in the form of a data matrix. By default, Morphster queries the 

knowledgebase to produce those specific visualizations of the ontology. 

 

 

Figure 4.4: Images of Sarcoglanis simplex documenting observations. Outlined 

labels highlight characters or character states, or documented hypotheses. 

4.3 KNOWLEDGE ACQUISITION USING MORPHSTER 

Morphster’s knowledge acquisition process is different from conventional 

ontology editors such as OBO-Edit [11] and Protégé [12]. Images play a central role in 

the knowledge acquisition process of Morphster. The process of building an ontology is 

based on annotating different collections of images at various stages in the workflow. 
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Image-driven Knowledge Acquisition 

We have identified two roles served by images in the morphology workflow. An 

image may serve as a concept exemplar, or as a record of a scientist’s conjecture. For 

example, Claeson et al. [70] describe a rare catfish called Sarcoglanis simplex using 

images obtained from an adult specimen (see Figure 4.4). These images not only 

document anatomical entities and possible character states (e.g. slit-like gap) but also new 

hypotheses (e.g. is the present entity a supraorbital). 

In order to support different roles of images we have developed a framework, 

named the ‘Shows’ hierarchy, for integrating images with ontologies. In short, the 

‘shows’ relationship for images shown in Figure 4.2 represents a set of relationship types 

that may be used for image associations depending upon the intended role of an image at 

a particular point during the study. 

Based on the ‘Shows’ hierarchy, we have implemented image-driven ontology 

editing actions. The idea is quite straightforward: Image annotations cause updates to the 

knowledgebase and the progress of the user through the workflow decides the precise 

actions that are triggered when an annotation takes place. 

 

 

Figure 4.5: Image collections are used as checklists that take a biologist 

through the workflow, building the knowledgebase in the process. 
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Figure 4.6: Screenshot of Morphster image gallery. Each image goes through its 

role at a particular step in the workflow and disappears from the gallery. The 

image collection serves as a check list of to-do items at each step in the workflow. 

Iterative Population of the Ontology 

Conventionally, knowledge is acquired in a frame-by-frame manner, i.e. a 

knowledge engineer populates a particular concept before moving on to the next. We 

refer to this a depth-first approach to ontology building. Applied to a domain like 

systematic biology, that would mean populating the knowledge base with all the 

information about a particular taxon, from identifying anatomical entities to recognizing 

and defining characters and states etc., before moving on to another taxon. This process 

contradicts with the conventions of systematic biologists. 

In systematic biology studies, often a goal is to study new taxa by means of 

comparing them with each other as well as with known and well described model taxa. 

This entails that knowledge about each taxon is not available in isolation from other taxa. 
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In other words, the knowledge about all the taxa is discovered in parallel as they are 

investigated in comparative settings, using similar images from each taxon. These 

comparative settings are sometimes called 3-taxon statements, where three taxa are 

compared to identify which two of the three may be more closely related to each other. 

Morphster’s knowledge acquisition process has been derived from this 

methodology. We use images as placeholders for updates to the ontology (see Figure 

4.5). The collections (or queues) of images serve as checklists for work to do. Per the 

stages in the workflow, images may belong to the registration queue, description queue or 

the comparison queue. The user interface of Morphster provides a metaphor to manage 

these image collections to keep track of progress (see Figure 4.6). 

Images belonging to the registration queue go through a registration process to 

identify the taxon and specimen it belongs to, as well as the metadata fields. As each 

image is registered, it moves to the description queue. Images in the description queue are 

used to identify anatomical entities, resulting in the development of the Nomina 

Anatomica for each taxon. As each of these images is annotated, it updates the relevant 

Nomina Anatomica with frames corresponding to anatomical entities and their slots that 

represent anatomical relationships. This step corresponds to single taxon studies. Finally, 

the images go into the comparison queue for multi-taxon analysis. Each image at this 

stage starts as a placeholder for incomplete definitions of one or more characters. As the 

image is annotated, the relevant characters get further populated with their character 

states. Finally, these annotations contribute towards automatically producing the 

character data matrix. So, in an iterative style, the ontology is populated with the domain 

knowledge. 
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4.4 IMAGE-DRIVEN PHYLOGENETICS 

Single Taxon Study: Describing a Taxon 

Morphster supports single taxon studies using digital imagery belonging to a 

particular taxon. In these studies, the imagery is annotated with corresponding anatomical 

entities and features that belong to a Nomina Anatomica. Figure 4.7 presents a sample 

screenshot showing imagery being annotated with anatomical entities drawn from a 

Nomina Anatomica. 

There are usually two ways in which the digital imagery is annotated. One of the 

ways is to use an existing Nomina Anatomica, which may belong to a similar model 

organism, and derive terms from that ontology for the annotation of the taxon under 

study. For example, given a picture of a catfish skull and the ontology for zebrafish, a 

morphologist may need to use the zebrafish ‘skull’ ontology term to describe the 

homologous catfish skull shown in the image. 

Another method of image annotation involves not only the association of images 

with appropriate terms, but also the creation of a new Nomina Anatomica ontology in 

parallel. Our work on associating images with ontology terms is one of the contributions 

of this dissertation and is explained in detail later (see Chapter 5). 

Multi-Taxon Study: Characters and Character States 

For multi-taxon studies, Morphster provides ways for morphologists to identify 

characters and character states, and build matrices. 

As shown in Figure 4.7, users can view multiple images side-by-side in order to 

identify variations of features across taxa. They can create characters and character states 

by drawing ontology terms of different kinds (anatomical entities, phenotypic qualities 

etc.), and annotating the images them. A specific user interface titled ‘concept 
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workspace’ allows the users to compose the necessary terms as new characters and/or 

character states. 

 

 

Figure 4.7: Screenshot of comparative use of images and concept 

workspace (bottom panel). The workspace enables formation of new 

concepts through the composition of existing ontology terms. 

Also, once a complete set of characters and character states has been created, the 

associations of registered images with character states are used to build a data matrix by 

inferring the values of the matrix cells automatically. 

4.5 DEVELOPMENT CHALLENGES 

The development of Morphster faced challenges regarding support for ontology 

languages as well as storage and querying of large ontologies. During the development of 

Morphster, we have developed solutions and practical experience for these challenges. 
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OBO and OWL ontology languages are both used in the biology community. We 

learned from our early experiences in the Morphster project that it is essential to build a 

system that is not only capable of serving both ontology languages, but also of integrating 

ontologies represented across languages. 

Our solution to this challenge was to create a round-trip transformation of OBO 

ontologies to OWL. This is a contribution of this dissertation and is explained in detail in 

Chapter 6. We developed a methodology for translating OBO ontologies to OWL using 

the organization of the Semantic Web. The approach enabled us to create quickly create 

transformation rules and identify potential mismatches. We have collaborated with other 

OBO community members and our mapping is now an accepted and widely used 

standard for the biomedical community. 

Morphster maintains all the data produced during phylogenetic studies as a part of 

a single central ontology. The second challenge for Morphster was to identify the best 

way to manage this ontology. 

Most of the meta-model could easily be modeled into a relational database. 

However, anatomical entities and phenotypic qualities come from arbitrary ontologies 

that may be imported into Morphster, making it infeasible to use a purely relational 

structure. On the other hand, storing an arbitrary ontology in a relational DBMS is 

possible, and a specific solution called a triple store, is often used for this purpose. It was 

possible to store the entire ontology in a triple store. We experimented with the most 

widely used framework at the time, Jena [71] and its triple store implementation Jena 

SDB [72]. In this setting, we quickly ran into scalability issues, especially with large 

ontologies (25k+ concepts and 50k+ relationships). 
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Not wanting to rely completely on Jena as our generic framework, we made two 

changes: First, we retracted partially from using only a triple store. Only the imported 

ontologies are now stored in the triple store, while the rest of the data stored in a 

relational schema, using URIs to maintain references. Second, instead of using Jena’s 

API to query the data from the triple table, we created a more efficient API to suit our 

application needs. Compared to Jena’s memory intensive approach, our API pushed most 

of the work to the RDBMS query engine, dramatically improving query performance. 

Leading with these lessons on the use of triple stores and RDBMS, we have been 

working on bridging the gap between SQL databases and ontologies. A representative 

publication of our work in this direction is [73]. 

4.6 ONTOBROWSER 

Ontologies created in Morphster are publishable on the Internet using a 

companion component called Ontobrowser [74]. Ontobrowser allows users to browse 

ontologies and images and search for terms in the ontologies. Annotations on imagery 

created through Morphster are rendered as hot links for efficient browsing. Ontobrowser 

also serves as the query front-end to the Morphbank database of natural specimen images 

[75]. Given image annotations, terms are sent to Morphbank and matching images 

returned. This feature is currently being extended so that if matching images are not 

initially found, the search terms are automatically generalized (based on the ontology) 

and as assessed by ontology similarity measures, similar images are retrieved from 

Morphbank [76]. 
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4.7 IMPLEMENTATION AND USE 

Morphster is a Java based application built using the Eclipse SWT API for user 

interface. At the back-end, we deployed a Microsoft SQL Server database, which is 

accessed by a JDBC API. For communicating with external services we use an XML-

based Web Service infrastructure. 

Morphster is a productivity tool for systematic biologists. A full evaluation 

requires their feedback on the tool and joint assessment of quality of the resulting 

ontologies. Such activities are just starting, including deployment on the Fishes of Texas 

project [77]. Even so, we have exploited the system for smaller activities as follows. 

These studies represent a promising beginning to the application of Morphster in 

phylogenetics. 

Two NSF funded AToL efforts have created ontology representations of their 

Nomina Anatomica: Spider Ontology by Spider AToL [78] and Hymenoptera Anatomy 

Ontology by the Hymenoptera group HymAToL [79]. Illustrated versions of these 

ontologies (“Spider with Images” and “Hymenoptera with Images”) can be found at the 

Ontobrowser web site [74]. “Spider with Images” contains over 550 terms illustrated with 

139 images. “Hymenoptera with Images” contains over 1000 terms illustrated with 369 

images. 

Morphster has been used to create a plant ontology using the stack-of-photos use 

case, building characters and character states as well as a final matrix for 5 plant taxa. We 

have also created a short Nomina Anatomica for Herrerasaurus, one of the earliest 

dinosaurs, using imagery obtained from fossils. These studies appear in unpublished 

tutorial materials. 
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Chapter 5 

  

Capturing Biological Hypotheses using Imagery 

Digital imagery often serves as a proxy for biological specimens and is the 

foundation for all the scientific work in such phylogenetic studies. These images 

(computed tomography (CT) scans, field photographs, sketches etc.) are used to capture 

the ground facts, and more importantly are the basis for building and recording scientific 

conjectures that are studied and proved or disproved at the conclusion of analytic work. 

We have already provided an example of these uses of images in Chapter 4 (see Figure 

4.4). 

In another case, Ramírez et al [80] provided a protocol for documenting newly 

discovered spider taxa. They defined approximately 400 standard views on spiders. They 

proposed that when a spider species is newly discovered a set of standard view images be 

deposited in an online digital collection at the same time the prototype specimen is 

deposited into a museum collection. The online collection categorized by taxon (species) 

and standard view serves as a basis for an ontology of all spiders. 

While anatomy ontologies are another means for capturing the ground facts, the 

lack of means for capturing hypotheses using ontologies has been a major hindrance in 

building ontology based tools for conducting phylogenetic studies. A practical solution 
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requires a framework for capturing scientific facts and hypotheses by integration of 

images with ontologies. 

In this context we explore the connection between images and ontology terms. 

Usually, ontology terms are annotated with textual definitions of the concepts they 

represent. These definitions may be ambiguous or open to many different interpretations. 

In biology, illustrations are often employed in place of textual descriptions to 

unambiguously define concepts. In order to integrate images with ontologies, it is 

necessary to understand their roles, and to develop a framework that captures these roles. 

Our work provides a solution for integrating scientific images with ontologies. 

We recognize the need for identifying and formally defining different roles of images in 

ontologies and provide multiple ways of connecting images to classes based on the 

intended roles of images. This enables us to build richer ontologies capable of inferring 

more accurate results on common scientific queries than existing ontology based image 

retrieval systems based on ontologies. It also gives an opportunity for creating scientific 

use cases based on images that simplify ontology creation and alignment for subject 

matter experts. 

5.1 RELATED WORK 

Ontology based image annotation and retrieval is an active area of research. The 

existing body of work in this area ranges from the simple use of domain ontologies to 

annotate images to the development of sophisticated mechanisms to describe and infer 

spatial and temporal relationships of depicted objects. 

Schreiber et al. [81] explored the use of a photo annotation ontology and a domain 

ontology to index and search collections of photographs. In a qualitative comparison 

between ontology based and keyword based systems they showed that ontology based 
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retrieval returned more accurate results. Hyvönen et al. [82] also annotated images using 

domain-specific ontologies. 

The PhotoStuff project [83, 84] was motivated by the need for toolkits that would 

allow annotation of multimedia content on the Web. The PhotoStuff tool provides users 

the ability to annotate whole or regions of images to identify instances of ontological 

classes. 

Pastra et al. [85] demonstrated the use of ontologies to describe crime scene 

photos. They used a domain ontology called OntoCrime to translate natural language 

photo captions that often describe spatial relationships, into relational facts. By applying 

the same translation on queries to the knowledgebase, they were able to use pattern 

matching on the facts to retrieve images. In a later work, Pastra used a similar approach 

to describe 3D indoor scenes depicted in 2D pictures [86]. 

Petridis et al. [87] and Hudelot et al. [88] worked on bridging the gap between 

low level descriptive features of images (e.g. dominant color) and content descriptions 

based on ontologies. MPEG-7 is a standard for creating audiovisual descriptions [89]. 

Petridis et al presented an approach based on prototype instances for integrating MPEG-7 

descriptions expressed in RDF with domain ontologies, using a tool called M-OntoMat-

Annotizer. Hudelot et al. used an ontology backed by fuzzy logic to capture spatial 

relationships among objects depicted in pictures. They demonstrated the use of ontologies 

and fuzzy logic to perform reasoning on medical images. 

Bertini et al. [90] further investigated the problem of obtaining a complete 

expression of information in digital media, and included support for maintaining spatial 

as well as temporal relationships among entities. They used domain ontologies to 
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annotate instances found in the media, and used rule based pattern matching for 

inference. 

The existing work in the area of image-ontology integration clearly demonstrates 

the value of ontologies in describing the contents and semantics of images and other 

multimedia. A common feature of these efforts is the use of existing domain ontologies to 

identify instances of given concepts. 

Our approach and solution is based on the use of images in scientific work. Our 

concern is to capture the roles of images as exemplars (to capture scientific facts) and as 

placeholders for recording conjectures. We aim to integrate images into ontologies by 

providing formally defined constructs for capturing these roles, and using them as a basis 

for developing ontologies that capture scientific knowledge. Moreover, while it is typical 

for images to be used to identify instances of domain concepts, in scientific work images 

often define the concepts themselves. Specifically, some kinds of images, such as hand-

drawn sketches, are often used in scientific work. These images are identified as 

depictions of concepts that ultimately belong in the ontologies, and are not depictions of 

any real world instances of those concepts. 

