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Recent years have seen ambitious robotic exploration missions to other

planets and a renewed interest in sending humans beyond low Earth orbit.

These activities give rise to a need for autonomous spacecraft operation. Of

particular interest here is the ability of a spacecraft to navigate independent

of contact with Earth-based resources. Optical navigation techniques are pro-

posed as a solution to the problem of navigating in a planetary system without

requiring navigation information from Earth. A detailed discussion of optical

sensor hardware and error sources leads to new high fidelity math models

for optical sensor performance that may be used in navigation simulations.

Algorithms are developed that allow optical data to be used for the estima-

tion of spacecraft position, velocity, and attitude. Sequential measurements

are processed using traditional filtering techniques. Additionally, for the case

of attitude estimation, a new attitude filter called Sequential Optimal Atti-

tude Routine (SOAR) is presented. The models and techniques developed in

viii



this dissertation are demonstrated in two case studies: (1) navigation of a

spacecraft performing a planetary fly-by using real images from the June 2007

MESSENGER fly-by of Venus and (2) navigation of a spacecraft in cislunar

space on a return trajectory from the Moon.
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Chapter 1

Introduction

Recent years have seen ambitious robotic exploration missions to other

planets and a renewed interest in sending humans beyond low Earth orbit

(LEO). Developments in the fields of both robotic spaceflight and human

spaceflight are creating increased pressure for advancements in autonomous

spacecraft operation. A particularly challenging problem is spacecraft naviga-

tion independent of any Earth-based tracking or updates. For robotic missions,

autonomous navigation may be necessary for high-speed fly-bys of a planet or

for fly-bys that occur when the Sun is between the Earth and the planet. Au-

tonomous navigation may also help reduce the tracking demands on ground

based infrastructure. For crewed missions, autonomous navigation would en-

able the crew to safely navigate the spacecraft back to Earth in the event of a

communication system failure.

The objective of the present research is to investigate navigation so-

lutions that would enable a spacecraft to autonomously navigate in a plane-

tary system. Optical navigation techniques are proposed as a solution to this

problem. Specifically, the focus is on navigation in planetary space, not in

interplanetary space. Examples of operations in planetary space include, but
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are not limited to, a spacecraft in orbit about a planet/moon, a spacecraft exe-

cuting a fly-by of a planet/moon, and a spacecraft in a cislunar transfer orbit.

Some examples of operations in interplanetary space, where the techniques

investigated in this dissertation are not generally valid, include a spacecraft in

a heliocentric cruise phase and a spacecraft executing a fast fly-by of a small

solar system body (something other than a planet or moon, e.g. comets, as-

teroids, etc.). Throughout the following discussions, the phrase “autonomous

navigation” refers to navigation without contact with Earth.

1.1 Historical Perspective and Motivation

1.1.1 Interplanetary Robotic Spaceflight

Interplanetary robotic missions have historically relied on a combina-

tion of radiometric tracking and optical observations for navigation. Radio-

metric tracking data, usually provided by the Deep Space Network (DSN),

are the primary means of navigation for most flight regimes. DSN is a net-

work of large antennas (34 m diameter and 70 m diameter) operated by the

Jet Propulsion Laboratory (JPL), with deep space communication facilities

located in California (USA), Spain, and Australia. More background informa-

tion on DSN may be found in [1], [2], and [3]. Almost all lunar missions and

numerous interplanetary missions have relied entirely on radiometric tracking

(from DSN or similar assets) for external position and velocity updates. Dur-

ing the planetary approach phase, some spacecraft have also relied on optical

observations to improve the estimate of the spacecraft state relative to the tar-
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get planet or moon. With a few exceptions, to be discussed more in Chapter

2, these optical observations were processed on the ground. The radiometric

tracking data and optical data were combined on the ground and an updated

state estimate was uplinked to the spacecraft.

Recent robotic missions such as New Horizons, which was launched in

January 2006 and is now in transit to Pluto, are beginning to perform more

complex tasks while operating at greater distances from the Earth. Operating

at such large distances from the Earth requires increased autonomy due to

the time delay associated with sending navigation data from a distant planet,

processing that data on the ground, and uplinking a new state estimate to the

spacecraft. This time lag may be too great for some applications.

Further, the number of lunar and planetary spacecraft simultaneously

operating continues to grow. Current projections indicate that the Earth-

based resources used to track and communicate with these spacecraft face

significant challenges in keeping up with the number of required links as well

as the total required data rate.[4, 5] To respond to these growing needs and

aging infrastructure, the DSN program initiated an antenna modernization ef-

fort in February 2010 that is expected to last through 2025.[6] Although DSN

will likely remain the primary system for deep space communication and radio-

metric tracking, there have been some recent additions to our ability to track

and communicate with lunar and planetary spacecraft. Notable among these

additions is a Ka-band antenna network opened in 2007 and operated by the

National Aeronautics and Space Administration (NASA) at the White Sands
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Test Facility in New Mexico.[7] A second notable example is the Indian Deep

Space Network (IDSN) in Byalalu, India, which was opened in 2008 to track

and communicate with Chandrayaan-1, the country’s first lunar satellite.[8]

Increased spacecraft autonomy will help reduce the demands and con-

straints on DSN and other Earth-based radiometric tracking facilities. The

increased flexibility that results from this autonomy may help bridge the pro-

jected capability gap in planetary communication and tracking.

1.1.2 Human Spaceflight

The discussion that follows contains a few brief comments on the post-

Apollo developments in human spaceflight beyond LEO, along with a descrip-

tion of the current events that are shaping the direction of human spaceflight

today.

Human spaceflight has been limited to LEO since the last Apollo mis-

sion, Apollo 17, returned from the moon on December 19, 1972.[9] After many

years in LEO with the Apollo-Soyuz, Skylab, and Space Shuttle programs,

President George H.W. Bush announced the Space Exploration Initiative (SEI)

in 1989. This program outlined a 30-year plan for an orbital space station,

a permanent base on the Moon, and a human mission to Mars.[10–12] The

plans that were developed as part of SEI never happened due to political pres-

sure that resulted from a difficult roll-out and a large cost estimate. Human

space exploration beyond LEO was officially removed from the U.S. national

agenda by the Clinton Administration in 1996.[13] Throughout this time the
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Space Shuttle and the development of the International Space Station (ISS)

remained the cornerstones of U.S. human spaceflight.

During the late 1990s and early 2000s, there were numerous efforts to

develop a vehicle to replace the Space Shuttle for delivering/returning crew

and cargo to/from the ISS. Most notable among these attempts were the X-38

Crew Return Vehicle (CRV) and the Orbital Space Plane (OSP). The programs

for all of these LEO vehicles were canceled before the systems became oper-

ational. During this time period there were also numerous paper studies on

human exploration of the Moon and Mars (e.g. Exploration Blueprint, Mars

Design Reference Missions).[14, 15] Then, after the Space Shuttle Columbia

accident on February 1, 2003,[16] President George W. Bush introduced the

Vision for Space Exploration (VSE) on January 14, 2004.[17] The VSE called

for the United States to return to the Moon by 2020 on its way to exploring

destinations beyond Earth’s neighborhood. In response to the VSE, NASA

created the Constellation Program to develop the systems necessary to com-

plete this vision. To shift focus and resources to this new program, NASA also

announced its decision to end the Space Shuttle program in 2010 after nearly

30 years of operation. After approximately 5 years of responding to President

Bush’s VSE, NASA’s direction and objectives were reassessed after a presiden-

tial change of power. In June 2009, the Obama Administration created the

Review of U.S. Human Spaceflight Plans Committee to review the entirety of

U.S. human space flight, including the Space Shuttle, ISS, and Constellation

Program. The committee’s report, “Seeking a Human Spaceflight Program
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Worthy of a Great Nation,” was delivered in October 2009.[18] This report

concluded that the Constellation Program was underfunded and that NASA’s

current objectives were not appropriately matched with the agency’s projected

funding profile. At the time that this dissertation was written, the future of

the Constellation Program and, therefore, the future direction of U.S. human

spaceflight beyond LEO was uncertain.

Regardless of the future of the Constellation Program, the recurring

interest in human exploration beyond LEO is taken as evidence of an under-

lying national interest in human space exploration. The primary obstacles for

these human space exploration programs continue to be a constrained budget,

a large risk to the crew, and a very long development period. These challenges

create difficulty in sustaining sufficient support for human space exploration

programs across multiple presidential administrations and congressional ses-

sions. Therefore, from an engineering standpoint, it is critical to develop tech-

nologies and capabilities that address these issues by reducing cost, reducing

the risk to the crew, and collapsing the schedule.

Increasing vehicle autonomy is a widely cited mechanism for achieving

all of these objectives. One of the major contributing factors to the cost of

the Space Shuttle and ISS programs is the large number of people it takes to

operate these systems. The Space Shuttle Program, for example, had a stand-

ing work force of over 12,500 individuals in the year 2009.[18] If increasing

vehicle autonomy can greatly reduce the work force requirements for mission

control of crewed vehicles, then significant cost savings could be realized. Ad-
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ditionally, increased vehicle autonomy (or the ability to operate autonomously

if necessary) may increase vehicle reliability if properly implemented. A com-

munication system failure, for example, may require a crewed vehicle to au-

tonomously return to Earth. Finally, development of technologies that enable

autonomous human spacecraft operation today will reduce the time required

to field these technologies in future systems.

1.2 Preliminary Navigation Considerations

During operations in LEO, the data required for navigation may be

obtained through traditional spacecraft navigation methods, such as an on-

board Global Positioning System (GPS) receiver or radiometric tracking. As

the distance between the spacecraft and Earth increases, some of the meth-

ods used in LEO become problematic due to design (e.g. GPS signals are

designed to transmit towards the Earth) and/or poor geometry. To address

this difficulty, previous spacecraft operating in planetary space have relied pri-

marily on a combination of onboard inertial measurements and inertial state

updates sent from the ground. These ground updates are commonly generated

from radiometric tracking. Optical images taken by the spacecraft, although

processed on the ground, have also been widely used to supplement the ra-

diometric tracking data during an encounter with a planet, moon, or asteroid.

Traditionally, an Inertial Measurement Unit (IMU) is used to propagate the

state (dead reckoning) between inertial state updates provided from an exter-

nal source. For many spacecraft applications, this external source is a state
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estimate uplinked from the ground. An IMU is a single device that contains

both accelerometers and gyros. Between the external state updates, the IMU

generated solution will drift. The difficulty here lies primarily with the ac-

celerometers and the associated estimate of the spacecraft position; the gyros

may be inertially updated using on-board star trackers.

Autonomous navigation, therefore, requires some form of external in-

formation to augment the measurements from the IMU. The following two

sections, therefore, discuss some introductory notions related to (1) inertial

navigation and (2) sources of autonomous external navigation updates.

1.3 Inertial Navigation

Inertial navigation represents one extreme in the spectrum of autonomous

navigation. Inertial navigation allows the spacecraft to track its position, ve-

locity, attitude, and attitude rate as a function of time without requiring

measurements from the outside environment (e.g. radiometric tracking, obser-

vations of stars, etc.). Inertial changes in attitude are easily measured using

the IMU’s gyros. Detecting changes in the translational states is more diffi-

cult. Because accelerometers do not measure the acceleration due to gravity,

propagation of the spacecraft position and velocity is dependent on a gravity

model stored in the spacecraft computer. When non-gravitational forces are

applied to the vehicle (e.g. propulsive maneuver, waste venting, etc.), the

total acceleration may be computed by combining the predicted gravitational

acceleration from the gravity model with the sensed accelerations measured by
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the accelerometers. The spacecraft position and velocity may be tracked over

time by integration of these accelerations from some set of initial conditions.

Unfortunately, knowledge of the gravity field is imperfect and the grav-

ity models used for real-time applications require approximations that may

introduce significant errors for long propagation periods (e.g. truncation of the

spherical harmonic representation of the planet and/or moon gravity fields).

Further, there are numerous sources of error in the acceleration measured by

the accelerometer. Due to these errors, the solution achieved by simply inte-

grating the measured/predicted accelerations accumulates error over time and

the system requires external updates to maintain an accurate estimate of the

spacecraft position and velocity.

1.4 Sources of Autonomous External Navigation Up-
dates

Determining the degree of autonomy that should be incorporated into

a spacecraft is an important design decision. Autonomous attitude determi-

nation may be performed by imaging a star field and matching the observed

star patterns to known patterns from a star catalog. This process is well un-

derstood and is a function performed by many commercially available star

trackers.[19] Autonomous updates of the spacecraft translational states are

significantly more difficult.

The desire for autonomous lunar and planetary navigation is a long

standing issue that has led to numerous studies since the 1960s. Autonomous
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Figure 1.1: Potential navigation solutions for inertial state updates.

navigation techniques (mostly optical) have been tested and widely used dur-

ing the planetary approach phase of robotic exploration missions. Numerous

examples of these robotic missions are discussed in detail in Chapter 2. Be-

cause the required degree of autonomy will vary from mission to mission, a

spectrum of navigation solutions must be considered (see Fig. 1.1).

The approaches presented towards the right half of Fig. 1.1 repre-

sent solutions that would allow for autonomous inertial navigation updates.

These solutions rely primarily on observations of natural targets. The result-

ing measurements typically consist of optically acquired images of stars and a

nearby celestial object or the time of arrival of pulses from well-known pulsars.

Although the theory and algorithms for pulsar-based navigation is relatively

mature,[20] there are difficulties in the density of well-modeled pulsars and

the size/sensitivity of the required X-ray detector. Pulsars are shown to span

“Natural Targets” and “Human-emplaced Passive Targets” in Fig. 1.1 because

some pulsar-based navigation schemes require a station at a known location

to monitor the pulsar signal and then transmit timing information about the
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observed signal to other spacecraft. These other spacecraft may then per-

form relative navigation with respect to this reference station using the pulsar

signal. Other pulsar-based navigation schemes are completely autonomous.

Therefore, optical navigation (OPNAV) techniques are proposed as a

solution to the problem of navigating in a planetary system without requir-

ing navigation information from Earth. In such a scenario, the spacecraft

would collect optical images of naturally occurring objects. Then, by coupling

accurate angular measurements with precise target position information, the

resulting data may be used to produce an estimate of the spacecraft’s inertial

position. The use of natural targets allows for inertial state updates without

requiring the emplacement of additional space-based assets and without the

need for contact or communication with the Earth. Use of natural targets also

helps to create a robust navigation architecture. The observation of man-made

targets may introduce additional maintenance, infrastructure, overhead, and

failure modes not seen with natural targets. It should also be noted that,

despite these advantages, natural targets rarely have the precision associated

with man-made systems specifically designed for navigation.

1.5 Contributions

This work provides a detailed discussion of the tools and techniques

required to create an autonomous optical navigation system for a spacecraft

operating in the vicinity of a planet or moon. Although substantial work

has been performed in this area since the 1960s, this dissertation introduces
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numerous advancements to the current state-of-the-art. The sections that

follow discuss each of the major contributions in more detail.

1.5.1 Optical Sensor Model

A new optical sensor model is developed. Individual error sources (e.g.

alignment, optics, detector noise, etc.) are discussed from the perspective of

generating optical navigation measurements. These observations are used to

create synthetic images of stars and planets that can be used to test optical

navigation image processing algorithms. This new model also allows for direct

construction of the covariance matrix for a line-of-sight unit vector observation

as a function of camera parameters. The new covariance model is shown to

reduce to various simpler forms of the covariance found in the literature under

the appropriate assumptions. This contribution is the subject of Chapter 3.

1.5.2 Image Processing

A new application of image processing techniques is presented that al-

lows for the autonomous extraction navigation information from a raw image.

The performance of this image processing algorithm is demonstrated on (1)

real images from previous spacecraft missions and (2) synthetic images gener-

ated using the newly developed optical sensor model (contribution 1). Analytic

expressions for the measurement covariance matrices and measurement sensi-

tivity matrices are developed for each of the optical navigation measurement

types discussed. This contribution is the subject of Chapter 4.
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1.5.3 The Sequential Optimal Attitude Recursion (SOAR) Filter

A new nonlinear attitude filter called the Sequential Optimal Attitude

Recursion (SOAR) Filter is developed. The complete derivation of the SOAR

Filter is presented, starting from the perspective of maximum likelihood es-

timation. Detailed theoretical comparisons between the SOAR Filter and a

number of existing attitude filters places this new attitude filter in the context

of earlier work. Simulation results indicate that the SOAR Filter is capable of

providing superior performance relative to existing attitude filters when angu-

lar errors are large. When the errors are small, the performance may be shown

to be identical to the Multiplicative Extended Kalman Filter (MEKF). This

contribution is the subject of Chapter 5.

1.5.4 End-to-end Optical Navigation Performance Assessment

The results of the first three contributions are combined to perform

an end-to-end assessment of the performance of a completely autonomous op-

tical navigation system in two different scenarios. In the first scenario, real

images from the June 2007 MESSENGER fly-by of Venus are autonomously

processed and the state is estimated throughout the fly-by using only these

optical navigation measurements. In a second scenario, synthetic images of

the Earth and Moon are generated for a spacecraft on a February 2024 lunar

return trajectory. As with the first case study, these images are autonomously

processed and the entire lunar return is performed using only measurements

from the spacecraft IMU and camera. The results of this second case study
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are put in the context of meeting a representative entry flight path angle re-

quirement for a crewed vehicle on a lunar return. The contributions of these

two case studies are subject of Chapter 6.
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Chapter 2

Historical Background on Optical Navigation

2.1 Extension of Terrestrial Optical Navigation to Space
Applications

Optical navigation has been used by explorers on Earth for centuries.

The use of stars (mainly Polaris) and the Sun for navigation dates back to at

least the 1400s. Early navigation consisted mostly of determining latitude by

measuring the angle between Polaris and the horizon. Difficulties with accu-

rate time keeping, however, prevented the determination of longitude until the

development of Harrison’s chronometer in the 1700s.[21] Although the accu-

racy of navigation instruments and star charts have improved, the fundamental

techniques used by modern practitioners of celestial navigation (usually as a

back-up to GPS and other man-made navigation aids) have changed little in

the past 200 years.

Many of the fundamental measurement types used in terrestrial nav-

igation may be extended for use in space applications. These measurements

may be made manually (through a device such as a space sextant or a space

stadimeter) or autonomously through an optical image of a planet/moon and a

background starfield. Some of the common optical measurements (discussed in

detail in Chapter 4) include: (1) planet/moon apparent diameter, (2) the angle
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between a planet/moon horizon and a reference star, (3) the angle between a

planet/moon surface feature and a reference star, and (4) the time at which a

planet/moon occludes a reference star. The star-horizon measurements used

for spacecraft navigation represent a direct parallel to the sextant observations

used by seafarers on Earth since the 1700s.[22] The use of apparent diameter

measurements, star-horizon measurements, and star-feature measurements for

navigation in space applications has been well understood since at least the

early 1960s.[23, 24] Although much of the early groundbreaking work in op-

tical navigation was performed as part of the Gemini program and Apollo

program, advancements in autonomous navigation and optical navigation by

robotic spaceflight has far outpaced that seen in human spaceflight since the

1970s.

2.2 Optical Navigation in Human Spaceflight

Some of the first demonstrations of optical spacecraft navigation were

performed in the human spaceflight programs of the 1960s. Most of these

advancements were made in direct preparation for the Apollo missions to the

moon. Since the Apollo program ended, however, there have been few addi-

tional advancements in optical navigation from the human spaceflight commu-

nity. This is likely due to the fact that, with the exception of Apollo, human

spaceflight has been limited to LEO, where the need for optical navigation is

less pronounced.
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2.2.1 Gemini

Numerous optical navigation experiments were performed as part of

the Gemini program, many of which were in direct preparation for the Apollo

program. These experiments were primarily coordinated by the Air Force

Avionics Laboratory at Wright-Patterson Air Force Base, which had been

developing optical navigation techniques since the early 1960s.

The first optical navigation experiment, Experiment D-009, was in-

tended to demonstrate the use of optical observables for autonomous space

navigation for the first time.[25] This experiment was flown on Gemini IV

(June 1965) and Gemini VII (December 1965). Although experiment plans

called for the testing of a space sextant (Fig. 2.1) and a space stadimeter,

only the space sextant was actually used. The space stadimeter was built and

qualified, but never flew on Gemini.[25] A summary of the measurements taken

as part of this experiment is shown in Table 2.1. The experiment was highly

successful and helped lay the foundation for the optical navigation system used

in the Apollo program.

Table 2.1: Number of space sextant measurements taken during Experiment
D-009 on Gemini IV and Gemini VII.[25]

Measurement Type Gemini IV Gemini VII
Earth horizon to star 45 37
Moon horizon to star/planet - 5
Star to star 47 6
Single star - 8
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a) Gemini space sextant with scale b) Optical layout for Gemini space sextant

Figure 2.1: Space sextant used for autonomous navigation experiments in the
Gemini program. Original figure from [26], courtesy of NASA.

The second experiment, Experiment D-005, was intended to demon-

strate how star occultation measurements could be used for autonomous space-

craft navigation.[27] This experiment was flown on Gemini VII (December

1965) and Gemini X (July 1966). To determine the time of star occultation,

the astronauts used an instrument called a star occultation photometer. This

device was used to create the attenuation curve (observed light intensity rel-

ative to unattenuated intensity as a function of time) of an observed star as

that star passed through the Earth’s atmosphere. A failure of the star occulta-

tion photometer on Gemini VII resulted in no occultation data being collected

during this mission.

Numerous measurements were made with the star occultation photome-
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Figure 2.2: Star occultation photometer output for observation of Vega
(brightest star in constellation Lyra) on Gemini X. The line-of-sight to the
star began to pass through Earth’s upper atmosphere at point A and ap-
peared to exhibit a linear decrease in intensity as it passed through the lower
atmosphere between points B and C. Original figure from [27], courtesy of
NASA.

ter on Gemini X. The astronauts reported difficulty tracking a star through

the Earth’s airglow, where the star would momentarily disappear and then

reappear before moving below the Earth’s dark horizon. This highlights some

of the difficulties of using star occultation measurements on a planet with an

atmosphere. An example output of a successful star occultation photometer

measurement on Gemini X may be seen in Fig. 2.2.

The third experiment, T-002, flown on Gemini XII (November 1966)

was intended to validate the ground based simulations for space sextant mea-

surements.[26] The focus of this experiment was on the effects of the space

environment on the performance of manual sightings taken by crew members.

As part of this study, the astronauts took sightings with the Gemini space

19



sextant (Fig. 2.1) with and without the space suit helmet on. Results indi-

cated that the ground based simulations accurately estimated performance of

the instrumentation and crew in the actual space environment.[26]

2.2.2 Apollo

The Apollo Guidance, Navigation, and Control (GNC) system was orig-

inally designed to be capable of supporting a return to Earth completely in-

dependent of Earth-based resources. Unfortunately, limitations in on-board

computer memory forced some functions to be shifted to ground tracking fa-

cilities and Mission Control.[28] Even after this reduction in capability, the

crew maintained sufficient on-board navigational capability to return to Earth

in the event of a communications system failure. Although the capability for

autonomous navigation was retained as a backup, it was not regularly used

because of extremely high demands on crew time.

The key instrument that enabled this on-board capability was a spe-

cially designed sextant used to measure the angle between a selected Earth or

Moon feature and a reference star. This device, operated manually by one of

the astronauts, was capable of making angular measurements with accuracy

on the order of 10 arcsec (made possible through a 28 power eyepiece).[28]

Unfortunately, the field of view for the high power eyepiece was so small that

a wide field scanning telescope was also required. Schematics of the sextant

and scanning telescope, shown in Fig. 2.3, illustrate how the angle between

the Earth/Moon landmark and the reference star was actually measured.[29]
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More detailed discussions of both the the sextant and scanning telescope may

be found in [29], [30], and [31].

Astronauts claim to have found the star-horizon measurement easier to

obtain than the star-landmark measurement. In practice, the trunnion angle

was manually adjusted by the astronaut until the image of the reference star

was superimposed on the lunar horizon (similar to how a traditional sextant

works for Earth applications). When a measurement was ready to be recorded,

the astronaut could press a “mark” button to record the time and trunnion

angle. This information was passed to the spacecraft computer where the

Cislunar Navigation Program, called Program 23 (P-23),[32, 33] would deter-

Figure 2.3: Schematic of the sextant (left) and scanning telescope (right) used
for autonomous navigation in the Apollo Command Module. Original image
from [29], courtesy of NASA.
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Table 2.2: Comparison between Apollo 15 on-board (autonomous) and ground-
based estimate of entry flight path angle.[32]

Time to On-board Ground-Based Entry FPA
Entry Interface Entry FPA Entry FPA Difference

-58.2 hr -7.23 deg -6.69 deg -0.54 deg
-43.7 hr -7.22 deg -6.69 deg -0.53 deg
-31.5 hr -6.56 deg -6.50 deg -0.06 deg
-22.0 hr -6.55 deg -6.50 deg -0.05 deg
-19.0 hr -6.61 deg -6.50 deg -0.11 deg
-6.0 hr -6.26 deg -5.82 deg -0.44 deg
-1.4 hr -6.80 deg -6.49 deg -0.31 deg

mine the state update. If the state update was within the expected bounds,

the measurement was permitted to update the state. A detailed discussion of

P-23 algorithm is provided in [33].

The performance of this system was demonstrated on Apollo 8 when

Jim Lovell took over 200 sextant sightings and was able to calculate the clos-

est approach to the Moon (using only on-board resources) to within 2.5 km

of that computed by post-flight analysis.[28] During the return, Lovell also

demonstrated that this method provided sufficient accuracy to meet the reen-

try requirements.[28, 34] This capability was demonstrated again during later

Apollo missions. Data from Apollo 15 (see Table 2.2)[32, 35] demonstrates

that the on-board flight path angle (FPA) estimates were sufficient to meet

the reentry requirements (error of ±0.5 deg desired, ±1.0 deg required). Note

that the difference between the ground-based entry FPA estimates and on-

board entry FPA estimates collapse to below the reentry requirement as time

approaches entry interface (entry interface occurred 308.5 hours after liftoff
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for Apollo 15).

2.2.3 Skylab

Skylab was launched in May 1973 and was the United States’ first

space station. Three different crews visited the station in 1973 and 1974.

The Manual Space Navigation Experiment (DOD/NASA Skylab Experiment

T-002) was performed in 1973 by the second and third Skylab crews.[36]

This experiment looked at the performance of a space sextant and a

space stadimeter. Results of this experiment indicated that the top of Earth’s

airglow provided the best reference for star-horizon measurement. Determining

the height of the observed airglow above the Earth’s surface, however, intro-

duced another unknown which had to be estimated. Additionally, the Skylab

program provided an opportunity to test the US Air Force space stadimeter

that was not able to be flight-tested during the Gemini program. The space

stadimeter worked by taking three line-of-sight measurements of the Earth’s

horizon (see Fig. 2.4) to estimate the planet’s apparent diameter, and there-

fore estimate the altitude of the Skylab space station. Detailed discussions on

the operation of the space stadimeter may be found in [36], [37], and [38].

2.2.4 Space Shuttle

Unlike its immediate predecessors in US human spaceflight, the Space

Shuttle was not designed with the capability for onboard optical navigation

by the crew. A nice comparison of the Apollo and Space Shuttle navigation
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Earth
Horizon

Angle between the chord connecting the
outer two fields and the top of the arc in
the center field is used to estimate the
apparent size of the planet.

Two outer fields are
separated by a fixed
angle of 65 deg

a) US Air Force space stadimeter b) The space stadimeter uses three line-of-sight
observations of the planet horizon to estimate
the apparent diameter

Figure 2.4: Schematic of the space stadimeter operation. Picture on left is
from [38], courtesy of NASA.

systems may be be found in [39].

The closest instrument the Space Shuttle has to the space sextant

used on Gemini, Apollo, and Skylab is the Crewman Optical Alignment Sight

(COAS). Like the space sextant, this is a manually operated device used to

take star sightings. Unlike the space sextant, the COAS is used for attitude

estimation. The COAS may be used to realign the IMU if the attitude error

drifts beyond about 1.4 degrees. Beyond this point, the a-priori attitude error

is too large for the star tracker to acquire and track stars. In this scenario,

the attitude must be manually realigned to within 1.4 degrees before the star

trackers can take over alignment process with more precision. The COAS is

also used to track target vehicles.[39]
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2.3 Optical Navigation in Robotic Spacecraft

Many planetary missions have used optical navigation. What follows is

a brief summary of relevant past missions. Although the following discussion is

not exhaustive (there are many other missions that have used optical naviga-

tion), it does provide a summary of key historical advancements and describes

the current state of the art in optical navigation for robotic spacecraft.

2.3.1 The Mariner Missions to Mars

Many of the early missions to Mars relied solely on radiometric tracking

from DSN. Mariner 4 (launched on November 28, 1964), Mariner 6 (launched

on February 24, 1969), and Mariner 7 (launched on March 21, 1969) all used

only radiometric tracking for navigation during all mission phases. All three

of these missions performed Mars flybys.

Mariner 9 launched on May 30, 1971 and inserted into Mars orbit on

November 14, 1971. Mariner 9 was the first spacecraft to enter into orbit

about another planet. Although preliminary optical navigation experiments

were flown on Mariner 6 and Mariner 7,[40] Mariner 9 was the first robotic

mission to incorporate optical navigation measurements into the mission orbit

determination process. The Mariner 9 spacecraft used optical images of Mars

and its moons (Phobos and Deimos) along with background stars to improve

navigation during the approach to Mars.[41–43] During this mission a total of

21 OPNAV images were taken (18 of Deimos and 3 of Phobos).[44] An example

image of Deimos and background stars taken during the 1971 Mars approach
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is shown in Fig. 2.5. A typical OPNAV image of Mars is shown in Fig. 2.6.

The TV cameras used to create both of these images used vidicons with 700

scan lines and 832 pixels per line.

OPNAV images such as those shown in Fig. 2.5 and Fig. 2.6 were

transmitted to Earth where they were combined with radiometric tracking

data. The algorithm used to detect the location of the lit Mars limb was fairly

simple. Each scan line was searched for a set of three pixels that were above

a specified threshold. The first pixel in this set was identified as the limb

location. The three-pixel width was chosen to prevent single-pixel noise spikes

from generating incorrect limb locations.[43]

The success of optical navigation on Mariner 9 provided an early demon-

stration of the effectiveness of this technique and laid the foundation for the

Figure 2.5: OPNAV image of Deimos and background stars taken by Mariner
9 during Mars approach. The left frame is the actual image taken by Mariner
9 and the right frame is the predicted approach geometry. Original figures
from [42], reprinted with permission of the American Institute of Aeronautics
and Astronautics.
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Figure 2.6: OPNAV image of Mars and background stars taken by Mariner 9.
Original figure from [43], reprinted with permission of the American Institute
of Aeronautics and Astronautics.

use of optical navigation in future robotic missions.

2.3.2 Voyager and Cassini

The Voyager missions (Voyager 1 launched on September 5, 1977, and

Voyager 2 launched on August 20, 1977)[45, 46] and the Cassini/Huygens mis-

sion (launched on October 15, 1997)[47, 48] used similar optical navigation

techniques and algorithms to meet mission navigational requirements. Al-

though Mariner 9 provided a successful demonstration of optical navigation in

1971, the Voyager 1 and Voyager 2 encounters with Jupiter in 1979 were the

first time that optical navigation was required for an interplanetary mission
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to meet the principal mission objectives.[44, 49] These optical measurements

were found to be important in the vicinity of the outer planets (and especially

the moons of the outer planets) due to difficulties with precise flybys when

planet/moon states are not well known. For Voyager, there were also signifi-

cant a-priori uncertainties in the mass properties of the outer planets, espe-

cially Uranus and Neptune, leading to difficulties in accurately predicting the

post-flyby trajectory of the spacecraft. Optical observations of a planet’s satel-

lites allowed for improved estimates of the planet’s mass, thereby improving

the quality of the spacecraft trajectory propagation. The apparent movement

of the planet and moon(s) relative to the background starfield (and relative

to each other) provide the information required to answer these questions. As

an example, consider the changing geometry observed during Voyager’s 1989

Neptune encounter, as shown in Fig. 2.7. The movement of Triton and Nereid

(two moons of Neptune) relative to the planet was used to refine the orbits

of these satellites and improve the estimate of the mass of Neptune. Simulta-

neously, measurements between these bodies and reference stars were used to

provide information about the position of the spacecraft relative to the bodies

in the Neptune system.

