

Copyright

by

James Adam Seppi

2010

The Thesis Committee for James Adam Seppi

Certifies that this is the approved version of the following thesis:

A Services Stack Architectural Model for the CUAHSI-HIS

APPROVED BY

SUPERVISING COMMITTEE:

David R. Maidment

Ben R. Hodges

Supervisor:

A Services Stack Architectural Model for the CUAHSI-HIS

by

James Adam Seppi, B.S., B.A.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2010

 iv

Acknowledgements

I would like to thank my advisor, David R. Maidment, for his guidance and

vision, as well as for the opportunity to work with the great team at the Center for

Research in Water Resources. Thanks also to Timothy L. Whiteaker for being a

knowledgeable resource for the discussion and critique of ideas.

I would also like to acknowledge the Consortium of Universities for the

Advancement of Hydrologic Science, Inc. for its support of my work through the

Hydrologic Information System project.

Finally, I would like to thank my wife, Taylor Cook, for her encouragement, love,

and understanding throughout my graduate studies.

December 2010

 v

Abstract

A Services Stack Architectural Model for the CUAHSI-HIS

James Adam Seppi, M.S.E.

The University of Texas at Austin, 2010

Supervisor: David R. Maidment

The Hydrologic Information System Project of the Consortium of Universities for

the Advancement of Hydrologic Science, Inc. (CUAHSI) has successfully created a

large-scale prototype Hydrologic Information System (HIS). This system catalogs and

provides access to over 23 million time series of hydrologic data, which are distributed

across the United States at various academic, research, and governmental data providers.

The service-oriented architecture that enables the HIS comprises distributed hydrologic

data servers, a centralized series catalog, and various client software applications, and is

supported by WaterML, a standardized language for transmission of hydrologic data.

 The current architectural model, termed the Network-Observations Model, of the

HIS relies on a searchable central catalog of series metadata. Harvesting series metadata

from large federal data providers, such as the USGS, EPA, and NCDC, has proven a

laborious undertaking and involves custom database migration tools. This time-

 vi

consuming harvesting task, coupled with a multitude of custom-coded solutions at the

central series catalog has led to concerns with the long-term sustainability of the current

architectural model.

A new architectural model, termed the Services Stack Model, is proposed in this

thesis. In the proposed model, a catalog of services metadata, rather than of series

metadata is used to connect hydrologic data consumers with data providers.

Internationally-recognized web service and data encoding standards, including the

upcoming WaterML2.0 specification, from the Open Geospatial Consortium are used as

the backbone of the new model. The proposed model will hopefully lead to greater

acceptance of the CUAHSI-HIS, and result in increased sustainability and reduced

maintenance of the system in the long-term.

 vii

Table of Contents

List of Figures ..x

Chapter 1: Introduction ..1

1.1 Motivation ...1

1.2 Hydrologic Data ..2

1.3 CUAHSI-HIS Project..4

1.4 Objectives and Chapter Outline ..7

Chapter 2: Literature and Technology Review ..9

2.1 Hydrologic Information Systems ..9

2.1.1 Definitions...9

2.1.2 Web Services ..11

2.1.3 Service-Oriented Architectures ...14

2.2 The CUAHSI-HIS Service-Oriented Architecture15

2.2.1 Background ...15

2.2.2 WaterML ...16

2.2.3 WaterOneFlow Web Services ...17

2.3 Open Geospatial Consortium Standards ...23

2.3.1 Background ...23

2.3.2 Web Map Service ..24

2.3.3 Web Feature Service ...28

2.3.4 Catalogue Services for the Web ..33

2.3.5 Sensor Observation Service ..39

2.3.6 Filter Encoding Standard ..42

2.3.7 WaterML2.0 ..44

Chapter 3: The CUAHSI HIS Architecture ...45

3.1 Overview ...45

3.2 The Network-Observations Model ...45

3.3 HIS Components ...47

 viii

3.3.1 Introduction ...47

3.3.2 HydroServers ..48

3.3.3 HIS Central ...53

3.3.4 Clients ...58

3.3.5 Summary of Roles and Responsibilities60

3.4 HIS Operating Models ..62

3.4.1 Introduction ...62

3.4.2 Direct Client-Server Model ...62

3.4.3 Weak Central Catalog Model..63

3.4.4 Strong Series Catalog Model ..64

3.4.5 Dual-Catalog Model..66

3.5 Summary and Issues ...67

Chapter 4: The Services Stack Model ..69

4.1 Overview ...69

4.2 Thematic Metadata Table ...70

4.3 Services Stack Model ..71

4.4 Services Stack Model SOA Components ...73

4.4.1 Overview ...73

4.4.2 HydroServers ..73

4.4.3 Catalogs...75

4.4.4 Clients ...76

4.4.5 Summary of Roles and Responsibilities77

4.5 Proposed Operating Model ...78

4.6 WFSTest: A Simple Proof-of-Concept Client ..80

4.7 Issues and Areas for Future Research ...82

Chapter 5: Conclusions ..84

5.1 What Have We Learned ..84

5.2 Areas of Future Research ..86

 ix

Appendix A: Metadata Table Field Specification ...88

Appendix B: WFSTest Operation ..91

Appendix C: List of Acronyms ..94

References ..96

Vita ...100

 x

List of Figures

Figure 1: The “data cube” (Whiteaker 2010) ...3

Figure 2: CUAHSI U.S. member institution locations ..6

Figure 3: Registered hydrologic data sites at HIS Central7

Figure 4: Information system subsystems mapped to GIS subsystems10

Figure 5: Information system subsystems mapped to HIS subsystems11

Figure 6: Component interactions in SOA...15

Figure 7: CUAHSI-HIS SOA (image from http://his.cuahsi.org/)16

Figure 8: Example SOAP WOF GetSites request..18

Figure 9: Example site metadata from GetSitesResponse19

Figure 10: Example SOAP WOF GetSiteInfo request ..19

Figure 11: Example series metadata from GetSiteInfoResponse20

Figure 12: Example SOAP WOF GetVariableInfo request21

Figure 13: Example variable metadata from WOF GetVariableInfoResponse21

Figure 14: Example SOAP WOF GetValues request ..22

Figure 15: Example time series data from WOF GetValuesResponse23

Figure 16: Excerpt containing Layer element from WMS GetCapabilities response

...26

Figure 17: Response from GetMap request on TCEQ_Tracs WMS Service28

Figure 18: FeatureTypeList excerpt from GetCapabilities response on TCEQ_Tracs

WFS ..30

Figure 19: TRACS_SitesType definition (GML) from DescribeFeatureType on

TRACS_Sites WFS ...31

Figure 20: Excerpt from GetFeature response on TCEQ_Tracs WFS33

 xi

Figure 21: Example SummaryRecord schema from DescribeRecord response36

Figure 22: SummaryRecord from GetRecords response38

Figure 23: SensorML excerpt from DescribeRecord request41

Figure 24: Result element from GetObservation request42

Figure 25: Filter example with spatial (BBOX) and comparison operators43

Figure 26: The Network-Observations Model ...46

Figure 27: Network-Observations Model hierarchy with example47

Figure 28: Network-Observations components ...48

Figure 29: Generic HydroServer diagram..49

Figure 30: HydroServer from off-the-shelf components50

Figure 31: ODM-View HydroServer diagram ...51

Figure 32: Hybrid HydroServer diagram ...53

Figure 33: HIS Central Service Registry ...54

Figure 34: HIS Central Metadata Catalog schema (Whitenack 2010)55

Figure 35: HIS Central Ontology tables (Whitenack 2010)57

Figure 36: HydroTagger web interface (Piasecki 2008) ..57

Figure 37: HydroExcel interface ..59

Figure 38: HydroDesktop interface ...60

Figure 39: Direct Client-Server Model ..62

Figure 40: Weak Central Catalog Model ...64

Figure 41: Strong Series Catalog Model ..65

Figure 42: HydroDesktop search process ..66

Figure 43: Dual Catalog Model ...67

Figure 44: OGC services stack ..71

Figure 45: Federated services stacks..72

 xii

Figure 46: Component interaction within the Services Stack Model73

Figure 47: HydroServer in Services Stack Model ...74

Figure 48: Component interaction with services stack and meta-catalog76

Figure 49: General operating model in Services Stack SOA79

Figure 50: “Narrowing” steps with the Services Stack Model80

Figure 51: WFSTest application interface ...81

1

Chapter 1: Introduction

1.1 MOTIVATION

As global populations grow, stresses on the environment and natural resources

will also increase. Demands on one of our most fundamental resources, water, will likely

see unprecedented growth to meet drinking, agriculture, and power production

requirements worldwide. In order to effectively plan and manage water resources we

need to more fully understand them. Understanding water resources involves not only

knowing how much water exists and how and where it is flowing, but also its quality and

the environmental and biological impacts of its abstraction. However, due to the

complex nature of the hydrologic cycle, wherein water moves in different phases over

widely varying periods of time and distances, this is not an easy task. In order to most

effectively and efficiently manage water resources, planners, scientists, and engineers

need to synthesize information about our water environment. This synthesis of

information requires that observations data about the hydrologic cycle be accessible and

in a usable format.

The Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI) Hydrologic Information System (HIS) project has created a large-scale

prototype HIS to make integrated hydrologic data accessibility a reality. As the grant

period of the HIS project comes to an end, the project must ensure that its legacy is

sustainable, supportable, and deployable. To this end, lessons learned from the creation of

the prototype HIS need to be used to propose a new, more robust, standards-based HIS

architecture that will ensure future sustainability.

This chapter describes what hydrologic data are, why they are so complex, and in

broad terms what the CUAHSI-HIS project is.

2

1.2 HYDROLOGIC DATA

Hydrologic data are data that describe the water environment. Observational

hydrologic data includes the physical properties; chemical constituents; atmospheric

conditions; and biological movement, processes, and life that comprise this environment.

These data can be observed in situ, such as with stream flow gages, or ex situ, such as

when a water sample is collected and analyzed in a lab. Hydrologic data may be

collected at point-locations, such as with pan evaporation, or may cover wide swaths of

the land surface, such as with remotely-sensed precipitation data. Additional hydrologic

data are created via models or through other derived products.

Hydrologic observations data have three fundamental characteristics: location,

date and time, and value (Tarboton, Horsburgh and Maidment 2007). The data cube (see

Figure 1) is a conceptual way of describing hydrologic data along three primary axes:

location (where), time (when), and variable (what) (Whiteaker 2010). At the intersection

of selected values along these three axes is what could be an observation: a numeric

value corresponding to a specific location in space, at a specific time for a specific

variable. Data observation is not perfect, so for any observation system recorded

observation values do not exist along the continuum of location, time, and variable. For

example, the United States Geological Survey (USGS) National Water Information

System measures streamflow at 15-minute intervals and at various locations within the

surface water system of the United States.

3

Figure 1: The “data cube” (Whiteaker 2010)

In addition to the diversity in the types of hydrologic data, there is also great

variety in who collects the data and how the data are stored. In the United States,

hydrologic data are collected and managed at many different levels of governmental,

scientific, and academic agencies. The scales of these agencies’ observations networks

range from individual catchments to the nation’s largest waterways and upwards to the

global atmosphere. For instance, the USGS maintains a nationwide network of almost

1.5 million sites to measure surface water levels and flow, groundwater levels, and water

quality. Smaller agencies include those like the Lower Colorado River Authority

(LCRA) in Texas, which collects hydrologic data such as precipitation and streamflow

for the Lower Colorado River.

The assortment of agencies collecting hydrologic data leads to both syntactic and

semantic heterogeneity, as defined by Horsburgh, et al (2009, 881):

4

“Syntactic heterogeneity refers to a difference in how data and

metadata are organized (e.g., rows vs. columns) and encoded (e.g.,

text files verses Excel spreadsheets), while semantic heterogeneity

refers to the variety in language and terminology used to describe

observations.”

The diversity in types of hydrologic data along with the syntactic and semantic

heterogeneity of the data make bringing together different observations both difficult and

time consuming. Fierro (2007, 1) argues that “scientists spend 80% of their time

managing the data and 20% analyzing and interpreting.” The same issues with

observational data also extend to metadata: the supplementary data that describes the

observational data. With predictions on the vast amount of data that will be produced in

the future, creating a framework by which all these differences in water data can be

reconciled would be a boon to the scientific understanding and resource management

capabilities in hydrologic disciplines.

1.3 CUAHSI-HIS PROJECT

The modern World Wide Web architecture, along with increases in data

bandwidth and server speeds has led to the development of standards for sharing

information via machine-to-machine interactions called web services. Many national-

level hydrologic data collectors in the U.S., such as the USGS and Environmental

Protection Agency (EPA), are mandated to make their data available to the public.

Smaller data collectors, while often not mandated to share data, often do so anyway to aid

the scientific and academic communities. The development of web services has

5

undoubtedly made the dissemination of data easier than in the days of hard-copy printed

data tables.

Unfortunately, nearly all agencies and data collectors have their own data formats,

protocols, and nomenclature so that even though there are web services to access data,

there is still great difficulty in integrating the data from different sources.

The CUAHSI-HIS project has been created to help solve these hydrologic data

integration problems. CUAHSI is an international, U.S. National Science Foundation-

funded consortium comprised of over 120 member universities and research groups, the

majority of which are U.S.-based institutions (see Figure 2). Part of CUAHSI’s

overarching mission is “to enhance hydrologic science by facilitating user access to more

and better data for testing hypotheses and analyzing hydrologic processes” (CUAHSI

2010) In support of this mission, CUAHSI directs the aforementioned HIS project, “a

national cyber-information system for sharing hydrologic data” (CUAHSI-HIS 2010).

