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Inertial measurement units (IMUs) are used in a wide range of appli-

cations to estimate position, velocity, and attitude of vehicles. The high cost

of tactical grade IMUs makes the low-cost microelectromechanical systems

(MEMS) based IMUs appealing. These types of IMUs are less accurate, so

to counteract this effect, multiple and different configurations should be used.

The work presented here provides efficient and low cost solutions using differ-

ent configurations of redundant (multiple) MEMS-IMU swarms, which increase

the level of accuracy to potentially the order of that of a tactical IMU. Several

configurations are presented and compared through different methods.

iii



Table of Contents

Abstract iii

List of Tables vi

List of Figures vii

Chapter 1. Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Report Organization . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2. Theoretical Background 3

2.1 Inertial Navigation . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Strapdown Inertial Navigation . . . . . . . . . . . . . . 4

2.1.2 Inertial Measurement Unit . . . . . . . . . . . . . . . . 4

2.2 Geometrical Configurations . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Cone Configurations . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Platonic Solids . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 3. Methodology for Quantifying Optimal Configura-
tion 7

3.1 Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Partial Redundancy . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Augmented Observation Model Matrix H̃ . . . . . . . . . . . . 10

3.4 Conditioning Number . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Dilution of Precision . . . . . . . . . . . . . . . . . . . . . . . 14

iv



Chapter 4. Results of Configuration Performance 16

4.1 Configurations with Four IMUs . . . . . . . . . . . . . . . . . 16

4.1.1 Four IMUs on a Plane . . . . . . . . . . . . . . . . . . . 16

4.1.2 Four IMUs Equally Distributed on a Cone . . . . . . . . 19

4.1.3 Three IMUs on a Cone and one on the Z axis . . . . . . 22

4.1.4 Three IMUs on a Cone and one at the Origin . . . . . . 25

4.1.5 Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.6 Summary of Results with Configuration of Four IMUs . 29

4.2 Configurations with Eight IMUs . . . . . . . . . . . . . . . . . 30

4.2.1 Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Unit Circle . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Cone With Eight Equally Distributed IMUs . . . . . . . 36

4.2.4 Two Cones With Four IMUs Each . . . . . . . . . . . . 39

4.2.5 Octahedron . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.6 Summary of Results with Configurations of Eight IMUs 47

Chapter 5. Conclusions 49

5.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 52

Vita 55

v



List of Tables

4.1 Figures of Merit for a Square . . . . . . . . . . . . . . . . . . 18

4.2 Figures of Merit for Cone with Four IMUs with α = 54o . . . . 21

4.3 Minimum Figures of Merit for four Equally distributed IMUs
on a Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Minimum Figures of Merit for Cone with IMU on Z axis . . . 24

4.5 Minimum Figures of Merit for Cone with IMU at Origin . . . 27

4.6 Figures of Merit for a Square and Triangle . . . . . . . . . . . 29

4.7 Comparison of Figures for Configurations of Four IMUs . . . . 30

4.8 Figures of Merit for a Cube . . . . . . . . . . . . . . . . . . . 33

4.9 Figures of Merit for a Unit Circle . . . . . . . . . . . . . . . . 36

4.10 Minimum Figures of Merit for Cone with Eight Equally dis-
tributed IMUs . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.11 Minimum Figures of Merit for Two Cones with Four Equally
distributed IMUs . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.12 Minimum Figures of Merit for Octahedron . . . . . . . . . . . 45

4.13 Figures of Merit for Configurations of Eight IMUs . . . . . . . 48

vi



List of Figures

2.1 IMU Sensing Axis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Half Angle Cone . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Platonic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Four IMUs on a plane . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Square formed with 4 IMUs in a plane . . . . . . . . . . . . . 19

4.3 Four IMUs Equally Distributed on Cone . . . . . . . . . . . . 20

4.4 Figures of Merit for Cone with Four IMUs Equally Distributed 21

4.5 Three IMUs on a Cone and One on the Z Axis . . . . . . . . . 22

4.6 Figures of Merit Cone with IMU on z-axis . . . . . . . . . . . 23

4.7 Optimal Configurations for Cone with an IMU on the z-xis . . 24

4.8 Three IMUs on Cone and One at the Origin . . . . . . . . . . 25

4.9 Figures of Merit Cone with IMU at Origin . . . . . . . . . . . 26

4.10 Optimal Configurations for Cone with IMU at Origin . . . . . 27

4.11 Triangle Configuration . . . . . . . . . . . . . . . . . . . . . . 28

4.12 Cube with Identity Orientations . . . . . . . . . . . . . . . . . 32

4.13 Cube with Inside Orientations . . . . . . . . . . . . . . . . . . 33

4.14 Unit Circle with Identity Direction . . . . . . . . . . . . . . . 34

4.15 Unit Circle with Rotating Direction . . . . . . . . . . . . . . . 34

4.16 Cone with α = 55 . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.17 Figures of Merit Cone with Eight IMU . . . . . . . . . . . . . 38

4.18 Cone with α = 55 . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.19 Figures of Merit for two Cones with Eight IMUs . . . . . . . . 41