The OPNAV process for Voyager and Cassini may be broken into three

components: (1) image planning, (2) image processing, and (3) orbit deter-

mination. The OPNAV images captured by the spacecraft were sent back to

Earth for image processing. These results were then fused with ground-based

tracking data and a state update was sent back to the spacecraft. Because a
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Figure 2.7: Neptune system and background star field viewed by Voyager on
approach. Original figure from [50], reprinted with permission of the American
Institute of Aeronautics and Astronautics.

large number of OPNAV images are required, this procedure can consume sig-

nificant communication bandwidth. Voyager 2, for example, collected approxi-

mately 225 OPNAV images during its Uranus flyby[51] and approximately 450

OPNAV images during its Neptune flyby.[50] Cassini collected nearly 2250 OP-

NAV images between October 13, 2003 and March 23, 2007 (see Fig. 2.8).[52].

As an interesting aside, the Galileo spacecraft was originally going to use a

similar approach, but the failure of the high gain antenna prevented the space-

craft from being able to transmit a sufficient number of OPNAV images back

to Earth. The approach used on Galileo is discussed in a later section.

Image planning for Voyager and Cassini was performed on the ground

well in advance of the flyby or maneuver of interest. Voyager 2 began image
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Figure 2.8: Cumulative distribution of Cassini OPNAV images. Original image
from [52], reprinted with permission of the American Astronautical Society.

planning for the 1989 Neptune encounter over two years before the flyby,[50]

and planning for an OPNAV imaging sequence could take up to six months

for Cassini.[52] In both of these missions, OPNAV engineers were required to

submit requests for spacecraft activity time. This was a rather complicated

process. On Cassini, for example, the OPNAV engineers were one of 14 dif-

ferent groups competing for observing time on the spacecraft. These teams

also had to determine how to downlink the OPNAV images through DSN.

The Cassini mission found these competing interests could be best managed

through a waypoint strategy for the sequence development process.[52]

After the OPNAV images were transmitted back to Earth via DSN,

the image processing phase began. The first step is image registration, which
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was performed manually. The analyst used a “drag-and-drop” approach to

manually align the predicted location of objects with the actual observed lo-

cation. This task typically resulted in a registration error on the order of a few

pixels. For the Voyager OPNAV images, this process took about five minutes

per image.[51]

After the manual image registration, filters were applied to determine

the location of stars or planet/moon horizon with a subpixel accuracy. The

centroid of a candidate star was found by using a Gaussian linear filter as a

template - the Voyager OPNAV team called this “box filtering.” By taking the

convolution of a normalized Gaussian kernel with a normalized patch from the

image (normalizing the patch from the image makes this template matching

problem insensitive to the brightness of the star), the centroid of a star may

be accurately determined. This is a standard image processing technique that

will be discussed in detail in Section 4.2.1.

A limb-scanning procedure was employed to accurately determine the

location of the horizon or terminator of a planet or moon. The procedure

begins by performing a series of scans radiating from the expected center of

the planet/moon like the spokes of a wheel, as shown in Fig. 2.9.[51] Along any

given scan direction, the scan residuals are computed. If partial derivatives

of the limb location with respect to the observed planet centroid location are

known, then the predicted brightness profile may be recursively updated to

minimize the residuals. When this process is complete, accurate estimates of

the planet/moon centroid and horizon/terminator are known.
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Figure 2.9: Voyager limb-scanning in the image plane. Original figure from
[51], reprinted with permission of the American Institute of Aeronautics and
Astronautics.

When star/planet/moon centroids and planet/moon horizons are known,

all the information necessary to generate optical measurements is available.

Specifically, Voyager and Cassini both used the angle between the planet/moon

horizon and a reference star for optical navigation. Once these angular mea-

surements were obtained, they were incorporated into a navigation filter. The

mathematical relations required to do this are discussed in Chapter 4.

2.3.3 Galileo

The Galileo mission to the Jovian system launched onboard the Space

Shuttle Atlantis (STS-34) on October 18, 1989. It arrived at Jupiter on De-

cember 7, 1995. The mission consisted of an orbiter and a probe that entered

Jupiter’s atmosphere. In April 1991 (during transit to Jupiter) the attempt to
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deploy the orbiter high-gain antenna was unsuccessful.[53] Due to this failure,

Galileo was forced to use its low-gain antenna for communications throughout

the entire mission. The result was a significant reduction in communication

bandwidth - the high-gain antenna was designed to transmit at data rates

up to 134.4 kbps, while the low-gain antenna achieved a maximum data rate

of only about 160 bps.[54] The optical navigation methodologies developed

to deal with this reduced data rate provided important advances in image

processing and in autonomy.

On the Galileo low-gain antenna, sending a single 800× 800 pixel OP-

NAV image would take over 70 hours.[55] Therefore, it was clearly not feasible

to take hundreds of OPNAV images as was done in Voyager and Cassini.

This constraint led to the development of a new OPNAV technique called the

single-frame mosaic (SFM). The SFM technique allowed for optical navigation

with significantly fewer images. A single SFM image is created by leaving

the camera shutter open as the spacecraft is slewed to a number of different

attitudes. Consider, for example, the Galileo encounter with the asteroid 951

Gaspra (this was the first time a spacecraft had performed an encounter with

an asteroid).[55] For this encounter, only four OPNAV images were performed.

Reproductions of these four OPNAV images may be seen in Fig. 2.10.

Although some basic image smearing models were used for Voyager and

Cassini, the image processing techniques for these missions were predicated on

the assumption that stars/planets/moons remain stationary over a fixed set

of pixels during the entire camera exposure.
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The uncompensated wobble of the Galileo spacecraft and the slewing

of the camera resulted in extended image trails (or patterns) for Gaspra and

the background stars in the four SFM OPNAV images in Fig. 2.10. Within a

Figure 2.10: The four single-frame mosaic OPNAV pictures for the Galileo
encounter with the asteroid 951 Gaspra. Original figure from [55], reprinted
with permission of the American Institute of Aeronautics and Astronautics.
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single image, all of these trails should have the same overall structure because

they were created from the same camera motion. On Galileo, there was no

simulation available that could accurately predict the pattern of the image

trails in the SFM. Therefore, the actual patterns that were observed in the

image, regardless of the conditions that led to the creation these patterns, were

used to construct a template.[55]

A small characteristic part of the trails, called a “node,” would be

selected as the template (or filter). This template was then compared to all

the corresponding nodes on the other trails. This comparison was performed

by taking the convolution of the normalized template with a normalized patch

from the image and finding the template location that maximized the response.

This process was repeated for each node by cycling the trail from which the

template was created. Therefore, if n trails were identified, then there would

be n−1 estimates of the filter center location for each trail. Combining all the

resulting filter centers for a single node resulted in an ensemble center location

for that node (see Fig. 2.11).

Simple methods for determining the best ensemble center location, such

as weighted averaging, were attempted but found to be insufficient. Instead,

the analyst began the ensemble center finding process by visually selected a

“nodal anchor point” at approximately the same location in each trail using

a “point-and-click” approach. This nodal anchor point set up a local coordi-

nate frame and could be related to the image origin (upper left corner) by a

simple translation (see section 3.1.3 for more information on image coordinate
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frames). A least squares approach was then used to simultaneously minimize

the offset for all filter-image combinations. This procedure would come to be

known as the multiple cross-correlation (MCC) algorithm. The result of the

MCC algorithm is an estimate the ensemble center location for each trail with

subpixel accuracy.

If each trail in an OPNAV image corresponds to a known celestial

body or background star, then determining the ensemble center locations for

a particular node describes the geometry of those bodies at a given epoch.

This is the same information that would be extracted from a single “point-

and-shoot” image (like what was used in Voyager and Cassini). By picking

a different node, a different geometry will be observed. In this way, a SFM

Figure 2.11: Centerfinding process used in the Galileo mission for a single
node in a single-frame mosaic image. Original figure from [55], reprinted with
permission of the American Institute of Aeronautics and Astronautics.
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contains the same amount of information as many traditional images. With

the geometry of the celestial body (e.g. asteroid) and background stars known

at multiple epochs, angular measurements may be made and incorporated into

a navigation filter.

It should be clear, however, that the SFM technique is only good when

the target planet/moon/asteroid is unresolved in the image (i.e. its image

subtends a few pixels at most). If an OPNAV image contains a celestial body

that appears many pixels in diameter and is subjected to the slewing required

to create an SFM image, then an accurate centroid or horizon location may

not be found for the celestial body. Therefore, a new method was developed

for Galileo’s optical navigation within the Jovian system, where Jupiter or its

moons appeared as large extended objects in the OPNAV images.

As with the interplanetary optical navigation, the low data rate pre-

vented Galileo from sending a large number of OPNAV images back to Earth.

This led Galileo engineers to automate part of the manual registration process

described above for Galileo and Cassini (although Cassini was launched after

Galileo, it still used manual registration). Then, only the portions of the OP-

NAV image that contained useful navigation information were transmitted to

Earth. This reduced the amount of data that needed to be transmitted by a

factor of 100 to 400.[56] The difficulty with automated registration lied with

imaging the moons of Jupiter; the location of the stars in the OPNAV image

could be predicted to within a few pixels from the attitude estimate provided

by the star tracker. This need led to the development of the Galileo auto-rover
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(AUTOnomous Registering of a predict OVERlay) algorithm.[56]

The function of the auto-rover algorithm was primarily to search the

image for extended objects. It then attempted to match the observed object

with a predicted pattern of a moon limb. The algorithm began by scanning

rows of the image, skipping a predetermined number of rows between each

scan to increase algorithm speed. When a pixel with an intensity above a

given threshold was detected, the surrounding pixels were surveyed to see if

their intensity was above a minimum level and sustained for at least a mini-

mum width. If these criteria were met, the pixel that first tripped the threshold

was identified as a candidate limb location. This technique is a slightly more

sophisticated version of the Mars limb finding algorithm developed for Mariner

9. Next, the auto-rover algorithm computed the predicted limb locations using

the same brightness and width restrictions. The final step was an exercise in

pattern recognition, with a goal of finding the best match between the pre-

dicted limb pattern and some ensemble of candidate limb locations extracted

from the OPNAV image. What is clear, even without considering the mathe-

matical details, is that the Galileo auto-rover algorithm required the a-priori

position estimates of the spacecraft and of the moon to both be good enough

to generate a predicted limb pattern that was close enough to the observed

limb pattern to be successfully matched.

As an example, consider the auto-rover generated OPNAV image of

Ganymede and a reference star taken by Galileo on June 3, 1996 shown in

Fig. 2.12. Note that image content only exists along the limb and terminator
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Figure 2.12: Galileo OPNAV image of Ganymede and reference star taken on
3 June 1996. Zoom-in of Ganymede on left and zoom-in of reference star on
right. Original image from [57], courtesy of NASA/JPL-Caltech.

of Ganymede and around the reference star. This means that the auto-rover

algorithm successfully identified Ganymede and the reference star in an au-

tonomous fashion and only transmitted the relevant navigation data back to

Earth. Sending the entire auto-rover generated OPNAV image shown in Fig.

2.12 required only 24,000 bits of data to be transmitted, while a full OPNAV

image is about 5.12 million bits (800× 800 pixel image with 8 bits per pixel).

2.3.4 Near Earth Asteroid Rendezvous (NEAR) Mission

The Near Earth Asteroid Rendezvous (NEAR) spacecraft was launched

in February 1996 and inserted into orbit about the asteroid Eros in February

2000.[58] This made NEAR the first spacecraft to orbit an asteroid. Then, on

12 February 2001, the NEAR spacecraft landed on the surface of Eros.

The NEAR spacecraft used DSN tracking, a laser rangefinder, and
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OPNAV images for navigation.[59] The OPNAV images of Eros captured by

NEAR were sent back to Earth for ground-based processing. The irregular

shape and unknown rotation of Eros made the star-horizon measurements

used on previous missions impractical. During the approach phase, when the

asteroid subtended only a few pixels, an analyst would find the asteroid cen-

ter by eye and then manually move an overlay of the Eros limb so that it

matched what was observed in the OPNAV image. As Eros became larger,

and craters became visible, the OPNAV approach for NEAR switched to the

tracking of surface features. These craters first became visible when the aster-

oid was about 30-40 pixels in diameter.[60] Once craters became visible, the

observations were used to create a landmark (crater) database. Then, when

an OPNAV image containing craters was received on the ground, an analyst

would trace a cursor around the rim of each crater in the image to record crater

rim points. An ellipse was then fit to these points. This information was used

to match the observed crater to one of the craters in the database. Finally,

using many such images spread over a period of time, the spacecraft’s orbit

and the rotation of Eros can be estimated. The NEAR spacecraft downlinked

a total of 33,968 images to the ground, 17,601 of which contained at least one

useful landmark for navigation.[60]

2.3.5 Deep Space 1 (DS1)

Deep Space 1 (DS1) was launched on October 24, 1998 as part of the

NASA New Millennium Program.[61] The purpose of the New Millennium
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Program was to provide a mechanism for testing high-risk, high-reward space-

craft technologies. One of the new technologies tested on DS1 was a new Au-

tonomous Navigation (AutoNav) system. This new AutoNav system was re-

quired to (1) use optical images of distant asteroids for interplanetary orbit de-

termination, (2) use the spacecraft ion propulsion system to control/maintain

the spacecraft’s orbit, (3) use optical images of the science target for approach

orbit determination, and (4) provide updates of the target position after the

flyby. The successful implementation of this technology made DS1 the first

planetary mission to autonomously navigate all mission phases.[62]

During the interplanetary cruise phase, the distant asteroids used for

navigation were very dim. Imaging these objects, therefore, required a long

exposure time which led to unavoidable image smearing. As was noted in the

Galileo mission, the patterns observed in the image smearing could not be pre-

dicted. Therefore DS1 used the SFM technique and MCC algorithm developed

for the Galileo mission for autonomous interplanetary cruise navigation.[62]

During an encounter, the proximity of the asteroid and spacecraft

caused the asteroid to appear much brighter than in the cruise OPNAV im-

ages. Therefore, the camera exposure time was significantly reduced to prevent

pixel saturation. The resulting exposure times were short enough that smear-

ing became unimportant. Unfortunately, the shape of the DS1 targets (mostly

asteroids) were irregular and not well known. This precluded the use the

horizon-star measurements that were the principal form of optical navigation

during planetary encounters for Voyager, Cassini, and Galileo. Additionally,
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because these encounters occurred at very high speed, the orbit determina-

tion algorithms used for interplanetary cruise were found to be too slow. DS1

addressed these problems by using the Reduced State Encounter Navigation

(RSEN) algorithm during asteroid encounters.

The primary function of the RSEN algorithm during an encounter was

to maintain a visual lock on the target asteroid throughout the flyby. Because

the shape of the target asteroids were uncertain, tracking of the asteroid was

performed using a simple center-of-brightness (COB) routine. This is much

simpler (and faster) than the horizon filtering techniques used on previous

planetary missions. The image processing overhead was further be reduced by

only looking for the COB in the 3σ box that surrounded the predicted center.

Here, it is worth noting that only the asteroid COB was used in RSEN. No stars

were used in the algorithm, although the star tracker still provided attitude

estimates. This means that the OPNAV data collected during an encounter

was only a line-of-sight measurement to the asteroid COB. Therefore, the DS1

AutoNav system relied on the relative motion between the spacecraft and the

asteroid for the changes geometry necessary for three-dimensional position

information. Fortunately, the geometry changed very fast during these types

of encounters.

To improve the speed of the estimation algorithm, the flyby was mod-

eled as a straight-line trajectory, or simply

rsc(t) = rsc(t0) + vsc(t0) [t− t0] (2.1)
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where rsc(t0) and vsc(t0) are the spacecraft position and velocity at the begin-

ning of the RSEN sequence (usually about 30 minutes prior to the encounter).

In the RSEN estimation process, the velocity knowledge was assumed to be

perfect (and constant) and only updates to the spacecraft position estimate

were performed. To simplify the dynamics, therefore, the RSEN algorithm re-

lied on the assumption that all DS1 asteroid encounters were very fast flybys

of a very small (low mass) objects. After the encounter, the DS1 AutoNav

returned to the regular interplanetary navigation methodologies. As an inter-

esting historical aside, the RSEN algorithm used on DS1 was was an adaptation

of the comet nucleus tracking algorithm designed for the Stardust mission’s

encounter with the comet Wild 2.[63] Although this technique was designed

for Stardust, it actually flew on DS1 first.

The major advancements in the DS1 AutoNav system, therefore, were

in the areas of automation rather than in image processing. The DS1 naviga-

tion system architecture (schematics may be found in [62] and [64]) was based

on a derivative of the Mars Pathfinder flight software system.[62] Although

Mars Pathfinder was controlled by long command sequences generated on the

ground and uplinked to the spacecraft, it was adapted to meet the needs of

DS1 by leaving large gaps in the uplinked command sequence. During the pe-

riods between the uplinked commands, the AutoNav system was responsible

for autonomously completing the required tasks.[62]

Unlike Voyager, Cassini, and Galileo, image planning was performed

autonomously on DS1. The DS1 AutoNav system, therefore, was required to
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determine the schedule of targets. On the ground, a list of potential asteroid

targets was generated as a function of mission time. Further, lighting con-

straints for the DS1 spacecraft created two natural clusters of these targets:

one cluster in the “forward” anti-sun half-hemisphere and another cluster in

the “aft” anti-sun half-hemisphere. To conserve fuel, the AutoNav system

would only transition between these two clusters once (at most) during each

OPNAV sequence. These clusters were predetermined on the ground. The

clusters were also pre-ordered such that attitude maneuvers within each half-

hemisphere cluster were minimized. The resulting ordered list was stored in

the spacecraft’s memory. Despite having a well defined and ordered target

list that was generated by analysts on the ground, the DS1 AutoNav’s picture

planner was required to autonomously generate a sequence of specific image

requests. Given this image sequence, it was also required to generate the turn

commands necessary to rotate the spacecraft from one target to the next tar-

get. Once the OPNAV image is captured, the image processing is as described

above.

The DS1 AutoNav system was later modified for use on the Deep Im-

pact mission.[65]

2.3.6 MESSENGER

The MErcury Surface, Space ENvironment, GEochemistry and Rang-

ing (MESSENGER) mission, built by the Johns Hopkins University Applied

Physics Laboratory (JHU/APL), was launched on August 3, 2004.[66] This
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mission was still ongoing at the time this dissertation was written. The in-

terplanetary trajectory consists of one Earth flyby, two Venus flybys, and

three Mercury flybys, prior to a planned orbit insertion about Mars in 2011.

The early Earth and Venus flybys were used to test the cameras and OP-

NAV ground processing systems. The ground support for MESSENGER opti-

cal navigation included image planning, image scheduling/sequencing, image

downloading, and operational interfaces.[66] The Earth and Venus flybys were

not used for optical navigation because the atmosphere on these planets led to

difficulties in measuring the horizon location. The first Mercury flyby, there-

fore, was the first time that OPNAV measurements were integrated into the

orbit determination process.

As a representative example of an operational MESSENGER flyby,

consider the first Mercury flyby, which occurred on January 14, 2008. Due

to the possibility of significant errors in the a-priori Mercury state estimate,

OPNAV data was needed to improve the estimate of the relative position of

MESSERGER with respect to Mercury. This information allowed the MES-

SENGER navigation team to determine the current Mercury flyby altitude

and, therefore, help design the trajectory correction maneuver (TCM) that

would be used target the appropriate flyby altitude. To achieve this objec-

tive, a total of nine OPNAV imaging sequences were designed.[66] The first

six imaging sequences provided enough information to narrow the TCM de-

sign space to just three options. The seventh and eighth OPNAV imaging

sequences provided the data to finalize the TCM decision. The ninth OPNAV
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Figure 2.13: Example OPNAV image of Mercury taken by MESSENGER on
10 January 2008. Raw image is product ID CN0108443253M IF 3 from [67].
Note that this image has been cropped to zoom in on Mercury.

imaging sequence occurred too late to support the TCM decision. Each of the

nine OPNAV opportunities consisted of eight individual images taken in rapid

succession.[66] Each of these eight images was taken by a different camera

(narrow angle camera or wide angle camera), had a different exposure time,

and had different pixel binning. An example image from the third OPNAV

imaging sequence is shown in Fig. 2.13.

2.3.7 Robotic Missions to Mars

Most of the missions to Mars launched in the 1990s and 2000s relied

solely on DSN based tracking for orbit determination and did not use optical

navigation. Some of the notable missions that did not use any optical nav-

igation include Mars Pathfinder,[1] Mars Odyssey,[68] the Mars Exploration
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Rovers (MER),[69] and the Mars Phoenix Lander.[70] The unsuccessful Mars

Climate Orbiter and and Mars Polar Lander missions also did not use optical

navigation of any kind.[1]

One of the instruments onboard the Mars Reconnaissance Orbiter (MRO),

launched on August 12, 2005, was the Optical Navigation Camera. Although

an optical navigation experiment was flown on MRO, the mission relied on

DSN tracking for navigation and OPNAV images were not required to meet

mission navigation requirements. The importance of this experiment lies pri-

marily in the camera system, rather than the image processing techniques or

navigation algorithms. This camera represents one of the first times that a

dedicated OPNAV camera has been flown on a spacecraft. Previous missions

have primarily relied on images captured by cameras that were designed to

perform scientific experiments. Recent advancements have allowed for signifi-

cant reductions in camera power and mass that made this experiment possible

- the MRO optical navigation camera had a mass of 2.8 kg and a power re-

quirement of 3-5 W.[3] An example image captured by the MRO’s optical

navigation camera is shown in Fig. 2.14. Note the significant improvements

in the quality of this OPNAV image of Deimos relative to what was obtained

using 1960s-1970s technology on Mariner 9 (see Fig. 2.5).

2.3.8 Robotic Missions to the Moon

Little use has been made of optical navigation by robotic spacecraft in

cislunar space and in low Lunar orbit (LLO). The Ranger,[72] Surveyor,[73]
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Figure 2.14: Mars Reconnaissance Orbiter OPNAV image of Deimos and ref-
erence stars taken on 6 March 2006. Original image from [71], courtesy of
NASA/JPL-Caltech.

and Lunar Prospector[74] missions all only used radiometric tracking.

The Clementine spacecraft, launched on January 25, 1994, also only

used radiometric tracking. There were plans for the Clementine mission to

perform autonomous optical navigation, but a software failure occurred in

May 1994 and spacecraft operations were terminated in August 1994 - before

the autonomous navigation algorithms were ever used in orbit.[75] These al-

gorithms, however, were tested extensively on the ground using actual images

obtained from Clementine during the LLO phase of the mission.[76]

The Lunar Reconnaissance Orbiter (LRO) was launched on June 18,

2009, with the objective of providing high-resolution topographic maps and
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images of the lunar surface.[77] LRO uses radiometric tracking in conjunction

with measurements from the Lunar Orbiter Laser Altimeter (LOLA) science

instrument for orbit determination. There are no plans to use optical naviga-

tion on the LRO mission.
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Chapter 3

Image Creation and Optical Sensors

3.1 Rotations, Transformations, and Reference Frames

3.1.1 Basic Attitude Representations

What follows is a brief review of key attitude representation relation-

ships and a description of the attitude nomenclature to be used in the sub-

sequent discussions. Numerous references discuss this subject in substantially

greater detail.[78–80]

Begin by recalling that any rotation may be defined as a single axis

rotation. Let eθ be the axis of rotation (or “Euler Axis”) and let θ be the

angle of rotation about this axis (or “Euler Angle”). This rotation may also be

expressed in matrix form, T, as a Direction Cosine Matrix (DCM, sometimes

called a rotation matrix):[81]

T = (cosθ)I3×3 + (1− cosθ)eθe
T
θ − (sinθ) [eθ×] (3.1)

TT−1 = I3×3 and T−1 = TT (3.2)

where the nomenclature [α×] is defined as the skew-symmetric cross product

matrix such that α× β = [α×]β,

[α×] =

 0 −α3 α2

α3 0 −α1

−α2 α1 0

 (3.3)
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Further, note that Eq. 3.1 may be rewritten in matrix exponential form as

[82]

T = exp {−θ [eθ×]} (3.4)

and under a small angle rotation, δθeδθ = δθ, where only first order terms are

kept, this becomes

T = exp {−δθ [eδθ×]} ≈ I3×3 − δθ [eδθ×] (3.5)

In order to clearly indicate the direction of rotation, the following notation is

introduced. The rotation matrix TA
B represents a rotation from the A frame

to the B frame. In other words,

rB = TA
BrA (3.6)

where rA is a vector expressed in the A frame and rB is the same vector

expressed in the B frame.

A useful three-dimensional representation is given by Rodrigues pa-

rameters (frequently also referred to as the Gibbs vector). The idea of a

three dimensional parameterization of the attitude follows directly from Euler

axis/angle discussion above. Let the Gibbs vector, g, be defined as

g =

(
tan

θ

2

)
eθ (3.7)

Further, two sequential rotations (first by g1 and then by g2) expressed as

Gibbs vectors may be combined through the composition formula:[83]

g3 =
g1 + g2 − g2 × g1

1− gT1 g2

(3.8)
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An alternate way to express attitude is through the quaternion. The quater-

nion, q̄, is a four-element parameterization of the attitude and is given by:

q̄ =

[
q
q4

]
=

[
sin θ

2
eθ

cos θ
2

]
=


q1

q2

q3

q4

 (3.9)

q̄T q̄ = 1 (3.10)

This quaternion may be related to the equivalent DCM attitude representation

through[78]

T (q̄) =
(
q2

4 − qTq
)
I3×3 + 2qqT − 2q4 [q×] (3.11)

Quaternion mathematics, developed by Sir William Rowan Hamilton in the

1800s, provides the tools necessary to perform sequential rotations directly on

the quaternion. A detailed review of some of the key results from quaternion

mathematics is provided in Appendix A. The quaternion product,1 denoted

by the symbol ⊗, is given by

q̄⊗ p̄ =

[
q4p + p4q− q× p

q4p4 − qTp

]
(3.12)

The quaternion product as shown in Eq. 3.12 allows for sequential rotations

in the same manner as DCMs:

TA
C = TB

CTA
B = T

(
q̄BC
)
T
(
q̄AB
)

= T
(
q̄BC ⊗ q̄AB

)
= T

(
q̄AC
)

(3.13)

1Note that this quaternion product is backwards when compared to the classical quater-
nion product, as is standard practice in the attitude determination community. This is done
so that the order of quaternion multiplication mirrors the order of DCM multiplication for
sequential rotations. If the classical quaternion product is denoted by �, then q̄⊗ p̄ = p̄� q̄
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3.1.2 Homogeneous Coordinates

Homogeneous coordinates allow for rotation and translation to be si-

multaneously performed in a single operation and with compact notation.

They also allow for transformations in projective space, just as Cartesian co-

ordinates allow for transformations in Euclidean space.[84, 85]

Homogeneous coordinates are created by increasing the dimensionality

of the Cartesian coordinates by one. This additional coordinate is a scale fac-

tor. Therefore, to create homogeneous coordinates from a set of given Carte-

sian coordinates, the scale factor is set to one (because the given Cartesian

coordinates are already to scale):
Xh

Yh
Zh
Wh

 =


X
Y
Z
1

 (3.14)

Now, assume that an object’s position in frame A is given by pA. Further

assume there is a second frame, B, which has an orientation relative to A given

by TA
B. The origin of B is also displaced relative to the origin of A. Therefore,

let the position of B relative to A, as expressed in frame A, be given by bA.

Using homogeneous coordinates, the transformation of any position coordinate

from A to B may be expressed in a single linear transformation,[
pB
1

]
=

[
TA
B −TA

BbA
01×3 1

] [
pA
1

]
(3.15)

where pB is th position coordinate of the same object in frame B. Because

no scaling is performed for this simple rotation and translation operation, the
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scale factor remains 1 after the linear operation. This is not generally true

for transformations with homogeneous coordinates, as is the case when they

are used for perspective projection calculations.[84, 85] When the scale factor

is not 1, the homogeneous coordinates must be scaled by 1/Wh to recover the

corresponding Cartesian coordinates.

3.1.3 Discussion of Coordinate Frames

Begin by defining an inertial frame, I. For the purposes of the following

discussions, unless otherwise stated, frame I is assumed to have its origin

at the barycenter of the system in which the spacecraft orbit is described

(e.g. solar system barycenter for heliocentric orbits, Earth-Moon barycenter

for Earth/cislunar orbits, etc.) and is assumed to be a right-handed coordinate

system. Also, define another inertial frame, I ′, whose origin coincides with the

spacecraft center of mass at a given epoch and whose axes are parallel to those

of frame I.

Now define a non-inertial, right-handed coordinate frame attached to

the spacecraft called the body frame and denoted by B. This frame has an

origin at the spacecraft center of mass and axes related to the inertial frame

by the rotation matrix TB
I . If a camera is mounted to the spacecraft, let

the camera sensor frame be denoted by C. Further, if the camera is rigidly

mounted to the spacecraft, the rotation matrix TC
B is assumed to be constant.

The axes of C are chosen such that the Z-axis lies along the camera optical

axis and the X-axis is the projection of the true detector x-axis in the plane
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I’ - inertial frame whose origin

spacecraft center
of mass B - spacecraft body frame

C - camera frame

camera frame Z-axis along camera
boresight directionlocation of camera relative to

spacecraft center of mass

I - inertial frame

I’ - inertial frame whose origin
coincides with the spacecraft
center of mass at a given
epoch

rsc

Figure 3.1: Graphical depiction of the relationship between the I, I ′, B, and
C frames.

perpendicular to the optical axis. The Y -axis completes the right-hand system.

A point in frame C is denoted by pC = [X Y Z]T . The relationship between

the I, I ′, B, and C frames in shown in Fig. 3.1.

Errors in construction of the camera require the introduction of an

additional frame. Let D denote the detector frame. The origin of this frame is

at the true detector principal point and the x-y plane lies in the true plane of

the detector, which is likely to be offset and/or rotated with respect to the X-Y

plane in frame C. The z-axis of frame D completes the right-handed system

and is perpendicular to the true detector plane. Therefore, the difference

between the Z-axis in the C frame and the z-axis in the D frame may be used

to describe the detector plane misalignment. A point in frame D is denoted

by pD = [x y z]T .

55



u

v y

x

vp

up
principal point

Figure 3.2: Detector coordinate frames.

The five frames introduced above (I, I ′, B, C, and D) all exist in R3.

The image captured by the camera, however, must exist only in R2. Therefore,

let the two-dimensional array frame be denoted by A ∈ R2. As is standard

practice for CCD/CMOS arrays, let the origin of A be in the upper left-hand

corner of the array and let any point on the array be defined by the coordinates

[u, v]. A graphical depiction of the relationship between frames D and A is

shown in Fig. 3.2. Further, let the [u, v] coordinates be expressed in units of

pixels such that integer values of [u, v] correspond to the center of the indicated

pixel. If the array u-axis and v-axis are not perfectly perpendicular, a skew

factor must be introduced. Here, define θ as the angle between the u-axis and

v-axis (a perfectly constructed array will have θ = 90◦). Therefore, any set

of [x, y] coordinates in frame D may be converted to a set of corresponding

[u, v] coordinates in frame A through the following simple transformation with

homogeneous coordinates[86, 87]
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 u
v
1

 =

 sx cot(θ) up
0 −sy

sin(θ)
vp

0 0 1

 x
y
1

 (3.16)

where sx and sy are the x-axis and y-axis scale factors in units of pixel/m, and

[up, vp] is the CCD/CMOS principal point (i.e. the location of the intersection

of the optical axis with the detector plane) expressed in the [u, v] coordinate

frame. Note that if sx = sy then the pixels are square. If the mapping from

D to A (given by the matrix in Eq. 3.16) is defined as MD
A , then the mapping

from A to D is given by MA
D =

(
MD

A

)−1
:

MA
D =

 1
sx

cos(θ)
sxsy

−vpcos(θ)+syup

sxsy

0 − sin(θ)
sy

vpsin(θ)

sy

0 0 1

 (3.17)

Note that, despite the notation, MD
A and MA

D are not rotation matrices.