In addition, the role of images to record conjectures means that the class for an 

image may be unknown to the scientist. In this situation, it may be inaccurate and often 

impossible to associate the image with an instance, since the actual class for the image 

may not even exist in the knowledgebase. In such cases, the scientist may choose to 

express similarity with an existing class. A way to implement this scenario in a system 

that associates images to instances is to introduce an unknown class into the ontology and 

to mark the image as its instance. However, at the stage of recording conjectures, it is 
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unknown whether that class should exist or not, and can only be determined once the 

scientific process has taken its course. 

These uses of images are inherent to our work; hence image annotations are made 

directly with the domain concepts. Our inference rules also work on these direct 

associations between images and ontologies. 

 

 

Figure 5.1: Representing class hierarchy and its effect on relationships and image 

associations using an ontology of common shapes as an example. Arrows with solid 

lines represent subclass relations, dashed lines show explicitly defined relations, and 

dotted lines are implicit relations. 

5.2 FRAMEWORK FOR INTEGRATION OF IMAGES WITH ONTOLOGIES 

We have defined specific roles of images in ontologies and formalized unique 

semantic properties of image associations to build a framework for image ontology 

integration. Ontology systems provide standard mechanisms for creating class 

relationships (triples that connect two classes to each other) and metadata attributes (e.g. 

textual definitions of classes). A comparison of metadata attributes with image 

associations is straightforward. Metadata attributes belong to a class, whereas images can 

exist as independent entities in the ontology. Hence image associations are not similar to 
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metadata attributes. Compared to class relationships, image associations have different 

semantics. Here we elaborate on this point. 

Unique Semantic Properties of Image Associations 

Consider a section of an ontology of common shapes shown in Figure 5.1a. The 

ontology expresses class relationships such as SubClassOf(Rectangle,Polygon), 

SubClassOf(Triangle,Polygon) and Has(Polygon,Side). Because class relationships 

follow inheritance rules we can infer Has(Rectangle,Side) and Has(Triangle,Side). Figure 

5.1b shows the same Polygon, Rectangle and Triangle classes, connected to their 

respective images using ShownIn associations and ShownIn(Polygon,P), 

ShownIn(Rectangle,R) and ShownIn(Triangle,T) hold. 

If we apply inheritance, we get ShownIn(Rectangle,P) and ShownIn(Triangle,P), 

which are obviously incorrect statements. However, there is a different possibility: 

ShownIn(Rectangle,R) and ShownIn(Triangle,T) imply ShownIn(Polygon,R) and 

ShownIn(Polygon,T). In other words, an image that shows a rectangle also shows a 

polygon as well as an image that shows a triangle also shows a polygon. Accordingly, 

image associations of children may imply image associations of the parent class which is 

in contrast to inheritance where a relationship of a parent class implies a relationship for 

its children. Clearly, image associations have different semantics than class relationships. 

We refer to this property of image associations as the contra-inheritance property. 

It is important to note that this property is novel only in the context of our 

approach and within the given domain. In the systems that operate on instance 

associations, the effect of collecting images from the instances of child classes is similar 

to the contra-inheritance property. 
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Figure 5.2: Hierarchy of image roles in ontologies, and inheritance hierarchy of image 

association types, called ‘Shows’ hierarchy. Show-Similar-Role is captured by 

association types in white background, and Show-Exemplar-Role is captured by 

association types in grey background. 

Specification of Image Roles 

Images can play two key roles (Figure 5.2a): an image is used as a definitive 

example (or exemplar) of an entity (Show-Exemplar-Role), or an image is used to 

hypothesize similarity between two entities (Show-Similar-Role). While it is easy to 

understand Show-Exemplar-Role, the use of similarity in Show-Similar-Role requires 

further explanation. 

In the context of systematic biology, we can define similarity in terms of shared 

evolutionary origin of two entities (homology) or convergent evolutionary origin 

(homoplasy). In other words, an assertion that ‘two entities are similar’ is a hypothesis 

that may lead to establishing a homology or homoplasy between the entities in question, 

with continued investigation. 

‘Shows’ Hierarchy 

After organizing the roles of images in an inheritance hierarchy (Figure 5.2a) we 

proceed to define types of associations that will enable us to capture image roles in 

ontologies. 
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Table 5.1: Basic predicates and associations needed for defining image associations. 

Predicate Definition 
  �$��C�  True when x is a class, otherwise false. 
  

  �#%�C� True when x is an image, otherwise false. 
  

  !(E�$����C, &� x is a subclass of y. It is transitive, reflexive and anti-symmetric. 
  

  �������C, &� x is a part of y. It is transitive, reflexive and anti-symmetric. 
  

  ������'����C, &� x is an instance of y. 
  

  !/#/$���"�C, &� x is similar to y. It is transitive, reflexive and symmetric. 
  

  8C�#-$�����C, &� x is an exemplar of y. It is reflexive and anti-symmetric. Also, by 

definition: 8C�#-$�����C, &� → !/#/$���"�C, &� 
  

  �$�&��C, &� x plays role y, as defined by Fan et al. [91]. A similar property 

exists in a later work by Mizoguchi et al. [92]. 
  

We have identified four types of associations between images and ontological 

concepts, henceforth called image association types. We have organized them into an 

inheritance hierarchy, called the ‘Shows’ hierarchy (Figure 5.2b). Image association 

types towards the top of the hierarchy are more general than the ones further down the 

hierarchy. Hence, Shows Similar is the most generic type, and Entirety Shows Exemplar 

is the most specific. Here we list and define these associations: 

• Shows Similar (m, x): some part of image m plays Show-Similar-Role for 

class x. This is the most general association type used to record conjectures. 

• Entirety Shows Similar (m, x): the entire image m plays Show-Similar-Role 

for class x. This association type is also used to record conjectures. Notice that 

the entire image is considered a part of itself, thus making this association 

type more specific than the previous one. 
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• Shows Exemplar (m, x): some part of image m plays Show-Exemplar-Role 

for class x. This association type is used to identify exemplars. It is a 

specialization of Shows Similar considering that an exemplar association 

depicts a hypothesis that has been proved through a scientific process. 

• Entirety Shows Exemplar (m, x): the entire image m plays Show-Exemplar-

Role for class x. 

 

Table 5.2: Formal rules for image associations introduced by the ‘Shows’ hierarchy. 

Associations & Definitions 
 !ℎ"]�!/#/$���#, C� → �$�&��#, !ℎ"] − !/#/$�� − :"$�� 
 

 8��/���&!ℎ"]�!/#/$���#, C� → !ℎ"]�!/#/$���#, C� ∧ 8��/���&!ℎ"]�8C�#-$���#, &� ∧ !/#/$���"�&, C� 
 

 !ℎ"]�8C�#-$���#, C� → �$�&��#, !ℎ"] − 8C�#-$�� − :"$�� ∧ !ℎ"]�!/#/$���#, C� 
 

 8��/���&!ℎ"]�8C�#-$���#, C� → !ℎ"]�8C�#-$���#, C� ∧ 8��/���&!ℎ"]�8C�#-$���#, C� ∧ ∀����������, #� ∧ 8��/���&!ℎ"]�8C�#-$����, C� → � = #� 
 

 

Formal Semantics of Image Association Types 

In Table 5.1 we present a listing of the basic predicates and their definitions that 

will be used in formalizing semantics for image association types introduced above. 

Some concepts, like is-a (SubClass) and part-of (PartOf), are commonly used in 

biomedical ontologies and are therefore standardized by the biomedical community [27]. 

In Table 5.2 we further define the formal rules that govern the use of image associations. 

These rules include a formal specification of the inheritance relationships shown in 

Figure 5.2b. 
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In addition, we define the following key rules that make common scientific 

queries possible: 

• Equality of Images: Trivially, two images may be considered equal if they 

have the same identifier or have the same bits in the image file. Here we 

define a non-trivial equality. Two images x and y are equal, or Equal(x,y), if 

they serve as exemplars for exactly the same set of ontological classes. 

�#%�C� ∧ �#%�&� ∧ �$��]� ∧ 

!ℎ"]�8C�#-$���C, ]� ≡ !ℎ"]�8C�#-$���&, ]� → 8_(�$�C, &� 

The notion of equality in this rule does not refer to the two images being the 

same; it rather presents a way of recognizing content-wise equality of a pair of 

images. 

• Similarity of Images: Two images x and y that capture similarity hypotheses 

for exactly the same set of ontological classes, are similar. 

�#%�C� ∧ �#%�&� ∧ �$��]� ∧ 

!ℎ"]�!/#/$���C, ]� ≡ !ℎ"]�!/#/$���&, ]� → !/#/$���"�C, &� 

This is a very basic way of defining similarity between images used in 

morphology. Based on the needs of a particular domain, different kinds of 

similarity rules may be defined. For example, it may be possible to introduce a 

similarity index in the rule to quantify the similarity between the images. 

• Sub-Image: If an image y serves as exemplar for all the classes exemplified 

by image x, image x is considered a sub-image of image y, or SubImage(x,y). 
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This property is very similar to the subclass relationship among classes, or the 

sub-property relationship among properties. 

�#%�C� ∧ �#%�&� ∧ �$��]� ∧ 

�!ℎ"]�8C�#-$���C, ]� → !ℎ"]�8C�#-$���&, ]�
 → !(E�#�%��C, &� 

• Contra-Inheritance: If x is a subclass of y, and an image w shows x, then 

image w also shows y. This is the scenario that was discussed earlier as well 

(see Figure 5.1). 

�$��C� ∧ �$��&� ∧ !(E�$����C, &� ∧ �#%�]� ∧ 

!ℎ"]�∗�], C� → !ℎ"]�∗�], &� 

Notice the use of predicate Shows in this rule. It represents any of the four 

association types present in the ‘Shows’ hierarchy. In essence, this rule 

represents four independent rules, one for each image association type. 

Querying Ontologies using Image Association Semantics 

Given the formally defined association types and inference rules, we present an 

example fish ontology (Figure 5.3) and present a list of possible scientific queries that are 

better handled by our framework compared to the previous work (Table 5.3). For each 

listed query we indicate relevant association types and rules involved in providing the 

answer. 

Because image association types were defined based on the roles of images, it is 

necessary to present queries to the system in a way that clarifies the role of concerned 

images. To keep the query statements simple, Show-Exemplar-Role is assumed by 

default unless Show-Similar-Role is explicitly mentioned in the query (e.g. Q6). 
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Figure 5.3: A small fish ontology. Images are associated to the concepts in multiple 

ways, unlike the other ontology based image retrieval systems. Abbreviations: 

ESE=EntiretyShowsExemplar, SE=ShowsExemplar, ESS=EntiretyShowsSimilar, 

IsA=Subclass relationship. 

 

Table 5.3: Selected queries and results comparing our work (Shows) to the other systems. 

Query Shows Other 
   

Q1. What are the pictures of Zebrafish? {B, D} {B, D, E} 
   

Q2. Find model pictures (exemplars) of Bowfin. {C, D} { } 
   

Q3. What are the pictures of fish? {A, B, C, D} {A} 
   

Q4. Find some possible exemplar images of Fish. {A, B, C, D} { } 
   

Q5. Show sub-images of picture D. {B, C, D} {B, C, D} 
   

Q6. Show some pictures that are similar to the picture A. {A, B, C, D, E} { } 
   

Q1 (‘what are the pictures of Zebrafish?’) will give us images B and D in our 

system, given the use of an exemplar association type for the images. Other IR systems, 

where there is no distinction between association types, will additionally return image E, 

even though it is not an exemplar for class Zebrafish. 
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Q2 (‘find model pictures (exemplars) of Bowfin’) will find images C and D. It 

will require the system to find each image m that plays exemplar role, i.e. satisfies 

Plays(m,Show-Exemplar-Role), for class Bowfin. 

Q3 (‘what are the pictures of Fish?’) and Q4 (‘find some possible exemplar 

images of Fish’) are identical queries for our system, given the exemplar role assumption. 

Inference for these queries makes use of the contra-inheritance rule and marches down 

the hierarchy to collect exemplar images. For other IR systems, only Q3 is answerable 

(image A), since Q4 explicitly requires use of exemplar role which is undefined.  

Q5 (‘show sub-images of picture D’) requires the use of sub-image rule to find 

images that serve as exemplars of only the things exemplified by image D. This is an 

example of querying-by-example where an image itself serves as a part of the query. This 

particular query demonstrates the use of an image as a universal set of concepts. All the 

images retrieved should be annotated only with the concepts in the given universal set. 

These kinds of queries are supported in most systems that perform inference on the image 

annotations. 

Q6 (‘show some pictures that are similar to the picture A’) is another image based 

query. It addresses the similarity role of images. This particular query makes use of the 

rules for similarity of images and contra-inheritance to go down the hierarchy starting 

from Fish and produce the set of all images {A, B, C, D, E}. If we modify the query to 

finding pictures similar to image B instead, we will get the same result even though using 

contra-inheritance from image B (or Zebrafish) does not include going to parent class 

Fish and hence finding image A, for instance. However, symmetric and transitive 

properties of similarity enable us to finding the complete set in this case as well. In other 

words, since Q6 tells us that SimilarTo(B,A), it implies SimilarTo(A,B). By transitivity, 
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for any image x such that SimilarTo(x,A) holds, SimilarTo(x,B) holds as well. Hence the 

modified query can be readily transformed back to finding images similar to image A, i.e. 

Q6. 

5.3 MORPHSTER ONTOLOGY DEVELOPMENT USE CASES 

Our modeling of the image-ontology integration framework is driven by the needs 

of phylogenetics studies, and hence Morphster workflows. Here we present three use 

cases that are made possible by our framework. The first one, called stack-of-photos, is a 

trivial use case that is of great value to biologists as a means for quickly building and 

publishing their ontologies. For the sake of presenting a comprehensive description of our 

work, we present that use case first and then move on to the other use cases. 

 

Algorithm: 

1. Compile a collection of images 

2. Initialize a new ontology by providing a starting point (a root class) 

3. Import the images into the system 

4. Associate and annotate each image 

a. Attach image to a class in the ontology 

b. Label contents on the image 

c. Mark image as complete 

5. Publish a finished ontology 

Figure 5.4: Outline of the algorithm for the stack-of-photos use case. 

Building Ontology with Stack-of-Photos 

The stack-of-photos use case demonstrates the utility of our work to simplify 

anatomy ontology building for a biologist. Compared to a typical scenario where a 

knowledge engineer would be required to assist in encoding the ontology, our work 
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translates typical image annotation actions of a biologist into updates to the ontology. 

Given a collection of images that are exemplars of anatomical entities of a taxon, creating 

its ontology is straightforward (see Figure 5.4). 

After initializing an ontology with a root term like whole organism, start with an 

image that can serve as an exemplar of the root, and create an Entirety Shows Exemplar 

association between the image and the root. For each new term T labeled by the user on 

the exemplar image, create a Shows Exemplar association between T and the image. In 

the workflow, it also implies a part-of relationship between T and whole organism. 

