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Analysis of large collections of data has become inescapable in many

areas of scientific and commercial endeavor. As the size and dimensionality of

these collections exceed the pattern recognition capability of the human mind

computational analysis tools become a necessity for interpretation. Clustering

algorithms, which aim to find interesting groupings within collections of data,

are one such tool. Each algorithm incorporates into its design an inherent def-

inition of “interesting” intended to capture nonrandom data groupings likely

to have some interpretation to human users. Most existing algorithms include

as part of their definition of “interesting” an assumption that each data point

can belong at most to one grouping. While this assumption allows for algo-

rithmic convenience and ease of analysis, it is often an artificial imposition on

true underlying data structure. The idea of allowing points to belong to mul-

tiple groupings - known as “overlapping” or “multiple membership” clustering

- has emerged in several domains in ad hoc solutions lacking conceptual unity

in approach, interpretation, and analysis. This dissertation proposes general,

domain-independent elucidations and practical techniques which address each

of these.
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We begin by positing overlapping clustering’s role specifically, and clus-

tering’s role in general, as assistive technologic tools allowing human minds to

represent and interpret structures in data beyond the capability of our innate

senses. With this guiding purpose clarified, we provide a catalog of existing

techniques. We then address the issue of objectively comparing the results

of different algorithms, specifically examining the previously defined Omega

index, as well as multiple membership generalizations of normalized mutual

information. Following that comparison, we propose a novel approach to com-

paring clusterings called cluster alignment. By combining a sorting algorithm

with a greedy matching algorithm, we produce comparably organized mem-

bership matrices and a means for both numerically and visually comparing

multiple-membership assignments. With overlapping clustering’s purpose de-

fined, and the means to analyze results, we move on to presenting algorithms

for efficiently discovering overlapping clusters in data. First, we present a gen-

eralization of one of the common themes in the ad hoc approaches: additive

clustering. Starting with a previously developed structural model of addi-

tive clustering, we generalize it to be applicable to any regular exponential

family distribution thereby extending its utility into several domains, notably

high-dimensional sparse domains including text and recommender systems.

Finally, we address overlapping clustering by examining the properties of data

in similarity spaces. We develop a probabilistic generative model of overlap-

ping data in similarity spaces, and then develop two conceptual approaches to

discovering overlapping clustering in similarity spaces. The first of these is the

conceptual multiple-membership generalization of hierarchical agglomerative

clustering, and the second is an iterative density hill-climbing algorithm.
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Chapter 1

Introduction

It could be reasonably claimed that the primary goal of “Data Mining”

is to replicate on data that is massive and high-dimensional what a human

could do on data that is low in number and dimension. Modern technologies

allow the collection of data that is routinely well beyond human analysis ca-

pabilities, leading us to a situation that has been described as “drowning in

information but starved for knowledge”[Nai88]. To find this “knowledge” in

the information deluge, humans have constructed tools: mathematical models

and algorithms that attempt to replicate on beyond-human-scale data what a

human would do on human-scale data.

Clustering - finding similar subsets of objects within a collection - is a

fundamental analysis technique which humans perform naturally, but which

becomes very difficult as the scale of the collection (in number and dimension)

increases. While even young children have the ability to group objects, e.g.

fruits, by size, color, or some other feature or combination of features, finding

clusters among thousands of genes using measurements taken over hundreds

of experiments is a task well beyond even the most analytical mind.

Several algorithmic tools have been developed to find clusters in data,

each taking a different view of what constitutes a “good” cluster and how

to find such clusters. The oldest and most widely used approach, hierarchical

agglomerative, makes the assumption that the span between any pair of points

1



determines the degree to which they should be in the same cluster, and finds

a clustering by agglomerating points separated by minimum spans. Another

widely used approach, k-means, assumes that clusters form dense balls in space

and finds an appropriate assignment of data points to balls via an iterative

reassignment algorithm.

Independent of their particular model assumptions and algorithmic de-

tails, these algorithms and the vast majority of clustering algorithms in com-

mon use make the assumption that every point must belong to one and only

one cluster. This property, called “single-membership”, simplifies algorithms

and analysis, but may not represent the cluster structure that might be ex-

pected in several real world situations. The concept of a given object belonging

to several clusters, or to none, is quite natural and is widely represented us-

ing the familiar Venn diagram, as shown on the left of Figure 1.1 contrasting

with a strict single-membership assignment on the right. Clusterings that

find solutions more like Venn Diagram are called “overlapping” or “multiple-

membership”.

Specific examples from several domains suggest that the multiple-membership

representation may be closer to reality:

• Grouping documents into topic clusters - documents can contain multiple

topics;

• Using purchasing histories to group customers into classes - customers

often exhibit composite behaviors;

• Assigning movies into genre clusters based on viewer reviews - movies

can be members of multiple genres;

2



Figure 1.1: Venn diagram representing label assignments of points, and tradi-
tional clustering labelling of the same situation. Note that the Venn diagram
allows points to be labelled as belonging to one, both, or no clusters, while the
traditional clustering requires each point to belong to exactly one cluster.

• Determining biological process gene clusters based on large scale observa-

tions of gene regulation in response to environmental stimuli - individual

genes are known to be required for several processes.

This dissertation describes the common features of this type of data

along with methods for finding and evaluating multiple-membership cluster-

ings.

1.1 Problem Statement of Clustering

Any clustering problem can be thought of as having an input space x

and an output space y. The task of clustering is to find a mapping y = C(x)

whereby instances in x are mapped through C to instances in y in such a way

as to impart an understanding of the data in x via the concise representations

in y. In the language of clustering, the instances in x are called data points

and the corresponding instances in y are called labels. The operator C is called

the clusterer.
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The task of the clusterer is to summarize and compress the poten-

tially overwhelming (i.e. vast and high-dimensional) data in x into a human-

consumable form in y. What constitutes the limits of “human-consumable”

may be debatable, however it is generally accepted that labels that can be

interpreted as answers to “yes/no” questions are easily understood. The dom-

inant forms of clustering, notably k -means and hierarchical agglomerative,

provide labels for data points which state clearly “this instance is a member of

a particular group, and is not a member of any other group”. The algorithms

find these labels by minimizing objective functions that attempt to preserve

as much detail about the original data, x, using the constrained output space,

y.

This “preservation of detail” is quantified as the minimization of the

distortion between x and y can be viewed as a problem of communication:

we desire to send messages from the set y (the labels) that communicate as

much information about x (the data points) as possible while conforming to

the given constraints, e.g. that y be “human consumable”. Information in

this context has a specific meaning: it is the reduction in uncertainty we have

about a point from x given its corresponding message from y. 1

The constraints placed on y define how much information can be com-

municated by a single message. A complete relaxation of “interpretability”

constraints on y would result in the message simply being the data point it-

1For example, consider a collection of children’s building blocks where half the blocks are
big, half small, half green, and half red. If we know that someone has drawn a particular
block but we have not recieved a message about the block, we could not say anything
confident about a given block beyond the prior probabilities: there is a 50% chance the
block is big, 50% chance it is small, 50% it is green and 50% it is red. After seeing a label,
e.g. “big, green”, we can eliminate many possibilities for our observation - the block is
neither small nor red. Our uncertainty about the observation has been reduced.

4



self. This scenario results in perfect communication of information - we have

no uncertainty about the data point - but we have been given no advantage in

interpretability. A slightly stricter relaxation of the constraints on y would be

that the elements of y be real numbers (e.g., representing weights on basis vec-

tors). This scenario yields SVD-like decompositions (PCA, Factor Analysis)

which provide some interpretability at the cost of some (small) uncertainty

in x. A very strict imposition of the interpretability constraint - that each

vector in x be represented by a single label from y - yields standard single-

membership clustering. Knowing a data point’s label reduces our uncertainty

inversely proportional to the number of data points sharing each label.

Multiple-membership clustering fits into the interpretability/distortion

continuum somewhere between the SVD-like decompositions and single-membership

clustering. Multiple labels per data point allow the communication of more

information at the cost of the human consumer having to interpret multiple

yes/no labels. While this may be slightly more challenging than interpreting

a single yes/no label, is it surely less onerous than interpreting a vector of real

numbers.

1.2 Notation

This section introduces the specific terminology and notation this paper

uses in describing data, algorithms, and results.

Data is usually presented as a matrix X consisting of n rows where each

row represents a data point and m columns where each column represents a

feature of the data. Thus, the cell X[i, j], represents the value of the jth

feature of the ith data point. Each of the m features can be considered a

“dimension” of the data, so a data set with m features (columns) can be said

5



to be “m-dimensional”. X[i, :] represents the ith m-dimensional row of X, and

X[:, j] represents the jth n-dimensional column of X.

Standard disjoint clustering algorithms return an n-length vector of

labels, giving each point one of k labels. An alternative view of this result

is the membership matrix. A membership matrix M is a binary matrix with

n rows, one for each data point, and k columns, one column for each label.

If a data point i is a member of cluster j, then M [i, j] = 1. If i is not

a member of j, then M [i, j] = 0. Traditional single-membership clustering

algorithms return membership matrices where the the sum across any row will

be 1,
∑k

j=1M [i, j] = 1, indicating that each data point is assigned only one

label. Membership matrices returned by multiple-membership clusterings do

not have this constraint; instead 0 ≤
∑k

j=1M [i, j] ≤ k, where each M [i, j] ∈

0, 1 and
∑k

j=1M [i, j] is an integer. Soft clustering algorithms return soft

membership matrices, M(soft) where each M(soft)[i, j] specifies the fractional

membership of data point i in cluster j and
∑k

i=1M(soft)[i, j] = 1.

Henceforth, clustering algorithms will be referred to as “clusterers”

and will be given capital alphabetic labels such as C. The membership matrix

returned by clusterer C will be labelled MC .

1.3 Objectives, Contributions, and Organization

The central goal of this dissertation is to serve as a foundation for un-

derstanding of multiple-membership clustering. Towards that goal, it explores

analysis and review of existing algorithms, new algorithms, and approaches to

analyzing and effectively using multiple-membership clustering.

Despite the intuitive appeal of multiple-membership clustering, its ex-
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act definition and applicability needs to be clearly defined. Chapter 3 (Com-

parison) provides an intuition for clustering as a model of communication

and extends that intuition to multiple-membership clustering and the types of

problems where it is appropriate.

While single-membership methods are dominant in common practice,

several multiple-membership techniques have been developed for clustering

problems arising in diverse fields including psychology, sociology, economics,

and biology. Given that most of these techniques arose as ad hoc solutions to

domain-specific problems, they have not been widely publicized or employed

outside of their original domains. Chapter 2 provides a survey of previous work

in the field beginning with a discussion of k -means and hierarchical agglomer-

ative as representatives of the model-based and non-model based approaches

to single-membership clustering. Chapters 5 and 6 describe novel multiple-

membership formulations of these two fundamental approaches. Chapter 4

addresses the particular multiple-membership problem of cluster alighnment

and provides a numeric and visual means of multiple membership cluster com-

parison. Chapter 3 describes multiple-membership generalizations of single-

membership cluster comparison metrics. Chapter 7 concludes and offers di-

rections for future work.
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Chapter 2

Background

While the idea of multiple-membership clustering has recently emerged

as an important research topic as machine learning encounters problems aris-

ing from biology and other areas, the idea is not new. Since the 1960’s, re-

searchers in several fields, ranging from sociology and marketing to psychology

and neuroscience, have encountered similarly messy problems and have devel-

oped multiple-membership clustering approaches for their domains. In this

chapter, we review older as well as more recent multiple-membership cluster-

ing techniques and describe them via their commonalities with widely-used

single-membership approaches.

2.1 Single Membership Clustering

Clustering is a form of unsupervised learning, meaning that no labels are

available for training - labels must be deduced solely from the arrangements of

the points in the input space. Thus, clustering algorithms are designed to find

clusters using observable input space features such as distances between points

and regional densities. While single-membership and multiple-membership

clustering have different conceptions of the constitution of a “good” clustering,

they both have as their input the same view of the data, and therefore employ

similar approaches to extracting meaning from that input. These approaches

can be described concisely as being either local, global, or some combination
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of the two. Examples from single membership clustering are instructive: the

two most widely known and used algorithms - hierarchical agglomerative and

k-means - are good representatives of local and global approaches, respectively.

Hierarchical agglomerative clustering, henceforth “HAC”, is a local al-

gorithm based on the idea that if two points are close together in the input

space, they should be in the same cluster in the output space. At each step, the

algorithm performs a local action: it finds the two closest points and merges

them. The greedy nature of this local operation ensures that after several

repetitions, the data will be grouped into clusters.1 The sequence of merges

results in a visual representation called a dendrogram, as shown in Figure 2.1.

The result of the merging process is not exactly a clustering on its

1There are several ways of defining “close” when using HAC - e.g., single-link, complete-
link, mean-link. One of these, single-link, is the solution to the global minimum-spanning-
tree problem[Har75]; however, it is not generally the case that local approaches solve global
problems.
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own; further refinement is necessary to select which of the nested clusters are

most meaningful. Techniques for selecting clusters from hierarchical trees fall

into two categories: those that choose to cut the tree at a particular level in

order to return a particular number of clusters, and those that choose clusters

individually according to some criteria (e.g. cluster density, stability, etc.).

In contrast to local algorithms like HAC, global model-based approaches

assume that the distribution of points in the input space is due to sampling

from an underlying latent probability model. The global problem is then

to find the model parameters that maximize the likelihood of the observed

points. The k-means algorithm [Mac67, Spa73, HW79] is an example of a

global, model-based approach to clustering. The k-means model assumption

is that the observed points are sampled from k spherical Gaussians. Once the

means are known, each point is most likely to have been generated by the

Gaussian centered on the closest mean (in squared-Euclidean sense). Find-

ing the means is the parameter estimation problem, and is accomplished by a

greedy iterative-reassignment algorithm:

1. Choose k centers at random.

2. Assign each point the label of its nearest center.

3. Move each center to the mean of the points with its label.

4. Repeat 2-3 to convergence.

HAC and k-means’ different approaches - one looking exclusively at

local, pairwise information and the other looking at some global objective -

10



represent the two fundamental patterns of unsupervised clustering. All unsu-

pervised methods, single-membership and multiple-membership, exhibit char-

acteristics of one or both of these approaches.

2.2 Multiple Membership Clustering

2.2.1 Soft Models

Soft models can be thought of as global clusterers which, instead of

committing a point to be a member of a particular cluster, allow it to be

a partial member of some or all clusters. The k-means algorithm described

above performs hard assignment in the second step: each point is assigned

the label of its nearest center. A soft version of k-means would instead assign

each point a fraction of each label in proportion to the point’s distance to

each representative center. At the conclusion of the algorithm, the resulting

assignment for each point would, instead of being a particular label, be a set

of fractional labels. Thresholding the fractional labels so that all greater than

the threshold are assigned to the point and all less than discarded yields, in

effect, a multiple-membership assignment of labels.

There are two primary methods of finding soft clustering representa-

tions of data. The soft k-means approach described previously is a repre-

sentative of EM-like models - iterative reassignment algorithms that assume

the observed data to be a mixture of several mixture components, each a ran-

dom variable/vector with an associated distribution. The other type of soft

approach is based on SVD-like matrix decompositions.
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2.2.1.1 SVD-like matrix decompositions

As mentioned in Chapter 1, if single-membership clustering represents

the maximum interpretability end of the interpretability/distortion spectrum

then SVD-like decompositions represent the minimum distortion end. Matrix

decompositions attempt to find simpler representations of observed matrices

that preserve most of the information contained in the original matrix. Gener-

ally, matrix decompositions used in data mining applications follow the general

model of Factor analysis. The factor analysis model assumes every observed

row (feature vector) to be a linear combination of global factors (potentially

affecting all points) and local factors (only affecting a particular point). Fac-

tor analysis was originally developed as a tool for psychometrics where, for

example, the global factors could be mental characteristics (e.g. mathematical

aptitude, linguistic aptitude, etc.) and the local factors could be conditions

specific to the administration of a given test. A group of subjects’ test perfor-

mance would then be decomposed by factor analysis into their global features

(aptitudes) and local features (test conditions). In more recent application

of factor analysis to data mining problems, local features are largely ignored,

making SVD-like decompositions the preferred tool.

Factor analysis decompositions that find global factors from SVD-like

decompositions are not clusterings per se, but can be converted to clusterings

by thresholding. Depending on threshold choice, these resultant clusterings

can be multiple-membership.

The Singular Value Decomposition (SVD)[GL96] performs the eigen-

decomposition of the data matrix X into an orthogonal column basis U , an

orthogonal row basis V , and a diagonal matrix of eigenvalues, Σ:

X = UΣV T (2.1)
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The columns of U are the eigenvectors of the column space and the

rows of V are the eigenvectors of the row space. When the primary interest

is in the rows, U and Σ can be combined into a weight matrix W yielding

X = WV T . This transformation is useful because it represents every point in

X as a linear combination of the rows of V T :

X[i, :] =
k∑
j=1

W [i, j]V T [i, :] (2.2)

If each row of V T is thought of as a cluster center, then each row of

W defines the soft cluster membership of the corresponding row in X. The

application of a threshold to W yields a multiple-membership clustering mem-

bership matrix. When correlation is more relevant than the additive coeffi-

cient, a similar weight matrix can be constructed such that W [i, j] contains

the correlation coefficient between data row i and eigenrow j. As with the

additive coefficient weight matrix, thresholding this matrix yields a multiple-

membership clustering membership matrix. Choosing the threshold in either

case is a domain-specific task which requires some labeled data or at least

knowledge of the expected cluster priors. Alter et al. [ABB00] has shown very

good results using SVD with correlation thresholding on yeast cell cycle data.

The soft form of SVD-based clustering is widely used in the Latent

Semantic Indexing (LSI) [DDL+90, FDD+88] of text corpi. In LSI, the rows

of V T (the eigenvectors of the term-frequency data matrix) are interpreted to

be representations of the latent topics of the document corpus, and the values

of the W matrix as each document’s expression of those latent topics.

