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Abstract 

 

A Services Stack Architectural Model for the CUAHSI-HIS 

 

 

 

 

James Adam Seppi, M.S.E. 

The University of Texas at Austin, 2010 

 

Supervisor:  David R. Maidment 

 

The Hydrologic Information System Project of the Consortium of Universities for 

the Advancement of Hydrologic Science, Inc. (CUAHSI) has successfully created a 

large-scale prototype Hydrologic Information System (HIS). This system catalogs and 

provides access to over 23 million time series of hydrologic data, which are distributed 

across the United States at various academic, research, and governmental data providers.  

The service-oriented architecture that enables the HIS comprises distributed hydrologic 

data servers, a centralized series catalog, and various client software applications, and is 

supported by WaterML, a standardized language for transmission of hydrologic data. 

 The current architectural model, termed the Network-Observations Model, of the 

HIS relies on a searchable central catalog of series metadata.  Harvesting series metadata 

from large federal data providers, such as the USGS, EPA, and NCDC, has proven a 

laborious undertaking and involves custom database migration tools.  This time-
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consuming harvesting task, coupled with a multitude of custom-coded solutions at the 

central series catalog has led to concerns with the long-term sustainability of the current 

architectural model. 

A new architectural model, termed the Services Stack Model, is proposed in this 

thesis.  In the proposed model, a catalog of services metadata, rather than of series 

metadata is used to connect hydrologic data consumers with data providers.  

Internationally-recognized web service and data encoding standards, including the 

upcoming WaterML2.0 specification, from the Open Geospatial Consortium are used as 

the backbone of the new model.  The proposed model will hopefully lead to greater 

acceptance of the CUAHSI-HIS, and result in increased sustainability and reduced 

maintenance of the system in the long-term. 
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Chapter 1: Introduction 

1.1 MOTIVATION 

As global populations grow, stresses on the environment and natural resources 

will also increase.  Demands on one of our most fundamental resources, water, will likely 

see unprecedented growth to meet drinking, agriculture, and power production 

requirements worldwide.  In order to effectively plan and manage water resources we 

need to more fully understand them.  Understanding water resources involves not only 

knowing how much water exists and how and where it is flowing, but also its quality and 

the environmental and biological impacts of its abstraction.  However, due to the 

complex nature of the hydrologic cycle, wherein water moves in different phases over 

widely varying periods of time and distances, this is not an easy task.  In order to most 

effectively and efficiently manage water resources, planners, scientists, and engineers 

need to synthesize information about our water environment.  This synthesis of 

information requires that observations data about the hydrologic cycle be accessible and 

in a usable format.   

The Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

(CUAHSI) Hydrologic Information System (HIS) project has created a large-scale 

prototype HIS to make integrated hydrologic data accessibility a reality.  As the grant 

period of the HIS project comes to an end, the project must ensure that its legacy is 

sustainable, supportable, and deployable. To this end, lessons learned from the creation of 

the prototype HIS need to be used to propose a new, more robust, standards-based HIS 

architecture that will ensure future sustainability.   

This chapter describes what hydrologic data are, why they are so complex, and in 

broad terms what the CUAHSI-HIS project is. 



 

 

2 

1.2 HYDROLOGIC DATA 

Hydrologic data are data that describe the water environment. Observational 

hydrologic data includes the physical properties; chemical constituents; atmospheric 

conditions; and biological movement, processes, and life that comprise this environment.  

These data can be observed in situ, such as with stream flow gages, or ex situ, such as 

when a water sample is collected and analyzed in a lab.  Hydrologic data may be 

collected at point-locations, such as with pan evaporation, or may cover wide swaths of 

the land surface, such as with remotely-sensed precipitation data.  Additional hydrologic 

data are created via models or through other derived products.   

Hydrologic observations data have three fundamental characteristics: location, 

date and time, and value (Tarboton, Horsburgh and Maidment 2007).  The data cube (see 

Figure 1) is a conceptual way of describing hydrologic data along three primary axes: 

location (where), time (when), and variable (what) (Whiteaker 2010).  At the intersection 

of selected values along these three axes is what could be an observation: a numeric 

value corresponding to a specific location in space, at a specific time for a specific 

variable.  Data observation is not perfect, so for any observation system recorded 

observation values do not exist along the continuum of location, time, and variable.   For 

example, the United States Geological Survey (USGS) National Water Information 

System measures streamflow at 15-minute intervals and at various locations within the 

surface water system of the United States. 
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Figure 1: The “data cube” (Whiteaker 2010) 

In addition to the diversity in the types of hydrologic data, there is also great 

variety in who collects the data and how the data are stored. In the United States, 

hydrologic data are collected and managed at many different levels of governmental, 

scientific, and academic agencies. The scales of these agencies’ observations networks 

range from individual catchments to the nation’s largest waterways and upwards to the 

global atmosphere.  For instance, the USGS maintains a nationwide network of almost 

1.5 million sites to measure surface water levels and flow, groundwater levels, and water 

quality.  Smaller agencies include those like the Lower Colorado River Authority 

(LCRA) in Texas, which collects hydrologic data such as precipitation and streamflow 

for the Lower Colorado River. 

The assortment of agencies collecting hydrologic data leads to both syntactic and 

semantic heterogeneity, as defined by Horsburgh, et al (2009, 881):   
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“Syntactic heterogeneity refers to a difference in how data and 

metadata are organized (e.g., rows vs. columns) and encoded (e.g., 

text files verses Excel spreadsheets), while semantic heterogeneity 

refers to the variety in language and terminology used to describe 

observations.” 

The diversity in types of hydrologic data along with the syntactic and semantic 

heterogeneity of the data make bringing together different observations both difficult and 

time consuming. Fierro (2007, 1) argues that “scientists spend 80% of their time 

managing the data and 20% analyzing and interpreting.”  The same issues with 

observational data also extend to metadata: the supplementary data that describes the 

observational data.  With predictions on the vast amount of data that will be produced in 

the future, creating a framework by which all these differences in water data can be 

reconciled would be a boon to the scientific understanding and resource management 

capabilities in hydrologic disciplines.  

1.3 CUAHSI-HIS PROJECT 

The modern World Wide Web architecture, along with increases in data 

bandwidth and server speeds has led to the development of standards for sharing 

information via machine-to-machine interactions called web services.  Many national-

level hydrologic data collectors in the U.S., such as the USGS and Environmental 

Protection Agency (EPA), are mandated to make their data available to the public.  

Smaller data collectors, while often not mandated to share data, often do so anyway to aid 

the scientific and academic communities.  The development of web services has 
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undoubtedly made the dissemination of data easier than in the days of hard-copy printed 

data tables.   

Unfortunately, nearly all agencies and data collectors have their own data formats, 

protocols, and nomenclature so that even though there are web services to access data, 

there is still great difficulty in integrating the data from different sources. 

The CUAHSI-HIS project has been created to help solve these hydrologic data 

integration problems.  CUAHSI is an international, U.S. National Science Foundation-

funded consortium comprised of over 120 member universities and research groups, the 

majority of which are U.S.-based institutions (see Figure 2).  Part of CUAHSI’s 

overarching mission is “to enhance hydrologic science by facilitating user access to more 

and better data for testing hypotheses and analyzing hydrologic processes” (CUAHSI 

2010)  In support of this mission, CUAHSI directs the aforementioned HIS project, “a 

national cyber-information system for sharing hydrologic data” (CUAHSI-HIS 2010).  

Member teams of the CUAHS-HIS project are at the Center for Research in Water 

Resources (CRWR) at the University of Texas at Austin, the San Diego Supercomputer 

Center (SDSC), Utah State University, Idaho State University, and the University of 

South Carolina. 
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Figure 2: CUAHSI U.S. member institution locations 

This CUAHSI-HIS comprises hydrologic data servers distributed throughout the 

U.S., a central cataloging system at the San Diego Supercomputer Center, and clients that 

use this system. The central catalog (HIS Central) has 62 public services registered at the 

time of writing this thesis.  Collectively, these services provide access to nearly 23 

million data series containing approximately 5.1 billion data values measured at nearly 2 

million sites (Tarboton, Maidment, et al. 2010).  Figure 3 shows some of these sites from 

the largest hydrologic data providers. 
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Figure 3: Registered hydrologic data sites at HIS Central 

 This system provides the means of water data publication, sharing, discovery, 

analysis, and visualization.  The HIS project has created and published several key 

technologic products in support of this system.  These products include the Observations 

Data Model, WaterOneFlow web services, Water Markup Language, HydroExcel, and 

HydroDesktop. 

1.4 OBJECTIVES AND CHAPTER OUTLINE 

The objectives of this thesis are to answer the following questions: 

• What are the components of the current HIS architecture and how do these 

pieces work together? 

• What are the operating models for hydrologic data access that have been 

followed within the current HIS architecture? 

• Can a new, sustainable architectural model that leverages international 

standards and a deployable catalog component be proposed? 
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• What areas of future research are necessary to move toward this new 

architectural model? 

Chapter two of this thesis is a literature and technology review for topics and 

technologies relating to the CUAHSI-HIS project.  This chapter covers technologies both 

currently leveraged by the project as well as those toward which the project is likely 

headed. 

Chapter three describes the current architecture of the CUAHSI-HIS.  Each 

component of the system is elaborated. The client-centric operating models of the current 

HIS are also defined and described.  

Chapter four proposes a new architecture for the CUAHSI-HIS that utilizes a suite 

of standard web services from the Open Geospatial Consortium. A proof-of-concept 

client application for this model is also presented to illustrate how the proposed 

architectural system will function. 

Chapter five presents conclusions and areas of future investigation. 
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Chapter 2: Literature and Technology Review 

2.1 HYDROLOGIC INFORMATION SYSTEMS 

2.1.1 Definitions 

To understand what a hydrologic information system is and the needs it meets, a 

foundational definition for generic information systems should first be identified. 

Langefors (1973, 195) provides a definition of an information system as “a system of 

information sets needed for decision and signaling in a larger system (of which it is a 

subsystem) containing subsystems for collecting, storing, processing, distributing 

information sets.”  In this definition, information refers to “any kind of knowledge or 

message that can be used to improve or make possible a decision or action” (Langefors 

1973, 319).  The term data, then, refers to the digital representation of information 

(Langefors 1973). 

The preceding definition of an information system can be specialized and 

extended to refer to information systems of particular information domains.  For instance, 

Marble (1984) defines geographic information systems (GIS) as containing four 

subsystems for geospatial data: (1) input, (2) storage and retrieval, (3) manipulation and 

analysis, and (4) reporting through maps or tables.  Connections between the subsystems 

that define an information system laid forth by Langefors and those that define a GIS can 

be made, as depicted in Figure 4. 
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Figure 4: Information system subsystems mapped to GIS subsystems 

Following this pattern of information system definitions, a hydrologic information 

system (HIS) can thus be defined as an information system for the domain of hydrologic 

data.  A HIS should then contain subsystems for hydrologic data (discussed in Chapter 1) 

collection, storage/retrieval, processing/analysis, and distributing/reporting. Tarboton, et 

al. (2010, 1) offer a definition of HIS “1) as a way of publishing hydrologic data in a 

uniform way; 2) as a way of discovering and accessing remote water information 

archives in a uniform way; and 3) as a way of displaying, synthesizing and analyzing 

water information and exporting it to other analysis and modeling systems.” This 

definition of HIS in terms of capabilities generally fits within the framework of 

information systems set forth by Langefors.  Figure 5 shows how the capabilities of a HIS 

map to the basic information systems subsystems.  The storage capability in the HIS 

definition from Tarboton, et al. (2010) is implicit in mentioning “water information 

archives.” 
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Figure 5: Information system subsystems mapped to HIS subsystems 

Maidment (2009, 2) defines the components of a HIS as “software applications 

that store, access and index hydrologic information.” Further pointing out that a HIS can 

work in conjunction with a GIS, a key difference between GIS and HIS is that hydrologic 

data vary greatly with time, while geospatial data are usually static and have little time 

variation (Maidment 2009). 

2.1.2 Web Services 

The World Wide Web Consortium (W3C) defines a generic web service as “a 

software system designed to support interoperable machine-to-machine interaction over a 

network” (W3C 2004). Web services are accessed through endpoints, which are typically 

addressed via uniform resource identifiers (URIs) (Endrei, et al. 2004).  A single web 

service usually comprises several methods or operations that, according to the input 

parameters, act upon the resources available through the service. Web services are 

loosely-coupled to their clients and other interacting services, and two-way 

communication is accomplished through messages (Endrei, et al. 2004).  A message to a 
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web service is a request and the message back from the service is a response.  The 

published means of interacting with a particular web service, including all of its methods 

and the possible inputs to those methods, is an application programming interface (API). 