Iteratively, each of the new terms can be attached to an image in the collection using 

Entirety Shows Exemplar association, and any new classes on those images will create 

further parts of these classes. When this process is completed for the entire collection of 

images, the result will be a hierarchical ontology consisting of all labeled classes based 

on part-of relationships. 

Aligning or Matching Ontologies 

Determining correspondences between classes in multiple ontologies is a 

significant semantic integration problem [93, 46] and is significant to systematic biology. 

Bodenreider et al. [94] and Mork et al. [95] provided solutions for creating alignments 

between mouse and human anatomies. A common feature of their approaches was to first 

create a lexical alignment by identifying shared reference concepts or anchors in the 

ontologies using a dictionary. These anchors, which are either proven homologies or 

simply hypothesis, are then used for further alignment of ontologies. 
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Figure 5.5: Image associations simplify creating anchors for ontology alignment. Terms in 

rectangles belong to human anatomy, and the ones in rounded boxes are from mouse 

anatomy. Abbreviations: ESE = EntiretyShowsExemplar, ESS = EntiretyShowsSimilar, 

SimTo = SimilarTo. Solid lines: explicit relationships; dotted lines: implied relationships 

resulting from application of formal semantics. Double lined box: anchor. 

In Figure 5.5, we demonstrate the use of image associations and their semantics to 

create anchors between human and mouse anatomies. Starting from the human anatomy 

ontology, we use the similarity associations to connect shared concepts. Figure 5.5a 

shows the initial state of the ontology, where M is a new image that has not been 

connected to any classes so far. If a new association Entirety Shows Similar is created 

between image M and class Upper Extremity, the semantics imply that the class Upper 

Extremity is similar to an unknown class X (see Figure 5.5b). Finally, if image M is 

explicitly connected as an exemplar of a class, say Forelimb, in mouse ontology. This 

may result in identifying the unknown class X as Forelimb, and a similarity is established 

between Forelimb and Upper Extremity, marking them as anchors. In other words, 

Forelimb and Upper Extremity are marked as possibly homologous entities. 
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Extracting New Ontologies from Model Ontologies 

While building new ontologies of anatomies is very common [16], such efforts 

often build around existing ontologies of model organisms. For example, Dahdul et al. 

[10] developed a multi-species Teleost Anatomy Ontology (TAO) using the Zebrafish 

Anatomical Ontology (ZFA) as a reference. Starting as a clone of ZFA, TAO now 

contains over 400 new terms that describe teleost fishes. The Amphibanat project [41] is 

another example of building a new ontology, an ontology of amphibian anatomy, from a 

model organism ontology. They extracted relevant portions of the class hierarchy and 

other relationships from ZFA to form the initial framework for their ontology. 

We believe that the similarity capturing role (Show-Similar-Role) of images in 

our work can simplify the task of using existing ontologies to extract relevant classes and 

relationships for new ontologies. It also promises to maintain cross-references between 

the two ontologies seamlessly by automatically using image associations to maintain 

anchors. 

A common feature of the use cases mentioned above is that it becomes simpler for 

a subject matter expert to develop ontologies without requiring assistance from a 

knowledge engineer. Our specification of roles of images and novel image association 

types allow users to develop knowledge bases while following the customary method of 

using images to observe and document knowledge. 

5.4 IMPLEMENTATION FOR THE SEMANTIC WEB 

In order to demonstrate our work on the Semantic Web, we provide an 

implementation of the ‘Shows’ hierarchy and relevant constructs (see Appendix F for 

complete implementation) in RDF and OWL. In this section, we discuss some parts of 

this implementation. Since the existing relationship types are not suitable for image 
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associations, we provide a new kind of association to support relationships between 

images and classes. We have called this association ShowsProperty. Image associations 

in the ‘Shows’ hierarchy are instances of ShowsProperty. 

 
<rdfs:Class rdf:ID="ShowsProperty"> 

    <rdfs:label>ShowsProperty</rdfs:label> 

    <rdfs:subClassOf rdf:resource="&rdf;Property"/> 

</rdfs:Class> 

<ido:ShowsProperty rdf:ID="showsSimilar" /> 

<ido:ShowsProperty rdf:ID="entiretyShowsSimilar" /> 

<ido:ShowsProperty rdf:ID="showsExemplar" /> 

<ido:ShowsProperty rdf:ID="entiretyShowsExemplar" /> 

In order to ensure that the associations in the ‘Shows’ hierarchy always associate 

an image to a concept in the ontology, we have associated a domain with the Shows 

Similar property. 

 
<ido:ShowsProperty rdf:about="#showsSimilar"> 

    <rdfs:label>Shows Similar</rdfs:label> 

    <rdfs:domain rdf:resource="&ido;Image" /> 

</ido:ShowsProperty> 

The rest of the image associations inherit from the Shows Similar association, and 

thus also have instances of images their domain. 

5.6 CONCLUSION 

We provide a novel way of associating images with ontologies by providing 

formally defined image association types. As a result, these ontologies provide interesting 

inference and content based querying opportunities on images. Existing ontology based 
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image retrieval systems do not provide this kind of formalism and are therefore limited in 

terms of querying and inference. 

In natural sciences, especially systematic biology, images often serve as an 

authoritative basis for definition of concepts. Our approach towards the integration of 

images and ontologies allows us to use images as building blocks for ontologies in such 

domains. This allows for easy development of ontologies by domain experts, reducing the 

overhead of involving knowledge engineers in the process. Our stack-of-photos use case 

provides a simple example. While it is a straightforward procedure, the absence of the 

ability to build even primitive ontologies using other image-ontology integration systems 

demonstrates the novelty of our approach. 

Even though extending existing systems to create anatomy ontologies may be a 

simple matter, this alone does not serve the purpose of conducting science using images 

as a fundamental source of knowledge. Identification of the possible roles for images is 

critical. While in existing systems images are used to tag instances of ontology concepts, 

we have identified two key roles that are implicit in scientific approach. When images 

serve as exemplars of concepts, they help in building a domain knowledge base. On the 

other hand, when an image serves as a means to document scientific hypothesis, it not 

only supports scientific workflow, but also building a knowledge base for a broader 

domain or bridging the gaps between ontologies by matching concepts in different but 

scientifically related domains. 
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Chapter 6 

  

Mapping between OBO and OWL 

Ontology systems Open Biomedical Ontologies (OBO) [16] and the Semantic 

Web [17], each provide different ontology languages and tools and are widely used by 

biologists. However, the absence of a bridge between the two systems is cause for lack of 

interoperability between biomedical ontologies developed by different systems. This also 

causes problems for new biology projects that have to pick a technology with a view that 

choosing one system over the other will restrict them to the tools and existing ontology 

content provided by that particular system only. 

Given the volume and growth of OBO content, OBO Foundry may rightly be 

called the backbone for biomedical ontology content. Semantic Web, on the other hand, 

is intended to facilitate search and information integration by providing formally defined 

semantics, global identifiers and expressive languages for querying ontologies and 

reasoning on them to infer new knowledge. Integrating the features promised by the 

Semantic Web with OBO content would provide significant benefit to the biomedical 

community. One way to provide those features is to create a system that allows back and 

forth translation of OBO ontologies between the two systems. We have developed such a 

round-trip between OBO format and the Semantic Web’s Web Ontology Language 

(OWL). 
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We provide a methodology for organizing a mapping between two systems such 

as OBO and OWL, and a lossless round-trip mapping between OBO and OWL for 

ontologies originally developed in OBO. Through collaboration with other people in the 

OBO community, our work has grown into a community standard, and is now the official 

mapping supported by the Gene Ontology project and OBO Foundry [23]. Our source 

code for transformation software is also a part of the Gene Ontology source repository on 

SourceForge [96]. 

 

 

Figure 6.1: A layer cake for OBO (layers for OBO Core, OBO Vocabulary and OBO 

Ontology Extensions), with some examples and the corresponding layers in the 

Semantic Web layer cake. 

6.1 SYSTEM DESCRIPTION 

OBO and Semantic Web Layers 

The Semantic Web was envisioned as an expressive hierarchy that is often 

illustrated as a layer cake [97] (see Figure 2.2). At the beginning of this research it was 

our conjecture that the precise organization of the hierarchy transcends the Semantic Web 

and could be used, retroactively, to formalize the structure of other data and concept 

modeling systems. Thus, as a first step towards the creation of a transformation 

mechanism between OBO and OWL, we created a layer cake for OBO whose structure 
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mirrored that of the Semantic Web layer cake. This allowed us to identify straightforward 

mappings between OBO and OWL as well as the cases that do not match very well. We 

term this the ‘two layer cakes’ methodology. This methodology has also been 

successfully applied towards the transformation of SQL databases into OWL ontologies 

[73]. 

OBO Layer Cake 

We methodically examined each of the constructs of OBO. We find that most of 

the OBO format can be decomposed into layers with direct correspondence to the 

Semantic Web. We call these layers OBO Core, OBO Vocabulary, and OBO Ontology 

Extensions (see Figure 6.1). 

1. OBO Core: In OBO, a concept can either be a term (class) or a typedef 

(relationship type). OBO Core deals with assigning IDs and ID spaces to 

concepts, and representing relationships as triples. 

2. OBO Vocabulary: OBO Vocabulary allows annotating concepts with 

metadata such as names and comments. It also supports describing subclass 

and sub-property relationship types, as well as the domains and ranges for 

typedefs. 

3. OBO Ontology Extensions: In addition to concept-level tags, OBO Ontology 

Extensions (OBO-OE) layer defines tags for expressing metadata on the entire 

ontology as well. It also allows defining synonyms and equivalences and 

supports deprecation of concepts. OBO-OE layer can also express specific 

properties of OBO terms (e.g. set combinations, disjoints etc.), and typedefs 

(e.g. transitivity, uniqueness, symmetry, cardinalities). 
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Table 6.1: Layer cake assignments for OBO constructs. 

Layer List of constructs 
  

OBO Core id, idspace, relationship 
  

  

OBO Vocabulary name, definition, comment, is_a, domain, range 
  

  

OBO Ontology 

Extensions 

format-version, version, date, saved-by, auto-

generated-by, namespace, default-namespace, 

subsetdef, alt_id, relationship, subset, 

synonym, is_obsolete, is_cyclic, is_transitive, 

is_symmetric, import, synonymtypedef, 

intersection_of, union_of, disjoint_from, 

replaced_by, consider, inverse_of, 

transitive_over 
  

Table 6.1 provides assignments of OBO constructs to appropriate layers in the 

OBO layer cake. Since we mostly have an exact mapping of layers between the two 

languages (Figure 6.1), deciding which constructs to use for each kind of transformation 

is simplified. OBO Core tags can be transformed using RDF. OBO Vocabulary tags 

require using RDF Schema constructs. OBO Ontology Extensions tags require constructs 

defined in OWL. 

Incompatibilities between OBO and OWL 

We classify incompatibilities between the two languages into one of the two 

categories. First, in certain cases, the semantic equivalent of a construct in one language 

is missing from the other language. Second, sometimes the semantics of constructs in 

OBO are not sufficiently well-defined to map to a formally defined OWL construct, 

which forces us to define new vocabulary in OWL in order to allow the lossless 

transformation. 

1. Entities in OWL have globally unique identifiers (URIs). On the other hand, 

OBO allows local identifiers. Transforming OBO into OWL requires 

transforming the local identifiers in an OBO ontology into URIs. Also, in 
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order to make the round-trip possible, it is necessary to extract the local 

identifier back from the URI. 

2. OBO language has the ‘subset’ construct, which does not have an equivalent 

construct in OWL. An OBO subset is a collection of terms, and is defined as a 

part of an ontology. An ontology can contain multiple subsets and each term 

can be a part of multiple subsets. In order to make the transformation possible, 

we need to define an OWL construct equivalent to OBO subset, and some 

relationship concepts to represent terms being in a subset, and a subset being a 

part of an ontology. 

3. There are multiple kinds of synonym tags in OBO, e.g. related, narrow, broad, 

exact etc. The differences between these constructs are not formally 

documented. This requires defining new concepts in OWL, which can perhaps 

be mapped to new or already existing constructs in OWL. 

Elements of OBO “missing” in Semantic Web are few, and can still be 

constructed in OWL. Thus, OBO ontologies may be translated to Semantic Web. 

However, in order to make the round-trip possible, we find it important to store some 

ancillary in-formation about the OBO ontology in the OWL file, e.g. a base URI etc., so 

it can be translated back without any loss of knowledge. It is important to note that even 

changing a local identifier within the whole knowledgebase is counted as loss of 

knowledge from the original source, even if the overall structure of the ontology remains 

intact. The presence of such incompatibilities requires us to make some complex 

mapping choices explained later. 
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OBO and Sublanguages of OWL 

OWL has three increasingly expressive sublanguages; OWL Lite, OWL DL and 

OWL Full. Each of these sublanguages extends its simpler predecessor with richer 

constructs that affect the computational completeness and decidability of the ontology. 

Our investigation shows that a major portion of OBO Ontology Extensions maps 

to OWL Lite and provides similar level of expressiveness. Overall, OBO features are a 

strict subset of OWL DL. In OBO, the definition of a term or a typedef is rigid and not as 

expressive as OWL Full. OWL Full allows restrictions to be applied on the language 

elements themselves [33, 34]. In other words, an OWL Full Class can also be an OWL 

Full Property and an Instance and vice versa. Such features are not supported in OBO. 

Recall, the primary concern is the use of the Semantic Web technology and tools 

for OBO ontologies. Thus, that OBO is less expressive than OWL is the convenient 

direction of containment. It does mean that round-trips cannot be supported unless the 

editing of any OBO ontology while in OWL representation is restricted. We talk about 

the editing of transformed ontologies while in OWL language in a later section as well. 

While transforming OBO ontologies into OWL, we must ensure producing a 

representation that can be used by description logic based inference engines. One of the 

intended goals of our transformation is to produce OWL DL, and not OWL Full. 

6.3 TRANSFORMATION METADATA AND RULES 

In this section, we present some of the rules for the transformation of OBO 

ontologies into OWL. For more complex transformations we describe the transformations 

and explain our approach. 
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In order to facilitate the transformation, we have defined a set of OWL meta-

classes that correspond to the vocabulary of OBO tags. Complete listing of mappings 

between OBO and OWL are available in a Google Spreadsheet [98]. 

 

Table 6.2: Some OBO elements (taken from ZFA) and their mappings in OWL. 