The LSI approach to text clustering performs well, but has a short-

coming in interpretability. The SVD decomposition places no constraints on
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V T and thus, V T and W both contain positive and negative values. LSI topic

vectors, then, contain positive and negative numbers corresponding to the ex-

pected distribution of word counts in documents from that topic. The concept

of negative word counts is problematic.

To provide a more interpretable decomposition, Lee and Seung pro-

posed non-negative matrix factorization (NMF) [LS00]. NMF performs the

SVD-like decomposition of a non-negative data matrix X into a non-negative

weight matrix W and non-negative basis matrix H:

X = WH (2.3)

NMF has been shown in document clustering [XLG03] and other fields such

as bioinformatics [BTGM04] and image processing [LS99] to give highly inter-

pretable decompositions. Just as with SVD, the rows of the H matrix can be

interpreted as cluster centers and the rows of W as soft memberships, with a

multiple-membership clustering arising from thresholding W .

Certain other decompositions such as Independent Components Anal-

ysis (ICA) can similarly be interpreted as soft clusterings and can be mapped

to multiple-membership clusterings by thresholding.

2.2.1.2 Gene Shaving

The appropriate choice of thresholds for soft methods like the SVD can

be difficult. The “Gene Shaving” algorithm [HTE+00] employs a statistical

notion of the meaning of a cluster in order to eliminate the need to choose

thresholds.

The algorithm examines each eigenrow (potential cluster center) in or-

der with a two phase process. In the first phase, the algorithm generates a
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series of increasingly compact nested clusters centered on the eigenrow. The

second phase computes for each cluster in the nested series the “gap statis-

tic”, a measurement of the extent to which the cluster minimizes the variance

between its members and maximizes the difference between its mean and the

global mean of the data. The cluster with the highest gap statistic is taken as

the cluster for the current eigenrow, the data is orthogonalized with respect to

the cluster mean, and the process repeats. The algorithm continues until a set

number of clusters is produced, or the residual data after orthogonalization is

noise.

2.2.2 Multiple-Membership Extensions to Hierarchical Agglomer-
ative Clustering

Hierarchical Agglomerative Clustering (HAC) is a conceptually simple

clustering algorithm and has served as the starting point for several multiple

membership clustering algorithms.

2.2.2.1 Jardine-Sibson B-clustering and Articulation Point Cuts

Jardine and Sibson’s “B-clustering”[JS68] is a straightforward exten-

sion of single-link agglomerative clustering. On each step of the standard

single-link HAC algorithm, the most similar pair of points and the clusters

containing them are merged. Therefore, two clusters that share little similar-

ity on the majority of their points can be joined if their fringe points are in

close proximity. This property leads to “chaining” - the propensity for form-

ing long, spindly clusters that is the commonly-cited flaw in single-link HAC.

B-clustering solves this problem by allowing points to be merged into their

closest cluster, but requiring clusters to share at least b points before they are
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Figure 2.2: Jardine-Sibson cluster for b = 2

merged. Thus, if b = 2, clusters A and B can share a single point x, yet remain

distinct clusters with x simultaneously a member of both A and B. Figure 2.2

illustrates Jardine-Sibson clustering for b = 2.

A closely related approach to B-clustering is the problem of finding

articulation vertices in graphs [GI91, Har69]. An articulation vertex is a node

in a graph that has high connectivity to two or more dense subgraphs. Instead

of associating the articulation vertex with one of the dense subgraphs - which

would require an expensive cut - the articulation vertex can be copied into all

of the subgraphs, effectively associating it with multiple clusters. Bejerano et

al. demonstrated a bioinformatics application of this approach in [BHB04].

2.2.2.2 Pyramid Hierarchical Clustering

In [BD85], Bertrand and Diday propose an alternate overlapping exten-

sion to HAC which can be thought of as a relaxed form of HAC. The HAC al-
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gorithm maps points in a metric on non-metric space into the closest (i.e. min-

imum distortion) ultrametric space, where there is a unique ordering which can

be represented as a dendrogram. Pairwise distance matrices of ultrametric em-

beddings (henceforth, ultrametric matrices) have the properties that values are

symmetric, non-decreasing away from the diagonal and that for any two points

a and b, there exists a point c such that d(a, b) ≤ max[d(a, c), d(b, c)]. Relax-

ing the second constraint to the triangle inequality, d(a, b) ≤ d(a, c) + d(b, c),

gives Robinsonian matrices, where values are symmetric and non-decreasing

away from the diagonal. Robinsonian matrices are a superset of ultrametric

matrices and do not in general guarantee a unique ordering, but instead a set

of nonconflicting or “compatible” orderings. Bertrand and Diday’s approach

find the closest (minimum distortion) Robinsonian embedding for a given set

of similarities.

The existence of several compatible orderings gives rise to overlapping

clustering by allowing points (or groups of points) to belong to at most two

different clusters, with both possible assignments allowing compatible order-

ings. The maximum membership of two arises from the fact that orderings

are 1-dimensional; a point has a left (less-than) side and a right (greater-than)

side, and can at most belong to clusters on both its left and right.

The pyramid approach has not found widespread use, however, it was

used successfully by Aude et al. in [ADLCJ99] to find an overlapping clus-

tering of selected genes from 5 different organisms (E. coli, S. cerevisiae, M.

Janaschii, H. influenza, and Synechocystis). Genes assigned to two clusters

generally contained protein domains common to both, while genes assigned

to single clusters had only one type of domain. Figure 2.3 show an example

pyramid from Aude et al.’s data.
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Figure 2.3: Pyramid hierarchical clustering of yeast genes from Aude, et al.
[ADLCJ99]

2.2.3 Similarity-Space Additive Clusterings

In [AS73, Ara77], Phipps Arabie proposed an additive model called

“ADCLUS” for modelling similarity matrices. An observed similarity between

two objects, he posited, could be considered to be a weighted sum of several

subsimilarities between particular properties of the objects. Mathematically,

the similarity s between the objects i and j is then:

si,j =
m∑
k=1

wkfi,kfj,k where fi,k =

{
1 if object i has property k
0 otherwise

(2.4)

By considering the presence or absence of each feature fi,k to be a

cluster label, each point is assigned k binary labels indicating its membership

in the k clusters.

The ADCLUS model is compelling for several reasons. First, it is con-

ceptually simple and intuitive. Second, it requires only a similarity matrix,

meaning that the model is not affected by the actual input space features (e.g.

nomative, ordered, etc.) as long as similarity between points is defined. Fi-

nally, it provides a weight for each cluster which is convenient for interpretation

and discarding unimportant clusters.
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When stated in matrix notation, the model’s relation to SVD-like de-

compositions is clear:

Ŝ = FWF T

where S is the n × n similarity matrix, W is an m × m diagonal matrix of

weights, and F is a binary n×m property membership matrix. Without the

requirement that F be binary, this is exactly the SVD of the similarity matrix.

Analogous to SVD, fitting the ADCLUS model requires minimizing the

squared-error energy function:

E =
∑
i 6=j

(si,j − ŝi,j)2 =
∑
i 6=j

(si,j −
∑
k

wkfi,kfj,k)
2 (2.5)

If f were real instead of binary, the energy function could be minimized

by alternating least squares minimization of f and w; however, the binary con-

straint on f does not permit that approach. Instead, f must be minimized

combinatorially by exploring all 2k binary vectors. This is clearly not accept-

able, and algorithms for fitting ADCLUS focus on reducing the complexity of

this step. Once the optimal binary assignment of clusters is known, w can be

optimized by linear least-squares.

Arabie and Shepard’s “ADCLUS” algorithm and Arabie and Carroll’s

“MAPCLUS” algorithm both employed complicated ad hoc heuristic com-

binatorial optimization approaches to fit the model, resulting, according to

Tenebaum in “sometimes ... unexpected or uninterpretable final results” [?].

Both algorithms follow the pattern of use of hierarchical clustering, that is,

they first enumerate a large set of potential clusters, and then refine the set

into a small number of meaningful clusters. The large set of potential clusters

is taken to be all elevated subsets in the data, elevated subsets being dense
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sets of points where any additional points or sets of points will reduce the

minimum similarity of the set.2 The set of all elevated subsets is, like the set

of all nested clustering from HAC, too large to be interpretable. The alter-

nating stages of ADCLUS and MAPCLUS refine the large number of subsets

by, through alternating optimizing assignments and weights, winnowing away

those that are not required (w = 0) for minimizing the ADCLUS energy given

in Equation 2.5.

Despite the algorithmic complications, ADCLUS and MAPCLUS have

been demonstrated to be effective at finding overlapping clusterings in several

fields, including social networks [Ara77], psychological tests [SA79], and retail

product positioning [ACDW81]. It is notable, however, that the datasets in

all cases are small - less than 30 points; neither the process of finding elevated

subsets nor the combinatoric optimization scale to larger datasets. Even so, the

appeal of the additive similarity model has led to several additional approaches

to fitting it.

Hojo [Hoj83] proposed a maximum likelihood formulation called “MLAD-

CLUS” which employs a likelihood function that returns the likelihood of a set

of property assignments producing the observed ordering of pairwise similari-

ties. Hojo’s likelihood function allows model selection by Akaike information

criteria, as well as goodness of fit computation by χ2 tests.

Tenenbaum reformulated the model-fitting problem as an instance of

expectation-maximization [Tan96], providing a clearer view of the optimiza-

tion process. Tanenbaum observed that the probability of a set of observed

similarities, s, for a given cluster assignment f and weighting w is:

2Finding elevated subsets can be viewed as a multiple-membership generalization of
complete-link hierarchical clustering, and is detailed in Chapter 6.
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p(s|f, w) ∝ exp{− 1

2σ2
E} = exp{− 1

2σ2

∑
i 6=j

(si,j −
∑
k

wkfi,kfj,k)
2} (2.6)

The E-step of EM is then:

Q(w|w(n)) =
∑
f ′

p(f ′|s, wn) log p(s, f ′|w) =
1

2σ2
< −E >s,wn

which requires averaging E over all possible configurations of f , the

cluster assignments. Tenenbaum ameliorates this combinatoric problem by

using annealing and Gibbs sampling to estimate the expected value of E. The

results are identical to those of the ADCLUS and MAPCLUS algorithms on

letter-recognition data; however, even with the speedups in estimating E, this

algorithm becomes unmanageable for large (i.e. >30) numbers of points or

clusters.

More recently, Navarro and Griffiths in [NG05] described fitting the

ADCLUS model in a Bayesian framework. They stated the ADCLUS likeli-

hood function as:

p(S|F,w, σ) =
∏
i<j

1

σ
√

2π
exp(− 1

2σ
(si,j −

∑
k

wkfikfjk)
2) (2.7)

which differs from Equation 2.6 in the inclusion of the normalization

term ( 1
σ
√

2π
) and in evaluating only the upper triangle of the similarity matrix

(i < j). The two formulations are identical to a constant scalar.

Navarro and Griffith’s Bayesian approach defines priors for the variables

to be determined, F and w. The prior on w is a simple exponential, p(wk) =
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e−λwk
λ

, which serves as a regularizer for the wk’s. The prior on the cluster

memberships, F , is provided by the Indian Buffet Process [GG05], a generative

process which, as the Chinese Restaurant Process does for single-membership

clusterings, provides sample instantiations of multiple-membership clusterings.

The complete model is then:

sij | F,w, σ ∼ Normal
wk | λ ∼ Exponential
F | α ∼ Indian Buffet Process

Navarro and Griffith employ Gibbs sampling to compute the conditional

posterior on feature assignments. Using the IBP prior and Gibbs sampling in-

stead of a combinatoric approach gives a tremendous speed advantage, allowing

this method to fit the ADCLUS model on datasets consisting of hundreds of

points.

2.2.3.1 Decomposing Similarity Graphs: MODES

In [HYH+05], Hu et al. describe an iterative algorithm called “MODES”

(Mining Overlapping DEnse Subgraphs) for finding overlapping dense sub-

graphs in graphs. MODES finds overlapping dense subgraphs by iterative ap-

plication of a modified version of the (nonoverlapping) dense subgraph finding

algorithm “Highly Connected Subgraphs” (HCS) [HS00]. HCS identifies dense

subgraphs by recursively partitioning a graph by mincuts and checking each

resultant subgraph for complete connectivity. MODES’ modified HCS uses

normalized cut [SM] to overcome HCS’s tendency to make highly unbalanced

cuts. On each outer iteration, MODES identifies connected subgraphs by nor-

malized cut HCS, and then condenses the discovered subgraphs into single

vertices that maintain all of the contained vertices’ links to external vertices.

On subsequent outer iterations, if previously condensed vertices identified as
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part of a dense subgraph, they are expanded and their contained point incor-

porated into the new dense subgraph.

2.2.4 Feature Space Additive Clustering

Similarity space additive clustering assumes that the observed similar-

ity between data points is due to an additive combination of the similarities

due to the points’ unseen individual properties. A benefit of this model is that

similarity between points is always available or can be computed. However, in

situations where data features are observable, using a similarity matrix may

obscure meaning in the features themselves. Feature space additive models

address this by considering the observed features themselves to be an additive

combination of unseen latent features. Thus, a given input space vector X

would be represented as

X[i, :] = mT
i F (2.8)

where mi is a k-length binary vector of memberships and F is a k × d

matrix with latent factor vectors as its rows. An observation X[i, :] is then a

linear combination of factors. The whole dataset X would be:

X = MF (2.9)

where each column of M

Then, the jth feature of the ith data point would be:

Xij = θij0 +
K∑
k=1

θijkρikκjk (2.10)
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where Xij is the observed data point, θij0 is the background activation

level of point (i, j), θijk is the activation of layer (process) k at point (i, j),

ρik is a binary indicator of row i’s membership in layer k, and κjk is a binary

indicator of column j’s membership in layer k. A non-overlapping model would

require that
∑

k ρik = 1 and
∑

k κjk = 1, but the Plaid model explicitly allows∑
k ρik and

∑
k κjk to take any nonnegative integer value.

2.2.4.1 The “Plaid” Model

Lazzeroni and Owen proposed the Plaid model in 2000 for decomposing

microarray data into layers, each layer corresponding to a clustering of genes

and conditions. (The name “plaid” comes from the intersecting colored stripe

appearance of the clusters.) The Plaid model is very similar to Shepard and

Arabie’s ADCLUS, except that ADCLUS decomposes a similarity matrix while

Plaid decomposes a data matrix. Each element of the input matrix is modeled

as a sum of activations,

Xij = θij0 +
K∑
k=1

θijkρikκjk (2.11)

where Xij is the observed data point, θij0 is the background activation level

of point (i, j), θijk is the activation of layer (process) k at point (i, j), ρik is a

binary indicator of row i’s membership in layer k, and κjk is a binary indicator

of column j’s membership in layer k. A non-overlapping model would require

that
∑

k ρik = 1 and
∑

k κjk = 1, but the Plaid model explicitly allows
∑

k ρik

and
∑

k κjk to take any nonnegative integer value.

The model attempts to minimize the total squared reconstruction error:

1

2

n∑
i=1

p∑
j=1

(
Yij − θij0 −

K∑
k=1

θijkρijκjk

)2

(2.12)
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This minimization is NP-hard due to the binary constraint on ρ and

κ. As with ADCLUS, Plaid attempts to find an optimal additive model for

k layers by first greedily adding layers and then minimizing it’s objective by

iteratively cycling through minimization of θ, and real-relaxed minimizations

of ρ and κ.

Lazzeroni and Owen demonstrate Plaid on three datasets, concluding

that it successfully gives interpretable, overlapping clusters.

2.2.4.2 The SBK Model: Decomposing Gene Expression into Cel-
lular Processes

In [SBK03a], Segal, Battle and Koller proposed a probabilistic model of

a microarray dataset. This model, henceforth “SBK”, models each observed

expression value as a sample drawn from a Gaussian whose mean is a sum

of real-valued activations of processes that a gene participates in. Explicitly,

where:

• The input data, X, is a real-valued (n×m) matrix where n is the number

of genes and m is the number of experimental conditions

• M is a (n× k) binary membership matrix

• A is a (k ×m) real-valued activity matrix

P (X[i, j]) = exp

(
(X[i, j]−M [i, :]A[:, j])2

2σ2
j

)
(2.13)

and thus,

E[X[i, j]] = M [i, :]A[:, j] (2.14)
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The problem then is to find M and A so as to maximize the joint probability,

p(X,M,A) = p(M,A)p(X|M,A) = p(M)p(A)p(X|M,A)(∏
i,h

p(M [i, h])

)(∏
h,j

p(A[h, j])

)(∏
i,j

p(X[i, j]|M [i, :], A[:, j])

)

With the assumption that the A[j, h] are uniformly distributed and

that the conditional distribution of X[i,j] is Gaussian, the maximization of the

log-likelihood is then:

max
M,A

log p(X,M,A) = max
M,A

[∑
i,j

log p(M [i, h])− 1

2σ2

∑
i,j

(X[i, j]−M [i, :]A[:, j])2

]

max
M,A

[
1

2σ2
‖X −MA‖2 − log p(M)

]

The core optimization is then to find M and A that minimize ‖X −
MA‖2. The SBK model estimates M and A as follows:

1. M is seeded with a first estimate of the clustering in the data, usually

the output of a partitional clustering such as hierarchical or k-means run

on the rows of X.

2. Next, the least-squares approximation of A for the given X and M is

found as A = M †X, where M † is the pseudo-inverse of M .

3. Using the A from step 2, the next approximation of M is found by

relaxing the requirement that M be binary and solving a bounded least

squares optimization for each gene in M . This effectively seeks a solution

M̂ [i, :] = [0, 1]k for each row such that ||X[i, :]−M̂ [i, :]A||2 is minimized.
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4. A binary solution M is then recovered from the real-valued solution M̂

found in step 3 by thresholding. Since thresholding potentially moves

the solution away from optimal, a local search is performed over every

possible 0-flip of the post-threshold 1’s to find the M [i, :] = {0, 1}k that

minimizes ||X[i, :]−M [i, :]A||2.