3.2 Formal Definition of an Image

An image is the projection of the three-dimensional world onto a two-

dimensional space. In an optical system, information about the outside world

is recorded as a two-dimensional surface of light intensity. Any infinitesimal

patch of detector surface centered at [x, y] may collect a number of photons

over a given exposure duration. In an ideal system, the values of x and y may

be treated as continuous and there are an infinite number of possible locations

for this infinitesimal patch. Therefore, define the ideal image as a map, Iideal,

such that

Iideal : Ωxy ⊂ R2 → N; (x, y) 7→ Iideal(x, y) (3.18)
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where Ωxy is the compact set that describes all possible points on the detector

surface, i.e. [x, y] ∈ Ωxy. Additionally, let N represent the set of all nonnegative

integers, i.e. N = [0,1,2,...). Note that the Iideal(x, y) must exist in N because

only a discrete number photons can be detected.

Unfortunately, if the detector is a CCD or CMOS array, the domain in

Eq. 3.18 must be discretized. To borrow the notation of Ma et al,[86] define a

digital image as a two-dimensional brightness array, such that the image Idig

is given by

Idig : Ωuv ⊂ N2 → N; (u, v) 7→ Idig(u, v) (3.19)

where Ωuv is the compact set that describes all possible pixel locations on the

detector surface, i.e. [u, v] ∈ Ωuv. It is interesting to note that Eq. 3.19 states

that Ωuv ⊂ N2. Generally speaking, the variables u and v are continuous

and some things (such as the principal point location) may be described at

fractional values of u and v (in other words, one would usually say [u, v] ∈

Ψuv, Ψuv ⊂ R2). However, because digital image information only exists at

pixel locations, only nonnegative integer values of u and v may be used to

describe a digital image.

3.3 The Ideal Camera Model

The ideal camera model describes the geometry of image formation

in a camera with no internal error sources. A camera is an optical device

that, at a minimum, usually consists of a set of optics (lenses and/or mirrors)

and a detector. Real cameras often require many other components, such as

58



shutters or light baffles, but these components need not be considered for the

development of this simple camera model.

Begin the discussion of the ideal camera model by considering the geom-

etry of a thin lens as shown in Fig. 3.3. Now, recall the thin lens equation,[88]

1

s1

+
1

s2

= (n− 1)

(
1

R1

− 1

R2

)
=

1

f
(3.20)

where s1 is the distance between the actual object and the lens, s2 is the

distance between the lens and the focused image, f is the focal length, n is the

index of refraction, R1 is the radius of curvature of the lens on the side with

the object, and R2 is the radius of curvature of the lens on the side with the

image.

Now, consider the notional view of a single thin lens viewing two ob-

jects infinitely far away shown in Fig. 3.4. One of these objects in Fig. 3.4

is along the optical axis and the other is not. As is clear from Eq. 3.20,

the lens will create a focused image of an object that is infinitely far away

optical axis

object

image

ff

optical axis

s2s1

image
of object

Figure 3.3: Diagram thin lens geometry.
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when the separation between the lens and the detector is equal to the focal

length. Additionally note that a single lens system will create a flipped im-

age of the true geometry. In an idealized camera system, a ray of light that

passes through the center of the aperture will be undeflected. Therefore, for

the purposes of determining the geometric center of a focused point source,

let the aperture of the camera become extremely small so that only the single

undistorted ray that passes through the center of the lens is allowed to pass

through the system. This idealized system is frequently called a “pinhole”

camera model. Note, of course, that the pinhole model is good only for simple

camera geometry calculations. A real system will not use a pinhole camera

because the aperture must be large enough to allow a sufficient number pho-

tons into the system so that the detector can measure the observed scene with

an acceptable signal-to-noise ratio.

Real cameras will also probably use a system of multiple lenses and

mirrors, rather than just one simple thin lens. Single lens systems tend to

line-of-sight
along optical axis

line-of-sight off
optical axis

Detector
Plane

Lens

Zl

Figure 3.4: Diagram of light rays from two objects at infinity through a simple
thin lens system.
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exhibit significant aberrations and be unnecessarily large. A system of lenses

and mirrors may be used to address both of these problems. With regard

to aberrations, recall that although the image surface formed by the primary

lenses/mirrors is curved, the detector is usually flat. Therefore, many tele-

scopes and cameras, especially those with a wide field-of-view, place a set of

auxiliary optics near the image plane to flatten the curved image plane onto

the detector. These optical assemblies are typically called field flatteners or

field correctors. More details on field flatteners may be found in [88]. To

provide a concrete example, consider the optical layout for the Mars Recon-

naissance Orbiter’s optical navigation camera shown in Fig. 3.5 (additional

specifications provided in Table 3.1).

A system of mirrors and lenses also allows for a more compact optical

device. Any system of mirrors and lenses may be shown to have an effective

focal length (the system shown in Fig. 3.5 has an effective focal length of 50

cm). The geometry of image formation in such a system is the same as if the

Figure 3.5: Optical layout for the Mars Reconnaissance Orbiter’s optical nav-
igation camera. Original image from [89], reprinted with permission of SPIE
and the authors.
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Table 3.1: Summary of performance specifications for the Mars Reconnaissance
Orbiter’s optical navigation camera.[89, 90]

Parameter Description
Optics Ritchey-Chrétin with refractive field corrector
Focal length 50 cm
Aperture 6 cm
F-number F/8.33
Field-of-view 1.4 deg × 1.4 deg
Filter Blocks wavelengths greater than 650 nm
Detector CCD

system consisted of a single thin lens with a focal length equal to the equivalent

focal length. A system of two thin lenses, for example, may be shown to have

an effective focal length, feq, given by

1

feq
=

1

f1

+
1

f2

− d

f1f2

(3.21)

where f1 is the focal length of the first lens, f2 is the focal length of the

second lens, and d is the distance between the two lenses. Therefore, the

pinhole camera model may be used to accurately describe the geometry of

image formation in a real optical system. Although a detailed discussion of

optics and systems of multiple lenses is not provided here, a great deal of

information on the topic is readily available in the literature.[88]

The pinhole camera model allows for a simple relationship between a

point on the detector plane and the corresponding line-of-sight unit vector. A

three-dimensional representation of this situation is shown pictorially in Fig.

3.6. Through simple trigonometry (similar triangles is the easiest method),

the relationship between the lens-detector separation, a measured point on
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the focal plane, and the line-of-sight unit vector to the image source is given

by:

(ei)C =
1√

X2
i + Y 2

i + Z2
l

 −Xi

−Yi
Zl

 (3.22)

where Xi and Yi are the coordinates where the central ray of the i -th observed

point source pierces the XY plane of C. Note that the variable Zl represents

the effective separation between the lens and the XY plane of C. For a

perfectly focused system (observing an object at infinity), Zl is equal to the

focal length. Additionally, note that Zl is a constant for the system and is the

same regardless of the object considered. For many applications, it may be

necessary to rotate the line-of-sight vector from the camera frame to the body

frame:

(ei)B = TC
B (ei)C (3.23)

Again, note that while the simple pinhole camera model described

above creates a flipped image, it may be advantageous to deal with an un-

u

Zl

principal point

camera
detector plane

v

Figure 3.6: Line-of-sight geometry for a simple camera model.
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flipped image. Such an image would be created if the three-dimensional world

were projected onto an imaginary plane that lies in front of the lens and is

parallel to the actual detector plane.[86, 91] This imaginary plane is frequently

called the “frontal image plane” and has geometry as shown in Fig. 3.7. The

separation between the frontal image plane and the lens is the same distance

as (but in the opposite direction of) the separation between the detector plane

and the lens. This will recreate an image that looks similar to what would be

seen by a human with their eye located at the lens. For this reason, images are

typically displayed in the frontal image plane, instead of in the configuration

actually seen by the detector.

To maintain a consistent nomenclature, define the frontal image plane

coordinates as [u′, v′] with the origin in the upper left hand corner as seen

from an observer located at the lens. This leads to the following relationship

in homogeneous coordinates between an image on the actual detector plane

and the corresponding image on the frontal image plane: u′

v′

1

 =

 1 0 0
0 −1 vmax
0 0 1

 u
v
1

 (3.24)

which is equivalent to u
v
1

 =

 1 0 0
0 −1 vmax
0 0 1

 u′

v′

1

 (3.25)

where vmax is the v-coordinate of the pixels in the bottom row of the CCD/CMOS

detector. Therefore, a simple vertical flip is all that is required to transform
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a digital image between [u′, v′] coordinates in the the frontal image plane and

[u, v] coordinates on the actual detector.

u

u'

v'
lens
location

Zl

principal point

camera
detector plane

v
frontal
image plane

Figure 3.7: Camera model with frontal image plane.

3.4 Comments on Detector Hardware

3.4.1 Charged-Coupled Devices (CCD)

Most CCD sensors consist of an array of photoactive metal-oxide semi-

conductor (MOS) capacitors connected through a system of shift registers.

These MOS capacitors are usually arranged in a grid pattern. When a pho-

ton with an energy greater than the energy gap is absorbed by one of these

MOS capacitors, an electron-hole pair is created. When a voltage is applied,

the electrons stay in the depletion region, while the holes move towards the

ground electrode. Although the depletion regions may hold a very large num-

ber of electrons, their capacity is not unlimited. The pixel well capacity refers

to the maximum number of electrons that may be stored in the depletion re-
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gion. When the well capacity is reached, and no more electrons can be stored,

the pixel is said to be saturated.

Therefore, to create an image, the shutter of the camera is opened and

photons begin striking the CCD array. The charge in each well at each pixel

location then increases linearly with time and the intensity of the light at that

pixel location. After a period of time, the shutter is closed and the charges in

each well must be output in a usable fashion.

The pixels in a CCD array are usually connected by a system of shift

registers. If the depletion region of adjacent pixels overlap (either by row

or by column), then charge may be shifted between pixels by controlling the

voltage applied to the MOS capacitors. These capacitors, therefore, act as

gates and are used to transfer charges across rows (or columns) of the array.

The sequence of events described in Fig. 3.8 notionally shows how a charge may

be transfered from one pixel to its neighboring pixel. Each row (or column)

is shifted in parallel by one gate, and the last pixel in each row (or column)

outputs in parallel to a serial shift register. This serial shift register is then

read out. Once the entire serial readout register has been emptied, each row

(or column) is shifted in parallel by one more gate. This process is repeated

until the entire image is read out. The serial stream of charge packets in

the readout register is sent to an output circuit where the charge packets are

converted to a voltage.

Because the depletion region of adjacent pixels overlap, excess charge

generated from a saturated pixel may bleed over into neighboring pixels in
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a) Two adjacent wells are
controlled by varying
their gate voltages.

b) Voltage is applied only to
gate 1, allowing charge to
be stored in Well 1.

c) Voltage is applied to Gate 1
and to Gate 2; electrons
begin flowing into Well 2.

Well 1 is nearly full

electrons flow into
newly open Well 2

d) After a short period of
time a charge equilibrium
is reached in Well 1 and
Well 2.

e) The voltage on Gate 1 is
reduced, causing the
electrons remaining in Well
1 to flow into Well 2.

f) Voltage is only applied to
Gate 2 and all electrons
have been transferred
from Well 1 to Well 2.

Well 1 is reduced
in size

Well 2 is nearly full

Figure 3.8: Notional diagram for the process of transferring electrons between
adjacent wells in a CCD array.
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the same row (or column). This phenomenon, known as blooming, may cause

bright streaks in a CCD image. A detailed discussion of blooming in CCDs

may be found in [92]. Some CCDs include anti-blooming drains to reduce

the impact of this problem, but this typically reduces the sensitivity of the

array. Examples of blooming from real spacecraft images are shown in Fig 3.9.

The image on the left was taken by the MESSENGER wide angle camera. In

this image, the exposure time was too long and Earth completely saturates a

large number of pixels in the array. The image on the right was taken by one

of the star trackers on the Clementine spacecraft. In this image, the Moon

is illuminated by Earth shine and the Sun is behind the Moon. Stray light

from the Sun is visible around portions of the lunar horizon. Venus, which

appears as a very bright dot in the upper right, saturates a number of pixels,

leading to a vertical streak in the image. Therefore, blooming in CCDs may

create artifacts in the image that should be addressed by the image processing

algorithms in autonomous navigation applications.

3.4.2 Complementary Metal Oxide Semiconductors (CMOS)

Complementary Metal Oxide Semiconductors (CMOS) sensors became

competitive alternatives to CCD sensors in the 1990s. Both of these sensors

use photoactive MOS capacitors to convert photons striking a pixel location

into a stored charge packet. The primary difference between CCD sensors and

CMOS sensors is how the charge packets are converted into a voltage. Recall

that in CCDs, the charge packets for an entire row (or column) are transported
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via a serial readout register to an output circuit where the conversion from

charge to voltage takes place. In a CMOS sensor, however, the conversion

from charge to voltage takes place separately in each pixel.

By converting the charge to voltage at each pixel, CMOS sensors do not

experience blooming. This represents a natural advantage for CMOS sensors

in many applications. Further, the readout architecture of CMOS sensors

also allows for easy “windowing,” or the ability to selectively read out only a

a) Image of Earth taken by MESSENGER wide
angle camera on 30 July 2005.

b) Image of the Moon and Venus taken by
the Clementine Star Tracker B on
1 March 1994.

Figure 3.9: Examples of CCD blooming. Raw MESSENGER image is Prod-
uct ID EW0031254402B from [93]. Raw Clementine image is Product ID
LBA5876Z.193 from [94].
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specific portion of the image. The method by which charges are transferred

from gate to gate in CCD sensors makes windowing more difficult in CCDs.

These CMOS advantages, however, do come at a cost. The additional

on-chip circuitry required to enable the CMOS readout architecture typically

results in more noise. More detailed discussions about the differences between

CCD sensors and CMOS sensors may be found in [95].

3.4.3 CCD/CMOS Quantum Efficiency and Fill Factor

Unfortunately, not every photon that hits a pixel will be converted into

a photoelectron and be measured by the detector. First, the entire pixel surface

is usually not covered with a photosensitive material. Therefore, define the fill

factor, F , as the percentage of the pixel area that contains a photosensitive

surface.

Further, there is not a 100% conversion for those photons that do strike

the photosensitive surface. The quantum efficiency (QE) represents how effi-

cient the photosensitive material is in converting photons to electrons. More

specifically, QE is defined as the ratio of the number of photoelectrons gener-

ated to the number of photons that strike the surface (i.e. QE = Npe/Nphotons,

where Npe is the number of photoelectrons and Nphotons is the number of pho-

tons). Typically, QE is a function of the wavelength of the light. In the

subsequent sections QE will be taken to be the average quantum efficienecy

over the spectral range of the detector.

Therefore, the number of photoelectrons generated by a pixel is given
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by

Npe = (QE) (F ) (S)Apixel∆t (3.26)

where S is the total flux of photons (in units of photons/m2/sec) hitting the

pixel, Apixel is the total pixel area, and ∆t is the exposure time over which

photons are accumulated.

3.5 Overview of External Error Sources

External error sources are due to phenomena that are external to the

optical sensor, and are determined by the environment in which the optical

system is operating. The first two external error sources discussed are stel-

lar aberration and parallax - both of these error sources affect the measured

line-of-sight direction to an observed object. Fortunately, the procedures for

correcting stellar aberration and parallax errors are well understood. The third

external error source is stray light entering the optical system which causes

additional photons to hit the detector and, therefore, causes increased noise

in the image.

3.5.1 Stellar Aberration

Stellar aberration is a consequence of special relativity. This effect

causes the line-of-sight unit vector to a star to look different in two inertial

frames that have a relative velocity between them.

Begin by recalling that the line-of-sight to a star lies in the opposite

direction of the velocity vector of the photons from that star. Now, suppose
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the line-of-sight unit vector in some inertial frame (say a frame centered at the

solar system barycenter) denoted by I is given by (ei)I . Consider an additional

frame, G, whose axes are parallel to I, but whose origin is moving at a velocity

v relative to I. Due to the results of special relativity (and unlike what would

be expected from Newtonian mechanics), (ei)I 6= (ei)G.

The mathematical model presented here for stellar aberration is based

on the elegant explanation provided by Shuster in 2003.[96] Only the final

results are summarized here. If the variable β is defined as the velocity vector

of the spacecraft normalized by the speed of light,

β = v/c (3.27)

where c is the speed of light, then the rotation vector defining the stellar

aberration error (to first order) is given by

δθStellAberr ≈ β × (ei)I (3.28)

Therefore,

TStellAberr ≈ I3×3 − [δθStellAberr×] (3.29)

(ei)G = TStellAberr (ei)I (3.30)

It is important to stress that there is not actually a rotation between frame I

and G; the axes of these frames are parallel. There is only an apparent rotation

in the line-of-sight direction to an object as seen in the two different frames

due to the relative velocity between the frames.
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To gain a feel for the magnitude of this error source, consider a space-

craft on a lunar return trajectory. As the spacecraft approaches Earth, its

Earth-relative velocity may approach 10 km/s. Additionally assume that the

reference directions to the stars are given in a frame attached to the solar

system barycenter. Therefore, to arrive at a worst-case scenario, add the 29.8

km/s orbital velocity of the Earth to the Earth-relative spacecraft velocity,

yielding a spacecraft heliocentric velocity of about 40 km/s. Therefore, apply-

ing Eq. 3.28, the magnitude of δθStellAberr may be as large as 27.5 arcsec.2 This

magnitude of error is not appreciably different from what would be expected

for a LEO spacecraft.

Alternatively, consider a spacecraft on a Mars approach trajectory.

Such a spacecraft is likely to have a Mars-relative velocity on the order of

6-9 km/s as it approaches periapsis on its hyperbolic approach trajectory (or

just prior to Mars entry).[97] Because Mars has a heliocentric orbital velocity

of about 24 km/s, a spacecraft could see a heliocentric velocity on the order of

about 30 km/s. Using the same approach as above, this could yield a stellar

aberration error as large as 20.6 arcsec.

Assuming that a reasonable estimate of the spacecraft heliocentric ve-

locity is known, the measurement errors associated with stellar aberration may

be removed. The residual error from this source after this correction is likely

to be negligible for most reasonable scenarios.

2This result is similar in magnitude to that found by Shuster for a spacecraft in LEO.[96]
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3.5.2 Parallax

Parallax is the apparent movement of the direction to a fixed target

object due to a change in the location of the observer. This is shown graphically

in Fig. 3.10. When objects are very far away, the parallax is very small and this

effect is frequently neglected. Therefore, because the distance to most stars is

very large, parallax is sometimes neglected for star observations. The reference

directions found in a star catalog may be used directly, regardless of where the

spacecraft is located, if parallax is ignored. In the present application, however,

unmodeled parallax may present a small (but still noticeable) source of error

for some star observations.

The following procedure for computing the error associated with un-

modeled parallax closely parallels the approach used by Shuster.[96] If the

position to a star in reference frame I is given by rstar, then define the unit

Background sphere at
infinite distance

Reference direction

Target
object

Target object appears to move relative to
background as the observer location changes

Figure 3.10: Graphical depiction of parallax. Angles are exaggerated for clar-
ity.
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vector to that star as (ei)I = rstar/ ‖rstar‖. Additionally, suppose the position

to the spacecraft (also in frame I) is given by rsc. If a new frame, I ′, is defined

with its axes parallel to I and centered at the spacecraft center of mass (i.e.

displaced from I by rsc) then the line-of-sight vector from the spacecraft to

the star in frame I ′ is given by

(ei)I′ =
rstar − rsc
‖rstar − rsc‖

=
(ei)I −

rsc

‖rstar‖∥∥∥(ei)I −
rsc

‖rstar‖

∥∥∥ (3.31)

Taking the Taylor Series expansion and retaining only first order terms in

rsc/ ‖rstar‖ yields

(ei)I′ ≈ (ei)I + (ei)I ×
[
(ei)I ×

rsc
‖rstar‖

]
(3.32)

Therefore, the rotation vector defining the parallax-induced error (to first or-

der) is given by

δθParallax ≈ (ei)I ×
rsc
‖rstar‖

(3.33)

where

TParallax ≈ I3×3 − [δθParallax×] (3.34)

It is important to stress that there is not actually a rotation between frame I

and I ′. There is only an apparent rotation in the line-of-sight direction to an

object fixed frame I as seen by an observer in frame I ′.

To gain a feel for the magnitude of this error source, consider the same

two examples discussed for stellar aberration. Additionally, suppose the ob-

served star was Vega (apparent magnitude of 0.03 and brightest star in con-

stellation Lyra) at a distance of 25 lightyears (= 2.4× 1014 km) from the solar
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system barycenter. For the case of the lunar return, where rsc is approximately

equivalent to Earth’s orbital radius, δθParallax could be as large as 0.13 arcsec.

For the case of the Mars approach, where rsc is approximately equivalent to

Mars’s orbital radius, δθParallax could be as large as 0.2 arcsec.

Assuming that a reasonable estimate of the spacecraft heliocentric po-

sition is known, the measurement errors associated with parallax may be re-

moved. As with stellar aberration, the residual error from parallax after the

appropriate correction is made should be negligible for most reasonable sce-

narios.

3.5.3 Stray Light

Stray light is perhaps the most important external error source (as-

suming that the proper corrections are applied to remove the bulk of the error

associated with stellar aberration and parallax). Stray light may be caused by

a number of sources, including light that is reflected off of or scattered by:

1. Nearby objects such as planets, moons, asteroids, comets, or other nearby

spacecraft

2. Dust and other particles in the camera FOV3

3. Thruster exhaust

4. Waste venting on a crewed vehicle

3The most prominent naturally occurring source of stray light from dust/particles is
Zodiacal light. Zodiacal light is sunlight that is reflected off of the interplanetary dust cloud
and is strongest in the ecliptic plane.
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5. Nearby spacecraft surfaces

6. Any of the lenses/mirrors/filters in the optical system

The Sun is generally the primary source of stray light, although re-

flected sunlight from high albedo planets/moons can cause similar problems.

Therefore, many star trackers, telescopes, and other spacecraft optical sen-

sors have a Sun exclusion angle (minimum allowable angle between camera

boresight and the Sun) that is significantly larger than what would be ex-

pected from simply considering direct sunlight and the camera FOV. For ex-

ample, the Clementine star tracker (which had a 28◦ × 42◦ FOV) required a

Sun/Earth/Moon exclusion angle of 65◦×80◦.[98] It should be noted, however,

that planetary exclusion angles are not practical for optical navigation because

the image must contain the planet. A Sun exclusion angle is still expected.

In addition to exclusion angles, there are many other techniques fre-

quently used to control the amount of stray light that reaches the detector.

The first, and perhaps most important, is a light baffle. The purpose of a light

baffle system is to shield the optics from stray light originating outside of the

intended FOV. Most modern light baffles consist of a tube (or cone) with a

series of vanes used to attenuate the stray light. The purpose of each vane is

to attenuate stray light directly hitting the vane or stray light that is scattered

off the tip of another vane in the light baffle. In such a system, a stray light

ray must bounce off of many surfaces before it is able to reach the detector.

Because the surfaces in the light baffle are also coated to minimize the amount
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a) Baffle design for prototype of
Clementine star tracker

b) Baffle design for MRO Optical Navigation Camera

Figure 3.11: Examples of baffle design for the Clementine star tracker[101]
and the Mars Reconnaissance Orbiter’s Optical Navigation Camera.[90] Both
figures are reprinted with permission of SPIE and the authors.

of light that is reflected,4 the amount of stray light originating outside of the

intended FOV that actually reaches the detector is very small. A well designed

light baffle is capable of reducing the unwanted stray light flux by a factor of

10−5 to 10−9.[100] Two examples of light baffle design are shown in Fig. 3.11.

Other useful techniques include stops (specifically aperture stops, field

stops, and Lyot stops, depending on the optical design) and proper surface

coatings of the lens/mirrors. Additionally, some systems may benefit from

a filter to block stray light of a known wavelength. The optical navigation

camera on MRO, for example, used a filter to block light with wavelengths

above 650 nm.[90] This blocked the predominately red stray light from Mars

while the spacecraft was imaging Phobos, Deimos, and background stars (as

4A common coating used for this purpose in space applications is Epner Laser Black.[99]
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was shown in Fig. 2.14).

A more detailed discussion of practical methods for reducing stray light

in spacecraft optical sensors may be found in [101], [102], and [90]. Subsequent

analyses will assume that these techniques are applied to keep stray light levels

below an acceptable level.

Regardless of what stray light reduction techniques are chosen, however,

some amount of stray light will still reach the detector. Without modeling the

details of the optics, light baffling, and external lighting environment,5 it is

impossible to determine the structure and intensity of the stray light at each

point on the detector. Because detailed optical design is not the purpose of the

present analysis, it is assumed that the system is well designed and fabricated

such that the primary source of stray light is from sunlight reflected off of

dust particles in the camera FOV. It is further assumed that this stray light

creates a uniform increase in the observed irradinace, given by SSL,0 (in units

of photons/m2/sec). Therefore, the total number of photons from stray light

entering the camera system per unit time, ΦSL, is given by

ΦSL = SSL,0
π

4
d2
ape

T
bsei (3.35)

where d2
ap is the aperture diameter, eTbsei = cosθ, and θ is the angle between

the boresight direction and the i-th line-of-sight direction. The cosθ term is

necessary to account for the apparent foreshortening of the aperture from a

5There are numerous commercially available optical design software packages capable of
performing stray light analysis, such as ZEMAX and ASAP.
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light source not along the boresight direction. It is worth noting that the

FOV for most cameras is narrow enough to make this effect small for most

applications. The lens will focus all of the photons coming from the direction

ei onto (approximately) a single point on the focal plane. The irradiance at

each pixel location may then be approximated as

SSL = T SSL,0
π

4

d2
ap

Apixel
eTbsei (3.36)

where T is the transmittance of the optics. Substituting these results into Eq.

3.26, the number of photoelectrons generated at each pixel by stray light, NSL,

is given by,

NSL = (QE) (F )T SSL,0
π

4
d2
ape

T
bsei∆t (3.37)

The stray light model chosen here means that the main effect of stray light in

this simulation will be to increase the background noise in which the system

must operate.

3.6 Overview of Internal Camera Error Sources: Align-
ment & Optics

3.6.1 Camera Mounting Misalignment

Limitations in the ability to mount the camera exactly as desired, cou-

pled with the inability to measure the true orientation, will result in a camera

mounting misalignment. These mounting errors will lead to errors in the esti-

mate of TC
B in Eq. 3.23. Therefore, Eq. 3.23 may be rewritten to account for

these errors,

(ei)B = TC
B (ei)C = T̂

C

BTma (ei)C (3.38)
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where Tma describes the rotation from the true camera frame to the estimate

of the camera frame. Assuming that the misalignment error is small, the

misalignment matrix is given by,

Tma = I3×3 − [δθma×] (3.39)

3.6.2 Detector Plane Misalignment

The detector plane that contains the CCD/CMOS sensor array (x-

y plane in frame D) may not lie exactly perpendicular to the optical axis.

Additionally, the intersection of the true detector plane with the optical axis

may be offset from the ideal detector frame described X-Y plane in frame

C. These imperfections may lead to distortion of the image observed by the

sensor. To develop a general 3-D model for the error introduced by detector

plane misalignment, assume that the detector plane is tilted by a small angle

α about the X-axis and a small angle β about the Y -axis. Note that there

is no rotation about the Z-axis because of the choice of the camera reference

frame discussed earlier. This leads to the following small angle rotation matrix

for the detector plane misalignment, Tdet,

Tdet = I3×3 − [∆θ×] =

 1 0 −β
0 1 α
β −α 1

 (3.40)

Therefore, the rotated plane that describes the orientation of the detector is

defined by an x-axis of irot = [1 0 − β]T and a y-axis of jrot = [0 1 α]T .
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Additionally assume that there is an error in the separation of the lens with

the detector along the optical axis given by δZl. Therefore, any point on the

rotated plane may be described by

p =

 1
0
−β

xi +

 0
1
α

 yi −
 0

0
δZl

 (3.41)

The ray that defines the path of of the photon through the camera may be

parameterized in terms of ξ by

p =

 Xi

Yi
0

+

 −Xi

−Yi
Zl

 ξ (3.42)

Setting these equations equal to each other and writing in matrix form, Xi

Yi
δZl

 =

 Xi 1 0
Yi 0 1
−Zl −β α

 ξ
xi
yi

 (3.43)

An equation for ξ in terms of [xi, yi] may be determined from the last row

in the above matrix equation. Alternatively, an expression for ξ in terms of

[Xi, Yi] may be determined from the analytic inversion of the above 3 × 3

matrix. Performing the required algebra will yield

ξ =
−βxi + αyi − δZl

Zl
=
−βXi + αYi − δZl
Zl − βXi + αYi

(3.44)

From here, a simple rearrangement of the first two rows in Eq. 3.43 yields the

following expressions for [xi, yi] in terms of [Xi, Yi]:

xi = (1− ξ)Xi =

(
1− −βXi + αYi − δZl

Zl − βXi + αYi

)
Xi (3.45)
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yi = (1− ξ)Yi =

(
1− −βYi + αYi − δZl

Zl − βXi + αYi

)
Yi (3.46)

Arriving at the transform that goes the other way (i.e. [Xi, Yi] in terms of

[xi, yi]) is also straightforward by using the definition of ξ in terms of x and y,

Xi =
1

1− ξ
xi =

Zl
Zl + βxi − αyi + δZl

xi (3.47)

Yi =
1

1− ξ
yi =

Zl
Zl + βxi − αyi + δZl

yi (3.48)

Because α, β, and δZl are small, the denominator in Eq. 3.47 and Eq. 3.48 may

be expanded as a Taylor series and only first order terms retained. Rewriting

this in matrix form,  Xi

Yi
Zl

 ≈ Πdet

 xi
yi
Zl

 (3.49)

where the matrix Πdet is given by

Πdet =

 1− βxi+δZl

Zl

α
Zl
xi 0

− β
Zl
yi 1 + αyi−δZl

Zl
0

0 0 1

 (3.50)

Note that if α, β, and δZl go to zero, Πdet becomes the 3× 3 identity matrix.

As a simple verification of this result, consider the 2D analog of the

above 3D problem. The geometry of such a scenario is as shown in Fig. 3.12.

Note the following from the law of cosines:

X2 = Z2
l + l2 − 2Zllcosθ = l2 − Z2

l (3.51)

Additionally, note from Fig. 3.12 that x = X + δ. Therefore, from Eq. 3.45,

one would expect to see from this analysis that δ = −Xξ. Using the law of

83



cosines a second time,

(X + δ)2 = (Zl + δZl)
2 + (l − lξ)2 − 2(Zl + δZl)(l − lξ)cosθ (3.52)

Note the sign on the −lξ term. This is negative because of the convention

chosen in Eq. 3.42. Recognizing that δ, δZl, and ξ are small and keeping only

first-order terms,

X2 + 2Xδ =Z2
l + 2ZlδZl + l2 − 2l2ξ (3.53)

− 2Zllcosθ + 2Zllξcosθ − 2δZllcosθ

and using the identity found in Eq. 3.51,

Xδ = ZlδZl − l2ξ + Zllξcosθ − δZllcosθ (3.54)

Zl

l

Z-axis (true camera boresight)

θ

Xi

-lξ

δ xi

X-axis (ideal)

x-axis (true)

β

δZl

Figure 3.12: Geometry of camera detector plane misalignment.
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Recognizing that lcosθ = Zl and once again using the identity in Eq. 3.51, it

is straightforward to show that the 2D case confirms that to first order

δ = −Xξ (3.55)

3.6.3 Optical Aberrations

Optical aberrations are well understood phenomena that are described

thoroughly in numerous texts.[88, 103] The third-order optical aberrations in-

clude: (1) spherical aberration, (2) coma, (3) astigmatism, and (4) distortion.