OBO OWL 
  

[Typedef] 

id: part_of 

name: part of 

is_transitive: true 

<owl:TransitiveProperty 

    rdf:about="…#part_of"> 

  <rdfs:label>part of</rdfs:label> 

</owl:TransitiveProperty> 
  

Example A Simple transformations: name, transitivity 
  

  

[Term] 

id: ZFA:0000434 

name: skeletal 

system 

is_a: ZFA:0001439 

<owl:Class rdf:about="...#ZFA_0000434"> 

  <rdfs:label>skeletal system</rdfs:label> 

  <rdfs:subClassOf 

      rdf:resource="...#ZFA_0001439"/> 

</owl:Class> 
  

Example B Transformation of ‘is-a’ 
  

  

[Term] 

id:  ZFA:0001439 

name: anatomical 

system 

relationship: 

part_of ZFA:0001094 

<owl:Class rdf:about=“…#ZFA_0001439”> 

  <rdfs:label>anatomical 

system</rdfs:label> 

  <rdfs:subClassOf><owl:Restriction> 

      <owl:onProperty 

          rdf:resource=“…#part_of” /> 

      <owl:someValuesFrom 

          rdf:resource=“…#ZFA_0001094” /> 

  </owl:Restriction></rdfs:subClassOf> 

</owl:Class> 
  

Example C Transformation of a relationship 
  

  

[Term] 

id: ZFA:0000437 

name: stomach 

is_obsolete: true 

<owl:Class 

    rdf:about="&oboInOwl;ObsoleteClass"/> 

  <owl:Class rdf:about="...#ZFA_0000437"> 

    <rdfs:label>stomach</rdfs:label> 

    <rdfs:subClassOf 

    

rdf:resource="&oboInOwl;ObsoleteClass"/> 

</owl:Class> 
  

Example D Transformation of obsolete term 
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Simple Transformation Rules 

Most of the transformations follow simple rules. For most header and 

term/typedef tags, there is a one-to-one correspondence between OBO tags and OWL 

elements, either pre-existing or newly defined. In this section, we list the elements with 

this kind of simple transformation. Table 6.2 Example A provides some examples. 

Header: The set of tag-value pairs at the start of an OBO file, before the 

definition of the first term or typedef, is the header of the ontology. When translated into 

OWL language, each of the OBO header tags gets translated into the corresponding OWL 

markup element. The whole ontology header is contained in the owl:Ontology element 

in the new OWL file, and can appear anywhere within the file, as opposed to the start of 

file in OBO language. 

Terms: A term in OBO is a class in OWL. So a term declaration is translated into 

an owl:Class element and the tags associated with a term are contained within this 

element. Some tags that have straightforward transformations to OWL elements are: 

1. The elements for name and comment about a term fall into the OBO 

Vocabulary layer, and are translated into rdfs:label and rdfs:comment 

respectively. A definition tag is translated into hasDefinition annotation 

property, and is therefore placed in the OBO Ontology Extensions layer. 

2. The is_a tag in OBO specifies a subclass relationship, and is placed in the 

OBO Vocabulary layer. It is translated into an rdfs:subClassOf element 

(Table 6.2 Example B). 

Typedefs: A typedef in OBO is an object property in OWL. A typedef stanza in 

an OBO file is translated into an owl:ObjectProperty element in OWL. The other 

information associated with the typedef is expressed as elements nested within this 

element. Some simple transformations are: 



93 

1. OBO typedefs can have associated domains and ranges. These are expressed 

by domain and range tags, and are in the OBO Vocabulary layer. These tags 

are translated into RDF Schema elements rdfs:domain and rdfs:range 

respectively. 

2. Just like subclasses for terms, a property can be a sub-property to another 

property. A sub-property relationship is expressed using the is_a tag, from 

OBO Vocabulary layer, in a typedef stanza. This tag is translated into an 

rdfs:subPropertyOf element defined in RDF Schema.  

3. Typedefs may be cyclic (is_cyclic tag), transitive (is_transitive tag) or 

symmetric (is_symmetric tag). These tags fall into the OBO Ontology 

Extensions layer. The corresponding elements in OWL are annotation 

property isCyclic, and property types owl:TransitiveProperty and 

owl:SymmetricProperty respectively. The isCyclic property specifies a 

Boolean value. 

Identifiers and ID Spaces 

OBO has a local identifier scheme. As OBO evolves, ID spaces have been 

introduced to allow specifying global identifiers. OBO identifiers have no defined syntax, 

but they are recommended to be of the form: 

“<IDSPACE>:<LOCALID>” 

However, existing OBO ontologies may contain flat identifiers, ones that do not 

mention the ID space. OBO identifiers must be converted to URIs for use in OWL. The 

rules for converting OBO identifiers to URIs in the current mapping are as follows: 
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If the OBO header declares an ID space of the form: “idspace: GO 

http://www.go.org/owl#”, all OBO identifiers with the prefix GO: will be mapped to 

the provided URI, e.g. “http://www.go.org/owl#GO_0000001”. 

If an OBO ID space prefix does not have a declaration in the header, all identifiers 

that mention that prefix will be transformed using a default base URI, for example an 

identifier of the form “SO:0000001” will become “<default-base-uri>SO_0000001”. 

In case the OBO identifier is flat, e.g. foo, the transformation again uses the default base 

URI to create “<default-base-uri>UNDEFINED_foo”. Notice that the URI contains 

“UNDEFINED_”, which clarifies that the URI should be translated into a flat identifier 

when translating the OWL version back to OBO. 

Recall that OBO Relations Ontology [27] standardizes certain typedefs for use 

across OBO ontologies. Such typedefs have OBO identifiers prefixed with ID space 

OBO_REL. OBO ontology assumes the presence of this ID space with URI 

“http://www.obofoundry.org/ro/ro.owl” even if it is not explicitly stated. When 

translated into OWL, an XML namespace xmlns:oboRel with the same URI is added to 

the ontology, and the newly created object property is assigned that namespace. As a 

result, we ensure that all Relations Ontology constructs are mapped to the same URIs 

across ontologies. 

Relationships 

Relationships between OBO terms can be defined using the relationship tag. 

A defined relationship is like a binary predicate and consists of a subject (the term being 

described in the stanza), a relationship type and an object. 

There are multiple kinds of restrictions on relationships that can be expressed 

using OWL. OBO specifications do not specify any formal semantics of the 
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relationship tag that match a specific relationship type restriction defined in OWL. 

Therefore, based on the use of relationships in existing ontologies, we selected the 

appropriate element, the owl:someValuesFrom restriction in our mappings. This 

restriction is similar to the existential quantifier of predicate logic [33, 34]. An example 

of relationship transformation is shown in Table 6.2 Example C. 

Subsets 

Terms in an OBO ontology can be organized into subsets. A term can belong to 

multiple subsets. In order to declare a subset, a value for the tag subsetdef is specified 

in the OBO ontology header. This value consists of a subset ID and a quoted description 

about the subset. A term can be assigned to a defined subset using the subset tag. 

Multiple subset tags are used to assign the term to multiple subsets of the ontology. 

When the ontology is translated into OWL, the mapping of subsets is one of the 

more complex processes. This is due to the fact that subsets do not have a semantic 

equivalent in OWL. Therefore, we use some OWL features to construct elements that 

serve as subsets. Subsets fall in the OBO Ontology Extensions in the OBO layer cake. 

The local ID assigned to the subset becomes the OWL ID of a subset resource. A 

subset resource is declared using an oboInOwl:Subset element. The inSubset 

annotation is used to assign terms to a subset, and it is expressed within the owl:Class 

element. 

Obsolete Content 

OBO format supports obsolete content. A term or typedef can be marked as 

obsolete using the is_obsolete tag with a true Boolean value. The is_obsolete tag 

is in the OBO Ontology Extensions. Obsolete terms and typedefs are not allowed to have 
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any relationships with other terms or typedefs, including the subclass and sub-property 

relationships. 

When translated into OWL, an obsolete term becomes a subclass of 

oboInOwl:ObsoleteClass (Table 6.2 Example D). Similarly, an obsolete typedef 

becomes a sub-property of oboInOwl:ObsoleteProperty. 

 

Table 6.3: Results from evaluation of our round-trip transformation on some ontologies.
1, 

2
 

Ontology Original OBO OWL Translation Round-trip OBO 
    

ZFA Terms: 2219 

Typedefs: 4 

Classes: 2219 

Object Properties: 4 

Terms: 2219 

Typedefs: 4 
    

    

MA Terms: 2882 

Typedefs: 1 

Classes: 2882 

Object Properties: 1 

Terms: 2882 

Typedefs: 1 
    

    

SPD Terms: 494 

Typedefs: 1 

Classes: 494 

Object Properties: 1 

Terms: 494 

Typedefs: 1 
    

    

GO Terms: 28667 

Typedefs: 5 

Classes: 28667 

Object Properties: 5 

Terms: 28667 

Typedefs: 5 
    

6.4 IMPLEMENTATION AND EVALUATION 

Based on the mapping rules, we have implemented a Java implementation of the 

transformation. Our implementation is part of the official Gene Ontology project source 

[96]. Gene Ontology project is an open source project on Sourceforge.net, and is home to 

the OBO ontology editor OBO-Edit. Our implementation is part of the OBO API that 

provides data structures for storing OBO ontologies, as well as read and write capabilities 

                                                
1 ZFA = Zebrafish Anatomy ontology, MA = Adult Mouse Gross Anatomy ontology, SPD = Spider 

Ontology, and GO = Gene Ontology. 
2 Class counts do not include obsolete classes, or ancillary information required for round-trips. 
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for OBO and OWL, among other operations. The source code for our transformation tool 

is available at [99]. Our mapping tool is also used in Morphster. 

Finally, we have deployed our transformation as a web service for general use: 

http://www.cs.utexas.edu/~hamid/oboowl.html 

In the OBO API, we have created NCBOOboInOWLMetadataMapping class in the 

package org.obo.owl.datamodel.impl. This class implements the round-trip mapping 

between OBO and OWL. In order to provide console-based use of the transformation 

tool, we have created Obo2Owl and Owl2Obo classes in org.obo.owl.test package. 

In order to evaluate the OWL output of our implementation, we have tested our 

tool on Gene Ontology, Zebrafish Anatomical Ontology, Spider Ontology and Adult 

Mouse Gross Anatomy, obtained from NCBO BioPortal. After transformation of these 

ontologies into OWL, we have successfully loaded the OWL files into Protégé [12], an 

ontology development tool for the Semantic Web. Using the ‘summary’ feature of 

Protégé, we have compared the overall class and object property count with the term and 

typedef count obtained for the original OBO file, using OBO-Edit’s ‘extended 

information’ feature The results of the comparison (Table 6.3) show equal values for both 

versions of the ontologies. Similarly, for testing the round-trip, we compared the original 

OBO file with the round-trip version, again using OBO-Edit’s feature. Our evaluation 

showed that the two OBO ontologies had the same term and typedef counts (Table 6.3). 

6.5 IMPLICATIONS OF TRANSFORMATION 

OBO Semantics by Transformation 

The transformation system has the additional effect of formalizing the semantics 

of the OBO language. The semantics of OBO are operationally defined by means of GO 

and the software systems that support GO. The semantics of OWL have been formally 
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defined using model theory [32, 100]. Though we have not written it out, a formal 

document specifying OBO semantics can be created, mechanically, from the contents of 

this paper and the OWL semantics documents. The contents of that document would 

comprise an enumeration of the pairwise mapping of constructs between the two 

languages, restating, in each mapping, the semantics stated for the involved OWL 

construct. 

 

Table 6.4: Identifying the semantics for OBO constructs using OWL mappings.
3
 

Description OBO OWL Semantics 
    

x is a subclass 

of y 

is_a rdfs:subClassOf �8K��C� ⊆ �8K��&� 

    

    

x is a sub-

property of y 

is_a rdfs:subPropertyOf 8K��C� ⊆ 8K��&� 

    

    

x is domain of 

property y 

domain rdfs:domain < a, ] >∈ 8K��&� ⇒ a ∈ �8K��C�  
    

    

x is disjoint 

from y 

disjoint_ 

from 

owl:disjointWith �8K��C� ∩ �8K��&� = {} 

    

    

p is a transitive 

property 

is_ 

transitive 

owl:Transitive 

Property 
< C, & >, < &, a >∈ 8K��-� ⇒< C, a >∈ 8K��-�  

    

In Table 6.4, we present a few examples where our transformation mapping could 

provide formal semantics for OBO constructs, taken directly from OWL semantics 

specifications. 

While the identification is straightforward in these cases, in some other situations 

it is not very clear. Finding the semantics of relationships in OBO is one such case. As 

mentioned earlier, OBO specifications do not provide the semantics of the construct used 

to specify relationships between two terms using a typedef. Therefore, it is hard to decide 

                                                
3 CEXT(c): the set of instances of class c; EXT(p): the set of pairs <x,y> related by property p 
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which of the available relationship constraints in OWL (owl:allValuesFrom, 

owl:someValuesFrom) to use, the former being similar to a universal quantifier, and the 

latter to an existential quantifier. In our transformations, we use owl:someValuesFrom, 

since already built ontologies show examples of use of OBO relationship construct in a 

compatible way. We recommend that the semantics of relationships should always be 

defined to match the owl:someValuesFrom restriction. 

Other OBO tags that do not clearly match with OWL elements, such as synonyms 

and subsets, as well as the semantics for the is_obsolete tag also present a more 

significant challenge in the identification of semantics. 

Updating OBO Ontologies in OWL 

The set of constructs for ontology representation provided by OWL is 

considerably larger than the set of constructs provided by OBO. Therefore, in order to 

allow round-trip transformations on OBO ontologies, it is important to restrict the editing 

of such ontologies per some guidelines while they are being represented in OWL. 

Our transformation mappings essentially provide a subset of OWL elements that 

may be used for adding or updating contents of the ontology. We refer to this subset of 

OWL as OWL-Bio, for biomedical ontologies hosted by OBO. Since our mapping 

produces OWL DL, OWL-Bio is a subset of OWL DL by definition. 

Compared to the general use of OWL, there are two key points to keep in mind: 

1. To create relationships, use owl:someValuesFrom relations. Since OBO does 

not have a corresponding relationship mechanism for owl:allValuesFrom, it 

is not a part of OWL-Bio. 
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2. Obsolescence of terms in the ontology should be done using the obsolete 

elements oboInOwl:ObsoleteClass and oboInOwl:ObsoleteProperty 

instead of built in deprecation elements in OWL. 

6.6 STANDARDIZATION OF MAPPINGS AND RELATED WORK 

We have collaborated with Stuart Aitken, Chris Mungall, Dilvan Moreira and 

Nigam Shah to produce a standardized mapping. Each of our collaborators, as well as 

Mikel Egana, Erick Antezana, and LexBio group at Mayo Clinic, contributed 

unpublished independent effort at creating a transformation system. The results of these 

efforts are documented in our spreadsheet. No single effort survived in its entirety in the 

common mapping [98]. Our methodology and mapping choices, however, were fully 

adopted. The difference between our original work and the standardized mapping is 

mainly that of different strings (names) for mapping annotations. 

Another independent and important effort was that of Golbreich et al. [101, 102] 

(hereafter Golbreich). Note that this group did not participate in the community effort to 

standardize the mapping. Golbreich developed a BNF grammar for OBO syntax, as well 

as a mapping between OBO and OWL 1.1 (now known as OWL 2). The differences 

between the Golbreich work and the common mapping effort presented in this paper 

comprise a difference of methodology and practical focus. Golbreich’s work laid out 

valuable syntactic groundwork to formalize the semantics of a large subset of OBO. 