4.20 Octahedron with α = 45 . . . . . . . . . . . . . . . . . . . . . 42

4.21 Configurations for Octahedron . . . . . . . . . . . . . . . . . . 44

4.22 Figures of Merit for Octahedron . . . . . . . . . . . . . . . . . 44

4.23 Equivalent Octahedron, Cube, and Two Cones . . . . . . . . . 45

4.24 Equivalent Octahedron and Two Cones . . . . . . . . . . . . . 46

vii



4.25 Figures of Merit for Octahedron and Two Cones . . . . . . . . 47

viii



Chapter 1

Introduction

1.1 Motivation

Inertial measurement units (IMUs) are used in a wide range of appli-

cations to estimate position, velocity, and attitude of vehicles in air, sea, and

space. In general, these types of applications require a high level of navi-

gational accuracy, which tactical IMUs can provide. A tactical grade IMU

provides high quality measurements with low noise and high stability. How-

ever, since the cost of IMUs increases with their level of accuracy, tactical

IMUs are high in cost. Currently, numerous low-cost microelectromechani-

cal systems (MEMS) based IMUs are commercially available and have been

receiving increasing attention in robotic and unmanned aircraft flight applica-

tions. These MEMS type IMUs consume less power, are smaller in size, and

weigh less than tactical IMUs; however, are less accurate, drift more over time,

and produce more noise in their measurements. The work presented in this

report discusses efficient and low cost solutions using different configurations

of redundant (multiple) MEMS-IMU swarms, increasing the level of accuracy

to potentially the order of that of a tactical IMU.

Previous research has focused mainly on the optimization of multiple
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single-axis accelerometers and gyros in different geometric configurations, such

as cones, tetrahedrons, cubes, or pyramids [8, 12]. More recently, research us-

ing two to five IMUs on a plane has also been repeated [1]. Configurations us-

ing two IMUs, in both orthogonal and nonorthogonal configurations have been

studied, as well as a skew-redundant regular tetrahedron configuration using

four IMUs [3, 16]. In this report, we present several quantitavive measures

to enable comparison when applied to different configurations of n number of

IMUs. The different configurations include in-plane configurations, platonic

solids, and half angle cone configurations.

1.2 Research Contribution

This research puts together several methods for comparing geometrical

configurations of IMUs. Different configurations are presented and the figures

of merit are applied to get a quantification of their optimality.

1.3 Report Organization

The theory involved in the definition of inertial navigation using strap-

down technology is explained in Chapter 2. Also different geometrical solid

configurations are explained in this chapter. The methods used for comparing

the different configurations, together with a brief description of noise reduction

is presented in Chapter 3. Specific results obtained from the application of the

methods to configurations with four and eight IMUs is presented in Chapter 4.

The conclusions obtained from the research are presented last in Chapter 5.
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Chapter 2

Theoretical Background

2.1 Inertial Navigation

The concept of navigation comes from the desire to know the position

and velocity of a vehicle. According to Newton’s laws, if we are capable of

measuring the acceleration of a body in an inertial reference frame, it is just a

matter of integrating once to get velocity and twice to get position, given we

know the initial conditions.

One way of obtaining position is known as “dead reckoning”. This

method takes an initial position, velocity, and IMU outputs to compute the

true history to position and velocity. Knowing the initial position and velocity,

the IMU measures acceleration and the rotational rates, thereby enabling the

dead reckoning method. This process is known as inertial navigation since it

uses inertial sensors.

Inertial navigation is usually accomplished by having measurements of

three accelerometers and three gyros. The gyros are used to determine the

direction in which the accelerometers are pointing in an inertial space. Before

performing the integration, the output of the sensors needs to be in the correct

coordinate frame.
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2.1.1 Strapdown Inertial Navigation

In this report, strapdown inertial navigation will be used. Strapdown

inertial navigation refers to the use of accelerometers and gyros rigidly mounted

to the body of the vehicle [15]. This give us the versatility to mount the set of

sensors in any kind of vehicle without changing any mechanical configuration.

2.1.2 Inertial Measurement Unit

The set of accelerometers and gyros form an Inertial Measurement Unit

(IMU). In this report, an IMU is considered to be a set of three orthogonal

accelerometers and three orthogonal gyros. The coordinate frame that they

form is a right handed set. The direction of their sensing axis is shown in

Figure 2.1.

IMU

X

Y

Z

Figure 2.1: IMU Sensing Axis
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2.2 Geometrical Configurations

The different basic configurations used in this work are presented. Since

the IMUs are placed in different geometrical configurations, some of the pla-

tonic solids where selected, as well as cones with different half-angles, which

were selected for comparison purposes.

2.2.1 Cone Configurations

The cone configurations are based on cones of half-angle denoted by α.

The cone varies in its size depending on the number of IMUs used. The angle

α is optimized to obtain different configurations on a cone.

α

X

Y

Z

Figure 2.2: Half Angle Cone

2.2.2 Platonic Solids

The platonic solids are those formed by joining together regular poly-

gons like the square, the triangle, and the pentagon. For example, if four
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triangles are used and each set of three are joined by their vertices, a tetra-

hedron is formed. It has been proved [9] that only five platonic solids exist,

which are the tetrahedron, the cube, the octahedron, the dodecahedron, and

the icosahedron, shown in Figure 2.3.

Tetrahedron
Cube

Octahedron

Dodecahedron
Icosahedron

Figure 2.3: Platonic Solids

The platonic solids together with single axis sensors were studied in [12], [7], [2],

among others. Geometries that have been used with IMUs are the tetrahedron

(used by [14] and [16]) and half dodecahedron. In this work only the tetra-

hedron, the cube, and the octahedron will be considered for simplicity of the

calculations, but the methodology could be applied to any configuration.
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Chapter 3

Methodology for Quantifying Optimal

Configuration

In this chapter, different methods to quantify the optimality of a ge-

ometrical configuration are presented. Through these methods, we are able

to compare different configurations and determine which one provides more

information and improved fault detection capability to the whole system.