5. Using the new M calculated in step 4, steps 2-4 are repeated until ||X−
MA||2 is less than the desired convergence criteria.

The paper [SBK03a] demonstrates the application of this algorithm

on the Gasch yeast stress response dataset [GSK+00], finding that discov-

ered overlapping clusters had much better label enrichment (as determined

by hypergeometric p-value) than clusters discovered by the overlapping Plaid

algorithm or non-overlapping HAC.

2.2.4.3 Biclustering

In [CC00], Cheng and Church give a biclustering (a.k.a. co-clustering)

algorithm for finding biclusters in microarray data. A bicluster is a submatrix

(rows I and columns J) that minimizes some objective. Cheng and Church

find biclusters that minimize mean square residue:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2 (2.15)

where

aiJ =
1

|J |
∑
j∈J

aij, aIj = 1
|I|
∑

i∈I aij, aIJ =
1

|I||J |
∑

i∈I,j∈J

aij (2.16)

The paper describes several greedy algorithms for finding single biclusters that

minimize mean square residue, and an iterative algorithm for finding k bi-

clusters which involves iteratively finding and masking (by random numbers)
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discovered biclusters. The iterative algorithm results in a coupled set of mem-

bership matrices, Mrow and Mcol where Mrow[i, :] defines the row indices of

bicluster i, and Mcol[i, :] defines the column indices of bicluster i. Taken indi-

vidually, Mrow will contain an overlapping clustering of the rows and Mcol will

contain an overlapping clustering of the columns.

Cheng and Church demonstrate the biclustering algorithm on Alizadeh

et al.’s human lymphoma dataset [ea00], showing qualitatively good results.

2.2.4.4 Bond-Energy and Rank-Order Clustering

The ADCLUS model can be thought of as representing an observed

similarity matrix as a weighted sum of similarity matrices, each representing

the similarity structure due to a particular feature. A less delicate approach

would be to group together those points that exhibit high similarity, and to

separates those points that exhibit low similarity.

The Bond Energy Algorithm (BEA) works on non-negative matrices

and attempts to maximize sum of the “bond energy” between each entry and

its immediate neighbors:

M∑
i=1

N∑
j=1

ai,j [ai,j−1 + ai,j+1 + ai−1,j + ai+1,j]

(where a0,j = aM+1,j = ai,0 = ai,N+1 = 0). According to McCormick et

al. [MSW72], an O(N4) quadratic assignment algorithm exists for finding the

global optimum; however this is computationally prohibitive, and a greedy

best-insertion algorithm is proposed as an adequate approximation (though

still O(M2N+N2M)). The Rank-Order clustering algorithm (ROC) works on

binary matrices by simply treating each row and columns as a binary number
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and alternatively numerically sorting the rows and columns until sorting does

not change either order. Final cluster labelling in both algorithms is left to

visual examination of the reordered matrix. Both algorithms permit overlap,

but leave the difficult choice of thresholds and labelling to humans.

These matrix-reordering algorithms can be viewed as heuristic solu-

tions to the problem of finding dense subgraphs [FPK01, GKT05] of a graph

where each row and each column corresponds to a vertex, and each matrix

entry corresponds to the weight of the arc connecting the row and column

vertices. Blocks in the reordered matrices correspond to dense subgraphs, and

overlapping points correspond to articulation vertices of the graph.
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Chapter 3

Comparison of Overlapping Clusterings

An essential problem in both single-membership and multiple-membership

clustering is evaluation and comparison of the results provided by different

clusters. One of the appeals of single-membership clustering is that the notion

of membership is simple: two points are either in the same cluster or they are

not. Multiple-membership clustering requires a much more nuanced view: two

points could be in exactly the same set of clusters, have no cluster member-

ships in common, or share a subset. This chapter explores how to reasonably

compare two multi-membership clusterings, and derives some insights about

the interpretation of overlapping clustering results.

Issues in comparing clusterings

In general, two clusterings of the same data will not use the same

labels, or even the same number of labels (clusters). While the actual labels

placed on the points are arbitrary, the distributional characteristics of the

label assignments can be compared between the two clusterings. In particular,

if the two clusterings are similar but with different labels, the knowledge of

a point’s labels in the first clustering should allow one to guess the point’s

corresponding label in the second clustering with an accuracy better than

random 1. Alternatively, the knowledge that two points share a label in the

1That is, better than a random draw from the prior distribution over labels for the second
clustering.
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first clustering should provide an improved guess about the likelihood that the

same two points share a label in the second clustering. These two intuitions

lead to the most commonly used measures for comparing disjoint clusterings:

mutual information, pairwise mutual information, and the Rand index.

Evaluation and comparison of clustering results should be independent

of the clustering algorithm generating the labels. The generated labels can be

thought of as being samples from a random variable, providing a probabilistic

model of labels generated by any particular algorithm.

This chapter is divided into three major sections. In the first, we de-

scribe a probabilistic model of single-membership clustering and deduce the

comparison measures related to the intuitions described above. In the sec-

ond section, we describe a probabilistic model of multiple-membership clus-

tering and again deduce the comparison measures with special attention to

the differences between single- and multiple- membership clustering. Finally,

in the third section, we derive the property of label independence in multiple-

membershp clustering.

3.1 Single-Membership Evaluation

3.1.1 Desiderata

The two desiderata we have for comparing single membership cluster-

ings are:

(a) If two single-membership clusterings are similar, knowledge of the label

assigned to a point by C1 should reduce the uncertainty about the label

assigned to the point by C2.
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(b) If two single-membership clusterings are similar, knowledge that two

points are assigned the same label by C1 should reduce the uncertainty

about whether the pair is assigned the same label by C2.

3.1.2 Probability Model of Single Membership Clustering

A single-membership clusterer assigns a label to each input point. If

there are k labels, each label can be represented by an indicator vector:

Label Indicator Vector
L1 1 0 ... 0 0
L2 0 1 ... 0 0
...

...
...

...
...

...
Lk−1 0 0 ... 1 0
Lk 0 0 ... 0 1

A particular labeling returns a membership matrix, M :

points labels M (array of indicator vectors)

x[1]
x[2]
x[3]
x[4]

...
x[n− 2]
x[n− 1]
x[n]



L2

L4

L1

L2
...
L3

L1

L4





0 1 0 0
0 0 0 1
1 0 0 0
0 1 0 0
...

...
...

...
0 0 1 0
1 0 0 0
0 0 0 1


where each row contains exactly one “1”.

If we know nothing about the points x, we can compute the prior

probability of a particular point’s cluster assignment as:

p(labeli(x[m]) = 1) = ρi =

∑n
j=1M [j, i]

n
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The quantity ρi is the prior for cluster i, indicating the probability of

a randomly chosen point having labeli.

We would expect, however, that a “good” clusterer would assign labels

as a (possibly stochastic) function of the features of a data point, i.e.:

fi(features(x[m])) = p(labeli(x[m] = 1| features(x[m]))

where
∑k

i=1 fi() = 1.

3.1.3 Mutual Information

The first intuition mentioned in section 3.1.1 is that if two clusterings

described similar clusters, then the knowledge of a point’s label in the first

clustering would be predictive of the point’s label from the second clustering.

This intution is measured mathematically by the mutual information between

the cluster labels. The mutual information between two variables measures the

Kullback-Leibler divergence (“KL divergence”) between a system’s observed

state (the joint probability between the two sets of labels) and its maximum

entropy state (the product of the priors of the two sets of labels) [CT91]. When

used to evaluate the similarity between two clusterings A and B containing k

and l unique lables respectively:

I(A;B) =
k∑
i=1

l∑
j=1

p(i, j)[log(p(i, j))− log(p(i)p(j))] (3.1)

=
k∑
i=1

l∑
j=1

p(i, j) log
p(i, j)

p(i)p(j)
(3.2)
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Inspection of the log ratio indicates that this quantity is zero when the

joint distribution provides no information, p(i, j) = p(i)p(j), and is positive

when the joint diverges from the product of the priors. A problem with this

form of the mutual information is that its range is dependent on the number

of labels in sets A and B. Thus, this form does not allow one to answer the

question “which clustering, B or C, is more similar to A?” if B and C have

different numbers of clusters. To facilitate comparison, several normalized

versions of the mutual information have been proposed which provide a value

between 0 and 1 across different numbers of clusters. One of these proposed

by Yao [Yao03] is:

NMI(A;B) =

∑
i∈A
∑

j∈B p(i, j)
log(p(i,j))

log(p(i)p(j))

H(A,B)
(3.3)

where

H(A) = −
k∑
i=1

p(i) log2 p(i) (3.4)

The denominator arises from the expression of the mutual information

in terms of entropies:

MI(A;B) = H(A) +H(B)−H(A,B) (3.5)

If the label assignments in A and B are completely independent, H(A)+

H(B) = H(A,B) and the mutual information is zero. If the label assignments

in A and B are completely dependent, H(A) = H(B) = H(A,B) and H(A) +

H(B)−H(A,B) = H(A,B). Intervening levels of dependence between A and

B return values between 0 and H(A,B), so normalizing by H(A,B) keeps

MI(A;B) between 0 and 1.
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In the terms defined in section 3.1.2, the joint probability is

p(label(x[m]), label(x[m])) and the product of the priors is

p(label(x[m]))p(label(x[m])). The mutual information is then:

k∑
i=1

k∑
j=1

p(labeli(x[m]), labelj(x[m]))log2
p(labeli(x[m]), labelj(x[m]))

p(labeli(x[m]))p(labelj(x[m]))

3.1.4 Pairwise Mutual Information

The second intution mentioned in section 3.1.1 was that if two clusterers

found similar clusters, then a pair of points assigned the same label by the first

clusterer would likely also be assigned the same label by the second clusterer.

This intution is measured mathematically by the pairwise mutual information

(PMI). The PMI measures the KL divergence between the joint probability

that two different clusterers will assign a pair of points the same label and the

product of the priors that each clusterer will assign points to the same label.

Since in single-membership clustering, two points can either share a label or

not share a label, the PMI is a measure of the mutual information between

two Bernoulli random variables.

When comparing two Bernoulli RV’s, only four things can happen, as

shown in Table 3.1.5. The diagonal terms, a and d correspond to 11 and

00, respectively, and the off-diagonal terms, b and c correspond to 10 and 01,

respectively. Using these terms, the PMI can be calculated as:

PMI(C1, C2) =
a

N
log2

a

N
− a

N
log2[(

a + b

N
)(

a + c

N
)] +

b

N
log2

b

N
− b

N
log2[(

a + b

N
)(

b + d

N
)]

+
c

N
log2

c

N
− c

N
log2[(

a + c

N
)(

c + d

N
)] +

d

N
log2

d

N
− d

N
log2[(

c + d

N
)(

b + d

N
)]
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Pairs Together B Pairs Apart B
Pairs Together A a b a+b

Pairs Apart A c d c+d
a+c b+d a+c+b+c = N

Table 3.1: Terms used in PNMI and Rand Index calculations

As with the mutual information, the pairwise-mutual information can

be normalized by the joint entropy of the two random variables:

H(C1, C2) = − a

N
log2(

a

N
)− d

N
log2(

d

N
)

yielding

PNMI(C1, C2) =
PMI(C1, C2)

H(C1, C2)

3.1.5 The Rand Index and Adjusted Rand Index

While the PNMI is soundly rooted in information theory, its calculation

can be cumbersome. The much simpler Rand Index [Ran71] is probably the

most widely used method for comparing two different clusterings. As with the

PNMI, the procedure for calculating the Rand index involves first tabulating

the number of pairs of points with the same label in both clusterings, the same

label by one and not the other, and the same label in neither (Table 3.1.5).

From this table, the Rand Index is:

R =
a+ d

N
=

number of matching pairs

total pairs
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The Rand Index returns a number between 0 and 1 indicating the sim-

ilarity between the two clusterings. However, if clusterers A and B randomly

assign points to clusters, the products of the priors will yield some points shar-

ing the same label by chance yielding a nonzero Rand index. The expected

number of points together by chance would be:

E[R] =
(a+ b)(a+ c)

N2
+

(c+ d)(b+ d)

N2
(3.6)

Removing these chance occurences yields the Adjusted Rand Index (ARI)

[HA85]:

Radj =
(a+d)
N
− E[R]

1− E[R]
=

observed index− expected index

maximum index− expected index

The ARI approaches 1 as the two clusterings identically assign pairs,

and approaches 0 as the two clusterings assign pairs the same label at a rate

no greater than chance.

3.1.6 ARI and PNMI

The ARI and the PNMI are both computed over pairs of points and

might be expected to be very similar. In practice, the ARI generally returns

a number closer to 1 than the PNMI. The reason is that the ARI calculation

ignores the off-diagonal terms, b (10) and c (01). In the PNMI calculation,

the b term indicates the extent to which a pair sharing a lable in clustering A

indicates that the pair will not share the lable in clustering B, and vice versa

for the c term. Removing the b and c terms from the PNMI yields
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a
N

log2
a
N
− a

N
log2[(

a+b
N

)(a+c
N

)] + d
N

log2
d
N
− d

N
log2[(

c+d
N

)( b+d
N

)]

− a
N

log2
a
N
− d

N
log2

d
N

(3.7)

which has a similar form to the ARI:

a
N
− (a+b

N
)(a+c

N
) + d

N
− ( c+d

N
)( b+d

N
)

m
N
− (a+b

N
)(a+c

N
) + N−m

N
− ( c+d

N
)( b+d

N
)

(3.8)

By observation of these two equations, it is clear that both approach

1 as the b → 0 and c → 0, and approach 0 as a
N
→ (a+b

N
)(a+c

N
) and d

N
→

( c+d
N

)( b+d
N

). Figure 3.1.6 shows that the ARI, PNMI, and NMI all give similar

estimates of cluster similarity, with ARI and PNMI being very similar and

NMI being slightly pessimistic.

3.2 Multiple Membership Evaluation

The two intuitions we have for single membership clustering hold for

multi-membership clustering, and can be restated as:

(a) If two multi-membership clusterings are similar, knowledge of the mem-

bership vector assigned to a point by C1 should reduce the uncertainty

about the membership vector assigned to the point by C2.

(b) If two multi-membership clusterings are similar, knowledge that two

points are assigned the same membership vectors by C1 should reduce

the uncertainty about the number of shared assignments given to the

pair by C2.
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Figure 3.1: The empirical relationship between ARI, PNMI, and NMI for
a dataset of 200 points and 10 clusters as the shared information between
labellings changes. The vertical axis indicates the value of the comparison
measure. The horizontal axis indicates the distortion between the two label
matrices, which each tick indicating 0.5% of the labels changed.
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3.2.1 A Probabilistic View of Multiple-membership Clustering

As with single-membership clustering, we can construct a probabilistic

model of multiple-membership clustering. A multiple-membership clusterer

assigns each data point a subset of labels from a set of k possible labels.

This can be represented as a binary membership vector associated with each

point where any number of the binary elements can be 1. Under the most

naive assumption that assigned labels are independent of each other and of

the features of the data point, the membership vectors can be represented as

samples from a vector of Bernoulli random variables with means corresponding

to the prior probability of cluster membership:

C1 C2 . . . Ck
M=[ Bernoulli(ρ1), Bernoulli(ρ2), . . . Bernoulli(ρk) ]

We would expect that a “good” multiple-membership clusterer would

assign labels based as a function of the features:

C1 C2 . . . Ck
M=[ f1(features(x)), f2(features(x)), . . . fk(features(x)) ]

In contrast to single-membership clustering, there is no constraint that∑k
i=1 fi = 1. Therefore, the presence of a particular label does not in general

preclude the presence of any other label.

A multiple-membership clusterer assigns some subset λ of the set of

labels, Λ (|Λ| = k) to each data point. Therefore, an input point can have

any number of labels between 0 and k. As with single membership clustering,

each point’s labels can be represented by an indicator vector:
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Label Indicator Vector
label(x1) 1 0 ... 1 0
label(x2) 0 0 ... 0 0

...
...

...
...

...
...

label(xk−1) 1 1 ... 1 0
label(xk) 0 0 ... 0 1

The indicator vectors for a data set can be collected into a membership

matrix M :

points labels M (array of indicator vectors)

x[1]
x[2]
x[3]
x[4]

...
x[n− 2]
x[n− 1]
x[n]



L2, L5

L1, L4, L5

L1, L5

L2
...

L1, L2

L2

L1, L2, L3





0 1 0 0 1
1 0 0 1 1
1 0 0 0 1
0 1 0 0 0
...

...
...

...
...

1 1 0 0 0
0 1 0 0 0
1 1 1 0 0


As with single-membership clustering, the priors for each cluster, ρi can

be calculated as:

ρi = p(labeli(x[m]) = 1) =

∑n
j=1M [:, i]

n

For multiple membership clustering, there is no requirement that
∑k

i=1M [j, :

] = 1; instead, 0 ≤
∑k

i=1M [j, :] ≤ k. The edge cases,
∑k

i=1M [i, :] = 0 and∑k
i=1M [i, :] = k respectively represent the case of a point being assigned and

the case of a point being assigned to all clusters.

For multiple membership clustering, there is no requirement that
∑k

i=1 ρi =

1; instead, 0 ≤
∑k

i=1 ρi ≤ k. Notably, the case
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Of course, a “good” clustering would not be independent of the features,

instead,

p(labeli(x[m]) = 1) = fi(features(x[m])

with 0 ≤
∑k

i=1 fi() ≤ k.

In contrast to single membership clustering, the lack of equality con-

straints on the sum of the ρi’s and the fi’s allows these terms to be independent.

3.2.2 Mutual Information

In single-membership clustering, the mutual information measured how

much knowing the labels assigned by one clusterer would improve one’s knowl-

edge of the labels assigned by a second clusterer. In multiple-membership

clustering, each point is assigned a subset of labels. The direct analog to

single-membership mutual information would be, then, to ask if knowing the

subset of labels assigned to a point by one multiple-membership clusterer would

provide information about the subset of labels assigned to the point by a sec-

ond multiple-membership clusterer. This is equivalent to treating each point’s

binary membership vector as a unique label, and computing the mutual infor-

mation over these labels.