At the base level, web services, as their name implies, function over the World 

Wide Web (WWW) which is made possible by the Internet.  The WWW uses Hypertext 

Transfer Protocol version 1.1 (HTTP/1.1) as its communication protocol over the 

Internet.  HTTP/1.1 has four main operations on web resources: GET, POST, PUT, and 

DELETE (W3C 1999).  Generally speaking, the GET operation is for reading data, POST 

is for creating new data, PUT is for creating or updating data, and DELETE is for 

deleting data (W3C 1999).  Because web services are implemented over the WWW, at 

the most basic level, all web service methods eventually map to these HTTP operations. 

RESTful web services and SOAP web services are two strategies of web service 

implementation (Pautasso, Zimmerman and Leymann 2008).  

RESTful web services are based on the architectural idea of REpresentational 

State Transfer (REST), a concept developed by Fielding (2000) in his doctoral 

dissertation. REST is actually the guiding architecture to the HTTP/1.1 specification, of 

which Fielding was a principal designer. Web services that follow the REST architectural 

guidelines are known as RESTful. In RESTful systems, communication is stateless “such 

that each request from client to server must contain all of the information necessary to 

understand the request, and cannot take advantage of any stored context on the server” 

(Fielding 2000, 78-79).  This lack of session state tracking on the server increases 

scalability because servers do not have to keep track of session information, though it 

decreases network performance since data may be repeated in requests (Fielding 2000).   
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Rather than defining new method interfaces, RESTful web services take 

advantage of some or all the HTTP/1.1 operations to perform their actions (Pautasso, 

Zimmerman and Leymann 2008).  For instance, HTTP GET requests are used to request 

data from a RESTful web service.  Parameters to GET requests are sent via simple URI-

encoded calls to the web server.  Thus, a request to get information about a particular 

book with a given identification number from an online bookstore’s web service might 

look like the following (where the service endpoint URI is highlighted in red and the 

request parameters are in blue):  

http://www.bookstore.com/bookService?request=GetInfo&bookId=123 

Because REST is an architectural ideal rather than a specifically defined protocol, 

there is no agreed-upon standard for RESTful web services.  Rather, the endpoints, 

operations, parameters, and other information of a RESTful web service are usually 

defined in an API by the service provider, and client software must be programmed to 

interact with that API in particular.   

SOAP, by comparison, is a completely-specified, standardized protocol that 

describes the message formats, encoding rules, and transport mechanism for web services 

(Endrei, et al. 2004).  The SOAP (which formerly stood for Simple Object Access 

Protocol) protocol is developed and maintained by the W3C (W3C 2007). The SOAP 

message format (both requests and response) is based on eXtensible Markup Language 

(XML).  A SOAP message comprises a wrapping SOAP envelope that holds an optional 

SOAP header component and a mandatory SOAP body component (W3C 2007). The 

SOAP header is usually used for authentication and session state management, while the 

SOAP body contains the actual request/response payload.  Although technically any 
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transport protocol could be used with SOAP, HTTP is currently the only such transport 

protocol accepted by the SOAP specification (Endrei, et al. 2004). 

SOAP web service providers usually publish a Web Services Description 

Language (WSDL) file on their servers. WSDL files provide the “operational 

characteristics of a Web service using an XML document” (Endrei, et al. 2004, 123).  

These operational characteristics include what the web service is about, where it resides 

(the endpoint URI), and what is needed to invoke the service (Endrei, et al. 2004).   

2.1.3 Service-Oriented Architectures 

Service-Oriented Architectures (SOA) are system architectures built around 

services connected together to achieve higher-level processes and solutions (Rosen, 

Lublinsky and Smith 2008). There are three core concepts that comprise SOA: services, 

interoperability, and loose-coupling (Josuttis 2007).  Endrei, et al. (2004, 27-28) describe 

the web services that empower SOA as having several key characteristics:  

“Services are self-contained and modular. Services support interoperability. 

Services are loosely coupled. Services are location-transparent. Services are 

composite modules, comprised of components.” 

Based these characteristics and the definition of SOA, web services are an appropriate 

class of services upon which a larger system architecture can be built. 

In a SOA, there are two fundamental components: (1) service providers and (2) 

service consumers (Nickul 2007).  Service consumers connect directly with service 

providers to request and receive data (Nickul 2007).  A third component, called a service 

registry can also be included in a SOA (Endrei, et al. 2004). The interactions among these 

three components are displayed in Figure 6. Service providers publish web services to 

make data available and register their services at a registry. Service registries (i.e., 
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catalogs) allow consumers to search for desired services based on some criteria. The 

registry may also provide the consumer with the interface or endpoint to matching 

services.  Service consumers (i.e., clients) invoke services to request data (Endrei, et al. 

2004).   

 

Figure 6: Component interactions in SOA 

2.2 THE CUAHSI-HIS SERVICE-ORIENTED ARCHITECTURE 

2.2.1 Background 

The CUAHSI-HIS project has created a prototype SOA for hydrologic 

information.  Figure 7 is a conceptual diagram of this system.  As with the generic SOA 

described in the previous section, the HIS SOA has three basic components: service 

providers called HydroServers, a service registry called HIS Central, and service 

consumers such as HydroDesktop.  The enabling technologies behind all these 

components are Water Markup Language and WaterOneFlow web services.  The 

following sections contain descriptions of the WaterML and WOF specifications. 
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Figure 7: CUAHSI-HIS SOA (image from http://his.cuahsi.org/) 

2.2.2 WaterML 

Water Markup Language (WaterML) is CUAHSI’s standardized encoding for 

transmission of hydrologic observations data via the Internet, and specifically via WOF 

services. WaterML can accommodate time series of observations with different time 

support (such as hourly, daily, or monthly) and time representations, and includes 

structures specifically for the SOAP protocol (Zaslavsky, Valentine and Whiteaker 2007).  

In addition to time series, WaterML provides elements for the description of sampling 

sites, methods, observed variables, and other metadata relating to hydrologic 

observations. 

 The WaterML schema is XML-based and was originally developed in support of 

the WOF web service standard.  It thus contains four main elements specifically for 

describing the responses from each of the WOF methods described in the following 

section (Zaslavsky, Valentine and Whiteaker 2007). These response elements are called 

GetSitesResponse, GetSiteInfoResponse, GetVariableInfoResponse, and 
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GetValuesResponse, corresponding to the GetSites, GetSiteInfo, GetVariableInfo, and 

GetValues operations of WOF, respectively.  Example excerpts from each of these 

response elements are shown in section 2.2.3 of this thesis.  

 There are currently two versions of CUAHSI’s WaterML schema: a stable 1.0 

version and an experimental 1.1 version. By using this standard format for hydrologic 

data representation, a client application that understands the schema can interpret data 

from any compliant web service.   

2.2.3 WaterOneFlow Web Services 

WaterOneFlow (WOF) is CUAHSI’s web service specification for transferring 

hydrologic observations data and the metadata that describe them. WOF services use the 

SOAP protocol, though there has been some movement within the HIS project toward 

supporting a RESTful interface as well. Corresponding to WaterML, there are two 

versions of the WOF specification: the original, stable 1.0 version and the new, though 

experimental 1.1 version.  Most (45 of the total 62) of the WOF services that have been 

registered at HIS Central are using the 1.0 version. Except for where explicitly 

mentioned, the information in this section refers to the stable 1.0 version of the WOF 

specification. 

There are four main methods available from WOF services: GetSites, GetSiteInfo, 

GetVariableInfo, and GetValues.  This section describes all four of these methods based 

on the CUAHSI WaterOneFlow Workbook (Whiteaker 2010). The SOAP message 

responses from WOF web services all contain WaterML-formatted payloads.  All four of 

the WOF methods can accept an optional “authCode” parameter, which in the future will 

be used to provide only authenticated access to the data served from the WOF service 

instance.  Currently this parameter is always set to an empty string value (“”). 
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The GetSites operation is used to obtain metadata describing the sampling sites 

represented through a WOF service. This method takes an optional “site” parameter that 

specifies the codes for sites about which metadata is desired.  If the “site” parameter is 

left blank, metadata about all of the sites that the WOF service instance contains will be 

returned.  Figure 8 is an example SOAP request to the GetSites operation with a blank 

“site” parameter.   

 

Figure 8: Example SOAP WOF GetSites request 

The metadata returned from GetSites includes site names, identification codes, 

and geographic coordinates, and is returned as a WaterML GetSitesReponse.  An excerpt 

of site metadata from a GetSitesResponse is shown in Figure 9. 
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Figure 9: Example site metadata from GetSitesResponse 

The GetSiteInfo operation is for retrieving metadata that describe the time series 

of hydrologic observations available through the service. This metadata is referred to as a 

series catalog and includes value counts, time range, source, and other information about 

each series of data for each of the variables measured at the requested sites. In version 1.0 

of WOF, the GetSiteInfo method takes a “site” parameter that specifies the site codes for 

which sites a series catalog is desired. In version 1.1 of WOF, the GetSiteInfo method 

instead takes a “location” parameter that can contain specific site codes or rectangular 

geographic extents for which series catalogs are desired. Figure 10 is an example 

GetSiteInfo SOAP request for the series catalog of the “TWDB:Aransas95_2” site. 

 

Figure 10: Example SOAP WOF GetSiteInfo request 
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 The WaterML response from this request is the GetSiteInfoResponse.  An excerpt 

of a single series from the series catalog in this response is shown in Figure 11.  As can 

be seen in the figure, this particular series shows is for the “specific conductance” 

variable and has 30 values in a time series that starts on 9/29/1995 and ends on 

9/30/1995. 

 

Figure 11: Example series metadata from GetSiteInfoResponse 

The GetVariableInfo operation is for retrieving metadata describing hydrologic 

variables available through the web service.  This method takes an optional “variable 

code” parameter that specifies for which variables information is wanted.  If no variable 

codes are specified, then metadata about all of the variables represented in the WOF 

service instance will be returned.  Figure 12 is an example SOAP request for information 

about the “TWDBQuality:Cond” variable. 
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Figure 12: Example SOAP WOF GetVariableInfo request 

The WaterML GetVariableInfoResponse returned from the GetVariableInfo 

method includes variable name, code, sample medium, data type, units and other related 

metadata. An excerpt from this response for the preceding “TWDBQuality:Cond” 

GetVariableInfo request is shown in Figure 13. 

 

 

Figure 13: Example variable metadata from WOF GetVariableInfoResponse 

The GetValues method is the core data retrieval method of WOF.  The GetValues 

operation usually has a single required parameter, “location”, for specifying the site code 

from which time series data is desired.  In some WOF instances the variable code for the 

desired series must also be supplied via the “variable” parameter.  Optionally, the 

“startDate” and “endDate” parameters may be used to specify the time extent of the 

desired time series data.  Figure 14 is a request for the “TWDBQuality:Cond” variable at 
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the “TWDBQuality:Aransas95_2” site for the time period of 5:00 to 6:00AM on 

9/29/1995. 

 

Figure 14: Example SOAP WOF GetValues request  

 The response from the GetValues method is the WaterML GetValuesResponse, 

which contains a time series of observations data along with values-level metadata (such 

as quality control level) for the requested sampling site.  Figure 15 contains the values 

element from the response to the preceding sample request.  This response contains a 

series of three values for the variable, site, and time period specified in the request. 
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Figure 15: Example time series data from WOF GetValuesResponse 

2.3 OPEN GEOSPATIAL CONSORTIUM STANDARDS 

2.3.1 Background 

The Open Geospatial Consortium (OGC) is an international standards consortium 

comprising various governmental, private, and research institutions around the world. 

The main goal main goal of the OGC is to “geo-enable the Web” through development 

and publication of its OpenGIS standards. The OpenGIS standards include schemas and 

specification documents for geospatial web services and encodings of the data served 

through these services.  In October 2010, the Federal Geographic Data Committee 
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(FGDC) formally endorsed several of the OGC’s OpenGIS standards for use by U.S. 

agencies (OGC 2010).  

The Hydrology Domain Working Group (HDWG), a joint working group of the 

OGC and World Meteorological Organization, is investigating the use of OGC standards 

for hydrologic data.  The HDWG’s main activities include hosting interoperability 

experiments in the areas of both surface and groundwater data, and creating the new 

Water Markup Language 2.0 specification. The purpose of these interoperability 

experiments is to determine best practices for the use of OGC standards and to identify 

any gaps that these standards have in the realm of hydrologic data.   