Much like most of the other first efforts, a complete transformation system was not 

specified. This particular effort deferred resolving OBO annotations, synonyms, subsets, 

and deprecation tags. Golbreich’s work also did not address the mapping of local 

identifiers in OBO into global identifiers. The transformations that are specified by 

Golbreich are largely consistent with the common mappings. 
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6.7 CONCLUSION 

Building ontologies is not a new idea for the biology community, and precedes 

the development of the Semantic Web. While ontologies are a central part of the 

architecture of the Semantic Web, the Semantic Web vision includes a broad range of 

technologies from the Artificial Intelligence field, such as inference and querying 

mechanisms, as well as anticipating additional elements of distributed computation, such 

as global identifiers and the use of XML and HTTP as middleware. OBO, on the other 

hand, has appropriate tool support for building ontologies and hosts a number of 

important biomedical ontologies. Hence the OBO community has the biggest and most 

immediate need for the features being developed by the Semantic Web community. 

We have standardized the mapping between the two systems to allow the OBO 

community to utilize the tool base developed for the Semantic Web world, and will also 

standardize the transformation across OBO tools. We have indirectly formalized the 

semantics of OBO by creating a round-trip transformation between OBO and OWL. We 

have also implemented our transformation tool in Java and it is available as a part of open 

source Gene Ontology project, and also as a web service. We believe our work is an 

important step towards building interoperable knowledge bases be-tween OBO and the 

Semantic Web communities. 

The implications of our work in providing semantics to OBO as well as in 

defining a “biomedical flavor” for OWL strongly suggest the use of this mapping as a 

potential bridge between the OBO and the Semantic Web worlds. Our ability to make 

round-trips between OBO and OWL-Bio could enable fluid interconnections between the 

two worlds. While OWL-Bio could serve as a common ground for the two languages, our 

round-trip tool could be used as a validator for ontologies updated in OWL. 
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A key difference between the OBO community and the Semantic Web is the 

methodology for content development across ontologies. The Semantic Web has adapted 

a completely distributed development mechanism for ontologies that may be integrated 

using URIs. On the other hand, the OBO community uses a hybrid of centralized and 

distributed development. While the users of OBO develop ontologies independently, the 

OBO foundry has the goal of creating a suite of orthogonal interoperable reference 

ontologies, such as the Relations Ontology, in the biomedical domain. Our transformation 

system enriches the Semantic Web by providing this this addition-al structured ontology 

content and the access to the wealth of data annotated using it. 
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Chapter 7 

  

Conclusions and Future Work 

Ontologies have been used to model biological knowledge for centuries under 

other names, going at least as far back as the Linnaean taxonomy and Charles Darwin’s 

sketches of evolutionary trees. More recently, the development of ontology systems such 

as the Semantic Web and the Open Biomedical Ontology (OBO) Foundry have made 

ontologies the tool of choice for capturing and publishing knowledge in systematic 

biology. 

At the highest level, this dissertation represents an attempt to demonstrate the 

strengths and benefits of ontologies in biology. As the use of ontologies grows in the 

community, it is crucial to understand the utility of ontologies as a tool for capturing 

domain knowledge. Most biologists understand only the knowledge representation aspect 

of ontologies and hence see them as another way of publishing their data and results to 

the world. Our primary goal is to demonstrate the value of the other aspects of ontologies, 

knowledge inference and knowledge integration, in the context of scientific research in 

systematic biology. Each of the problems we have addressed in this dissertation lead us 

towards this fundamental goal. 

Our work represents a beginning, and there is significant progress to be made to 

help biologists truly utilize ontologies. 
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• Capturing knowledge in ontological form 

A significant part of our work in this dissertation as well as on the Morphster 

project as a whole focuses on enabling our users, biologists, to capture their 

scientific data, hypotheses and results in ontological form. While the 

Morphster meta-model and use cases such as stack-of-photos represent 

progress in this area, there is need for better domain-specific tools that 

integrate ontology building at each stage in the workflow of a phylogenetic 

study. A particular case in this regard is that of character statements – 

capturing biological facts and scientific observations as ontological concepts. 

Our taxonomy for types of characters represents a major step forward in 

explaining and capturing character statements. However, it is focused towards 

building anatomy ontologies. A short-term research direction is to expand the 

taxonomy to a broader set of character types and investigate its applications to 

a broader set of biological inference problems. 

• Bringing legacy knowledge from the literature into the knowledgebase 

In addition to developing tool support for new knowledge acquisition in 

biology, there is a great need for importing the existing literature and legacy 

data such as character matrices and trees into the ontology domain. Scientists 

conducting new studies are always interested in finding legacy work on 

similar anatomical regions or organisms, and as the ontological content grows, 

there is need to connect the legacy data to it. One of the ways to achieve this 

goal is to use natural language processing techniques to identify character 

statements and matrix data in the literature, and extract the frames for 

appropriate concepts based on our meta-model. This data is typically 
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represented in a stylized natural language. Starting from the frames for the 

character types in our taxonomy, more character types and their frames can be 

identified to capture a broader set of characters in this stylized language. 

• Capturing and integrating molecular biology with morphology 

Connecting results in molecular biology with morphology is a significant 

problem in evolutionary biology. An increasing number of molecular 

biologists are working with ontologies. Investigations into the use of 

ontologies to connect the results from molecular biology with morphology 

may provide interesting results. 

• Integrating biological databases through ontologies 

There are a large number of independent relational databases managed by 

biologists for recording their data. Schemas of these databases vary greatly. 

Ontologies, or federated schemas, have been used in other domains for 

schema matching. Community developed ontologies may be needed to 

provide a solution to interconnect these biology databases. 
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Appendix A 

  

Source Code of Jess Rules 

(import edu.utexas.cs.morphology.model.*) 

 

(deftemplate Tree (declare (from-class Tree) (include-variables TRUE))) 

(deftemplate Taxon (declare (from-class Taxon) (include-variables TRUE))) 

 

(deftemplate NA (declare (from-class NA) (include-variables TRUE))) 

(deftemplate Rel (declare (from-class Rel) (include-variables TRUE))) 

(deftemplate NAEntity (declare (from-class NAEntity) (include-variables TRUE))) 

(deftemplate NARel (declare (from-class NARel) (include-variables TRUE))) 

(deftemplate Quality (declare (from-class Quality) (include-variables TRUE))) 

 

(deftemplate Char (declare (from-class Char) (include-variables TRUE))) 

(deftemplate State (declare (from-class State) (include-variables TRUE))) 

 

(deftemplate CharNE extends Char (declare (from-class CharNE) (include-

variables TRUE))) 

(deftemplate CharTR extends Char (declare (from-class CharTR) (include-

variables TRUE))) 

 

(deftemplate CharCL extends CharTR (declare (from-class CharCL) (include-

variables TRUE))) 

(deftemplate CharME extends CharTR (declare (from-class CharME) (include-

variables TRUE))) 

(deftemplate CharRE extends CharTR (declare (from-class CharRE) (include-

variables TRUE))) 

 

(deftemplate CharBR extends CharRE (declare (from-class CharBR) (include-

variables TRUE))) 

(deftemplate CharRO extends CharRE (declare (from-class CharRO) (include-

variables TRUE))) 

(deftemplate CharCO extends CharRE (declare (from-class CharCO) (include-

variables TRUE))) 

(deftemplate CharSE extends CharRE (declare (from-class CharSE) (include-

variables TRUE))) 

 

(deftemplate StateEL extends State (declare (from-class StateEL) (include-

variables TRUE))) 

(deftemplate StateELElement (slot sid) (slot entity)) 

 

(deftemplate StateNU extends State (declare (from-class StateNU) (include-

variables TRUE))) 
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(deftemplate StateE extends State (declare (from-class StateE) (include-

variables TRUE))) 

 

(deftemplate Cell (declare (from-class Cell) (include-variables TRUE))) 

 

(deftemplate StateChange (slot character) (slot fromState) (slot toState)) 

(deftemplate Params (slot model) (slot target) (slot direction) (slot baseUri)) 

 

(defrule rule-01-effect-of-neomorphic-character 

    "State change from absent to present in a neomorphic character when the 

parent is present" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharNE (id ?chid) (entity ?nee) (vicinity ?nev) (relation ?ner)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

    (State (id ?fsid) (name "absent")) 

    (State (id ?tsid) (name "present")) 

    (NAEntity (id ?vid) (na ?naid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?nev) ?vid)) 

    => 

    (bind ?newid (str-cat ?baseuri ?tgt "/" ?nee)) 

    (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?newid ?nee 

?naid)) 

    (add ?eobj) 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?vid ?newid ?ner 

?naid)) 

    (add ?robj) 

    ;(assert (NAEntity (id ?newid) (name ?nee) (na ?naid)) 

    ;    (NARel (na ?naid) (child ?newid) (relation "part_of") (parent ?vid))) 

    (printout t "*** NE :: (01) + [E:" ?nee "] [R:" ?nee " " ?ner " " ?nev "] 

==> " ?chid  crlf)) 

 

(defrule rule-02-effect-of-neomorphic-character 

    "State change from absent to present in a neomorphic character when the 

parent is missing" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharNE (id ?chid) (entity ?nee) (vicinity ?nev)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

    (State (id ?fsid) (name "absent")) 

    (State (id ?tsid) (name "present")) 

    (forall (NAEntity (na ?naid) (id ?vid)) 

        (test (neq (str-cat ?baseuri ?tgt "/" ?nev) ?vid))) 

    => 

    (bind ?newid (str-cat ?baseuri ?tgt "/" ?nee)) 

    (bind ?wholeid (str-cat ?baseuri ?tgt "/whole")) 

    (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?newid ?nee 

?naid)) 

    (add ?eobj) 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?wholeid ?newid 

"part_of" ?naid)) 

    (add ?robj) 

    ;(assert (NAEntity (id ?newid) (name ?nee) (na ?naid)) 

    ;    (NARel (na ?naid) (child ?newid) (relation "part_of") (parent 

?wholeid))) 
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    (printout t "*** NE :: (02) + [E:" ?nee "] [R:" ?nee " part_of whole] ==> " 

?chid  crlf)) 

 

(defrule rule-03-effect-of-neomorphic-character 

    "State change from present to absent in a neomorphic character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (CharNE (id ?chid) (entity ?nee)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

    (State (id ?fsid) (name "present")) 

    (State (id ?tsid) (name "absent")) 

    ?theentity <- (NAEntity (id ?eid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?nee) ?eid)) 

    => 

    (retract ?theentity) 

    (printout t "*** NE :: (03) - [E:" ?nee "] ==> " ?chid crlf)) 

 

(defrule rule-04-effect-of-binaryrelationship-character 

    "State change from yes to no in a binaryrelationship character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (CharBR (id ?chid) (child ?ce) (relation ?rid) (parent ?pe)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

    (State (id ?fsid) (name "yes")) 

    (State (id ?tsid) (name "no")) 

    ?therelation <- (NARel (child ?cid) (relation ?rid) (parent ?pid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?ce) ?cid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?pe) ?pid)) 

    => 

    (retract ?therelation) 

    (printout t "*** BR :: (04) - [R:" ?ce " " ?rid " " ?pe "] ==> " ?chid 

crlf)) 

 

(defrule rule-05-effect-of-binaryrelationship-character 

    "State change from no to yes in a binaryrelationship character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharBR (id ?chid) (child ?ce) (relation ?rid) (parent ?pe)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

    (State (id ?fsid) (name "no")) 

    (State (id ?tsid) (name "yes")) 

    (forall (NARel (na ?naid) (child ?cid) (relation ?rid) (parent ?pid)) 

        (or (test (neq (str-cat ?baseuri ?tgt "/" ?ce) ?cid)) 

            (test (neq (str-cat ?baseuri ?tgt "/" ?pe) ?pid)))) 

    => 

    (bind ?newcid (str-cat ?baseuri ?tgt "/" ?ce)) 

    (bind ?newpid (str-cat ?baseuri ?tgt "/" ?pe)) 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?newpid ?newcid ?rid 

?naid)) 

    (add ?robj) 

    ;(assert (NARel (na ?naid) (child ?newcid) (relation ?rid) (parent 

?newpid))) 

    (printout t "*** BR :: (05) + [R:" ?ce " " ?rid " " ?pe "] ==> " ?chid 

crlf)) 

 

(defrule rule-06-effect-of-classifying-character 

    "State change from ? to some other quality in a classifying character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 
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    (NA (taxon ?tgt) (id ?naid)) 

    (CharCL (id ?chid) (entity ?cle)) 

    (StateChange (character ?chid) (fromState "?") (toState ?tsid)) 

    (State (id ?tsid) (name ?tsname)) 

    => 

    (bind ?parenteid (str-cat ?baseuri ?tgt "/" ?cle)) 

    (bind ?neweid (str-cat ?baseuri ?tgt "/" ?tsname "-" ?cle)) 

    (bind ?newename (str-cat ?tsname "-" ?cle)) 

    (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?neweid ?newename 

?naid)) 

    (add ?eobj) 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?parenteid ?neweid 

"is_a" ?naid)) 

    (add ?robj) 

    ;(assert (NAEntity (id ?neweid) (name ?newename) (na ?naid)) 

    ;    (NARel (na ?naid) (child ?neweid) (relation "is_a") (parent 

?parenteid))) 

    (printout t "*** CL :: (06) + [E:" ?tsname "-" ?cle "] [R:" ?tsname "-" 

?cle " is_a " ?cle "] ==> " ?chid crlf)) 

 

(defrule rule-07-effect-of-classifying-character 

    "State change from a quality to ? in a classifying character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharCL (id ?chid) (entity ?cle)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState "?")) 

    (State (id ?fsid) (name ?fsname)) 

    ?theentity <- (NAEntity (id ?neweid) (name ?newename) (na ?naid)) 

    ?therelation <- (NARel (na ?naid) (child ?neweid) (relation "is_a") (parent 

?parenteid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?cle) ?parenteid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?fsname "-" ?cle) ?neweid)) 

    (test (eq (str-cat ?fsname "-" ?cle) ?newename)) 

    => 

    (retract ?therelation 

        ?theentity) 

    (printout t "*** CL :: (07) - [E:" ?newename "] [R:" ?newename " is_a " 

?cle "] ==> " ?chid crlf)) 

 

(defrule rule-08-effect-of-classifying-character 

    "State change from a quality to another quality in a classifying character, 

neither state is ?" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharCL (id ?chid) (entity ?cle)) 

    (StateChange (character ?chid) (fromState ?fsid) (toState ?tsid)) 

    (not (or (test (eq ?fsid "?")) (test (eq ?tsid "?")))) 