Empirically, this approach does not work unless the number of data

points, N , is much greater than the total number of unique labels, 2k. For

N ≤ 2k, the joint relationship between the labels cannot be established and

the mutual information is artificially high.2 This phenomenon is obvious in

2See Appendix for detailed explanation.
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Figure 3.2.4, as even two completely random assignments of labels have an

apparent mutual information of greater than 0.5.

An alternative is to rephrase the relevant question as “does the as-

signment of a particular label by clusterer A indicate the likely assignment of

a particular label or group of labels by clusterer B?”. To answer this ques-

tion, we consider each cluster independently, and compute a matrix of mutual

informations:

B1 B2 ... Bk

A1 NMI(A1;B1) NMI(A1;B2) ... NMI(A1;B3)
A2 NMI(A2;B1) NMI(A2;B2) ... NMI(A2;B3)
...

...
...

. . .
...

Ak NMI(Ak;B1) NMI(Ak;B2) ... NMI(Ak;Bk)

Each of these mutual information involves the calculation of the mutual

information between two Bernoulli random variables which is a fast calculation

that avoids the problem of too many labels. Depending on one’s expectation

about the true number of clusters, the clusters in A and B can be aligned by

trace maximization or bipartite graph partitioning (discussed in Chapter 4).

Once the clusters are matched, the overall mutual information can be esti-

mated as the trace of the NMI matrix divided by the number of clusters. As

demonstrated in Figure 3.2.4, this quantity has much more reasonable charac-

teristics than the mutual information computed over the indicator vectors.

3.2.3 Pairwise Mutual Information

The second intuition about comparing multiple-membership clusterings

is that knowing the number of labels shared by two points under clustering

A would be indicative of the number of labels shared by two points under

43



clustering B. Note that this is somewhat more complicated than the single

membership case. With multiple membership clustering, membership in one

cluster in clustering A may be indicative of membership in more than one

cluster in clustering B. The pairwise mutual information accounts for these

possibilities.

As with single membership clustering, we first tabulate the the cooc-

curences of label counts between two clusterings. This tabulation is shown in

Table 3.2. When normalized by the number of pairs, N , Table 3.2 represents

the joint probability of shared label counts between clusterings A and B. The

marginal distributions are the priors over label counts. The pairwise mutual

information is then the KL divergence between the joint and the product of

the marginals,

PMI(A,B) =
J∑
j=0

K∑
k=0

p(j, k) log2(
p(j, k)

p(j)p(k)
) (3.9)

PMI(C1, C2) =
J∑
j=0

K∑
k=0

Aj,k
N

log2(

Aj,k
N

(Nj,.)(N.,k)

N

) (3.10)

3.2.4 The Multimembership Rand Index: The Omega Index

The Omega Index [CD88] extends the Adjusted Rand Index to overlap-

ping clustering. In addition to counting the number of common pairs occurring

together in 0 or 1 clusters, it also counts the number of pairs occurring together

in 2,...,k clusters. Using the terms from Table 3.2,
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0 1 2 ...k... K Marginal
0 A0 N0.

1 A1 N1.

2 A2 N2.
...

...
j Aj Nj.
...

...
J AJ NJ.

Marginal N.0 N.1 N.2 N.k N.K N

Table 3.2: Table for calculating multiple-membership pairwise mutual infor-
mation and Omega Index

Ω =

∑min(J,K)
j=0 Aj

N

E[Ω] =

∑min(J,K)
j=0 Nj.N.j

N2

As with the single-membership rand index, the omega index requires an

adjustment to remove clusters sharing the same number of labels by chance.

Ωadj =

Pmin(J,K)
j=0 Aj

N
− E[Ω]

1− E[Ω]

=
observed index− expected index
maximum index− expected index
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Figure 3.2: The empirical relationship between the Omega Index, PNMI, NMI,
and aligned NMI for a dataset of 200 points labeled with 10 labels as the shared
information between labellings changes. The vertical axis indicates the value
of the comparison measure, and each step on the horizontal axis represents
randomly assigning an additional 1% of the labels of the second clustering.
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3.2.5 Omega Index and Multiple-membership PNMI

Figure 3.2.4 shows that the straightforward NMI is unusable for com-

paring multiple-membership clusterings. Of the other metrics, the Omega

Index gives the most optimistic measure of multiple-membership similarity,

while the PNMI and aligned NMI are very similar. Like the ARI in the single-

membership case, the Omega Index considers only the diagonal terms - that a

pair of points sharing m clusters in clustering A also shares exactly m clusters

in clustering B - and ignores off-diagonal terms.
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Chapter 4

Cluster Alignment

4.1 Introduction

Interpreting and comparing multiple-membership clusterings requires

one to know the correspondence of labels between two clusterings or between

a clustering and ground truth. Therefore, algorithms for cluster alignment are

essential for the utility of multi-membership clustering. This chapter describes

two ways of aligning multiple-membership clusterings, one using hypergeomet-

ric p-values and the other normalized mutual information, and introduces a

visualization called the cluster signature that facilitates visual examination of

cluster alignment results.

4.2 Aligning Nondisjoint Membership Matrices with Hy-
pergeometric p-values

To align two binary membership matrices MA and MB, we seek a per-

mutation of the columns of MB that maximizes the similarity between each

column of MA and its corresponding column in MB. A simple measure such

as Hamming distance between the columns seems like a reasonable choice,

but it implicitly assumes each column has the same density (ratio of 1’s and

0’s), which is not a valid assumption. To compensate for variations in density,

we assume the 1’s are independently distributed and calculate the probability

of seeing the observed match given the densities of the binary vectors, v1 (a
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column of MA) and v2 (a column of MB):

With

• N as the vector length (total number of data points)

• d1 as the number of 1’s appearing in v1, i.e. d1 =
∑N

i=1 v1[i]

• d2 as the number of 1’s appearing in v2, i.e. d2 =
∑N

i=1 v2[i]

• S is the number of “overlapping” 1’s, i.e. S =
∑N

i=1 v1[i]× v2[i]

• the 1’s in v1 and v2 uniformly distributed

the probability of seeing an observed overlap of S 1’s is given by:

P (s = S) =

(
N
d1

)(
d1

S

)(
N − d1

d2 − S

)
(
N
d1

)(
N
d2

) (4.1)

where the denominator is the total number of permutations of the two

vectors, and the numerator is the number of those permutations that have the

observed overlap S:

•
(
N
d1

)
counts the number of ways d1 1’s can be placed in a vector of

length N ;

•
(
d1

S

)
counts the number of ways to choose the S overlapping points

from the d1 1’s in v1; and

•
(
N − d1

d2 − S

)
counts the number of ways to place the remaining 1’s in

vector 1 such that they do not overlap with 1’s in v2.
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While the denominator is obviously symmetric in assignment of v1 and v2, the

numerator is not so clearly symmetric. Expansion of the binomial in Equation

4.1 coefficients makes it clear that the numerator is symmetric:

N !

(d1 − S)!S!(N − d1 − d2 + S)!(d2 − S)!
(4.2)

Algebraic simplification of Equation 4.1 yields:

P (s = S) =

(
d1

S

)(
N − d1

d2 − S

)
(
N
d2

) (4.3)

Equation 4.3 calculates the probability that two binary vectors v1 and

v2 with densities d1 and d2 respectively will have S matched 1’s (Equation

4.3 is the hypergeometric distribution evaluated at s = S). If we observe two

N -length binary vectors, then

p− value =

s=min{d1,d2}∑
s=S

P (s) (4.4)

The p-value defined in Equation 4.4 gives the total probability of seeing

the observed overlap (S) or a greater overlap. This value essentially measures

the likelihood of the observed overlap being a random event, hence a small

p-value indicates a small probability of seeing the observation at random. 1

Returning to our original goal of aligning the columns of two member-

ship matrices M1 and M2, it is clear that if we find that the p-value of matching

1A similar measure called the S-measure has been used previously in [LD84, LD85].

50



between column i of M1 and column j of M2 is very small, we can surmise

that those two columns represent the same cluster. Finding the best possi-

bly global matching of columns is an instance of the Stable Marriage problem

[GI89], which is known to be NP-complete. The well-known Gale-Shapley al-

gorithm [GS62] gives asymmetric solutions, so we opt to use a simple greedy

matching algorithm.

1. Find the pairwise alignment p-value for every column of M1 matched

with every column of M2. (For M1 and M2 each having k columns, this

operation will take (k
2

2
− k) p-value calculations.)

2. Match the pair of columns M1[:, i] and M2[:, j] with the lowest pairwise

p-value.

3. Repeat 1-2 until all columns have been assigned.

Note that this algorithm does not allow a single cluster in one clustering

to be represented by a combination of clusters from the other clusterer.

4.3 Visualization of p-value based alignment

Along with the overlapping correspondence matching algorithm, we

have developed a visualization tool which clearly presents correspondence

alignments and other information. The visualization, as shown in Figure 1,

presents three frames. The first two show cluster “signatures”, and the last a

bar chart of overlap p-values.

Cluster signatures are a visual representation of a nondisjoint label

assignment designed to facilitate quick inspection and comparison of labelings.
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Given an n ×m membership matrix M , a cluster signature is constructed as

follows:

1. For each row i,

(a) construct a vector t containing the indices of the 1’s and set score[i] =

0

(b) If length(t) = 0, score[i] = n+ 1

(c) if t[2]− t[1] 6= 1, score[i] = t[1] +
∑length(t)

k=2
t[k]
mk

(d) if t[2]− t[1] = 1, score[i] = t[1] + (1− 1
mm+1 ) +

∑length(t)
k=2

t[k]
mm+k

2. Sort rows by increasing score

Ordering the membership matrix as described above puts the data

points with no memberships at the bottom (step 1b) and sorts data points

with memberships into blocks according to their minimum cluster label (steps

1c and 1d). Additionally, step 1d creates a visual overlap between consecutive

overlapping clusters. Both steps 1c and 1d place points with additional cluster

memberships into a unique order. This algorithm leads to a unique ordering

for a given membership matrix, and is independent of the input order of the

points.

4.4 Comparison of Clustering Methods

We present the alignment and visualization with a comparison of two al-

gorithms, Model-based Overlapping Clustering (MOC) [BBK+05] and thresh-

olded soft k-means 2 . MOC takes as input an observed n × m data matrix

2Soft k-means is the application of the expectation maximization (EM) algorithm to a
mixture of k spherical Gaussians. Soft k-means minimizes an objective function equivalent
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E and factors it into an n × k binary matrix M and an m × k (real) acti-

vation matrix A. Soft k-means is very similar to the standard k-means al-

gorithm, except that points are given partial (“soft”) assignment to centers.

The resulting membership matrix is real, with the property that for any row

j,
∑m

i=1 x[i, j] = 1. A soft clustering can be converted into a hard clustering

by thresholding the soft membership matrix.

For ease of explanation and analysis, we demonstrate the application

of our alignment and visualization on synthetic data. We generated a 10

cluster synthetic dataset using the MOC generative model, which is a concep-

tual representation of the biological and experimental processes that produce

collections of microarray experiments. The MOC model assumes that an ob-

served n×m data matrix E can be expressed as the product an n×k (binary)

nondisjoint membership matrix M and an m × k (real) activation matrix A.

For this example, we have used n = 1000,m = 30, k = 10. (Chapter 5 provides

an explanation of the MOC model.)

Figure 1 illustrates the p-value based alignment of Model Based Over-

lapping Clustering with the ground truth for a synthetic data set. The upper-

most box shows the signatures of each of the 10 clusters of the ground truth

labels. The points have been sorted as described in Section III. The next box

shows the signatures of each of the 10 clusters of the MOC labelling, with

the points sorted as above and the clusters aligned. The final box shows the

p-values of each of the alignments.

to the fuzzy c-means [Bez81] objective with “fuzziness” parameter m set to 1 and with
dimensional scaling matrix Ak as identity. These are reasonable - but not necessarily optimal
- parameters for this algorithm on our dataset. For a study on choosing m and Ak for a
given dataset, see [DK03].
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By visually comparing the first and second frames (the cluster signa-

tures of the ground truth and of MOC’s labelling, respectively) in Figure 1,

one can observe that this clusterer, MOC, has found a cluster labelling that

corresponds well to the actual clusters in the data. Columns 1,3,5, and 6 show

log10 p-values of less than -110, indicating infinitesimal odds of those matches

occurring by chance. The other columns show good alignment, although the

imperfections in the result are evident. Overall, this alignment is very good,

which is to be expected since the data was generated using the clusterer’s

generative model.

Figure 2 shows the alignment of a soft k-means clusterer run on the

same artificial data set and thresholded at 0.3. Both the signature visualization

and the p-value chart show that the clustering does not match the truth as well

as the MOC clustering. While several clusters show reasonable correspondence

with the ground truth, two clusters - columns 2 and 4 - completely fail to

match.

4.5 Alignment for Cluster Ensembles

When the underlying generative model is unknown, combining the re-

sults of several diverse clusterers often improves the overall clustering result.

One method of aligning clusters ensemble techniques is matching label assign-

ments from each clusterer in the ensemble. Effective methods exist for disjoint

membership matrices [SG02]; however, such methods are not applicable to

nondisjoint membership matrices.

The p-value alignment method described in Section II provides a means

of combining overlapping clusterings where each constituent clusterer uses the

same k. In this section, we present results from combining three overlapping
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Figure 4.1: Visualization of correspondence between ground truth and MOC
overlapping clustering for synthetic microarray data. The top frame is the
“signature” of the ground truth, with the rows sorted as described in Section
4.3. The second frame is the “signature” of the MOC clustering, with the
rows in the same order as in the top frame, and the columns matched using
the algorithm described in Section 4.2. The final frame is a bar chart of the
alignment p-values. The more negative the alignment p-values, the less likely
the alignment happened due to random chance.
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Figure 4.2: Visualization of correspondence between ground truth and Soft
k-means overlapping clustering for synthetic microarray data.
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clusterers - MOC, thresholded soft k-means, and gene-shaving - on the previ-

ously described synthetic microarray dataset.

The idea behind cluster ensembles is that each constituent clusterer will

return a noisy representation of the actual underlying clustering. Combining

several clusterers in an ensemble averages out the noise and often provides a

better estimate of the underlying clustering. Clustering algorithms in general

return clustering information in arbitrary order, necessitating cluster matching

prior to ensemble operations.

We applied MOC, soft k-means thresholded at 0.3, and gene shaving

to our synthetic microarray dataset. We aligned the results to each other, as

shown in Figure 4.3. We then performed a majority-vote combination; that

is, if a gene is marked as belonging to a cluster m by 2 out of the 3 clusters,

we assign that gene to cluster m in the final result. Figure 4.4 shows the final

consensus result aligned to the ground truth.

The consensus clustering shown in Figure 4.4 is superior to any of the

constituent clusterings shown in Figure 4.3. It should also be noted that while

the individual alignments for MOC and soft k-means shown in Figures 1 and

2 have some lower alignment p-values, the overall ensemble result appears to

be much less noisy.

4.6 Conclusion

Overlapping clustering techniques provides a means of clustering mi-

croarray data in a way that matches nicely with biologic intuition about the

participation of genes in biological processes. The results of overlapping clus-

terings, though, can be difficult to interpret. In this chapter, we presented a
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Figure 4.3: Visualization of aligned cluster signatures of MOC, soft k-means,
and gene shaving clustering results on the synthetic data.
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Figure 4.4: Visualization of ground truth cluster labels and aligned majority-
vote consensus of MOC, soft k-means and gene shaving. The consensus recov-
ers the actual labelling better than any of the individual clusterers.
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cluster alignment method and a visualization tool which facilitates comparison,

evaluation, and combination of overlapping clustering results.
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Chapter 5

Model Based Overlapping Clustering

5.1 Introduction

As mentioned previously, the fundamental approaches to single mem-

bership clustering come in two flavors: model-based approaches which assume

an underlying generative model and employ global minimization to find the

model parameters, and non-model-based approaches which assume no model

and find groupings based local information present in the data. This chap-

ter describes a model-based approach to overlapping clustering; Chapter 6

describes a non-model based approach.

Gene expression data on microarrays has been a motivating domain for

several data analysis techniques, including some of those aimed at overlapping

clustering discussed in Chapter 2. A single microarray experiment captures

the response (increased expression vs decreased expression) of many (∼10k)

genes to some challenge to an organism’s homeostasis; several individual ex-

periments taken together allows the representation of each gene as a vector

of its expressive responses to various stimuli. This arrangement allows the

clustering genes into functional groups according to their expression profiles.

While the standard single-membership approaches of k-means and hierarchi-

cal agglomerative have proved useful for initial analysis, it is known from wet

lab experiments that many genes participate in several genetic pathways - a

situation that can not be captured by single-membership clustering. A deeper
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understanding of the biology underlying the observed expression requires a

model that both allows overlap and approximates the biological structure un-

derlying cellular processes.

Such a model was introduced by Segal et al. [SBK03b]. This model,

henceforth referred to as the SBK model, was presented as an instantiation of

a Probabilistic Relational Model [FGKP99] intended specifically for clustering

gene expression data. When extracted from the terminology of PRN’s, the

model is fundamentally an additive mixture model which represents a gene’s

observed expression level under a particular experimental condition as a sum

of samples from unseen “processes” active in the experimental condition and

involving the gene. This model, involving a binary membership matrix (genes

× processes) and a real process activation matrix (processes × conditions),

allows overlap by placing no constraint on the genes × processes binary mem-

bership matrix and in its structure provides a reasonable approximation of the

underlying biology.