The first three affect the quality of the image by blurring a point source. In a

well designed optical system these errors are expected to be very small. More

importantly, the size of these aberrations for a well designed optical system is

expected to be smaller than a pixel, allowing these effects to be neglected in

this application.

Distortion, on the other hand, shifts the location of a point source

on the focal plane without affecting the quality of the image. Because the

present work is primarily interested in determining the direction to an observed

object, this is an important effect to consider. As will be shown later, filtering

techniques allow object features to be located with subpixel accuracy. On this

scale, radial distortion may not be negligible.

Radial distortion is most pronounced in cameras with a wide FOV. As

the name implies, the magnitude of the distortion is a function of the radial

distance of the observed point from the detector principal point. Fig. 3.4 shows

that objects with a large angle between the object and the camera optical axis
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project to a point significantly away from the principal point - these objects

experience a larger radial distortion, as seen in Fig. 3.13. A simple radial

distortion model is given by[86, 104]

X = Xd

(
1 + κ1r

2
d + κ2r

4
d + κ3r

6
d

)
(3.56)

Y = Yd
(
1 + κ1r

2
d + κ2r

4
d + κ3r

6
d

)
where [X, Y ] are the undistorted coordinates, [Xd, Yd] are the distorted coor-

dinates, and r2
d = X2

d + Y 2
d . Note that the radial distortion is defined in the

X-Y plane of C. The coefficients κ1, κ2, and κ3 are camera parameters that

described the severity of the radial distortion. These coefficients are typically

very small in magnitude.

a) Undistorted reference image. b) Image after radial distortion.

Figure 3.13: Effect of radial distortion on image.
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3.6.4 Diffraction-Limited Spot Size in a Focused Image

Even if all imperfections in the optics can be removed (or be made

negligibly small), there is still a theoretical minimum spot diameter for the

image of a point source. A system that can achieve spot sizes on this scale

is said to be “diffraction limited.” When a diffraction-limited optical system

with a circular aperture is focused, the resulting spot is called an Airy disk.

The empirically derived Rayleigh criterion is given by [88]

sinθ = 1.22
λ

dap
(3.57)

where θ is the angle between the point source and the first minimum of the

Airy pattern, λ is the wavelength, and dap is the aperture diameter. Assuming

that the angle θ is small (a good approximation because the focal length is

much larger than the Airy disk), the diameter of the Airy disk is given by

dairy = 2.44
λf

dap
(3.58)

where f is the focal length and dap is the aperture diameter. Consider a camera

with an f-number of F/1.43 (a focal length of 53 mm and an aperture diameter

of 37 mm). Even if the star detected was on the edge of the visible spectrum

(λ = 750nm), the diameter of the Airy disk would only be about 2.6µm, an

order of magnitude smaller than typical CCD/CMOS pixel widths. Therefore,

accurate determination of the location of a point source on the image plane is

expected to be limited by the detector and not the optics.
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3.6.5 Point-Source Errors in a Defocused Image

Let the distribution of intensity for a given defocused object be defined

by a point spread function (PSF). If the PSF of a defocused point source is

assumed to have a bivariate Gaussian distribution and the blur along the u-

axis and v-axis are uncorrelated and of the same magnitude, then the PSF is

given by

S(u, v) =
S0

2πσ2
exp

{
−(u− u0)2 + (v − v0)2

2σ2

}
(3.59)

where S0 is the intensity of the point source and [u0, v0] is the centroid of

the point source as described in frame A. There is extensive precedence in

the literature for using a Gaussian PSF to model the blurring associated with

camera defocus.[105–107]

3.7 Overview of Internal Camera Error Sources: CCD
and CMOS Detectors

The variance of the total noise associated with the intensity measure-

ment at each pixel is given by

σ2
sys = σ2

shot + σ2
floor + σ2

reset + σ2
pattern + σ2

ADC (3.60)

where σ2
sys is the variance of the total system noise, σ2

shot is the variance of

the shot noise, σ2
floor is the variance of the noise floor, σ2

reset is the variance of

the reset noise, σ2
pattern is the variance of the pattern noise, and σ2

ADC is the

variance of the analog to digital conversion (ADC) noise. The typical net result

of such noise sources in a dark frame is as shown in Fig. 3.14. Each of these
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noise terms shown in Eq. 3.60 is discussed in more detail in the subsequent

sections.

3.7.1 Dark Current and Shot Noise

Even when no photons are striking the photosensitive surface, some

electrons are still thermally generated. Electrons generated through this pro-

cess are referred to as dark current.[95, 107] To estimate the mean dark current

in real-time, many detectors have a set of dark pixels that are shielded from

external lighting. The only signal generated from these dark pixels is from

dark current. The signal from these pixels is averaged and may be subtracted

from the active pixels to remove the mean dark current effect.

Dark current is a strong function of detector temperature and the am-

Figure 3.14: Background noise on a dark frame (contrast significantly increased
to make noise more visible).
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bient radiation environment. The dark current density generated by a pixel is

given by[92]

JD = aT 1.5exp

[
−EG
2kT

]
(3.61)

where k is the Boltzmann constant, T is temperature in Kelvin, and EG is the

band gap energy. The constant a has units of A/K1.5/m2 and is a constant for

the detector of interest, resulting in a dark current density with units of A/m2.

The band gap energy is also a function of temperature. The following empirical

relationship is given in [92] as a good approximation for this quantity:

EG = 1.557− (7.021× 10−4)T 2

1108 + T
(3.62)

where the resulting EG is in eV and the T is the temperature in Kelvin.

Therefore, the number of dark current generated electrons is given by

Ndark =
JDApixel∆t

q
(3.63)

where Apixel is the area of the entire pixel (note that the entire pixel, not

just the photosensitive surface, generates dark current) and q = 1.6 × 10−19

columbs/e− is the charge of an electron.

Electrons generated from photons striking the detector (which come

from the observed object and stray light) and electrons generated from dark

current both contribute to the mean value of electrons detected by a given

pixel:

E [Nsys] = Npe +NSL +Ndark (3.64)
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where Nsys is the total number of electrons generated at a particular location,

Npe is the number of photoelectrons generated by light from the observed

object, NSL is the number of photoelectrons generated by stray light, and Ndark

is the number of electrons generated by dark current. The noise associated with

the generation of electrons (which must come in discrete values) is frequently

called shot noise. Shot noise is well known to follow a Poisson distribution, so

the variance of the shot noise is equivalent to the mean number of electrons.

Therefore,

σ2
shot = Npe +NSL +Ndark (3.65)

For large values of (Npe + NSL + Ndark), the Poisson distribution looks like a

Gaussian distribution.

3.7.2 Amplifier Noise

The CCD/CMOS output amplifier is also a source of noise. Output

amplifier noise comes from flicker noise (sometimes called 1/f noise) and white

noise. Because flicker noise is inversely proportional to frequency (or pixel

rate), the flicker noise may be very low compared to the white noise for detec-

tors operating at a sufficiently large pixel rate. The term “pixel rate” describes

the rate at which pixels are read from the camera readout register. As the fre-

quency is increased, the RMS value of the output amplifier noise will approach

the white noise. This minimum noise level is called the noise floor.

Recall that the pixel well size is defined by the number of photoelectrons

required to saturate the pixel. From here, it is easy to see that the noise
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floor and the pixel well size must be related by the detector dynamic range.

Therefore, the noise floor is given by

σfloor = Nmax/DR (3.66)

where Nmax is the pixel well size and DR is the sensor dynamic range. Note

that DR is in linear units. Manufacturers frequently report dynamic range in

decibels (i.e. DRdB = 20 log10DR).

3.7.3 Reset Noise

Reset noise is generated when the sense node capacitor on the pixel

is reset. Although becoming less of a problem on modern sensors, the reset

noise has historically been significant noise source in CMOS detectors.[108]

Sometimes called kTC noise, the reset noise is given by [95]

σreset =

√
kTC

q
(3.67)

where k is the Boltzmann constant, T is the temperature, C is the sense

node capacitance, and q = 1.6 × 10−19 col/e− is the charge of an electron.

The manufacturer frequently gives the reset noise at some specified reference

temperature. Therefore,

σreset = σreset,ref

√
T

Tref
(3.68)
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3.7.4 Pattern Noise

There are two contributing sources to pattern noise. The first is Fixed

Pattern Noise (FPN) that describes pixel-to-pixel variation in the signal when

the detector is in the dark. This phenomenon is primarily the result of pixel-

to-pixel differences in dark current. Note that this variation is always present

(or “fixed”), regardless of whether any photons are striking the photosensitive

surface. The FPN is usually described as a percentage of the number of dark

current electrons. The second term in the pattern noise is photo-response

non-uniformity (PRNU) noise. This noise term describes the pixel-to-pixel

variation in sensitivity to photons. Therefore, PRNU is usually described as a

percentage of the number of photoelectrons generated by the pixel.

Recalling that the variance of the number of photoelectrons and the

number of dark current electrons are both governed by a Poisson distribution,

the total variance for pattern noise is given by

σ2
pattern = (UfpnNdark)

2 + (UprnuNpe)
2 (3.69)

3.7.5 ADC Quantization Noise

Most detectors report the intensity at each pixel in digital form instead

of analog form. Therefore, there is some quantization associated with the

analog to digital conversion. The digitized output is given by

Npe = α floor

[
Npe

α

]
(3.70)
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where the ‘floor’ operator rounds down to the nearest integer and α is the least

significant bit (LSB) and is given by

α =
Nmax

2m
(3.71)

where Nmax is the pixel well capacity in electrons and m is the number of bits

of the digital output. Because a simple rounding function is used, the ADC

noise is best described by a uniform distribution. Therefore, recalling that the

variance of a unit uniform distribution is 1/12, the variance associated with

this process is

σ2
ADC =

α2

12
(3.72)

3.8 Camera Calibration

Many of the internal camera error sources associated with optics and

alignment (discussed in Section 3.6) may be largely removed through proper

camera calibration. These error sources can usually be estimated well enough

that they may be ignored after the corrections described in previous sections

are applied. A detailed discussion of practical camera calibration techniques

may be found in [109], [110], and [111].6 As an example, consider the calibra-

tion approach used for the Cassini cameras.[52] Let the measured coordinates

6An additional resource of particular note is the “Camera Calibration Toolbox for MAT-
LAB” developed by the Computer Vision Research Group at the California Institute of
Technology. This toolbox is available electronically at http://www.vision.caltech.edu/
bouguetj/calib_doc/index.html.
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of the observed object, [x̃, ỹ], be related to the true object coordinates, [x, y],

by

x = x̃+ δx y = ỹ + δy (3.73)

where δx and δy are the errors in the [x, y] coordinates due to distortion and

misalignment of internal components. The Cassini program modeled these

errors through the following camera calibration model,

[
δx
δy

]
=

[
−ỹ r̃ x̃ r̃2 −ỹ r̃3 x̃ r̃4 x̃ỹ x̃2

x̃ r̃ ỹ r̃2 x̃ r̃3 ỹ r̃4 ỹ2 x̃ỹ

]

a1

a2

a3

a4

a5

a6

 (3.74)

where r̃2 = x̃2 + ỹ2. A number of measurements of known objects were made

and a batch estimation procedure was used to estimate the six calibration

coefficients, ai. For the Cassini mission, only the coefficients a2, a5, and a6 were

found to be important.[52] Looking at the physical camera models developed

in Section 3.6, the source of these errors can easily be identified.

First, comparing Eq. 3.74 with Eq. 3.56, it is clear that the calibration

coefficient a2 corresponds to the quadratic radial distortion term (a2 = κ1) and

the calibration coefficient a4 corresponds to the quartic radial distortion term

(a4 = κ2). Of note is that a2 was the only important parameter related to

distortion, meaning that the Cassini camera did not have a significant quartic

radial distortion term.

The calibration coefficients a5 and a6 may be shown to approximately

describe the detector plane misalignment. Looking at the misalignment matrix
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Πdet from Eq. 3.50 and ignoring the error in the focal length, x
y
1

 ≈
 1− β

Zl
x̃ α

Zl
x̃ 0

− β
Zl
ỹ 1 + α

Zl
ỹ 0

0 0 1

 x̃
ỹ
1

 (3.75)

Therefore,

δx ≈ − β
Zl
x̃2 +

α

Zl
x̃ỹ (3.76)

δy ≈ − β
Zl
x̃ỹ +

α

Zl
ỹ2 (3.77)

which means that a5 ≈ α/Zl and a6 ≈ −β/Zl. If the focal length is known,

then knowledge of the calibration coefficients a5 and a6 may be used to deter-

mine the angular misalignment of the detector (which is given by the small

angle α about the X-axis and the small angle β about the Y -axis).

3.9 Light Intensity Models for Observed Objects

Two distinct types of objects are expected to be observed in simulated

OPNAV images. The first type of object is a star, which appears as a point

source of light in a focused image. The second type of object is a nearby

celestial body (such as a planet or moon), which will illuminate many pixels

in the image. What follows is a discussion for the simulation of these two types

of objects.

3.9.1 Simulation of Stars

If a star is in the camera FOV, begin by applying the parallax and stellar

aberration corrections to the catalog reference directions. Next, transform the
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inertial unit vector to the camera frame,

(ei)C = TT
maT

B
CTI

BTStellAberrTParallax (ei)I (3.78)

From here, proceed to the computation of the ideal X-Y coordinates,

Xi = −(ei(1))C
(ei(3))C

Zl Yi = −(ei(2))C
(ei(3))C

Zl (3.79)

Next distort the image using Eq. 3.56 to get Xd and Yd (this equation must be

solved backwards with Newton-Raphson iteration). Using the distorted X-Y

coordinates, compute the measured x-y centroid coordinates on the detector

plane using Eq. 3.45 and Eq. 3.46. Finally, use Eq. 3.16 to convert the x-y

detector coordinates to the u-v array coordinates.

Once the centroid has been computed, the intensity of the source must

be determined. For a star, a simple model for the photon flux is given by[88]

Φ = S0λ T
π

4
d2
ap∆λ10−0.4m (3.80)

where S0λ is the spectral irradiance7 of a zero-magnitude star (about 107photons·

cm−2 ·s−1 ·µm−1), T is the transmittance of the optics, dap is the aperture diam-

eter, ∆λ is the spectral range of interest, and m is the star visual magnitude.

This simple model may be extended to account for starlight not originating

from along the camera boresight direction, resulting in an irradiance at the

detector plane of

Si = S0λ T
π

4

d2
ap

Apixel
∆λ10−0.4meTbsei (3.81)

7Spectral irradiance is irradiance per unit wavelength.
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where Si is the irradiance from the i-th star at the detector plane, eTbsei = cosθ,

and θ is the angle between the boresight direction and the i-th line-of-sight

direction. As with the stray light model, the cosθ term is necessary to account

for the apparent foreshortening of the aperture from a light source not along

the boresight direction. It is worth noting that the FOV for most cameras is

narrow enough to make this effect small for most applications. The lens will

focus all of the photons coming from the direction ei onto (approximately) a

single point on the focal plane. Substituting these results into Eq. 3.26, the

number of photoelectrons generated by the i-th star is given by,

Ni = (QE) (F ) S0λ T
π

4
d2
ap∆λ10−0.4meTbsei∆t (3.82)

With the centroid location and ideal intensity available, the Gaussian

PSF is applied to spread the intensity to neighboring pixels. For a single

point source, the intensity may be spread among pixels by at least two differ-

ent methods. The first is a Monte Carlo approach where a large number of

dispersed points are randomly created and the the intensity of each pixel is

determined by the percentage of points that fall within that pixel. The second

is to convolve a linear Gaussian filter with a perfectly focused version of the

image. Use of a linear filter to model defocusing may also be nicely extended

into images that includes things other than point sources (such as images that

contain nearby planets, moons, or asteroids - a subject to be discussed more in

the next section). The Monte Carlo approach was used to blur stars in most

of the simulations performed in this dissertation.
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3.9.2 Simulation of Planets and Moons

Simulating the appearance of an extended body, such as a planet or

moon, in an image is a three step process. The first step is determining which

pixels are illuminated by the body of interest. The second step is determining

how light is reflected off of each observed point on the body of interest. The

third step is determining the number of photons that strike each of the pixels

on the detector illuminated by the body of interest. These steps are described

in detail in the following subsections.

3.9.2.1 Step 1: Find Pixels Illuminated by Planet/Moon

The first step is to sweep through all of the pixel locations in the image

and determine which pixels are illuminated by the body of interest. At each

[u, v] pixel coordinate, the ideal [X, Y ] coordinates in the camera frame may

be constructed from Eq. 3.17, Eq. 3.47, and 3.48. The line-of-sight vector in

the camera frame, (ei)C , may now be computed from Eq. 3.22. Finally, (ei)C

may be transformed into the planetcentric frame to obtain (ei)I ,

(ei)I = TT
StellAberrT

B
I TC

BTma (ei)C (3.83)

Note that, unlike with stars, no parallax term is needed because the planet-

spacecraft relative geometry is modeled explicitly.

The task is now to determine if a ray originating from the camera and

extending in the direction of (ei)I intersects the planet or moon. Assuming

that the planet or moon may be modeled by a triaxial ellipsoid, any point on
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the surface of this planet or moon must satisfy

pT

 1/a2 0 0
0 1/b2 0
0 0 1/c2

p = pTAp = 1 (3.84)

where p is the location of any surface point in a planetcentric frame. The

values a, b, and c are the principal axis dimensions of the planet/moon. If rc

is the position of the camera with respect to the planet center, then the vector

from the camera to this surface point is given by

s = p− rc (3.85)

This geometry may be seen in Fig. 3.15. The vector s, of course, is along the

same direction as (ei)I , but with some unknown magnitude, t. Therefore

s = p− rc = t (ei)I (3.86)

Solving for p and substituting the result into Eq. 3.84,

[t (ei)I + rc]
T A [t (ei)I + rc] = 1 (3.87)

Expanding the above yields a quadratic in the scale variable t,[
(ei)

T
I A (ei)I

]
t2 +

[
(ei)

T
I Arc + rTc A (ei)I

]
t+
[
rTc Arc − 1

]
= 0 (3.88)

The selected pixel will view the planet if a real root exists for t. Therefore, a

pixel will be illuminated by the planet or moon if[
(ei)

T
I Arc + rTc A (ei)I

]2

− 4
[
(ei)

T
I A (ei)I

] [
rTc Arc − 1

]
≥ 0 (3.89)
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Figure 3.15: Geometry of image of planet or moon.

In general, two real roots will exist for any unit vector direction that intersects

the planet/moon. A repeated root will occur if the point is on the observed

limb of the planet/moon. Given the geometry in Fig. 3.15, the smaller root is

always desired because only the point on the near side of the planet/moon is

observed.

3.9.2.2 Step 2: Find the Intensity of Reflected Light

If a pixel is found to be illuminated by a planet or moon by the sat-

isfaction of Eq. 3.89, then the second step is to determine the intensity of

the light reflected off the patch of the planet/moon viewed by this pixel. It is

assumed that light within our solar system originates from the Sun and when

101



a planet/moon is imaged the observed light is reflected sunlight.

The simplest way to model this reflected sunlight would be to assume

Lambertian reflection. Such a model assumes that the light reflected is pro-

portional to the cosine of the angle of incidence and completely independent

of the location of the observer. This model was found to be insufficient for the

present application.

Instead, bidirectional reflectance theory is used to model the sunlight

reflected by a planet or moon.8 Define the bidirectional reflectance, r, as the

ratio of the radiance9 of light reflected off a surface and viewed from a specific

direction, I, to the irradiance incident on the surface, S0. The Lommel-Seeliger

Law is a common, simple model used in planetary photometry. According to

this relation,[114]

r (i, θ) =
w

4π

cos i

cos i+ cos θ
(3.90)

where w is the average single-scattering albedo, i is the angle of incidence, and

θ is the angle of reflectance. In [112], Hapke introduces a more sophisticated

model that expresses the bidirectional reflectance r as a function of three

angles: the angle of incidence, i; the angle of reflectance, θ; and the phase

angle, g (see Fig. 3.16 for geometry). The bidirectional reflectance is given by

r (i, θ, g) = I/S0 (3.91)

8A detailed discussion of bidirectional reflectance theory may be found in [112] and [113].
9Radiance is radiant power per unit area per unit solid angle, or W · m−2 · sr−1. Note

the difference in “radiance” and “irradiance.” For clarity, radiance will be denoted by the
variable I and irradiance will be denoted by the variable S.
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r (i, θ, g) =
w

4π

cos i

cos i+ cos θ
{[1 +B(g)]P (g) +H(cos i)H(cos θ)− 1} (3.92)

where P (g) is the average phase angle function, B(g) is the back-scattering

function, and H(·) is defined as follows to compact notation

H(x) =
1 + 2 x

1 + 2 γ x
(3.93)

where the variable γ is defined as,

γ = (1− w)1/2 (3.94)

The variables w and γ describe the albedo of the planet or moon. For

an isotropic surface, the relationship between the bond albedo, Ab, and the

average single-scattering albedo is known to be given by[112]

Ab ≈
1− γ
1 + γ

[
1− 1

3

γ

1 + γ

]
(3.95)

surface
normal

i
θ

en

θ

g

Figure 3.16: Geometry of bidirectional reflectance.
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The bond albedo is defined as the light scattered in all directions by a surface

to the light incident on that surface. Using Eq. 3.95, a plot of the bond

albedo as a function of the average single-scattering albedo is shown in Fig.

3.17. These results may be cross-referenced against the average bond albedos

(sometimes called the average planetary albedo) for the planets shown in Table

3.2.

Evaluation of Eq. 3.92 requires a model for the average phase angle

function, P (g). For isotropic scattering, P (g) = 1. Hapke demonstrated in

the 1960s that the following is a good approximation of P (g) for a lunar-like

surface,[116, 117]

P (g) =
4π

5

[
sin g + (π − g)cos g

π
+

(1− cos g)2

10

]
(3.96)

This model has since been used for many other planetary applications.[52, 112]

A model is also required for the back-scattering function, B(g). For
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Figure 3.17: Relationship between average single-scattering albedo and aver-
age bond albedo.
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Table 3.2: Average bond albedo for selected celestial bodies.[115]

Celestial body Average albedo
Mercury 0.12
Venus 0.75
Earth 0.30
Moon 0.11
Mars 0.25
Jupiter 0.34
Saturn 0.34
Uranus 0.30
Neptune 0.29
Pluto 0.5

low albedo bodies, an observer should expect to see regions of illumination

and regions of shadow based on the topography of the body. For high albedo

bodies, however, the scattering of light from illuminated areas will cause re-

gions not directly illuminated by sunlight (regions that would be in shadow

for low albedo objects) to also be illuminated. This phenomena is called back-

scattering. Direct sunlight, therefore, produces surface illumination dependent

on the first power of albedo, while back-scattering produces surface illumina-

tion dependent on second power (and higher powers) of albedo. In addition

to albedo, the amount of back-scattering is also dependent on the geometric

properties of the surface that is reflecting the light (e.g. roughness, porosity,

etc.). The back-scattering function, therefore, may be parameterized on an

additional variable, h. If κ = h / tan |g|, then the back-scattering function is

given by

B(g) =

{
B0

[
1− 1

2κ
(3− e−κ) (1− e−κ)

]
|g| < π/2

0 |g| ≥ π/2
(3.97)
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where B0 may be approximated by

B0 = exp
(
−w2/2

)
(3.98)

Values of h for Earth’s moon, for example, vary between 0.4 and 0.8.[117]

All that remains to compute the bidirectional reflectance, r, from Eq.

3.92 is to find the angles i, θ, and g. These angles are referenced to the

ellipsoidal planet’s surface normal at the location where the light is reflected.

Recall that the surface normal for such an object is simply

pn = Ap en =
pn
‖pn‖

(3.99)

Therefore, the angles required to complete Eq. 3.92, Eq. 3.96, and Eq. 3.97

are easily computed as

i = acos
[
eTnesun

]
(3.100)

θ = acos
[
−eTn (ei)I

]
(3.101)

g = acos
[
−eTsun (ei)I

]
(3.102)

where esun is a unit vector pointing from the center of the planet/moon to the

Sun.

With the bidirectional reflectance known, the radiance of the reflected

light, I, may be found by

I = r S0 (3.103)

While r may vary with wavelength (because w may vary with wavelength), it

is assumed that the process of reflection does not shift the wavelength of the
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incident light. The central issue moving forward is the determination of S0

(the irradiance of the light incident on the surface). If the incident irradiance

is sunlight, the following simple model may be used

S0 = Sref

(
rref
‖rsc‖

)2

(3.104)

where rsc is the position vector of the spacecraft with respect to the Sun and

Sref is the reference irradiance of the Sun at a distance of rref from the Sun.

The value of Sref to be used in this application is dependent on the spectral

range optical sensor. Sunlight at a frequency outside of the spectral range of

the CCD/CMOS sensor or outside of the bandpass region of the optical filter

will not be absorbed by the detector and need not be considered.

It is well known that the spectrum of the Sun is very close to that of a

black body with an effective temperature of 5777 K.[115] Therefore, recalling

Planck’s law as a function of wavelength, λ, the solar spectral irradiance (W ·

m−2 ·m−1) for a segment of the Sun’s surface is[115, 118]

Sλ (λ, T ) =
2πhc2

λ5

[
exp

(
hc

λkT

)
− 1

]−1

(3.105)

where h is Planck’s constant, c is the speed of light, k is the Boltzmann

constant, and T is the effective temperature. This may easily be converted to

the solar spectral irradiance at a reference distance,

Sref,λ =
2πhc2

λ5

[
exp

(
hc

λkT

)
− 1

]−1(
rSun
rref

)2

(3.106)

where rSun is the radius of the Sun. The solar irradiance over the spectral
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range from λmin to λmax, therefore, is given by

Sref =

ˆ λmax

λmin

Sref,λ dλ (3.107)

In many cases, it is more important to know the solar irradiance in

terms of photons ·m−2 · s−1 instead of W ·m−2. Recalling that the energy of

a photon is given by

Ephoton =
hc

λ
(3.108)

it is straightforward to show that

Sref =

ˆ λmax

λmin

λ

hc
Sref,λ dλ (3.109)

The results of this section may now be combined to provide a tractable

approach for computing the radiance of the light reflected from an observed

surface patch on a planet or moon (which was the objective of Step 2). The

radiance of the reflected light in units of photons ·m−2 · sr−1 · s−1 is given by

I = r

[(ˆ λmax

λmin

λ

hc
Sref,λ dλ

)(
rref
‖rsc‖

)2
]

= rSref

(
rref
‖rsc‖

)2

(3.110)

where r is computed from Eq. 3.92 and Sref is computed from Eq. 3.109.

3.9.2.3 Step 3: Find Number of Photoelectrons Generated at Each
Illuminated Pixel

The third and final step is to determine the number of photoelectrons

generated at each pixel location. To do this requires the conversion of radiance

at the source (surface patch on planet or moon) to irradiance at the observer
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(each individual pixel location). The irradiance at each pixel location may be

used to compute the number photoelectrons generated at that pixel, Npe, from

Eq. 3.26.

Begin by taking a closer look at the relation between radiance, I, and

irradiance, S. Suppose light from an infinitesimal patch on a source, dAs, is

absorbed by a second infinitesimal patch on the observer, dAo. If the geometry

is as shown in Fig. 3.18, then let s be the distance between the source and

the observer, and dΩ be the solid angle subtended by the observing patch dAo

from the viewpoint of the source. Under these conditions, the definition of

radiance and irradiance give

S = I dΩ (3.111)

To convert the irradiance, S, to power, P , the area of the projection of the

patch dAs onto a plane perpendicular to the line-of-sight vector is required.

Therefore, define θs as the angle between the line-of-sight vector and the source

Observer

dAo

θo

es

eo

Source

dAs

θs
dΩ

(solid angle)

Figure 3.18: Geometry between source and observer.
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patch surface normal and define θo as the angle between the line-of-sight vector

and the observer patch surface normal. If the patch dAs is small then the

projected area used to convert S to P is approximately dAs cosθs. Under

these conditions, geometry will show that

P = I dAs cosθs dΩ (3.112)

Here, P represents the power emitted by the source over the patch dAs that

will be incident upon the patch dAo.

Now, recall that a small solid angle, dω, that subtends the small patch

dA at a distance of r from the observer is given by

dω =
dA cosθ

r2
(3.113)

where θ is the angle between the line-of-sight vector and the patch surface

normal.

Therefore, suppose a pixel on a detector observes a patch dAs on a

planet (i.e. dAs is the projection of the pixel onto the surface of the planet).

Additionally assume that light from this source is focused onto this pixel loca-

tion through a system of lenses, using a camera with an aperture of dap. The

geometry of this situation is as shown in Fig. 3.19 (this figure may be thought

of as the appropriate slice of Fig. 3.15). Because the system of lenses focuses

the light from the source collected over the entire aperture, the value for dΩ

in Eq. 3.111 and Eq. 3.112 is computed as the solid angle subtended by the

camera aperture as seen from the surface of the planet/moon,

dΩ =
dA cosθo

sT s
=
π

4

d2
ap cosθo

sT s
(3.114)
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The only remaining variable required to solve Eq. 3.112, is an expres-

sion for dAs. Because the solid angle dω in Fig. 3.19 must be the same on

both sides of the lens, applying Eq. 3.113 shows that

dω =
dAo cosθo

(Zl/cosθo)
2 =

dAs cosθs
sT s

(3.115)

Therefore, it is straightforward to show that

dAs = dAo
sT s

Z2
l

cos3θo
cosθs

(3.116)

Substituting the results of Eq.3.114 and Eq. 3.116 into Eq. 3.112

P = I

(
dAo

sT s

Z2
l

cos3θo
cosθs

)
cosθs

(
π

4

d2
ap cosθo

sT s

)
(3.117)

Simplifying this result yields

P = I
π

4
dAo

(
dap
Zl

)2

cos4θo (3.118)

(solid angle) dΩ

θo

θs

rc

p
optical axis

es

dAs

s
dap

camera system

Zl

dAo
(solid angle) dω

Figure 3.19: Geometry for a camera system viewing a section of a planet.
Image not to scale and angles are exaggerated for clarity.
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Unfortunately, the system of lenses used to focus the light onto the pixel is not

a lossless system (as was assumed in creating Eq. 3.118). Therefore, as was

done in the starlight model from Eq. 3.81, introduce T as the transmittance of

the optics to account for losses associated with the optical system. Therefore,

if the irradiance incident on the pixel is desired, then

S =
P T

dAo
= I T

π

4

(
dap
Zl

)2

cos4θo (3.119)

If the value of I is computed from Eq. 3.110, then the units of S are photons ·

m−2 · s−1. Therefore, the number of photoelectrons generated by a pixel, Npe,

may be computed by Eq. 3.26.

3.10 Intentional Defocusing

3.10.1 Star Centroiding

The simplest star centroiding algorithm consists of taking the weighted

average (weighted by pixel intensity) of the u-location and v-location of pixels

in the neighborhood of the star. A window is drawn around the sensed star

with the upper left pixel of the window being defined by coordinates [uw0, vw0].

Remember that the average signal generated by a set of dark pixels should be

subtracted from each pixel before performing the centroiding algorithm.

Therefore, let the total intensity in a window of interest about a star

be given by

Iw,total =

uw0+nu∑
i=uw0

vw0+nv∑
j=vw0

Idig(ui, vj) (3.120)
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where Idig(ui, vj) is the pixel intensity at location [ui, vj] in the digital image

(as given by the mapping described in Eq. 3.19), nu is the number of pixels

in the window along the u-axis, and nv is the number of pixels in the window

along the v-axis. Then the weighted average is computed by

uc =
1

Iw,total

uw0+nu∑
i=uw0

vw0+nv∑
j=vw0

Idig(ui, vj)ui (3.121)

vc =
1

Iw,total

uw0+nu∑
i=uw0

vw0+nv∑
j=vw0

Idig(ui, vj)vj (3.122)

3.10.2 Determining Optimal Amount of Defocusing

Stars will normally appear as point sources in a focused image, thus

only illuminating one or two pixels. For example, the star R Doradus has

the largest apparent diameter in the night sky, with an apparent diameter of

0.057 arcsec.[119] Assuming a camera with a focal length of 50 mm, this would

create a spot with a diameter of approximately 0.03 µm diameter in an ideal

system. In a real system, but still assuming the optics are good enough to

create a diffraction limited system, a spot the size of the Airy disk would be

created (dairy ≈ 2.7µm for an f-number of 1.5).