    (State (id ?tsid) (name ?tsname)) 

    (State (id ?fsid) (name ?fsname)) 

    ?oldentity <- (NAEntity (id ?oldeid) (name ?oldename) (na ?naid)) 

    ?oldrelation <- (NARel (na ?naid) (child ?oldeid) (relation "is_a") (parent 

?parenteid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?cle) ?parenteid)) 

    (test (eq (str-cat ?baseuri ?tgt "/" ?fsname "-" ?cle) ?oldeid)) 

    (test (eq (str-cat ?fsname "-" ?cle) ?oldename)) 

    => 
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    (bind ?neweid (str-cat ?baseuri ?tgt "/" ?tsname "-" ?cle)) 

    (bind ?newename (str-cat ?tsname "-" ?cle)) 

    (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?neweid ?newename 

?naid)) 

    (add ?eobj) 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?parenteid ?neweid 

"is_a" ?naid)) 

    (add ?robj) 

    ;(assert (NAEntity (id ?neweid) (name ?newename) (na ?naid)) 

    ;    (NARel (na ?naid) (child ?neweid) (relation "is_a") (parent 

?parenteid))) 

    (retract ?oldrelation ?oldentity) 

    (printout t "*** CL :: (08) - [E:" ?oldename "] [R:" ?oldename " is_a " 

?cle "] ==> " ?chid crlf 

        "               + [E:" ?newename "] [R:" ?newename " is_a " ?cle "] ==> 

" ?chid crlf)) 

 

(defrule rule-09-effect-of-compositional-character 

    "Found an entity that should not be a part of the parent entity of a 

compositional character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharCO (id ?chid) (entity ?coe)) 

    (NAEntity (id ?coeid) (name ?coe) (na ?naid)) 

    (StateChange (character ?chid) (toState ?tsid)) 

    (StateEL (id ?tsid)) 

    ?therelation <- (NARel (na ?naid) (child ?cheid) (relation "part_of") 

(parent ?coeid)) 

    (NAEntity (id ?cheid) (name ?chename)) 

    (not (StateELElement (sid ?tsid) (entity ?chename))) 

    => 

    (retract ?therelation) 

    (printout t "*** CO :: (09) - [R:" ?chename " part_of " ?coe "] ==> " ?chid 

crlf)) 

 

(defrule rule-10-effect-of-compositional-character 

    "Found a new entity that should be added as a part of the parent entity of 

a compositional character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharCO (id ?chid) (entity ?coe)) 

    (NAEntity (id ?coeid) (name ?coe) (na ?naid)) 

    (StateChange (character ?chid) (toState ?tsid)) 

    (StateEL (id ?tsid)) 

    (StateELElement (sid ?tsid) (entity ?chename)) 

    (not (NAEntity (name ?chename) (na ?naid))) 

    => 

    (bind ?cheid (str-cat ?baseuri ?tgt "/" ?chename)) 

    (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?cheid ?chename 

?naid)) 

    (add ?eobj) 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?coeid ?cheid 

"part_of" ?naid)) 

    (add ?robj) 

    ;(assert (NAEntity (na ?naid) (id ?cheid) (name ?chename)) 
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    ;    (NARel (na ?naid) (child ?cheid) (relation "part_of") (parent 

?coeid))) 

    (printout t "*** CO :: (10) + [E:" ?chename "] [R:" ?chename " part_of " 

?coe "] ==> " ?chid crlf)) 

 

(defrule rule-11-effect-of-compositional-character 

    "Found an existing entity that should be added as a part of the parent 

entity of a compositional character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharCO (id ?chid) (entity ?coe)) 

    (NAEntity (id ?coeid) (name ?coe) (na ?naid)) 

    (StateChange (character ?chid) (toState ?tsid)) 

    (StateEL (id ?tsid)) 

    (StateELElement (sid ?tsid) (entity ?chename)) 

    (NAEntity (name ?chename) (na ?naid) (id ?cheid)) 

    (not (NARel (na ?naid) (child ?cheid) (relation "part_of") (parent 

?coeid))) 

    => 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?coeid ?cheid 

"part_of" ?naid)) 

    (add ?robj) 

    ;(assert (NARel (na ?naid) (child ?cheid) (relation "part_of") (parent 

?coeid))) 

    (printout t "*** CO :: (11) + [R:" ?chename " part_of " ?coe "] ==> " ?chid 

crlf)) 

 

(defrule rule-12-effect-of-meristic-character 

    "Effect of meristic character when state changes to 1 and there are 

entities to be removed. State cannot be zero for this character." 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharME (id ?chid) (entity ?mee)) 

    (NAEntity (id ?meeid) (name ?mee) (na ?naid)) 

    (StateChange (character ?chid) (toState ?tsid)) 

    (StateNU (id ?tsid) (value 1)) 

    ?extrarel <- (NARel (na ?naid) (parent ?meeid) (relation "is_a") (child 

?meechid)) 

    (test (?meechid startsWith (str-cat ?meeid "#"))) 

    ?extraentity <- (NAEntity (na ?naid) (id ?meechid) (name ?meech)) 

    => 

    (retract ?extraentity ?extrarel) 

    (printout t "*** ME :: (12) - [E:" ?meech "] [R:" ?meech " is_a " ?mee "] 

==> " ?chid crlf)) 

 

(defrule rule-13-effect-of-meristic-character 

    "Effect of meristic character when state changes from low to high value." 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharME (id ?chid) (entity ?mee)) 

    (NAEntity (id ?meeid) (name ?mee) (na ?naid)) 

    (StateChange (character ?chid) (toState ?tsid) (fromState ?fsid)) 

    (StateNU (id ?tsid) (value ?tval)) 

    (StateNU (id ?fsid) (value ?fval)) 

    (test (> ?tval ?fval)) 
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    (test (>= ?fval 1)) 

    => 

    (printout t "*** ME :: (13) ") 

    (bind ?white "") 

    (if (= ?fval 1) then 

        (bind ?no1id (str-cat ?meeid "#1")) 

        (bind ?no1name (str-cat ?mee "#1")) 

     (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?no1id ?no1name 

?naid)) 

     (add ?eobj) 

     (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?meeid ?no1id 

"is_a" ?naid)) 

     (add ?robj) 

        ;(assert (NAEntity (na ?naid) (id ?no1id) (name ?no1name)) 

        ;    (NARel (na ?naid) (child ?no1id) (relation "is_a") (parent 

?meeid))) 

        (printout t "+ [E:" ?no1name "] [R:" ?no1name " is_a " ?mee "] ==> " 

?chid crlf) 

        (bind ?white "               ")) 

    (for (bind ?i (+ 1 ?fval)) (<= ?i ?tval) (++ ?i) 

        (bind ?nextid (str-cat ?meeid "#" ?i)) 

        (bind ?nextname (str-cat ?mee "#" ?i)) 

     (bind ?eobj (new edu.utexas.cs.morphology.model.NAEntity  ?nextid 

?nextname ?naid)) 

     (add ?eobj) 

     (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?meeid ?nextid 

"is_a" ?naid)) 

     (add ?robj) 

        ;(assert (NAEntity (na ?naid) (id ?nextid) (name ?nextname)) 

        ;    (NARel (na ?naid) (child ?nextid) (relation "is_a") (parent 

?meeid))) 

        (printout t ?white "+ [E:" ?nextname "] [R:" ?nextname " is_a " ?mee "] 

==> " ?chid crlf) 

        (bind ?white "               ")) 

    ) 

 

(deffunction to-integer (?str) 

    (bind ?hashindex (?str lastIndexOf "#")) 

    (bind ?piece (?str substring (++ ?hashindex))) 

    (bind ?val (call java.lang.Integer parseInt ?piece)) 

    (return ?val)) 

 

(defrule rule-14-effect-of-meristic-character 

    "Effect of meristic character when state changes from high to low value 

greater than 1." 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharME (id ?chid) (entity ?mee)) 

    (NAEntity (id ?meeid) (name ?mee) (na ?naid)) 

    (StateChange (character ?chid) (toState ?tsid) (fromState ?fsid)) 

    (StateNU (id ?tsid) (value ?tval)) 

    (StateNU (id ?fsid) (value ?fval)) 

    (test (< ?tval ?fval)) 

    (test (> ?tval 1)) 

    ?extrarel <- (NARel (na ?naid) (parent ?meeid) (relation "is_a") (child 

?meechid)) 

    (test (?meechid startsWith (str-cat ?meeid "#"))) 
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    ?extraentity <- (NAEntity (na ?naid) (id ?meechid) (name ?meech)) 

    (test (> (to-integer ?meechid) ?tval)) 

    => 

    (retract ?extraentity ?extrarel) 

    (printout t "*** ME :: (14) - [E:" ?meech "] [R:" ?meech " is_a " ?mee "] 

==> " ?chid crlf)) 

 

(defrule rule-15-effect-of-relationshipoptions-character 

    "Effect of a relationshipoptions character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharRO (id ?chid) (child ?ce) (relation ?rid)) 

    (NAEntity (na ?naid) (name ?ce) (id ?ceid)) 

    (StateChange (character ?chid) (toState ?tsid)) 

    (StateE (id ?tsid) (entity ?tse)) 

    (NAEntity (na ?naid) (name ?tse) (id ?tseid)) 

    => 

    (bind ?robj (new edu.utexas.cs.morphology.model.NARel ?tseid ?ceid ?rid 

?naid)) 

    (add ?robj) 

    ;(assert (NARel (na ?naid) (parent ?tseid) (relation ?rid) (child ?ceid))) 

    (printout t "*** RO :: (15) + [R:" ?ce " " ?rid " " ?tse "] ==> " ?chid 

crlf)) 

 

(defrule rule-16-effect-of-relationshipoptions-character 

    "Effect of a relationshipoptions character" 

    (Params (target ?tgt) (baseUri ?baseuri)) 

    (Taxon (id ?tgt)) 

    (NA (taxon ?tgt) (id ?naid)) 

    (CharRO (id ?chid) (child ?ce) (relation ?rid)) 

    (NAEntity (na ?naid) (name ?ce) (id ?ceid)) 

    (StateChange (character ?chid) (fromState ?fsid)) 

    (StateE (id ?fsid) (entity ?fse)) 

    (NAEntity (na ?naid) (name ?fse) (id ?fseid)) 

    ?extrarel <- (NARel (na ?naid) (parent ?fseid) (relation ?rid) (child 

?ceid)) 

    => 

    (retract ?extrarel) 

    (printout t "*** RO :: (16) - [R:" ?ce " " ?rid " " ?fse "] ==> " ?chid 

crlf)) 
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Appendix B 

  

Input Data Files for Plants Test Case 

Plants tree file 

 
embryophyte land plant 

fern fern 

spermatophyte seed plant or phanerogam 

gymnosperm naked-seed plant 

angiosperm flowering plant 

conifer cone bearing plant 

cycad cycad 

eudicot eudicot 

monocot monocot 

# 

embryophyte fern spermatophyte 

spermatophyte angiosperm gymnosperm 

gymnosperm conifer cycad 

angiosperm eudicot monocot 

 

Plants ontology file 

 
whole 

seed 

leaf 

simple-leaf 

stem 

petal 

flower 

inflorescence 

cotyledon 

fruit 

root 

root-cap 

root-cortex 

exodermis 

root-endodermis 

shoot 
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bud 

floral-bract 

androecium 

stamen 

gynoecium 

carpel 

perianth 

calyx 

sepal 

corolla 

nectary 

phyllome 

compound-leaf 

leaflet 

shoot-apex 

shoot-internode 

shoot-node 

tuber 

embryo 

seedling 

# 

root part_of whole 

root-cap part_of root 

root-cortex part_of root 

exodermis part_of root-cortex 

root-endodermis part_of root-cortex 

shoot part_of whole 

bud part_of shoot 

inflorescence part_of shoot 

floral-bract part_of inflorescence 

flower part_of inflorescence 

androecium part_of flower 

stamen part_of androecium 

gynoecium part_of flower 

carpel part_of gynoecium 

perianth part_of flower 

calyx part_of perianth 

sepal part_of calyx 

corolla part_of perianth 

petal part_of corolla 

nectary part_of shoot 

phyllome part_of shoot 

leaf is_a phyllome 

simple-leaf is_a leaf 

compound-leaf is_a leaf 

leaflet part_of compound-leaf 

shoot-apex part_of shoot 

shoot-internode part_of shoot 

shoot-node part_of shoot 

stem part_of shoot 

tuber part_of shoot 

seed part_of whole 

embryo part_of seed 

seedling part_of embryo 

cotyledon part_of seedling 

fruit part_of whole 

seed contained_in fruit 
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Plants matrix file 

 
C1 NE "produces seeds" seed part_of whole 

C2 CL "leaf structure" leaf 

C3 NE "stem has wood" wood part_of stem 

C4 ME "merosity of flower petals" petal 

C5 NE "has flowers" flower part_of inflorescence 

C6 ME "number of cotyledons" cotyledon 

C7 CL "type of wood" wood 

C8 NE "produces fruit" fruit part_of whole 

C9 RO "seed contained in" seed contained_in 

C10 NE "produces cones" cone part_of whole 

# 

S11 "absent" C1 

S12 "present" C1 

S21 "simple" C2 

S22 "compound" C2 

S31 "present" C3 

S32 "absent" C3 

S41 "3" C4 

S42 "4" C4 

S51 "absent" C5 

S52 "present" C5 

S61 "1" C6 

S62 "2" C6 

S71 "hardwood" C7 

S72 "softwood" C7 

S81 "present" C8 

S82 "absent" C8 

S91 "fruit" C9 

S92 "cone" C9 

S101 "present" C10 

S102 "absent" C10 

# 

angiosperm S12 S21 S32 ? S52 S61 ? S81 S91 S102 

embryophyte S11 ? S32 ? S51 S62 ? S82 ? ? 

spermatophyte S12 ? S32 ? S51 S62 ? S82 ? ? 

gymnosperm S12 ? S31 ? S51 S62 ? S82 ? S102 

conifer S12 ? S31 ? S51 S62 S72 S82 S92 S101 

fern S11 S22 S32 ? S51 S62 ? S82 ? ? 

cycad S12 ? S31 ? S51 S62 ? S82 ? S102 

eudicot S12 ? S31 S42 S52 S62 S71 S81 S91 S102 

monocot S12 ? S32 S41 S52 S61 ? S81 S91 S102 
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Appendix C 

  

CTOL Matrix Worksheet 

List of characters and their signatures: (Each line starts with the ID of the 

character, followed by its type, text and frame elements. Character states are listed later). 