When viewed as an additive mixture model which allows overlap, the

structural form of SBK model appears appropriate for several other clustering

problems likely to involve overlapping memberships, notably in the domains of

document clustering (where the microarray-specific entities of gene, process,

and condition can be readily adapted to the appropriate document entities

of word, topic, and document, respectively) and recommender systems (where

gene, process, and condition become reviewer, item features, and item). These

domains, however, are known to involve high-dimensional sparse data which

is not well represented by the Gaussian models and Euclidean distances inher-

ent in the SBK model as it was originally developed for microarray analysis.

Adapting the model for use in these domains requires that it be generalized
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to work with any regular exponential family distribution and corresponding

Bregman divergence. Further, this generalization creates the need for a general

algorithm for monotonically improving the objective function of an overlapping

model employing any regular exponential family distribution.

This chapter presents both the exponential family generalization of the

SBK model, called “MOC”, along with an algorithm for monotonically im-

proving its objective function. The effectiveness of the generalized model and

update algorithm are demonstrated on experiments involving subsets of the 20-

Newsgroups and EachMovie data sets. We compare the MOC model’s results

to an alternative “straw man” algorithm which produces a multiple member-

ship clustering by first producing a standard probabilistic mixture model “soft”

clustering and then making a hard assignment of each item to one or more clus-

ters using a threshold on the cluster membership probability. While a very

straightforward way to generate multiple memberships, the ability of thresh-

olded soft clustering to produce quality overlapping clusterings is questionable,

as the underlying mixture model assumes single membership. Our experiments

show that the generalization of the SBK model, MOC, which is inherently a

multiple-membership model, produces groupings that are more similar to the

ground truth overlapping categories on the experimental datasets.

5.2 Models

In this section, we describe three models: the SBK model, the “straw-

man” model which finds overlapping clusterings by thresholding a standard

mixture model, and the MOC model which generalizes the SBK model.
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5.2.1 The SBK Model

Probabilistic Relational Models (PRMs) [FGKP99] extend the basic

concepts of Bayesian networks into a framework for representing and reasoning

with probabilistic relationships between entities in a relational structure. The

SBK model is an instantiation of a PRM for capturing the relationships be-

tween genes, processes, and measured expression values on DNA microarrays.

The structure of the instantiated model succinctly captures the underlying bi-

ological understanding of the mechanism generating the observed microarray

values — namely, that genes participate in processes, experimental conditions

cause the invocation of processes at varying levels, and the observed expression

value in any particular microarray spot is due to the combined contributions

of several different processes. The SBK model places no constraints on the

number of processes in which any gene might participate, and thus gene mem-

bership in multiple processes, i.e., overlapping clustering, naturally follows.

The SBK model employs three matrices: the observed real expression

matrix X (genes × experiments), a hidden binary membership matrix M

(genes × processes) containing the membership of each gene in each process,

and a hidden real activity matrix A (processes × conditions) containing the

activity of each process for each experimental condition. The model assumes

that the expression value X[i, j] corresponding to gene i in experiment j has a

Gaussian distribution with constant variance. The mean of the distribution is

equal to the sum of the activity levels A[h, j] of the processes h in which gene

i participates so that

p(X[i, j]|Mi, A) =
1√
2πσ

exp(− 1

2σ2
(X[i, j]−M [i, :]A[:, j])2).
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The SBK model further assumes that M and A are independent so that

p(M,A) = p(M)p(A) and that X[i, j]’s are conditionally independent given

M [i, :] and A[:, j]. M and A are assumed to be component-wise independent

as well.

Assuming that elements of A are uniformly distributed, and noting that

the conditional distribution of elements of X is Gaussian, the log-likelihood of

the joint distribution over X, M , and A is

max
M,A

log p(X,M,A) ≡ min
M,A

[
1

2σ2
‖X −MA‖2 − log p(M)

]
.

To find the value of the hidden variables M and A, the SBK model uses

the iterative Expectation Maximization (EM) approach [DLR77]. The E step

involves finding the best estimates of the binary genes-process memberships

M . The M step involves computing the prior probability of gene membership

in each process p(M) and the process-condition activations A. The core pa-

rameter estimation problem is clearer when recast as a matrix decomposition

problem (initially ignoring the priors). With the knowledge that there are k

relevant processes in the observations, the goal is to find a decomposition of

the observed expression matrix X ∈ Rn×d into a binary membership matrix

M ∈ {0, 1}n×k and a real valued activation matrix A ∈ Rk×d such that the

reconstruction error ||X −MA||2 is minimized. Hence, the problem is one of

matrix factorization not unlike SVD, but complicated by the constraint that

M must be a binary matrix. Enforcement of this constraint on M requires

special attention on each EM iteration. The procedure, which involves relax-

ing the binary constraint on M , thresholding M to binary and then tuning by

local search proceeds as follows:

1. M is seeded with an initial estimate of the clustering in the data, usually
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the output of a partitional clustering such as hierarchical or k-means run

on the rows of X.

2. Next, the least-squares approximation of A for the given X and M is

found as A = M †X, where M † is the pseudo-inverse of M .

3. Using the A from step 2, the next approximation of M is found by

relaxing the requirement that M be binary and solving a bounded least

squares optimization for each gene in M . This effectively seeks a solution

M̂i = [0, 1]k for each row such that ||Xi − M̂iA||2 is minimized.

4. A binary solution M is then recovered from the real-valued solution M̂

found in step 3 by thresholding. Since thresholding potentially moves

the solution away from optimal, a local search is performed over every

possible 0-flip of the post-threshold 1’s to find the Mi = {0, 1}k that

minimizes ||Xi −MiA||2.

5. Using the new M calculated in step 4, steps 2-4 are repeated until ||X−

MA||2 is less than the desired convergence criteria.

Upon convergence of this procedure, the discovered binary gene-process

memberships and real-valued process-condition activations will have settled

into values that best reconstruct the observed microarray expression values in

a least squares sense.

5.2.2 Overlapping Clustering by Thresholding a Mixture Model

Mixture models are commonly used for soft clustering, where each point

is assigned a vector of probabilities corresponding to its probability of being
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generated by each generative component distribution. A hard partitional clus-

tering can be then easily obtained by assigning each point to the component

most likely to have generated it. The k-means algorithm is a specific case of

a mixture model (using Gaussian components) with each point hard assigned

to its most probably generating distribution.

In general, mixture models assume that given a set of n data points

{X[i, :]}ni=1 in Rd, represented by a n × d matrix X, fitting a mixture model

to X is equivalent to assuming that each data point X[i, :] is drawn indepen-

dently from a probability density p(X[i, :]|Θ) =
∑k

h=1 αhph(X[i, :]|θh), where

Θ = {θh}kh=1, k is the number of mixture components, ph is the probability

density function of the hth mixture component with parameters θh, and αh are

the component mixing coefficients such that αh ≥ 0 and
∑k

h=1 αh = 1. In mix-

ture model estimation, each point X[i, :] is assumed to be generated from only

one underlying mixture component. Let Z be a n×k boolean matrix such that

Z[i, j] is 1 if the jth component density was selected to generate X[i, :], and 0

otherwise. Let zi be a hidden random variable corresponding to the index of

the 1 in each row Z[i, :]; every zi is therefore a multinomial random variable,

since it can take one of k discrete values. Since the Z matrix is unknown,

the optimum parameters Θ of the mixture model can be obtained using Ex-

pectation Maximization [DLR77]. The probability value p(zi = h|X[i, :],Θ)

after convergence of the EM algorithm gives the probability of the point X[i, :]

being generated from the hth mixture component. Using these probabilities,

mixture models are often used to generate a partitional clustering of the data,

where the points estimated to be most probably generated from the hth mix-

ture model component are considered to constitute the hth partition.

To produce an overlapping clustering from a mixture model where a
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row in Z can contain more than one 1, one can choose a threshold value

λ such that X[i, :] belongs to the hth partition if p(zi = h|X[i, :],Θ) > λ.

Such a thresholding technique can enable X[i, :] to belong to multiple clusters;

however, there are two notable problems with this method. The first is that

the threshold parameter λ is difficult to deduce given only X. Secondly, this

is not a natural generative model for overlapping clustering. In the mixture

model, the underlying model assumption is that a point is generated from only

one mixture component, and p(zi = h|X[i, :],Θ) simply gives the probability

of X[i, :] being generated from the hth mixture component. An overlapping

clustering model should instead incorporate the idea that a point X[i, :] could

be generated by multiple mixture components simultaneously.

5.2.3 The MOC Model

The SBK model described above minimizes the squared loss (corre-

sponding to an assumed Gaussian noise model) between X and MA, and is

not amenable to estimating the optimal M and A corresponding to other loss

functions. In MOC, we generalize the SBK model to work with a broad class

of probability distributions, and provide an alternate minimization algorithm

for the general model.

As stated previously, the SBK model and thus the MOC model have

the characteristic form of mixture models, but with the important difference

in the relaxation of the multinomial constraint on the matrix Z, allowing Z

to be an arbitrary boolean matrix. In the MOC model, we denote this uncon-

strained boolean matrix as the membership matrix M to differentiate it from

the multinomial-constrained matrix Z. Every point in the observed matrix

X[i, :] has a corresponding k-dimensional boolean membership vector M [i, :]
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with the hth component M [i, h] of this membership vector being a Bernoulli

random variable indicating whether X[i, :] belongs to the hth cluster. A row

of the membership matrix M can encode any of the 2k possible configurations

of the cluster assignment of the corresponding point in X.

Let us now consider the probability of generating the observed data

points in MOC. A is the activity matrix of this model, where A[h, j] represents

the activity of cluster h while generating the jth feature of the data. The

probability of generating all the data points is

p(X|Θ) = p(X|M,A) =
∏
i,j

p(X[i, j]|M [i, :], A[:, j]) (5.1)

where Θ = {M,A} are the parameters of p, and X[i, j]’s are conditionally

independent given M [i, :] and A[:, j]. In MOC, we assume p to be the density

function of any regular exponential family distribution, and also assume that

the expectation parameter corresponding to X[i, :] is of the form M [i, :]A, so

that E[X[i, :]] = M [i, :]A. In other words we assume that each X[i, :] is gen-

erated from an exponential family density whose mean M [i, :]A is determined

by taking the sum of the activity levels of the components that contribute to

the generation of X[i, :], i.e., M [i, h] is 1 for the active components.

Using the above assumptions and the bijection between regular expo-

nential distributions and regular Bregman divergences [BMDG04], the condi-

tional density can be represented as:

p(X[i, j]|M [i, :], A[:, j]) ∝ exp{−dφ(X[i, j],M [i, :]A[:, j])} (5.2)

where dφ is the Bregman divergence corresponding to the chosen exponential

density p. For example, if p is the Poisson density, dφ is the I-divergence; if p

is the Gaussian density, dφ is the squared Euclidean distance [BMDG04].
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Evaluating the model involves maximizing the joint distribution of X,

M and A:

p(X,M,A) = p(M,A)p(X|M,A) = p(M)p(A)p(X|M,A)

=

(∏
i,h

p(M [i, h])

)(∏
h,j

p(A[h, j])

)(∏
i,j

p(X[i, j]|M [i, :], A[:, j])

)
.

Making similar model assumptions as in Section 5.2.1, we assume that M and

A are independent of each other a priori and A is distributed uniformly over

a sufficiently large compact set, implying that p(M,A) = p(M)p(A) ∝ p(M).

Then, maximizing the log-likelihood of the joint distribution gives

max
M,A

log p(X,M,A) ≡ max
M,A

[∑
i,h

log p(M [i, h])−
∑
i,j

dφ(X[i, j],M [i, :]A[:, j])

]

≡ min
M,A

[∑
i,j

dφ(X[i, j], (M [i, :]A[:, j])−
∑
i,h

logα[i, h]

]
.

where α[i, h] = p(M [i, h]) is the Bernoulli prior probability of the i-th point

having a membership M [i, h] to the h-th cluster.

5.3 Algorithms and Analysis

In this section, we propose and analyze algorithms for estimating the

overlapping clustering model given an observation matrix X. In particular,

from a given observation matrix X, we want to estimate the prior matrix α, the

membership matrixM and the activity matrixA so as to maximize p(X,M,A),

the joint distribution of (X,M,A). The key idea behind the estimation is an

alternating minimization technique that alternates between updating α, M

and A.
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5.3.1 Updating α

The prior matrix α can be directly calculated from the current estimate

of M . If πh denotes the prior probability of any point belonging to cluster h,

then, for a particular point i, we have α[i, h] = π
M [i,h]
h (1−πh)1−M [i,h]. Since πh is

the probability of a Bernoulli random variable, and the Bernoulli distribution

is a member of the exponential family, the maximum likelihood estimate is

just the sample mean of the sufficient statistic [BMDG04]. Since the sufficient

statistic for Bernoulli is just the indicator of the event, the maximum likelihood

estimate of the prior πh of cluster h is just πh = 1
n

∑
i 1{M [i,h]=1}. Thus, one

can compute the prior matrix α using these update equations.

5.3.2 Updating M

In the main alternating minimization technique, for a given X,A, the

update for M has to minimize∑
i,j

dφ(X[i, j], (M [i, :]A[:, j])).

Since M is a binary matrix, find its optimal assignment is an integer optimiza-

tion problem which is not solvable by any known polynomial time algorithm.

The explicit enumeration method involves evaluating all 2k possibilities for

every data point, which quickly becomes prohibitive for even moderate values

of k. Finding an optimal M , then, requires an alternate approach.

The SBK model addressed this issue by the real relaxation of the prob-

lem allowing M to take real values in [0, 1]. For particular choices of the

Bregman divergence specific algorithms can be devised that employ gradients

in the real relaxed domain to find optimal solutions. For example, when the
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Bregman divergence is the squared loss, the corresponding problem is just the

bounded least squares (BLS) problem given by

min
M :0≤M [i,h]≤1

‖X −MA‖2,

for which there are well studied algorithms [Bjo96]. After convergence of

the bounded least squares or other gradient optimization algorithm on the

relaxed bounded real version of M , the binary membership constraints can be

reinforced by rounding or thresholding [SBK03b]. Since rounding is in effect

quantizing a point in real space onto a grid, the introduced quantization error

can be a significant perturbation from the optimal point. The SBK model

addresses this possibility by performing a local search around the quantized

point by individually flipping each of the “on” clusters (1’s in the membership

matrix) ”off” and evaluating the loss function. If a flipped solution produces

a reduced loss, that solution is used instead of the original solution produced

by rounding.

The SBK model performs this quantization with local search on each

iteration of EM. An alternative would be to run EM to convergence and then

perform quantization with local search, which would require a modification to

the update equation for the priors, πh and α[i, h]. In either case, the real relax-

ation/quantization/local search approach requires that gradients be available

for M and that a bounded least squares algorithm exist, which may not be

the case for all loss functions.

A general approach to finding a binary M independent of loss function

requires directly addressing the integer optimization problem without per-

forming real relaxation. Such an approach needs to find a “good” solution

(i.e. one that produces a low value of the loss function) by directly exploring
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the elements of the binary space of M . A brute-force, exhaustive search of a k-

dimensional binary space would guarantee finding the optimal assignment, but

would require 2k evaluations, which is excessively computationally expensive

for realistic values of k. As is often the case, a viable solution requires ac-

cepting some risk of a non-optimal solution for the benefit of vastly decreased

computational expense.

To devise such a solution, we begin by making two observations regard-

ing the problem of estimating M :

1. In most domains, we expect that a data point is more likely to be in very

few clusters rather than most or all of them

2. For each data point i, estimating M [i, :] is a variant of the subset sum

problem

Regarding the first observation, for a domain where it is believed or desirable

that each data point can belong to at most k0 clusters, where k0 ≤ k
2

and k0 �

k, then it may be computationally feasible to perform an explicit search over

all the possibilities, given the bound on the number of possible assignments:(
k

1

)
+

(
k

2

)
+ · · ·+

(
k

k0

)
≤ k0

(
ek

k0

)k0
< 2k.

However, in general, even this reduced brute-force search may only be feasible

for very small values of k0. Further, an apriori value of k0 may not be available

for a given problem, and an inappropriate choice could lead to a particularly

poor solution for M .

Instead of relying on observation 1 to guide our strategy, it serves better

as a heuristic to reduce the search space indicated by the second observation,
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that the assignment of M has the form of a subset sum problem. The subset

sum problem is one of the hard knapsack problems [Chv80] intended to solve

the following:

Given a set of k natural numbers a1, . . . , ak and a target number

x, find a subset S of the numbers such that
∑

ah∈S ah = x.

In practical scenarios, the values of objects available for combining into subsets

are real numbers, and the goal becomes finding a subset such that the sum

over the subset is the closest possible to x in terms of the appropriate loss

function for the domain. In our case, closeness is measured using a Bregman

divergence as the loss function and instead of one subset sum, our choice of M

creates several sums (M [i, :]A) which must all simultaneously be close to their

intended target values (X[i, :]). Stated explicitly, our task is to find M∗[i, j]

such that

M∗[i, :] = arg min
M [i,:]∈{0,1}k

dφ(X[i, :],M [i, :]A)

= arg min
M [i,:]∈{0,1}k

m∑
j=1

dφ(X[i, j],
k∑

h=1

M [i, h]A[j, h]).

Thus, there are m target values X[i, 1], . . . , X[i,m], and for each target value

X[i, j] the subset is to be chosen from the subset objects with valuesA[1, j], . . . ,

A[k, j]. The total loss is the sum of the individual losses, and the problem is

to find a single M∗[i, :] that minimizes the total loss.

By employing the subset sum structure of the problem along with the

heuristic suggested by observation 1, we devised a search algorithm to effi-

ciently find good (but not necessarily optimal) assignments for M . The al-

gorithm, Knapsack Membership Search (KMS), starts with one cluster turned
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“on” and greedily looks for the next best cluster to turn “on” so as to minimize

the loss function. If such a cluster is found, then both clusters are set to “on”

and the process repeats by holding those two clusters “on” and searching for

a third whose activation reduces the loss. In general, if h clusters are turned

“on”, KMS considers turning each one of the remaining (k − h) clusters “on”,

one at a time, and computes loss corresponding to the membership vector with

(h + 1) clusters turned “on”. If, at any stage, turning “on” each one of the

remaining (k − h) clusters increases the loss function, the search process is

terminated. Otherwise, the algorithm picks the best (h + 1)th cluster to turn

“on”, and repeats the search for the next best on the remaining (k − h − 1)

clusters.