Member teams of the CUAHS-HIS project are at the Center for Research in Water

Resources (CRWR) at the University of Texas at Austin, the San Diego Supercomputer

Center (SDSC), Utah State University, Idaho State University, and the University of

South Carolina.

6

Figure 2: CUAHSI U.S. member institution locations

This CUAHSI-HIS comprises hydrologic data servers distributed throughout the

U.S., a central cataloging system at the San Diego Supercomputer Center, and clients that

use this system. The central catalog (HIS Central) has 62 public services registered at the

time of writing this thesis. Collectively, these services provide access to nearly 23

million data series containing approximately 5.1 billion data values measured at nearly 2

million sites (Tarboton, Maidment, et al. 2010). Figure 3 shows some of these sites from

the largest hydrologic data providers.

7

Figure 3: Registered hydrologic data sites at HIS Central

 This system provides the means of water data publication, sharing, discovery,

analysis, and visualization. The HIS project has created and published several key

technologic products in support of this system. These products include the Observations

Data Model, WaterOneFlow web services, Water Markup Language, HydroExcel, and

HydroDesktop.

1.4 OBJECTIVES AND CHAPTER OUTLINE

The objectives of this thesis are to answer the following questions:

• What are the components of the current HIS architecture and how do these

pieces work together?

• What are the operating models for hydrologic data access that have been

followed within the current HIS architecture?

• Can a new, sustainable architectural model that leverages international

standards and a deployable catalog component be proposed?

8

• What areas of future research are necessary to move toward this new

architectural model?

Chapter two of this thesis is a literature and technology review for topics and

technologies relating to the CUAHSI-HIS project. This chapter covers technologies both

currently leveraged by the project as well as those toward which the project is likely

headed.

Chapter three describes the current architecture of the CUAHSI-HIS. Each

component of the system is elaborated. The client-centric operating models of the current

HIS are also defined and described.

Chapter four proposes a new architecture for the CUAHSI-HIS that utilizes a suite

of standard web services from the Open Geospatial Consortium. A proof-of-concept

client application for this model is also presented to illustrate how the proposed

architectural system will function.

Chapter five presents conclusions and areas of future investigation.

9

Chapter 2: Literature and Technology Review

2.1 HYDROLOGIC INFORMATION SYSTEMS

2.1.1 Definitions

To understand what a hydrologic information system is and the needs it meets, a

foundational definition for generic information systems should first be identified.

Langefors (1973, 195) provides a definition of an information system as “a system of

information sets needed for decision and signaling in a larger system (of which it is a

subsystem) containing subsystems for collecting, storing, processing, distributing

information sets.” In this definition, information refers to “any kind of knowledge or

message that can be used to improve or make possible a decision or action” (Langefors

1973, 319). The term data, then, refers to the digital representation of information

(Langefors 1973).

The preceding definition of an information system can be specialized and

extended to refer to information systems of particular information domains. For instance,

Marble (1984) defines geographic information systems (GIS) as containing four

subsystems for geospatial data: (1) input, (2) storage and retrieval, (3) manipulation and

analysis, and (4) reporting through maps or tables. Connections between the subsystems

that define an information system laid forth by Langefors and those that define a GIS can

be made, as depicted in Figure 4.

10

Figure 4: Information system subsystems mapped to GIS subsystems

Following this pattern of information system definitions, a hydrologic information

system (HIS) can thus be defined as an information system for the domain of hydrologic

data. A HIS should then contain subsystems for hydrologic data (discussed in Chapter 1)

collection, storage/retrieval, processing/analysis, and distributing/reporting. Tarboton, et

al. (2010, 1) offer a definition of HIS “1) as a way of publishing hydrologic data in a

uniform way; 2) as a way of discovering and accessing remote water information

archives in a uniform way; and 3) as a way of displaying, synthesizing and analyzing

water information and exporting it to other analysis and modeling systems.” This

definition of HIS in terms of capabilities generally fits within the framework of

information systems set forth by Langefors. Figure 5 shows how the capabilities of a HIS

map to the basic information systems subsystems. The storage capability in the HIS

definition from Tarboton, et al. (2010) is implicit in mentioning “water information

archives.”

11

Figure 5: Information system subsystems mapped to HIS subsystems

Maidment (2009, 2) defines the components of a HIS as “software applications

that store, access and index hydrologic information.” Further pointing out that a HIS can

work in conjunction with a GIS, a key difference between GIS and HIS is that hydrologic

data vary greatly with time, while geospatial data are usually static and have little time

variation (Maidment 2009).

2.1.2 Web Services

The World Wide Web Consortium (W3C) defines a generic web service as “a

software system designed to support interoperable machine-to-machine interaction over a

network” (W3C 2004). Web services are accessed through endpoints, which are typically

addressed via uniform resource identifiers (URIs) (Endrei, et al. 2004). A single web

service usually comprises several methods or operations that, according to the input

parameters, act upon the resources available through the service. Web services are

loosely-coupled to their clients and other interacting services, and two-way

communication is accomplished through messages (Endrei, et al. 2004). A message to a

12

web service is a request and the message back from the service is a response. The

published means of interacting with a particular web service, including all of its methods

and the possible inputs to those methods, is an application programming interface (API).

At the base level, web services, as their name implies, function over the World

Wide Web (WWW) which is made possible by the Internet. The WWW uses Hypertext

Transfer Protocol version 1.1 (HTTP/1.1) as its communication protocol over the

Internet. HTTP/1.1 has four main operations on web resources: GET, POST, PUT, and

DELETE (W3C 1999). Generally speaking, the GET operation is for reading data, POST

is for creating new data, PUT is for creating or updating data, and DELETE is for

deleting data (W3C 1999). Because web services are implemented over the WWW, at

the most basic level, all web service methods eventually map to these HTTP operations.

RESTful web services and SOAP web services are two strategies of web service

implementation (Pautasso, Zimmerman and Leymann 2008).

RESTful web services are based on the architectural idea of REpresentational

State Transfer (REST), a concept developed by Fielding (2000) in his doctoral

dissertation. REST is actually the guiding architecture to the HTTP/1.1 specification, of

which Fielding was a principal designer. Web services that follow the REST architectural

guidelines are known as RESTful. In RESTful systems, communication is stateless “such

that each request from client to server must contain all of the information necessary to

understand the request, and cannot take advantage of any stored context on the server”

(Fielding 2000, 78-79). This lack of session state tracking on the server increases

scalability because servers do not have to keep track of session information, though it

decreases network performance since data may be repeated in requests (Fielding 2000).

13

Rather than defining new method interfaces, RESTful web services take

advantage of some or all the HTTP/1.1 operations to perform their actions (Pautasso,

Zimmerman and Leymann 2008). For instance, HTTP GET requests are used to request

data from a RESTful web service. Parameters to GET requests are sent via simple URI-

encoded calls to the web server. Thus, a request to get information about a particular

book with a given identification number from an online bookstore’s web service might

look like the following (where the service endpoint URI is highlighted in red and the

request parameters are in blue):

http://www.bookstore.com/bookService?request=GetInfo&bookId=123

Because REST is an architectural ideal rather than a specifically defined protocol,

there is no agreed-upon standard for RESTful web services. Rather, the endpoints,

operations, parameters, and other information of a RESTful web service are usually

defined in an API by the service provider, and client software must be programmed to

interact with that API in particular.

SOAP, by comparison, is a completely-specified, standardized protocol that

describes the message formats, encoding rules, and transport mechanism for web services

(Endrei, et al. 2004). The SOAP (which formerly stood for Simple Object Access

Protocol) protocol is developed and maintained by the W3C (W3C 2007). The SOAP

message format (both requests and response) is based on eXtensible Markup Language

(XML). A SOAP message comprises a wrapping SOAP envelope that holds an optional

SOAP header component and a mandatory SOAP body component (W3C 2007). The

SOAP header is usually used for authentication and session state management, while the

SOAP body contains the actual request/response payload. Although technically any

14

transport protocol could be used with SOAP, HTTP is currently the only such transport

protocol accepted by the SOAP specification (Endrei, et al. 2004).

SOAP web service providers usually publish a Web Services Description

Language (WSDL) file on their servers. WSDL files provide the “operational

characteristics of a Web service using an XML document” (Endrei, et al. 2004, 123).

These operational characteristics include what the web service is about, where it resides

(the endpoint URI), and what is needed to invoke the service (Endrei, et al. 2004).

2.1.3 Service-Oriented Architectures

Service-Oriented Architectures (SOA) are system architectures built around

services connected together to achieve higher-level processes and solutions (Rosen,

Lublinsky and Smith 2008). There are three core concepts that comprise SOA: services,

interoperability, and loose-coupling (Josuttis 2007). Endrei, et al. (2004, 27-28) describe

the web services that empower SOA as having several key characteristics:

“Services are self-contained and modular. Services support interoperability.

Services are loosely coupled. Services are location-transparent. Services are

composite modules, comprised of components.”

Based these characteristics and the definition of SOA, web services are an appropriate

class of services upon which a larger system architecture can be built.

In a SOA, there are two fundamental components: (1) service providers and (2)

service consumers (Nickul 2007). Service consumers connect directly with service

providers to request and receive data (Nickul 2007). A third component, called a service

registry can also be included in a SOA (Endrei, et al. 2004). The interactions among these

three components are displayed in Figure 6. Service providers publish web services to

make data available and register their services at a registry. Service registries (i.e.,

15

catalogs) allow consumers to search for desired services based on some criteria. The

registry may also provide the consumer with the interface or endpoint to matching

services. Service consumers (i.e., clients) invoke services to request data (Endrei, et al.

2004).

Figure 6: Component interactions in SOA

2.2 THE CUAHSI-HIS SERVICE-ORIENTED ARCHITECTURE

2.2.1 Background

The CUAHSI-HIS project has created a prototype SOA for hydrologic

information. Figure 7 is a conceptual diagram of this system. As with the generic SOA

described in the previous section, the HIS SOA has three basic components: service

providers called HydroServers, a service registry called HIS Central, and service

consumers such as HydroDesktop. The enabling technologies behind all these

components are Water Markup Language and WaterOneFlow web services. The

following sections contain descriptions of the WaterML and WOF specifications.

16

Figure 7: CUAHSI-HIS SOA (image from http://his.cuahsi.org/)

2.2.2 WaterML

Water Markup Language (WaterML) is CUAHSI’s standardized encoding for

transmission of hydrologic observations data via the Internet, and specifically via WOF

services. WaterML can accommodate time series of observations with different time

support (such as hourly, daily, or monthly) and time representations, and includes

structures specifically for the SOAP protocol (Zaslavsky, Valentine and Whiteaker 2007).

In addition to time series, WaterML provides elements for the description of sampling

sites, methods, observed variables, and other metadata relating to hydrologic

observations.

 The WaterML schema is XML-based and was originally developed in support of

the WOF web service standard. It thus contains four main elements specifically for

describing the responses from each of the WOF methods described in the following

section (Zaslavsky, Valentine and Whiteaker 2007). These response elements are called

GetSitesResponse, GetSiteInfoResponse, GetVariableInfoResponse, and

17

GetValuesResponse, corresponding to the GetSites, GetSiteInfo, GetVariableInfo, and

GetValues operations of WOF, respectively. Example excerpts from each of these

response elements are shown in section 2.2.3 of this thesis.

 There are currently two versions of CUAHSI’s WaterML schema: a stable 1.0

version and an experimental 1.1 version. By using this standard format for hydrologic

data representation, a client application that understands the schema can interpret data

from any compliant web service.

2.2.3 WaterOneFlow Web Services

WaterOneFlow (WOF) is CUAHSI’s web service specification for transferring

hydrologic observations data and the metadata that describe them. WOF services use the

SOAP protocol, though there has been some movement within the HIS project toward

supporting a RESTful interface as well. Corresponding to WaterML, there are two

versions of the WOF specification: the original, stable 1.0 version and the new, though

experimental 1.1 version. Most (45 of the total 62) of the WOF services that have been

registered at HIS Central are using the 1.0 version. Except for where explicitly

mentioned, the information in this section refers to the stable 1.0 version of the WOF

specification.

There are four main methods available from WOF services: GetSites, GetSiteInfo,

GetVariableInfo, and GetValues. This section describes all four of these methods based

on the CUAHSI WaterOneFlow Workbook (Whiteaker 2010). The SOAP message

responses from WOF web services all contain WaterML-formatted payloads. All four of

the WOF methods can accept an optional “authCode” parameter, which in the future will

be used to provide only authenticated access to the data served from the WOF service

instance. Currently this parameter is always set to an empty string value (“”).

18

The GetSites operation is used to obtain metadata describing the sampling sites

represented through a WOF service. This method takes an optional “site” parameter that

specifies the codes for sites about which metadata is desired. If the “site” parameter is

left blank, metadata about all of the sites that the WOF service instance contains will be

returned. Figure 8 is an example SOAP request to the GetSites operation with a blank

“site” parameter.

Figure 8: Example SOAP WOF GetSites request

The metadata returned from GetSites includes site names, identification codes,

and geographic coordinates, and is returned as a WaterML GetSitesReponse. An excerpt

of site metadata from a GetSitesResponse is shown in Figure 9.