With so few pixels illuminated, it is difficult to obtain an accuracy

beyond what is defined by the pixel dimensions. The quantization would gen-

erate an error in the estimate of the centroid location with a standard deviation

of about 1/
√

12 pixels in the u-direction and 1/
√

12 pixels in the v-direction

(using the same notation as in Eq. 3.16). When the image is defocused, mul-

tiple pixels are illuminated and centroiding techniques may be used to obtain
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subpixel accuracy. Historically, these techniques have been shown to provide

one to two orders of magnitude improvement over the accuracy defined by the

pixel dimensions. This is shown pictorially in Fig. 3.20.

Determining the optimal blur size requires some care. Here, the optimal

blur size is defined as the amount of blur that minimizes the error associated

with the star centroid estimate. Because the estimated centroid is dependent

on the quality of the image data, the signal-to-noise ratio becomes an impor-

tant parameter. Let the signal-to-noise ratio be defined as the ratio of the

total number of photoelectrons generated by a star (i.e. Npe in Eq. 3.26)

to the average noise in a single pixel. This is where the amount of noise in

the CCD/CMOS sensor enters into the performance of an optical sensor for

navigation applications. To quantify this effect and determine the optimal

a) Focused image of a star. b) Defocused image of the same star.

Figure 3.20: Defocusing an image can enable subpixel accuracy through cen-
troiding. Green ‘x’ shows true star location and red circle shows centroid
estimate.
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blur size, a Monte Carlo analysis was performed to select the best blur size

over a range of signal-to-noise ratios. The size of the blur will be defined by

the standard deviation of the bivariate Gaussian PSF described in Eq. 3.59.

Additionally, it is assumed that a significant number of pixels illuminated by

a given star are not saturated. Performing the Monte Carlo analysis results in

RMS errors in the estimated centroid location as shown in Fig. 3.21. From this

figure, the optimal blur size is approximately 0.5-1.0 pixels and the resulting

RMS centroid can be consistently determined to less than a tenth of a pixel.

Now, consider the situation where pixel saturation becomes an impor-

tant factor. For ease of discussion, assume a constant sensor noise level and

simply consider stars of increasing brightness. As pixels become saturated, in-

formation is lost and the error associated with the centroid estimate increases.

Such an effect would cause increased error in very strong signals, resulting

in increased centroid errors on the right-hand side of Fig. 3.21. Therefore,

instead of having the low centroid error region extend infinitely far off the

right-hand side of the plot, a valley will form such that stars of intermediate

brightness will provide the best performance. Stars that are too dim will have

large centroid error due to detector noise, while stars that are too bright will

have large centroid errors due to pixel saturation.

3.11 Creating a Simulated Image

Now that that the ideal measurement model and individual noise sources

have been presented, a procedure may be developed to simulate the image gen-
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Figure 3.21: RMS centroid error along x-axis (contours in units of pixels) as
a function signal-to-noise ratio and blur standard deviation.

erated by an optical sensor.

A typical OPNAV image will contain both a planet (or moon) and

stars. Begin by computing the pixels illuminated by the planet or moon. Next

compute the location of each star in the camera FOV. Using Eq. 3.89, if the

line-of-sight vector to the current star of interest is (estar)I and the following

is found to be true,[
(estar)

T
I Arc + rTc A (estar)I

]2

− 4
[
(estar)

T
I A (estar)I

] [
rTc Arc − 1

]
≥ 0

(3.123)

then the planet will be occluding the star and the star should not be included

in the simulated image. Once the ideal focused image has been created, it

may need to be blurred if the camera is not focused (as was discussed above,
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the image not being perfectly focused may be either intentional or uninten-

tional). Blur may be introduced by convolving a linear Gaussian filter with

the perfectly focused version of the image.

If the digital image is given by Idig(u, v) as described in Eq. 3.19 and

the Gaussian filter is given by G, then the blurred image, Hdig(u, v), is given

by

Hdig(u, v) = G ∗ Idig(u, v) (3.124)

where ∗ denotes the convolution operator.[87] A detailed discussion of image

convolution and linear filters is given in Section 4.2.1. Depending on the level

of accuracy required in the simulation, the filter may be applied to an image

of higher resolution and then downsampled to the desired resolution to better

simulate the behavior associated with defocus.

After the image has been blurred, noise may be added to the image. To

each pixel, explicitly add random noise associated with shot noise, the noise

floor, reset noise, and pattern noise,

Hdig(u, v) = Hdig(u, v) + σsimε(u, v) (3.125)

where ε(u, v) is zero-mean white noise with E [ε(u, v)2] = 1 and σsim is given

by

σsim =
[
σ2
shot + σ2

floor + σ2
reset + σ2

pattern

] 1
2 (3.126)

Note that unlike σsys in Eq. 3.60, the ADC noise is not explicitly added to the

signal. Instead, as a final step, the value at each pixel is quantized as described

in Eq. 3.70. This will result in the same amount of noise, but explicitly
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preforming the quantization provides a better simulation of the discrete nature

of the sensor’s digital output.

3.12 Measurement Covariance Matrix for Optical Line-
of-Sight Observations

3.12.1 Classic Approach for Line-of-Sight Unit Vector Covariance

Suppose the true line-of-sight unit vector, expressed in frame I, to the

i-th observed object is given by (ei)I . Now suppose a measured line-of-sight

unit vector to this same object is available in the spacecraft camera frame,

(ẽi)C . If the orientation of the camera with respect to the body frame is

known, then the measured line-of-sight unit vector in the body frame is given

by

(ẽi)B = TC
B (ẽi)C (3.127)

Because the line-of-sight is constrained to be a unit vector, error in its direction

should formally be represented as a rotation. It is, however, convenient to

represent this as an additive error in many cases,

(ẽi)C = TC
C̃,i

(ei)C = (ei)C + εi (3.128)

where TC
C̃,i

is the rotation matrix that rotates the true line-of-sight in the

camera frame to the measured line-of-sight in the camera frame10 and εi is

the measurement error in the observed unit vector. For (ẽi)C to remain a unit

10This means that (ẽi)C = (ei)C̃,i. In other words, the C̃ frame is a frame close to the
true camera frame that produces the observed line-of-sight measurement.
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vector to first order, the measurement error must be perpendicular to the true

observation unit vector:

(ei)
T
C εi ≈ 0 (3.129)

If the measurement is further assumed to be unbiased, then

E [εi] = 0 (3.130)

Now, if the angle between the C frame and the C̃ frame is small, then TC
C̃,i

may be approximated as described in Eq. 3.5. Substituting this result yields:

(ẽi)C = [I3×3 − [δφ×]] (ei)C (3.131)

where δφ is a small angle that rotates the true unit vector direction to the

measured unit vector direction. Now, substituting Eq. 3.131 into Eq. 3.128

and solving for εi,

εi = − [δφ×] (ei)C = [(ei)C ×] δφ (3.132)

Therefore, the error covariance is given by

E
[
εiε

T
i

]
= E

[
[(ei)C ×] δφδφT [(ei)C ×]T

]
(3.133)

E
[
εiε

T
i

]
= [(ei)C ×]E

[
δφδφT

]
[(ei)C ×]T (3.134)

Assuming the covariance of the small angle rotation is given by

E
[
δφδφT

]
= σ2

φ,iI3×3 (3.135)
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where σ2
φ,i is the angular variance (in radians) of the measurement error, the

measurement covariance is may be rewritten as

E
[
εiε

T
i

]
= σ2

φ,i [(ei)C ×] [(ei)C ×]T (3.136)

E
[
εiε

T
i

]
= σ2

φ,i [(ei)C ×] [− (ei)C ×] (3.137)

Recalling a useful property of the cross product matrix,

[α×] [β×] = βαT − βTαI3×3 (3.138)

the measurement covariance in the camera frame may be rewritten as

RC,i = E
[
εiε

T
i

]
= σ2

φ,i

[
I3×3 − (ei)C (ei)

T
C

]
(3.139)

It is straightforward to rotate this covariance matrix into the body frame,

RB,i = TC
BRC,iT

B
C (3.140)

Distributing the TC
B yields the measurement covariance that is typically seen

in the literature[120] (although this derivation arrives at this result from a

camera-centric perspective instead of assuming that the measurement is al-

ready in the body frame),

RB,i = σ2
φ,i

[
I3×3 − (ei)B (ei)

T
B

]
(3.141)

This simple model, which is widely used in the literature, provides no means of

altering the shape of the covariance matrix beyond the line-of-sight direction.

It is also unclear how to best pick a value for σφ,i. As was discussed in earlier
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sections, errors in the sensor and in construction of the camera will lead to

behavior that is difficult to model with Eq. 3.139.

Unfortunately, the matrix R in Eq. 3.139 is singular (it is a 3 × 3

matrix with a rank of two), and an actual inverse may not be computed.

As will become clear later, the inverse measurement covariance matrix, R−1,

for line-of-sight unit vector observations is needed for some of the attitude

filtering techniques. Therefore, computing the Moore-Penrose pseudoinverse11

of R yields

“R−1” = R† =
1

σ2
φ,i

[
I3×3 − (ei)C (ei)

T
C

]
(3.142)

where the † symbol indicates the pseudoinverse. The use of the pseudoinverse

in this application has been investigated in more detail by Shuster.[121]

3.12.2 Line-of-Sight Unit Vector Covariance from Camera Param-
eters

The discussion that follows presents new results that that directly relate

errors in measurements made by the camera to error in the i -th line-of-sight

unit vector. The method presented here differs from the traditional approach

by looking at errors in the line-of-sight unit vectors as a function of camera

error sources. This provides a better understanding of the measurement error

characteristics that are critical in improving filter performance.

11The easiest way is through Singular Value Decomposition (SVD). Let the SVD of R
be given by R = UFV∗, where F is a diagonal matrix. In this case, the Moore-Penrose
pseudoinverse is given by R† = UF†V∗, where F† is a diagonal matrix containing the
reciprocal values of the non-zero entries in F.

121



Begin by adding noise to the camera measurement model given in Eq.

3.22,

(ẽi)C =
(
X̃2
i + Ỹ 2

i + Ẑ2
l

)− 1
2

 −X̃i

−Ỹi
Ẑl

 (3.143)

where X̃i is the measured value of Xi, Ỹi is the measured value of Yi, and Ẑl

is the estimate of Zl:

Xi = X̃i + δXi Yi = Ỹi + δYi Zl = Ẑl + δZl (3.144)

such that δXi is the error in the measured value of Xi, δYi is the error in

the measured value of Yi, δZl is the error in the estimate of Zl. Making the

appropriate substitutions in Eq. 3.143,

(ei)Ĉ =
[
(Xi − δXi)

2 + (Yi − δYi)2 + (Zl − δZl)2
]− 1

2

 −Xi + δXi

−Yi + δYi
Zl − δZl

 (3.145)

Expanding the denominator in Eq. 3.145 and retaining only first-order terms,

(ẽi)C ≈
(
X2
i − 2XiδXi + Y 2

i − 2YiδYi (3.146)

+Z2
l − 2ZlδZl

)− 1
2

 −Xi + δXi

−Yi + δYi
Zl − δZl


Proceed by expanding the denominator as a Taylor series and, as before, retain

only first-order terms

(ẽi)C ≈ (ei)C +
(
X2
i + Y 2

i + Z2
l

)− 3
2


 −Xi

−Yi
Zl

×
 δXi

δYi
−δZl

×
 −Xi

−Yi
Zl

 (3.147)
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To compact notation, let Di = (X2
i + Y 2

i + Z2
l )

1
2 and δγi = [ δXi δYi −δZl ]T .

The above expression may now be reduced to

(ẽi)C ≈ (ei)C +D−1
i {(ei)C × (δγi × (ei)C)} (3.148)

(ẽi)C ≈ (ei)C −D
−1
i [(ei)C ×] [(ei)C ×] δγi (3.149)

Recalling Eq. 3.128, it is now straightforward to show that

εi ≈ −D−1
i [(ei)C ×] [(ei)C ×] δγi (3.150)

Recalling the identity from Eq. 3.138, the above equation may be rewritten

as

εi ≈ −D−1
i

[
(ei)C (ei)

T
C − I3×3

]
δγi (3.151)

From here, proceed straight to the definition of the measurement covariance:

RC,i = E
[
εiε

T
i

]
≈E

[
D−2
i

(
(ei)C (ei)

T
C − I3×3

)
(3.152)

δγiδγ
T
i

(
(ei)C (ei)

T
C − I3×3

)]
Recognizing that the only random variable in this equation is δγi,

RC,i ≈ D−2
i

[
(ei)C (ei)

T
C − I3×3

]
E
[
δγiδγ

T
i

] [
(ei)C (ei)

T
C − I3×3

]
(3.153)

A suitable expression for E
[
δγiδγ

T
i

]
in terms of useful parameters must still

be developed. Begin by noting the simple transformation,

δγi = G

 δXi

δYi
δZl

 (3.154)
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where the transformation matrix G is

G =

 1 0 0
0 1 0
0 0 −1

 (3.155)

Now, combining the results of Eq. 3.17 and Eq. 3.49, it is clear that

δγi = GΠdet

 1
sx

cos(θ)
sxsy

0

0 − sin(θ)
sy

0

0 0 1


 δui
δvi
δZl

 (3.156)

Again, compact notation by defining the matrix Γ

Γ =

 1
sx

cos(θ)
sxsy

0

0 − sin(θ)
sy

0

0 0 1

 (3.157)

Therefore, the measurement covariance may be rewritten in terms of the statis-

tics of the spot size and focal length fluctuation. If δηi = [δui δvi δZl]
T then

the unit vector covariance matrix is given by

RC,i ≈ D−2
i

[
(ei)C (ei)

T
C − I3×3

]
GΠdetΓE

[
δηiδη

T
i

]
(3.158)

ΓTΠT
detG

T
[
(ei)C (ei)

T
C − I3×3

]
This result given in Eq. 3.158 is the general expression for the measure-

ment covariance expressed in the camera frame as a function of measurable

errors in the camera system. One of the great benefits of arriving at this

expression is a deeper understanding of the physical implications and sensor

assumptions required to arrive at the traditional measurement covariance given

in Eq. 3.139 (or Eq. 3.141).
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3.12.3 Comparison of New Covariance Model with Results from
Literature

What follows is a brief comparison of the new covariance model with

other results from the literature. The first result that merits a comparison

is the traditional unit vector covariance model (sometimes called the QUEST

measurement model) given in Eq. 3.139. To arrive at the traditional result

from the new covariance model of Eq. 3.158, one must first assume that the

detector plane is perfectly perpendicular to the true camera optical axis (i.e.

Πdet = I3×3) and that array axes are perfectly orthogonal,

Γ =

 1
sx

0 0

0 − 1
sy

0

0 0 1

 (3.159)

Additionally if one assumes that all the errors are physically of the same size,

i.e. σu

sx
= σv

sy
= σZl

, then it can be shown that

E
[
δγiδγ

T
i

]
= GΠdetΓE

[
δηiδη

T
i

]
ΓTΠT

detG
T = σ2

γ,iI3×3 (3.160)

This transforms Eq. 3.158 back to the form of Eq. 3.153. Under this condition,

the traditional result may be exactly recovered. Therefore, proceeding with

the assumption of Eq. 3.160:

RC,i ≈ σ2
γ,iD

−2
i

[
(ei)C (ei)

T
C − I3×3

] [
(ei)C (ei)

T
C − I3×3

]
(3.161)

Simplifying the above expression yields

RC,i ≈ σ2
γ,iD

−2
i

[
I3×3 − (ei)C (ei)

T
C

]
(3.162)
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Under a small angle approximation where tanφ ≈ sinφ ≈ φ, it is clear that

σ2
φ,i ≈

σ2
γ,i

D2
i

(3.163)

Finally, the traditional result shown in Eq. 3.139 becomes apparent:

RC,i ≈ σ2
φ,i

[
I3×3 − (ei)C (ei)

T
C

]
(3.164)

Before proceeding, note that the simplification of Eq. 3.160 makes two im-

portant assumptions: (1) camera measurement errors in the u-direction and

v-direction are uncorrelated and (2) that the scale of the error in estimating

the centroid on the i -th star on the camera is the same as the error in the

estimate of separation between the lens and the detector. Depending on the

camera used, this second assumption may not be very good. Although there

may be a bias in the estimate of Zl (which is modeled in Πdet), the value of

Zl should not be changing from measurement to measurement (i.e. one would

expect σZl
≈ 0).

Therefore, an alternative case of interest is the one where σZl
≈ 0.

Under this scenario,

E
[
δηiδη

T
i

]
=

 σ2
u ρuvσuσv 0

ρuvσuσv σ2
v 0

0 0 0

 (3.165)

is chosen instead of the identity shown in Eq. 3.160. The variable ρuv is the

correlation coefficient between δu and δv. To simplify, let Ruv be given by

Ruv = E

[[
(u− û)
(v − v̂)

] [
(u− û)
(v − v̂)

]T]
(3.166)
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If errors in u and v are uncorrelated, then E [(u− û) (v − v̂)] = 0, and Ruv is

a diagonal matrix. The u-v covariance matrix describes the shape of the error

ellipse of the centroid on the observed object on the detector plane. Therefore,

Eq. 3.165 may be rewritten as

E
[
δηiδη

T
i

]
=

[
I2×2

01×2

]
Ruv

[
I2×2 02×1

]
(3.167)

Therefore, one should expect that

RC,i ≈
1

D2
i

[
(ei)C (ei)

T
C − I3×3

]
(3.168)

ΠdetΓ

[
I2×2

01×2

]
Ruv

[
I2×2 02×1

]
ΓTΠT

det[
(ei)C (ei)

T
C − I3×3

]
Note that the structure of this problem allows for the −1 in the third element

of the G matrices to be multiplied by only zeros. Because the upper 2 × 2

portion of this matrix is the identity matrix, G may be eliminated from the

equation.

For cameras with a relatively narrow FOV, note that (ei)C ≈ [0 0 1]T .

Therefore the following identity is approximately true,

[
(ei)C (ei)

T
C − I3×3

]
≈

 1 0 0
0 1 0
0 0 0

 (3.169)

Therefore, the elements in the covariance matrix associated with σZl
would be

nearly eliminated even if they were nonzero for cameras with a narrow FOV.

The traditional covariance in Eq. 3.139 (or Eq. 3.141) may now be derived
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for this case following the same approach as for the first case. Note, however,

that the approximation of Eq. 3.169 makes the relationship derived from Eq.

3.165 significantly weaker than the relationship derived from Eq. 3.160.

The case where σZl
≈ 0 is also relevant with respect to the covariance

model introduced by Cheng et al. in [122]. In their model, they show that

RC,i = JiRxy,iJ
T
i (3.170)

where Rxy is the covariance of the point on the detector plane (therefore, this

is simply Ruv mapped from the D frame into the C frame) and Ji is given by

Ji =
1

D

[
−I2×2

01×2

]
− 1

D2
(ei)C [xi yi] (3.171)

To provide a comparison with the new covariance model, it is straightforward

to show that

Ji =
1

D

[
−I2×2

01×2

]
− 1

D2
(ei)C [xi yi] (3.172)

=
1

D

[
(ei)C (ei)

T
C − I3×3

] [ I2×2

01×2

]
This means that the new covariance model given in Eq. 3.168 collapses to the

model from Eq. 3.170 if the errors are expressed in the C frame (instead of

the D frame) and if the other camera error sources are ignored (e.g. array

axes not perfectly perpendicular to each other, detector array not perfectly

perpendicular to camera boresight, etc.).

Additionally, in this context it is worth pointing out that [122] and
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[123] prove that Eq. 3.170 collapses exactly to the form of Eq. 3.139 if12

Rxy,i = σ2
φ

D2

Z2
l

[
Z2
l + x2

i xiyi
xiyi Z2

l + y2
i

]
(3.173)

Unlike the observation of Eq. 3.169, this is true even when the observed point

is not near the boresight (i.e. it is still valid for wide FOV sensors). Because

of the observation in Eq. 3.172, this is also approximately true for the new

covariance model introduced in the previous section.

This leads to the observation that for the same size/shape of the error

ellipse on the detector plane, the resulting error covariance in the line-of-sight

unit vector observation changes as the ellipse is moved around the detector

plane. Or, from another perspective, a cone representing the same amount of

error in the line-of-sight unit vector direction will project to ellipses of varying

sizes as the observed point moves around the detector plane. This is shown

graphically in Fig. 3.22.

3.13 Optical Sensor Model Case Study: Defocused Star
Tracker

A star tracker is an optical device that projects the image of a star field

onto the detector plane and uses the resulting image data to estimate attitude.

These devices are commonly seen on spacecraft of all types. Therefore, the

12Note that the results given in Eq. 3.171 and Eq. 3.173 are not exactly in the same form
as presented in [122] and [123]. The authors of these two references choose to normalize
the variables xi and yi by the focal length, Zl. The form shown here does not perform that
normalization.
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The same angular error in the line-of-sight will
create different size error ellipses on the detector
plane. Points farther from the principal point
will have a larger error ellipse for the same
amount of angular error.

Zl

principal point

camera
detector plane

v

Figure 3.22: Graphical depiction of changing error ellipses on the detector
plane for two different line-of-sight unit vector observations with the same
amount of angular error.

first case study used to evaluate the optical sensor model is a defocused image

of a star field. A detailed discussion of star trackers is provided in Chapter 5.

Suppose a camera with 22 degree FOV, a 6 cm aperture, and a STAR1000

CMOS detector (see Table 3.3 for detector specifications) is to be used for op-

tical attitude determination. To provide a recognizable example, suppose the

star tracker captures an image of the constellation Lyra with a 1/30 second

exposure. This creates a raw image with a simulated signal as shown in Fig.

3.23. If a threshold is applied such that pixels with an intensity value above

τ are set equal to 1 (white) and pixels with an intensity value below τ are

set equal to 0 (black), then candidate stars may be easily identified as seen in

Fig. 3.24. The use of thresholding is discussed in detail in section 4.2.2. The

major stars in Lyra have been labeled in yellow to help the reader identify the
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Table 3.3: Summary of performance specifications for Cypress Semiconductor
STAR1000 radiation hard CMOS image sensor.[124]

Parameter Description
Sensitive area format 1024× 1024 pixels
Pixel size 15µm ×15µm
Spectral range 400-1000 nm
Average QE × fill factor 20%
Pixel full well capacity 135,000 e−

Dark current density at 293K 223 pA/cm2

Reset noise 47 e−

Dynamic range 69 dB
Fixed pattern noise UFPN ≤ 0.56%
Photo-response non-uniformity UPRNU ≤ 3.93%
Number of bits 10

constellation. Note that any centroiding algorithm should be applied to the

original image (and not to the binary thresholded image).

3.14 Optical Sensor Model Case Study: The MESSEN-
GER Flybys

As a second case study, consider an OPNAV image that contains a

planet. To provide a realistic comparison, images were obtained from the MES-

SENGER Narrow Angle Camera (NAC) during the spacecraft’s 2007 Venus

fly-by and 2008 Mercury fly-by. A few of the key specifications for the MES-

SENGER NAC are provided in Table 3.4. This case study also presents the

opportunity to highlight that despite the interesting optical layout for this

optical device (see Fig. 3.25), the geometric camera models developed in this

section are still valid.
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Student Version of MATLAB

Figure 3.23: Simulated raw image data for star tracker image containing con-
stellation Lyra.

In these results, the simulated images of the planets were generated

using the methodology described in Section 3.9.2. This model assumes no

surface map. Consequently, no surface features appear in the simulated image

- a fact that is more evident in the OPNAV image of Mercury than in the

OPNAV image of Venus. Additionally, note that although the detector is

a 1024 × 1024 array, the image from the Mercury fly-by was binned into a

512×512 image. A comparison between a real OPNAV image and a simulated

OPNAV image for the 7 June 2007 fly-by of Venus may be seen in Fig. 3.26.

A comparison between a real OPNAV image and a simulated OPNAV image

for the 15 January 2008 fly-by of Mercury may be seen in Fig. 3.27.
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Figure 3.24: Thresholded star tracker image containing constellation Lyra.
Major stars in the constellation are labeled for clarity.

These results of Fig. 3.27 and Fig. 3.26 indicate that excellent agree-

ment is observed between the optical sensor models presented in this chapter

and reality. This has two important implications. First, images with optical

errors and detector noise may be accurately generated. Second, these planet

modeling techniques are critical in development the image processing algo-

rithms of Chapter 4 that will extract navigation data from the raw OPNAV

images. Specifically, the light intensity models and profiles provide the foun-

dation for generating the filters that will be used to accurately identify the

location of a planet/moon horizon.
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Table 3.4: Summary of performance specifications for the MESSENGER
spacecraft’s Narrow Angle Camera.[125]

Parameter Description
Optics Off-axis Ritchey-Chrétin
Focal length 550 mm
Aperture 25 mm
F-number F/22
Field of view 1.5 deg × 1.5 deg
Exposure time 1 ms to 10 s
Detector TH7888A CCD
Array size 1024 pixels × 1024 pixels
Pixel size 14µm ×14µm
Number of bits per pixel 12

Figure 3.25: Optical layout for the MESSENGER spacecraft’s Narrow Angle
Camera. With kind permission from Springer Science+Business Media: Fig.
14 from [125].
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Figure 3.26: Real and simulated OPNAV image from the MESSENGER fly-
by of Venus on 7 June 2007. Real image is Product ID EN0089716356M from
[93].
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Figure 3.27: Real and simulated OPNAV image from the MESSENGER fly-by
of Mercury on 15 January 2008. Real image is Product ID EN0108892844M
from [93].
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Chapter 4

Image Processing and Generating Optical

Navigation Measurements

Image processing algorithms are used to autonomously extract naviga-

tion data from a raw image. This chapter begins by introducing the four

primary types of optical navigation measurements: (1) apparent diameter

and centroid, (2) angle between horizon and reference star, (3) angle be-

tween surface feature and reference star, and (4) time of star occultation by

planet/moon. Although all four measurement types are introduced, only the

first two are actually used here.

The next four sections of this chapter provide the theoretical devel-

opment for the primary building blocks of the image processing algorithm:

Section 4.2 describes basic image processing techniques, Section 4.3 discusses

computing the distance to an ellipse, Section 4.4 presents a methodology for

fitting of an ellipse to a set of data points, and Section 4.5 describes techniques

for robust model fitting in noisy images.

These components are then used to identify candidate stars in Section

4.6 and combined in Section 4.7 to form a new algorithm for the autonomous

extraction of navigation observables from a raw OPNAV image containing a
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planet or moon. The chapter concludes with a discussion of measurement

covariance and the derivation of the measurement sensitivity matrices.

4.1 Summary of Possible Optical Navigation Measure-
ments

This section contains a summary of the four primary types of opti-

cal navigation measurements: (1) apparent diameter and centroid, (2) angle

between horizon and reference star, (3) angle between surface feature and ref-

erence star, and (4) time of star occultation by planet/moon. Although all

four measurement types are presented here for completeness, only the apparent

diameter and centroid measurement and the star-horizon angle measurement

will be used in the subsequent analyses. The reasons for not including the last

two measurement types is discussed below.

4.1.1 Apparent Diameter and Centroid

Perhaps the most straightforward optical navigation measurement that

can be made is the determination of the planet/moon apparent diameter and

centroid. This measurement is unique with respect to the other optical naviga-

tion measurements because it is the only one capable of providing a complete

position fix.

Suppose that an optical navigation image containing a planet is avail-

able. If a sufficiently large portion of the planet is in the image, the direction

to the planet center may be found using the image processing techniques dis-
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cussed in the chapter. Further, if the true physical size of the planet is known,

it may be compared to the observed size of the planet in the image to generate

an estimate of the range between the planet and the spacecraft. This proce-

dure is shown notionally in Fig. 4.1. Therefore, the camera position vector

with respect to the planet, rc, is given by

rc = −ρ (ec)I (4.1)

where ρ is the range from the camera to the planet center and (ec)I is the

line-of-sight unit vector from the camera to the planet center expressed in the

inertial frame.

Because of the nature of this measurement, different planets and moons

will provide different performance. Take the Earth-Moon system as an exam-

ple. Because the Moon has no atmosphere, the sunlit surface has a crisp

horizon, making it relatively easy to accurately detect and measure the hori-

zon of the location. The Earth, on the other hand, has an atmosphere that

obscures the horizon to an extent that it may not be seen from orbit. Instead,

there is only a fuzzy band with no clear visual feature to support easy mea-

ρ

Figure 4.1: Geometry for apparent diameter and centroid measurement.
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surement. Despite this difficulty, Apollo astronauts demonstrated their ability

to measure a point somewhere in the blurry horizon with repeatability on the

order of only a few kilometers.[28] Alternatively, instead of using the visible

spectrum to locate the Earth’s horizon, the CO2 layer of the atmosphere may

be observed in the infrared spectrum (14.0-16.3 µm wavelength). The CO2

layer will form a crisper horizon than achievable in the visible band and is

the method of choice for locating the horizon with traditional LEO horizon

sensors. A sensor capable of performing this task would be similar to existing

infrared static earth sensors (IRSES) that are presently able to achieve appar-

ent diameter estimates with a total RMS error on the order of 0.03 deg (108

arcsec) in LEO.[126]

4.1.2 Angle Between Horizon and Reference Star

The second measurement type used extensively in the following analyses

is the angle between the planet horizon and a reference star. Recall from

Chapter 2 that star-horizon measurements were used for optical navigation on

Gemini, Apollo, and numerous planetary robotic missions.

Suppose an optical navigation image that contains both a reference star

and a planet is available. If the line-of-sight unit vector to the star is given by

es and the line-of-sight unit vector to the closest point on the planet horizon

is given by eh, then the angle between these two directions is given by

ψ = acos
[
eTs eh

]
(4.2)

where ψ is the measurement of interest. Unlike the apparent diameter and
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centroid measurement, the star-horizon angle measurement cannot create a

complete position fix. Because of the geometry of this measurement type

(shown in Fig. 4.2), there is a rotational ambiguity about the line-of-sight

direction to the reference star. Therefore, a single star-horizon measurement

will create a cone of possible spacecraft positions with the axis of symmetry

parallel to the line-of-sight direction to the reference star, a cone half-angle

equivalent to ψ, and positioned such that the cone surface is tangent to the

planet surface. Two star-horizon measurements will create two lines of posi-

tion. An a-priori position estimate or a third star-horizon measurement may

be used to determine which line of position the spacecraft is on. It is im-

portant to note that no range information may be obtained from star-horizon

measurements.

Parallel rays of light
from distant star

Figure 4.2: Geometry for star-horizon measurement.
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4.1.3 Angle Between Surface Feature and Reference Star

The third measurement type is the angle between a surface feature

and a reference star. This measurement is very similar to the star-horizon

measurement described above. The primary difference is that it requires an

extra layer of image processing and pattern recognition to identify specific

surface features on a planet or moon.

As before, suppose an optical navigation image that contains both a

reference star and a planet is available. If the line-of-sight unit vector to the

star is given by es and the line-of-sight unit vector to the surface feature on

the planet is given by eSF , then the angle between these two directions is given

by

ξ = acos
[
eTs eSF

]
(4.3)

where ξ is the measurement of interest. The geometry of this measurement is

shown graphically in Fig. 4.3.

Reference

Line-of-sight to
surface feature, eSF Line-of-sight to

reference star, es

ξ
Position of spacecraft, r

Rp

Reference
Star

Position of
surface feature, rSF

Figure 4.3: Geometry for angular measurement between surface feature and
reference star.
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If this approach is to be automated, the system must have the capability

to identify and track stars and surface features without crew involvement.