This procedure of course depends on the order in which clusters are

considered to be turned “on”. In particular, the choice of the first cluster to

be turned “on” will partly determine which other clusters will get turned “on”.

To resolve this permutation dependency, KMS should theoretically consider all

k! permutations of cluster ordering, compute the minimum loss in that per-

mutation, and then return the minimum loss over all permutations. However,

such an approach would make the algorithm unusable. Instead, we assume

that searching a limited number of permutations provides sufficient coverage

for finding an acceptable solution. KMS restarts its search k times, with each of

the k clusters being the initial cluster once. Among all of the runs, as well as

a trivial evaluation of the all-zero membership vector, the algorithm returns

the cluster membership that minimized the loss function. With k runs, each

with worst case O(k2), the overall worst case running time is O(k3).
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5.3.3 Updating A

The real-valued activity matrix A has no restrictions on its values,

making its update step much simpler than that for M . The only constraint

that such an update needs to satisfy is that MA stays in the domain of φ.

Each Bregman divergence has an associated update equation; those that are

used in our experiments, the squared loss and the I-divergence, are provided

in this section.

In the case of the square loss, since the domain of φ is R, the problem

min
A
‖X −MA‖2

is just the standard least squares problem that can be exactly solved by

A = M †X,

where M † is the pseudo-inverse of M , and is equal to (MTM)−1MT in case

MTM is invertible.

In the case of I-divergence or un-normalized relative entropy, the prob-

lem

min
A

dI(X,MA) = min
A

∑
i,j

(
X[i, j] log

X[i, j]

(M [i, :]A[:, j]
−X[i, j] +M [i, :]A[:, j]

)
,

has been studied as a non-negative matrix factorization technique [LS01]. The

optimal update for A for given X,M multiplicative and is given by

A[h, j] = A[h, j]

∑
iM [h, i]X[j, i]/M [i, :]A[:, j]∑

iM [h, i]
.

In order to prevent a division by 0, it makes sense to use max(M [i, :]A[:, j], ε)

and max(
∑

iM [h, i], ε) as the denominators for some small constant ε > 0.

With the above updates, the respective loss functions are provably non-

increasing.
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5.4 Experiments

This section describes the details of experiments demonstrating the

performance of MOC vs the strawman thresholded mixture model on real-

world data sets.

5.4.1 Methodology

Our evaluation experiments were performed on three different types of

data: synthetic microarray-like data, movie recommendation data, and text

documents.

Synthetic data: In [SBK03b], apart from demonstrating their ap-

proach on gene microarray data and evaluating on standard biology databases,

Segal et al. also showed results on microarray-like synthetic data with a clear

ground truth since the biology databases are generally believed to be lacking

in coverage. Their synthetic data was generated by adding noise to points gen-

erated by the SBK model. Employing the same technique, we created three

synthetic datasets of different sizes:

1. small-synthetic: a dataset with n = 75, d = 30 and k = 10;

2. medium-synthetic: a dataset with n = 200, d = 50 and k = 30;

3. large-synthetic: a dataset with n = 1000, d = 150 and k = 30.

For the synthetic datasets we used squared Euclidean distance as the

cluster distortion measure in the overlapping clustering algorithm, since Gaus-

sian densities were used to generate the noise-free datasets.
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Movie Recommendation data: The EachMovie1 dataset has 5-point

user ratings for the 74,424 movies in the collection. The corresponding movie

genre information is extracted from the Internet Movie Database (IMDB)2

collection. If each genre is considered as a separate category or cluster, then

this dataset also has naturally overlapping clusters since many movies are

annotated in IMDB as belonging to multiple genres, e.g., Aliens belongs to

3 genre categories: action, horror and science fiction. We created 2 subsets

from the EachMovie dataset: (1) movie-taa: 300 movies from the 3 genres –

thriller, action and adventure; and (2) movie-afc: 300 movies from the 3 genres

– animation, family, and comedy. We clustered the movies based on the user

recommendations to rediscover genres, based on the belief that similarity in

recommendation profiles of movies gives an indication about whether they are

in related genres. For this domain we use I-divergence with Laplace smoothing

as the cluster distortion measure.

Text data: Experiments were also run on 3 text datasets derived from

the 20-Newsgroups collection3, which has 20,000 documents from 20 Usenet

newsgroups. We processed the original newsgroup articles to recover the multi-

ple newsgroup labels on each message posting. From the full dataset, a subset

was created having 100 postings in each of the 20 newsgroups, from which the

following three data subsets were created with varying levels of overlap in the

topics: (1) news-similar-3; (2) news-related-3; and (3) news-different-3. Details

of these datasets are outlined in [BBM04]. The vector-space model of each

data subset was created using standard text pre-processing methods [DM01],

and each data subset has 300 points in high-dimensional space (> 1000 words).

1http://research.compaq.com/SRC/eachmovie
2http://www.imdb.com
3http://www.ai.mit.edu/people/jrennie/20Newsgroups

78



In this case, I-divergence was again used as the Bregman divergence for over-

lapping clustering, with suitable Laplace smoothing.

We used an experimental methodology similar to the one used to demon-

strate the effectiveness of the SBK model [SBK03b]. For each dataset, we ini-

tialized the overlapping clustering by running k-means clustering, where the

additive inverse of the corresponding Bregman divergence was used as the sim-

ilarity measure and the number of clusters was set by the number of underlying

categories in the dataset. The resulting clustering was used to initialize our

overlapping clustering algorithm.

To evaluate the clustering results, precision, recall, and F-measure were

calculated over pairs of points. For each pair of points that share at least one

cluster in the overlapping clustering results, these measures try to estimate

whether the prediction of this pair as being in the same cluster was correct with

respect to the underlying true categories in the data. Precision is calculated

as the fraction of pairs correctly put in the same cluster, recall is the fraction

of actual pairs that were identified, and F-measure is the harmonic mean of

precision and recall.

5.4.2 Results

Table 5.1 presents the results of MOC versus the standard mixture

model for the datasets described in Section 5.4.1. Each reported result is an

average over ten trials. For the synthetic data sets, we compared our approach

to thresholded Gaussian mixture models; for the text and movie data sets,

the baselines were thresholded multinomial mixture models. Table 5.1 shows

that for all domains, even though the thresholded mixture model has slightly

better precision in most cases, it has significantly worse recall: therefore MOC
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F-measure Precision Recall
Data MOC Mixture MOC Mixture MOC Mixture

small-synthetic 0.64 ± 0.12 0.36 ± 0.08 0.83 ± 0.07 0.80 ± 0.07 0.53 ± 0.14 0.24 ± 0.07
medium-synthetic 0.71 ± 0.06 0.24 ± 0.01 0.73 ± 0.05 0.60 ± 0.03 0.70 ± 0.09 0.15 ± 0.01
large-synthetic 0.87 ± 0.04 0.33 ± 0.01 0.85 ± 0.06 0.87 ± 0.04 0.89 ± 0.05 0.20 ± 0.01

movie-taa 0.62 ± 0.03 0.50 ± 0.04 0.55 ± 0.01 0.56 ± 0.01 0.71 ± 0.07 0.46 ± 0.08
movie-afc 0.76 ± 0.03 0.61 ± 0.07 0.80 ± 0.01 0.81 ± 0.02 0.72 ± 0.06 0.50 ± 0.09

news-different-3 0.45 ± 0.01 0.41 ± 0.05 0.34 ± 0.01 0.40 ± 0.05 0.68 ± 0.05 0.41 ± 0.06
news-related-3 0.54 ± 0.02 0.39 ± 0.02 0.42 ± 0.01 0.44 ± 0.02 0.76 ± 0.08 0.35 ± 0.01
news-similar-3 0.35 ± 0.02 0.28 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.69 ± 0.06 0.34 ± 0.01

Table 5.1: Comparison of results of MOC and thresholded mixture models on
all datasets

F-measure Precision Recall
Data KMS BLS/search KMS BLS/search KMS BLS/search

small-synthetic 0.64 ± 0.12 0.55 ± 0.20 0.83 ± 0.07 0.98 ± 0.03 0.52 ± 0.14 0.41 ± 0.19
medium-synthetic 0.71 ± 0.06 0.65 ± 0.05 0.73 ± 0.05 0.91 ± 0.06 0.70 ± 0.09 0.51 ± 0.06
large-synthetic 0.87 ± 0.04 0.87 ± 0.02 0.85 ± 0.06 0.92 ± 0.02 0.89 ± 0.05 0.83 ± 0.04

Table 5.2: Results: KMS vs Bounded Least Squares (with search) for synthetic
data

consistently outperforms the thresholded mixture model in terms of overall

F-measure, by a large margin in most cases. Table 5.1 also shows that the

performance of MOC improves empirically as the ratio of the data set size to

the number of processes increases.

Table 5.2 compares the performance of using the KMS algorithm versus

the bounded least squares (BLS) algorithm followed by local search, in the M

estimation step in MOC. BLS/search gets better results on precision, which

is expected since BLS is the optimal solution for the real relaxation of the

M estimation problem for the Gaussian model. However KMS outperforms

BLS/search on the overall F-measure. Moreover, BLS is only applicable for

squared Euclidean distance, whereas KMS can be applied for M estimation with

any distance function.

Detailed inspection of the results revealed that MOC finds overlapping
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clusterings that are closer to the ground truths for the text and the movie data.

For example, for movie-afc, the average number of clusters a movie is assigned

to is 1.19, whereas MOC clustering has an average of 1.13 clusters per movie.

The thresholded mixture model got posterior probability values very close to

0 or 1, as is very common in mixture model estimation for high-dimensional

data: as a result there was almost no cluster overlap for various choices of the

threshold value, and points were assigned to, on average, exactly one cluster

in the thresholded mixture models. MOC was also able to recover the correct

underlying multiple genres in many cases, e.g., the movie “Toy Story” in the

movie-afc dataset belongs to all the three genres of animation, family and

comedy in this dataset, and MOC correctly put it in all 3 clusters.
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Chapter 6

Similarity Space Overlapping Clustering

6.1 Introduction

When finding clusters in data, the fundamental information employed

is the similarity between data elements. Similarity is an application-dependent

function that takes two data elements and returns a number which indicates

the degree to which the two elements are close with regard to the defined

similarity measure. For mathematical convenience, the number returned by

the similarity function is between 0 and 1, with 0 indicating the minimum

similarity and 1 the maximum. Since a similarity exists for every pair of

points, the set of all pairwise similarities is usually arranged into a square

symmetric n× n matrix which is termed the similarity space of the data.

When devising a clustering algorithm it is critical to first define what is

meant by a cluster. With a firm definition, the task of the algorithm is then to

extract groups of data points which meet the definition. In a similarity space,

a reasonable definition of a cluster is a group of points which are mutually

more similar to each other than to points not in the group. Note that this

definition allows an individual point or set of points within such a group to

share high similarity with points in other groups and therefore equally merit

group membership with them, thus exhibiting multiple-membership.

In this chapter, we first describe a probabilistic generative model of sim-

ilarity spaces containing overlapping clusters. We then develop a theoretical
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multiple-membership implementation of complete-link hierarchical clustering,

and offer a practical implementation. Next, we develop a hill-climbing itera-

tive update technique for finding overlapping densities in similarity spaces, and

demonstrate the performance of this algorithms on datasets of the structure

described by the generative model.

6.2 Generative Model of Similarity Space Overlapping
Clusters

6.2.1 Model Considerations and Background

When approaching the problem of finding overlapping clusters in data

in a similarity space, it is important to first consider the nature of the process

that generated the data. Toward this end, we examine the statistics of the

similarity space, which are easily visualized via a histogram of the similarities

between points. Histograms of similarity spaces are generally shaped like the

histogram in Figure 6.1, which shows the similarity space of the Iris dataset. It

is notable that most of the mass is close to zero - which is expected given that

most points are not highly similar to most other points.1 For a dataset such

as Iris where the labels are known, we can further examine the distribution of

similarities by producing histograms of the similarities of points sharing the

same label and the similarities of points not sharing the same label. These

distributions are shown in Figure 6.2. Notably, the distribution of similarities

of points sharing a label has most of its mass distant from zero, while the

distribution of points not sharing a label has most of its mass close to zero.

1A similarity space where most points display high similarity to most other points would
contain very little information relevant for clustering, and would likely have been generated
by a similarity function inappropriate for the data.
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Figure 6.1: Histogram of the values in the similarity space of the iris dataset.
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Figure 6.2: The upper row shows histograms of the within-cluster similarity
and between-cluster similarity of points in the Iris dataset. Note that distri-
bution of similarities of points not sharing a cluster has most of its mass near
zero, while the distribution of similarities of points sharing a cluster has a
center of mass far from zero. These two distributions can be approximated by
beta distributions, shown in the second row.
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These observations on the distributions of similarities in the Iris dataset

provide intuition for the general structure of similarity spaces containing non-

random data with clusters. Specifically, that elements of a similarity space can

be viewed as being generated from a mixture of two beta functions such as

those shown in Figure 6.4, one with most of its mass close to zero representing

the “background” similarity between two points not sharing a cluster, and the

other with most of its mass closer to one representing the high similarities

of points sharing a cluster. This structure is in accordance with our general

intuition about clusters in data - namely, that points sharing a cluster have

higher similarity than those not sharing a cluster.

Now we consider how this property extends to multiple-membership

clusters. The histogram of similarities illustrates the relationship of in-cluster

similarities vs. between cluster similarities, but does not communicate any-

thing about the membership structure of the clusters. The heatmap is the

appropriate tool for visualizing membership structure. Similarity spaces in

general, and graphs in general, can be visually displayed as heatmaps where

the color of each point represents the weight of its corresponding arc. Figure

6.3 shows the heatmap for the Iris dataset. It is notable that in a single-

membership clustering such as Iris, the true labels yield a heatmap which

can be ordered such that the clusters form blocks along the diagonal, as are

visible in the Iris heatmap. In a similarity space consisting of convex, non-

overlapping clusters, the corresponding heatmap would consist of diagonal

blocks of similarities drawn from the “within-cluster” distribution of similari-

ties, and points outside of the diagonal blocks drawn from the “background”

distribution. The problem of finding non-overlapping clusters can be posed

as finding the matrix reordering that maximizes this property. For data con-
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taining multiple-membership clusters, such an ordering does not exist; for

any block-diagonal reordering, there will continue to be off-diagonal “within-

cluster” similarities corresponding to shared points’ connections to clusters

other than their neighbors in the reordering. The degree to which off-diagonal

“within-cluster” points exist is indicative of the average overlap existing in the

dataset.

Figure 6.3: Heatmap of the similarity space of Iris. Notably, the similarity
space is a symmetric matrix with ones along the diagonal and a notable block
structure. Each block along the diagonal is a region of high similarity between
points, i.e., a cluster. The middle and lower right cluster correspond to Iris
versicolor and Iris virginica which are not linearly separable groups. The
off-axis similarity indicates high similarity between points in the two groups.

A final component, which is not addressed by analyzing either the his-

togram or the heatmap of a similarity space, is the issue of single-link structure

versus complete-link structure of the clusters. Complete-link clusters are con-

vex2. Single-link clusters can be arbitrarily shaped, and are defined such that

2Convex here means that for a set A with minimum similarity (s-level) s(A), i.e. ∀i, j ∈
A, S[i, j] > s(A), A is convex if ∀k /∈ A,∃i ∈ A such that S[i, k] < s(A)
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Figure 6.4: Values in the similarity space of a dataset containing clusters
can be modeled as values drawn from one of two beta distributions. The
distribution shown in blue with most of its probability mass close to zero
represents the distribution of similarities of points not in the same cluster. We
term this distribution the “background” and parameterize it as Θbackground.
The distribution shown in green with most of its probability mass close to one
represents the distribution of similarities of highly similar points likely to be
in the same cluster. We term this distribution the “cluster” distribution and
parameterize it as Θcluster.

within a cluster, two points may have a similarity of zero as long as they

are linked by a path of in-cluster points where the similarity between any

two points along the path is greater than the threshold smin. When, as with

complete-link, all of the clusters in a space are convex, all intracluster simi-

larities come from the “within-cluster” similarity distribution. When clusters

are not convex, some intracluster similarities may be drawn from the “back-

ground” distribution.

6.2.2 The Similarity Space Multiple-Membership Generative Model

Given the previously described properties of a similarity space contain-

ing clusters, we can design a generative model which produces a similarity
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Parameter Meaning

n the number of points in the dataset
k the number of clusters in the data
Q a distribution over cluster sizes in [1, n]
c a value in [0, 1] indicating the complete-link character of the clusters
v a value in [0, 1] indicating the average overlap between clusters
Θbackground the parameters of the background Beta distribution
Θcluster the parameters of the within-cluster Beta distribution

Table 6.1: Parameters of the similarity space clustering generative model.

space containing overlapping clusters exhibiting those properties.3 The gen-

erative model requires the parameters defined in Table 6.1. With those pa-

rameters specified, a similarity space containing n points and k clusters can

be constructed as follows:

1. Initialize an n×n similarity matrix s such that the diagonal values are 1,

and values in the upper triangular region are drawn from Beta(Θbackground).

2. For each of the k clusters,

(a) Select a cluster size d by sampling from the distribution Q.

(b) Construct the set A by drawing d points such that dd ∗ ve are

randomly drawn from points already assigned to a cluster and bd ∗

(1− v)c are randomly drawn from points not assigned to a cluster.

(c) For every pair of points (i,j;i < j) in A, replace the point s(i, j)

with a sample from Beta(Θcluster) distribution with probability c.

3Note that in generating a similarity space representation of a dataset, we only require
that similarities be symmetric. No assumptions are made about the original input space of
the data.
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Parameter Value

n 500
k 10
Q discrete Uniform over (b n

10
c, bn

5
c)

c 0.8
v 0.2
Θbackground (1.5,5)
Θcluster (10,3)

Table 6.2: Parameters of the example synthetic data set.