3.1 Information Matrix

This section closely follows what was presented in [14] and in [5]. From

the information filter (analogous to the Kalman filter), assuming a state space

observation at time k given by

z(k) = H(k)x(k) + v(k), (3.1)

the measurement covariance is defined as:

I(k) = HT (k)R̃−1(k)H(k) (3.2)

where x(k) is the current state 3×1 vector of either true specific forces (which

is what the accelerometers sense) or true angular rates. The H(k) is the ob-

servation model, and v(k) is the observation noise with covariance R̃(k). The

7



matrix I(k) is referred to as the information matrix, and provides a measure

of the amount of information or the contribution of the observations to the

states [5, 14].

In this context the H(k) matrix is made of rotation matrices (one per

IMU) from a common origin to the case frame of each of the IMUs. Since the

orientation of each IMU is constant and independent of time we can drop the

k and write

H =

 Tc
1,b
...

Tc
m,b

 (3.3)

where m denotes the number of IMUs and, therefore, the number of sensors is

n = 3m. Now, assuming that R̃(k) is constant and equal for all sensors, the

goal is to maximize the information matrix I

max [|I|] = max
[∣∣HTH

∣∣] (3.4)

If J = |I| is maximized, the eigenvalues of J have the form

λi =
n

3
(3.5)

where i = {1, · · · , n}, and n is the number of sensors (n is the number of

individual sensors and not of IMUs). Therefore:

J = det
(
HTH

)
=
(n

3

)3

. (3.6)

The previous result matches the one presented in [8]. J is the first

comparison method, and if J = det
(
HTH

)
in Eq. (3.6) is evaluated, then

8



the result is based purely on the geometry of the sensors. If J =
(
n
3

)3
. is

evaluated, then J depends only on the number of sensors used. In [6] and

[5] it was shown that J , defined in Eq. (3.6), depends only on the number of

sensors and therefore is not a very useful result when evaluating different IMU

configurations with the same number of sensors.

3.2 Partial Redundancy

This method was introduced as a reliability criterion for geodetic net-

works by [13]. Later it was used in [5] for comparing IMUs configurations.

The criterion is based on the diagonal elements of the matrix Z defined as:

Z = In −H
(
HT R̃−1H

)−1

HT R̃−1 (3.7)

The goal is to minimize the standard deviation of the elements z, formed

by the diagonal elements of the Z matrix. That is

J̃ = min
√
E[(z− E[z])2] (3.8)

Also, [6] showed that the summation of the diagonal elements zi remains con-

stant and equal to

n∑
i=1

zi = 3(
n

3
− 1) = n− 3 (3.9)

which again shows that these parameters are dependent on the number of

sensors only.
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3.3 Augmented Observation Model Matrix H̃

The previous methods considered only the number of sensors and not

the geometry, therefore another figure of merit is needed. For this, a different

definition of the H(k) matrix is required.

It is known that accelerometers measure specific force and not acceler-

ations. The specific force is defined as the sum of the kinematic acceleration

a and the gravitational acceleration g, or

f = a− g (3.10)

Consider the acceleration ai at a point on a rigid body at position ri. If the

origin of the body frame has an accelerations a and an angular rate ω, the

acceleration on that point could be expressed as [7]:

ai = a + ω̇ × ri + ω × (ω × ri) (3.11)

The specific force is

fi = a + ω̇ × ri + ω × (ω × ri)− g (3.12)

Define the orientation vector of a given single axis accelerometer, from the

origin of the body frame as di. From [7], the measurement yi of a single axis

accelerometer is

yi = di · a + (ω̇ × ri) · di + [ω × (ω × ri)] · di − di · g (3.13)

Defining the skew symmetric forms of ω and ri respectively as

Ω =

 0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0

 Γi =

 0 −riz riy
riz 0 −rix
riy rix 0

 ,

10



the second and third terms of Eq. (3.13) can be written as

di · (ω̇ × ri) = −dTi Γiω̇ (3.14)

[ω × (ω × ri)] · di = dTi Ω2ri (3.15)

and Eq. (3.13) reduces to

yi = a · di − dTi Γiω̇ + dTi Ω2ri − di · g (3.16)

Finally, stacking several measurements of Eq. (3.16) result in

y = H̃x +

 dT1 Ω2r1
...

dTnΩ2rn

+

 dT1
...

dT1

 · g (3.17)

where

x =

(
ω̇
a

)
(3.18)

and

H̃ =

 (r1 × d1)T
... dT1

...
...

...

(rn × dn)T
... dTn

 (3.19)

In this case, n is also the number of single sensors. The matrix H̃ considers

the amount of information that the accelerometers contribute to the angular

acceleration. The angular acceleration can be integrated to get angular rates

that can then be compared to the actual measurements.

For simplicity, the position and orientation vectors ri and di will be

stacked into two matrices R and D, respectively. Three vectors of position

11



and three vectors of orientation are needed for each IMU since each IMU has

three pairs of gyros and accelerometers.

3.4 Conditioning Number

Consider a simple linear system of algebraic equations that has a unique

solution x:

Hx = b (3.20)

If we add a “small” perturbation δb to b, it will also have a solution near to

x. Denoting this solution as x + δx, we can write

H (x + δx) = (b + δb) (3.21)

which can be reduced using Eq. (3.20) to

Hδx = δb (3.22)

Since H may not be square, the singular value decomposition H =

UΣVT will be used. The matrices U and V are orthonormal matrices and

the diagonal matrix Σ is formed by the square roots of the eigenvalues of

HTH, which are the singular values of H. Also, we need to define the largest

and smallest singular value of H as σ̄(H) and σ(H), respectively. With this

decomposition, Eq. (3.20) and Eq. (3.22) can be written as

UΣVTx = b (3.23)

and

UΣVT δx = δb (3.24)

12



Rearranging Eq. (3.24)