The OpenGIS web service specifications that are most applicable to the HIS 

project are Web Map Service (WMS), Web Feature Service (WFS), Sensor Observation 

Service (SOS), and Catalogue Services for the Web (CSW).  Each of these service 

specifications has its own set of methods and data encoding specifications, though there 

is much similarity across them.  This section discusses each of these service 

specifications with attention to their primary methods and the inputs and outputs from 

these methods.  In support of these service standards are several data encoding standards, 

Filter Encoding Standard (FES), Geographic Markup Language (GML), Observations & 

Measurement (O&M), and Water Markup Language 2.0 (WaterML2.0). These encoding 

standards are also discussed in this section. 

2.3.2 Web Map Service 

Web Map Service (WMS) is the OGC service standard for requesting and 

transmitting geospatially-referenced map images (OGC 2006).  The information in this 

section is an overview of the WMS Implementation Specification from the OGC (2006). 

WMS implementations must always accept Key-Value Pair (KVP) requests via HTTP 
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GET, and can optionally accept XML-based requests via HTTP POST.  The information 

in this section refers specifically to HTTP GET requests with KVP parameter encoding, 

though it is generally applicable to the HTTP POST format as well. 

The primary, required methods of a WMS are GetCapabilities and GetMap.  In 

addition, there is the optional GetFeatureInfo method. As with the other OGC service 

standards, the GetCapabilities operation is for retrieving service-level metadata. 

GetCapabilities returns an XML document whose schema is specified in the Web Map 

Server Implementation Specification (OGC 2006).  In WMS, this metadata includes (but 

is not limited to):  

• which of the WMS operations are supported by the WMS endpoint;  

• the abstract, author, keywords, contact information, fees, and authorized 

use of the service; and 

• the names, titles, Styles, geographic bounds, coordinate reference system, 

and other metadata about the Layers represented. 

WMS GetCapabilities requests have two required parameters, “request” which 

specifies the method name “GetCapabilities” and “service” which specifies the service 

name “WMS”. An example GetCapabilities request to the CRWR TRACS_Sites WMS 

endpoint request via HTTP GET is shown below, with the URL highlighted in red and 

the KVP parameters in blue: 

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WMSServer? 

request=GetCapabilities& 

service=WMS 

Figure 16 shows an excerpt containing the TRACS_Sites Layer element from the 

response to this request. 
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Figure 16: Excerpt containing Layer element from WMS GetCapabilities response 

The core functionality of a WMS is exposed through the GetMap method.  This 

operation retrieves map images based on criteria specified in the request parameters.  The 

images can be in a variety of formats, including PNG, JPG, SVG, and others, depending 

on the specific WMS implementation.  Images from WMS can be requested to have 

transparent backgrounds so that they may be overlaid onto one another to make 

composite maps. 
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Maps served through WMS are divided into layers.  For example, a WMS for a 

Texas surface water hydrology map could contain 3 distinct layers: streams, water bodies, 

and sampling points.  Each layer has one or more predefined styles, which principally 

refer to different symbologies.  For example, the sampling point layer could have two 

styles: one in which all the sampling points are blue circles, and another in which the 

sampling points are red squares.  Layers can also be arranged hierarchically, in which 

case only the leaf nodes in the hierarchy would be layers of visual data.  The parent layers 

would be for organizational purposes. For example, a WMS for Texas water quality 

could have parent layers called “Surface Water Features” (with child layers for streams 

and water bodies), and “Sampling Points” (with child layers for salinity sampling points 

and nutrient sampling points). 

The GetMap method has several required and optional parameters, which are 

described in section 7.3 of the OGC WMS Implementation Specification (OGC 2006).  

The required parameters are “version” (1.3.0), “request” (GetMap), “layers”, “styles”, 

“crs” (coordinate reference system), “bbox” (geographic bounding box), “width” (pixel 

width of the image), “height” (pixel height of the image), and “format” (file format of the 

image).  The combination of these parameters defines a geographic extent in a given 

coordinate system for which an image containing the specified Layers of the map 

symbolized by the specified Styles is requested.  There are additional optional parameters 

for specifying the background color or transparency of the map. An example GetMap 

request to CRWR’s TRACS_Sites WMS is shown below: 

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WMSServer? 

request=GetMap& 

version=1.3.0& 

styles=default& 
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format=image/png& 

layers=0& 

crs=EPSG:4326& 

width=700& 

height=600& 

bbox=25.850000,-106.631111,36.470001,-93.113846 

The image response from this request is shown in Figure 17. 

 

 

Figure 17: Response from GetMap request on TCEQ_Tracs WMS Service 

The optional WMS method, GetFeatureInfo, provides additional information 

about a selected point on a map provided by the GetMap operation.   The parameters for 

this method are described in section 7.4.2 of the WMS Implementation Specification 

(OGC 2006). The response method is very loosely defined and is largely left up to the 

specific WMS implementation. 

2.3.3 Web Feature Service 

OGC’s Web Feature Service (WFS) specification provides “…interfaces for data 

access and manipulation operations on geographic features…” and is described in detail 

by the WFS Implementation Specification (OGC 2005, 5). The information in this section 
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is a brief overview from the OGC’s WFS Implementation Specification (2005). As with 

WMS, WFS requests can be made through HTTP GET with KVP URL encoding or 

through HTTP POST with an XML-formatted request.  Additionally, WFS can be 

implemented to accept and respond to SOAP messages. Again, the information in this 

section refers specifically to HTTP GET requests with KVP parameter encoding, though 

it is generally applicable to the HTTP POST and SOAP formats as well.  

The core concept of WFS is the geographic feature.  A feature can be almost 

anything of interest, and is represented by a collection of attributes.  Each attribute has a 

name, a type (such as “double” or “string”), and a value.  Geographic features are 

features with a geometric property.   

The methods of WFS are GetCapabilities, DescribeFeatureType, GetFeature, 

GetGmlObject, Transaction, and LockFeature.  However, for a basic WFS 

implementation, only GetCapabilities, DescribeFeatureType, and GetFeature are 

required.  Only these three methods are described in this section. 

As with all OGC service specifications, the GetCapabilities operation of WFS is 

for retrieving service-level metadata, such as title, abstract, keywords, and access 

constraints, and listing which methods of the specification are available.  For WFS, 

GetCapabilities also lists all the feature types for which data are available and the types 

of filters that can be used for the GetFeature request.  Filters are discussed more in 2.3.6 

of this thesis.  There are only two required parameters for the WFS GetCapabilities 

method, “request”, whose value is always “GetCapabilities” and “service”, whose value 

is always “WFS”. The response from GetCapabilities is an XML document whose 

schema is defined in the WFS Implementation Specification.  An example 

GetCapabilities request to CRWR’s TRACS_Sites WFS service is shown below: 
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http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WFSServer? 

request=GetCapabilities& 

service=WFS 

An excerpt showing the FeatureTypeList in the XML response to this request is shown in 

Figure 18.  For this WFS, there is only a single feature type available, called 

TRACS_Sites as can be seen in the figure. 

 

Figure 18: FeatureTypeList excerpt from GetCapabilities response on TCEQ_Tracs WFS 

The DescribeFeatureType operation describes the attributes of the features served 

by the WFS. The only required parameter to this method is “request”, whose value is 

always “DescribeFeatureType”. By default, DescribeFeatureType returns a GML 

document with the structure and attributes of each type of feature served by the WFS. 

The optional “typename” parameter can be used to specify the feature types for which a 

description is desired. An example DescribeFeatureType request to the TRACS_Sites 

WFS at CRWR is shown below: 

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WFSServer? 

request=DescribeFeatureType 
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Figure 19 is an excerpt of the response from this DescribeFeatureType request.  In 

the response, it can be seen that the TRACS_SitesType, the only feature type available 

from the TRACS_Sites WFS, has seven attributes: OBJECTID, SiteCode, SiteName, 

Latitude, Longitude, VarCode, and Shape.  The Shape attribute is of type 

gml:PointPropertyType and is the attribute that makes the TRACS_SitesType a 

geographic feature.  The other six attributes were the attributes in the shapefile from 

which this WFS was produced. 

 

Figure 19: TRACS_SitesType definition (GML) from DescribeFeatureType on 

TRACS_Sites WFS 

The GetFeature operation provides the main functionality of WFS.  Through this 

method, the set of features (with their attributes) that match given criteria are returned as 
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a GML document. If no criteria are specified, then all the features of a given type are 

returned.  The required parameters for a GetFeature request are the “request” parameter 

whose value is “GetFeature” and “typeName” whose value is a comma-separated list of 

the types of features to return.  As mentioned earlier, the feature types available from a 

WFS are listed in the GetCapabilities response.  Criteria on which features can be 

matched are constructed as OGC Filters, and are included in the GetFeature request 

through the “filter” parameter. If the “resultType” parameter is set to a value of “hits”, 

then an XML document containing the count of features that would be returned by the 

GetFeature request is returned instead of the actual listing of features.   

Alternatively, instead of the “typeName” parameter, a GetFeature request can also 

use the “featureid” parameter whose value is a comma-separated list of identifiers for 

specific features.  There are several other possible parameters available for crafting a 

GetFeature request explained in the WFS Implementation Specification (OGC 2005). 

An example of a GetFeature request on the TRACS_Sites WFS service at CRWR 

is shown below: 

http://crwr-arcgis01.austin.utexas.edu/arcgis/services/TxHIS/TRAC

S_Sites/MapServer/WFSServer? 

request=GetFeature& 

typeName=TxHIS_TRACS_Sites:TRACS_Sites 

This request returns 7138 features, the complete set of TRACS_Sites available from the 

service.  A GML-excerpt containing a feature returned from this request is shown in 

Figure 20.  Note that this example feature has values for all the attributes of the 

TRACS_Sites feature type as described in the DescribeFeatureType response from Figure 

19. 
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Figure 20: Excerpt from GetFeature response on TCEQ_Tracs WFS 

To handle large response sets, the WFS specification allows paging of results 

from the GetFeature method. If paging is enabled on a WFS instance, there is a maximum 

allowable number of results, called a page, that can be contained in a response.  In the 

case that a greater number of features meet the query criteria, only a single page is 

returned along a URI specified in the “next” attribute to retrieve the next page.  Clients 

can follow this URI to obtain the following page of results. Subsequent responses will 

contain URIs to subsequent response pages until no pages are left. 

2.3.4 Catalogue Services for the Web 

OGC Catalogue Services support registration and discovery of services (as well as 

data sets and other information sets) and allow searching for these registered objects via 

their metadata (OGC 2007). Catalogue Services for the Web (CSW) is an HTTP-bound 

interface to Catalogue Services and is described in the Catalogue Service Implementation 

Specification (OGC 2007).  The information in this section is an overview of the CSW 
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interface from this implementation specification. As with WFS, CSW requests can be 

made through HTTP GET via KVP encoding, POST via XML encoding, or through 

SOAP. The information in this section refers specifically to HTTP GET requests with 

KVP parameter encoding, though it is generally applicable to the HTTP POST and SOAP 

methods as well. 

The Catalogue Service Implementation specification describes several possible 

operations for a CSW service: GetCapabilities, DescribeRecord, GetDomain, 

GetRecords, GetRecordById, Transaction, and Harvest. This section describes the four 

required operations: GetCapabilities, DescribeRecord, GetRecords, and GetRecordById.   

Every CSW operation has three required parameters: “request” whose value is the name 

of the desired operation (such as “GetRecords”), “service” whose value is always 

“CSW”, and “version” whose value is always “2.0.2”. 

As with every OGC service, the GetCapabilities operation provides service-level 

metadata about the CSW implementation.  This metadata includes the title, abstract, 

keywords, fees, contact information, and access constraints of the service, as well as 

which of the CSW operations are supported and the types of filters that may be used for 

the GetRecords operation.  The response from a CSW GetCapabilities request is an XML 

document whose schema is described in the Catalogue Services Implementation 

Specification. 

The core element of CSW is the record. A record contains information about a 

registered object. The Catalogue Services specification gives 11 core queryable 

properties for CSW records.  These properties are “Subject”, “Title”, “Abstract”, 

“AnyText”, “Format”, “Identifier”, “Modified”, “Type”, “BoundingBox”, “CRS”, and 

“Association”.  Record properties are extendable through specialized Application Profiles 
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which may specify additional queryable properties.  For example, the FGDC Content 

Standard for Digital Geospatial Metadata Application Profile candidate specification 

(OGC 2006) adds the “ThemeKeywords”, “BeginDate”, and “EndDate” queryable 

properties (among several others).  It is up to the CSW implementation which properties 

are supported both from the core list and from any Application Profiles.   