3. Reflect the upper triangular values of s over the diagonal so that s is

symmetric.

We now examine an example similarity space generated according to

the above algorithm using the parameter given in Table 6.1 corresponding to

the Beta functions shown in Figure 6.5. This dataset’s histogram and heatmap

are shows in Figures 6.6 and 6.7 respectively. The histogram is notable for the

smearing of the within-cluster similarity distribution toward lower similarity

values. This smearing is due to the parameter c, which allows clusters to

assume some single-link character. The heatmap, which is ordered according to

a hierarchical agglomerative clustering, demonstrates that data with inherent

overlapping clusters can not be ordered into a block-diagonal matrix.

6.3 Algorithms for Finding Clusters in Similarity Spaces

Given the data model described in the previous section, we now ex-

plore algorithmic approaches which in effect reverse engineer the generative

model and thereby extract clusters from similarity space data. We first de-

scribe an extension of complete-link hierarchical clustering into the multiple-
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Figure 6.5: The “background” and “cluster” Beta functions with the param-
eters given in Table 6.2 used to generate the synthetic dataset.

membership framework and provide an exact but inefficient algorithm, followed

by an adjusted algorithm that is feasible. Second, we describe a multiple-

membership cluster finding algorithms that performs density searching in the

similarity space.

6.4 Generalizing Complete-Link Hierarchical Cluster-
ing to Multiple Memberships

Hierarchical agglomerative clustering is conceptually the simplest method

of clustering data. For data in a similarity space, the algorithm starts by label-

ing each point as a singleton cluster, and then proceeds to iteratively merge

the most similar clusters until a single cluster encompasses all of the data.

The bottom-up sequence of merges yields a hierarchical nesting of potential

clusters which can later be selected as representatives of the data according to

some criteria (e.g. number of clusters, stability of clusters, minimum similarity,
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Figure 6.6: Characteristics of the synthetic data set generated using the pa-
rameters in Table 6.2. The first pane shows the distribution of within-cluster
similarities, the second shows the background similarity distribution, and the
bottom pane the distribution of memberships. Note that the within-cluster
distribution is a mixture of the specified within-cluster Beta distribution and
a small amount of the background Beta distribution. This is due to the pa-
rameter c which specifies complete-link character being less than one: points
within a cluster are not required to have high similarity to all other points
within the cluster.
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Figure 6.7: Heatmap of the synthetic data set generated using the parameters
in Table 6.2. Due to the overlapping nature of the similarity space, the matrix
can not be reordered so that the high similarities form a block-diagonal matrix.

etc.). By choosing a single merge pair at each iteration, hierarchical agglom-

erative clustering ensures that each data point belongs to only one cluster at a

time. In domains where data is fundamentally overlapping, this property leads

to clusters which do not match observations. Shepard and Arabie’s seminal

algorithm ADCLUS [SA79] was designed to overcome this shortcoming. AD-

CLUS, like hierarchical agglomerative, first generates a set of potential clusters

which are then refined into data-representative clusters according to a given

criterion.

The potential cluster generating step of the ADCLUS algorithm was the

enumeration of elevated subsets, which are effectively the multiple-membership

equivalent of the hierarchical agglomerative algorithm’s single-membership

nested clusters. Finding these elevated subsets requires a combinatorial search

of the data involving significantly more computation than hierarchical agglom-

erative. Shepard and Arabie suggest an algorithm and provide references to
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others (e.g. [Con66]) which all share hierarchical agglomerative’s bottom-up

flavor. All are also questionable in their scalability; but the datasets at the

time generally did not exceed 30 points, so the methods were quite serviceable.

Modern datasets are much larger, and the existing bottom-up proce-

dures for enumerating elevated subsets are not feasible. In this section, we first

describe a conceptual top-down algorithm for finding elevated subsets which

is guaranteed to find all elevated subsets, but is infeasible due to combina-

toric explosion. We then present a practical refinement of that conceptual

algorithm.

6.4.1 Definition of s-level, elevated subset, and rise

A subset of data points can be characterized by the “spread” of the

subset which is lower bounded by the similarity between the two least similar

points in the set. The s-level of a subset of points is the minimum similarity

among all pairs of points in the subset,

s(A) = mini,j∈A(S[i, j])

where S[i, j] is the similarity between points i and j in the subset A.

A low s-level indicates that points in the subset are not very similar,

while a high s-level indicates a cluster of highly similar points.

An elevated subset is a subset of points whose s-level is greater than

that of any of its supersets, i.e., A is an elevated subset if

s(B) < s(A) ∀B ⊃ A. (6.1)
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The rise of an elevated subset is the extent to which the s-level of

subset A rises above the s-level of any of A’s supersets:

r(A) = minB⊃A[s(A)− s(B)]

6.4.2 Generalizing complete-link hierarchical clustering

Several variations of the basic hierarchical clustering algorithm exist,

each differing in the method of measuring similarity between clusters. The

“complete-link” form measures similarity between clusters as the similarity

between the least similar constituent points. This form is widely used due

to its ability to produce convex clusters and to avoid other undesirable prob-

lems inherent in the other variations. Merges in the complete-link hierarchical

agglomerative algorithm occur between the two clusters whose least similar

points are more similar than any other pair of clusters. That is, clusters Ai

and Aj are merged if

s(Ai ∪ Ak) < s(Ai ∪ Aj) ∀k 6= j, (6.2)

and

s(Ak ∪ Aj) < s(Ai ∪ Aj) ∀k 6= i. (6.3)

This merging procedure leads to a specific definition of what constitutes

a cluster. From (6.2) and (6.3), it follows that

s(Ai ∪ Aj ∪ Ak) = min[s(Ai ∪ Ak), s(Aj ∪ Ak)] < s(Ai ∪ Aj) ∀Ak 6= Ai, Aj.

(6.4)

If we rename the set (Ai ∪ Aj) A and the set (Ai ∪ Aj ∪ Ak) B, then

B ⊃ A and from (6.4),
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1.0000 0.1792 0.8256 0.9854 0.6611
0.1792 1.0000 0.8090 0.8935 0.5073
0.8256 0.8090 1.0000 0.5789 0.5729
0.9854 0.8935 0.5789 1.0000 0.4596
0.6611 0.5073 0.5729 0.4596 1.0000

Table 6.3: 5 points similarity space used to create the multiple membership
dendrogram shown in Figure 6.8.

s(B) < s(A) ∀B ⊃ A. (6.5)

which defines A as an elevated subset from (6.1). Therefore, each merge

in complete-link hierarchical clustering results in a cluster which is an elevated

subset.

The bottom-up merging procedure of complete-link hierarchical clus-

tering yields a nested series of elevated subsets such that a given point takes

a single route through the hierarchy, belonging at most to one level-equivalent

elevated subset at a time. Each merge is performed greedily, using the clusters

resulting from previous greedy merges. Due to this local greedy aspect of the

algorithm, elevated subsets as defined above occur outside of the hierarchical

clustering tree, as shown in Figure 6.8.

6.5 Existing Algorithms for Finding Elevated Subsets

The existing methods of elevated subset enumeration [Con66, SA79]

are all bottom-up algorithms that follow a similar procedure:

1. Sort the pairwise similarities in decreasing order.
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1 2 3 4 5

Figure 6.8: Dendrogram showing all elevated subsets and inheritance paths
for the 5 point similarity space given in Table 6.3. Vertices corresponding to
elevated subsets found by complete-link hierarchical clustering are circled in
red. It is notable that the complete set of elevated subsets is a superset of
the set of complete-link hierarchical clusters, and that the all-points cluster
at the top and the singleton clusters at the bottom are shared between the
algorithms.
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2. Starting at the top with the largest pairwise similarity, threshold the

similarities with that value.

3. On the resulting graph, find all cliques.

4. Proceed to the next pairwise similarity and repeat 2-4.

From examples in the literature [SA79], it appears that this algorithm

is effective for datasets containing less than 30 points. However, the clique-

enumeration step is an NP -hard problem, and thus does not scale well.

6.5.1 Exact Algorithm for Enumerating Elevated Subsets

The existing elevated subset enumeration algorithms directly follow hi-

erarchical agglomerative and agglomerate subsets from the bottom up. Here,

we propose a conceptual algorithm which is instead divisive, starting from the

cluster containing all points and building a hierarchy of elevated subsets in

descending fashion by recursively splitting out clusters.

Our algorithm takes as input a n × n similarity space produced by

a similarity function S, such that if data points x1 and x2 are more similar

than data points x3 and x4, then element S[1, 2] in our similarity matrix is

greater than element S[3, 4]. In the similarity space, the upper-triangular

region includes all of the similarities of the largest subset possible in the data

- that subset consisting of the similarities of the entire dataset. If we name

this maximal subset A, s(A) is the minimum similarity between any pair of

points in the entire dataset. It follows then that any subset of this A can not

contain this pair of points and have a higher s-level, and therefore, no subset

containing this pair can be an elevated subset.
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With this insight, we need only generate (n − 1)-sized subsets of A

that do not contain the least similar pair of points. Thus, instead of searching

through
(
n
n−1

)
subsets, we only generate 2, each one leaving out one member

of the least similar pair of points. These two descendant subsets are either

elevated or equal in s-level to A.

The s-level of each of these resulting subsets will again be due to a

particular pair of points, and any descendant subset containing that pair can

not be an elevated subset. So, each size (n− 1) subset produces only two size

(n − 2) subsets - each one leaving out one point of the minimum similarity

pair.

This process continues down to the size (n−(n−1)) subsets, on the kth

step generating at most 2k potential elevated subsets. In practice, the actual

number of candidate subsets at each level is much lower due to particular

points (outliers) showing up repeatedly as members of the least-similar pair in

several candidates at a particular level. A simple check at each level removes

repeated candidate subsets, often dramatically reducing the branching factor.

The rise for a particular elevated subset is easily computed as the

difference between a subset’s s-level and that subset’s parent’s s-level. This

is true because at each level, a subset has an s-level either equal to or greater

than its parent, meaning that a subset’s parent has the highest s-level in

its ancestry. Consequently, a subset’s rise is simply the difference in s-level

between the subset and its parent.

Cluster Selection

As in hierarchical agglomerative clustering, the hierarchy of elevated

sets does not yield a clustering of the data, but instead an enumeration of
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potential clusters. Identifying clusters requires a pass through the identified

elevated sets where clusters are selected to represent the data based on their

merit according to some objective function. Such an objective function should

capture what is meant by a “good” cluster. The intuitive idea of a good

cluster is a specific set of points that is dense relative to a set of points drawn

randomly from the data. Density in a similarity space, henceforth “s-density”,

is the mean of all pairwise similarities among points in the cluster, with a high

s-density indicating a dense cluster.

The exhaustive top down algorithm described above finds at each level

the data’s elevated subsets of a particular size. For some sizes, the s-density of

the elevated subsets may only minimally exceed that of the background, while

in others, the elevated subsets’ s-density may be significantly higher than the

background. Elevated subsets exhibiting a high s-density relative to the back-

ground likely represent meaningful clusters. In order to find such clusters, we

can compute the relative s-density of elevated subsets versus random subsets

of the same size by comparing a p-value of each elevated subset’s s-density

against a normal distribution of s-densities of randomly-sampled subsets. El-

evated subsets with a p-value below some threshold would be flagged as good

clusters.

The procedure for selecting clusters from elevated subsets of size g given

a significance threshold of psig is as follows:

1. Sample q random subsets of size g from the data,

2. Compute the mean and variance of s-densities over all of the random

subsets,
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3. For each of the discovered elevated subsets, compute the normal p-value

of the subset’s s-density over a normal distribution with the mean and

variance computed in (2),

4. Flag subsets with p-values less than psig as clusters, proceed to next

level.

6.5.2 Feasible Algorithm for Enumerating Elevated Subsets

The elevated subset enumeration algorithm and cluster selection algo-

rithm described above will exhaustively identify all convex, multiple member-

ship clusters in a similarity space which meet the significance criteria psig.

The enumeration algorithm, however, requires computational time and mem-

ory on the order of n · 2n, which is infeasible for any realistic-sized dataset.

While exhaustively examining the similarity space is infeasible, this section

describes appropriate heuristics intended to modify the exhaustive algorithm

into a feasible, if not exhaustive, form.

In Figure 6.8, it is notable that all nodes at the apex and base of the

multiple-membership dendrogram are also nodes of the hierarchical agglom-

erative single-membership dendrogram. For the data that the dendrogram

represents (Table 6.3), the base nodes are singleton clusters and the apex

is the cluster containing all points. However, the base points could easily

be complete-link clusters containing several points, and the apex could be a

complete-link cluster containing a subset of the entire dataset. In general, as

long as the apex and base clusters are convex, they can contain any number of

points. Therefore, Figure 6.8 could represent the enumeration of elevated sub-

sets between any two levels of a single-membership hierarchical agglomerative

nested cluster enumeration.
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This observation indicates a method for dramatically pruning the search

space of the exact elevated subset enumeration algorithm described above: for

a specified maximum and minimum similarity level, elevated subsets need only

be enumerated between those levels on a single-membership tree created by

single-link hierarchical agglomerative clustering. Thus, only hierarchical ag-

glomerative, which due to its greedy nature is a faster algorithm, needs to ex-

amine the whole similarity space; then the slower elevated subset enumeration

need only proceed over a small region of the discovered single-link dendro-

gram. However, even on a limited region of the search space, elevated subset

enumeration remains expensive due to each descending step’s 2k branching

factor. This branching factor can be ameliorated to some degree by applying

the cluster selection algorithm in an online fashion, selecting clusters at each

iteration and only proceeding to generate descendants of those clusters not

selected.

Even with these modifications, the algorithm’s computational expense

may negate its utility in most situations. A practical solution is to minimize

the generation of potential subsets, and instead to focus on the intuition of

bounding the search space using s-levels in the hierarchical agglomerative tree.

As is clear from Figure 6.8, for any given lower and upper bound on the s-

level, the clusters at the upper bound are the fine, elemental convex subsets

that are merged to form the larger, coarser clusters at the lower bound. The

coarse clusters do not contain overlapping points because the local merges

performed by the hierarchical agglomerative algorithm do not allow multiple

membership. However, the preceding discussion demonstrates that had the set

of elevated subsets been enumerated, the coarse, lower s-level subsets would

contain blocks of overlap corresponding to the fine convex sets of the upper
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s-level bound. This observation suggests a simple algorithm for enumerating

elevated subsets at the upper similarity bound:

1. For a given upper and lower bound on s-level, find the set of coarse

subsets C with s-level greater than the lower bound and a set of fine

subsets F with s-level greater than the upper bound where each element

of C consists of a set constructed from a subset of the elements of F .

2. For each coarse subset Ci,

(a) identify the constituent fine subsets of Ci,

(b) for each fine subset Fj not a constituent of Ci, if the subset Ci
⋃
Fj

has an s-level greater than the lower bound, add Ci
⋃
Fj to the set

C.

3. Repeat 2 until no new clusters are added to C.

4. Eliminate duplicates from C and return the list of clusters.

The resulting set C will be overlapping clusters meeting the criteria of

the lower similarity bound. While it may be unreasonable to ask a user to

define a lower bound on similarity in discovered clusters, the value of such

a bound can be easily computed by existing methods of cluster selection in

hierarchical trees including stability and number of clusters.

6.6 Similarity Space Density-Searching Multiple Mem-
bership Algorithms

As mentioned previously, it is convenient to conceptualize a similarity

space as a weighted graph with n nodes where the measured similarity S[i, j]
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between elements i and j forms an arc of weight S[i, j] between the vertex

representing i and the vertex representing j. In this representation, we can

define the neighborhood of a test point as the set of points connected to the

test point via arcs with weight values greater than a given threshold t. If the

arc weights are thought of as distances, a neighborhood can be visualized as

the points within a sphere of radius r around the test point, with r inversely

proportional to t. The density of a neighborhood is then the ratio of the

number of points contained in the sphere of radius r to the magnitude of

r. The problem of clustering in a similarity space is finding those regions of

highest relative density, and collecting them in a concise and understandable

way.

Elevated subsets, as described in Section 6.4.1, are the convex regions

of density in a similarity space. Enumerating them is expensive, and the

enumeration technique depends upon the complete-link property which ensures

convexity in the discovered densities. In this section, we describe a density

hill-climbing search algorithm which, instead of enumerating, uses a greedy

search to identify elevated subsets likely to be clusters. Additionally, this

algorithm is parameterized such that the complete-link requirement can be

relaxed, allowing the discovery of non-convex regions of density.

Although it is a model-based, the k-means algorithm’s iterative re-

assignment is a good example of hill-climbing: on each iteration, each of

the k centers is relocated to a region of higher density. While k-means’

density-climbing does not guarantee a good solution, the requirement that

each data point is assigned to one center prevents a degenerate solution where

all points are in the same cluster. Conversely, a technique that allows multiple-

membership must take specific consideration to prevent degeneracy. Our ap-
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proach prevents degeneracy by defining two zones around each point: a core

and a periphery.

These two zones are defined by the similarity thresholds tcore and tperiphery,

where tperiphery < tcore. With these two thresholds defined, each point has one

of three possible relationships with other points in the data set: points simi-

larities to the test point greater than tcore are C-neighbors, points with similar-

ities greater than tperiphery but less than tcore are P-neighbors, and points with

similarities less than tperiphery are φ-neighbors (not neighbors at all). After ap-

plication of the thresholds to the similarity space matrix, the similarity space

matrix is discretized such that each element is a C, P , or a φ corresponding

to the neighborhood assignment of each point relative to every other point.

Figure 6.9 illustrates these relationships.
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Figure 6.9: For the point at the center of the figure, the sphere representing the
core threshold tcore is shown in red and the sphere representing the peripheral
threshold tperiphery is shown in blue. The points composing the C-neighborhood
are shown in red, those of the P-neighborhood in blue, and those of the φ-
neighborhood in black.
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With the similarity space discretized as described, the algorithm pro-

ceeds by repetitive application of three fundamental procedures: cluster core

finding, cluster growth, and cluster merging.