19

Figure 9: Example site metadata from GetSitesResponse

The GetSiteInfo operation is for retrieving metadata that describe the time series

of hydrologic observations available through the service. This metadata is referred to as a

series catalog and includes value counts, time range, source, and other information about

each series of data for each of the variables measured at the requested sites. In version 1.0

of WOF, the GetSiteInfo method takes a “site” parameter that specifies the site codes for

which sites a series catalog is desired. In version 1.1 of WOF, the GetSiteInfo method

instead takes a “location” parameter that can contain specific site codes or rectangular

geographic extents for which series catalogs are desired. Figure 10 is an example

GetSiteInfo SOAP request for the series catalog of the “TWDB:Aransas95_2” site.

Figure 10: Example SOAP WOF GetSiteInfo request

20

 The WaterML response from this request is the GetSiteInfoResponse. An excerpt

of a single series from the series catalog in this response is shown in Figure 11. As can

be seen in the figure, this particular series shows is for the “specific conductance”

variable and has 30 values in a time series that starts on 9/29/1995 and ends on

9/30/1995.

Figure 11: Example series metadata from GetSiteInfoResponse

The GetVariableInfo operation is for retrieving metadata describing hydrologic

variables available through the web service. This method takes an optional “variable

code” parameter that specifies for which variables information is wanted. If no variable

codes are specified, then metadata about all of the variables represented in the WOF

service instance will be returned. Figure 12 is an example SOAP request for information

about the “TWDBQuality:Cond” variable.

21

Figure 12: Example SOAP WOF GetVariableInfo request

The WaterML GetVariableInfoResponse returned from the GetVariableInfo

method includes variable name, code, sample medium, data type, units and other related

metadata. An excerpt from this response for the preceding “TWDBQuality:Cond”

GetVariableInfo request is shown in Figure 13.

Figure 13: Example variable metadata from WOF GetVariableInfoResponse

The GetValues method is the core data retrieval method of WOF. The GetValues

operation usually has a single required parameter, “location”, for specifying the site code

from which time series data is desired. In some WOF instances the variable code for the

desired series must also be supplied via the “variable” parameter. Optionally, the

“startDate” and “endDate” parameters may be used to specify the time extent of the

desired time series data. Figure 14 is a request for the “TWDBQuality:Cond” variable at

22

the “TWDBQuality:Aransas95_2” site for the time period of 5:00 to 6:00AM on

9/29/1995.

Figure 14: Example SOAP WOF GetValues request

 The response from the GetValues method is the WaterML GetValuesResponse,

which contains a time series of observations data along with values-level metadata (such

as quality control level) for the requested sampling site. Figure 15 contains the values

element from the response to the preceding sample request. This response contains a

series of three values for the variable, site, and time period specified in the request.

23

Figure 15: Example time series data from WOF GetValuesResponse

2.3 OPEN GEOSPATIAL CONSORTIUM STANDARDS

2.3.1 Background

The Open Geospatial Consortium (OGC) is an international standards consortium

comprising various governmental, private, and research institutions around the world.

The main goal main goal of the OGC is to “geo-enable the Web” through development

and publication of its OpenGIS standards. The OpenGIS standards include schemas and

specification documents for geospatial web services and encodings of the data served

through these services. In October 2010, the Federal Geographic Data Committee

24

(FGDC) formally endorsed several of the OGC’s OpenGIS standards for use by U.S.

agencies (OGC 2010).

The Hydrology Domain Working Group (HDWG), a joint working group of the

OGC and World Meteorological Organization, is investigating the use of OGC standards

for hydrologic data. The HDWG’s main activities include hosting interoperability

experiments in the areas of both surface and groundwater data, and creating the new

Water Markup Language 2.0 specification. The purpose of these interoperability

experiments is to determine best practices for the use of OGC standards and to identify

any gaps that these standards have in the realm of hydrologic data.

The OpenGIS web service specifications that are most applicable to the HIS

project are Web Map Service (WMS), Web Feature Service (WFS), Sensor Observation

Service (SOS), and Catalogue Services for the Web (CSW). Each of these service

specifications has its own set of methods and data encoding specifications, though there

is much similarity across them. This section discusses each of these service

specifications with attention to their primary methods and the inputs and outputs from

these methods. In support of these service standards are several data encoding standards,

Filter Encoding Standard (FES), Geographic Markup Language (GML), Observations &

Measurement (O&M), and Water Markup Language 2.0 (WaterML2.0). These encoding

standards are also discussed in this section.

2.3.2 Web Map Service

Web Map Service (WMS) is the OGC service standard for requesting and

transmitting geospatially-referenced map images (OGC 2006). The information in this

section is an overview of the WMS Implementation Specification from the OGC (2006).

WMS implementations must always accept Key-Value Pair (KVP) requests via HTTP

25

GET, and can optionally accept XML-based requests via HTTP POST. The information

in this section refers specifically to HTTP GET requests with KVP parameter encoding,

though it is generally applicable to the HTTP POST format as well.

The primary, required methods of a WMS are GetCapabilities and GetMap. In

addition, there is the optional GetFeatureInfo method. As with the other OGC service

standards, the GetCapabilities operation is for retrieving service-level metadata.

GetCapabilities returns an XML document whose schema is specified in the Web Map

Server Implementation Specification (OGC 2006). In WMS, this metadata includes (but

is not limited to):

• which of the WMS operations are supported by the WMS endpoint;

• the abstract, author, keywords, contact information, fees, and authorized

use of the service; and

• the names, titles, Styles, geographic bounds, coordinate reference system,

and other metadata about the Layers represented.

WMS GetCapabilities requests have two required parameters, “request” which

specifies the method name “GetCapabilities” and “service” which specifies the service

name “WMS”. An example GetCapabilities request to the CRWR TRACS_Sites WMS

endpoint request via HTTP GET is shown below, with the URL highlighted in red and

the KVP parameters in blue:

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WMSServer?

request=GetCapabilities&

service=WMS

Figure 16 shows an excerpt containing the TRACS_Sites Layer element from the

response to this request.

26

Figure 16: Excerpt containing Layer element from WMS GetCapabilities response

The core functionality of a WMS is exposed through the GetMap method. This

operation retrieves map images based on criteria specified in the request parameters. The

images can be in a variety of formats, including PNG, JPG, SVG, and others, depending

on the specific WMS implementation. Images from WMS can be requested to have

transparent backgrounds so that they may be overlaid onto one another to make

composite maps.

27

Maps served through WMS are divided into layers. For example, a WMS for a

Texas surface water hydrology map could contain 3 distinct layers: streams, water bodies,

and sampling points. Each layer has one or more predefined styles, which principally

refer to different symbologies. For example, the sampling point layer could have two

styles: one in which all the sampling points are blue circles, and another in which the

sampling points are red squares. Layers can also be arranged hierarchically, in which

case only the leaf nodes in the hierarchy would be layers of visual data. The parent layers

would be for organizational purposes. For example, a WMS for Texas water quality

could have parent layers called “Surface Water Features” (with child layers for streams

and water bodies), and “Sampling Points” (with child layers for salinity sampling points

and nutrient sampling points).

The GetMap method has several required and optional parameters, which are

described in section 7.3 of the OGC WMS Implementation Specification (OGC 2006).

The required parameters are “version” (1.3.0), “request” (GetMap), “layers”, “styles”,

“crs” (coordinate reference system), “bbox” (geographic bounding box), “width” (pixel

width of the image), “height” (pixel height of the image), and “format” (file format of the

image). The combination of these parameters defines a geographic extent in a given

coordinate system for which an image containing the specified Layers of the map

symbolized by the specified Styles is requested. There are additional optional parameters

for specifying the background color or transparency of the map. An example GetMap

request to CRWR’s TRACS_Sites WMS is shown below:

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WMSServer?

request=GetMap&

version=1.3.0&

styles=default&

28

format=image/png&

layers=0&

crs=EPSG:4326&

width=700&

height=600&

bbox=25.850000,-106.631111,36.470001,-93.113846

The image response from this request is shown in Figure 17.

Figure 17: Response from GetMap request on TCEQ_Tracs WMS Service

The optional WMS method, GetFeatureInfo, provides additional information

about a selected point on a map provided by the GetMap operation. The parameters for

this method are described in section 7.4.2 of the WMS Implementation Specification

(OGC 2006). The response method is very loosely defined and is largely left up to the

specific WMS implementation.

2.3.3 Web Feature Service

OGC’s Web Feature Service (WFS) specification provides “…interfaces for data

access and manipulation operations on geographic features…” and is described in detail

by the WFS Implementation Specification (OGC 2005, 5). The information in this section

29

is a brief overview from the OGC’s WFS Implementation Specification (2005). As with

WMS, WFS requests can be made through HTTP GET with KVP URL encoding or

through HTTP POST with an XML-formatted request. Additionally, WFS can be

implemented to accept and respond to SOAP messages. Again, the information in this

section refers specifically to HTTP GET requests with KVP parameter encoding, though

it is generally applicable to the HTTP POST and SOAP formats as well.

The core concept of WFS is the geographic feature. A feature can be almost

anything of interest, and is represented by a collection of attributes. Each attribute has a

name, a type (such as “double” or “string”), and a value. Geographic features are

features with a geometric property.

The methods of WFS are GetCapabilities, DescribeFeatureType, GetFeature,

GetGmlObject, Transaction, and LockFeature. However, for a basic WFS

implementation, only GetCapabilities, DescribeFeatureType, and GetFeature are

required. Only these three methods are described in this section.

As with all OGC service specifications, the GetCapabilities operation of WFS is

for retrieving service-level metadata, such as title, abstract, keywords, and access

constraints, and listing which methods of the specification are available. For WFS,

GetCapabilities also lists all the feature types for which data are available and the types

of filters that can be used for the GetFeature request. Filters are discussed more in 2.3.6

of this thesis. There are only two required parameters for the WFS GetCapabilities

method, “request”, whose value is always “GetCapabilities” and “service”, whose value

is always “WFS”. The response from GetCapabilities is an XML document whose

schema is defined in the WFS Implementation Specification. An example

GetCapabilities request to CRWR’s TRACS_Sites WFS service is shown below:

30

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WFSServer?

request=GetCapabilities&

service=WFS

An excerpt showing the FeatureTypeList in the XML response to this request is shown in

Figure 18. For this WFS, there is only a single feature type available, called

TRACS_Sites as can be seen in the figure.

Figure 18: FeatureTypeList excerpt from GetCapabilities response on TCEQ_Tracs WFS

The DescribeFeatureType operation describes the attributes of the features served

by the WFS. The only required parameter to this method is “request”, whose value is

always “DescribeFeatureType”. By default, DescribeFeatureType returns a GML

document with the structure and attributes of each type of feature served by the WFS.

The optional “typename” parameter can be used to specify the feature types for which a

description is desired. An example DescribeFeatureType request to the TRACS_Sites

WFS at CRWR is shown below:

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WFSServer?

request=DescribeFeatureType

31

Figure 19 is an excerpt of the response from this DescribeFeatureType request. In

the response, it can be seen that the TRACS_SitesType, the only feature type available

from the TRACS_Sites WFS, has seven attributes: OBJECTID, SiteCode, SiteName,

Latitude, Longitude, VarCode, and Shape. The Shape attribute is of type

gml:PointPropertyType and is the attribute that makes the TRACS_SitesType a

geographic feature. The other six attributes were the attributes in the shapefile from

which this WFS was produced.

Figure 19: TRACS_SitesType definition (GML) from DescribeFeatureType on

TRACS_Sites WFS

The GetFeature operation provides the main functionality of WFS. Through this

method, the set of features (with their attributes) that match given criteria are returned as

32

a GML document. If no criteria are specified, then all the features of a given type are

returned. The required parameters for a GetFeature request are the “request” parameter

whose value is “GetFeature” and “typeName” whose value is a comma-separated list of

the types of features to return. As mentioned earlier, the feature types available from a

WFS are listed in the GetCapabilities response. Criteria on which features can be

matched are constructed as OGC Filters, and are included in the GetFeature request

through the “filter” parameter. If the “resultType” parameter is set to a value of “hits”,

then an XML document containing the count of features that would be returned by the

GetFeature request is returned instead of the actual listing of features.

Alternatively, instead of the “typeName” parameter, a GetFeature request can also

use the “featureid” parameter whose value is a comma-separated list of identifiers for

specific features. There are several other possible parameters available for crafting a

GetFeature request explained in the WFS Implementation Specification (OGC 2005).

An example of a GetFeature request on the TRACS_Sites WFS service at CRWR

is shown below:

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WFSServer?

request=GetFeature&

typeName=TxHIS_TRACS_Sites:TRACS_Sites

This request returns 7138 features, the complete set of TRACS_Sites available from the

service. A GML-excerpt containing a feature returned from this request is shown in

Figure 20. Note that this example feature has values for all the attributes of the

TRACS_Sites feature type as described in the DescribeFeatureType response from Figure

19.

33

Figure 20: Excerpt from GetFeature response on TCEQ_Tracs WFS

To handle large response sets, the WFS specification allows paging of results

from the GetFeature method. If paging is enabled on a WFS instance, there is a maximum

allowable number of results, called a page, that can be contained in a response. In the

case that a greater number of features meet the query criteria, only a single page is

returned along a URI specified in the “next” attribute to retrieve the next page. Clients

can follow this URI to obtain the following page of results. Subsequent responses will

contain URIs to subsequent response pages until no pages are left.