Automation is clearly necessary if such a system is to be used on a robotic

spacecraft. On a crewed spacecraft, automating this process should reduce

crew workload, reduce sources of human error, and remove the difficulty the

Apollo astronauts experienced with using the space sextant to measure the

angle between a surface feature and a reference star. The ability to identify

and track stars is a well understood problem and is routinely preformed in

star trackers.[19] Planetary surface feature tracking is a significantly more

complicated task. A large body of work exists in the literature regarding

optical navigation with surface feature tracking and terrain relative navigation

for spacecraft in LLO and in lunar landers in the descent/landing mission

phase.[127–131]

While this approach may make sense for many celestial bodies that

have no atmosphere (e.g. Mercury, Earth’s Moon), it may not work for many

planets of interest. Venus, for example, has an atmosphere that completely

covers its surface to an extent that no surface features are available from

orbit. Alternatively, consider Earth, which has cloud formations that may

occlude features of interest or create unpredictable shapes that could confuse

an autonomous surface feature recognition algorithm. Similar problems are

experienced with the outer planets and some of their moons. This approach

was not pursued further in this work for these reasons.
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4.1.4 Time of Star Occultation

The fourth and final optical navigation measurement is the occultation

of stars by a planet or moon. Here, rather than measuring angles or the

location of objects in the image, the time at which stars are eclipsed by the

planet/moon is measured. Unfortunately, time is also the independent variable

in the dynamic model, which makes directly implementing this measurement

into a filter problematic. A number of approaches have been proposed to deal

with this problem. Psiaki and Hinks[132] propose a transformation where the

apparent altitude of the reference star above the planet surface is measured

instead of time (see Fig. 4.4). Occultation occurs when the apparent altitude

of the reference star, hs, is zero. As before, a measurement model may be

developed through geometry.

hs =
∥∥r− (rTes

)
es
∥∥−Rp (4.4)

where r is the position vector from the center of the planet to the spacecraft,

es is the unit vector in the direction of the line-of-sight of the reference star,

and Rp is the radius of the planet.

In another approach developed by Landgraf et al.,[133] it is assumed

that the spacecraft is on a hyperbolic approach trajectory. In their 2006 pa-

per, the authors suggest using two-body orbital mechanics and geometry to

determine the true anomaly at which an occultation should occur. Although

the following measurement model and derivation differs significantly from that

of Landgraf et al., it was inspired by their approach.
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Position of
spacecraft, r

Figure 4.4: Geometry for star occultation.

Consider a star that will be eclipsed by a planet. If the star is sufficiently

far away from the planet, the region where the star is eclipsed by the planet

forms a cylinder extending away from the reference star (Fig. 4.5). Now

suppose the spacecraft of interest is approaching the planet on a hyperbolic

orbit. The intersection of this orbit plane and the 3D cylindrical eclipse region

will form a 2D elliptical eclipse region in the orbit plane (Fig. 4.6). The

intersection of the hyperbolic orbit with the elliptical eclipse region marks the

true anomaly where a star occultation begins and ends.

From geometry, it can be shown that the semimajor axis of the eclipse

region, aeclipse, is given by aeclipse = Rp/sinθ, where θ is the angle between

the vector pointing to the reference star and the spacecraft orbital plane. The

semiminor axis, beclipse, is given by beclipse = Rp. A little further geometry

demonstrates that:

xeclipse = aeclipsecos(Eeclipse) = reclipsecos(ν + ϕ) (4.5)

yeclipse = aeclipsesin(Eeclipse) = reclipsesin(ν + ϕ) (4.6)
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Projection of reference
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Figure 4.5: Three-dimensional geometry for star occultation.

where Eeclipse is the eccentric anomaly of the eclipse ellipse, ν is the true

anomaly, and ϕ is the angle between the orbit periapsis and the projection of

the anti-star direction on the orbital plane. Note that all angles in Eq. 4.5

and Eq. 4.6 are taken from the center of the planet, which is located at the

geometric center of the eclipse ellipse. Additional manipulation demonstrates

that:

r2
eclipse =

R2
p

sin2θ + cos2θsin2(ν + ϕ)
(4.7)

where Rp is the radius of the planet (in this case, the Moon). By setting

the radius equal to the well known polar equation for a two-body orbit, r =

p/(1 + ecos(ν)), the location at which a specified reference star is eclipsed by

the planet is given by the solution to

R2
p(1 + ecos(ν))2 = p2(sin2θ + cos2θsin2(ν + ϕ)) (4.8)

where p is the orbit semilatus-rectum. Depending on the geometry, zero,
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Figure 4.6: Geometry for star occultation as seen in the spacecraft orbit plane.

one, or two real solutions to ν exist. Of particular interest is the case of

Eq. 4.8 in which two real solutions to ν exist - one corresponding to the true

anomaly where the reference star enters the eclipse of the planet and the other

corresponding to the true anomaly where the star leaves the eclipse of the

planet.

The time of star occultation measurement is not pursued further in

this work. This choice was made for two reasons. First, the direct use of

this measurement introduces a stronger dependence on the accuracy of the

time estimate and the on-board clock model. Secondly, the formulation of this

problem shown in Fig. 4.4 demonstrates that star occultation measurements

may be thought of as a star-horizon measurement, with occultation occurring

when the star-horizon angle is zero.
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4.2 Basic Image Processing

This section describes some basic image processing techniques and in-

troduces the notation to be used in subsequent sections. The techniques

described below form the building blocks for the more sophisticated image

processing algorithms introduced later in this chapter. Individually, each of

these image processing techniques are rather simple, when properly combined,

however, they can provide powerful results.

The linear filtering techniques introduced in Section 4.2.1 form the

foundation for a template matching based approach for finding candidate stars

in an image. The remaining three topics, thresholding (in Section 4.2.2),

dilation and erosion (in Section 4.2.3), and connected components analysis (in

Section 4.2.4) are used in finding a planet’s horizon.

4.2.1 Linear Filters and Templates

As was described in Section 3.2, a digital image may be thought of as

a matrix of light intensity values. Let the matrix of values in the the digital

image be given by Idig. In some applications it may be desirable to adjust

the pixel intensity at a particular location based on the intensity values of

neighboring pixels. This process is called filtering.

Suppose that when an image is filtered, the new intensity at each pixel

location is given by a weighted sum of the pixels around the pixel of interest.

Therefore, define a second matrix, G, that describes the weighting applied

to each pixel. The pattern of values in this matrix is frequently called the
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“kernel” of the filter. The process of taking this weighted sum is typically

called cross-correlation. At any particular pixel location, the cross-correlation

may be mathematically described by

Jdig(u, v) =
n∑

i=−n

m∑
j=−m

G (i+ n+ 1, j +m+ 1) Idig(u+ i, v + j) (4.9)

Applying this relation to all (u, v) pixel locations,

Jdig = G ? Idig (4.10)

where ? denotes the cross-correlation operator, Jdig is the filtered image, (u, v)

is the image coordinate of the pixel of interest, 2n + 1 is the number of rows

of G, and 2m + 1 is the number of columns of G. Here, it is interesting to

note that when a filter, G, is correlated with an impulse in an image, the

resulting filtered image, Jdig, contains a flipped (in both u and v) version of

the kernel. Therefore, suppose the kernel is flipped before being correlated

with the image. Performing the task of cross-correlation with the flipped filter

is typically called convolution. Therefore, at any particular pixel location, the

convolution may be mathematically described by

Hdig(u, v) =
n∑

i=−n

m∑
j=−m

G (i+ n+ 1, j +m+ 1) Idig(u− i, v − j) (4.11)

Applying this relation to all (u, v) pixel locations,

Hdig = G ∗ Idig (4.12)

where ∗ denotes the convolution operator and Hdig denotes the filtered image.

In the above, it is said that G has been convolved with Idig to yield Hdig
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The values of the kernel are usually normalized to sum to 1 so that the

convolution (or correlation) process does not brighten or dim the image. There

are many standard kernels that are frequently used by the image processing

community. Two kernels worth mentioning here are the Gaussian kernel and

the Laplacian of the Gaussian kernel, both shown graphically in Fig. 4.7.

In subsequent sections, the Gaussian kernel will used as a template for the

star finding algorithm and to simulate image blurring. The Laplacian of the

Gaussian kernel is a standard edge detection filter.

The cross-correlation operation (or the convolution operation) may also

be thought of as a dot product. If the columns of G are stacked on top of each

other to form the column vector g, and the columns of the image patch are

stacked on top of each other to form the column vector p, then the cross-

a) Gaussian kernel b) Laplacian of Gaussian kernel

Figure 4.7: Three dimensional visualization of important kernel shapes.
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correlation function of Eq. 4.9 may be written as

Jdig(u, v) = gTp (4.13)

This dot product will be a maximum when g and p are in the same direction.

This means that the maximum response of a cross-correlation will be observed

when the patch from the original image “looks like” the filter. Therefore,

filters may be used as templates. To prevent brighter portions of the image

from registering a higher response simply due to their high intensity values,

the image patch vector may be normalized at each (u, v) location,

J ′dig(u, v) =
gTp

‖p‖
(4.14)

This process, typically called normalized correlation, allows for template match-

ing independent of image brightness. Note that the values in the kernel may

also be normalized such that the filter column vector g is also a unit vector.

Under this scenario, Eq. 4.14 is simply the dot product between two unit

vectors that will be maximized when the pixel intensity pattern in the kernel

and the image patch are the same.

4.2.2 Thresholding

The technique of thresholding is used to convert a n-bit digital image

(or filter output), which usually has pixels that can take on integer intensity

values from 0 to 2n − 1, to a binary image. The pixels in a binary image may

only take on two values. A binary pixel value of 1 will indicate a white pixel,

while a binary pixel value of 0 will indicate a black pixel.
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A threshold algorithm is easy to construct. Suppose a threshold value

of τ is selected. Creating a thresholded image requires a check at each pixel

location, where each pixel with intensity above τ is set to 1 (white) and each

pixel with intensity below τ is set to 0 (black). Those pixels with a value of 1

are said to be in the “foreground” and those pixels with a value of 0 are said

to be in the “background.”

To demonstrate the effect of thresholding, example OPNAV images

from the MESSENGER spacecraft’s Wide Angle Camera (WAC) are used.

The threshold operation is performed on an 8 bit version of these images.

Therefore, intensity values at each pixel can range from 0 to 255. Results of

thresholding and image from the August 2005 Earth flyby are shown in Fig.

4.8 and results from the January 2008 Mercury flyby are shown in Fig. 4.9.

Raw image τ = 2 τ = 10 τ = 100

Thresholded binary image

Figure 4.8: Raw and thresholded images of Earth. The raw image was taken by
the MESSENGER wide angle camera on 2 August 2005 during the spacecraft’s
Earth flyby (Product ID EW0031513371D from [93]).
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4.2.3 Dilation and Erosion

Given a binary image, the process of dilation adds additional foreground

pixels around existing foreground pixels. Dilation will cause the number of

foreground pixels to grow and will eliminate small areas of background pixels

surrounded by foreground pixels. This procedure for dilating an image is

straightforward. Begin by introducing the idea of a structuring matrix, S,

which is a n×m matrix of 0s and 1s. Then at each pixel location in the original

binary image, the structuring matrix is centered on the pixel of interest. The

pixels in the original image that correspond to the elements of S that have a

value of 1 are called the neighborhood of the current pixel. If any pixel in the

neighborhood of the current pixel is foreground, then the current pixel is set

to foreground.

Erosion is the opposite of dilation. Erosion will remove foreground

pixels that are near existing background pixels. This process will cause the

Raw image τ = 2 τ = 10 τ = 100

Thresholded binary image

Figure 4.9: Raw and thresholded images of Mercury. The raw image was
taken by the MESSENGER wide angle camera on 14 January 2008 during the
spacecraft’s Mercury flyby (Product ID EW0108820032H from [93]).
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number of foreground pixels to shrink and will eliminate small areas of fore-

ground pixels surrounded by background pixels. As with dilation, a structuring

matrix is used to add or remove foreground pixels. In erosion, if any pixel in

the neighborhood of the current pixel is background, then the current pixel is

set to background.

The process of “opening” an image consists of eroding, and then di-

lating the image. This will remove small (or thin) foreground objects, while

maintaining the original shape of larger foreground objects. Although opening

a thresholded OPNAV image may be used to eliminate isolated instances of

blooming (if a CCD detector is used), it will probably remove all the stars in

the image.

The process of “closing” an image consists of dilating, and then eroding

the image. This will fill in small background areas that are surrounded by

foreground, while maintaining the original shape of the foreground objects.

This may help connect foreground areas in a heavily cratered planet/moon

that are separated by areas of shadow.

An example of opening and closing on an real OPNAV image from the

MESSENGER spacecraft may be seen in Fig. 4.10. The structuring matrix is

a circle of ones with a radius of 7 pixels.

4.2.4 Connected Components

Connected components analysis is a grouping algorithm for binary im-

ages. In this technique, foreground pixels that are connected to one another
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Raw image Thresholded binary image, τ = 80

Closed binary image Open binary image

Figure 4.10: Dilation and erosion of an OPNAV image of Earth. The raw
image was taken by the MESSENGER wide angle camera on 2 August 2005
during the spacecraft’s Earth flyby (Product ID EW0031489478I from [93]).

are considered to belong to the same group. Pixel connectivity is usually de-

termined by either using a four-connected or eight-connected schema as shown

in Fig. 4.11.

As an example, the connected components algorithm (eight-connected)

is applied to the thresholded, opened, and closed OPNAV image from Fig.

4.10. The results of the connected components analysis are shown in Fig.
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a) Four-connected b) Eight-connected

Figure 4.11: Graphical explanation of a pixel that is (a) four-connected and
(b) eight-connected. Pixels in blue are considered to be connected to the red
center pixel.

4.12. The different groups in Fig. 4.12 are color coded, although colors re-

peat in some cases because there are more groups than available colors. Of

particular note is how closing an image may be used to connect regions that

were previously not connected due to differences in albedo and the threshold

choice.

4.3 Computing Distance to an Ellipse

Computing the distance from a point to an ellipse is a fundamental task

important to many of the algorithms developed in this chapter. The distance

to an ellipse is necessary to compute the residuals when fitting an elliptical

model to a set of noisy data points. It is also necessary to compute the distance

from a reference star to an elliptical estimate of the horizon location.

This section begins with a discussion of ellipse representations that will

be important in this and future discussions. It is followed by a discussion of
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Raw image Thresholded binary image, τ = 80

Closed binary image Open binary image

Figure 4.12: Connected components analysis of an OPNAV image of Earth
from Fig. 4.10. Each group of components is indicated by a different color.

computing geometric distance and algebraic distance.

4.3.1 Representations of an Ellipse

4.3.1.1 Implicit Equation for Ellipse

Any conic section may be described by the following implicit quadratic

equation:[134]

F (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (4.15)

156



where the point [x, y] lies on the conic section. A detailed discussion of the

properties of this implicit equation is given in [134] and it is well known that

the conic will be an ellipse if B2 − 4AC < 0.

4.3.1.2 Standard Ellipse Parameters

The coefficients of the implicit conic equation are not the most con-

venient means of describing an ellipse for many applications. Instead it is

frequently easier to describe an ellipse in terms of the following five parame-

ters: semimajor axis, a; the semiminor axis, b; coordinate of the ellipse center,

[x0, y0]; and the angle from the x-axis to the ellipse major axis. The transfor-

mation from the implicit coefficients to these standard ellipse parameters is a

well-known result from classical geometry and is given by:

x0 =
2CD −BE
B2 − 4AC

y0 =
2AE −BD
B2 − 4AC

(4.16)

a =

√√√√√ 2 [AE2 + CD2 −BDE + F (B2 − 4AC)]

(B2 − 4AC)

[√
(A− C)2 +B2 − A− C

] (4.17)

b =

√√√√√ 2 [AE2 + CD2 −BDE + F (B2 − 4AC)]

(B2 − 4AC)

[
−
√

(A− C)2 +B2 − A− C
] (4.18)

φ =


0 B = 0 and A < C
π
2

B = 0 and A > C
1
2
cot−1

(
A−C
B

)
B 6= 0 and A < C

π
2

+ 1
2
cot−1

(
A−C
B

)
B 6= 0 and A > C

(4.19)
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4.3.1.3 Matrix Representation

In many cases, it may be useful to represent an ellipse in a matrix

quadratic form. Two such forms are useful. The first is a quadratic form in

terms of the implicit conic equation and homogeneous coordinates (see section

3.1.2). It is straightforward to verify that Eq 4.15 may be rewritten as

F (x, y) = xTh

 A B/2 D/2
B/2 C E/2
D/2 E/2 F

xh (4.20)

where xh = [x y 1]T .

The second important matrix quadratic form is in terms of the standard

ellipse parameters. The most basic description of an ellipse that is centered at

the origin and aligned with its principal axes is given by

x′

a2
+
y′

b2
= x′T

[
1/a2 0

0 1/b2

]
x′ = x′TA′x′ = 1 (4.21)

where x′ = [x′ y′]T and the primes denote the coordinates expressed in the

ellipse principal axis frame. Therefore, an ellipse with a center at [x0, y0] and

with a semimajor axis rotated by an angle φ with respect to the x-axis is given

by

[x− x0]T TT
φ

[
1/a2 0

0 1/b2

]
Tφ [x− x0] = 1 (4.22)

[x− x0]T A [x− x0] = 1 (4.23)

where x0 = [x0 y0]T and the matrix Tφ rotates a point from the original

coordinate frame to a frame aligned with the principal axes of the ellipse,

Tφ =

[
cosφ sinφ
−sinφ cosφ

]
(4.24)
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Therefore, the matrix A that describes an ellipse with a general orientation

may be diagonalized by

A = TT
φA′Tφ (4.25)

4.3.2 Geometric Distance

Define the geometric distance from the point [x, y] to an ellipse as Eu-

clidean distance from that point to the closest point on the ellipse, [xe, ye].

The line that connects the point [x, y] to [xe, ye] should be perpendicular to

the tangent of the ellipse at [xe, ye]. Unfortunately, a closed-form analytic so-

lution to this problem is not available and most modern techniques rely on a

numerical approach. The approach used here to solve this problem is derived

below.

To simplify the problem, begin by shifting the origin to the center of

the ellipse, [x0, y0]. Let these transformed coordinates be represented by

z =

[
x
y

]
−
[
x0

y0

]
ze =

[
xe
ye

]
−
[
x0

y0

]
(4.26)

The quantities z and ze may also be expressed in the ellipse principal axis

frame as follows,

z′ = Tφz z′e = Tφze (4.27)

where, as before, the primed variables are expressed in the ellipse principal

axis frame.

Now, the geometric distance problem may be stated as the following
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optimization problem

min J(ze) = ‖z− ze‖2 (4.28)

subject to (from Eq. 4.23)

zTe Aze = 1 (4.29)

This optimization problem is the same regardless of the frame. Therefore, the

following objective function will produce the same solution

min J(z′e) = ‖z′ − z′e‖
2

(4.30)

(z′e)
T

A′z′e = 1 (4.31)

Using the form of the objective function in the ellipse principal axis frame,

adjoin the constraint to the objective function with a Lagrange multiplier

min J(z′e) = (z′)
T

z′ − 2 (z′)
T

z′e + (z′e)
T

z′e + λ
[
(z′e)

T
A′z′e − 1

]
(4.32)

Recognizing that a minimum exists when the first differential is zero, it is

straightforward to show that a minimum occurs at

−2 (z′)
T

+ 2 (z′e)
T

+ 2λ (z′e)
T

A′ = 02×1 (4.33)

(z′e)
T

A′z′e = 1 (4.34)

Recognizing that A′ is symmetric, Eq. 4.33 may be solved for z′e,

z′e = [I2×2 + λA′]
−1

z′ (4.35)

Further, it may be shown that this relation is also true in the unrotated frame,

ze = [I2×2 + λA]−1 z (4.36)
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where the Lagrange multiplier λ is the same in both frames. Proceed by

substituting Eq. 4.35 into Eq. 4.34,

(z′)
T

[I2×2 + λA′]
−T

A′ [I2×2 + λA′]
−1

z′ = 1 (4.37)

Recalling the identity from Eq. 4.27, this may be further rewritten as

zTTT
φ [I2×2 + λA′]

−1
A′ [I2×2 + λA′]

−1
Tφz = 1 (4.38)

Substituting for A′ from Eq. 4.21 and Tφ from Eq. 4.24, allows this 2 × 2

matrix equation to be expanded explicitly as

a2

(a2 + λ)2 (z1cosφ+ z2sinφ)2 +
b2

(b2 + λ)2 (−z1sinφ+ z2cosφ)2 = 1 (4.39)

where z = [z1 z2]T . This, of course, can be rewritten as a fourth-order equation

in λ,

g(λ) = C4λ
4 + C3λ

3 + C2λ
2 + C1λ+ C0 = 0 (4.40)

where

C0 = a4b4 −G2a
4 −G1b

4 (4.41)

C1 = 2
(
b4 −G2

)
a2 + 2

(
a4 −G1

)
b2 (4.42)

C2 = a4 + a2b2 + b4 −G1 −G2 (4.43)

C3 = 2
(
a2 + b2

)
C4 = 1 (4.44)

and

G1 = a2 (z1cosφ+ z2sinφ)2 G2 = b2 (−z1sinφ+ z2cosφ)2 (4.45)
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Solving Eq. 4.40 will yield four possible values of λ. The solution implemented

in this dissertation used the ‘roots’ command in MATLAB to perform this task.

The only remaining difficulty is choosing the right root of g(λ). Looking at

the second differential condition, which states that a minimum occurs when

d2J(z′e)/dz
′
e dz

′
e is positive definite,

d2J(z′e)

dz′e dz
′
e

= I2×2 + λA′ > 0 (4.46)

Because the matrix in Eq. 4.46 is diagonal, this is the same as

1 +
λ

a2
> 0 1 +

λ

b2
> 0 (4.47)

These conditions will only be met by one value of λ. At least one other real

value of λ will exist and will correspond to a point on the other side of the

ellipse that is the furthest point on the ellipse from [x, y] (see Fig 4.13). Once

λ is known, Eq. 4.36 may be used to find ze and Eq. 4.26 may be used to

transform ze back to the original coordinates to obtain [xe, ye] .

4.3.3 Algebraic Distance

Define the algebraic distance of a point [x, y] from a conic section to

be the value of the implicit quadratic equation, F (x, y), from Eq. 4.15. Any

point on the ellipse has a distance of zero, i.e. F (x, y) = 0 if [x, y] is on the

conic section. As a point moves farther from the conic section, the value of

F (x, y) increases.

It is important to note that geometric distance and algebraic distance

are not the same and that they differ by more than just a simple scale factor.
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Figure 4.13: Graphical example of the ellipse points generated by the real
roots of Eq. 4.40. One point represents the closest point on the ellipse (green)
and the other point represents the furthest point on the ellipse (red). Example
ellipse is centered at the origin with a = 2, b = 1, and φ = 25 degrees.

Two different points with the same geometric distance from the ellipse will

have different algebraic distances, depending on their location around the el-

lipse. The example in Fig. 4.14 provides a graphical comparison of geometric

distance and algebraic distance.

4.4 Ellipse Fitting

The perspective projection of a sphere or ellipsoid will form an ellipse

on the image plane. Therefore, if the objective is to locate a planet or moon

in an image, the image must be searched for an ellipse. The discussion that
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a) Surface plot of geometric distance b) Surface plot of algebraic distance

Figure 4.14: Comparison of (a) geometric distance and (b) algebraic distance
from an example ellipse (red) that is centered at the origin with a = 2, b = 1,
and φ = 25 degrees.

follows assumes that measured data points on the edge of the ellipse have

already been detected. The issue of how these points are found is discussed

later (see Section 4.7). Once candidate edge points are found, an ellipse must

be fit to this data set. The details of this ellipse fitting process are discussed

in the following sections.

4.4.1 Basic Ellipse Fitting with Direct Least Squares Estimation

Most early solutions to the problem of ellipse fitting were based on clus-

tering and voting techniques, such as the Hough transform. While these tech-

niques are naturally robust to noise and outliers, they require large amounts of

memory and time-consuming computations. This has lead many to consider

least squares based approaches.[135] Although least squares solutions are much
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more sensitive to the presence of outliers, the robust model fitting techniques

described in Section 4.5 may be used to solve this drawback separately.

The first efficient approach for ellipse fitting was a direct least squares

algorithm developed by Fitzgibbon, Pilum and Fisher.[136]1 This basic ap-

proach will provide the theoretical underpinnings for the improved ellipse fit-

ting technique described in the next section.

Begin by recalling that any conic section may be described by an equa-

tion of the form

F (a,xi) = aTxi = Ax2
i +Bxiyi + Cy2

i +Dxi + Eyi + F = 0 (4.48)

where [xi, yi] is a point on the conic section, a = [A B C D E F ]T , and xi =

[x2
i xiyi y

2
i xi yi 1]

T
. The conic is an ellipse if B2 − 4AC < 0. The form of

Eq. 4.48 allows for the constants to be arbitrarily scaled such that the ellipse

inequality constraint may be rewritten as an equality constraint,

4AC −B2 = 1 (4.49)

In general, noise in the data will cause any point [x, y] to not lie exactly on

the ellipse and F (a,xi) 6= 0. Therefore, the following optimization problem

based on the square of the model fit residuals (expressed in algebraic distance)

is proposed [136]:

min J =
n∑
i=1

[F (a,xi)]
2 = aTDTDa (4.50)

1Although [136] was published in a journal in 1999, the authors first presented these
findings at a conference in 1996.
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where D = [x1 x2 . . . xi]
T , subject to the equality constraint of Eq. 4.49

rewritten in vector form,

4AC −B2 = aT


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 a = aTCa = 1 (4.51)

If the equality constraint of Eq. 4.51 is adjoined to the objective function with

a Lagrange multiplier, then

min J = aTDTDa + λ
(
1− aTCa

)
(4.52)

From here, it is easy to show that the solution to this optimization problem is

the following rank-deficient generalized eigenvalue problem(
DTD

)
a = λCa (4.53)

Substituting this solution into the objective function shows that

J = aTDTDa = λaTCa = λ (4.54)

meaning that the optimal solution occurs at the minimal positive eigenvalue.

It was shown in [136] that the solution to Eq. 4.53 yields exactly one positive

eigenvalue. This positive eigenvalue corresponds to the eigenvector that is the

solution for a.

4.4.2 Improved Ellipse Fitting with Direct Least Squares Estima-
tion

Despite a clean theoretical derivation, Fitzgibbon’s approach for fitting

an ellipse to measured edge points (described in the previous section) suffers
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from a number of practical difficulties. The direct implementation of Fitzgib-

bon’s approach by simply solving the eigenvalue problem of Eq. 4.53 leads to

numerous sources of numerical instability. The two most important difficulties

are:

1. Fitzgibbon’s approach only works on noisy data. If the measured points

lie exactly on an ellipse (or very close to on an ellipse), then the matrix

DTD becomes singular and no solution is obtained. This is an artifact

of the construction of Eq. 4.53 and not an inherent weakness of this

approach.

2. For very high-resolution images, the pixel locations may become very

large relative to the size of the ellipse (e.g. a relatively small ellipse in

the bottom left-hand corner of the image). This can lead to the matrix

DTD becoming ill-conditioned.

The first difficulty, the issue of DTD being singular when the edge

points fall exactly on (or very nearly on) an ellipse, was overcome by the work

of Haĺı̌r and Flusser in 1998.[137] This technique exploits the structure of the

C and D matrices to simplify the eigenvalue problem of Eq. 4.53. Begin by

partitioning a, C, and D as follows:

a =

[
a1

a2

]
a1 =

 A
B
C

 a2 =

 D
E
F

 (4.55)

C =

[
C1 03×3

03×3 03×3

]
C1 =

 0 0 2
0 −1 0
2 0 0

 (4.56)
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D =
[

D1 D1

]
(4.57)

D1 =


x2

1 x1y1 y2
1

x2
2 x2y2 y2

2
...

...
...

x2
n xnyn y2

n

 D2 =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1

 (4.58)

To compact notation, define the scatter matrix as S = DTD such that

S =

[
S1 S2

ST2 S3

]
(4.59)

and

S1 = DT
1 D1 S2 = DT

1 D2 S3 = DT
2 D2 (4.60)

Inserting these partitioned matrices into Eq. 4.53, it is straightforward to show

that the solution reduces to the following two equations

S1a1 + S2a2 = λC1a1 (4.61)

ST2 a1 + S3a2 = 03×1 (4.62)

Because the matrix S3 is only singular if all the points lie on a line (a case

where no elliptical fit would be possible), the matrix S3 is generally invertible

in practice and a2 may be found by

a2 = −S−1
3 ST2 a1 (4.63)

The only remaining task is to solve for a1. Therefore, inserting Eq. 4.63 into

Eq. 4.61 and noting that the matrix C1 is invertible, the solution for a1 is

given by a simple 3× 3 eigenvalue problem,

Ma1 = λa1 (4.64)
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where

M = C−1
1

[
S1 − S2S

−1
3 ST2

]
(4.65)

The solution to Eq. 4.64 will produce three possible solutions. It was shown

in [136], however, that only one elliptical solution may exist. Therefore, the

ellipse condition of 4AC−B2 > 0 is used to select the appropriate eigenvector.

This condition will be met for one, and only one, of the three eigenvectors of

M. This eigenvector is the solution for a1.

The second difficulty is an issue of centering and scaling. Suppose

that for the purposes of ellipse fitting, the origin of the coordinate systems is

temporarily shifted to the mean [x, y] location,

xc =
1

n

n∑
i=1

xi yc =
1

n

n∑
i=1

yi (4.66)

where xc and yc are the coordinates of the new coordinate system origin.

Additionally, suppose the axes are rescaled such that

x̃ =
x− xc
s

ỹ =
y − yc
s

(4.67)

where [x̃, ỹ] are the new coordinates of each data point and s is the scale factor.

Let the scale factor be chosen based on the largest dimension,

s =
1

2
max

{
max {xi} −min {xi}
max {yi} −min {yi}

(4.68)

The solution to Eq. 4.63 and Eq. 4.64 will yield the coefficients of the implicit

conic equation in the transformed coordinates, ã =
[
Ã B̃ C̃ D̃ Ẽ F̃

]T
.
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Recognizing that a point on the ellipse must satisfy the implicit conic

equation in both sets of coordinates

aTxi = ãT x̃i = 0 (4.69)

it may be shown that the following transformation is true2

A = Ã B = B̃ C = C̃ (4.70)

D =
(
D̃s− B̃yc − 2Ãxc

)
(4.71)

E =
(
Ẽs− B̃xc − 2C̃yc

)
(4.72)

F =
(
Ãx2

c + B̃xcyc + C̃y2
c − D̃xcs− Ẽycs+ F̃ s2

)
(4.73)

4.5 Robust Model Fitting

The robust fitting of a model to noisy data is an area of active re-

search in the computer vision community. The most widely used approach to

solving this problem in modern systems is the RANdom SAmple Consensus

(RANSAC) algorithm. Numerous important improvements have been made

to the classic RANSAC algorithm. Of particular importance here is the M-

Estimator SAmple Consensus (MSAC) algorithm. Both the RANSAC and

MSAC algorithms are discussed in the following sections.

2This approach of using aT xi = ãT x̃i = 0 to transform between two sets of coefficients
for the implicit conic equation was originally shown in [138]. Unfortunately, the original
derivation in [138] contains a few minor mistakes that are corrected in the transformation
shown here. Note that [138] also uses a different scaling factor for the x-direction and
y-direction, instead of using the same scaling factor as in Eq. 4.67.
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4.5.1 RANdom SAmple Consensus (RANSAC)

The RANSAC algorithm, developed by Fischler and Bolles in 1981,[139]

is an iterative method used for the robust fitting of a model to a set of noisy

data. Rather than trying to find and eliminate outliers in the data set, the

RANSAC algorithm uses a small subset of the data to fit the model and then

looks for “inliers” (or the number remaining data points that are close to

the model). This allows for the model fitting to occur in an extremely noisy

environment.