 
C01- NE "Basihyal element presence" basihyal-element part_of ventral-hyoid-arch 

C07- NE "Basibranchial 1-3 toothplate presence" basibranchial-1-3-toothplate 

part_of gill-arch-1-5-skeleton 

C08A NE "Basibranchial 1 element presence" basibranchial-1-element is_a 

basibranchial-element 

C08B RO "Basibranchial 1 element composition" basibranchial-1-element is_a 

C09- CL "Basibranchial 2 bone shape" basibranchial-2-bone 

C11- RO "Basibranchial 4 element composition" basibranchial-4-element is_a 

C12- RO "Basibranchial 5 element composition" basibranchial-5-element is_a 

C14- NE "Post-ceratobranchial cartilage presence" post-ceratobranchial-

cartilage is_a pharyngeal-arch-cartilage 

C15- RO "Hypobranchial 1 element composition" hypobranchial-1-element is_a 

C16- NE "Hypobranchial 1 bone antero-medial process presence" hypobranchial-1-

bone-antero-medial-process part_of hypobranchial-1-element 

C17- RO "Hypobranchial 3 element composition" hypobranchial-3-element is_a 

C18- BR "Hypobranchial 4 cartilage presence" hypobranchial-4-element is_a 

hypobranchial-cartilage 

C21- NE "Ceratobranchial 5 tooth presence" ceratobranchial-5-tooth part_of 

ceratobranchial-5-bone 

C24- ME "Ceratobranchial 5 tooth number" ceratobranchial-5-tooth 

C25- CL "Ceratobranchial 5 tooth shape" ceratobranchial-5-tooth 

C27- CL "Epibranchial bone curvature" epibranchial-bone 

C29- NE "Epibranchial 1 bone anterior membranous flange presence" epibranchial-

1-bone-anterior-membranous-flange part_of epibranchial-1-bone 

C33- NE "Epibranchial 1 bone uncinate process presence" epibranchial-1-bone-

uncinate-process part_of epibranchial-1-bone 

C34- NE "Epibranchial 2 bone uncinate process presence" epibranchial-2-bone-

uncinate-process part_of epibranchial-2-bone 

C35- NE "Epibranchial 3 bone uncinate process presence" epibranchial-3-bone-

uncinate-process part_of epibranchial-3-bone 

C36- NE "Epibranchial 4 bone uncinate process presence" epibranchial-4-bone-

uncinate-process part_of epibranchial-4-bone 

C38- NE "Epibranchial 4 bone, efferent artery flange presence" epibranchial-4-

bone-efferent-artery-flange part_of epibranchial-4-bone 
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C39- NE "Epibranchial 4 bone, levator process, presence" epibranchial-4-bone-

levator-process part_of epibranchial-4-bone 

C40A NE "Pharyngobranchial 1 element presence" pharyngobranchial-1-element 

part_of gill-arch-1-skeleton 

C40B RO "Pharyngobranchial 1 element composition" pharyngobranchial-1-element 

is_a 

C41A NE "Pharyngobranchial 4 element presence" pharyngobranchial-4-element 

part_of gill-arch-4-skeleton 

C41B RO "Pharyngobranchial 4 element composition" pharyngobranchial-4-element 

is_a 

C46- NE "Pharyngobranchial 3 tooth plate presence" pharyngobranchial-3-tooth-

plate part_of gill-arch-3-skeleton 

C47- CL "Gill raker tip shape" gill-raker 

C50- NE "Sublingual(s) presence" sublingual is_a endochondral-bone 

C52A NE "Interhyal element presence" interhyal-element part_of ventral-hyoid-

arch 

C52B RO "Interhyal element composition" interhyal-element is_a 

C54- ME "Branchiostegal rays number" branchiostegal-ray 

C55- CL "Branchiostegal rays shape" branchiostegal-ray 

C56- NE "Gill filament ossifications presence" gill-filament-ossification 

part_of gill 

C58A NE "Hypobranchial 3 element ventral process presence" hypobranchial-3-

element-ventral-process part_of hypobranchial-3-element 

C58B RO "Hypobranchial 3 element ventral process composition" hypobranchial-3-

element-ventral-process is_a 

C61A NE "Urohyal ventral plate presence" urohyal-ventral-plate part_of urohyal 

C61B CL "Urohyal ventral plate state" urohyal-ventral-plate 

# 

List of character states: (Each line starts with the ID of the character state, 

followed by its text and character). 

 
C01-v0 "present" C01- 

C01-v1 "absent" C01- 

C07-v0 "present" C07- 

C07-v1 "absent" C07- 

C08Av0 "absent" C08A 

C08Av1 "present" C08A 

C08Bv0 "basibranchial-bone" C08B 

C08Bv1 "cartilage" C08B 

C09-v0 "hourglass" C09- 

C09-v1 "rodlike" C09- 

C09-v2 "spathulate" C09- 

C09-v3 "anvil" C09- 

C09-v4 "hourglass-with-flange" C09- 

C09-v5 "rodlike-with-protrusions" C09- 

C09-v6 "round" C09- 

C11-v0 "cartilage" C11- 

C11-v1 "basibranchial-bone" C11- 

C12-v0 "cartilage" C12- 

C12-v1 "basibranchial-bone" C12- 

C14-v0 "absent" C14- 

C14-v1 "present" C14- 

C15-v0 "hypobranchial-bone" C15- 

C15-v1 "hypobranchial-cartilage" C15- 
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C16-v0 "absent" C16- 

C16-v1 "present" C16- 

C17-v0 "hypobranchial-bone" C17- 

C17-v1 "hypobranchial-cartilage" C17- 

C18-v0 "no" C18- 

C18-v1 "yes" C18- 

C21-v0 "absent" C21- 

C21-v1 "present" C21- 

C24-v0 "1" C24- 

C24-v1 "16" C24- 

C24-v2 "26" C24- 

C25-v0 "needle-like" C25- 

C25-v1 "bicuspid" C25- 

C25-v2 "hooked-with-no-wear-surface" C25- 

C25-v3 "hooked-with-wear-surface" C25- 

C25-v4 "molariform" C25- 

C25-v5 "molariform-with-serrations" C25- 

C25-v6 "bicuspid-and-hooked" C25- 

C27-v0 "straight" C27- 

C27-v1 "dorsally-arched" C27- 

C29-v0 "absent" C29- 

C29-v1 "present" C29- 

C33-v0 "absent" C33- 

C33-v1 "present" C33- 

C34-v0 "absent" C34- 

C34-v1 "present" C34- 

C35-v0 "absent" C35- 

C35-v1 "present" C35- 

C36-v0 "absent" C36- 

C36-v1 "present" C36- 

C38-v0 "absent" C38- 

C38-v1 "present" C38- 

C39-v0 "absent" C39- 

C39-v1 "present" C39- 

C40Av0 "absent" C40A 

C40Av1 "present" C40A 

C40Bv0 "cartilage" C40B 

C40Bv1 "pharyngobranchial-bone" C40B 

C41Av0 "absent" C41A 

C41Av1 "present" C41A 

C41Bv0 "cartilage" C41B 

C41Bv1 "pharyngobranchial-bone" C41B 

C46-v0 "present" C46- 

C46-v1 "absent" C46- 

C47-v0 "tapered-tipped" C47- 

C47-v1 "expanded-tipped" C47- 

C50-v0 "absent" C50- 

C50-v1 "present" C50- 

C52Av0 "absent" C52A 

C52Av1 "present" C52A 

C52Bv0 "bone" C52B 

C52Bv1 "interhyal-cartilage" C52B 

C54-v0 "4" C54- 

C54-v1 "3" C54- 

C55-v0 "spathiform" C55- 

C55-v1 "acinaciform" C55- 

C56-v0 "absent" C56- 

C56-v1 "present" C56- 
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C58Av0 "absent" C58A 

C58Av1 "present" C58A 

C58Bv0 "bone" C58B 

C58Bv1 "cartilage" C58B 

C61Av0 "absent" C61A 

C61Av1 "present" C61A 

C61Bv0 "reduced" C61B 

C61Bv1 "fully-developed" C61B 

# 

Matrix: (Each line starts with the ID of the taxon, followed by its character state 

vector. Each element is an ID of a character state, or a ? to designate unknown or 

inapplicable). 

 
N02 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 ?      C27-v0 C29-v0 ?      ?      C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv1 

N03 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 ?      ?      C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv1 

N04 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 ?      ?      C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v0 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv1 

N05 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v5 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v2 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v0 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N06 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv0 C46-v0 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v1 C58Av0 ?      C61Av1 C61Bv1 

N07 C01-v1 C07-v1 ?      ?      C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv1 

N08 C01-v1 C07-v1 C08Av0 ?      C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v0 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv1 

N09 C01-v1 C07-v1 C08Av1 C08Bv1 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v1 C39-v0 C40Av1 C40Bv1 C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv0 

N10 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 ?      ?      C29-v0 ?      C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av1 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv1 

N11 C01-v0 C07-v1 C08Av1 C08Bv0 ?      C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 ?      C29-v0 ?      C34-v1 C35-v1 C36-v1 C38-
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v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N12 C01-v0 C07-v1 C08Av1 C08Bv0 ?      C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N13 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N14 C01-v0 C07-v1 C08Av0 ?      C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 ?      C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N15 C01-v0 C07-v1 C08Av0 ?      C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv0 

N16 C01-v0 C07-v1 C08Av0 ?      ?      ?      ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv0 

N17 C01-v0 C07-v1 C08Av0 ?      ?      ?      ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      ?      ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv0 

N18 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      ?      ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N19 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N20 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N21 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv0 

N22 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av0 ?      

N23 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N24 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v1 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v6 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v0 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N25 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      ?      ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 
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N26 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      ?      ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N27 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v1 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N28 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av0 ?      C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N29 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av0 ?      C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N30 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v0 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av0 ?      C54-

v1 C55-v0 C56-v1 C58Av1 C58Bv0 C61Av1 C61Bv0 

N31 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av1 C58Bv0 C61Av1 C61Bv0 

N32 C01-v0 C07-v1 C08Av0 ?      C09-v2 C11-v1 ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v1 C58Av0 ?      C61Av1 C61Bv0 

N33 C01-v0 C07-v1 C08Av0 ?      C09-v0 ?      ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v1 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv0 

N34 C01-v0 C07-v1 C08Av0 ?      C09-v2 ?      ?      C14-v0 C15-v0 C16-v1 C17-

v0 C18-v1 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ?      C61Av0 ?      

N35 C01-v0 C07-v1 C08Av0 ?      C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v0 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv1 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v1 C56-v0 C58Av0 ?      C61Av1 C61Bv0 

N36 C01-v0 C07-v1 C08Av0 ?      C09-v3 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N37 C01-v0 C07-v1 C08Av0 ?      C09-v3 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N38 C01-v0 C07-v1 C08Av0 ?      C09-v3 C11-v0 C12-v0 C14-v0 C15-v0 C16-v1 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N39 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N40 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v5 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-
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v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N41 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N42 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N43 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N44 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N45 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N46 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N47 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N48 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v1 C33-v0 C34-v0 C35-v0 C36-v0 C38-

v0 C39-v0 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N49 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N50 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N51 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N52 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v1 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v0 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv1 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N53 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N54 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 
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N55 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N56 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N57 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N58 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N59 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N60 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N61 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v4 C27-v1 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v1 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v1 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N62 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v5 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av0 ?      C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N63 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N64 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N65 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N66 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N67 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N68 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 ?      C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av0 ?      C46-v1 C47-v0 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N69 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-
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v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N70 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v2 C27-v0 C29-v0 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N71 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v0 C29-v0 C33-v0 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N72 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v0 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv1 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N73 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v0 C21-v1 C24-v0 C25-v3 C27-v1 C29-v1 C33-v0 C34-v0 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av0 ?      C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N74 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N75 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv0 

N76 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N77 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v6 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v1 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N78 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N79 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N80 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N81 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v1 C24-v2 C25-v1 C27-v1 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v0 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v1 C50-v1 C52Av1 C52Bv0 C54-

v1 C55-v0 C56-v0 C58Av1 C58Bv1 C61Av1 C61Bv0 

N82 C01-v0 C07-v1 C08Av0 ?      C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v0 C24-v2 ?      C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v1 C38-

v0 C39-v1 C40Av1 C40Bv1 C41Av0 ?      C46-v1 C47-v0 C50-v0 C52Av0 ?      C54-

v1 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv1 

N83 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v4 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v0 C24-v2 ?      C27-v0 C29-v0 ?      ?      C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv1 
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N84 C01-v0 C07-v1 C08Av1 C08Bv0 C09-v1 C11-v0 C12-v0 C14-v0 C15-v0 C16-v0 C17-

v0 C18-v1 C21-v0 C24-v2 ?      C27-v0 C29-v0 C33-v1 C34-v1 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av0 ?      C54-

v0 C55-v0 C56-v0 C58Av1 C58Bv0 C61Av1 C61Bv1 

N85 C01-v0 C07-v0 C08Av1 C08Bv1 C09-v4 C11-v0 C12-v0 C14-v1 C15-v0 C16-v0 C17-

v1 C18-v0 C21-v0 C24-v2 ?      C27-v1 C29-v0 C33-v0 C34-v0 C35-v1 C36-v0 C38-

v0 C39-v1 C40Av1 C40Bv0 C41Av1 C41Bv0 C46-v1 C47-v0 C50-v0 C52Av1 C52Bv0 C54-

v0 C55-v0 C56-v0 C58Av0 ?      C61Av1 C61Bv0 
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Appendix D 

  

Cypriniformes Gill & Hyoid Arches Anatomy 

Each line contains a single term. Each term has an identifier in square brackets to 

indicate the sequence where it first occurred in the ontology. The relationships between 

terms are indicated by indentation. Each term (except the root whole) is connected to the 

last term at the previous level by either is_a or part_of relationship, indicated as (i) 

and (p) respectively. 