δx = VΣ−1UT δb (3.25)

Applying the induced matrix norm to Eq. (3.23) and to Eq. (3.25) yields the

following two equations

‖b‖ ≤ ‖UΣVT‖‖x‖
≤ σ̄(H)‖x‖ (3.26)

‖δx‖ ≤ ‖VΣ−1UT‖‖δb‖
≤ 1

σ(H)
‖δb‖ (3.27)

Rearranging Eq. (3.26) yields

1

‖x‖
≤ σ̄(H)

1

‖b‖
(3.28)

and multiplying by Eq. (3.27) gives the following relationship:

‖δx‖
‖x‖

≤ σ̄(H)

σ(H)

‖δb‖
‖b‖

(3.29)

The ratios ‖δx‖‖x‖ and ‖δb‖
‖b‖ represent the relative sizes of the perturbations with

respect to b and x, respectively. Therefore it is desired that if ‖δx‖‖x‖ is small,

then ‖δb‖
‖b‖ be small as well. Eq. (3.29) thus provides bounds for ‖δx‖‖x‖ in terms

of ‖δb‖‖b‖ .

If σ̄(H)
σ(H)

is small, then small values of ‖δb‖‖b‖ will in turn yield small values

of ‖δx‖‖x‖ , which is what is needed. In contrast, if σ̄(H)
σ(H)

is large we might obtain

large values of ‖δx‖‖x‖ . The value of

k =
σ̄(H)

σ(H)
(3.30)
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is called the condition number. The use of this method was first presented in

[11], but applied only applied to GPS. Later on, this theory was applied to

IMUs [7]. Applying this definition to the H̃ matrix defined in Eq. (3.19), the

condition number k can be also defined as:

k(H̃) =

√√√√√λmax

(
H̃T H̃

)
λmin

(
H̃T H̃

) = ‖H̃T H̃‖‖ (H̃T H̃)−1‖ (3.31)

wherein λmax(M) and λmin(M) are respectively the largest and smallest eigen-

values for any symmetric matrix M. This condition number indicates how close

H̃T H̃ is to singularity and shows the maximum possible impact of the mea-

surement errors on the system accuracy, therefore this value should, preferably

always be kept small.

3.5 Dilution of Precision

The Geometric Dilution of Precision (GDOP) concept relates the effect

of GPS satellite geometry with GPS precision. The same concept was applied

to the H̃ matrix in Eq. (3.19) as follows [7]:

GDOP
(
H̃
)
≡
√
tr
(
H̃T H̃

)−1

(3.32)

Furthermore, if we partition H̃ in its angular and linear acceleration parts as

in Eq. (3.19)

H̃ =
[

Hω̇3×n

... Ha3×n

]
(3.33)
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we can define Angular Dilution of Precision as

ω̇DOP
(
H̃
)
≡
√
tr
(
Hω̇

THω̇

)−1
(3.34)

and Acceleration Dilution of Precision

aDOP
(
H̃
)
≡
√
tr
(
Ha

THa

)−1
(3.35)

It is important to note that Ha = H, as defined in Eq. (3.3). The DOP values

also give a sense of how close to singularity H̃T H̃ is. The reasoning is because

the trace of (H̃T H̃)−1 can be written as

Tr(H̃T H̃)−1 =
N∑
i=1

1

λi

(
H̃T H̃

) (3.36)

We notice that if any eigenvalue is close to zero, the DOP value will be

high, which is why the dilution of precision values should be kept small.

15



Chapter 4

Results of Configuration Performance

In this chapter we present the results of applying the different figures

of merit described in Chapter 3 to several geometrical configurations. Config-

urations using four, eight, and twelve sets of IMUs are presented.

4.1 Configurations with Four IMUs

This section presents the use of four IMUs to generate different config-

urations. Later a comparison table shows their performance according to the

different figures of merit.

4.1.1 Four IMUs on a Plane

This configuration has four IMUs placed on a plane. They form a

square where each of the position vectors is a unit vector, as seen in Figure

4.1

16



Figure 4.1: Four IMUs on a plane

The rows of R represent the position from the origin of the body frame

to the origin of the case frame of each sensor, while the D matrix represents its

orientation. These two matrices are used to construct H and H̃. Since three

sensors form an IMU, three consecutive rows of R will be identical. This is

because the sensors of each IMU have the same origin. However, they have

different orientation, and therefore the corresponding three rows of D will be

17



different. The sensors are placed on the corners of a square.

R =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 −1 0
0 −1 0
0 −1 0
−1 0 0
−1 0 0
−1 0 0



D =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1



(4.1)

When the figures of merit are computed for this configuration, we ob-

tain the values in Table 4.1.

Table 4.1: Figures of Merit for a Square

J J̃ k GDOP ω̇DOP aDOP
Plane 64 0 1.4142 1.4142 1.1180 0.8660

If the orientation of the sensing axis is pointed such that two of the

axis form the square and the remaining points up, as illustrated in Figure 4.2,

the results of the figures of merit do not change and remain the same as in

Table 4.1.
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Figure 4.2: Square formed with 4 IMUs in a plane

4.1.2 Four IMUs Equally Distributed on a Cone

Figure 4.3 shows a cone with a half angle α = 54.72o. The IMUs are

equally distributed along the surface of the cone.
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Figure 4.3: Four IMUs Equally Distributed on Cone

Their positions and directions are represented by the two matrices in Eq. (4.2),

in terms of the half angle α.