The basic RANSAC algorithm consists of the following procedure:

1. Select the type of model to fit to the data (e.g. line, circle, ellipse, etc.)

2. Preform the following tasks k times:

(a) Randomly select n points from the data set

(b) Fit the model to these n data points

(c) For each data point, check to see if distance from the point to the

model is less than t. If the distance is less than t, then the point is

said to be “close” to the model.

3. Of the k models generated in Step 2, select the model with the largest

number of close data points.

For a data set of fixed size, maximizing the number of close points is the

same as minimizing the number of outliers. Therefore, the RANSAC algorithm
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may be described mathematically by the following optimization problem

min J(p) =
n∑
i=1

ρ (xi,p) (4.74)

where p is a vector of parameters that describes the model, xi = [xi yi]
T , and

ρ is defined as

ρ (xi,p) =

{
0 d (xi,p)2 < t2

1 d (xi,p)2 ≥ t2
(4.75)

The term d (xi,p) is the distance between the point [xi, yi] and the model

described by p.

It is worth highlighting that the random selection of the n points used

to fit the model at each of the k iterations means that RANSAC algorithm is

not deterministic. Therefore, given the same set of data, the best fit solution

generated by RANSAC will not necessarily be the same every time. Clearly,

the choice of the number of data points to fit, n, the number of iterations, k,

and the error threshold used to define “inliers,” t, all affect the performance

(both quality of the model fit and algorithm run-time) of the RANSAC algo-

rithm in practice. There are many different approaches - some heuristic and

some based on theory - that may be used to pick n, k, and t. Some various

approaches are discussed in [87].

As an example, consider the problem of fitting a line to noisy data with

a large number of outliers (see Fig. 4.15). The outliers significantly affect the

results of the least squares approach, but the RANSAC algorithm is is capable

of detecting the outliers and provides a good estimate of the true model even

in a high noise environment.
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Figure 4.15: Example of RANSAC algorithm applied to noisy data along a
line with a large number of outliers.

4.5.2 M-Estimator SAmple Consensus (MSAC)

The MSAC algorithm, developed by Torr and Zisserman,[140, 141] uses

an M-estimation approach to improve the RANSAC algorithm introduced in

the previous section. A detailed discussion of M-estimators may be found in

[142] and [143].

In general, an M-estimator minimizes the following objective function

min J(p) =
n∑
i=1

ρ (xi,p) (4.76)

where p is a vector of parameters that describes the model, xi is a vector of

the i-th set of measurements, and ρ (xi,p) is a symmetric, positive-definite
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function with a unique minimum at zero. The RANSAC objective function,

with ρ (xi,p) from Eq. 4.75, is a special case of an M-estimator. As before,

define d (xi,p) as the distance (or residual) between the model and the mea-

sured data. It is interesting to note that if ρ (xi,p) = d (xi,p)2 /2 then the

result is a least-squares estimate. Therefore, the least-squares solution is also

a special case of an M-estimator.

Looking at the form of Eq. 4.75 in RANSAC, it was proposed in [140]

and [141] to replace ρ (xi,p) with the following expression to create the MSAC

algorithm:

ρ (xi,p) =

{
d (xi,p)2 d (xi,p)2 < t2

t2 d (xi,p)2 ≥ t2
(4.77)

The form of Eq. 4.77 is simply the Huber M-estimator function. The MSAC

algorithm has been shown to provide better results than RANSAC with no

additional computational burden. Therefore, the MSAC algorithm is given by

the following procedure:

1. Select the type of model to fit to the data (e.g. line, circle, ellipse, etc.)

2. Preform the following tasks k times:

(a) Randomly select n points from the data set

(b) Fit the model to these n data points

(c) Compute J(p) from Eq. 4.76 and Eq. 4.77 for each model.

3. Of the k models generated in Step 2, select the model with the smallest

value for J(p).
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4.6 Identifying the Location of Candidate Stars

Because stars will appear as blurred point sources, there are no signifi-

cant issues associated with scaling and candidate stars may be found by simple

template matching. It is worth noting, however, that smearing of the stars in

an image can occur if the exposure time is long and the vehicle is rotating.

This effect is not considered here.

The task of candidate star identification is done using the normalized

correlation described in Section 4.2.1. Recall that normalized correlation is

especially useful for template matching independent of image brightness. This

allows for the same template to be used to find stars of varying magnitude.

Because a bivariate Gaussian PSF is known to be a good approximate of a

blurred point source, the template used to find candidate stars is a Gaussian

kernel (see Fig 4.7.a). Responses in the filtered image above a specified thresh-

old are taken to be candidate star locations. Next, a connected component

analysis is done so that adjacent pixels that are above the threshold are taken

to belong to the same star.

Once initial estimates of the candidate star locations are known, a box

is drawn around each location. Then the average intensity associated with the

detector dark current (and other background noise) is subtracted off of each

pixel. Finally, the weighted average approach described in Section 3.10.1 is

used to compute the candidate star centroid location.

As an example, this technique is applied to an image taken by one of
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the Clementine star trackers. This image contains both stars and a portion of

the limb of the Moon. As is clear from Fig. 4.16, this approach identifies both

stars and some surface features that happen to have the same two-dimensional

light intensity pattern as a blurred star. This technique may also incorrectly

identify other non-star objects such as asteroids, other spacecraft, planets,

moons, or any other object with a two-dimensional light intensity pattern

that matches the bivariate Gaussian template.
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Figure 4.16: Example result of star finding algorithm on a raw image taken
by the Clementine spacecraft’s Star Tracker B on 20 March 2004. Raw image
is Product ID from LBA0032V.137 from [94].
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There are numerous ways to determine which candidate stars are real

stars, and which ones are false positives. The first method is to use an a-priori

attitude estimate to predict the location of stars in the image. Reference star

directions in the inertial frame may be determined from a number of different

star catalogs, as discussed in Appendix B. Candidate stars that appear near

to expected star locations are assumed to be the predicted star. If no a-priori

attitude estimate is available, there are numerous star pattern recognition

algorithms that may be used to identify real stars and discard the non-star

objects. These algorithms are used regularly on commercially available star

trackers and are well understood. An algorithm of particular note, and the

one used in subsequent analyses to solve this problem, is the Pyramid Star

Identification algorithm developed by Mortari. The details of this algorithm

are provided in [144] and [145].

4.7 New Algorithm for Planet Detection and Optical
Navigation Measurements

The autonomous generation of navigation measurements from a raw

image is a multistep process. The first step is to rotate the spacecraft or

the image so that the Sun appears to enter from the left side of the image.

The second step is to perform autonomous planet/moon finding in the rotated

image. The third step is to extract useful navigation measurements from the

image. For this third step, two different measurement types will be discussed:

(1) the use of planet centroid and apparent diameter to generate an estimate
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of spacecraft position relative to the planet/moon and (2) the angle between

the planet/moon horizon and a reference star.

The details of these three steps are provided in the following subsec-

tions.

4.7.1 Step 1: Rotate for Proper Sun Orientation

The first step is to control the approximate direction of illumination

in the image. Because planets are assumed to be primarily illuminated by

sunlight, controlling the direction from which sunlight enters the image can

significantly simplify the subsequent steps. Although the choice of this direc-

tion is arbitrary, it was chosen for objects to be illuminated from the left side

of the image (i.e. sunlight enters from the left side of the image and moves

in the positive u direction). If the Sun is assumed to be far away from the

planet/moon and spacecraft, then this is achieved by making the projection

of the Sun line-of-sight vector in the image plane lie along the positive u-axis.

The positive u-axis is required because the raw image appears flipped with

respect to the actual geometry (see Fig 4.17).

The primary difficulty here lies with determining the direction to the

Sun. This may be achieved directly by an instrument such as a Sun sensor.

Alternatively, if a good a-priori state estimate is available, the direction to

the Sun may be computed using the onboard estimate of the spacecraft posi-

tion and attitude. If neither of these measurements are available, it may be

possible to determine the light source direction from information available in
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Figure 4.17: Illumination direction.

the image. Techniques for performing this task are discussed in [146], [147],

and [131]. These methods use the light intensity gradient on the surface of

the observed object to obtain the direction to the light source. To use these

methods, one would begin with Step 2 to determine the pixels corresponding

to the illuminated planet/moon surface. Then these algorithms would only

be applied to the illuminated pixels. With the illumination direction known,

the image may be rotated into the proper orientation. The remainder of this

discussion, however, will assume that an approximate line-of-sight to the Sun

is available from one of the first two methods.

To align the projection of the Sun line-of-sight vector with the u-axis

requires either (1) the camera to be physically rotated to the proper orientation
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or (2) an image preprocessing algorithm that rotates an arbitrary image to the

proper orientation. The first method is the simplest from the perspective of the

planet detection algorithm because it requires no rotational preprocessing of

the image. Other constraints on the spacecraft (e.g. thermal, power, science,

etc.), however, may make it undesirable to orient the navigation camera as

described above. If the unit vector to the Sun is known, then the required

image rotation (which is equivalent to a physical camera rotation about the

camera optical axis) is also known.

When the original image is rotated into a new image, the rotated co-

ordinates of the old pixel locations will not line up with the pixel locations of

the new image (see Fig. 4.18). Therefore, a bilinear interpolation routine is

used to determine the light intensity at each pixel location in the new image.

This is a standard task in image processing and may be performed using the

“imrotate” command in MATLAB’s Image Processing Toolbox.

It is also necessary to place a restriction on the minimum allowable

Figure 4.18: Image rotation geometry.
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angle between the camera optical axis and the line-of-sight to the Sun (typically

called the Sun exclusion angle). This restriction serves a number of purposes.

First, scattering of light from the Sun (even if it is occluded by a planet or

moon in the image) can cause difficulties with accurately determining the

limb location. It also causes problems with detecting faint stars that may be

required for navigation. Secondly, some types of detectors may be damaged

by directly imaging the Sun with the exposure durations used to generate

OPNAV images.

4.7.2 Step 2: Autonomous Planet/Moon Finding and Registration

The second step is to find planets or moons in the image. Begin this

process by thresholding the image. An estimate of the appropriate threshold

setting may be found from the optical model described in Section 3.9.2 along

with knowledge of the detector well depth. Next, close the image as discussed

in Section 4.2.3 to connect regions of the same planet/moon that may have

been separated in the thresholding step by small shadows. A circular struc-

turing element is used here. Now perform a connected components analysis

on the closed binary image and keep the largest group that is above a speci-

fied number of pixels in size. If there are no groups that meet the minimum

pixel size requirement, then it is assumed that there is no planet/moon in the

image. If more than one planet/moon is visible, and more than one connected

components group is used, it may be possible to derive measurements from

multiple celestial bodies using a single image. Using more than one group to
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detect multiple bodies requires additional logic checks that are not discussed

here.

Looking only at the largest group from the connected components anal-

ysis, find the first foreground pixel in each row of the image. These points are

the left-side edge points for this group. Because of the rotation performed in

Step 1, most of these points will correspond to the lit limb of the planet or

moon. Some of the points returned by this process will not be limb points due

to features such as cratering, variations in surface albedo, detector noise, and

other factors. The MSAC algorithm will be used to proceed with performing

planet/moon registration in the presence of these errors.

Finally, an ellipse is fit to the candidate horizon points using the im-

proved ellipse fitting technique described in Section 4.4.2. Because the set

of candidate horizon points may contain a substantial number of outliers that

were not removed in the previous processing steps, the MSAC algorithm is used

to fit the elliptical model to the data. The geometric distance, rather than the

algebraic distance, is used as the distance criteria in Eq. 4.77. This choice was

made because the geometric distance has a consistent physical interpretation

regardless of the point’s location on the ellipse. Algebraic distance increases

at a slower rate as the radius of curvature decreases, while geometric distance

increases at the same rate everywhere (regardless of the radius of curvature).

This procedure provides an extremely robust method for finding a

planet/moon in an OPNAV image. With very little modification, this method-

ology can be applied to a wide range of problems. Consider the different sce-
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narios shown in Fig. 4.19 through Fig. 4.24. All of the images used in these

examples are actual images taken aboard the spacecraft indicated in the fig-

ure captions. The procedure described above was applied to all of these cases

with no modification. The only parameter that was changed from example to

example was the threshold, τ . The value of τ used in each example is also

given in the caption. It is clear from these images that this algorithm may be

applied to numerous scenarios with excellent performance.

Looking at Fig. 4.21 and Fig. 4.22, it is also interesting to note that the

solution is not extremely sensitive to the choice of τ . The biggest difficulty with

using a threshold that is too high is that regions of shadow (or comparatively

low albedo) may separate the lit regions of the planet. The combination of

closing the image and using MSAC to fit the horizon ellipse make this algorithm

relatively robust to this problem.

The case of Fig. 4.24 allows for an important observation regarding this

algorithm. Initial tests indicate that the algorithm will not reliably identify

the centroid of a planet/moon unless more than about 1/4 of the limb is used

to fit the ellipse. When only a small portion of the horizon is used to fit the

ellipse, the algorithm usually provides a good local fit (as seen in Fig. 4.24),

but is unable to accurately find the centroid. Fortunately, as will be discussed

in the next section, it is easy to determine if this erroneous case occurs. In

such a scenario, the centroid and apparent diameter measurement is not made,

and only the star-horizon measurements are available.
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a) Raw image c) Closed image with
best MSAC ellipse

b) Thresholded image,
τ = 50

d) Raw image with
best MSAC ellipse

Figure 4.19: Planet finding algorithm applied to example image containing
Mercury taken by MESSENGER spacecraft’s Narrow Angle Camera on 15
January 2008. Raw image is Product ID EN0108892844M from [93].

a) Raw image c) Closed image with
best MSAC ellipse

b) Thresholded image,
τ = 50

d) Raw image with
best MSAC ellipse

Figure 4.20: Planet finding algorithm applied to example image containing
Venus taken by MESSENGER spacecraft’s Narrow Angle Camera on 6 June
2007. Raw image is Product ID CN0089716371M IF 3 from [67].

a) Raw image c) Closed image with
best MSAC ellipse

b) Thresholded image,
τ = 20

d) Raw image with
best MSAC ellipse

Figure 4.21: Planet finding algorithm applied to example image containing
Earth taken by MESSENGER spacecraft’s Narrow Angle Camera on 2 August
2005. Raw image is Product ID EW0031513371D from [93].
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a) Raw image c) Closed image with
best MSAC ellipse

b) Thresholded image,
τ = 90

d) Raw image with
best MSAC ellipse

Figure 4.22: Planet finding algorithm applied to example image containing
Earth taken by MESSENGER spacecraft’s Narrow Angle Camera on 2 August
2005. Raw image is Product ID EW0031513371D from [93].

a) Raw image c) Closed image with
best MSAC ellipse

b) Thresholded image,
τ = 50

d) Raw image with
best MSAC ellipse

Figure 4.23: Planet finding algorithm applied to example image containing
Phobos taken on 22 August 2004 by the Mars Orbiter Camera (MOC) on
ESA’s Mars Express spacecraft. Raw image is Product ID H0756 0000 P12
from [148].
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a) Raw image c) Closed image with
best MSAC ellipse

b) Thresholded image,
τ = 50

d) Raw image with
best MSAC ellipse

Figure 4.24: Planet finding algorithm applied to example image containing
lunar horizon taken by the Clementine spacecraft’s Star Tracker B on 20 March
2004. Raw image is Product ID from LBA0032V.137 from [94].

4.7.3 Step 3: Extraction of Navigation Measurements

4.7.3.1 Spacecraft Position from Centroid and Apparent Diameter

In most cases, the results of the planet finding procedure in Step 2 will

provide enough information to directly compute an estimate of the spacecraft

location. The ellipse parameters include the location of the ellipse centroid

and the dimensions/orientation of the ellipse in the image plane. Geometry

will show, however, that the line-of-sight vector produced by the coordinates

of the ellipse center, [x0, y0], does not point towards the planet center. The

actual line-of-sight vector to the planet center was computed through a simple

iterative process that typically converges in 3-4 iterations. This routine, which

was developed by the author, is discussed in Appendix C.

Therefore, if the line-of-sight unit vector to the planet center is known,
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then the camera position vector with respect to the planet is given by

rc = −ρ (ec)I (4.78)

where ρ is the range from the camera to the planet center and (ec)I is the

line-of-sight unit vector from the camera to the planet center expressed in the

inertial frame. Therefore, if the range ρ is known, then the spacecraft position

will also be known.

To estimate ρ, select a point on the ellipse that was fit to the horizon

segment in Step 2. Each point on this ellipse is assumed to lie on the horizon

and will produce a line-of-sight vector in the inertial frame denoted by (ei)I .

Recalling the relation from Eq. 3.86, any observed point on the planet pi is

given by

pi = si + rc = t (ei)I − ρ (ec)I (4.79)

If the observed point is on the horizon, the line-of-sight vector si must be

perpendicular to the surface normal, pn. Recalling the surface normal relation

for an ellipse from Eq. 3.99,

sTi pn = (pi − rc)
T Api = 0 (4.80)

and because pi is constrained to lie on the ellipse,

pTi Api = 1 (4.81)

it is clear that the following is also true

rTc Api = 1 (4.82)
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Substituting for pi into Eq. 4.81 and Eq. 4.82 yields the following two equa-

tions for ρ and t that must be solved simultaneously

ρ2
[
(ec)

T
I A (ec)I

]
− ρt

[
(ec)

T
I A (ei)I

]
= 1 (4.83)

ρ2
[
(ec)

T
I A (ec)I

]
− 2ρt

[
(ec)

T
I A (ei)I

]
+ t2

[
(ei)

T
I A (ei)I

]
= 1 (4.84)

Solving these two equations yields the following expression for ρ

ρ =


[
(ec)

T
I A (ec)I

]
−

[
(ec)

T
I A (ei)I

]2[
(ei)

T
I A (ei)I

]

− 1

2

(4.85)

If the range is known, the position of the spacecraft relative to the observed

planet is known from Eq. 4.78.

This range computation may be used in two different ways to generate

the measured range. The first method is to use only one horizon point to

create the range measurement. If the image has been rotated as described

in Fig. 4.17, it was found that the best horizon point to use is the one that

lies along the negative u-direction from the centroid of the ellipse generated in

Step 2 (approximately the center of the lit horizon).

The second approach is to perform this range computation at a number

of horizon locations on the ellipse generated in Step 2. The average range from

this sweep is taken as the measured range. A preliminary analysis showed that

this procedure did not offer a substantial improvement in the measured range

over the single horizon point technique. This method, however, does allow for
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the computation of the standard deviation of the set of range measurements

generated by this sweep:

σ̃ρ =

√√√√ 1

n

n∑
i=1

(ρi − µρ)2 µρ =
1

n

n∑
i=1

ρi (4.86)

where ρi is the i-th computed range, n is the number of horizon points used, µρ

is the mean of the set of computed ranges, and σ̃ρ is the numerically computed

standard deviation of the set of computed ranges (not to be confused with

the standard deviation of the range measurement). Therefore, σ̃ρ acts as

a measure of the consistency of the ranges generated by the ellipse as the

reference point used to compute the range is swept around the ellipse. If the

standard deviation is small, then the ellipse is likely a good fit. If the standard

deviation is too large, then the ellipse generated in Step 2 is not a good fit and

any range generated from Eq. 4.85 may not be valid. The incorrect ellipse

generated in Fig. 4.24, for example, would fail this standard deviation test.

Further refinement of the measured spacecraft position is possible. The

measured state generated using the ellipse from Step 2 may be used to create an

expected planet/moon lighting profile. The information contained in this two-

dimensional lighting profile, generated using the models from Section 3.9.2,

may be compared to the actual lighting profile seen in the image.

Initial attempts to match the expected planet/moon lighting profile

to the image data employed an iterative batch estimation approach in the

two-dimensional region surrounding the planet/moon in the image. The par-

tial derivatives of the light intensity with respect to the estimated parameters
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were used to perform the updates at each iteration. Performing this type of

procedure on the lighting profile of the planet/moon as a whole proved to

be unstable (or generate undesirable biases) for many lighting configurations.

This batch estimation approach was attempted with two different sets of pa-

rameters being estimated: (1) direct estimation of the spacecraft position and

(2) estimation of the planet/moon centroid in the image. The root of the dif-

ficulty is thought to lie with the light intensity gradient becoming undefined

for rays that do not intersect the planet/moon. Therefore, if the update shifts

a point on the image plane to a location whose line-of-sight vector no longer

intersects the planet/moon, there is no way to determine the direction or mag-

nitude of the next update. Therefore, a horizon scan approach was chosen to

address this problem.

Horizon scan directions are chosen at regular intervals spanning the

lit horizon of the planet/moon. Next, the expected horizon location in that

scan direction is found. A strip of data centered around this horizon location

is then extracted from the image along the scan direction. Data points along

this strip are created at intervals of 1/10 of a pixel using bilinear interpolation.

The expected light intensity at each location along the strip is also

computed using the procedure described in Section 3.9.2. This strip is then

moved up and down the scan direction to find the location where the residuals

between the two one-dimensional lighting profiles are minimized. The point

with the minimum residual is then taken as the updated horizon location.

After all the horizon points have been updated, a new ellipse is fit to the
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data to create an updated estimate of the center location. The position of the

camera relative to the observed planet/moon is then recomputed using Eq.

4.78 and Eq. 4.85.

The only remaining mathematical difficulty, therefore, is finding the

expected horizon location in the image given an estimate of the camera position

relative to the target planet/moon. Recalling the results from Eq. 3.89, the

points on the observed horizon are constrained by[
(ei)

T
I Arc + rTc A (ei)I

]2

− 4
[
(ei)

T
I A (ei)I

] [
rTc Arc − 1

]
= 0 (4.87)

This may be factored and rewritten in terms of the line-of-sight vector in the

camera frame as

(ei)
T
C TI

C

[
ArTc rcA−

(
rTc Arc − 1

)
A
]
TC
I (ei)C = 0 (4.88)

If Eq. 3.22 is substituted for (ei)C and the symmetric matrix M is defined as

M =

 M11 M12 M13

M12 M22 M23

M13 M23 M33

 = TI
C

[
ArTc rcA−

(
rTc Arc − 1

)
A
]
TC
I (4.89)

then Eq. 4.88 may be rewritten as

[
−xi −yi Zl

]
M

 −xi−yi
Zl

 = 0 (4.90)

Expanding this matrix equation, allows for this to be rewritten in the standard

implicit form for a conic section

F (xi, yi) = Ax2
i +Bxiyi + Cy2

i +Dxi + Eyi + F = 0 (4.91)
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with

A = M11 B = 2M12 C = M22 (4.92)

D = −2ZlM13 E = −2ZlM23 F = Z2
lM33 (4.93)

The standard ellipse parameters may be found from the implicit equation co-

efficients using Eq. 4.16 through Eq. 4.19. Therefore, if a scan direction is

known, then the expected horizon location is also known. This allows for the

creation of the one dimensional lighting profiles necessary for the improved

horizon location measurement. This result also demonstrates that the per-

spective projection of an ellipsoid onto the image plane is an ellipse.

The additional step of minimizing the lighting profile residuals typically

provides a significant improvement in performance. Most situations (on both

real and synthetic images) show an reduction in position error by a factor

of 2 to 5, depending on lighting and geometry. As an example, consider a

10.5◦ × 10.5◦ FOV camera with a 1024 × 1024 pixel detector that images

Earth’s Moon from a range of 22,433 km. A Monte Carlo analysis was run on

this situation and synthetic images of the Moon were generated. The results,

shown in 4.25, are representative of the improvement that may be obtained by

minimizing the lighting profile residual.

4.7.3.2 Angle Between Horizon and Star

The second type of optical navigation measurement is the angle between

the planet/moon horizon and a reference star. As was mentioned earlier, this
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Figure 4.25: Error ellipse for instantaneous position fix from centroid and
apparent diameter, with and without minimization of light profile residuals.
Results for simulated image of Moon at a range of 22,433 km with a 10.5◦ ×
10.5◦ FOV camera.

type of measurement is still possible even if the image processing algorithm

only provides a good elliptical fit to a portion of the horizon.

Suppose that the measured line-of-sight vector to a star (which may be

identified using one of the methods discussed in Section 4.6) is given by the

unit vector ẽs. Next, given an ellipse, the point on that ellipse closest to the

star may be found by from Eq. 4.36 and Eq. 4.26. If the ellipse only provides

a good fit to a portion of the horizon, then only ellipse coordinates that lie

close to the measured horizon are permitted. Let the line-of-sight vector to

this horizon point be given by the unit vector ẽh. Therefore, the measured
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angle between the horizon and reference star, ψ̃, is given by

ψ̃ = acos
[
ẽTs ẽh

]
(4.94)

Although it does not matter what frame these vectors are expressed in (any

frame will give the same angle), it is easiest to keep everything in the camera

frame.

As an example, consider the Clementine star tracker image used in a

number of previous examples. Specifically, suppose that the results of the star

finding step shown in Fig. 4.16 are combined with the results of the horizon

finding algorithm shown in Fig. 4.24. Numerous star-horizon measurements

may now be made directly as shown in Fig. 4.26. Although all possible

star-horizon measurements are shown in this figure, not all of these would

necessarily be included into a navigation filter.

4.8 Comments on Image Exposure Time

The selection of the image exposure time is extremely important. If

exposure time is too short, the detector will not have time to collect a large

number of photons from the source and the resulting image will have a low

signal-to-noise ratio and will be too dark. If the exposure time is too long,

pixel saturation may become a problem. That being said, pixel saturation may

be unavoidable in some scenarios. Further, some algorithms have proposed

intentionally overexposing the image for certain applications. Of particular

note in the present context is a recent algorithm that uses overexposed images
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Figure 4.26: Example star-horizon measurements from image taken by the
Clementine Star Tracker B on 20 March 2004. Raw image is Product ID from
LBA0032V.137 from [94].

of the Moon to compute attitude.[149]

The most apparent problem with long exposure times and overexposed

images is that light intensity gradient information is lost as pixels become satu-

rated. This can cause numerous difficulties in an optical navigation algorithm.

Recall, for example, that the centroid and apparent diameter measurement

had a refinement step that minimized the residuals between a predicted light-

ing profile and the observed lighting profile. If the image is overexposed, then
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the observed lighting profile is nothing more than a constant intensity value

(at the maximum) for a large portion of the pixels of interest. For many types

of lighting configurations, the brightest part of the planet is the horizon (a

direct result of the Lommel-Seeliger Law) - which is precisely the place that

we do not want to lose information. It is worth pointing out, however, that

losing gradient information may not always be bad. Overexposing an image

does remove local features and shadowing from the image and may largely

eliminate the need for the dilation and erosion step in the image processing

algorithm.

The second problem with overexposing an image is that stray light

from dust surrounding the planet and the spacecraft (and light scattered by

the planet’s atmosphere, if it has one) will accumulate and may cause the

planet to appear larger than it actually is. Because the pixels are saturated,

there is no way to reverse this effect in post processing. The end result of such

an effect is the introduction of a bias in the range measurement, making the

planet appear closer (larger) than it should. It may be possible to estimate

this bias in some applications as an unknown increase in the planet radius.

The third problem, if the detector is a CCD, is that overexposure will

introduce blooming. As the CCD pixels become saturated, charge will begin

to spill over into adjacent pixels in the same column (or row). The problem of

blooming, however, can be largely eliminated by selecting a CMOS detector

instead.

Other problems come simply from having a longer exposure time. In
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addition to allowing more time to accumulate photons, long exposure times

also allow more time to integrate noise sources, such as dark current. Long

exposure times can also lead to smearing in the image. If the vehicle un-

dergoes significant rotation during the exposure, stars and other objects will

appear smeared in the image. Although image processing algorithms capable

of removing the bulk of this effect exist, this creates an additional source of

error.

As was mentioned earlier, it may be impossible to avoid overexposure

in come cases. For spacecraft performing operations near one of the inner

planets, it is difficult to capture stars and the planet in the same image without

overexposing the planet. Therefore, the star-horizon measurement will almost

always be made with an overexposed planet.

Fortunately, the response of most CCD and CMOS detectors varies in a

nearly linear fashion with integration time when viewing a source of constant

intensity. Therefore, doubling the integration time will double the amount

of photoelectrons generated. It is worth noting that this linear relationship

does break down near the pixel saturation point (especially in CCDs with an-

tiblooming drains), which is another drawback of imaging near (or above) the

pixel saturation point. Pixels on a modern CCD can maintain their linear

response up to about 90% of their saturation point.[107] Therefore, it is rec-

ommended that exposure times be selected to avoid nearly saturating detector

pixels.
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4.9 Optical Navigation Measurement Covariance

4.9.1 Spacecraft Position from Centroid and Apparent Diameter

The position of the camera relative to the observed planet or moon

may be estimated from the centroid and apparent diameter measurements.

The covariance of this camera position measurement is defined as

Rrc = E
[
(r̃c − rc) (r̃c − rc)

T
]

(4.95)

From Eq. 4.78, the expression for rc is known to be

rc = −ρ (ec)I = −ρTC
I (ec)C (4.96)

r̃c = −ρ̃TĈ
I (ẽc)C (4.97)

Error is introduced into the estimate of rc from three sources: (1) error in

the measured range, δρ, (2) error in the measured line-of-sight unit vector

expressed in the camera frame, εc, and (3) error in the current estimate of the

spacecraft attitude, δθ. Define these three errors as

δρ = ρ̃− ρ (4.98)

εi = (ẽi)C − (ei)C εc = (ẽc)C − (ec)C (4.99)

TĈ
C = I3×3 − [δθ×] (4.100)

Substituting these into Eq. 4.97 yields the following expression for the esti-

mated rc

r̃c = − (ρ+ δρ) TC
I [I3×3 − [δθ×]] [(ec)C + εc] (4.101)
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Therefore, the term (r̃c − rc) in Eq. 4.95 may be expanded as

r̃c − rc =− ρTC
I εc − δρTC

I (ec)C − δρT
C
I εc − ρTC

I [(ec)C ×] δθ (4.102)

− ρTC
I [εc×] δθ − δρTC

I [(ec)C ×] δθ − δρTC
I [εc×] δθ

Recall from Eq. 4.85 that ρ is a function of the line-of-sight to the planet center,

(ec)I , and the line of sight to a specified horizon point, (ei)I . Therefore, taking

the Taylor series expansion of the range and keeping only first order terms will

yield,

δρ =
∂ρ

∂ (ec)I
TC
I εc +

∂ρ

∂ (ei)I
TC
I εi (4.103)

The partial derivatives may be easily computed by the direct differentiation

of Eq. 4.85 and are given by:

∂ρ

∂ (ei)I
=

1

ρ3


[
(ec)

T
I A (ei)I

]
[
(ei)

T
I A (ei)I

] (ec)
T
I A (4.104)

−


[
(ec)

T
I A (ei)I

]
[
(ei)

T
I A (ei)I

]
2

(ei)
T
I A


∂ρ

∂ (ec)I
=

1

ρ3

− (ec)
T
I A +

[
(ec)

T
I A (ei)I

]
[
(ei)

T
I A (ei)I

] (ei)
T
I A

 (4.105)
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Therefore, substitute Eq. 4.103 into Eq. 4.102 and combining like terms,

rc − r̃c =

[
ρ+ TC

I (ec)C
∂ρ

∂ (ec)I
+

∂ρ

∂ (ec)I
TC
I εc +

∂ρ

∂ (ei)I
TC
I εi

]
TC
I εc (4.106)

+ TC
I (ec)C

∂ρ

∂ (ei)I
TC
I εi

+

[
ρ+

∂ρ

∂ (ec)I
TC
I εc +

∂ρ

∂ (ei)I
TC
I εi

]
TC
I [(ec)C ×] δθ

+

[
ρ+

∂ρ

∂ (ec)I
TC
I εc +

∂ρ

∂ (ei)I
TC
I εi

]
TC
I [εc×] δθ

Now, proceed by assuming that εi, εc, and δθ are uncorrelated and that higher

order moments (skewness, kurtosis, etc.) are unimportant. Therefore, the

covariance is given by

Rrc =

[
ρ+ TC

I (ec)C
∂ρ

∂ (ec)I

]
RI,c

[
ρ+ TC

I (ec)C
∂ρ

∂ (ec)I

]T
(4.107)

+

[
TC
I (ec)C

∂ρ

∂ (ei)I

]
RI,i

[
TC
I (ec)C

∂ρ

∂ (ei)I

]T
+ ρ2TC

I [(ec)C ×] Pθθ [(ec)C ×]T TI
C

where

Pθθ = E
[
δθ δθT

]
(4.108)

RI,c = TC
I RC,cT

I
C RI,i = TC

I RC,iT
I
C (4.109)

if RC,c and RC,i are from Eq. 3.158. Therefore, the result given in Eq. 4.107

provides an analytic expression for the covariance of the instantaneous position

fix measurement generated from the centroid and apparent diameter extracted

from an optical navigation image.
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As an example, consider a 1.5◦ × 1.5◦ FOV camera with a 1024× 1024

pixel detector. Suppose this camera images Earth’s Moon from a range of

200,636 km. The instantaneous position fix covariance from a centroid and

apparent diameter measurement associated with this scenario is shown in Fig.