The DescribeRecord operation of CSW is similar to the GetFeatureInfo operation 

of WFS.  This method gives the schema for records served from the target CSW 

endpoint. Records can be retrieved with different levels of detail, which are described by 

the schema from DescribeRecord.  The typical levels are usually named “BriefRecord”, 

“SummaryRecord” and “Record”.  The following is an example DescribeRecord request 

to the ESRI GeoPortal CSW endpoint hosted at CRWR: 

https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery? 

request=DescribeRecord& 

service=CSW& 

version=2.0.2 

Figure 21 shows the SummaryRecord schema excerpted from the full response to the 

preceding request.  The SummaryRecord from this CSW has 10 properties, as indicated 

by each of the “xsd:element” lines, in addition to those inherited from the base 

AbstractRecordType indicated by the “xsd:extension” line. 
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Figure 21: Example SummaryRecord schema from DescribeRecord response 

The GetRecords operation is the core method of CSW.  This method returns all 

records from the CSW that match the criteria set by the request parameters.  The response 

is an XML document whose base schema is defined in the Catalogue Services 

Implementation Specification, with the record schema extended by that provided from the 

DescribeRecord method.  In addition to the three CSW-required parameters, there are 16 

other possible parameters for the GetRecords operation described in the implementation 

specification.  The most relevant parameters are “resultType”, “maxRecords”, 

“elementSetName”, “CONSTRAINTLANGUAGE”, and “constraint”.  “resultType” can 

take the values “hits” which just returns the number of matching records, “results” which 

returns the result set, or “validate” which returns whether the request is valid. 

“maxRecords” takes a numeric value and is used to specify the maximum number of 

records that the response can contain.  “elementSetName” is used to specify which level 
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of detail of records should be returned: “brief”, “summary”, or “full”, with “summary” 

being the default value.  

GetRecords queries can be constrained through either Common Query Language 

or through Filters. The value of the “CONSTRAINTLANGUAGE” parameter can be 

either “CQL_TEXT” or “FILTER” corresponding to the two possible types of constraint 

queries.  The “constraint” parameter contains the actual query string in either CQL or 

FES (described in section 2.3.6 of this thesis). 

The following is an example GetRecords request (with no constraints specified) to 

the ESRI GeoPortal CSW endpoint at CRWR: 

https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery? 

request=GetRecords& 

service=CSW& 

version=2.0.2& 

resultType=results 

Figure 21 shows an example SummaryRecord from the result set returned by the above 

call. 



 

 

38 

 

Figure 22: SummaryRecord from GetRecords response 

The CSW GetRecordById operation is for returning specific records referenced 

by their identifier string.  A comma-separated list of identifier strings are passed to this 

operation via the “id” parameter.  Additionally, as with GetRecords the 

“elementSetName” parameter can be used to specify which level of detail of records 
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should be returned: “brief”, “summary”, or “full”. The following example 

GetRecordById request returns the same SummaryRecord as the example GetRecords 

request above:  

https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery? 

request=GetRecordById& 

service=CSW& 

version=2.0.2& 

id={38D2D803-5A18-4370-875E-DDB6C20D85E7} 

2.3.5 Sensor Observation Service 

The Sensor Observation Service (SOS) specification is one of the major 

components of the OGC’s Sensor Web Enablement (SWE) family of standards (OGC 

2007).  The SOS specification defines methods for accessing field-deployed sensors and 

retrieving sets of observations data from them.  The full SOS specification is detailed in 

the OGC’s Sensor Observation Service Implementation Specification (2007), and the 

information in this section is an overview from that document.  SOS requests can be 

made through HTTP GET via KVP encoding or through HTTP POST via XML 

encoding. The information in this section refers to HTTP GET requests with KVP 

parameter encoding, though it is generally applicable to the HTTP POST method as well. 

At a minimum, an SOS implementation must provide three operations: 

GetCapabilities, DescribeSensor, and GetObservation. Several other optional SOS 

operations are detailed in the implementation specification. Note that although SOS is for 

a sensor network, it is not a requirement for an SOS to actually refer to physical sensors.  

In that respect, any observations data source could be considered a “sensor.”  

The OGC standard GetCapabilities operation returns service-level metadata about 

the SOS endpoint.  The required parameters for the SOS GetCapabilities request are 
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“service” whose value is “SOS” and “request” whose value is “GetCapabilities”. The 

response is an XML document whose schema is described in the SOS implementation 

specification.  The metadata returned includes, as with the other service specifications, 

the service title, abstract, keywords, fees, usage constraints and other information.  For 

SOS, the GetCapabilities response also describes which of the SOS operations are 

supported, the types of filters that may be used for the GetObservation operation, and the 

observation offerings of the service.  Observation offerings are groupings of related 

observations, and their identification strings (returned from GetCapabilities) are used in 

the GetObservation operation. 

The SOS DescribeSensor operation provides detailed metadata about the sensors 

represented in the SOS instance. Responses from this method are typically formatted as 

SensorML, an OGC customization of XML made to describe sensors and their 

capabilities.  There are four parameters for a DescribeSensor request, all of which are 

required: “service” whose value is “SOS”, “request” whose value is “DescribeSensor”, 

“sensorId” whose value is an identification string of an observation offering, and 

“outputFormat” whose value describes the desired response format.  The following is a 

DescribeFeature request to the SOS endpoint from the Gulf of Maine Ocean Observing 

System (GOMOOS): 

http://www.gomoos.org/cgi-bin/sos/oostethys_sos.cgi? 

service=SOS& 

request=DescribeSensor& 

sensorId=A01& 

outputFormat=text/xml;subtype="sensorML/1.0.1" 

Figure 23 shows an excerpt of the SensorML response from the preceding request 

containing metadata describing sea water temperature observations available from the 

“A01” sensor.  



 

 

41 

 

Figure 23: SensorML excerpt from DescribeRecord request 

The core method from SOS is GetObservation.  The response from this operation 

is an O&M-based document containing the requested observations data. The 

GetObservation method has five required parameters: “service” whose value is “SOS”, 

“version” whose value is “1.0.0”, “request” whose value is “GetObservation”, “offering” 

whose value is an ID of one or more of the offerings obtained from GetCapabilities, 

“observedProperty” whose value is one or more of the properties obtained from 
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GetCapabilities, and “responseFormat” whose value is the desired encoding type of the 

response.  Other parameters that can be used to constrain the observations values returned 

from GetObservation are described in the SOS implementation specification. 

The following is an example GetObservation request to the GOMOOS SOS 

endpoint for sea water temperature from the “A01” offering:  

http://www.gomoos.org/cgi-bin/sos/oostethys_sos.cgi? 

service=SOS& 

version=1.0.0& 

request=GetObservation& 

offering=A01& 

observedProperty=sea_water_temperature& 

responseFormat=text/xml;subtype="om/1.0.0" 

Figure 24 shows the “result” element of the O&M-format response obtained from the 

preceding GetObservation request.  This element contains a time series of observations 

data, with each entry containing a timestamp, latitude, longitude, depth, and temperature. 

The format of each entry, including units, is also part of the O&M-format response. 

 

 

Figure 24: Result element from GetObservation request 

2.3.6 Filter Encoding Standard 

The Filter Encoding Implementation Specification describes an XML-based 

language called Filter Encoding Standard (FES) for adding constraints (i.e. filters) to the 

query methods of some OGC services (OGC 2005).  The FES is an XML-based 



 

 

43 

representation of OGC’s Common Query Language, which is defined in the Catalog 

Services Implementation Specification. Filters can be used on the WFS GetFeature and 

CSW GetRecords operations to constrain the result sets from these operations.   

The current (1.1.0) version of the FES describes four classes of filter operators: 

spatial, comparison, logical, and arithmetic. The upcoming 2.0 version of FES also 

includes support for temporal operators. Filter operators evaluate whether properties of 

the possible return set of the target operation meet the constraints set forth by the operator 

clauses. Spatial operators include BBOX for specifying a bounding box.  Comparison 

operators include typical operations such as less-than, greater-than, and equal-to.  The 

logical operators, such as “And” and “Or”, are used to combine spatial and comparison 

operator clauses.  An example filter with both a spatial operator (“BBOX” acting on the 

“Shape” property) and a comparison operator (“PropertyIsGreaterThan” acting on the 

“ValueCount” property) is shown in Figure 25. 

 

Figure 25: Filter example with spatial (BBOX) and comparison operators 
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2.3.7 WaterML2.0 

The OGC has created XML-based standards for encoding the responses from its 

services.  GML is used to describe features returned from the WFS GetFeature method.  

The elements in a GML document reflect the attributes of interest in a WFS and are 

specified by the provider of the service. The O&M format is used to return observations 

data from the SOS GetObservation method. These data encodings are not as strict as 

CUAHSI’s WaterML specification, and may be extended or specialized to meet 

requirements of the service providers and consumers.  Specializations of O&M are 

referred to as profiles and define agreed upon practices for encoding observations data for 

a particular domain.  

The WaterML2.0 profile for O&M is currently being developed by the OGC and 

partner organizations, including CUAHSI. WaterML2.0 takes the framework and lessons-

learned from CUAHSI’s original WaterML specification and harmonizes the structure to 

be consistent with OGC standards.  The WaterML2.0 specification is in the draft stage as 

of the writing of this thesis. 
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Chapter 3: The CUAHSI HIS Architecture 

3.1 OVERVIEW 

The current CUAHSI HIS architectural model, termed the Network-Observations 

Model, is a SOA with centralized metadata and distributed data.  This system is 

empowered primarily by CUAHSI’s WaterML data encoding and WOF web services.  

This chapter provides an overview of the intellectual basis of Network-Observations 

model.  Each of the three major components of the HIS architecture are described in 

detail and their roles specified.  The various client-centric operating models that have 

resulted from the Network-Observations Model are also defined and explained.  Finally, 

the issues that have arisen from the current architecture are enumerated. 

3.2 THE NETWORK-OBSERVATIONS MODEL 

The architectural model of the CUAHSI HIS is heavily influenced by the 

organization of the CUAHSI Observations Data Model.  In the ODM, data values 

(observations) are at the center of the data model, and are surrounded by metadata that 

unambiguously describe them (Tarboton, Horsburgh and Maidment 2007).  The metadata 

that describe the data values can be arranged into a SeriesCatalog view.  Each series in 

the SeriesCatalog is a unique collection of time-indexed observations of a given variable 

at a specific site.  HIS Central has implemented a centralized series catalog of similar 

structure to that of the ODM.  The HIS Central metadata catalog contains the series 

metadata from all registered HydroServers.  

The current model that the HIS architecture follows has been termed the Network-

Observations Model.  The fundamental piece of information in this model is a hydrologic 

observation, or value. Observations are differentiated by the metadata that describe them, 

such as site location, sample medium, or quality control level.  These metadata come 
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primarily from the other levels of the Network-Observations Model, Network, Site, and 

Variable, as shown in Figure 26. This data model is built upon and consistent with the 

principles behind the CUAHSI Observations Data Model. 

. 

 

Figure 26: The Network-Observations Model 

The Network-Observations Model with the USGS NWIS Daily Values service as 

an example is shown in Figure 27.  Each HydroServer provides access to one or more 

Networks through WOF WSDL files.  A Network contains many sites, accessed by the 

GetSites method.  The series catalog of Variables measured at each Site is accessed via 

GetSiteInfo.  Metadata about Variables is retrieved from GetVariableInfo.  Finally, 

observation values are obtained through GetValues, with the site, variable, and time 

range specified via parameters to the service, the network identified through prefixes to 

those parameters, and the service specified by the address to the WOF service. 
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Figure 27: Network-Observations Model hierarchy with example 

3.3 HIS COMPONENTS 

3.3.1 Introduction 

HydroServers provide data access, HS Central provides data discovery, and the 

system is integrated with WaterML and web services. 

The CUAHSI HIS architecture comprises three major components:  

HydroServers, HIS Central, and client applications. These components’ primary 

interactions are shown in Figure 28.  HIS Central harvests series metadata from 

HydroServers to create its searchable series catalog.  Clients use the HIS Central search 

web services to find HydroServers with series that match given parameters. Clients 

download the actual hydrologic time series data from the corresponding HydroServers.  

Each of the three components and their interactions are described in detail in this section. 
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Figure 28: Network-Observations components 

3.3.2 HydroServers 

HydroServers are the data providers of the HIS SOA.  They provide both the data 

and metadata about hydrologic observations.  The conceptual definition of a HydroServer 

within the Network-Observations Model is simply a web server that provides access to 

WaterML-encoded hydrologic data and metadata through the WOF web services. A 

HydroServer can provide access to multiple WOF networks, which each have their own 

WSDL file address on the web server and network identifier code within the data source. 

For example, the USGS NWIS HydroServer has separate networks for its Daily Values, 

Ground Water, Instantaneous Irregular Data, and Unit Values services. The collection of 

web-accessible HydroServers around the country comprises one component of the 

CUAHSI HIS.  Data providers register their HydroServers at HIS Central so that their 

data series can be discovered by clients of the HIS. 