2.3.4 Catalogue Services for the Web

OGC Catalogue Services support registration and discovery of services (as well as

data sets and other information sets) and allow searching for these registered objects via

their metadata (OGC 2007). Catalogue Services for the Web (CSW) is an HTTP-bound

interface to Catalogue Services and is described in the Catalogue Service Implementation

Specification (OGC 2007). The information in this section is an overview of the CSW

34

interface from this implementation specification. As with WFS, CSW requests can be

made through HTTP GET via KVP encoding, POST via XML encoding, or through

SOAP. The information in this section refers specifically to HTTP GET requests with

KVP parameter encoding, though it is generally applicable to the HTTP POST and SOAP

methods as well.

The Catalogue Service Implementation specification describes several possible

operations for a CSW service: GetCapabilities, DescribeRecord, GetDomain,

GetRecords, GetRecordById, Transaction, and Harvest. This section describes the four

required operations: GetCapabilities, DescribeRecord, GetRecords, and GetRecordById.

Every CSW operation has three required parameters: “request” whose value is the name

of the desired operation (such as “GetRecords”), “service” whose value is always

“CSW”, and “version” whose value is always “2.0.2”.

As with every OGC service, the GetCapabilities operation provides service-level

metadata about the CSW implementation. This metadata includes the title, abstract,

keywords, fees, contact information, and access constraints of the service, as well as

which of the CSW operations are supported and the types of filters that may be used for

the GetRecords operation. The response from a CSW GetCapabilities request is an XML

document whose schema is described in the Catalogue Services Implementation

Specification.

The core element of CSW is the record. A record contains information about a

registered object. The Catalogue Services specification gives 11 core queryable

properties for CSW records. These properties are “Subject”, “Title”, “Abstract”,

“AnyText”, “Format”, “Identifier”, “Modified”, “Type”, “BoundingBox”, “CRS”, and

“Association”. Record properties are extendable through specialized Application Profiles

35

which may specify additional queryable properties. For example, the FGDC Content

Standard for Digital Geospatial Metadata Application Profile candidate specification

(OGC 2006) adds the “ThemeKeywords”, “BeginDate”, and “EndDate” queryable

properties (among several others). It is up to the CSW implementation which properties

are supported both from the core list and from any Application Profiles.

The DescribeRecord operation of CSW is similar to the GetFeatureInfo operation

of WFS. This method gives the schema for records served from the target CSW

endpoint. Records can be retrieved with different levels of detail, which are described by

the schema from DescribeRecord. The typical levels are usually named “BriefRecord”,

“SummaryRecord” and “Record”. The following is an example DescribeRecord request

to the ESRI GeoPortal CSW endpoint hosted at CRWR:

https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery?

request=DescribeRecord&

service=CSW&

version=2.0.2

Figure 21 shows the SummaryRecord schema excerpted from the full response to the

preceding request. The SummaryRecord from this CSW has 10 properties, as indicated

by each of the “xsd:element” lines, in addition to those inherited from the base

AbstractRecordType indicated by the “xsd:extension” line.

36

Figure 21: Example SummaryRecord schema from DescribeRecord response

The GetRecords operation is the core method of CSW. This method returns all

records from the CSW that match the criteria set by the request parameters. The response

is an XML document whose base schema is defined in the Catalogue Services

Implementation Specification, with the record schema extended by that provided from the

DescribeRecord method. In addition to the three CSW-required parameters, there are 16

other possible parameters for the GetRecords operation described in the implementation

specification. The most relevant parameters are “resultType”, “maxRecords”,

“elementSetName”, “CONSTRAINTLANGUAGE”, and “constraint”. “resultType” can

take the values “hits” which just returns the number of matching records, “results” which

returns the result set, or “validate” which returns whether the request is valid.

“maxRecords” takes a numeric value and is used to specify the maximum number of

records that the response can contain. “elementSetName” is used to specify which level

37

of detail of records should be returned: “brief”, “summary”, or “full”, with “summary”

being the default value.

GetRecords queries can be constrained through either Common Query Language

or through Filters. The value of the “CONSTRAINTLANGUAGE” parameter can be

either “CQL_TEXT” or “FILTER” corresponding to the two possible types of constraint

queries. The “constraint” parameter contains the actual query string in either CQL or

FES (described in section 2.3.6 of this thesis).

The following is an example GetRecords request (with no constraints specified) to

the ESRI GeoPortal CSW endpoint at CRWR:

https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery?

request=GetRecords&

service=CSW&

version=2.0.2&

resultType=results

Figure 21 shows an example SummaryRecord from the result set returned by the above

call.

38

Figure 22: SummaryRecord from GetRecords response

The CSW GetRecordById operation is for returning specific records referenced

by their identifier string. A comma-separated list of identifier strings are passed to this

operation via the “id” parameter. Additionally, as with GetRecords the

“elementSetName” parameter can be used to specify which level of detail of records

39

should be returned: “brief”, “summary”, or “full”. The following example

GetRecordById request returns the same SummaryRecord as the example GetRecords

request above:

https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery?

request=GetRecordById&

service=CSW&

version=2.0.2&

id={38D2D803-5A18-4370-875E-DDB6C20D85E7}

2.3.5 Sensor Observation Service

The Sensor Observation Service (SOS) specification is one of the major

components of the OGC’s Sensor Web Enablement (SWE) family of standards (OGC

2007). The SOS specification defines methods for accessing field-deployed sensors and

retrieving sets of observations data from them. The full SOS specification is detailed in

the OGC’s Sensor Observation Service Implementation Specification (2007), and the

information in this section is an overview from that document. SOS requests can be

made through HTTP GET via KVP encoding or through HTTP POST via XML

encoding. The information in this section refers to HTTP GET requests with KVP

parameter encoding, though it is generally applicable to the HTTP POST method as well.

At a minimum, an SOS implementation must provide three operations:

GetCapabilities, DescribeSensor, and GetObservation. Several other optional SOS

operations are detailed in the implementation specification. Note that although SOS is for

a sensor network, it is not a requirement for an SOS to actually refer to physical sensors.

In that respect, any observations data source could be considered a “sensor.”

The OGC standard GetCapabilities operation returns service-level metadata about

the SOS endpoint. The required parameters for the SOS GetCapabilities request are

40

“service” whose value is “SOS” and “request” whose value is “GetCapabilities”. The

response is an XML document whose schema is described in the SOS implementation

specification. The metadata returned includes, as with the other service specifications,

the service title, abstract, keywords, fees, usage constraints and other information. For

SOS, the GetCapabilities response also describes which of the SOS operations are

supported, the types of filters that may be used for the GetObservation operation, and the

observation offerings of the service. Observation offerings are groupings of related

observations, and their identification strings (returned from GetCapabilities) are used in

the GetObservation operation.

The SOS DescribeSensor operation provides detailed metadata about the sensors

represented in the SOS instance. Responses from this method are typically formatted as

SensorML, an OGC customization of XML made to describe sensors and their

capabilities. There are four parameters for a DescribeSensor request, all of which are

required: “service” whose value is “SOS”, “request” whose value is “DescribeSensor”,

“sensorId” whose value is an identification string of an observation offering, and

“outputFormat” whose value describes the desired response format. The following is a

DescribeFeature request to the SOS endpoint from the Gulf of Maine Ocean Observing

System (GOMOOS):

http://www.gomoos.org/cgi-bin/sos/oostethys_sos.cgi?

service=SOS&

request=DescribeSensor&

sensorId=A01&

outputFormat=text/xml;subtype="sensorML/1.0.1"

Figure 23 shows an excerpt of the SensorML response from the preceding request

containing metadata describing sea water temperature observations available from the

“A01” sensor.

41

Figure 23: SensorML excerpt from DescribeRecord request

The core method from SOS is GetObservation. The response from this operation

is an O&M-based document containing the requested observations data. The

GetObservation method has five required parameters: “service” whose value is “SOS”,

“version” whose value is “1.0.0”, “request” whose value is “GetObservation”, “offering”

whose value is an ID of one or more of the offerings obtained from GetCapabilities,

“observedProperty” whose value is one or more of the properties obtained from

42

GetCapabilities, and “responseFormat” whose value is the desired encoding type of the

response. Other parameters that can be used to constrain the observations values returned

from GetObservation are described in the SOS implementation specification.

The following is an example GetObservation request to the GOMOOS SOS

endpoint for sea water temperature from the “A01” offering:

http://www.gomoos.org/cgi-bin/sos/oostethys_sos.cgi?

service=SOS&

version=1.0.0&

request=GetObservation&

offering=A01&

observedProperty=sea_water_temperature&

responseFormat=text/xml;subtype="om/1.0.0"

Figure 24 shows the “result” element of the O&M-format response obtained from the

preceding GetObservation request. This element contains a time series of observations

data, with each entry containing a timestamp, latitude, longitude, depth, and temperature.

The format of each entry, including units, is also part of the O&M-format response.

Figure 24: Result element from GetObservation request

2.3.6 Filter Encoding Standard

The Filter Encoding Implementation Specification describes an XML-based

language called Filter Encoding Standard (FES) for adding constraints (i.e. filters) to the

query methods of some OGC services (OGC 2005). The FES is an XML-based

43

representation of OGC’s Common Query Language, which is defined in the Catalog

Services Implementation Specification. Filters can be used on the WFS GetFeature and

CSW GetRecords operations to constrain the result sets from these operations.

The current (1.1.0) version of the FES describes four classes of filter operators:

spatial, comparison, logical, and arithmetic. The upcoming 2.0 version of FES also

includes support for temporal operators. Filter operators evaluate whether properties of

the possible return set of the target operation meet the constraints set forth by the operator

clauses. Spatial operators include BBOX for specifying a bounding box. Comparison

operators include typical operations such as less-than, greater-than, and equal-to. The

logical operators, such as “And” and “Or”, are used to combine spatial and comparison

operator clauses. An example filter with both a spatial operator (“BBOX” acting on the

“Shape” property) and a comparison operator (“PropertyIsGreaterThan” acting on the

“ValueCount” property) is shown in Figure 25.

Figure 25: Filter example with spatial (BBOX) and comparison operators

44

2.3.7 WaterML2.0

The OGC has created XML-based standards for encoding the responses from its

services. GML is used to describe features returned from the WFS GetFeature method.

The elements in a GML document reflect the attributes of interest in a WFS and are

specified by the provider of the service. The O&M format is used to return observations

data from the SOS GetObservation method. These data encodings are not as strict as

CUAHSI’s WaterML specification, and may be extended or specialized to meet

requirements of the service providers and consumers. Specializations of O&M are

referred to as profiles and define agreed upon practices for encoding observations data for

a particular domain.

The WaterML2.0 profile for O&M is currently being developed by the OGC and

partner organizations, including CUAHSI. WaterML2.0 takes the framework and lessons-

learned from CUAHSI’s original WaterML specification and harmonizes the structure to

be consistent with OGC standards. The WaterML2.0 specification is in the draft stage as

of the writing of this thesis.

45

Chapter 3: The CUAHSI HIS Architecture

3.1 OVERVIEW

The current CUAHSI HIS architectural model, termed the Network-Observations

Model, is a SOA with centralized metadata and distributed data. This system is

empowered primarily by CUAHSI’s WaterML data encoding and WOF web services.

This chapter provides an overview of the intellectual basis of Network-Observations

model. Each of the three major components of the HIS architecture are described in

detail and their roles specified. The various client-centric operating models that have

resulted from the Network-Observations Model are also defined and explained. Finally,

the issues that have arisen from the current architecture are enumerated.

3.2 THE NETWORK-OBSERVATIONS MODEL

The architectural model of the CUAHSI HIS is heavily influenced by the

organization of the CUAHSI Observations Data Model. In the ODM, data values

(observations) are at the center of the data model, and are surrounded by metadata that

unambiguously describe them (Tarboton, Horsburgh and Maidment 2007). The metadata

that describe the data values can be arranged into a SeriesCatalog view. Each series in

the SeriesCatalog is a unique collection of time-indexed observations of a given variable

at a specific site. HIS Central has implemented a centralized series catalog of similar

structure to that of the ODM. The HIS Central metadata catalog contains the series

metadata from all registered HydroServers.

The current model that the HIS architecture follows has been termed the Network-

Observations Model. The fundamental piece of information in this model is a hydrologic

observation, or value. Observations are differentiated by the metadata that describe them,

such as site location, sample medium, or quality control level. These metadata come

46

primarily from the other levels of the Network-Observations Model, Network, Site, and

Variable, as shown in Figure 26. This data model is built upon and consistent with the

principles behind the CUAHSI Observations Data Model.

.

Figure 26: The Network-Observations Model

The Network-Observations Model with the USGS NWIS Daily Values service as

an example is shown in Figure 27. Each HydroServer provides access to one or more

Networks through WOF WSDL files. A Network contains many sites, accessed by the

GetSites method. The series catalog of Variables measured at each Site is accessed via

GetSiteInfo. Metadata about Variables is retrieved from GetVariableInfo. Finally,

observation values are obtained through GetValues, with the site, variable, and time

range specified via parameters to the service, the network identified through prefixes to

those parameters, and the service specified by the address to the WOF service.

47

Figure 27: Network-Observations Model hierarchy with example

3.3 HIS COMPONENTS

3.3.1 Introduction

HydroServers provide data access, HS Central provides data discovery, and the

system is integrated with WaterML and web services.

The CUAHSI HIS architecture comprises three major components:

HydroServers, HIS Central, and client applications. These components’ primary

interactions are shown in Figure 28. HIS Central harvests series metadata from

HydroServers to create its searchable series catalog. Clients use the HIS Central search

web services to find HydroServers with series that match given parameters. Clients

download the actual hydrologic time series data from the corresponding HydroServers.

Each of the three components and their interactions are described in detail in this section.