R =



0 sinα cosα
0 sinα cosα
0 sinα cosα

− sinα 0 cosα
− sinα 0 cosα
− sinα 0 cosα

0 − sinα cosα
0 − sinα cosα
0 − sinα cosα

sinα 0 cosα
sinα 0 cosα
sinα 0 cosα



D =



0 cosα − sinα
−1 0 0
0 sinα cosα

− cosα 0 − sinα
0 −1 0

− sinα 0 cosα
0 − cosα − sinα
1 0 0
0 − sinα cosα

cosα 0 − sinα
0 1 0

sinα 0 cosα


(4.2)

Using α = 54o, yields the results in Table 4.2.

20



Table 4.2: Figures of Merit for Cone with Four IMUs with α = 54o

J J̃ k GDOP ω̇DOP aDOP
4 Equally spaced 64 0 2.4853 1.7682 1.0607 0.8660

In order to determine the angle that makes this configuration optimal, α

was increased from α = 0o to α = 180o and the figures of merit were evaluated.

The result is presented in Figure 4.4.

Figure 4.4: Figures of Merit for Cone with Four IMUs Equally Distributed

By inspection of the previous figure, one could infer that the minimum occurs

at α = 90o, which would tell us that the IMUs should be on the same plane.

The minimum value of GDOP and k occurs at α = 90o, whereas the minimum

value of ω̇DOP occurs at α = 55o and at α = 125o. The values for each angle

are summarized in Table 4.3.
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Table 4.3: Minimum Figures of Merit for four Equally distributed IMUs on a
Cone

α(deg) J J̃ k GDOP ω̇DOP aDOP
90 64 0 1.4142 1.4142 1.1180 0.8660

55/125 64 0 2.4685 1.7616 1.0607 0.8660

The values in bold in Table 4.3 represent the minimum value for that

specific angle. If the values when α = 90o are compared to that of the ones

presented in Table 4.1 it will be seen that they are the same, as expected.

4.1.3 Three IMUs on a Cone and one on the Z axis

In this configuration, three IMUs are equally spaced along the surface

of a cone and a fourth one is placed on the z axis. Figure 4.5 shows α = 70o

used in the R and D matrices with β = 60o.

Figure 4.5: Three IMUs on a Cone and One on the Z Axis
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R =



0 0 1
0 0 1
0 0 1

sinα 0 cosα
sinα 0 cosα
sinα 0 cosα

sinα cos β sinα sin β cosα
sinα cos β sinα sin β cosα
sinα cos β sinα sin β cosα
sinα cos 2β sinα sin 2β cosα
sinα cos 2β sinα sin 2β cosα
sinα cos 2β sinα sin 2β cosα



D =



1 0 0
0 1 0
0 0 1

cosα 0 − sinα
0 1 0

sinα 0 cosα
1
2

cosα
√

3
2

cosα − sinα

−
√

3
2

1
2

0
1
2

sinα
√

3
2

sinα cosα

−1
2

cosα
√

3
2

cosα − sinα

−
√

3
2

−1
2

0

−1
2

sinα
√

3
2

sinα cosα


(4.3)

Again the optimum value of α is needed, therefore the different figures of merit

are plotted varying the angle from α = 0o to α = 180o, obtaining Figure 4.6.

Figure 4.6: Figures of Merit Cone with IMU on z-axis
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Figure 4.6 shows how the condition number is shifted to the right. The min-

imum for the GDOP, ω̇DOP, and k is at α = 110o. Since this configuration

is symmetrical with respect to the vertical, ω̇DOP shows two minimums, the

second one being at α = 70o, as shown in Table 4.4.

Table 4.4: Minimum Figures of Merit for Cone with IMU on Z axis

α(deg) J J̃ k GDOP ω̇DOP aDOP
70 64 0 2.1294 1.6283 1.0607 0.8660
110 64 0 1.2289 1.3693 1.0607 0.8660

It is evident that in order to get better results, symmetrical configura-

tions should be constructed. Figure 4.7 shows the configurations for α = 70o

and α = 110o.

(a) α = 70 (b) α = 110

Figure 4.7: Optimal Configurations for Cone with an IMU on the z-xis
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4.1.4 Three IMUs on a Cone and one at the Origin

This configurations is very similar to the one in Section 4.1.3. The

difference is that instead of having the fourth IMU on the z-axis, it is located

at the origin. The D matrix is the same as before. The R changes in the

first three rows since the position of this IMU is zero. The configuration is

illustrated in Figure 4.8.

Figure 4.8: Three IMUs on Cone and One at the Origin
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R =



0 0 0
0 0 0
0 0 0

sinα 0 cosα
sinα 0 cosα
sinα 0 cosα

sinα cos β sinα sin β cosα
sinα cos β sinα sin β cosα
sinα cos β sinα sin β cosα
sinα cos 2β sinα sin 2β cosα
sinα cos 2β sinα sin 2β cosα
sinα cos 2β sinα sin 2β cosα



D =



1 0 0
0 1 0
0 0 1

cosα 0 − sinα
0 1 0

sinα 0 cosα
1
2

cosα
√

3
2

cosα − sinα

−
√

3
2

1
2

0
1
2

sinα
√

3
2

sinα cosα

−1
2

cosα
√

3
2

cosα − sinα

−
√

3
2

−1
2

0

−1
2

sinα
√

3
2

sinα cosα


(4.4)

Evaluating the figures of merit for this configuration presents minimums at

α = 90o and at 55 and α = 125o as shown in Figure 4.9

Figure 4.9: Figures of Merit Cone with IMU at Origin
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Table 4.5: Minimum Figures of Merit for Cone with IMU at Origin

α(deg) J J̃ k GDOP ω̇DOP aDOP
90 64 0 1.6330 1.5546 1.2910 0.8660

55/125 64 0 2.2281 1.7714 1.2248 0.8660

One might think that when have α = 90o, the values should be equal

to that of the IMUs on a square. The values are different since one of the

IMUs, in this case, is at the origin and therefore confirms that the symmetry

is important. Figure 4.10 show the cases for α = 90o and α = 55o.