Generically, a HydroServer has four main components: a database containing the 

hydrologic data, a database server to interact with the database, a web server to provide 

web-based access to the service, and an implementation of the WOF specification. These 

components are illustrated in Figure 29.  The box surrounding the generic HydroServer 
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diagram indicates that only the network WSDL files are accessible from outside the 

HydroServer, with the underlying components essentially a “black-box” to clients. 

 

Figure 29: Generic HydroServer diagram 

In practice, there have been multiple methods for how the HydroServer concept 

has been implemented.  First, there is the off-the-shelf ODM method, which is the one 

most supported by the HIS project.  This method of deploying a HydroServer uses a 

series of tools that the HIS project has developed to leverage commercial off-the-shelf 

software components along with an ODM database.  This method has primarily been 

used by smaller data providers (typically for networks at local or regional scales) that do 

not already have any data access services online. Examples of services using this method 

are the Texas Instream Flow Lower Sabine service1 and the Dry Creek Experimental 

Watershed ODMDCEW2 service2, among several others.   

                                                 

 
1 http://his.crwr.utexas.edu/SabineBio/cuahsi_1_0.asmx?WSDL 
2 http://icewater.boisestate.edu/dcew2dataservices/cuahsi_1_0.asmx?WSDL 
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 A schematic representation of a HydroServer built from this method is depicted in 

Figure 30.  In the off-the-shelf ODM HydroServer, hydrologic data are loaded into an 

ODM-schema database managed by a Microsoft SQL Server instance.  The data loading 

can be accomplished with CUAHSI’s ODM Data Loader program or with custom 

transformation scripts.  The ODM WaterOneFlow Services application, which is an ASP 

.NET 2.0 implementation of WOF provided by the HIS project, is installed on a 

Windows Server with connection information for the SQL Server supplied in 

configuration settings.  The ODM WaterOneFlow Services code supplies the WSDL files 

and WOF methods for accessing the data networks stored in the underlying ODM 

database. 

 

Figure 30: HydroServer from off-the-shelf components 

A second method of implementing a HydroServer is the ODM-View method, 

depicted in Figure 31.  This method is very similar to the off-the-shelf method, with the 

only difference being the underlying database schema.  Rather than loading the 
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hydrologic data into an ODM-schema database, a custom view is used instead.  

Essentially, a view virtually maps the tables and columns of a source database schema to 

mirror a different schema.  In this case, a view mirroring the ODM schema is created 

over an agency’s propriety database schema. This method has been used on the 

experimental TWDB Groundwater service hosted at CRWR.3 

 

Figure 31: ODM-View HydroServer diagram 

Implementing a HydroServer with completely different off-the-shelf components 

from the two previous methods is also an option. This method makes sense when a data 

provider either already has or prefers a data infrastructure using different components 

from those supported in the off-the-shelf ODM or ODM-view methods.  For example, a 

data provider might want to use a MySQL database server with an Apache web server 

running PHP code.  In this case, a custom implementation of the WOF specification 

                                                 

 
3 Not publicly-accessible at this time. 
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would just need to expose the appropriate WSDL files and web service methods to 

outside clients.  This method has been used by CRWR to publish hydrologic data from 

the Texas Coastal Ocean Observing Network (TCOON).4 

For the three large federal hydrologic data providers (USGS, NCDC, and EPA), a 

quite complex implementation of the HydroServer server concept is used: the hybrid 

method.  In these HydroServers, the data providers transmit copies of their metadata 

databases (or just the relevant tables) to the SDSC HIS team at intermittent intervals.  The 

SDSC team migrates these databases from their native format (such as Oracle) into SQL 

Server, following the originally-provided schema.  Once the SQL Server migration is 

complete, custom ODM views are placed on top of the native schema.  A customized 

version of the ODM WaterOneFlow Web Service software installed over the ODM views 

to provide the three WOF metadata methods, GetSites, GetSiteInfo, and GetVariableInfo.  

The data method, GetValues, is implemented as a “pass-through” service.  In the case of 

the USGS NWIS, for example, GetValues requests are translated by the custom WOF 

Web Service software into requests to the USGS’s WaterML service.  The response from 

the USGS service is then routed back through HIS Central’s HydroServer to the 

requesting client.  This type of HydroServer is illustrated in Figure 32. 

                                                 

 
4 http://his.crwr.utexas.edu/tcoonts/tcoon.asmx?WSDL 
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Figure 32: Hybrid HydroServer diagram 

3.3.3 HIS Central 

HIS Central is the central cataloguing system of HIS.  Unlike the HydroServers 

and client components of the CUAHSI HIS, there is only a single HIS Central within the 

CUAHSI HIS. HIS Central itself comprises three main components: a registry of WOF 

services, the Metadata Catalog, and the Hydrologic Concept Ontology 

The registry of WOF services is the system through which data providers or 

managers can register the WSDL addresses of the networks within their HydroServer 

services.   Data providers can create accounts at the HIS Central website5 and then login 

to register and manage their service metadata.  The HIS Central registry currently has 62 

registered WOF services at the time of writing this thesis.  A screen capture of the service 

registry is shown in Figure 33. 

                                                 

 
5 http://hiscentral.cuahsi.org/ 
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Figure 33: HIS Central Service Registry 

The HIS Central Metadata Catalog, whose schema is shown in Figure 34, is a 

database of metadata for each network of each registered HydroServer.  The most used 

table of the Metadata Catalog is the SeriesCatalog table, which has been highlighted by a 

red box in the figure. 
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Figure 34: HIS Central Metadata Catalog schema (Whitenack 2010) 

HIS Central’s Metadata Catalog contains metadata for each time series of each 

network of each registered HydroServer.  The metadata for this catalog is obtained 

through harvesting procedures.  There are two main ways that the harvesting of metadata 

for cataloging at HIS Central is accomplished.  The first way of harvesting metadata is 

through WOF services from HydroServers.  This harvesting is done by a custom program 

at HIS Central called Web Service Harvester (Whitenack 2010).  Approximately once 

each week, Web Service Harvester connects to registered WOF services.  All sites from 

each network are retrieved using the WOF GetSites method, and for each side, 

GetSiteInfo is called to retrieve the series catalog.  The HIS Central series catalog is 

updated to include any new or modified series metadata found from these results 



 

 

56 

(Whitenack 2010).  This method is used for almost all of the registered HydroServers, 

except for the three hybrid federal HydroServers. 

The other method of harvesting metadata is through direct database connections 

to the ODM views on SQL Server-migrated federal database dumps.  This harvesting is 

done by another custom program, the Federal Repository Catalog Harvester, at HIS 

Central.  Rather than running on a defined schedule, this harvester program is only run 

when a new data dump is received from a federal source and migrated. 

 To facilitate searching and organization of registered services, the data providers 

are required to tag the variables that their services provide with concepts from the 

Hydrologic Concept Ontology after metadata harvesting has occurred.  This concept 

tagging mitigates the problem of varied names for what essentially are the same type of 

observation (e.g., “stream discharge” being referred to as “flow,” “runoff,” or other 

similar terms).  The Hydrologic Concept Ontology is stored in a database, and is web-

accessible for data providers to tag their HydroServer’s variables with the appropriate 

ontological concepts for discovery.  The Hydrologic Concept Ontology’s tables are 

shown in Figure 35. Tagging is done through the HydroTagger web application, shown in 

Figure 36. 
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Figure 35: HIS Central Ontology tables (Whitenack 2010) 

 

Figure 36: HydroTagger web interface (Piasecki 2008) 

HIS Central exposes several of its capabilities to clients of the HIS through a 

SOAP web service interface.  The methods of the HIS Central web service are different 
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from those in WOF, though some of them, such as GetSeriesCatalogForBox, return 

responses encoded with WaterML.   Others use custom XML responses, which seem to 

lack documentation.  The current list of HIS Central web service methods is: 

• GetMappedVariables 

• GetSearchableConcepts 

• GetSeriesCatalogForBox 

• GetServicesInBox 

• GetSitesInBox 

• GetWaterOneFlowServiceInfo 

• GetWordList 

• getOntologyTree 

• getSearchablePaths 

• getSeriesCatalogInBoxPaged 

Although there are 10 methods (plus some duplicates with slightly different 

signatures than those listed) in the HIS Central web service, only three are actually used 

within the current operating models of the HIS, as discussed in section 3.4. 

3.3.4 Clients 

The third and final component of the HIS architecture is the client applications 

that consume, analyze, and process hydrologic data.  At a minimum, client applications 

must be able to communicate with WOF services.  They need to be able to both make 

SOAP web service requests and parse the WaterML-formatted responses from 

HydroServers.  To be fully integrated with the HIS architecture, client applications also 

should be able to make use of the HIS Central SOAP web service methods for searching 

for series (GetSeriesInBox) and retrieving the hydrologic ontology tree 

(GetOntologyTree).  Clients must also be able to parse the custom XML responses from 

these services. 
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There have been two major client applications produced by the HIS project: 

HydroExcel and HydroDesktop.  HydroExcel6 is an Excel binary spreadsheet highly-

customized through the use of embedded VisualBasic macros.  HydroExcel requires the 

installation of a dynamic link library (DLL) called HydroObjects7.  The HydroObjects 

DLL provides access to functions to interact WaterOneFlow web services.  The methods 

in the HydroObjects DLL are called from the VisualBasic macros in HydroExcel.   

HydroExcel’s interaction in the CUAHSI HIS operating models is described in sections 

3.4.2 and 3.4.3 of this thesis.  

 

Figure 37: HydroExcel interface 

The newest and most robust client application produced by the HIS project is 

HydroDesktop.  HydroDesktop is an open-source .NET desktop application that 

leverages several other open-source projects to provide a map-based tool for the 

discovery, management, and analysis of hydrologic data.  The geographic information 

system capabilities of HydroDesktop are provided by the MapWindow6 and DotSpatial 

                                                 

 
6 http://his.cuahsi.org/hydroexcel.html 
7 http://his.cuahsi.org/hydroobjects.html 
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libraries.  Rather than using the HydroObjects DLL, HydroDesktop maintains its own 

codebase for calling WOF and HIS Central web services. HydroDesktop’s operation 

within the current HIS operating models is described in sections 3.4.4 and 3.4.5. 

 

Figure 38: HydroDesktop interface 

3.3.5 Summary of Roles and Responsibilities 

The following is a list of responsibilities of each of the three components of the 

current HIS architecture. 

• Data providers – HydroServers:  

o Publish hydrologic data on HydroServer using WOF services 

o Register services at HIS Central and request metadata harvest 
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o Tag variables found in harvest with concepts from hydrologic 

ontology using HydroTagger application 

• SDSC team – HIS Central: 

o Maintain hydrologic ontology database 

o Maintain series catalog database 

o Maintain HydroTagger application 

o Maintain registration application 

o Maintain harvester programs 

o Maintain HIS Central web services 

o Run metadata harvests from HydroServers 

o Perform metadata harvesting from federal data sources 

� Obtain database dumps 

� Migrate database dumps from native formats to SQL Server 

format 

� Build custom ODM views over migrated database dumps 

� Harvest metadata 

o Validate harvested metadata 

• Client applications: 

o Make SOAP requests and parse SOAP responses (for both WOF 

and HIS Central services) 

o Parse WaterML and HIS Central service XML 

o Build internal metadata catalogs (in some operating models) 
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3.4 HIS OPERATING MODELS 

3.4.1 Introduction 

Although the HIS project has created a prototype SOA with the three 

aforementioned components working in unison, the ways these components have actually 

interacted have taken several forms. The conceptual representations of how clients have 

interacted in the HIS are called operating models. The operating models used through the 

development of the HIS are the: direct client-server, weak central catalog, strong series 

catalog, and dual-catalog models.  This section describes the operating models in terms of 

the clients that implement them, namely HydroExcel and HydroDesktop. 

3.4.2 Direct Client-Server Model 

The simplest hydrologic data services operating model from the HIS project is the 

direct client-server model.   In this model, a client application interacts only and directly 

with the HydroServers, without any centralized catalog.  Figure 39 illustrates this model 

applied to the HIS client application HydroExcel (versions prior to 1.1.3). HydroExcel 

(versions prior to 1.1.3) has a hard-coded list of the WOF WSDL file addresses for 

networks on numerous HydroServers.  This list was kept up-to-date by periodically 

editing the HydroExcel file and reposting the modified version on the HIS website. 