48

Figure 28: Network-Observations components

3.3.2 HydroServers

HydroServers are the data providers of the HIS SOA. They provide both the data

and metadata about hydrologic observations. The conceptual definition of a HydroServer

within the Network-Observations Model is simply a web server that provides access to

WaterML-encoded hydrologic data and metadata through the WOF web services. A

HydroServer can provide access to multiple WOF networks, which each have their own

WSDL file address on the web server and network identifier code within the data source.

For example, the USGS NWIS HydroServer has separate networks for its Daily Values,

Ground Water, Instantaneous Irregular Data, and Unit Values services. The collection of

web-accessible HydroServers around the country comprises one component of the

CUAHSI HIS. Data providers register their HydroServers at HIS Central so that their

data series can be discovered by clients of the HIS.

Generically, a HydroServer has four main components: a database containing the

hydrologic data, a database server to interact with the database, a web server to provide

web-based access to the service, and an implementation of the WOF specification. These

components are illustrated in Figure 29. The box surrounding the generic HydroServer

49

diagram indicates that only the network WSDL files are accessible from outside the

HydroServer, with the underlying components essentially a “black-box” to clients.

Figure 29: Generic HydroServer diagram

In practice, there have been multiple methods for how the HydroServer concept

has been implemented. First, there is the off-the-shelf ODM method, which is the one

most supported by the HIS project. This method of deploying a HydroServer uses a

series of tools that the HIS project has developed to leverage commercial off-the-shelf

software components along with an ODM database. This method has primarily been

used by smaller data providers (typically for networks at local or regional scales) that do

not already have any data access services online. Examples of services using this method

are the Texas Instream Flow Lower Sabine service1 and the Dry Creek Experimental

Watershed ODMDCEW2 service2, among several others.

1 http://his.crwr.utexas.edu/SabineBio/cuahsi_1_0.asmx?WSDL
2 http://icewater.boisestate.edu/dcew2dataservices/cuahsi_1_0.asmx?WSDL

50

 A schematic representation of a HydroServer built from this method is depicted in

Figure 30. In the off-the-shelf ODM HydroServer, hydrologic data are loaded into an

ODM-schema database managed by a Microsoft SQL Server instance. The data loading

can be accomplished with CUAHSI’s ODM Data Loader program or with custom

transformation scripts. The ODM WaterOneFlow Services application, which is an ASP

.NET 2.0 implementation of WOF provided by the HIS project, is installed on a

Windows Server with connection information for the SQL Server supplied in

configuration settings. The ODM WaterOneFlow Services code supplies the WSDL files

and WOF methods for accessing the data networks stored in the underlying ODM

database.

Figure 30: HydroServer from off-the-shelf components

A second method of implementing a HydroServer is the ODM-View method,

depicted in Figure 31. This method is very similar to the off-the-shelf method, with the

only difference being the underlying database schema. Rather than loading the

51

hydrologic data into an ODM-schema database, a custom view is used instead.

Essentially, a view virtually maps the tables and columns of a source database schema to

mirror a different schema. In this case, a view mirroring the ODM schema is created

over an agency’s propriety database schema. This method has been used on the

experimental TWDB Groundwater service hosted at CRWR.3

Figure 31: ODM-View HydroServer diagram

Implementing a HydroServer with completely different off-the-shelf components

from the two previous methods is also an option. This method makes sense when a data

provider either already has or prefers a data infrastructure using different components

from those supported in the off-the-shelf ODM or ODM-view methods. For example, a

data provider might want to use a MySQL database server with an Apache web server

running PHP code. In this case, a custom implementation of the WOF specification

3 Not publicly-accessible at this time.

52

would just need to expose the appropriate WSDL files and web service methods to

outside clients. This method has been used by CRWR to publish hydrologic data from

the Texas Coastal Ocean Observing Network (TCOON).4

For the three large federal hydrologic data providers (USGS, NCDC, and EPA), a

quite complex implementation of the HydroServer server concept is used: the hybrid

method. In these HydroServers, the data providers transmit copies of their metadata

databases (or just the relevant tables) to the SDSC HIS team at intermittent intervals. The

SDSC team migrates these databases from their native format (such as Oracle) into SQL

Server, following the originally-provided schema. Once the SQL Server migration is

complete, custom ODM views are placed on top of the native schema. A customized

version of the ODM WaterOneFlow Web Service software installed over the ODM views

to provide the three WOF metadata methods, GetSites, GetSiteInfo, and GetVariableInfo.

The data method, GetValues, is implemented as a “pass-through” service. In the case of

the USGS NWIS, for example, GetValues requests are translated by the custom WOF

Web Service software into requests to the USGS’s WaterML service. The response from

the USGS service is then routed back through HIS Central’s HydroServer to the

requesting client. This type of HydroServer is illustrated in Figure 32.

4 http://his.crwr.utexas.edu/tcoonts/tcoon.asmx?WSDL

53

Figure 32: Hybrid HydroServer diagram

3.3.3 HIS Central

HIS Central is the central cataloguing system of HIS. Unlike the HydroServers

and client components of the CUAHSI HIS, there is only a single HIS Central within the

CUAHSI HIS. HIS Central itself comprises three main components: a registry of WOF

services, the Metadata Catalog, and the Hydrologic Concept Ontology

The registry of WOF services is the system through which data providers or

managers can register the WSDL addresses of the networks within their HydroServer

services. Data providers can create accounts at the HIS Central website5 and then login

to register and manage their service metadata. The HIS Central registry currently has 62

registered WOF services at the time of writing this thesis. A screen capture of the service

registry is shown in Figure 33.

5 http://hiscentral.cuahsi.org/

54

Figure 33: HIS Central Service Registry

The HIS Central Metadata Catalog, whose schema is shown in Figure 34, is a

database of metadata for each network of each registered HydroServer. The most used

table of the Metadata Catalog is the SeriesCatalog table, which has been highlighted by a

red box in the figure.

55

Figure 34: HIS Central Metadata Catalog schema (Whitenack 2010)

HIS Central’s Metadata Catalog contains metadata for each time series of each

network of each registered HydroServer. The metadata for this catalog is obtained

through harvesting procedures. There are two main ways that the harvesting of metadata

for cataloging at HIS Central is accomplished. The first way of harvesting metadata is

through WOF services from HydroServers. This harvesting is done by a custom program

at HIS Central called Web Service Harvester (Whitenack 2010). Approximately once

each week, Web Service Harvester connects to registered WOF services. All sites from

each network are retrieved using the WOF GetSites method, and for each side,

GetSiteInfo is called to retrieve the series catalog. The HIS Central series catalog is

updated to include any new or modified series metadata found from these results

56

(Whitenack 2010). This method is used for almost all of the registered HydroServers,

except for the three hybrid federal HydroServers.

The other method of harvesting metadata is through direct database connections

to the ODM views on SQL Server-migrated federal database dumps. This harvesting is

done by another custom program, the Federal Repository Catalog Harvester, at HIS

Central. Rather than running on a defined schedule, this harvester program is only run

when a new data dump is received from a federal source and migrated.

 To facilitate searching and organization of registered services, the data providers

are required to tag the variables that their services provide with concepts from the

Hydrologic Concept Ontology after metadata harvesting has occurred. This concept

tagging mitigates the problem of varied names for what essentially are the same type of

observation (e.g., “stream discharge” being referred to as “flow,” “runoff,” or other

similar terms). The Hydrologic Concept Ontology is stored in a database, and is web-

accessible for data providers to tag their HydroServer’s variables with the appropriate

ontological concepts for discovery. The Hydrologic Concept Ontology’s tables are

shown in Figure 35. Tagging is done through the HydroTagger web application, shown in

Figure 36.

57

Figure 35: HIS Central Ontology tables (Whitenack 2010)

Figure 36: HydroTagger web interface (Piasecki 2008)

HIS Central exposes several of its capabilities to clients of the HIS through a

SOAP web service interface. The methods of the HIS Central web service are different

58

from those in WOF, though some of them, such as GetSeriesCatalogForBox, return

responses encoded with WaterML. Others use custom XML responses, which seem to

lack documentation. The current list of HIS Central web service methods is:

• GetMappedVariables

• GetSearchableConcepts

• GetSeriesCatalogForBox

• GetServicesInBox

• GetSitesInBox

• GetWaterOneFlowServiceInfo

• GetWordList

• getOntologyTree

• getSearchablePaths

• getSeriesCatalogInBoxPaged

Although there are 10 methods (plus some duplicates with slightly different

signatures than those listed) in the HIS Central web service, only three are actually used

within the current operating models of the HIS, as discussed in section 3.4.

3.3.4 Clients

The third and final component of the HIS architecture is the client applications

that consume, analyze, and process hydrologic data. At a minimum, client applications

must be able to communicate with WOF services. They need to be able to both make

SOAP web service requests and parse the WaterML-formatted responses from

HydroServers. To be fully integrated with the HIS architecture, client applications also

should be able to make use of the HIS Central SOAP web service methods for searching

for series (GetSeriesInBox) and retrieving the hydrologic ontology tree

(GetOntologyTree). Clients must also be able to parse the custom XML responses from

these services.

59

There have been two major client applications produced by the HIS project:

HydroExcel and HydroDesktop. HydroExcel6 is an Excel binary spreadsheet highly-

customized through the use of embedded VisualBasic macros. HydroExcel requires the

installation of a dynamic link library (DLL) called HydroObjects7. The HydroObjects

DLL provides access to functions to interact WaterOneFlow web services. The methods

in the HydroObjects DLL are called from the VisualBasic macros in HydroExcel.

HydroExcel’s interaction in the CUAHSI HIS operating models is described in sections

3.4.2 and 3.4.3 of this thesis.

Figure 37: HydroExcel interface

The newest and most robust client application produced by the HIS project is

HydroDesktop. HydroDesktop is an open-source .NET desktop application that

leverages several other open-source projects to provide a map-based tool for the

discovery, management, and analysis of hydrologic data. The geographic information

system capabilities of HydroDesktop are provided by the MapWindow6 and DotSpatial

6 http://his.cuahsi.org/hydroexcel.html
7 http://his.cuahsi.org/hydroobjects.html

60

libraries. Rather than using the HydroObjects DLL, HydroDesktop maintains its own

codebase for calling WOF and HIS Central web services. HydroDesktop’s operation

within the current HIS operating models is described in sections 3.4.4 and 3.4.5.

Figure 38: HydroDesktop interface

3.3.5 Summary of Roles and Responsibilities

The following is a list of responsibilities of each of the three components of the

current HIS architecture.

• Data providers – HydroServers:

o Publish hydrologic data on HydroServer using WOF services

o Register services at HIS Central and request metadata harvest

61

o Tag variables found in harvest with concepts from hydrologic

ontology using HydroTagger application

• SDSC team – HIS Central:

o Maintain hydrologic ontology database

o Maintain series catalog database

o Maintain HydroTagger application

o Maintain registration application

o Maintain harvester programs

o Maintain HIS Central web services

o Run metadata harvests from HydroServers

o Perform metadata harvesting from federal data sources

� Obtain database dumps

� Migrate database dumps from native formats to SQL Server

format

� Build custom ODM views over migrated database dumps

� Harvest metadata

o Validate harvested metadata

• Client applications:

o Make SOAP requests and parse SOAP responses (for both WOF

and HIS Central services)

o Parse WaterML and HIS Central service XML

o Build internal metadata catalogs (in some operating models)

62

3.4 HIS OPERATING MODELS

3.4.1 Introduction

Although the HIS project has created a prototype SOA with the three

aforementioned components working in unison, the ways these components have actually

interacted have taken several forms. The conceptual representations of how clients have

interacted in the HIS are called operating models. The operating models used through the

development of the HIS are the: direct client-server, weak central catalog, strong series

catalog, and dual-catalog models. This section describes the operating models in terms of

the clients that implement them, namely HydroExcel and HydroDesktop.

3.4.2 Direct Client-Server Model

The simplest hydrologic data services operating model from the HIS project is the

direct client-server model. In this model, a client application interacts only and directly

with the HydroServers, without any centralized catalog. Figure 39 illustrates this model

applied to the HIS client application HydroExcel (versions prior to 1.1.3). HydroExcel

(versions prior to 1.1.3) has a hard-coded list of the WOF WSDL file addresses for

networks on numerous HydroServers. This list was kept up-to-date by periodically

editing the HydroExcel file and reposting the modified version on the HIS website.

Figure 39: Direct Client-Server Model

63

In the HydroExcel application of this model, the user can select only a single

service from which data and metadata can be obtained at any time. HydroExcel first uses

the GetSites method on the selected service to get a list of sites. If the service is

WaterOneFlow 1.1-compliant the user can restrict the requested sites (and subsequent

series catalog) to a geographic bounding box. For each site returned in the WaterML

response, HydroExcel calls GetSiteInfo. The responses from each call to GetSiteInfo are

compiled to build an internal series catalog of the time series data available for the

chosen WOF service. Once requested by the user, data for a selected series are

downloaded via the GetValues method. The user may also request a list of the variables

offered through a given service by having HydroExcel invoke the GetVariableInfo

method.

3.4.3 Weak Central Catalog Model

In the weak central catalog model, a centralized catalog is used to register and

retrieve WSDL file addresses of compliant HydroServers. The newest version of

HydroExcel, version 1.1.3, follows this model. HydroExcel requests a list of registered

WOF services from HIS Central via the GetWaterOneFlowServiceInfo web service

method, and is returned an XML file containing this list of WOF WSDL file addresses.