(a) α = 90 (b) α = 55

Figure 4.10: Optimal Configurations for Cone with IMU at Origin

Even though Figure 4.10(a) is on a plane, the figures of merit are larger than

that of the square presented in Section 4.1.1. This is due to the geometry.

4.1.5 Triangle

This configurations intends to show how the symmetry affects the fig-

ures of merit. We will have the same four IMUs as in Section 4.1.1 but now
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they will be placed asymmetrical in a triangular configuration.

Figure 4.11: Triangle Configuration

R = 1√
2



0 0 0
0 0 0
0 0 0
−1 1 0
−1 1 0
−1 1 0
−1 −1 0
−1 −1 0
−1 −1 0
1 −1 0
1 −1 0
1 −1 0



D =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1



(4.5)

The values obtained by the figures of merit are small but not as small as the

square, as illustrated in Table 4.6

28



Table 4.6: Figures of Merit for a Square and Triangle

J J̃ k GDOP ω̇DOP aDOP
Square 64 0 1.4142 1.4142 1.1180 0.8660
Triangle 64 0 2.5736 1.7473 1.3540 0.8660

With this we can conclude that symmetry is important when the IMUs

are placed on the same plane.

4.1.6 Summary of Results with Configuration of Four IMUs

Table 4.7 presents a summary of the configurations that use four IMUs.

Table 4.7 shows the best configurations marked with a star and bold and the

second best only bold. The cone with one IMU on the z-axis shows the most

optimal values of GDOP, ω̇DOP, and k. This is due to the fact that the

configuration is not only symmetrical with respect to the xy-plane, but is also

symmetrical with respect to the z-axis, creating more symmetry than if they

were all placed on the xy-plane. An example of all the sensors on the plane

is to place them on the vertices of a square, which gives the next best figures

of merit. Another configuration that was tested is placing the IMUs on the

surface of a cone, at the same z distance from the origin. The half angle was

varied from 0 ≤ α ≤ 90o and gave optimal results at α = 90o, which coincides

with placing the IMUs on a square on the plane. Therefore, it is better to

place the IMUs on the plane than on the surface of a cone. Lastly, three IMUs

were placed on the vertices of a triangle and the fourth one at the origin. This

configuration gave large results in the figures of merit. Even though it is a

configuration on the xy-plane, it not symmetric about both axis, as is the
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square configuration. Therefore, anytime that four IMUs want to be placed

on the plane, it is best to produce a symmetrical configuration. In Table 4.7,

note that the values of aDOP remain constant for all configurations since they

only depend on the number of sensors used.

Table 4.7: Comparison of Figures for Configurations of Four IMUs. Note, +

indicates a cone configuration.

α J J̃ k GDOP ω̇DOP aDOP
Square in Plane - 64 0 1.4142 1.4142 1.1180 0.8660
4 Equally Spaced+ 54 64 0 2.4853 1.7682 1.0607 0.8660
4 Equally Spaced+ 90 64 0 1.4142 1.4142 1.1180 0.8660
4 Equally Spaced+ 55/125 64 0 2.4685 1.7616 1.0607 0.8660
One @Z Axis+ 70 64 0 2.1294 1.6283 1.0607 0.8660
One @Z Axis+ 110 64 0 1.2289* 1.3693* 1.0607* 0.8660
One @Origin+ 90 64 0 1.6330 1.5546 1.2910 0.8660
One @Origin+ 55/125 64 0 2.2281 1.7714 1.2248 0.8660
Triangle - 64 0 2.5736 1.7473 1.3540 0.8660

4.2 Configurations with Eight IMUs

This section presents configurations with eight IMUs. A cube, a unit

circle, a cone with eight IMUs equally distributed, two cones with four IMUs

each, and an octahedron are presented.

4.2.1 Cube

The cube configuration has one IMU in each of its vertices. The position

matrix in Eq. (4.6) is
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R =
1√
3



1 1 1
1 1 1
1 1 1
1 1 −1
1 1 −1
1 1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 1
1 −1 1
1 −1 1
−1 1 1
−1 1 1
−1 1 1
−1 1 −1
−1 1 −1
−1 1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 1
−1 −1 1
−1 −1 1



(4.6)

Two different orientations were tested and gave the same results. For

this reason, the orientation matrix D is not shown. The orientations are the

cube with identity orientations (Figure 4.12) and the cube with orientations

following the edges (Figure 4.13).

31



Figure 4.12: Cube with Identity Orientations

The second configuration in Figure 4.13 has the sensing axis pointing to each

of the sides of the cube. Table 4.8 shows that the value of GDOP and ω̇ are

relatively small. Later it will be seen that this configuration gets the smallest

values in the figures of merit.
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Figure 4.13: Cube with Inside Orientations

Table 4.8: Figures of Merit for a Cube

J J̃ k GDOP ω̇DOP aDOP
Cube 512 0 1.2247 0.9682 0.75 0.6124

4.2.2 Unit Circle

This configuration shows eight IMUs equally distributed along the cir-

cumference of a unit circle. Two different orientations are presented in Fig-

ure 4.14 and 4.15.
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Figure 4.14: Unit Circle with Identity Direction

Figure 4.15: Unit Circle with Rotating Direction

34



The R matrix in Eq.(4.7) describes their position.