 

Figure 39: Direct Client-Server Model 
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In the HydroExcel application of this model, the user can select only a single 

service from which data and metadata can be obtained at any time.  HydroExcel first uses 

the GetSites method on the selected service to get a list of sites. If the service is 

WaterOneFlow 1.1-compliant the user can restrict the requested sites (and subsequent 

series catalog) to a geographic bounding box.  For each site returned in the WaterML 

response, HydroExcel calls GetSiteInfo.  The responses from each call to GetSiteInfo are 

compiled to build an internal series catalog of the time series data available for the 

chosen WOF service. Once requested by the user, data for a selected series are 

downloaded via the GetValues method.  The user may also request a list of the variables 

offered through a given service by having HydroExcel invoke the GetVariableInfo 

method. 

3.4.3 Weak Central Catalog Model 

In the weak central catalog model, a centralized catalog is used to register and 

retrieve WSDL file addresses of compliant HydroServers. The newest version of 

HydroExcel, version 1.1.3, follows this model.  HydroExcel requests a list of registered 

WOF services from HIS Central via the GetWaterOneFlowServiceInfo web service 

method, and is returned an XML file containing this list of WOF WSDL file addresses.  

This model is illustrated in Figure 40.  

The pattern of building an internal series catalog for a single WOF service at a 

time follows that described in section 3.4.2. 
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Figure 40: Weak Central Catalog Model 

3.4.4 Strong Series Catalog Model 

The strong series catalog model builds on the previous model by extending the 

role of the centralized catalog.  In this model, responsibility for building series catalogs is 

moved from the client application to the central catalog server, which has numerous 

impacts on the overall flow of information. Figure 41 illustrates this model as it is applied 

to CUAHSI’s HydroDesktop application.  HydroDesktop, while still in its development 

phase, offers numerous improvements over HydroExcel.  One improvement in particular 

is the ability to discover and download hydrologic data series across multiple 

HydroServers instead of being limited to one server at a time.  The technology that 

enables this capability is the centralized metadata catalog at HIS Central. 
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Figure 41: Strong Series Catalog Model 

Client applications that follow this model, namely HydroDesktop, can search for 

series at HIS Central instead of building and maintaining their own internal series 

catalogs. Prior to searching, HydroDesktop uses HIS Central’s 

GetWaterOneFlowServiceInfo web service method to identify the registered networks at 

HIS Central.  In addition, HIS Central’s GetOntologyTree method, which returns an 

XML document containing the CUAHSI keyword-concept ontology, is used to display 

the list of searchable terms at HIS Central’s series catalog. 

HydroDesktop searches HIS Central’s series catalog via the 

GetSeriesCatalogForBox method.  This method takes a spatial extent, a concept code, a 

date range, and a list of identifier numbers indicating which WOF services to search and 

returns a catalog of matching series in a custom XML format (i.e., not WaterML).  A 

diagram depicting the flow of user actions to select these parameters is shown in Figure 

42.  Internally, HydroDesktop actually performs multiple calls to this method.  The 
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search area (e.g., a state, HUC, county, etc.) is broken into 1°-by-1° boxes, with a 

separate call to GetSeriesCatalogForBox made for each box.  A separate call is also made 

for each keyword that was selected by the user.  Thus, if a user selected two keywords 

and the selected search area was a 2°-by-2° area, eight calls to the 

GetSeriesCatalogForBox would be made (4 for the area × 2 for the keywords). 

The HydroDesktop user can filter this series catalog before finally downloading 

the time series data.  Data are downloaded from their respective HydroServers by using 

the GetValues method sequentially on each HydroServer for each variable.  The final 

collection of hydrologic observations data collected across services and possibly 

containing several different variables is known as a theme. 

 

Figure 42: HydroDesktop search process 

3.4.5 Dual-Catalog Model 

In the dual-catalog model, a strong central catalog still exists and is used as 

described in section 3.4.4.  In addition to the central catalog, however, is a local catalog 

maintained by the client application.  Like in the direct client-server model, the local 

catalog builds its internal catalog through the WOF GetSites and GetSiteInfo methods.  
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The strength of this model is that both services registered at the central catalog and non-

registered servers could have their series searched together. 

In the case of HydroDesktop, the local catalog is known as the metadata cache.  

Figure 43 shows the dual-catalog model applied to HydroDesktop. Although full 

functionality (namely searching across the series catalog of the metadata cache) has not 

been completely implemented in the version released of HydroDesktop as of this thesis, 

there are plans to fully implement it in the near future. 

 

Figure 43: Dual Catalog Model 

3.5 SUMMARY AND ISSUES 

This Network-Observations Model for the CUAHSI HIS architecture is centered 

on a strong central metadata catalog maintained at HIS Central.  In essence, this has 

resulted in a centralized metadata, distributed data system. 
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For off-the-shelf-component HydroServers, if the quantity of series in a network 

is large, such as with TWDB Groundwater network, metadata harvesting by HIS Central 

can take several days.  While this might be an acceptable approach for services that only 

need “one-off” harvests of metadata (such as archive services), it is an issue for services 

that are continuously updated or have often changing series.  It also requires constant 

intervention from the HIS Central team, which is not sustainable in the long run.   

The number of methods required to fully implement the WOF standard can be a 

burden for some data providers, such as the USGS or EPA.  These large national 

providers may not be able to custom-implement the full WOF specification.  They 

presently have their own data models and services, and may lack the financial, personnel, 

or organizational resources to dedicate to this task.  This has led to the database dumping 

described in section 3.3.3. 

The routine of receiving and migrating large database dumps from federal 

agencies raises both sustainability and data-completeness concerns.  Because this process 

is done infrequently, series metadata might be out-of-date for long periods of time, which 

results in researchers not being able to search for the data they might need.  Another 

concern is that the federal database schemas sometimes change between dumps, meaning 

that new work for migrating to SQL Server and creating ODM views over the databases 

needs to be done.  Furthermore, the schemas in these database dumps are sometimes 

lacking some of the metadata required to fully specify a SeriesCatalog record in the HIS 

Central Series Catalog.  This lack of metadata leads to problems in searching for and 

understanding the series that are returned to clients like HydroDesktop. 
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Chapter 4: The Services Stack Model  

4.1 OVERVIEW 

The concerns of sustainability for the Network-Observations Model have led to 

the desire for an improved HIS architecture. This chapter proposes the Services Stack 

Model, a more decentralized architectural model for the HIS SOA.  The proposed model 

is built-upon OGC standard services and their associated data encoding specifications, 

including the forthcoming WaterML2.0 specification. By adhering to these international 

standards, it is hoped that that wider adoption of the CUAHSI HIS, especially by federal 

data providers, will be possible.  By decentralizing metadata services, the approach of the 

new model will also reduce migration and translation tasks performed by the HIS Central 

staff, thus creating a more sustainable system. 

This chapter first introduces the Thematic Metadata Table format, which plays a 

critical role in providing series metadata descriptions for the Services Stack Model, as 

well as forming the logical basis of the model.  Next, the proposed architectural model is 

described in terms of a services stack and the data/metadata organization provided by this 

stack. Responsibilities of each of the three components of the Services Stack Model are 

explained and summarized. A simple proof-of-concept application is used to illustrate 

how clients will function in the proposed architecture. 

The proposed Services Stack Model is meant to serve as a starting point for 

development of the new HIS services architecture.  Best practices for putting the concepts 

espoused in the model into practice will need to be investigated and agreed upon by the 

CUAHSI-HIS team and its stakeholders to realize a robust system. In support of this, the 

areas where more analysis is required and where issues may exist are described at the end 

of this chapter. 
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4.2 THEMATIC METADATA TABLE 

The CUAHSI Metadata Table (originally called the Data Cart) is an observations 

metadata structure developed by Tim Whiteaker of CRWR and Dean Djokic of ESRI 

(Whiteaker and Djokic 2010). A Metadata Table contains fields to describe series of data 

similar to those in the ODM’s series catalog.  In addition to these fields, however, a 

Metadata Table also contains “information needed for a client to access each time series 

described in the cart” (Whiteaker and Djokic 2010, 1).  The information to access each 

series comes in the form of addresses, protocols, and input parameters to the web services 

from which the actual values data may be downloaded.  The inclusion of these service 

references is a critical factor that separates the Metadata Table from being just a series 

catalog.  The listing and description of all fields, including example values, of the current 

Metadata Table specification are given in Appendix A.  The current specification is based 

on providing metadata for series available from WOF. 

As indicated by its name, a Thematic Metadata Table contains metadata about 

series in a theme. A hydrologic time series is a time-indexed collection of observations 

about a specific property (i.e., a measured variable) of the hydrologic cycle at a specific 

location.  A theme is defined rather loosely as a collection of series that describes a 

geographic region with respect to some subject. The geographic region of a theme could 

be a study watershed, a state, the entire United States, or any other geographic area of 

interest.  The subject of a theme is similarly openly-defined, and could be a single 

variable such as streamflow from a single data provider, or all variables measured by 

state water agency.   

Publication of a Metadata Table as a WFS can be fairly simple using off-the-shelf 

tools.  For example, using ESRI’s ArcGIS Desktop, a Metadata Table can be created as a 
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Shapefile with point features for each series in the Metadata Table.  Using ArcGIS 

Server, this Shapefile can then be published as a WFS with a few relatively quick steps. 

4.3 SERVICES STACK MODEL 

The Services Stack Model is structured around a services stack comprised of 

OGC web service specifications, with the concept of the Thematic Metadata Table as a 

fundamental series metadata descriptor.  This three-tiered services stack is illustrated in 

Figure 44.  For each level (Data, Metadata, and Catalog) of the stack an endpoint for the 

OGC service specification (SOS, WFS, and CSW) that will provide access to that level is 

shown.   

 

Figure 44: OGC services stack 

At the bottom-most level of the stack are data services based on OGC’s SOS 

specification.  The data services provide access to hydrologic observations data in 

WaterML2.0 format.  The middle-level of the stack are metadata services using the WFS 

standard.  The metadata provided from this level describe series of observations data 

available at the preceding level using CUAHSI’s Thematic Metadata Table format 

expressed in GML.  The top-most level of the services stack is a catalog service. The 
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catalog service indexes registered metadata services and provides a CSW endpoint to 

search and access them.   

Individual services stacks can be published and maintained by hydrologic data 

providers or other entities, rather than relying on a single centralized catalog to 

orchestrate the system.  For example, the State of Texas could host a services stack for its 

hydrologic data.  In this example case, the themes available from the WFS metadata 

service might be organized by agency. 

Services stacks can also be joined together, or federated, into a larger system, as 

illustrated in Figure 45.  In this larger system, the catalogs of each underlying services 

stack would have their CSW endpoints registered at a centralized meta-catalog.  This 

catalog-of-catalogs can then provide combined searching across all registered services 

stacks.  The loose-coupling of this federated system would provide data providers with 

the flexibility to manage their own stacks, while still providing a unified search 

mechanism for data consumers. 

 

Figure 45: Federated services stacks 
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4.4 SERVICES STACK MODEL SOA COMPONENTS 

4.4.1 Overview 

The components of a SOA based on the proposed Services Stack Model are 

similar to those in any SOA and specifically those in the current HIS architectural model. 

This section provides descriptions of the SOA components and their interactions with 

each other. 

The Services Stack Model has three major components: HydroServers, a Catalog, 

and Clients.  Figure 46 shows a summary of these component interactions organized 

around the OGC services stack described in the previous section.  The inclusion of a 

federated meta-catalog adds another component to this system and is discussed in section 

4.4.3. 

 

Figure 46: Component interaction within the Services Stack Model 

4.4.2 HydroServers 

As in the Network-Observations Model, HydroServers in the Services Stack 

Model provide access to the actual hydrologic observations data.  The hydrologic time 



 

 

74 

series data are obtained through a SOS implementation using the GetRecords method, 

and are encoded in OGC’s forthcoming WaterML2.0 specification. Additionally, 

HydroServers provide series metadata through Thematic Metadata Table WFS services.  

Each theme at a HydroServer has its own WFS endpoint.  This HydroServer concept is 

depicted in Figure 47. 

 

Figure 47: HydroServer in Services Stack Model 

Thematic Metadata Table WFS services, as described in Chapter 2, have three 

primary methods: GetCapabilities, GetFeature, and GetFeatureById.  For HydroServers 

in the proposed architecture, the GetCapabilities method would be used to obtain WFS 

service-level metadata, such as the title of the Metadata Table feature layer represented in 

the service. The GetFeature operation would be used to search for matching series in the 

Metadata Table.  This searching is accomplished through the use of OGC Filters, which 

can be applied spatially and temporally, as well as to any text (such as Concept keyword) 

or numerical metadata values (such as ValueCount).  The GetFeatureById method could 

be used if a specific series identifier is already known by the client application. 
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A critical change from the current HIS model for data providers who publish 

HydroServers is that ontological concept tagging of series will have to happen at the 

provider level, rather than at the central catalog.  The exact implementation of this 

tagging is not certain, though the hydrologic ontology itself will still need to be centrally-

maintained to ensure all providers use the same vocabulary. 