This model is illustrated in Figure 40.

The pattern of building an internal series catalog for a single WOF service at a

time follows that described in section 3.4.2.

64

Figure 40: Weak Central Catalog Model

3.4.4 Strong Series Catalog Model

The strong series catalog model builds on the previous model by extending the

role of the centralized catalog. In this model, responsibility for building series catalogs is

moved from the client application to the central catalog server, which has numerous

impacts on the overall flow of information. Figure 41 illustrates this model as it is applied

to CUAHSI’s HydroDesktop application. HydroDesktop, while still in its development

phase, offers numerous improvements over HydroExcel. One improvement in particular

is the ability to discover and download hydrologic data series across multiple

HydroServers instead of being limited to one server at a time. The technology that

enables this capability is the centralized metadata catalog at HIS Central.

65

Figure 41: Strong Series Catalog Model

Client applications that follow this model, namely HydroDesktop, can search for

series at HIS Central instead of building and maintaining their own internal series

catalogs. Prior to searching, HydroDesktop uses HIS Central’s

GetWaterOneFlowServiceInfo web service method to identify the registered networks at

HIS Central. In addition, HIS Central’s GetOntologyTree method, which returns an

XML document containing the CUAHSI keyword-concept ontology, is used to display

the list of searchable terms at HIS Central’s series catalog.

HydroDesktop searches HIS Central’s series catalog via the

GetSeriesCatalogForBox method. This method takes a spatial extent, a concept code, a

date range, and a list of identifier numbers indicating which WOF services to search and

returns a catalog of matching series in a custom XML format (i.e., not WaterML). A

diagram depicting the flow of user actions to select these parameters is shown in Figure

42. Internally, HydroDesktop actually performs multiple calls to this method. The

66

search area (e.g., a state, HUC, county, etc.) is broken into 1°-by-1° boxes, with a

separate call to GetSeriesCatalogForBox made for each box. A separate call is also made

for each keyword that was selected by the user. Thus, if a user selected two keywords

and the selected search area was a 2°-by-2° area, eight calls to the

GetSeriesCatalogForBox would be made (4 for the area × 2 for the keywords).

The HydroDesktop user can filter this series catalog before finally downloading

the time series data. Data are downloaded from their respective HydroServers by using

the GetValues method sequentially on each HydroServer for each variable. The final

collection of hydrologic observations data collected across services and possibly

containing several different variables is known as a theme.

Figure 42: HydroDesktop search process

3.4.5 Dual-Catalog Model

In the dual-catalog model, a strong central catalog still exists and is used as

described in section 3.4.4. In addition to the central catalog, however, is a local catalog

maintained by the client application. Like in the direct client-server model, the local

catalog builds its internal catalog through the WOF GetSites and GetSiteInfo methods.

67

The strength of this model is that both services registered at the central catalog and non-

registered servers could have their series searched together.

In the case of HydroDesktop, the local catalog is known as the metadata cache.

Figure 43 shows the dual-catalog model applied to HydroDesktop. Although full

functionality (namely searching across the series catalog of the metadata cache) has not

been completely implemented in the version released of HydroDesktop as of this thesis,

there are plans to fully implement it in the near future.

Figure 43: Dual Catalog Model

3.5 SUMMARY AND ISSUES

This Network-Observations Model for the CUAHSI HIS architecture is centered

on a strong central metadata catalog maintained at HIS Central. In essence, this has

resulted in a centralized metadata, distributed data system.

68

For off-the-shelf-component HydroServers, if the quantity of series in a network

is large, such as with TWDB Groundwater network, metadata harvesting by HIS Central

can take several days. While this might be an acceptable approach for services that only

need “one-off” harvests of metadata (such as archive services), it is an issue for services

that are continuously updated or have often changing series. It also requires constant

intervention from the HIS Central team, which is not sustainable in the long run.

The number of methods required to fully implement the WOF standard can be a

burden for some data providers, such as the USGS or EPA. These large national

providers may not be able to custom-implement the full WOF specification. They

presently have their own data models and services, and may lack the financial, personnel,

or organizational resources to dedicate to this task. This has led to the database dumping

described in section 3.3.3.

The routine of receiving and migrating large database dumps from federal

agencies raises both sustainability and data-completeness concerns. Because this process

is done infrequently, series metadata might be out-of-date for long periods of time, which

results in researchers not being able to search for the data they might need. Another

concern is that the federal database schemas sometimes change between dumps, meaning

that new work for migrating to SQL Server and creating ODM views over the databases

needs to be done. Furthermore, the schemas in these database dumps are sometimes

lacking some of the metadata required to fully specify a SeriesCatalog record in the HIS

Central Series Catalog. This lack of metadata leads to problems in searching for and

understanding the series that are returned to clients like HydroDesktop.

69

Chapter 4: The Services Stack Model

4.1 OVERVIEW

The concerns of sustainability for the Network-Observations Model have led to

the desire for an improved HIS architecture. This chapter proposes the Services Stack

Model, a more decentralized architectural model for the HIS SOA. The proposed model

is built-upon OGC standard services and their associated data encoding specifications,

including the forthcoming WaterML2.0 specification. By adhering to these international

standards, it is hoped that that wider adoption of the CUAHSI HIS, especially by federal

data providers, will be possible. By decentralizing metadata services, the approach of the

new model will also reduce migration and translation tasks performed by the HIS Central

staff, thus creating a more sustainable system.

This chapter first introduces the Thematic Metadata Table format, which plays a

critical role in providing series metadata descriptions for the Services Stack Model, as

well as forming the logical basis of the model. Next, the proposed architectural model is

described in terms of a services stack and the data/metadata organization provided by this

stack. Responsibilities of each of the three components of the Services Stack Model are

explained and summarized. A simple proof-of-concept application is used to illustrate

how clients will function in the proposed architecture.

The proposed Services Stack Model is meant to serve as a starting point for

development of the new HIS services architecture. Best practices for putting the concepts

espoused in the model into practice will need to be investigated and agreed upon by the

CUAHSI-HIS team and its stakeholders to realize a robust system. In support of this, the

areas where more analysis is required and where issues may exist are described at the end

of this chapter.

70

4.2 THEMATIC METADATA TABLE

The CUAHSI Metadata Table (originally called the Data Cart) is an observations

metadata structure developed by Tim Whiteaker of CRWR and Dean Djokic of ESRI

(Whiteaker and Djokic 2010). A Metadata Table contains fields to describe series of data

similar to those in the ODM’s series catalog. In addition to these fields, however, a

Metadata Table also contains “information needed for a client to access each time series

described in the cart” (Whiteaker and Djokic 2010, 1). The information to access each

series comes in the form of addresses, protocols, and input parameters to the web services

from which the actual values data may be downloaded. The inclusion of these service

references is a critical factor that separates the Metadata Table from being just a series

catalog. The listing and description of all fields, including example values, of the current

Metadata Table specification are given in Appendix A. The current specification is based

on providing metadata for series available from WOF.

As indicated by its name, a Thematic Metadata Table contains metadata about

series in a theme. A hydrologic time series is a time-indexed collection of observations

about a specific property (i.e., a measured variable) of the hydrologic cycle at a specific

location. A theme is defined rather loosely as a collection of series that describes a

geographic region with respect to some subject. The geographic region of a theme could

be a study watershed, a state, the entire United States, or any other geographic area of

interest. The subject of a theme is similarly openly-defined, and could be a single

variable such as streamflow from a single data provider, or all variables measured by

state water agency.

Publication of a Metadata Table as a WFS can be fairly simple using off-the-shelf

tools. For example, using ESRI’s ArcGIS Desktop, a Metadata Table can be created as a

71

Shapefile with point features for each series in the Metadata Table. Using ArcGIS

Server, this Shapefile can then be published as a WFS with a few relatively quick steps.

4.3 SERVICES STACK MODEL

The Services Stack Model is structured around a services stack comprised of

OGC web service specifications, with the concept of the Thematic Metadata Table as a

fundamental series metadata descriptor. This three-tiered services stack is illustrated in

Figure 44. For each level (Data, Metadata, and Catalog) of the stack an endpoint for the

OGC service specification (SOS, WFS, and CSW) that will provide access to that level is

shown.

Figure 44: OGC services stack

At the bottom-most level of the stack are data services based on OGC’s SOS

specification. The data services provide access to hydrologic observations data in

WaterML2.0 format. The middle-level of the stack are metadata services using the WFS

standard. The metadata provided from this level describe series of observations data

available at the preceding level using CUAHSI’s Thematic Metadata Table format

expressed in GML. The top-most level of the services stack is a catalog service. The

72

catalog service indexes registered metadata services and provides a CSW endpoint to

search and access them.

Individual services stacks can be published and maintained by hydrologic data

providers or other entities, rather than relying on a single centralized catalog to

orchestrate the system. For example, the State of Texas could host a services stack for its

hydrologic data. In this example case, the themes available from the WFS metadata

service might be organized by agency.

Services stacks can also be joined together, or federated, into a larger system, as

illustrated in Figure 45. In this larger system, the catalogs of each underlying services

stack would have their CSW endpoints registered at a centralized meta-catalog. This

catalog-of-catalogs can then provide combined searching across all registered services

stacks. The loose-coupling of this federated system would provide data providers with

the flexibility to manage their own stacks, while still providing a unified search

mechanism for data consumers.

Figure 45: Federated services stacks

73

4.4 SERVICES STACK MODEL SOA COMPONENTS

4.4.1 Overview

The components of a SOA based on the proposed Services Stack Model are

similar to those in any SOA and specifically those in the current HIS architectural model.

This section provides descriptions of the SOA components and their interactions with

each other.

The Services Stack Model has three major components: HydroServers, a Catalog,

and Clients. Figure 46 shows a summary of these component interactions organized

around the OGC services stack described in the previous section. The inclusion of a

federated meta-catalog adds another component to this system and is discussed in section

4.4.3.

Figure 46: Component interaction within the Services Stack Model

4.4.2 HydroServers

As in the Network-Observations Model, HydroServers in the Services Stack

Model provide access to the actual hydrologic observations data. The hydrologic time

74

series data are obtained through a SOS implementation using the GetRecords method,

and are encoded in OGC’s forthcoming WaterML2.0 specification. Additionally,

HydroServers provide series metadata through Thematic Metadata Table WFS services.

Each theme at a HydroServer has its own WFS endpoint. This HydroServer concept is

depicted in Figure 47.

Figure 47: HydroServer in Services Stack Model

Thematic Metadata Table WFS services, as described in Chapter 2, have three

primary methods: GetCapabilities, GetFeature, and GetFeatureById. For HydroServers

in the proposed architecture, the GetCapabilities method would be used to obtain WFS

service-level metadata, such as the title of the Metadata Table feature layer represented in

the service. The GetFeature operation would be used to search for matching series in the

Metadata Table. This searching is accomplished through the use of OGC Filters, which

can be applied spatially and temporally, as well as to any text (such as Concept keyword)

or numerical metadata values (such as ValueCount). The GetFeatureById method could

be used if a specific series identifier is already known by the client application.

75

A critical change from the current HIS model for data providers who publish

HydroServers is that ontological concept tagging of series will have to happen at the

provider level, rather than at the central catalog. The exact implementation of this

tagging is not certain, though the hydrologic ontology itself will still need to be centrally-

maintained to ensure all providers use the same vocabulary.

4.4.3 Catalogs

Rather than a series catalog, the Services Stack Model uses CSW-compliant

services catalogs to provide unified searching. The primary CSW method that will be

used by client applications is GetRecords. Clients will search for matching Metadata

Table WFS services by making GetRecords requests to the service catalog’s CSW

endpoint. As with the series searching on HydroServers, OGC Filters will be used to

match services by spatial and temporal extents, as well as by ontological concept and

other criteria.

For this type of Filter-based service searching to be accomplished, data providers

will need to register their WFS Metadata Table services at the service catalog. During

registration, core service-level metadata (such as Title, Abstract, and Subject) will need

to be entered. Additionally, all of the ontological concepts available across the series in

the Metadata Table will need to be represented at the service-level.

Several off-the-shelf software options (such as deegree8, GeoNetwork9, and

ESRI’s GeoPortal10) for a CSW-compliant server implementation have been identified.

8 http://www.deegree.org/
9 http://geonetwork-opensource.org/
10 http://www.esri.com/software/arcgis/geoportal/index.html

76

Using an off-the-shelf solution for this piece of the architecture will reduce custom

programming requirements.

A meta-catalog that indexes catalogs from individual services stacks adds another

layer of interaction to the Services Stack-based SOA model. As discussed in section 4.3,

the meta-catalog facilitates searching across other registered catalog services. From the

client perspective, this federated searching should occur without modification to the

user’s activities. Rather, upon receiving a Filtered GetRecords request from the client,

the meta-catalog performs similar Filtered GetRecords requests upon the catalogs it

indexes, returning a single list of services to the client.

Figure 48: Component interaction with services stack and meta-catalog

4.4.4 Clients

Clients in the Services Stack architecture will have more responsibilities with

regard to the discovery of observations data. However, rather than programming against

the specialized WOF and HIS Central web services of the current model, client

applications can leverage existing libraries for accessing the OGC service specifications.

77

Several libraries for using these service specifications are listed online at the OGC’s web

site: http://www.opengeospatial.org/resource/products/byspec.

Current client applications will need to be revised to work with the proposed

architecture. This includes being able to query WFS, CSW, and SOS web services,

construct OGC Filters, and parse GML and WaterML2.0. Due to the increased number

of web service requests inherent with the Services Stack Model over that required in the

Network-Observations Model, client applications need to be “intelligent” about

restricting search requests or at least warning the user about long response times.