R =
1√
2



1 0 0
1 0 0
1 0 0
1√
2

1√
2

0
1√
2

1√
2

0
1√
2

1√
2

0

0 1 0
0 1 0
0 1 0
− 1√

2
1√
2

0

− 1√
2
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2

0

− 1√
2

1√
2

0

−1 0 0
−1 0 0
−1 0 0
− 1√

2
− 1√

2
0

− 1√
2
− 1√

2
0

− 1√
2
− 1√

2
0

0 −1 0
0 −1 0
0 −1 0
1√
2
− 1√

2
0

1√
2
− 1√

2
0

1√
2
− 1√

2
0



(4.7)

Again, the results for both orientations are the same, which tells us that the

figures of merit are unchanged by the orientation and are more ruled by the

position of the sensors. Table 4.9 shows the figures of merit for the unit circle.

All three values of condition number k, GDOP, and ω̇DOP are larger that the

ones obtained for the cube.
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Table 4.9: Figures of Merit for a Unit Circle

J J̃ k GDOP ω̇DOP aDOP
Unit Circle 512 0 1.4142 1.000 0.7906 0.6124

4.2.3 Cone With Eight Equally Distributed IMUs

This configuration has the eight IMUs distributed along the surface of

the cone, as illustrated in Figure 4.16. Different α angles for the cone were

tested.

Figure 4.16: Cone with α = 55

The R matrix in Eq. (4.8) describes their position of the IMUs.
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R =



sinα 0 cosα
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2
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sinα − 1√
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0 − sinα cosα
0 − sinα cosα
0 − sinα cosα

1√
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2

sinα cosα
1√
2

sinα − 1√
2

sinα cosα
1√
2

sinα − 1√
2
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

(4.8)

The angle α was changed from 0o to 180o yielding the figures of merit

shown in Figure 4.17.

37



Figure 4.17: Figures of Merit Cone with Eight IMU

The minimum of GDOP and the condition number k occurs at α = 90o.

For ω̇DOP, the minimum is at α = 125o and at α = 55o. The values for α = 90o

are very close to that of the unit circle of the previous section. This is due to

the fact the IMUs form the same configurations. Table 4.10 shows in bold the

smallest values obtained. The values of k and GDOP are larger that those of

the cube. The value of ω̇ at α = 55 is close to that of the cube.

Table 4.10: Minimum Figures of Merit for Cone with Eight Equally distributed
IMUs

α(deg) J J̃ k GDOP ω̇DOP aDOP
90 512 0 1.4142 1.0005 0.7904 0.6124

55/125 512 0 2.5317 1.2634 0.7501 0.6124
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4.2.4 Two Cones With Four IMUs Each

This configuration shows two identical cones, joined by their tip, as

illustrated in Figure 4.18.

Figure 4.18: Cone with α = 55

The R matrix describes the IMU position with respect to the angle α.
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R =


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

(4.9)

The angle α was also changed from α = 0o to α = 180o yielding Figure 4.19.
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Figure 4.19: Figures of Merit for two Cones with Eight IMUs

The minimums for GDOP, k, and ω̇DOP occur at α = 125o or at

α = 55o. The values are presented in Table 4.11. Also the values at α = 45o

are presented for a later comparison.

Table 4.11: Minimum Figures of Merit for Two Cones with Four Equally
distributed IMUs

α(deg) J J̃ k GDOP ω̇DOP aDOP
45 512 0 1.4142 0.9789 0.7638 0.6124

55/125 512 0 1.2268 0.9683 0.7500 0.6124

The two cone configurations at angles of α = 550 and α = 125o give

the same results as the cube configuration. In fact, at that angle, the config-

urations are the identical since their position in space is the same.
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4.2.5 Octahedron

This configuration has eight IMUs placed on each of the edges of an

octahedron, as illustrated in Figure 4.20. The α angle is measured from the

xy-plane to the positive z-axis.

Figure 4.20: Octahedron with α = 45

The R matrix in Eq. (4.10)describes the position of the IMUs as a

function of the angle α.
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R =



cosα 0 sinα
cosα 0 sinα
cosα 0 sinα

0 cosα sinα
0 cosα sinα
0 cosα sinα

− cosα sinα sinα
− cosα sinα sinα
− cosα sinα sinα

0 − cosα sinα
0 − cosα sinα
0 − cosα sinα

cosα 0 − sinα
cosα 0 − sinα
cosα 0 − sinα

0 cosα − sinα
0 cosα − sinα
0 cosα − sinα

− cosα sinα − sinα
− cosα sinα − sinα
− cosα sinα − sinα

0 − cosα sinα
0 − cosα sinα
0 − cosα sinα



(4.10)

The angle α was varied from α = 0o to α = 180o as shown in Figure 4.21,

yielding the following figure of merit plot shown in Figure 4.22.

43



(a) α = 0 (b) α = 90

Figure 4.21: Configurations for Octahedron

Figure 4.22: Figures of Merit for Octahedron

The minimum values for GDOP, k, and ω̇DOP occurs at α = 34.4o. The values

are presented in Table 4.12. When α = 90o we observe that all the figures of
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merit values grow exponentially. This behavior is because at that angle, the

geometrical configuration is equivalent to having four IMUs stacked at one

vertex, and it is not a good idea to have them all together. Also the values at

α = 45o are presented in Table 4.12.

Table 4.12: Minimum Figures of Merit for Octahedron

α(deg) J J̃ k GDOP ω̇DOP aDOP
45 512 0 1.4142 0.9789 0.7638 0.6124

34.4 512 0 1.2315 0.9683 0.7501 0.6124

When the angle is α = 34.4o, the values are close to that of the cube,

and as seen in Figure 4.23, indeed, they are practically the same configuration.