4.4.3 Catalogs 

Rather than a series catalog, the Services Stack Model uses CSW-compliant 

services catalogs to provide unified searching. The primary CSW method that will be 

used by client applications is GetRecords.  Clients will search for matching Metadata 

Table WFS services by making GetRecords requests to the service catalog’s CSW 

endpoint.  As with the series searching on HydroServers, OGC Filters will be used to 

match services by spatial and temporal extents, as well as by ontological concept and 

other criteria. 

For this type of Filter-based service searching to be accomplished, data providers 

will need to register their WFS Metadata Table services at the service catalog.  During 

registration, core service-level metadata (such as Title, Abstract, and Subject) will need 

to be entered.  Additionally, all of the ontological concepts available across the series in 

the Metadata Table will need to be represented at the service-level.   

Several off-the-shelf software options (such as deegree8, GeoNetwork9, and 

ESRI’s GeoPortal10) for a CSW-compliant server implementation have been identified.  

                                                 

 
8 http://www.deegree.org/ 
9 http://geonetwork-opensource.org/ 
10 http://www.esri.com/software/arcgis/geoportal/index.html 
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Using an off-the-shelf solution for this piece of the architecture will reduce custom 

programming requirements. 

A meta-catalog that indexes catalogs from individual services stacks adds another 

layer of interaction to the Services Stack-based SOA model.  As discussed in section 4.3, 

the meta-catalog facilitates searching across other registered catalog services.  From the 

client perspective, this federated searching should occur without modification to the 

user’s activities.  Rather, upon receiving a Filtered GetRecords request from the client, 

the meta-catalog performs similar Filtered GetRecords requests upon the catalogs it 

indexes, returning a single list of services to the client. 

 

Figure 48: Component interaction with services stack and meta-catalog 

4.4.4 Clients 

Clients in the Services Stack architecture will have more responsibilities with 

regard to the discovery of observations data.  However, rather than programming against 

the specialized WOF and HIS Central web services of the current model, client 

applications can leverage existing libraries for accessing the OGC service specifications.  
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Several libraries for using these service specifications are listed online at the OGC’s web 

site: http://www.opengeospatial.org/resource/products/byspec. 

Current client applications will need to be revised to work with the proposed 

architecture.  This includes being able to query WFS, CSW, and SOS web services, 

construct OGC Filters, and parse GML and WaterML2.0.  Due to the increased number 

of web service requests inherent with the Services Stack Model over that required in the 

Network-Observations Model, client applications need to be “intelligent” about 

restricting search requests or at least warning the user about long response times.  

Fortunately, the “hits” result type of the WFS GetFeature method, which just returns the 

number of hits a request would return instead of the actual series, can be used to aid in 

this restriction.  By first making a “hits” request, the user could be warned if a potential 

result set is too large and could possibly take a long time to retrieve.   

4.4.5 Summary of Roles and Responsibilities 

The following is a list of responsibilities for each of the three components in the 

proposed Services Stack architectural model. 

• Data providers - HydroServers:  

o Organize hydrologic data series into Thematic Metadata Tables 

and serve these as WFS in GML 

o Tag each series in Thematic Metadata Tables with its concept from 

the CUAHSI hydrologic ontology 

o Register Metadata Table WFS services at services catalog 

o Serve the actual hydrologic data series through SOS in 

WaterML2.0 

• Catalogs: 
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o Implement CSW endpoint for searching and registering 

HydroServer Metadata Table WFS endpoints  

o For Meta-Catalog:  

� Implement CSW endpoint for unified searching across 

registered services 

� Make CSW requests to registered catalogs to obtain their 

service-level metadata 

• Client applications: 

o Make CSW requests to services catalogs and parse XML responses 

o Make WFS requests to HydroServers and parse Metadata Table 

GML responses 

o Make SOS requests to HydroServers and parse WaterML2.0 

responses 

o Construct Filters for desired spatial extents, temporal extents, 

concepts, and other criteria for searching of hydrologic data 

4.5 PROPOSED OPERATING MODEL 

Figure 49 is a depiction of the general operating model in the proposed Services 

Stack SOA.  HydroServers are registered at their stack’s catalog and provide service-

level metadata to the catalog. The client application searches either a selected catalog or 

searches the unified meta-catalog with filtered CSW GetRecords operations, and gets 

series metadata from HydroServers via the WFS GetFeature operation. The client 

application then requests observations data series through SOS GetObservations. 



 

 

79 

 

Figure 49: General operating model in Services Stack SOA 

The general operation of the Services Stack Model is described by the following 

steps for a single search process: 

1. For a selected keyword/concept, the client application queries the catalog 

or meta-catalog CSW endpoint with a CSW GetRecords query. Each 

request contains Filters specifying the desired current concept, as well as 

the spatial and temporal extents chosen by the user.  

2. The catalog responds to the query with an XML response containing a list 

of HydroServer Metadata Table WFS service endpoints that have service-

level metadata matching the specified parameters.  

3. The client application cycles through the list of user-narrowed WFS 

Metadata Table service addresses, querying each with WFS:GetFeature 

with the same Filters as used in catalog request, plus any additional 

desired series-level constraints (such as value count or sample medium). 

4. Each HydroServer WFS Metadata Table service responds with a list of 

GML Features that match the specified Filter parameters.  Each Feature is 



 

 

80 

a series as represented by the Metadata Table specification, and contains a 

reference to the SOS endpoint from which the actual time series data can 

be obtained. 

5. The client application goes through the list of user-narrowed series and 

queries the SOS endpoints with GetObservations to obtain time series 

values.   

6. The HydroServer SOS instances respond to each time series request with a 

WaterML2.0-formatted response containing the desired series. 

Figure 50 illustrates these steps from the user/client-application activity of 

“narrowing” result sets.  Between each query stage, the user can apply additional 

constraints to further narrow the list of results passed to the next stage.  This narrowing 

would be accomplished by filtering on additionally desired metadata fields at each level. 

 

Figure 50: “Narrowing” steps with the Services Stack Model 

4.6 WFSTEST: A SIMPLE PROOF-OF-CONCEPT CLIENT 

WFSTest (see Figure 51) is a proof-of-concept application that implements some 

of the proposed functionality of clients in the Services Stack Model.  The main purpose 
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of writing this application was to provide a demonstration of the main components of the 

Services Stack Model. The infrastructural support behind WFSTest includes both an 

ESRI GeoPortal instance and an ArcGIS Server instance at CRWR.  The ESRI GeoPortal 

provides a CSW-compliant endpoint that supports OGC Filters for geographic extent and 

string matching in metadata fields.  Several Metadata Table WFS services published from 

the CRWR ArcGIS Server instance are registered at the GeoPortal instance, and are 

identified as Metadata Table services in their Abstract metadata field.  Each of these 

WFS services contain only a single Metadata Table layer. 

 

Figure 51: WFSTest application interface 

WFSTest queries the GeoPortal CSW-endpoint with a GetRecords request.  This 

request includes a Filter to find only those registered services whose Abstract field 

contains the string “DataCart.”  The XML containing a list of these services is returned to 

WFSTest, and the URLs to the matching Metadata Table WFS services are extracted.  

The GetCapabilities method of each Metadata Table WFS service is called and the titles 

of each Metadata Table layer are extracted. 
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WFSTest can construct Filters for geographic extent, concept keyword, site code, 

and value count.  These Filters are used to query each Metadata Table WFS service with 

the GetFeature operation.  The user can select to just receive a count of how many series 

(“hits”) the GetFeature request would contain, or can see the full Metadata Table contents 

returned from the GetFeature request. 

A more detailed description of the use of WFSTest is in Appendix B. 

4.7 ISSUES AND AREAS FOR FUTURE RESEARCH 

The proposed Services Stack architecture and operation are meant to serve as a 

starting point for exploration and discussion of a new, more sustainable HIS based on 

international standards. Several possible shortcomings and areas where further research is 

required are identified in this section.  Best practices will need to be determined by the 

CUAHSI-HIS team to overcome these shortcomings or modify the proposed model to fit 

technological and other system constraints. 

Time extent support for CSW and WFS using Filters is supported in the upcoming 

2.0 version of the OGC Filter Encoding specification.  However, time extent Filter 

support in existing CSW-compliant servers appears to be either weak or non-existent.  

Implementing this capability could be a complex task that takes a long development time.  

One possible work-around to actual date-time filtering could be to represent date-times as 

Julian dates.  This would allow simple numerical tests, which are already widely 

supported in OGC Filter implementations, to find if a date-time is between the start and 

end dates of a series of observations data.  If this approach were used, however, client 

applications would need to be able to work with this somewhat non-standard means of 

time representation. 
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The current Metadata Table specification is not a final version, and was designed 

around the CUAHSI WOF service specification.  To be truly effective as a series 

metadata descriptor format, feedback about the attributes in the specification will need to 

be collected and revisions made accordingly. Since a main driving force behind 

redesigning the HIS SOA is to gain acceptance from federal data providers and more 

accurately describe their hydrologic data series, input from these agencies will be 

extremely valuable.  Fields specific to WOF will either need to be generalized or omitted 

in light of using OGC standard services. Additionally, the Metadata Table format might 

need to be made more flexible, with different attributes based on the types of series 

metadata that can be expected from the different data providers.  For example, including 

drainage area in the USGS Daily Values Metadata Table might be beneficial for 

searching for streamflow series.  Fortunately, using WFS as a publication standard of the 

Metadata Table metadata will allow for this flexibility, though client applications will 

also need to be flexible in the metadata they expect. 

Due to the increased number of web service requests by clients in the Services 

Stack Model, latency in response times of this more-distributed architecture could be an 

issue for users.  This issue will have to be overcome by “intelligent” clients, as discussed 

in section 4.4.4.  Clients will also be arguably more complicated than they are in the 

Network-Observations model due to the number of service specifications and data 

encoding standards they will need to support.  As also previously stated, there is hope 

that off-the-shelf libraries for communicating with OGC standards would lighten the 

custom programming required by HIS client application developers.   
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Chapter 5: Conclusions 

5.1 WHAT HAVE WE LEARNED 

The CUAHSI-HIS project has succeeded in bringing together a large volume of 

hydrologic observations data from data providers across the United States.  The providers 

of these data have included academic and research groups as well as state and national-

level agencies.  The information system that enables this national synthesis of water data 

is based on a large-scale prototype service-oriented architecture enabled primarily by 

CUAHSI’s WaterOneFlow web services and WaterML. It is hoped that continued 

expansion of the sources, amounts, and types of hydrologic data available through this 

hydrologic information system will lead to increased research and discoveries in the 

hydrologic sciences and better management of water resources overall. 

As with most service-oriented architectures, the current HIS service-oriented 

architecture, termed the Network-Observations Model, is comprised of three main 

components: data servers, catalogs, and clients.  The data servers of this system are 

HydroServers, which implement the WaterOneFlow service specification to provide 

hydrologic data and metadata encoded in WaterML.   

HydroServers are registered at HIS Central, where their series metadata are 

harvested into a central series metadata catalog.  Typically, metadata harvesting is 

accomplished regularly through the GetSites and GetSiteInfo methods of WaterOneFlow. 

However, in the case of the large federal data providers, database dumps and custom-

coded migration scripts are instead used for harvesting.  Due to the length of time 

required for this custom harvesting, series metadata for the federal data providers 

happens only sporadically. The HIS Central series catalog exposes search capabilities on 

its central series catalog through a non-standardized web service.  This service also 
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provides clients with access to the hydrologic concept ontology that enables semantic 

mediation of hydrologic data from various data sources. 

Clients of the CUAHSI-HIS have followed a number of distinct operating models 

within the service-oriented architecture.  The current version of HydroExcel uses the HIS 

Central web service only to find a list of registered WaterOneFlow endpoints, and then 

operates directly with those endpoints to retrieve hydrologic metadata and data.  

HydroDesktop, on the other hand, is more tightly-integrated with the HIS Central series 

catalog.  In HydroDesktop, the HIS Central services are used to find data series that 

match desired parameters along the what-when-where axes of the “data-cube.”  For 

matching series found from HIS Central, the time series of hydrologic data are then 

retrieved from corresponding HydroServers using the WaterOneFlow GetValues method.  

Examination of the client-driven operating models has shown that while HIS Central web 

service has a number of exposed operations, only the GetSeriesInBox, GetOntologyTree, 

and GetWaterOneFlowServices methods are used in the current architectural model. 