6.6.1 Cluster Core Finding

A “cluster core” is a C-neighborhood which forms the core of a devel-

oping cluster. Desirable cores have high density, which is measured as the

tally of C-neighbors. When several candidate points are available to be cores,

selecting the best involves tallying each point’s C-neighbors and ranking the

points according to both the tally and to rules regarding sharing of points

between clusters.

6.6.2 Cluster Growth

C-neighborhoods, which form the core of clusters, are convex regions

of density; however, in reality clusters may be arbitrarily shaped. Thus, af-

ter the selection of convex cluster cores, there is a need to allow the cluster

to adjust its shape to fit the data. The mechanism of reshaping by cluster

growth calls upon the graph conceptualization of the similarity space and the

idea of message passing between points. Upon selection of a cluster core, the

contained points (C-neighbors of the central point) are assigned cluster mem-

bership. Peripheral points (P-neighbors) are evaluated for addition to the

cluster depending on their connectivity to the cluster members. Connectivity

is defined as the fraction of cluster members which are C-neighbors to the

peripheral point. Restated in the message passing conceptualization, if each

point contained within the cluster sends a message only to its C-neighbors, a

peripheral point’s connectivity is the number of messages it receives divided
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by the total number of cluster members. Figure 6.10 illustrates P-neighbor

connectivity. On a single iteration, points with connectivity exceeding the

connectivity threshold are incorporated into the cluster. Iterations proceed

until no new points are added.
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Figure 6.10: Criteria for granting P-neighbors cluster membership. The point
indicated in green is in the P-neighborhood of the point at the center of the
cluster, and contains more than half of the cluster’s members in its own C-
neighborhood, therefore, it would be added to the cluster. The point indicated
in cyan is also in the P-neighborhood of the cluster, but contains very few of
the cluster’s members in its C-neighborhood and therefore would not be added
to the cluster.

6.6.2.1 Connectivity and Single-Link vs Complete-Link Character

The choice of connectivity threshold determines the shape of similarity

space clusters. Connectivity thresholds closer to zero give the cluster growth

algorithm a single-link character, allowing chaining growth along paths of den-

sity. Connectivity thresholds closer to one give the algorithm a complete-link

character, resulting in more spherical clusters.
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6.6.3 Cluster Merging

As clusters expand according to the cluster-growth procedure, the lack

of the single-membership constraint allows them to absorb points already as-

signed to other clusters. Eventually, clusters may share so many points that

they parsimoniously represent one similarity density rather than two. This

condition is defined by a merge threshold, calculated as the fraction of cluster

members which are shared with another cluster. If two clusters mutually ex-

ceed the merge threshold with each other, they are merged into one and their

constituent points all given the same label.

6.6.4 Parameters

Including the thresholds needed for similarity space discretization, these

base procedures require five user-defined parameters:

Parameter Meaning

C-Neighbor Threshold the minimum similarity required to be a C-neighbor
P-Neighbor Threshold the minimum similarity required to be a P-neighbor
Minimum Cluster Size the minimum number of points required to form a cluster
C-Neighbor Connectivity the number of cluster members that must be C-neighbors

for a point to be added to the cluster
Merge Threshold the maximum fraction of points a cluster may share with

another cluster

Table 6.4: Parameters for similarity space density hill-climbing algorithm.

6.6.5 Multiple-Membership Density Hill Climbing Algorithm

With a discretized similarity space and the parameters in Table 6.6.4

defined, the multiple-membership density climbing algorithm proceeds as fol-

lows:
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1. Choose a point randomly to be a cluster seed.

2. Find the seed’s C-neighborhood and P-neighborhood.

3. Apply the “Cluster Growth” procedure the cluster until it stabilizes.

4. Apply the “Cluster-Core Finding” procedure to the members of the clus-

ter. If a member of the mature cluster has a denser C-neighborhood and

that point is not in an existing cluster’s P-neighborhood, relocate the

seed to that point and repeat 2-3.

5. Continue relocating and growing until no points in the cluster have a

greater density than the center.

6. Evaluate this cluster’s overlap with existing clusters; if overlap exceeds

Merge Threshold, merge the clusters.

7. Repeat 1-6 until k clusters are recovered, or no points meet the criteria

to be a seed.

6.7 Experiments

6.7.1 Strawman for Comparison

To evaluate the performance of our multiple-membership density algo-

rithm, we compare with a conceptually simple “strawman” algorithm. In simi-

larity space, algorithms which require data in a metric space are not applicable,

thus the previously described method of employing expectation maximization

followed by threshold selection is not usable. The hierarchical agglomerative

method requires only the similarities between points; however, it is inherently

a single-membership method. In order to make the clusterings generated by
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hierarchical clustering comparable to the clusterings generated by the over-

lapping methods, we make some modifications to the cluster selection process

following the construction of a hierarchical clustering. We select clusters from

the hierarchical tree based on three criteria: internal similarity, size, and sta-

bility. We first identify all potential clusters in the hierarchical tree which

meet both the criteria for minimum similarity of the C-Neighbor Threshold

from Table 6.6.4 and minimum size (Minimum Cluster Size from Table 6.6.4).

The resulting potential clusters will include several which are nested sequences

of related clusters. When this occurs, we select the member of the nested se-

quence with the highest stability, where stability is measured as the change in

internal similarity when the cluster is merged.

After choosing representative clusters in this manner, we have a non-

overlapping, convex clustering consisting of clusters with a size ≥ Minimum

Cluster Size and a similarity ≥ C-Neighbor Threshold. To give this clustering

some overlapping character, we add to each cluster any points which are within

a similarity of at least P-Neighbor Threshold of at least C-Neighbor Connec-

tivity of the cluster members. In essence, we run one iteration of the “Cluster

Growth” procedure described in Section 6.6.2. As this step can significantly

alter the membership of the clusters, as a final step we evaluate the resulting

memberships for potential merges using the “Merge” procedure described in

Section 6.6.3 with the parameter Merge Threshold described in Table 6.6.4.

6.7.2 Datasets

For our experiments, we employed three diverse synthetic datasets gen-

erated using the model described in Section 6.2.2. The details of these datasets

are given in Appendix B.
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6.7.3 Results

Both our algorithm and the strawman algorithm have several tunable

parameters and it is likely that careful parameter selection can improve their

performance; however, in these experiments we have aimed to simulate a “real-

world” scenario of data analysis with no a priori information about optimal

parameters. Therefore, we have chosen parameters which indicate no prior

knowledge of the statistics of the similarity space. Table 6.7.3 lists the param-

eters used in the experiments.

Parameter value

C-Neighbor Threshold 0.66
P-Neighbor Threshold 0.33
Minimum Cluster Size 10
C-Neighbor Connectivity 0.9
Merge Threshold 0.75

Table 6.5: Parameters used for experiments.

Strawman Density Climbing
Data Clusters Omega Clusters Omega

Synthetic 1 21 ± 0 0.494 ± 0 11.9 ± 0.876 0.674 ± 0.0238
Synthetic 2 18 ± 0 0.412 ± 0 15.3 ± 1.42 0.481 ± 0.00853
Synthetic 3 19 ± 0 0.432 ± 0 13.9 ± 0.994 0.554 ± 0.0182

Table 6.6: Results of algorithms compared to strawman on synthetic datasets.
Because of its random initialization, results for the Density Climbing algorithm
are averaged over ten runs.

110



6.7.4 Similarity Space Density Climbing Applied to Microarray
Data

In microarray experiments, it is generally accepted that genes that show

high absolute correlation across a series of experiments are together involved

in an underlying biological process. Finding such highly-correlated groups

of genes identifies functional blocks in cellular machinery. Individual genes,

however, often play roles in several different processes, and should be grouped

accordingly into all appropriate functional groups. The problem of clustering

genes into process groups based on their expression across experiments is a

natural application of overlapping clustering.

In this section we apply the similarity space density climbing algorithm

to the Gasch gene expression dataset[GE02], specifically using the subset of

highly active genes identified by Segal in [SBK03a]. The dataset consists of

the expression levels of 1010 genes across 173 experimental conditions. We

construct the similarity space by measuring the absolute value of the Pearson

correlation coefficient between each gene’s expression vector. We then apply

the similarity space density climbing algorithm with the following parameters:

Parameter value

C-Neighbor Threshold 0.5
P-Neighbor Threshold 0.4
Minimum Cluster Size 10
C-Neighbor Connectivity 0.9
Merge Threshold 0.75

Over ten runs of the algorithm, the average number of clusters dis-

covered was 15.1±2.1. Distributions of within-cluster similarity versus back-
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ground similarity were consistent across the runs, with an example set of dis-

tributions shown in Figure 6.11.
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Figure 6.11: Distributions of within-cluster similarity (top pane), between-
cluster similarity (middle pane), and shared labels (bottom pane) of the clus-
tering found by the similarity space density hill climbing algorithm. It is
notable by comparing the top and middle panes that the discovered clusters
have a much higher internal similarity than the background. The bottom pane
shows that genes in this clustering belong to as many as 5 different clusters.

Figure 6.11 demonstrates that the algorithm has appropriately discov-

ered sets of high internal similarity in the similarity space. We can evaluate

the biological meaning of these high-similarity groupings by looking for enrich-

ment of process labels among genes which have been annotated. We calculate

the enrichment of a particular cluster as the hypergeometric p-value of its most

frequent label relative to the frequency of that label in the entire set of genes.

Examining specific clusters from the clustering displayed in Figure 6.11, we

find:
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Cluster Process Name Enrichment
1 generation of precursor metabolites and energy 1.73e-05
2 electron transport 1.46e-04
3 vecicle mediated transport 2.68e-03
4 carbohydrate metabolism 2.97e-04
5 generation of precursor metabolites and energy 7.71e-03
6 cytoskeleton organization and biogenesis 4.71e-05
7 amino acid and derivative metabolism 2.96e-08
8 amino acid and derivative metabolism 1.44e-10
9 generation of precursor metabolites and energy 1.32e-09
10 amino acid and derivative metabolism 6.43e-11
11 nuclear organization and biogenesis 2.17e-06
12 protein catabolism 8.92e-06

The high enrichments of cellular processes in these discovered clusters

indicates that the discovered overlapping clusters correspond to sets of genes

involved in biochemical processes.

6.7.5 Discussion

Table 6.6 demonstrates that for datasets fitting the structure described

in Section 6.2, the proposed Density Climbing algorithm finds clusters which

more closely match the ground-truth latent structure in the data than those

found by the strawman algorithm. The demonstration in Section 6.7.4 shows

the utility of the approach on the real-world overlapping clustering problem of

identifying functional groups of genes from their expression profiles in collec-

tions of microarray experiments.
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Chapter 7

Conclusions and Future Directions

7.1 Contributions

The idea of overlapping clustering is not new, as demonstrated by the

catalogue of existing algorithms given in Chapter 2, however multiple member-

ship techniques have largely remained outside the armamentarium of modern

data analysts. Prominent among the reasons for this are three issues: first, that

the existing algorithms have been largely developed ad hoc for particular tasks,

with little effort toward generalization; second, that neither the purpose nor

meaning of allowing multiple memberships in clusters has been clear; and third,

that without general-purpose multiple-membership algorithms and tools for

analysis, the richer but more challenging-to-interpret information yield from

overlapping methods has not exceeded the simpler but well-understood yields

of single-membership methods. This dissertation has addressed each of these

issues, with the aim of increasing the understanding of multiple-membership

clustering and providing tools to make overlapping approaches more theoreti-

cally sound, easier to use, and easier to analyze.

Chapter 1 clarified clustering’s role as a technological tool much like

telescopes or microscopes in allowing humans to see further than our innate

senses allow, and framed overlapping cluster as a mechanism for commu-

nicating more information about structure in data than single-membership

methods, with little increase in complexity. Chapter 2 catalogued existing
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approaches to overlapping cluster. Chapter 3 more closely examined the

clustering-as-communication concept introduced in Chapter 1 while reviewing

existing multiple-membership analysis tools and proposing new ones. Chapter

4 looked at a particular problem in overlapping clustering analysis: aligning

clusters from different algorithms so as to make their meanings interpretable

and comparable. Chapter 5 provided a general, model-based technique for an-

alyzing data resulting from additive overlapping cluster. Chapter 6 addressed

overlapping clustering in similarity spaces, proposing a generative model of

similarity space overlapping clustering as well as algorithmic approaches to

finding overlapping clusters in such spaces.

7.2 Future Work

As overlapping clustering is a still-developing field, there are several

avenues for future development. Notable among these are techniques for vi-

sualization and interpretation, new algorithms and new means of comparison,

and techniques for model selection.

Given clustering’s role in guiding data analysis and interpretation, ef-

fectively and efficiently communicating clustering results to human users is

critical. The proverb “a picture is worth a thousand words” holds particular

validity when translating the results of high-dimensional numerical analysis

into human-interpretable form. This dissertation presented some novel forms

of visualization, notably the cluster signatures presented in Chapter 4 and the

multiple-membership dendrogram of Figure 6.8; however, the need for more

and better presentation methods is clear.

The algorithms described in Chapters 5 and 6 provide multiple-membership

generalizations of the two primary representatives of single-membership clus-
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tering: model-based global optimization like k-means, and locally greedy mod-

els such as hierarchical agglomerative. Clearly, there are numerous other

single-membership approaches which may generalize well to multiple-membership

applications, and the work of identifying these approaches and their general-

izations will provide research fodder into the forseeable future.

Chapter 6 gives a very general model of, and algorithms for analyzing,

the structure of data containing overlapping clusters. A consequence of the

model’s and algorithms’ generality is the large number of parameters required.

While the experiments demonstrate that even naive choices of these param-

eters yield good results, a means of identifying optimal parameters a priori

would greatly enhance the algorithms’ utility. This model selection problem is

nontrivial - it is still a prominent issue in single-membership clustering. How-

ever, the similarity-space generative model presented in Chapter 6 provides a

means of performing experiments intended to correlate the observable struc-

ture of a dataset (e.g. histograms, heatmaps) with the latent structure sought

by the cluster-finding algorithms. Exploration of these correlations may yield

model selection guidance for not only multiple-membership algorithms, but

single-membership as well.
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Appendix A

Mutual Information when labels exceed

datapoints

Consider the situation where we have 2k labels and N datapoints, where

N < 2k. If we assume that each data point is assigned one of the 2k labels with

equal probability, than with high probability, each point will have a different

label. For two clusterers assigning points in this manner, the joint probability

between a label in clusterer 1 and a label in clusterer 2 will be:

p(label1, label2) =
1

N

and any other joint probability involving label1 and label2 will be zero.

Since label1 has occurred once in the N data points, its prior will be:

p(label1) =
1

N

as will the prior of label2.

So, the mutual information calculation will be:

MI =
N∑
i=1

p(labeli1, labeli2) log2

p(labeli1, labeli2)

p(labeli1)p(labeli2)

=
N∑
i=1

1

N
log2

1
N

( 1
N

)( 1
N

)

= log2N

which is clearly nonzero.
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Appendix B

Synthetic Datasets

This section describes the three synthetic datasets generated using the

generative model described in Chapter 6 and employed in the evaluation of

the algorithms described in that chapter.

B.1 Synthetic Dataset 1

Dataset 1, previously described in Chapter 6, is intended to be charac-

teristic of a real-world similarity space containing clusters. Table B.1 lists the

parameters used to generate this dataset. The 10 clusters are sized between

10% and 20% of the size of the data, share around 20% of their points, and

have a mixed single-link/complete-link character. Figure B.1 illustrates this

dataset’s within-cluster and between-cluster histograms.

Parameter Value

n 500
k 10
Q discrete Uniform over (b n

10
c, bn

5
c)

c 0.8
v 0.2
Θbackground (1.5,5)
Θcluster (10,3)

Table B.1: Parameters of Synthetic Dataset 1
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Figure B.1: Characteristics of the synthetic data set generated using the pa-
rameters in Table B.1. The first pane shows the distribution of within-cluster
similarities, the second shows the background similarity distribution, and the
bottom pane the distribution of memberships. Note that the within-cluster
distribution i s a mixture of the specified within-cluster Beta distribution and
a small amount of the background Beta distribution. This is due to the pa-
rameter c which specifies complete-link character being less than one: points
within a cluster are not required to have high similarity to all other points
within the cluster.
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Parameter Value

n 500
k 30
Q discrete Uniform over (b n

500
c, b n

100
c)

c 0.5
v 0.3
Θbackground (1.5,5)
Θcluster (5,1.5)

Table B.2: Parameters of Synthetic Dataset 2

B.2 Synthetic Dataset 2

Dataset 2 consists of dense, nonconvex clusters with significant (30%)

overlap. This dataset is intended to be representative of the similarity struc-

ture of a social network, with several subsets of nodes shared between several

larger networks. Table B.2 lists the parameters used to generate this dataset,

and Figure B.2 illustrates this dataset’s within-cluster and between-cluster

histograms.

B.3 Synthetic Dataset 3

Dataset 3 consists of nonconvex clusters with minimal (5%) overlap.

Table B.3 lists the parameters used to generate this dataset, and Figure B.3

illustrates this dataset’s within-cluster and between-cluster histograms.
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Figure B.2: Structure of Synthetic Dataset 2. The top pane shows the within-
cluster distribution of similarities, the middle pane shows the distribution of
background similarities, and the bottom pane the distribution over number of
cluster memberships per point.

Parameter Value

n 500
k 10
Q discrete Uniform over (b n

500
c, b n

100
c)

c 0.5
v 0.05
Θbackground (1.5,5)
Θcluster (15,5)

Table B.3: Parameters of Synthetic Dataset 3
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Figure B.3: Structure of Synthetic Dataset 3. The top pane shows the within-
cluster distribution of similarities, the middle pane shows the distribution of
background similarities, and the bottom pane the distribution over number of
cluster memberships per point.
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