Fortunately, the “hits” result type of the WFS GetFeature method, which just returns the

number of hits a request would return instead of the actual series, can be used to aid in

this restriction. By first making a “hits” request, the user could be warned if a potential

result set is too large and could possibly take a long time to retrieve.

4.4.5 Summary of Roles and Responsibilities

The following is a list of responsibilities for each of the three components in the

proposed Services Stack architectural model.

• Data providers - HydroServers:

o Organize hydrologic data series into Thematic Metadata Tables

and serve these as WFS in GML

o Tag each series in Thematic Metadata Tables with its concept from

the CUAHSI hydrologic ontology

o Register Metadata Table WFS services at services catalog

o Serve the actual hydrologic data series through SOS in

WaterML2.0

• Catalogs:

78

o Implement CSW endpoint for searching and registering

HydroServer Metadata Table WFS endpoints

o For Meta-Catalog:

� Implement CSW endpoint for unified searching across

registered services

� Make CSW requests to registered catalogs to obtain their

service-level metadata

• Client applications:

o Make CSW requests to services catalogs and parse XML responses

o Make WFS requests to HydroServers and parse Metadata Table

GML responses

o Make SOS requests to HydroServers and parse WaterML2.0

responses

o Construct Filters for desired spatial extents, temporal extents,

concepts, and other criteria for searching of hydrologic data

4.5 PROPOSED OPERATING MODEL

Figure 49 is a depiction of the general operating model in the proposed Services

Stack SOA. HydroServers are registered at their stack’s catalog and provide service-

level metadata to the catalog. The client application searches either a selected catalog or

searches the unified meta-catalog with filtered CSW GetRecords operations, and gets

series metadata from HydroServers via the WFS GetFeature operation. The client

application then requests observations data series through SOS GetObservations.

79

Figure 49: General operating model in Services Stack SOA

The general operation of the Services Stack Model is described by the following

steps for a single search process:

1. For a selected keyword/concept, the client application queries the catalog

or meta-catalog CSW endpoint with a CSW GetRecords query. Each

request contains Filters specifying the desired current concept, as well as

the spatial and temporal extents chosen by the user.

2. The catalog responds to the query with an XML response containing a list

of HydroServer Metadata Table WFS service endpoints that have service-

level metadata matching the specified parameters.

3. The client application cycles through the list of user-narrowed WFS

Metadata Table service addresses, querying each with WFS:GetFeature

with the same Filters as used in catalog request, plus any additional

desired series-level constraints (such as value count or sample medium).

4. Each HydroServer WFS Metadata Table service responds with a list of

GML Features that match the specified Filter parameters. Each Feature is

80

a series as represented by the Metadata Table specification, and contains a

reference to the SOS endpoint from which the actual time series data can

be obtained.

5. The client application goes through the list of user-narrowed series and

queries the SOS endpoints with GetObservations to obtain time series

values.

6. The HydroServer SOS instances respond to each time series request with a

WaterML2.0-formatted response containing the desired series.

Figure 50 illustrates these steps from the user/client-application activity of

“narrowing” result sets. Between each query stage, the user can apply additional

constraints to further narrow the list of results passed to the next stage. This narrowing

would be accomplished by filtering on additionally desired metadata fields at each level.

Figure 50: “Narrowing” steps with the Services Stack Model

4.6 WFSTEST: A SIMPLE PROOF-OF-CONCEPT CLIENT

WFSTest (see Figure 51) is a proof-of-concept application that implements some

of the proposed functionality of clients in the Services Stack Model. The main purpose

81

of writing this application was to provide a demonstration of the main components of the

Services Stack Model. The infrastructural support behind WFSTest includes both an

ESRI GeoPortal instance and an ArcGIS Server instance at CRWR. The ESRI GeoPortal

provides a CSW-compliant endpoint that supports OGC Filters for geographic extent and

string matching in metadata fields. Several Metadata Table WFS services published from

the CRWR ArcGIS Server instance are registered at the GeoPortal instance, and are

identified as Metadata Table services in their Abstract metadata field. Each of these

WFS services contain only a single Metadata Table layer.

Figure 51: WFSTest application interface

WFSTest queries the GeoPortal CSW-endpoint with a GetRecords request. This

request includes a Filter to find only those registered services whose Abstract field

contains the string “DataCart.” The XML containing a list of these services is returned to

WFSTest, and the URLs to the matching Metadata Table WFS services are extracted.

The GetCapabilities method of each Metadata Table WFS service is called and the titles

of each Metadata Table layer are extracted.

82

WFSTest can construct Filters for geographic extent, concept keyword, site code,

and value count. These Filters are used to query each Metadata Table WFS service with

the GetFeature operation. The user can select to just receive a count of how many series

(“hits”) the GetFeature request would contain, or can see the full Metadata Table contents

returned from the GetFeature request.

A more detailed description of the use of WFSTest is in Appendix B.

4.7 ISSUES AND AREAS FOR FUTURE RESEARCH

The proposed Services Stack architecture and operation are meant to serve as a

starting point for exploration and discussion of a new, more sustainable HIS based on

international standards. Several possible shortcomings and areas where further research is

required are identified in this section. Best practices will need to be determined by the

CUAHSI-HIS team to overcome these shortcomings or modify the proposed model to fit

technological and other system constraints.

Time extent support for CSW and WFS using Filters is supported in the upcoming

2.0 version of the OGC Filter Encoding specification. However, time extent Filter

support in existing CSW-compliant servers appears to be either weak or non-existent.

Implementing this capability could be a complex task that takes a long development time.

One possible work-around to actual date-time filtering could be to represent date-times as

Julian dates. This would allow simple numerical tests, which are already widely

supported in OGC Filter implementations, to find if a date-time is between the start and

end dates of a series of observations data. If this approach were used, however, client

applications would need to be able to work with this somewhat non-standard means of

time representation.

83

The current Metadata Table specification is not a final version, and was designed

around the CUAHSI WOF service specification. To be truly effective as a series

metadata descriptor format, feedback about the attributes in the specification will need to

be collected and revisions made accordingly. Since a main driving force behind

redesigning the HIS SOA is to gain acceptance from federal data providers and more

accurately describe their hydrologic data series, input from these agencies will be

extremely valuable. Fields specific to WOF will either need to be generalized or omitted

in light of using OGC standard services. Additionally, the Metadata Table format might

need to be made more flexible, with different attributes based on the types of series

metadata that can be expected from the different data providers. For example, including

drainage area in the USGS Daily Values Metadata Table might be beneficial for

searching for streamflow series. Fortunately, using WFS as a publication standard of the

Metadata Table metadata will allow for this flexibility, though client applications will

also need to be flexible in the metadata they expect.

Due to the increased number of web service requests by clients in the Services

Stack Model, latency in response times of this more-distributed architecture could be an

issue for users. This issue will have to be overcome by “intelligent” clients, as discussed

in section 4.4.4. Clients will also be arguably more complicated than they are in the

Network-Observations model due to the number of service specifications and data

encoding standards they will need to support. As also previously stated, there is hope

that off-the-shelf libraries for communicating with OGC standards would lighten the

custom programming required by HIS client application developers.

84

Chapter 5: Conclusions

5.1 WHAT HAVE WE LEARNED

The CUAHSI-HIS project has succeeded in bringing together a large volume of

hydrologic observations data from data providers across the United States. The providers

of these data have included academic and research groups as well as state and national-

level agencies. The information system that enables this national synthesis of water data

is based on a large-scale prototype service-oriented architecture enabled primarily by

CUAHSI’s WaterOneFlow web services and WaterML. It is hoped that continued

expansion of the sources, amounts, and types of hydrologic data available through this

hydrologic information system will lead to increased research and discoveries in the

hydrologic sciences and better management of water resources overall.

As with most service-oriented architectures, the current HIS service-oriented

architecture, termed the Network-Observations Model, is comprised of three main

components: data servers, catalogs, and clients. The data servers of this system are

HydroServers, which implement the WaterOneFlow service specification to provide

hydrologic data and metadata encoded in WaterML.

HydroServers are registered at HIS Central, where their series metadata are

harvested into a central series metadata catalog. Typically, metadata harvesting is

accomplished regularly through the GetSites and GetSiteInfo methods of WaterOneFlow.

However, in the case of the large federal data providers, database dumps and custom-

coded migration scripts are instead used for harvesting. Due to the length of time

required for this custom harvesting, series metadata for the federal data providers

happens only sporadically. The HIS Central series catalog exposes search capabilities on

its central series catalog through a non-standardized web service. This service also

85

provides clients with access to the hydrologic concept ontology that enables semantic

mediation of hydrologic data from various data sources.

Clients of the CUAHSI-HIS have followed a number of distinct operating models

within the service-oriented architecture. The current version of HydroExcel uses the HIS

Central web service only to find a list of registered WaterOneFlow endpoints, and then

operates directly with those endpoints to retrieve hydrologic metadata and data.

HydroDesktop, on the other hand, is more tightly-integrated with the HIS Central series

catalog. In HydroDesktop, the HIS Central services are used to find data series that

match desired parameters along the what-when-where axes of the “data-cube.” For

matching series found from HIS Central, the time series of hydrologic data are then

retrieved from corresponding HydroServers using the WaterOneFlow GetValues method.

Examination of the client-driven operating models has shown that while HIS Central web

service has a number of exposed operations, only the GetSeriesInBox, GetOntologyTree,

and GetWaterOneFlowServices methods are used in the current architectural model.

The current system has worked well for smaller, academic and research-based

data providers who would likely have not otherwise published their data for online

consumption. However, sustainability concerns with the current system, particularly the

HIS Central series metadata catalog, have been expressed. These issues include the

tedious processes involved in harvesting series catalogs from federal water providers,

maintaining custom-coded metadata harvesting programs, and debugging and

maintaining the central catalog codebase. Moreover, although WaterOneFlow and

WaterML have become standardized through the HIS project, obtaining buy-in to the

current architecture from the federal data providers (such as USGS, EPA, and NCDC)

has not been as successful as the project would like. Examination of these sustainability

86

issues has led to the conclusion that it is not feasible for CUAHSI to maintain such a

large, centralized metadata catalog. In addition, custom-coded solutions should be

avoided when possible in favor of off-the-shelf software and standards.

A simpler and more general pattern for hydrologic data sharing through a service-

oriented architecture has been proposed. This new model, called the Services Stack

Model, is based on existing OGC web service standards and data encodings, including

the forthcoming WaterML2.0 specification. The Services Stack Model relies on a stack

of OGC services to provide catalog, metadata, and data services: CSW, WFS, and SOS,

respectively. Another key difference between the proposed architectural model and the

current model is that there will no longer be a centralized metadata catalog. Rather, data

providers will register their services and service metadata with a CSW-compliant catalog

to enable discovery of services. Series metadata, served via WFS in the Thematic

Metadata Table format, will be hosted and searched upon at the data provider level.

The proposed services stack also represents a deployable system that could be

hosted by data providers or other entities. Catalogs from deployed systems could be

brought together into a centralized service “meta-catalog” hosted by CUAHSI’s HIS

Central team to facilitate searching across them. Off-the-shelf server and library

implementations of these OGC standards have been identified and a proof-of-concept

application has been built.

5.2 AREAS OF FUTURE RESEARCH

The Service Stack Model comprised of OGC services proposed in this thesis lays

the framework for a new direction of the CUAHSI-HIS architecture. This model can be

seen as a starting point for a major renovation of the current system to make it sustainable

as the current HIS project grant period comes to an end. To that end, much work on a

87

concrete implementation of the model will need to be done. Best practices for the OGC

services stack will need to be formulated by the HIS project team and its stakeholders.

These best practices should include a finalized specification of the Thematic Metadata

Table for series description, determination of a metadata profile for the CSW-compliant

services catalog, and how best to provide ontological tagging capabilities for both series

metadata and services metadata.

A plan for migration to the proposed architecture will also need to be developed.

This plan should aim to minimize service interruptions for clients and their users. Most

of the CUAHSI-HIS products, including the ODM-based HydroServer, HydroExcel, and

HydroDesktop, will need to be modified to work within the new architecture and utilize

its OGC services and data encodings. Existing HydroServers at host data providers will

need to be transitioned with the help of CUAHSI staff to publish their data using WFS

and SOS. Extensive testing of new and modified code will need to occur to ensure a

smooth transition from the current architecture.

The proposed architectural model has already started to show promise in areas of

hydrologic data sharing formerly out-of-reach by the HIS. Current research by the

CRWR team has indicated that an extended version of Thematic Metadata Table format

shows promise for sharing wide-area gridded datasets, such as for climatologic and

remote sensing data.