Figure 4.23: Equivalent Octahedron, Cube, and Two Cones
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When α = 45o, the values are the same as the ones obtained in the

two cone configuration at that same angle. In Figure 4.24, it was noticed that

the two cone configuration and the octahedron are equivalent and the only

difference is how we measure the angle α. The figures of merit confirm that

the octahedron at 90−α gives the same values as for the two cones at an angle

α, as shown in Figure 4.25.

Figure 4.24: Equivalent Octahedron and Two Cones
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Figure 4.25: Figures of Merit for Octahedron and Two Cones

4.2.6 Summary of Results with Configurations of Eight IMUs

In Table 4.13, we present the summary of the results of the configura-

tions using eight IMUs. Table 4.13 shows that the minimum figure of merit

values are obtained with the cube configuration (marked with * and bold).

The second best configuration is the octahedron at α = 34.4o, but this is the

equivalent configuration to that of the cube, as was explained in Section 4.2.5.

Also, placing the eight sensors on an octahedron is equivalent to placing them

on the two-cone configuration. Therefore, an octahedron at α = 34.4o is equiv-

alent to the two-cone at α = 55.6o, which is another optimal configuration.

The next best configuration is the unit circle on the plane, which is followed by

a single cone. Just as in four IMUs configuration, the equally spaced sensors

47



on a cone show the best results when α = 90o, which confirms that in-plane

configurations are preferred to single cone configurations.

Table 4.13: Figures of Merit for Configurations of Eight IMUs

α J J̃ k GDOP ω̇DOP aDOP
Cube - 512 0 1.2247* 0.9682* 0.7500* 0.6124
Unit Circle 0 512 0 1.4142 1.0000 0.7906 0.6124
One Cone 90 512 0 1.4142 1.0005 0.7904 0.6124
One Cone 55/125 512 0 2.5317 1.2634 0.7501 0.6124
Two Cones 45 512 0 1.4142 0.9789 0.7638 0.6124
Two Cones 55/125 512 0 1.2268 0.9683 0.7500 0.6124
Octahedron 45 512 0 1.4142 0.9789 0.7638 0.6124
Octahedron 34.4 512 0 1.2315 0.9683 0.7501 0.6124

As seen in Table 4.13, the figures of merit of the cube are smaller than

those for the unit circle on the plane. This result is due to the fact that the

cube is symmetric in all the directions with respect to the origin, while the

unit circle is symmetric in just the xy plane.
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Chapter 5

Conclusions

5.1 Research Summary

This research explored the optimality of different geometrical configu-

rations of redundant IMUs, with the purpose of obtaining improvement in the

accuracy of the measurements. These configurations were formed with groups

of both four and eight IMUs. The configurations tested were a square, a unit

circle, and a triangle, all placed on the plane, and in three-dimensions a single

cone, two cones joined by their tip, a cube, and a tetrahedron. These geome-

tries were then compared based on six different figures of merit. Of the six,

three are based on the position of either the accelerometers or the gyros, one

takes into account the rotational part of the configuration, and the remaining

two measure both the rotational part and the position of the sensors.

It was shown that the figures of merit were invariant to the orientation

of the sensors. That is, the result of putting an IMU with one of its sensing

axis facing down is the same as putting the same sensor facing up. It was also

determined that the aDOP figure of merit is closely related to the information

matrix approach and only depends on the number of IMUs used and not on the

geometrical configuration. That is, the aDOP value is the same for a specific
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number of IMUs regardless of the geometry. Two of the figures of merit, GDOP

and the condition number k, give a sense of the the optimal geometry, with

numerically small values being best for GDOP, and values closer to unity for

k. The ω̇DOP, another figure of merit, gives a measure for the rotation arm.

The smaller this value, the more spread out a configuration is, and therefore

having a longer rotation arm increases the magnitude of the measurement.

For configurations with four IMUs, it was shown that the configuration

of a single cone gives high values in the figures of merit if all the IMUs are

equally spaced along the surface of the cone, and therefore it is not advised to

use this configuration. A better result was found placing them on the edges of

a square. However, the best configuration is to place three of the IMUs along

the surface of a cone with a half angle α = 110o and the remaining IMU above

on the z-axis. A triangle configuration was also considered, but did not give

optimal conditions. This last configuration was tested to prove that, if placing

the sensors on the plane, symmetrical configurations will always give optimal

conditions.

According to the results of the figures of merit, for configurations with

eight IMUs, the cube turned out to be the most optimal configuration. If the

cube is compared to the unit circle, it is found that all three values of condition

number k, GDOP, and ω̇DOP are smaller for the cube. This result is due to

the fact that the cube is symmetric in all the directions with respect to the

origin, while the unit circle is symmetric in just the xy-plane. The second

best configuration is the octahedron. For an angle α = 34.4o, the values of its
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figures of merit are close to that of the cube, meaning that the positions of the

IMUs are close to that of the cube. It was noticed that the octahedron and the

two cones joined by their tips are equivalent. For the single cone configuration,

its minimum is at α = 90o, which is the same as the unit circle, confirming

that the in-plane configuration is better than any single cone configuration.

5.2 Future Work

The research presented herein compares theoretically the optimality of

placing different number of IMUs in several geometrical configurations. Fu-

ture work will be focused on confirming the theoretical results with practical

implementation. The different optimal configurations found in this report will

be constructed and tested in an R/C airplane. These different optimal con-

figurations need to be compared to the outputs of a tactical IMU to see the

performance improvement.

Also this research used the measurements of the sensors in the form

of a linear system, where least squares can used to solve the system. Further

research should be done to integrate the measurements using different meth-

ods, such as the Kalman Filter. After the fusion, the error reduction should

be evaluated to determine the impact of the geometry on the error.
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