The current system has worked well for smaller, academic and research-based 

data providers who would likely have not otherwise published their data for online 

consumption. However, sustainability concerns with the current system, particularly the 

HIS Central series metadata catalog, have been expressed.  These issues include the 

tedious processes involved in harvesting series catalogs from federal water providers, 

maintaining custom-coded metadata harvesting programs, and debugging and 

maintaining the central catalog codebase.  Moreover, although WaterOneFlow and 

WaterML have become standardized through the HIS project, obtaining buy-in to the 

current architecture from the federal data providers (such as USGS, EPA, and NCDC) 

has not been as successful as the project would like. Examination of these sustainability 
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issues has led to the conclusion that it is not feasible for CUAHSI to maintain such a 

large, centralized metadata catalog.  In addition, custom-coded solutions should be 

avoided when possible in favor of off-the-shelf software and standards.   

A simpler and more general pattern for hydrologic data sharing through a service-

oriented architecture has been proposed.  This new model, called the Services Stack 

Model, is based on existing OGC web service standards and data encodings, including 

the forthcoming WaterML2.0 specification.  The Services Stack Model relies on a stack 

of OGC services to provide catalog, metadata, and data services: CSW, WFS, and SOS, 

respectively. Another key difference between the proposed architectural model and the 

current model is that there will no longer be a centralized metadata catalog. Rather, data 

providers will register their services and service metadata with a CSW-compliant catalog 

to enable discovery of services.  Series metadata, served via WFS in the Thematic 

Metadata Table format, will be hosted and searched upon at the data provider level. 

The proposed services stack also represents a deployable system that could be 

hosted by data providers or other entities.  Catalogs from deployed systems could be 

brought together into a centralized service “meta-catalog” hosted by CUAHSI’s HIS 

Central team to facilitate searching across them.  Off-the-shelf server and library 

implementations of these OGC standards have been identified and a proof-of-concept 

application has been built. 

5.2 AREAS OF FUTURE RESEARCH 

The Service Stack Model comprised of OGC services proposed in this thesis lays 

the framework for a new direction of the CUAHSI-HIS architecture.  This model can be 

seen as a starting point for a major renovation of the current system to make it sustainable 

as the current HIS project grant period comes to an end.  To that end, much work on a 
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concrete implementation of the model will need to be done.  Best practices for the OGC 

services stack will need to be formulated by the HIS project team and its stakeholders.  

These best practices should include a finalized specification of the Thematic Metadata 

Table for series description, determination of a metadata profile for the CSW-compliant 

services catalog, and how best to provide ontological tagging capabilities for both series 

metadata and services metadata. 

A plan for migration to the proposed architecture will also need to be developed.  

This plan should aim to minimize service interruptions for clients and their users.  Most 

of the CUAHSI-HIS products, including the ODM-based HydroServer, HydroExcel, and 

HydroDesktop, will need to be modified to work within the new architecture and utilize 

its OGC services and data encodings.  Existing HydroServers at host data providers will 

need to be transitioned with the help of CUAHSI staff to publish their data using WFS 

and SOS.  Extensive testing of new and modified code will need to occur to ensure a 

smooth transition from the current architecture. 

The proposed architectural model has already started to show promise in areas of 

hydrologic data sharing formerly out-of-reach by the HIS. Current research by the 

CRWR team has indicated that an extended version of Thematic Metadata Table format 

shows promise for sharing wide-area gridded datasets, such as for climatologic and 

remote sensing data.  
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Appendix A: Metadata Table Field Specification 

Field Name 

(Field Type) 
Definition Example 

ServCode 

(Text - 50) 

Network prefix for site codes used by 

the WaterOneFlow service, giving the 

context within which the site code 

applies 

CCBay 

SiteCode 

(Text - 50) 

Unique text identifier for a site within 

a given WaterOneFlow service 
H1 

SiteName 

(Text - 255) 
Name of a site Hypoxia_1 

VarCode 

(Text - 50) 

Unique text identifier for a variable 

within a given WaterOneFlow service 
DOC 

VarName 

(Text - 255) 
Name of a variable 

Dissolved Oxygen 

Concentration 

VarUnits 

(Text - 50) 
Units of measure for the variable milligrams per liter 

Vocabulary 

(Text - 50) 

Vocabulary prefix for variable codes 

giving the context within which the 

code applies 

CCBay 

Ontology 

(Text – 50) 

Unique name for the ontology 

containing the concept to which the 

given variable has been mapped 

CUAHSI Variable Ontology 

v1.26 

Concept 

(Text - 50) 

Leaf concept keyword from the 

ontology to which this variable applies 
dissolvedOxygen 

ValueCount 

(LongInt) 

Number of time series values for the 

variable at the site for the given time 

period 

270 

StartDate 

(Date) 

Start date and time for the time period 

of the variable at the site 
5/3/94 8:40 AM 

EndDate 

(Date) 

End date and time for the time period 

of the variable at the site 
8/31/06 11:26 AM 

Latitude 

(Double) 

Latitude of the site location in decimal 

degrees (WGS_1984); for polygons 

can be NULL 

27.814 

Longitude 

(Double) 

Longitude of the site location in 

decimal degrees (WGS_1984); for 

polygons can be NULL 

-97.141 
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IsRegular 

(ShortInt) 

1 (TRUE) if variable is 

measured/calculated regularly in time; 

0 (FALSE) otherwise 

0 

TimeUnits 

(Text - 50) 

For regular data, the time step and 

time units give the length of time 

between measurements, e.g., 1 day, 

6.5 hrs, 1 month 

Day 

TimeStep 

(Double) 

For regular data, the time step and 

time units give the length of time 

between measurements, e.g., 1 day, 

6.5 hrs, 1 month 

1 

DataType 

(Text - 50) 
Type of data 

Value, Average, Maximum, 

Minimum, 

StandardDeviation 

Medium 

(Text - 50) 
Medium in which the variable applies Surface Water 

MethodID 

(Integer) 

Unique ID within a WaterOneFlow 

service for the method used to 

measure the variable 

1 

Method 

(Text - 255) 

Description of the  method used to 

measure the variable 
Multiprobe measurement 

QCLevelID 

(Integer) 

Unique ID within a WaterOneFlow 

service for the quality control level of 

the time series 

0 

QCLevel 

(Text - 50) 

Description of the quality control level 

of the time series 
Raw Data 

SourceID 

(Integer) 

Unique ID within a WaterOneFlow 

service for the original source of the 

data 

1 

SourceName 

(Text - 255) 

Name of the original source of the 

data 

Texas A&M University 

Corpus Christi 

 

LocType 

(Text – 25) 

Type of service – indicates how the 

Location parameter of a 

WaterOneFlow.GetValues call should 

be formatted 

SiteCode 

LatLongBox 

LatLongPoint 

ServType 

(Text – 10) 
Type of endpoint, REST, SOAP SOAP 

XLL 

(Double) 

For point data, Longitude of the point.  

For data defined by a lat/lon box, 

western longitude of the box 

-97.141 
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YLL 

(Double) 

For point data, Latitude of the point.  

For data defined by a lat/lon box, 

southern latitude of the box 

27.814 

XUR 

(Double) 

For data defined by a lat/lon box, 

eastern longitude of the box; otherwise 

can be NULL 

-93.5 

YUR 

(Double) 

For data defined by a lat/lon box, 

northern latitude of the box; otherwise 

can be NULL 

30.2 

Location 

(Text - 255) 

Properly formatted location parameter 

to pass to WaterOneFlow.GetValues 

CCBay:Hypoxia_1 

GEOM:BOX(-97.141 

27.814,-93.5 30.2) 

GEOM:POINT(-97.141 

27.814) 

Variable 

(Text - 255) 

Properly formatted variable parameter 

to pass to WaterOneFlow.GetValues 

CCBay:DOC 

NWISDV:00060/DataType=

Maximum 

ReqsAuth 

(ShortInt) 

Request authorization.  1 (TRUE) if 

authorization for download is 

required; 0 (FALSE) otherwise 

0 

WaterMLURI 

(Text - 255) 
URI of WaterOneFlow service WSDL 

http://data.com/WoF/ 

/cuahsi_1_0.asmx?WSDL 

WofVersion 

(Text - 15) 
Version of the WaterOneFlow service 1.0 

WFSURI 

(Text - 255) 

URI of web feature service showing 

site locations http://data.com/WFSServer 

WMSURI 

(Text - 255) 

URI of web mapping service related to 

the data http://data.com/WMSServer 

DAccessURI 

(Text - 255) 

URI of Data Access Service, which 

provides REST querying capabilities 

for WaterOneFlow, user management, 

Metadata Table management, and 

more 

http://data.com/DataService 

Required fields are in italics. 
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Appendix B: WFSTest Operation 

1) Enter a Catalogue Services for the Web (CSW) endpoint address in the “CSW 

Endpoint” text box.  

 

2) The default value in this box is for the ESRI GeoPortal Extension CSW endpoint 

(https://hydroportal.crwr.utexas.edu/geoportal/csw/discovery) at the Center for 

Research in Water Resources at the University of Texas.  It is recommended to use 

the default value because we have registered and tagged our sample Web Feature 

Service (WFS) Metadata Table services. 

3) Click the “CSW:GetRecords & WFS:GetCapabilities” button.  This will send a 

CSW:GetRecords request to the specified CSW endpoint to find registered services 

that have the term “DataCart” in their Abstract metadata field.   

For each Metadata Table service found, the WFS endpoint address is extracted and 

each service’s WFS:GetCapabilities method is called.  The title for each service along 

with the title for the FeatureLayer within the service is saved. 

Note: This test client only expects WFS services with a single FeatureLayer. 

Once complete, the number of services found and the title of each service’s 

FeatureLayer are shown: 
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4) From the “DataCart services” check box list, select which services you would like to 

query with WFS:GetFeature. All of the returned services from step 2 are selected by 

default. 

5) From the “Filter” section, choose which filters you would like to apply to the 

WFS:GetFeature request.  

• “Bounding Box” will constrain the 

geographic extent. 

• “Concept” will constrain the features by 

their Concept attribute.  This field 

accepts wildcard characters (* and _), 

but it is case-sensitive. 

• “SiteCode” will constrain features by 

their SiteCode attribute. 

• “Value Count” will constrain the results to only those that have ValueCount 

attributes greater than the specified number. 

• “Date Range” will constrain results to those whose StartDate and EndDate 

attributes fall within the specified range.  

Note: Date Range filtering is done on the client side.  This means features are 

first retrieved from the service and then filtered by their StartDate and EndDate.  

The ESRI GeoPortal does not implement OGC Filters for temporal extents. 

6) Click the “WFS:GetFeature” button to query (with the selected filters applied) each 

of the selected WFS Metadata Table services for their features. 

• If the “Just get series count” checkbox is checked, a message box displaying the 

number of features that could be retrieved with the request and selected filters 
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will display.  The “hits” result type is a native feature of WFS services. 

 

• If the “Just get hits” checkbox is not checked, a tab page for each selected 

service will appear to the right side of the application, and each tab page will 

contain a grid of the returned features for the associated service.  Each row is a 

returned feature, and the columns are the Metadata Table attributes.  

 

7) To export the features in the currently selected tab, click the  button.  This will 

open a Save File Dialog and save the features to a comma-separated values (.csv) file 

at the specified location. 
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Appendix C: List of Acronyms 

CQL Common Query Language 

CRS Coordinate Reference System 

CRWR Center for Research in Water Resources 

CSW Catalogue Services for the Web 

CUAHSI Consortium of Universities for the Advancement of Hydrologic Science, 

Inc. 

EPA Environmental Protection Agency 

FES Filter Encoding Standard 

FGDC Federal Geospatial Data Committee 

GIS Geographic Information System 

GML Geographic Markup Language 

HDWG Hydrology Domain Working Group 

HIS Hydrologic Information System 

HTTP Hypertext Transfer Protocol 

KVP Key-Value Pair 

NCDC National Climatic Data Center 

NWIS National Water Information System 

O&M Observations & Measurements 

ODM Observations Data Model 

OGC Open Geospatial Consortium 

REST REpresentation State Transfer 

SDSC San Diego Supercomputer Center 

SOA Services-Oriented Architecture 

SOAP (formerly) Simple Object Access Protocol 

SOS Sensor Observation Service 

SRS Spatial Reference System 
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STORET STOrage and RETrieval 

TCEQ Texas Commission on Environmental Quality 

USGS United States Geological Survey 

WaterML Water Markup Language 

WCS Web Coverage Service 

WFS Web Feature Service 

WMO World Meteorological Organization 

WMS Web Map Service 

WOF WaterOneFlow 

XML eXtensible Markup Language 
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