88

Appendix A: Metadata Table Field Specification

Field Name

(Field Type)
Definition Example

ServCode

(Text - 50)

Network prefix for site codes used by

the WaterOneFlow service, giving the

context within which the site code

applies

CCBay

SiteCode

(Text - 50)

Unique text identifier for a site within

a given WaterOneFlow service
H1

SiteName

(Text - 255)
Name of a site Hypoxia_1

VarCode

(Text - 50)

Unique text identifier for a variable

within a given WaterOneFlow service
DOC

VarName

(Text - 255)
Name of a variable

Dissolved Oxygen

Concentration

VarUnits

(Text - 50)
Units of measure for the variable milligrams per liter

Vocabulary

(Text - 50)

Vocabulary prefix for variable codes

giving the context within which the

code applies

CCBay

Ontology

(Text – 50)

Unique name for the ontology

containing the concept to which the

given variable has been mapped

CUAHSI Variable Ontology

v1.26

Concept

(Text - 50)

Leaf concept keyword from the

ontology to which this variable applies
dissolvedOxygen

ValueCount

(LongInt)

Number of time series values for the

variable at the site for the given time

period

270

StartDate

(Date)

Start date and time for the time period

of the variable at the site
5/3/94 8:40 AM

EndDate

(Date)

End date and time for the time period

of the variable at the site
8/31/06 11:26 AM

Latitude

(Double)

Latitude of the site location in decimal

degrees (WGS_1984); for polygons

can be NULL

27.814

Longitude

(Double)

Longitude of the site location in

decimal degrees (WGS_1984); for

polygons can be NULL

-97.141

89

IsRegular

(ShortInt)

1 (TRUE) if variable is

measured/calculated regularly in time;

0 (FALSE) otherwise

0

TimeUnits

(Text - 50)

For regular data, the time step and

time units give the length of time

between measurements, e.g., 1 day,

6.5 hrs, 1 month

Day

TimeStep

(Double)

For regular data, the time step and

time units give the length of time

between measurements, e.g., 1 day,

6.5 hrs, 1 month

1

DataType

(Text - 50)
Type of data

Value, Average, Maximum,

Minimum,

StandardDeviation

Medium

(Text - 50)
Medium in which the variable applies Surface Water

MethodID

(Integer)

Unique ID within a WaterOneFlow

service for the method used to

measure the variable

1

Method

(Text - 255)

Description of the method used to

measure the variable
Multiprobe measurement

QCLevelID

(Integer)

Unique ID within a WaterOneFlow

service for the quality control level of

the time series

0

QCLevel

(Text - 50)

Description of the quality control level

of the time series
Raw Data

SourceID

(Integer)

Unique ID within a WaterOneFlow

service for the original source of the

data

1

SourceName

(Text - 255)

Name of the original source of the

data

Texas A&M University

Corpus Christi

LocType

(Text – 25)

Type of service – indicates how the

Location parameter of a

WaterOneFlow.GetValues call should

be formatted

SiteCode

LatLongBox

LatLongPoint

ServType

(Text – 10)
Type of endpoint, REST, SOAP SOAP

XLL

(Double)

For point data, Longitude of the point.

For data defined by a lat/lon box,

western longitude of the box

-97.141

90

YLL

(Double)

For point data, Latitude of the point.

For data defined by a lat/lon box,

southern latitude of the box

27.814

XUR

(Double)

For data defined by a lat/lon box,

eastern longitude of the box; otherwise

can be NULL

-93.5

YUR

(Double)

For data defined by a lat/lon box,

northern latitude of the box; otherwise

can be NULL

30.2

Location

(Text - 255)

Properly formatted location parameter

to pass to WaterOneFlow.GetValues

CCBay:Hypoxia_1

GEOM:BOX(-97.141

27.814,-93.5 30.2)

GEOM:POINT(-97.141

27.814)

Variable

(Text - 255)

Properly formatted variable parameter

to pass to WaterOneFlow.GetValues

CCBay:DOC

NWISDV:00060/DataType=

Maximum

ReqsAuth

(ShortInt)

Request authorization. 1 (TRUE) if

authorization for download is

required; 0 (FALSE) otherwise

0

WaterMLURI

(Text - 255)
URI of WaterOneFlow service WSDL

http://data.com/WoF/

/cuahsi_1_0.asmx?WSDL

WofVersion

(Text - 15)
Version of the WaterOneFlow service 1.0

WFSURI

(Text - 255)

URI of web feature service showing

site locations http://data.com/WFSServer

WMSURI

(Text - 255)

URI of web mapping service related to

the data http://data.com/WMSServer

DAccessURI

(Text - 255)

URI of Data Access Service, which

provides REST querying capabilities

for WaterOneFlow, user management,

Metadata Table management, and

more

http://data.com/DataService

Required fields are in italics.

91

Appendix B: WFSTest Operation

1) Enter a Catalogue Services for the Web (CSW) endpoint address in the “CSW

Endpoint” text box.

2) The default value in this box is for the ESRI GeoPortal Extension CSW endpoint

(https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery) at the Center for

Research in Water Resources at the University of Texas. It is recommended to use

the default value because we have registered and tagged our sample Web Feature

Service (WFS) Metadata Table services.

3) Click the “CSW:GetRecords & WFS:GetCapabilities” button. This will send a

CSW:GetRecords request to the specified CSW endpoint to find registered services

that have the term “DataCart” in their Abstract metadata field.

For each Metadata Table service found, the WFS endpoint address is extracted and

each service’s WFS:GetCapabilities method is called. The title for each service along

with the title for the FeatureLayer within the service is saved.

Note: This test client only expects WFS services with a single FeatureLayer.

Once complete, the number of services found and the title of each service’s

FeatureLayer are shown:

92

4) From the “DataCart services” check box list, select which services you would like to

query with WFS:GetFeature. All of the returned services from step 2 are selected by

default.

5) From the “Filter” section, choose which filters you would like to apply to the

WFS:GetFeature request.

• “Bounding Box” will constrain the

geographic extent.

• “Concept” will constrain the features by

their Concept attribute. This field

accepts wildcard characters (* and _),

but it is case-sensitive.

• “SiteCode” will constrain features by

their SiteCode attribute.

• “Value Count” will constrain the results to only those that have ValueCount

attributes greater than the specified number.

• “Date Range” will constrain results to those whose StartDate and EndDate

attributes fall within the specified range.

Note: Date Range filtering is done on the client side. This means features are

first retrieved from the service and then filtered by their StartDate and EndDate.

The ESRI GeoPortal does not implement OGC Filters for temporal extents.

6) Click the “WFS:GetFeature” button to query (with the selected filters applied) each

of the selected WFS Metadata Table services for their features.

• If the “Just get series count” checkbox is checked, a message box displaying the

number of features that could be retrieved with the request and selected filters

93

will display. The “hits” result type is a native feature of WFS services.

• If the “Just get hits” checkbox is not checked, a tab page for each selected

service will appear to the right side of the application, and each tab page will

contain a grid of the returned features for the associated service. Each row is a

returned feature, and the columns are the Metadata Table attributes.

7) To export the features in the currently selected tab, click the button. This will

open a Save File Dialog and save the features to a comma-separated values (.csv) file

at the specified location.

94

Appendix C: List of Acronyms

CQL Common Query Language

CRS Coordinate Reference System

CRWR Center for Research in Water Resources

CSW Catalogue Services for the Web

CUAHSI Consortium of Universities for the Advancement of Hydrologic Science,

Inc.

EPA Environmental Protection Agency

FES Filter Encoding Standard

FGDC Federal Geospatial Data Committee

GIS Geographic Information System

GML Geographic Markup Language

HDWG Hydrology Domain Working Group

HIS Hydrologic Information System

HTTP Hypertext Transfer Protocol

KVP Key-Value Pair

NCDC National Climatic Data Center

NWIS National Water Information System

O&M Observations & Measurements

ODM Observations Data Model

OGC Open Geospatial Consortium

REST REpresentation State Transfer

SDSC San Diego Supercomputer Center

SOA Services-Oriented Architecture

SOAP (formerly) Simple Object Access Protocol

SOS Sensor Observation Service

SRS Spatial Reference System

95

STORET STOrage and RETrieval

TCEQ Texas Commission on Environmental Quality

USGS United States Geological Survey

WaterML Water Markup Language

WCS Web Coverage Service

WFS Web Feature Service

WMO World Meteorological Organization

WMS Web Map Service

WOF WaterOneFlow

XML eXtensible Markup Language

96

References

CUAHSI. CUAHSI Mission . 2010. http://www.cuahsi.org/mission.html (accessed

October 20, 2010).

CUAHSI-HIS. What is the CUAHSI Hydrologic Information System (CUAHSI-HIS)?

2010. http://his.cuahsi.org/project.html (accessed October 20, 2010).

Endrei, Mark, et al. Patterns: Service-Oriented Architecture and Web Services. Durham:

IBM, 2004.

Fielding, Roy Thomas. Architectural styles and the design of network-based software

architectures. Doctoral Dissertation, Irvine: University of California, 2000, 180.

Fierro, Jr., Pedro. The Water Encyclopedia: Hydrologic Data and Internet Resources.

Hoboken: CRC, 2007.

Horsburgh, Jeffery S., et al. "An integrated system for publishing environmental

observations data." Environmental Modelling & Software 24 (2009): 879-888.

Josuttis, Nicolai M. SOA in Practice: The Art of Distributed System Design. Sebastopol:

O'Reilly Media, 2007.

Langefors, Börje. Theoretical Analysis of Information Systems. 4th Edition. Philadelphia:

Auerbach Publishers, 1973.

Maidment, David R. (ed.). CUAHSI Hydrologic Information System: 2009 Status Report.

Consortium of Universities for the Advancement of Hydrologic Science, Inc.,

2009.

Marble, Duane F. "Geographic Information Systems: an Overview." Proceedings, Pecora

9 Conference. Sioux Falls, 1984. 18-24.

97

Nickul, Duane (ed.). Service Oriented Architecture (SOA) and Specialized Messaging

Patterns. Technical White Paper, San Jose: Adobe, 2007.

OGC. FGDC CSDGM Application Profile for CSW 2.0. October 29, 2006.

http://portal.opengeospatial.org/files/?artifact_id=16936 (accessed November 10,

2010).

—. OGC Standards Officially Endorsed by Federal Geographic Data Committee.

October 12, 2010. http://www.opengeospatial.org/pressroom/pressreleases/1294

(accessed November 18, 2010).

—. OpenGIS (R) Catalogue Services Implementation Specification. February 23, 2007.

http://portal.opengeospatial.org/files/?artifact_id=20555 (accessed October 31,

2010).

—. OpenGIS (R) Filter Encoding Implementation Specification. May 3, 2005.

http://portal.opengeospatial.org/files/?artifact_id=8340 (accessed November 10,

2010).

—. OpenGIS (R) Web Map Server Implementation Specification. March 15, 2006.

http://portal.opengeospatial.org/files/?artifact_id=14416 (accessed October 31,

2010).

—. Sensor Observation Service. October 26, 2007.

http://portal.opengeospatial.org/files/?artifact_id=26667 (accessed October 31,

2010).

—. Web Feature Service Implementation Specification. May 3, 2005.

http://portal.opengeospatial.org/files/?artifact_id=8339 (accessed October 31,

2010).

98

Pautasso, Cesare, Olaf Zimmerman, and Frank Leymann. "Restful web services vs. "big"'

web services: making the right architectural decision." WWW '08: Proceedings of

the 17th international conference on World Wide Web. Beijing: ACM, 2008. 805-

814.

Piasecki, Michael. HydroTagger Functional Description Document (Version 1.0).

CUAHSI, 2008.

Rosen, Michael, Boris Lublinsky, and Kevin T. Smith. Applied SOA: Servce-Oriented

Architecture and Design Strategies. Hoboken: Wiley & Sons, 2008.

Tarboton, David G., David Maidment, Ilya Zaslavsky, Daniel P. Ames, Jon Goodall, and

Jeffery S. Horsburgh. "CUAHSI Hydrologic Information System 2010 Status

Report." 2010.

Tarboton, David G., Jeffery S. Horsburgh, and David R. Maidment. CUAHSI Community

Observations Data Model (ODM). Design Specifications, CUAHSI, 2007.

Tarboton, David G., Jeffery S. Horsburgh, and David R. Maidment. CUAHSI Community

Observations Data Model (ODM) Version 1.0. Design Specifications, CUAHSI,

2007.

W3C. Hypertext Transfer Protocol -- HTTP/1.1. 1999.

http://www.w3.org/Protocols/rfc2616/rfc2616.html (accessed November 10,

2010).

—. SOAP Version 1.2. April 27, 2007. http://www.w3.org/TR/soap12-part1/ (accessed

November 11, 2010).

—. Web Services Architecture. February 11, 2004. http://www.w3.org/TR/ws-

arch/#whatis (accessed October 14, 2010).

Whiteaker, Tim. CUAHSI WaterOneFlow Workbook. Austin: CUAHSI, 2010.

99

Whiteaker, Tim. "The CUAHSI Hydrologic Information System." Presentation, 2010.

Whiteaker, Tim, and Dean Djokic. "Data Cart Specification." 2010.

Whitenack, Tom. CUAHSI HIS Central 1.2. CUAHSI, 2010.

Zaslavsky, Ilya, David Valentine, and Tim Whiteaker. CUAHSI WaterML. Discussion

Paper, Open Geospatial Consortium, 2007.

100

Vita

James Adam Seppi was born in Maryland to parents Eleanor and Bruno J. on

February 11, 1984. He attended primary school in Bowie, MD and graduated with

honors from the Science and Technology program at Eleanor Roosevelt High School in

Greenbelt, MD. James attended the University of Maryland where he graduated with

degrees in Computer Engineering (B.S.) and Chinese (B.A.) in 2007. While at the

University of Maryland, James became a member of the Tau Beta Pi, Eta Kappa Nu, and

Omicron Delta Kappa honor societies. James worked as an analyst consultant at

Accenture in Austin, TX before beginning his graduate studies in Environmental and

Water Resources Engineering at the University of Texas at Austin in January of 2009.

After graduation, James and his wife Taylor plan on traveling and volunteering abroad.

Permanent email: james.seppi@gmail.com

This thesis was typed by the author.