 
[1] whole 

  (p) [2] bone 

    (i) [3] interhyal-element 

    (i) [4] replacement-bone 

      (i) [5] hypobranchial-bone 

        (i) [6] hypobranchial-1-element 

      (i) [7] basibranchial-bone 

        (i) [8] basibranchial-2-bone 

          (i) [9] hourglass-with-flange-basibranchial-2-bone 

        (i) [10] basibranchial-1-bone 

      (i) [11] endochondral-bone 

        (i) [12] ceratobranchial-bone 

          (i) [13] ceratobranchial-5-bone 

            (p) [14] ceratobranchial-5-tooth 

              (i) [15] ceratobranchial-5-tooth#16 

              (i) [16] ceratobranchial-5-tooth#22 

              (i) [17] ceratobranchial-5-tooth#15 

              (i) [18] ceratobranchial-5-tooth#18 

              (i) [19] ceratobranchial-5-tooth#17 

              (i) [20] ceratobranchial-5-tooth#1 

              (i) [21] ceratobranchial-5-tooth#8 

              (i) [22] ceratobranchial-5-tooth#10 

              (i) [23] ceratobranchial-5-tooth#2 

              (i) [24] ceratobranchial-5-tooth#20 

              (i) [25] ceratobranchial-5-tooth#12 
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              (i) [26] ceratobranchial-5-tooth#23 

              (i) [27] ceratobranchial-5-tooth#9 

              (i) [28] ceratobranchial-5-tooth#19 

              (i) [29] ceratobranchial-5-tooth#25 

              (i) [30] ceratobranchial-5-tooth#21 

              (i) [31] ceratobranchial-5-tooth#4 

              (i) [32] ceratobranchial-5-tooth#5 

              (i) [33] ceratobranchial-5-tooth#14 

              (i) [34] ceratobranchial-5-tooth#6 

              (i) [35] ceratobranchial-5-tooth#13 

              (i) [36] ceratobranchial-5-tooth#3 

              (i) [37] ceratobranchial-5-tooth#26 

              (i) [38] ceratobranchial-5-tooth#11 

              (i) [39] ceratobranchial-5-tooth#7 

              (i) [40] ceratobranchial-5-tooth#24 

        (i) [41] epibranchial-bone 

          (i) [42] epibranchial-3-bone 

            (p) [43] epibranchial-3-bone-uncinate-process 

          (i) [44] epibranchial-4-bone 

            (p) [45] epibranchial-4-bone-uncinate-process 

            (p) [46] epibranchial-4-bone-levator-process 

          (i) [47] epibranchial-2-bone 

            (p) [48] epibranchial-2-bone-uncinate-process 

          (i) [49] epibranchial-1-bone 

            (p) [50] epibranchial-1-bone-uncinate-process 

          (p) [51] epibranchial-bone-uncinate-process 

    (i) [52] intramembranous-bone 

      (i) [53] dermal-bone 

        (i) [54] branchiostegal-ray 

          (i) [55] branchiostegal-ray#1 

          (i) [56] branchiostegal-ray#3 

          (i) [57] spathiform-branchiostegal-ray 

          (i) [58] branchiostegal-ray#2 

  (p) [59] skeletal-element 

    (i) [60] basibranchial-element 

      (i) [61] basibranchial-4-element 

        (i) [62] basibranchial-4-cartilage 

      (i) [63] basibranchial-5-element 

        (i) [64] basibranchial-5-cartilage 

      (i) [65] basibranchial-1-element 

        (i) [10] basibranchial-1-bone 

      (i) [66] basibranchial-3-element 

      (i) [67] basibranchial-2-element 

        (i) [8] basibranchial-2-bone 

    (i) [68] ceratobranchial-element 

      (i) [69] ceratobranchial-3-element 

      (i) [70] ceratobranchial-1-element 

      (i) [71] ceratobranchial-4-element 

      (i) [72] ceratobranchial-2-element 

      (i) [73] ceratobranchial-5-element 

        (i) [13] ceratobranchial-5-bone 

    (i) [74] epibranchial-element 
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      (i) [75] epibranchial-1-element 

        (i) [49] epibranchial-1-bone 

      (i) [76] epibranchial-4-element 

        (i) [44] epibranchial-4-bone 

      (i) [77] epibranchial-2-element 

        (i) [47] epibranchial-2-bone 

      (i) [78] epibranchial-3-element 

        (i) [42] epibranchial-3-bone 

    (i) [3] interhyal-element 

    (i) [79] pharyngobranchial-element 

      (i) [80] pharyngobranchial-4-element 

      (i) [81] pharyngobranchial-1-element 

    (i) [82] hypobranchial-element 

      (i) [83] hypobranchial-3-element 

      (i) [6] hypobranchial-1-element 

      (i) [84] hypobranchial-4-element 

        (i) [85] hypobranchial-4-cartilage 

      (i) [86] hypobranchial-2-element 

    (i) [87] basihyal-element 

  (p) [88] pharyngeal-arch 

    (p) [89] pharyngeal-musculature 

    (p) [90] pharyngeal-vasculature 

    (p) [91] splanchnocranium 

      (p) [92] suspensorium 

      (i) [93] mandibular-arch 

      (i) [94] hyoid-arch 

        (p) [95] ventral-hyoid-arch 

          (p) [3] interhyal-element 

          (p) [96] urohyal 

            (p) [97] urohyal-ventral-plate 

              (i) [98] fully-developed-urohyal-ventral-plate 

          (p) [87] basihyal-element 

        (p) [99] dorsal-hyoid-arch 

      (p) [100] pharyngeal-arch-cartilage 

        (i) [101] hypobranchial-cartilage 

          (i) [83] hypobranchial-3-element 

        (i) [102] epibranchial-cartilage 

        (i) [103] ceratobranchial-cartilage 

      (i) [104] gill-arch-1-5-skeleton 

        (p) [41] epibranchial-bone 

        (i) [105] gill-arch-5-skeleton 

        (p) [12] ceratobranchial-bone 

        (p) [102] epibranchial-cartilage 

        (p) [60] basibranchial-element 

        (p) [106] gill-raker-row 

        (p) [74] epibranchial-element 

        (p) [107] copula 

        (p) [108] ceratobranchial-series 

        (p) [68] ceratobranchial-element 

        (p) [109] epibranchial-series 

        (i) [110] gill-arch-3-skeleton 

          (p) [83] hypobranchial-3-element 
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        (i) [111] gill-arch-1-skeleton 

          (p) [6] hypobranchial-1-element 

          (p) [81] pharyngobranchial-1-element 

        (p) [112] pharyngobranchial-cartilage 

        (p) [103] ceratobranchial-cartilage 

        (p) [113] gill-raker 

          (i) [114] tapered-tipped-gill-raker 

        (p) [115] basibranchial-4-tooth-plate 

        (p) [116] basibranchial-2-tooth-plate 

        (p) [7] basibranchial-bone 

        (p) [117] pharyngobranchial-bone 

        (p) [118] pharyngobranchial-tooth-plate 

        (i) [119] gill-arch-2-skeleton 

          (p) [86] hypobranchial-2-element 

        (p) [5] hypobranchial-bone 

        (p) [82] hypobranchial-element 

        (p) [101] hypobranchial-cartilage 

        (p) [79] pharyngobranchial-element 

        (i) [120] gill-arch-4-skeleton 

          (p) [80] pharyngobranchial-4-element 

          (p) [84] hypobranchial-4-element 

    (i) [121] pharyngeal-arch#1 

      (p) [93] mandibular-arch 

      (p) [122] mandibular-muscle 

    (i) [123] gill-arch 

      (p) [124] branchial-muscle 

      (i) [125] gill-arch#3 

      (i) [126] gill-arch#5 

      (i) [127] gill-arch#2 

      (i) [128] gill-arch#4 

      (p) [104] gill-arch-1-5-skeleton 

      (i) [129] gill-arch#1 

    (p) [130] gill-ray 

    (i) [131] pharyngeal-arch#2 

      (p) [94] hyoid-arch 

      (i) [132] synovial-joint 

      (i) [133] fibrous-joint 

      (p) [134] hyoid-muscle 

    (p) [135] pharyngeal-pouch 

  (p) [136] gill 

    (p) [113] gill-raker 

    (p) [123] gill-arch 

  (p) [137] cartilage 

    (i) [63] basibranchial-5-element 

    (i) [138] cranial-cartilage 

      (i) [100] pharyngeal-arch-cartilage 

    (i) [80] pharyngobranchial-4-element 

    (i) [61] basibranchial-4-element 

  (p) [139] tooth 

    (i) [14] ceratobranchial-5-tooth 

 



131 

Appendix E 

  

Morphster Meta-Model in OWL 

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#> 

Prefix: owl: <http://www.w3.org/2002/07/owl#> 

Prefix: xml: <http://www.w3.org/XML/1998/namespace> 

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

Prefix: skos: <http://www.w3.org/2004/02/skos/core#> 

Prefix: morphster: <http://www.cs.utexas.edu/~hamid/ontology/morphster#> 

 

 

Ontology: <http://www.cs.utexas.edu/~hamid/ontology/morphster> 

 

 

AnnotationProperty: rdfs:label 

 

     

ObjectProperty: <morphster:isSpecimenOf> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:Specimen> 

     

    Range:  

        <morphster:Taxon> 

     

     

ObjectProperty: <morphster:registeredTo> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:Image> 

     

    Range:  

        <morphster:Specimen> 

     

     

ObjectProperty: <morphster:associatedTo> 

 

    SubPropertyOf:  
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        owl:topObjectProperty 

     

    Domain:  

        <morphster:MatrixCell> 

     

     

ObjectProperty: owl:topObjectProperty 

 

     

ObjectProperty: <morphster:belongsTo> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:MatrixCell> 

     

    Range:  

        <morphster:Matrix> 

     

     

ObjectProperty: <morphster:shows> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:Image> 

     

    InverseOf:  

        <morphster:shownIn> 

     

     

ObjectProperty: <morphster:shownIn> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    InverseOf:  

        <morphster:shows> 

     

     

ObjectProperty: <morphster:isEntityOf> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:AnatomicalEntity> 

     

    InverseOf:  

        <morphster:appearsInEntity> 

     

     

ObjectProperty: <morphster:appearsInEntity> 

 

    SubPropertyOf:  

        owl:topObjectProperty 
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    InverseOf:  

        <morphster:isEntityOf> 

     

     

ObjectProperty: <morphster:isStateOf> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:CharacterState> 

     

    Range:  

        <morphster:Character> 

     

     

ObjectProperty: <morphster:hasQuality> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    InverseOf:  

        <morphster:isQualityOf> 

     

     

ObjectProperty: <morphster:isAncestorOf> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:Taxon> 

     

    Range:  

        <morphster:Taxon> 

     

     

ObjectProperty: <morphster:isQualityOf> 

 

    SubPropertyOf:  

        owl:topObjectProperty 

     

    Domain:  

        <morphster:PhenotypicQuality> 

     

    InverseOf:  

        <morphster:hasQuality> 

     

     

Class: <morphster:AnatomicalEntity> 

 

    Annotations:  

        rdfs:label "Anatomical Entity"@en 

     

    SubClassOf:  

        <morphster:shownIn> some <morphster:Image> 
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Class: <morphster:Character> 

 

    Annotations:  

        rdfs:label "Character"@en 

     

    SubClassOf:  

        <morphster:appearsInEntity> some <morphster:AnatomicalEntity>, 

        <morphster:hasQuality> some <morphster:PhenotypicQuality>, 

        <morphster:shownIn> some <morphster:Image> 

     

     

Class: <morphster:CharacterState> 

 

    Annotations:  

        rdfs:label "Character State"@en 

     

    SubClassOf:  

        <morphster:appearsInEntity> some <morphster:AnatomicalEntity>, 

        <morphster:hasQuality> some <morphster:PhenotypicQuality>, 

        <morphster:isStateOf> some <morphster:Character>, 

        <morphster:shownIn> some <morphster:Image> 

     

     

Class: <morphster:PhenotypicQuality> 

 

    Annotations:  

        rdfs:label "Phenotypic Quality"@en 

     

     

Class: <morphster:Taxon> 

 

    Annotations:  

        rdfs:label "Taxon"@en 

     

    SubClassOf:  

        <morphster:isAncestorOf> some <morphster:Taxon> 

     

     

Class: <morphster:Matrix> 

 

    Annotations:  

        rdfs:label "Matrix"@en 

     

     

Class: <morphster:Image> 

 

    Annotations:  

        rdfs:label "Image"@en 

     

    SubClassOf:  

        <morphster:registeredTo> some <morphster:Specimen> 

     

     

Class: <morphster:MatrixCell> 

 

    Annotations:  

        rdfs:label "Matrix Cell"@en 
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    SubClassOf:  

        <morphster:associatedTo> some <morphster:CharacterState>, 

        <morphster:associatedTo> some <morphster:Taxon>, 

        <morphster:belongsTo> some <morphster:Matrix> 

     

     

Class: <morphster:Specimen> 

 

    Annotations:  

        rdfs:label "Specimen"@en 

     

    SubClassOf:  

        <morphster:isSpecimenOf> some <morphster:Taxon> 

     

     

DisjointClasses:  

    

<morphster:AnatomicalEntity>,<morphster:Character>,<morphster:CharacterState>,<

morphster:Image>,<morphster:Matrix>,<morphster:MatrixCell>,<morphster:Phenotypi

cQuality>,<morphster:Specimen>,<morphster:Taxon> 
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Appendix F 

  

Image Driven Ontology Source in RDF/OWL 

<?xml version="1.0"?> 

<!DOCTYPE rdf:RDF [ 

  <!ENTITY rdf  "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 

  <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

  <!ENTITY xsd  "http://www.w3.org/2001/XMLSchema#" > 

  <!ENTITY owl  "http://www.w3.org/2002/07/owl#" > 

  <!ENTITY ido  "http://www.morphster.org/ontology/2008/ido#" > 

]> 

 

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:owl="&owl;" 

xmlns:ido="&ido;" xmlns="&ido;" 

xml:base="http://www.morphster.org/ontology/2008/ido#"> 

 

<owl:Ontology rdf:ID="ido-meta"> 

</owl:Ontology> 

 

<!-- *** Start of IDO declarations *** --> 

 

<owl:Class  rdf:ID="Image" /> 

 

<rdfs:Class rdf:ID="ShowsProperty"> 

<rdfs:label>ShowsProperty</rdfs:label> 

<rdfs:subClassOf rdf:resource="&rdf;Property"/> 

</rdfs:Class> 

 

<ido:ShowsProperty rdf:ID="showsSimilar" /> 

<ido:ShowsProperty rdf:ID="entiretyShowsSimilar" /> 

<ido:ShowsProperty rdf:ID="showsExemplar" /> 

<ido:ShowsProperty rdf:ID="entiretyShowsExemplar" /> 

 

<!-- *** End of IDO declarations *** --> 

 

<!-- *** Full definitions follow *** --> 

 

<owl:Class rdf:about="#Image"> 

<rdfs:label>Image</rdfs:label> 

<rdfs:comment>The image entity. All images are instances of this 

class.</rdfs:comment> 

</owl:Class> 

 

<ido:ShowsProperty rdf:about="#showsSimilar"> 

<rdfs:label>Shows Similar</rdfs:label> 
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<rdfs:comment>Shows Similar (m, x): This association asserts that image m 

contains a concept similar to class x.</rdfs:comment> 

<rdfs:domain rdf:resource="&ido;Image" /> 

</ido:ShowsProperty> 

 

<ido:ShowsProperty rdf:about="#entiretyShowsSimilar"> 

<rdfs:label>Entirety Shows Similar</rdfs:label> 

<rdfs:comment>Entirety Shows Similar (m, x): This association asserts that 

image m, in its entirety, depicts a concept similar to class x.</rdfs:comment> 

<rdfs:subPropertyOf rdf:resource="&ido;showsSimilar" /> 

</ido:ShowsProperty> 

 

<ido:ShowsProperty rdf:about="#showsExemplar"> 

<rdfs:label>Shows Exemplar</rdfs:label> 

<rdfs:comment>Shows Exemplar (m, x): This association asserts than image m 

contains exemplar of class x.</rdfs:comment> 

<rdfs:subPropertyOf rdf:resource="&ido;showsSimilar" /> 

</ido:ShowsProperty> 

 

<ido:ShowsProperty rdf:about="#entiretyShowsExemplar"> 

<rdfs:label>Entirety Shows Exemplar</rdfs:label> 

<rdfs:comment>Entirety Shows Exemplar (m, x): This association asserts that 

image m, in its entirety, depicts exemplar of class x.</rdfs:comment> 

<rdfs:subPropertyOf rdf:resource="&ido;showsExemplar" /> 

<rdfs:subPropertyOf rdf:resource="&ido;entiretyShowsSimilar" /> 

</ido:ShowsProperty> 

 

</rdf:RDF> 
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