4.27. To verify this covariance model, a Monte Carlo analysis was performed

on synthetically generated images of the Moon. The results of this Monte

Carlo analysis were superimposed on the analytic covariance matrix.

The large axis of the covariance matrix in Fig. 4.27 is along the line-

of-sight direction to the Moon. The pencil shape of this covariance matrix

highlights the difficulty that optical sensors have in determining range.

4.9.2 Angle Between Horizon and Star

The variance of the scalar measurement of the angle between the hori-

zon and a star is defined by

Rψ = E

[(
ψ̃ − ψ

)2
]

= σ2
ψ (4.110)

where the angle ψ is defined as,

cosψ = eTs eh (4.111)

cos ψ̃ = ẽTs ẽh (4.112)

and es is the line-of-sight unit vector to the star and eh is the line-of-sight unit

vector to the closest point on the horizon. This notation is consistent with the

definition from Eq. 4.94. Again, note that the frame in which es and eh are
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Figure 4.27: Error ellipse for instantaneous position fix from centroid and
apparent diameter. Results for simulated image of Moon at a range of 200,636
km with a 1.5◦ × 1.5◦ FOV camera.

expressed does not matter - here it is assumed that all vectors are expressed

in the camera frame. Proceed by defining the the errors in the line-of-sight

direction as

εs = ẽs − es εh = ẽh − eh (4.113)

and the error in the measured angle between these vectors as

δψ = ψ̃ − ψ (4.114)
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Therefore, rewriting Eq. 4.112,

cos (ψ + δψ) = (es + εs)
T (eh + εh) (4.115)

Expanding both sides of this equation yields

cosψ cos δψ − sinψ sin δψ = eTs eh + eTs εh + εTs eh + εTs εh (4.116)

If the error angle δψ is assumed to be small, then to first order

eTs eh − δψ sinψ = eTs eh + eTs εh + εTs eh + εTs εh (4.117)

Therefore, solving for δψ,

δψ = − 1

sinψ

[
eTs εh + εTs eh + εTs εh

]
(4.118)

Now, substituting this expression for δψ into Eq. 4.110 and assuming that εs

and εh are uncorrelated,

Rψ =
1

sin2 ψ

{
eTs E

[
εhε

T
h

]
es + eThE

[
εsε

T
s

]
eh
}

(4.119)

Both RC,h = E
[
εhε

T
h

]
and RC,s = E

[
εsε

T
s

]
are covariance matrices for a

line-of-sight unit vector in the camera frame. The covariance for such mea-

surements is given by the relation from Eq. 3.158. Therefore,

Rψ =
1

1− (eTs eh)
2

{
eTs RC,hes + eThRC,seh

}
(4.120)

Additionally, note that when using this measurement, errors associated with

the current attitude estimate or camera misalignment do not enter into the

measurement covariance (in contrast to the position fix from centroid and

apparent diameter measurement).
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4.10 Optical Navigation Measurement Sensitivity Ma-
trices

Both of the measurement models being discussed may be written in the

form

ỹ = h(x) + v (4.121)

where ỹ is the m× 1 measurement, x is the n× 1 state vector, and v is zero

mean white noise. The measurement is assumed to be some nonlinear function

of the state.

It is common practice to use a Taylor series expansion to linearize the

measurement model about a reference solution. Taking the partial derivative

of the measurement with respect to the state vector, yields the m × n mea-

surement sensitivity matrix, H. Errors are frequently assumed to behave in a

linear fashion around the reference solution such that the measurement sen-

sitivity matrix may be used to map errors in the state estimate to errors in

the measurement. This approach is common in many types of filters (e.g. Ex-

tended Kalman Filter) and is discussed extensively in the literature.[150–152]

Therefore,

δy ≈ ∂h(x)

∂x
δx = Hδx (4.122)

where δx is the deviation of the state from the reference and δy is the deviation

of the measurement from the reference.
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4.10.1 Spacecraft Position from Centroid and Apparent Diameter

Construction of the measurement sensitivity matrix for the spacecraft

position obtained from the centroid and apparent diameter measurement is

straightforward. This particular measurement provides a direct measurement

of the state corrupted by some measurement noise, vrc ,

ỹ = h(x) + v = rc + vrc (4.123)

Therefore, the measurement sensitivity matrix is just the identity matrix:

H =
∂y

∂rc
=
∂rc
∂rc

=

 1 0 0
0 1 0
0 0 1

 (4.124)

4.10.2 Angle Between Horizon and Star

Finding the measurement sensitivity matrix for the angle between the

horizon and a star is significantly more complex. In fact, the analytic computa-

tion of this matrix was deemed to be prohibitively complicated for the general

case (although an approximation could be computed numerically). Therefore,

the measurement sensitivity matrix derived here will be restricted to spherical

(or nearly spherical) planets and moons. This, of course, does not mean that

the projection of planet horizon is assumed to be a circle - the projection of

a sphere is still an ellipse - and the navigation algorithms must still deal with

ellipses on the image plane. This is a reasonable approximation for all of the

planets, and most of the major moons, in our solar system. This derivation

approach is based on some observations made by Battin in [24] and [153].
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Figure 4.28: Geometry of star-horizon measurement for a spherical planet or
moon.

Using the same nomenclature introduced in previous sections, begin by

defining the measurement as

ỹ = h(x) + v = ψ + δψ (4.125)

so the measurement sensitivity matrix that must be derived here is given by

H =
∂y

∂rc
=
∂ψ

∂rc
(4.126)

To compute ∂ψ/∂rc, consider a spacecraft viewing a planet with the

geometry shown in Fig. 4.28, where ζ is the planet apparent diameter and ψ

is the angle between the horizon and the reference star. Therefore,

cos (ψ + ζ) = eTs ec (4.127)

where es is the line-of-sight unit vector from the camera to the star and ec

is the line-of-sight unit vector from the camera to the center of the planet.
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As before, note that this expression is the same regardless of the frame being

used. For this problem it is easiest to express these quantities in the inertial

frame (or the same frame that the spacecraft position vector is expressed in).

Therefore, recalling the relation from Eq. 4.78,

cos (ψ + ζ) = eTs

(
−rc
ρ

)
= eTs

−rc√
rTc rc

(4.128)

If the planet is assumed to be a sphere, then the apparent diameter is simply

sin ζ =
Rp

ρ
=

Rp√
rTc rc

(4.129)

where Rp is the radius of the planet. Taking the derivative of Eq. 4.128

and Eq. 4.129 with respect to the camera position vector, rc, will yield the

following two expressions

−sin (ψ + ζ)

[
∂ψ

∂rc
+
∂ζ

∂rc

]
= eTs

[
−1

ρ
I3×3 +

1

ρ3
rcr

T
c

]
(4.130)

cos ζ
∂ζ

∂rc
= −Rp

ρ3
rTc (4.131)

Now, substituting ∂ζ/∂rc from Eq. 4.131 into Eq. 4.130, and solving for

∂ψ/∂rc

∂ψ

∂rc
=

1

sin (ψ + ζ)
eTs

[
1

ρ
I3×3 −

1

ρ3
rcr

T
c

]
+

Rp

ρ3cos ζ
rTc (4.132)

Therefore, the measurement sensitivity matrix for the star-horizon measure-

ment is given by

H =
1

sin (ψ + ζ)
eTs

[
1

ρ
I3×3 −

1

ρ3
rcr

T
c

]
+

Rp

ρ3cos ζ
rTc (4.133)
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Chapter 5

Optical Attitude Estimation

Attitude estimation is a critical first step for an autonomous optical

navigation system. Recall that the image processing and measurement algo-

rithms from Chapter 4 require an estimate of the spacecraft attitude. For-

tunately, the fundamental issues regarding optical attitude estimate are well

known. This chapter begins with a brief summary of existing attitude es-

timation and filtering techniques. Next, because attitude filtering requires

knowledge of the dynamics, key results from attitude dynamics are presented

- primarily from the standpoint of introducing the notation to be used in

subsequent sections.

With the preliminaries established, the focus of the chapter then turns

to the development of a new nonlinear attitude filter: the Sequential Optimal

Attitude Recursion (SOAR) Filter. This discussion begins be reviewing the

classic solution to the Wahba problem and representations of attitude covari-

ance, which forms the starting point for the development of the SOAR Filter.

The remaining sections discuss the complete derivation of the SOAR Filter

and provide a comparison between this new filter and existing attitude filters.
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5.1 Existing Attitude Filtering Algorithms

The problem of estimating spacecraft attitude from a set of unit vec-

tor observations has received much attention since the 1960s. The most well

known formulation of this problem was given by Grace Wahba in 1965[154]

and is commonly referred to as the “Wahba Problem.” If the Wahba Problem

is written in terms of the attitude quaternion, an analytic solution exists in

the form of the solution to an eigenvalue-eigenvector problem. The optimal

attitude is simply given by the eigenvector associated with the largest eigen-

value.[155] Numerous algorithms have been developed over the years to find

fast and robust solutions to this problem.[156] Some of the most well known

algorithms include the QUaternion ESTimator (QUEST)[157], the EStimator

of the Optimal Quaternion (ESOQ),[158, 159] and Singular Value Decompo-

sition (SVD).[160] Because the models created in this work use the QUEST

algorithm to generate the quaternion measurements produced by star trackers,

the complete derivation of the QUEST algorithm is reproduced in a nomen-

clature consistent with this work in Appendix D.

Traditional solutions to the Wahba Problem are batch estimators that

assume all the unit vector observations occur at the same time. The Wahba

Problem is a weighted least squares problem. If the weights in this problem

are chosen to be the inverse of the measurement noise variance, the result is

a maximum likelihood estimate of the attitude. The objective of the present

research is to extend the traditional Wahba Problem into a framework that

allows for the creation of an optimal attitude filter.

209



One of the most common methods of attitude filtering in modern sys-

tems is the Multiplicative Extended Kalman Filter (MEKF). This method

uses the four-component attitude quaternion to represent the attitude, but

a three-component representation of the attitude in the filter. The MEKF is

structured this way because while the attitude quaternion is globally nonsingu-

lar, making it a good choice for representing spacecraft attitude, it must obey

a unity norm constraint, making direct implementation of the quaternion in a

normal Kalman filter difficult. Additionally, a small angle assumption allows

the three-component attitude representation to be cast in a form consistent

with the additive nature of the Kalman filter (i.e. x = x̂ + δx).

Unlike the MEKF, sequential Wahba Problem filters estimate the full

quaternion without requiring solutions to be computed as small angle devia-

tions from a reference attitude. The batch solutions to the Wahba Problem

have also been shown to be extremely robust. These are some of the ad-

vantages that have led researchers to investigate sequential solutions to the

Wahba Problem for attitude filtering. Shuster provided the earliest known

work in this topic with the development of “Filter QUEST” in a number of ar-

ticles.[161, 162] Subsequently, Bar-Itzhack introduced an alternate sequential-

ization approach known as the REQUEST algorithm.[163] Several years after

the introduction of the REQUEST algorithm, Shuster[164] demonstrated that

although the Filter QUEST and REQUEST algorithms approach the problem

from different perspectives, they are mathematically equivalent. Both Filter

QUEST and REQUEST algorithms are examples of suboptimal fading memory

210



filters. Shuster demonstrates[161, 162] that under a specific set of conditions,

the optimal fading memory factor, αk, may be analytically computed. The

equation for αk is simple, fast to compute, and provides an excellent approxi-

mation of the more general optimal fading memory factor for many practical

cases. The assumptions required to arrive at this result are rarely met, how-

ever, and a better value of αk may be computed at the expense of a little more

computation time.

An approach for the optimal blending of the new attitude measure-

ments with old attitude estimates directly in the Wahba Problem solution

framework was proposed in 2004 by Choukroun with the Optimal-REQUEST

algorithm.[165] This algorithm, however, requires access to individual unit

vector measurements. This may cause difficulties if an instrument provides

a measurement in the form of an attitude quaternion, as is the case with

most commercially available star trackers. Additionally, like Filter QUEST

and REQUEST, Optimal-REQUEST is only capable of estimating attitude.

None of the sequential Wahba Problem filters discussed above are capable of

incorporating estimates of other parameters, such as sensor biases.

Taking a different approach, Psiaki developed the Extended-QUEST

algorithm.[166] The Extended-QUEST algorithm offers an optimal estimate

of the attitude and is capable of also estimating non-attitude states. This al-

gorithm is formulated as a square-root information filter that contains a propa-

gation phase and a state update phase. The formulation of Extended-QUEST

requires the QR factorization of the propagated information matrix for use
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in the filter. It also requires the solution to a more general objective func-

tion than required for Filter QUEST or REQUEST. Despite these increases

in complexity and computations, Extended-QUEST provides an optimal esti-

mate of both attitude and and non-attitude states. It has been shown to be

robust with convergence properties that are substantially better than seen in

the MEKF.[166]

Other algorithms have also been developed that are capable of estimat-

ing both attitude states and non-attitude states. Most notable among these

is an algorithm introduced by Markley.[167, 168] While many other nonlin-

ear attitude filtering approaches exist, they are not discussed here. Thorough

discussions of these other methods may be found in the literature.[169]

It is within this context that a new nonlinear attitude filtering algo-

rithm is proposed: the Sequential Optimal Attitude Recursion (SOAR) Filter.

The derivation of the SOAR Filter begins by creating a maximum likelihood

estimate (MLE) of the state vector through Bayesian estimation. A fresh look

at the sequentialization of the Wahba Problem allows the classic Wahba Prob-

lem to be recast in an MLE framework. Additionally, the Bayesian estimation

approach allows for the seamless inclusion of non-attitude states in the SOAR

Filter. Using ideas from the Extended Kalman Filter (EKF), the covariance

inflation associated with the propagation of the state is examined. Treating

the covariance in this manner allows for the straightforward inclusion of pro-

cess noise and addresses the problem of the suboptimal fading memory factor

seen in Filter QUEST and REQUEST. If the attitude covariance and measure-
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ment covariance are known at the time of the update, the optimal estimate of

the attitude may be determined.

The SOAR Filter shares many similarities with some of the previous

attitude filtering methods. As subsequent discussions will show, the SOAR

Filter is most similar to Extended-QUEST.

5.2 Attitude Dynamics

This section provides a brief review of some key kinematic relations from

attitude dynamics. More detailed information on this topic may be found in

[78] and [170]. Define the time derivative of the DCM, Ṫ, as

Ṫ ≡ lim
∆t→0

T(t+ ∆t)−T(t)

∆t
(5.1)

Assuming that a rotation of ∆θ occurs during the time ∆t and applying the

small angle approximation of Eq. 3.5

Ṫ = lim
∆t→0

1

∆t
(I3×3 − [∆θ×]) T(t)−T(t) = lim

∆t→0

1

∆t
(− [∆θ×]) T(t) (5.2)

Recalling that ω is defined as ω ≡ lim∆t→0 ∆θ/∆t,

Ṫ = − [ω×] T (5.3)

Similarly, if the time derivative of the attitude quaternion, ˙̄q, is defined as

˙̄q ≡ lim
∆t→0

q̄(t+ ∆t)− q̄(t)

∆t
(5.4)

then the following kinematic relations are known to be true:[81]

˙̄q =
1

2

[
ω
0

]
⊗ q̄ =

1

2
Ωq̄ =

1

2
Ξω (5.5)
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where the matrices Ω and Q are given by:

Ω (ω) =

[
− [ω×] ω
−ωT 0

]
=


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (5.6)

Ξ (q̄) =

[
q4I3×3 + [q×]
−qT

]
=


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (5.7)

Additionally, if rigid body attitude dynamics are assumed, the angular accel-

eration is given by Euler’s equations:

ω̇ = J−1
cm (mext − [ω×] Jcmω) (5.8)

where Jcm is the inertia matrix for the spacecraft expressed in the body frame

and mext is the sum of the external moments applied to the spacecraft.

5.3 A Review of the Classical Wahba Problem

The problem of estimating vehicle attitude from a set of unit vector

observations has been studied in great detail. The objective function com-

monly used to describe this problem was posed by Grace Wahba in 1965 and

is frequently referred to as the “Wahba Problem.”[154] The Wahba Problem

statement, using traditional nomenclature, is given by:

Min J(A) =
1

2

m∑
i=1

wi ‖wi −Avi‖2 (5.9)

where m is the number of observed unit vectors, wi is a positive weighting on

the i -th observation, wi is the measured unit vector for the i -th observation
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as expressed in the body frame, vi is the known reference unit vector for the

i -th observation in a known inertial frame, and A is the rotation matrix that

transforms a vector from the inertial frame to the body frame.

For the purposes of this discussion, however, a slightly different nota-

tion will be used. First, the rotation matrix that transforms a vector from

the inertial frame to the body frame will be denoted by TI
B. Therefore, the

matrix TI
B describes the attitude of the vehicle body frame, B, with respect

to the inertial frame, I. Second, note that the unit vectors wi and vi in Eq.

5.9 are actually the same unit vector expressed in two different frames. There-

fore, denote this unit vector as ei, such that (ei)I is the reference unit vector

expressed in the inertial frame, i.e. (ei)I = vi. Unfortunately, measurement

errors prevent wi from simply being ei expressed in the actual body frame.

Therefore, let (ẽi)B be the perturbed (noisy) i -th unit vector expressed in the

body frame, B̃i, that yields the measured direction of an observed object, i.e.

(ẽi)B = wi. Although this notation is more cumbersome, it helps empha-

size the frames and vectors in a more explicit fashion. Therefore the Wahba

Problem may be rewritten in this new notation as

Min J(TI
B) =

1

2

m∑
i=1

wi
∥∥(ẽi)B −TI

B (ei)I
∥∥2

(5.10)

In order to proceed, Wahba’s problem must be manipulated for imple-

mentation in an attitude determination algorithm. Returning to Eq. 5.10, the
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norm in the objective function may be expanded as follows:

Min J(TI
B) =

1

2

m∑
i=1

wi

[
(ẽi)

T
B (ẽi)B − 2 (ẽi)

T
B TI

B (ei)I (5.11)

+
(
TI
B (ei)I

)T (
TI
B (ei)I

)]
recognizing that (ẽi)B and TI

B (ei)I are unit vectors, Eq. 5.11 may be simplified

to

Min J(TI
B) =

m∑
i=1

wi −
m∑
i=1

wi (ẽi)
T
B TI

B (ei)I (5.12)

Let the arbitrary constant
∑m

i=1wi = λ0. Shuster was the first to demonstrate

that a selection of wi = 1/σ2
φ,i yields the maximum likelihood estimate.[120]

This leads to the following modification of the objective function

Min J(TI
B) = λ0 −

m∑
i=1

witr
[
(ẽi)

T
B TI

B (ei)I

]
(5.13)

Now, recalling that one may cyclically permute multiplication within the trace

operator, the above may be further rewritten as is commonly seen in the

literature:[156]

Min J(TI
B) = λ0 −

m∑
i=1

witr
[
TI
B (ei)I (ẽi)

T
B

]
= λ0 − tr

[
TI
BBT

]
(5.14)

where B is called the attitude profile matrix and is given by

B =
m∑
i=1

wi (ẽi)B (ei)
T
I (5.15)

Continue the rewriting of the objective function by letting g
(
TI
B

)
= tr

[
TI
BBT

]
,

yielding:

Min J(TI
B) = λ0 − g

(
TI
B

)
(5.16)
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Recalling the relationship between the rotation matrix and the corresponding

attitude quaternion from Eq. 3.11, it can be shown that

g
(
TI
B

)
= g

(
TI
B (q̄)

)
= h (q̄) (5.17)

This allows for the rewriting of Eq. 5.16 in terms of the quaternion instead of

the attitude matrix

Min J(q̄) = λ0 − h (q̄) (5.18)

Equation 3.11 also suggests that h (q̄) is quadratic in q̄. To verify this obser-

vation, and to obtain an expression for the objective function in terms of the

quaternion, use the identity from Eq. 3.11 to rewrite Eq. 5.17 as

g
(
TI
B

)
= tr

[
TI
BBT

]
= h (q̄) (5.19)

= tr
[[(

q2
4 − qTq

)
I3×3 + 2qqT − 2q4 [q×]

]
BT
]

Distributing BT and the trace operator,

h (q̄) =
(
q2

4 − qTq
)

tr
[
BT
]

+ 2tr
[
qqTBT

]
− 2q4tr

[
[q×] BT

]
(5.20)

If the new variable µ is defined as the trace of the attitude profile matrix B,

µ = tr [B] (5.21)

then h (q̄) may be rewritten as

h (q̄) =
(
q2

4 − qTq
)
µ+ 2tr

[
qqTBT

]
− 2q4tr

[
[q×] BT

]
(5.22)

Further, cyclically permute the values within the trace of the second term,

h (q̄) =
(
q2

4 − qTq
)
µ+ 2tr

[
qTBTq

]
− 2q4tr

[
[q×] BT

]
(5.23)
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the second term is now a scalar and the trace operator may be dropped.

Further recognize that 2qTBTq = qTSq where

S = B + BT (5.24)

Therefore, again rewrite h (q̄) as

h (q̄) =
(
q2

4 − qTq
)
µ+ qTSq− 2q4tr

[
[q×] BT

]
(5.25)

Now turn attention to the final term. Expand the trace and collect in terms

of elements in q:

tr
[
[q×] BT

]
= (b32 − b23) q1 + (b13 − b31) q2 + (b21 − b12) q3 = −zTq (5.26)

where

[z×] = BT −B (5.27)

Recognizing that zTq is a scalar and zTq = qTz,

h (q̄) =
(
q2

4 − qTq
)
µ+ qTSq + q4z

Tq + q4q
Tz (5.28)

Breaking out a q̄T = [qT q4] to the left,

h (q̄) =
[

qT q4

] [ −µq + Sq + q4z
µq4 + zTq

]
(5.29)

Now factor a q̄ to the right,

h (q̄) =
[

qT q4

] [ S− µI3×3 z
zT µ

] [
q
q4

]
(5.30)

Substituting this result for h (q̄) back into Eq. 5.18 leads to the well known

result[78, 155, 157]

Min J(q̄) = λ0 − h (q̄) = λ0 − q̄TKq̄ (5.31)
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where K is called the Davenport matrix and is defined as

K =

[
S− µI3×3 z

zT µ

]
(5.32)

where

S = B + BT (5.33)

µ = tr [B] (5.34)

[z×] = BT −B or z =
m∑
i=1

wi (ẽi)B × (ei)I (5.35)

The attitude that minimizes the objective function in Eq. 5.31 may be found

by the straightforward application of concepts from optimal control theory.[171]

Begin by recalling the quaternion unity norm constraint ‖q̄‖ = 1 and adjoin

this constraint to the objective function through a Lagrange multiplier, λ.

Also, write the objective function in terms of the quaternion, q̄ , instead of

the DCM, TI
B, as follows from Eq. 5.17 and Eq. 5.31:

Min J(q̄, λ) = λ0 − q̄TKq̄ + λ
(
q̄T q̄− 1

)
(5.36)

The optimal attitude is found by setting the first differential of J(q̄, λ) to zero.

The optimal attitude is given by the solution to[78, 155, 157]

Kq̄ = λq̄ (5.37)

Note that Eq. 5.37 is an eigenvalue-eigenvector problem. It is from this point

that various solutions have emerged. Despite all the discussion circulating

about the various attitude determination algorithms, most of these are sim-

ply different methods for solving the eigenvalue-eigenvector problem in Eq.
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5.37. Davenport’s q-Method, for example, directly solves Eq. 5.37 as if it

were an ordinary eigenvalue-eigenvector problem,[156] thus making it one of

the more robust algorithms because it relies on relatively robust but slow nu-

merical methods for solving the eigenvalue-eigenvector problem. Further, by

substituting Eq. 5.37 into Eq. 5.31, the original objective function becomes:

J(q̄) = λ0 − q̄Tλq̄ = λ0 − λq̄T q̄ = λ0 − λ (5.38)

Therefore, it may be noted that the optimal attitude is achieved with the

largest eigenvalue.

The QUEST algorithm,[157] developed by Shuster, solves this problem

by Newton-Raphson iteration on the characteristic equation to find only the

largest eigenvalue and associated eigenvector. A full derivation of the QUEST

algorithm using notation consistent with this work is provided in Appendix D.

While faster than Davenport’s q-Method, the solution approach introduces a

singularity for a 180 degree rotation that must be addressed in the algorithm

implementation (typically through logic checks and sequential rotations).

EStimators of the Optimal Quaternion (ESOQ and ESOQ-2),[158, 159]

developed by Mortari, are also fundamentally based on the eigenvalue problem

described in Eq. 5.37. Recognizing that

(K− λI4×4) q̄ = Hq̄ = 0 (5.39)

it is clear that q̄ must lie in the null space of H. Further if HT = [h1 h2 h3

h4], then q̄ must be perpendicular to all hi. From here, the ESOQ algorithm
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computes the optimal quaternion through a 4-dimensional cross-product op-

eration (a special case of the n-dimensional cross-product)[172] between two

vectors in H: hi and hj, i 6= j. In the same year that ESOQ was introduced,

Mortari also proposed a follow-on algorithm called ESOQ-2. This algorithm

starts with Eq. 5.37 and computes a symmetric 3×3 matrix of rank 2, M, such

that Meθ = 0. Using a similar approach to that seen in the original ESOQ,

the attitude may now be determined by taking the regular 3-dimensional cross

product of two rows of M.

5.4 Attitude Error and Covariance Relations

5.4.1 The Attitude Error Quaternion

Let the error in the attitude be described by the small error quaternion,

δq̄:

δq̄ = q̄⊗ ˆ̄q−1 (5.40)

where ⊗ denotes the quaternion product operator. Physically, δq̄ may be

interpreted as the quaternion that rotates the best estimated attitude to the

true attitude. If one assumes small angles,

δq̄ =

[
δq
δq4

]
≈
[
δθ/2

1

]
(5.41)

where δθ is a three-dimensional parameterization of the attitude given by

eδθδθ. Here, eδθ is a unit vector denoting the axis of rotation and δθ is the

magnitude of the rotation about that axis in radians. Therefore, 2δq ≈ δθ,

which yields

Pθθ = E
[
δθδθT

]
= 4E

[
δqδqT

]
(5.42)

221



This choice means that Pθθ is the attitude covariance matrix as expressed in

the body frame. Additionally, assume that the quaternion attitude estimate

is unbiased:

E [δq̄] = E

[[
δq
δq4

]]
=


0
0
0
1

 (5.43)

The definition in Eq. 5.40 also means that the small angle error vector

is defined such that

T (θ) = T (δθ) T(θ̂) (5.44)

If the three-dimensional parameterization of the attitude given by θ is defined

with respect to the attitude estimate given by ˆ̄q, then θ̂ = 0 and T(θ̂) = I3×3

by definition. Therefore,

δθ = θ − θ̂ = θ − 0 = θ (5.45)

5.4.2 Important Attitude Covariance Relations

Next, a few key relations that relate the attitude profile matrix to the

covariance matrix are derived. Begin by recalling the Cramér-Rao inequal-

ity,[173] which states

Pxx = E
[
(x− x̂) (x− x̂)T

]
≥ (Fxx)−1 (5.46)

where Fxx is the Fisher information matrix. The Fisher information matrix is

further defined as

Fxx = E

[
∂2J(x)

∂x∂x

]
(5.47)
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where the scalar objective function J is the negative log-likelihood function

(i.e. J(x) = −ln p(x|y), where p(x|y) is the probability of observing the state

x given the observations y). The equality in Eq. 5.46 is obtained if and only

if p(x|y) is Gaussian and the following are both true[173][
∂

∂x
J(x)

]T
= −

[
∂

∂x
ln p(x|y)

]T
= C [x− x̂] (5.48)

where C is a matrix that is independent of x and y. If the condition of Eq. 5.48

is applied to a Gaussian p(x|y), then it may be shown that the observations

must be a linear function of x. This observation was also made by Shuster

in [120]. Therefore, if these conditions are both satisfied then Fxx = P−1
xx .

Unfortunately, this is not the case in the present problem. When the above

conditions are not met, Fxx approaches P−1
xx as the number of measurements

becomes infinite:[120]

P−1
xx = lim

n→∞
Fxx (5.49)

where n is the number of observations.

To be consistent with earlier notation, let δθ be the small angle rota-

tion that rotates the estimate of the vehicle attitude into the true attitude.

Therefore, assuming small angles,[82]

TI
B = exp {[−δθ×]}TI

B̂
(5.50)

Using this relation, the Wahba Problem objective function of Eq. 5.14 evalu-

ated at the true attitude may be rewritten as a function of δθ

J (δθ) = λ0 − tr
[
exp {[−δθ×]}TI

B̂
BT
]

(5.51)
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Expanding the matrix exponential of [−δθ×] to second order (because the

equation for J (δθ) must be differentiated twice),

J (δθ) = λ0 − tr

[(
I3×3 + [−δθ×] +

1

2
[−δθ×]2

)
TI
B̂
BT

]
(5.52)

Because the Wahba problem has been shown to be equivalent to the negative

log-likelihood function (to first order) if the measurement covariance is chosen

to be Eq. 3.141,[120] the Fisher information matrix may be computed by

taking the partial derivative of J (δθ) twice with respect to δθ:

Fθθ = tr
[
TI
B̂
BT
]
I3×3 −TI

B̂
BT (5.53)

The details of this derivation are provided in Appendix E. Therefore,

P−1
θθ ≈ Fθθ = tr

[
TI
B̂
BT
]
I3×3 −TI

B̂
BT (5.54)

Rearranging the above equation (details also in Appendix E) for the attitude

profile matrix B,

B =

[
1

2
tr [Fθθ] I3×3 −Fθθ

]
TI
B̂

(5.55)

The relationships of Eq. 5.54 and Eq. 5.55 were first shown by Shuster in

1989.[120] From Eq. 5.54 and Eq. 5.55, one may freely move back and forth

between B and Pθθ.

5.4.3 The Wahba Problem Objective Function in Terms of Fisher
Information

In preparation for the development of the SOAR algorithm, it is useful

to find the value of the Wahba Problem objective function in terms of the
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Fisher information matrix. Begin by substituting Eq. 5.55 into Eq. 5.52

J (δθ) = λ0−tr

[(
I3×3 + [−δθ×] +

1

2
[−δθ×]2

)
(5.56)

TI
B̂
TB̂
I

(
1

2
tr [Fθθ] I3×3 −FT

θθ

)]
Recognizing that Fθθ is symmetric, and expanding the terms in the objective

function yields

J (δθ) = λ0 −
1

2
tr [Fθθ] +

1

2
δθTFθθδθ (5.57)

Taking closer look at the second term and substituting Eq. 5.54 for Fθθ,

1

2
tr [Fθθ] =

1

2
tr
[
tr
[
TI
B̂
BT
]
I3×3 −TI

B̂
BT
]

= tr
[
TI
B̂
BT
]

= ˆ̄qTKˆ̄q (5.58)

Therefore, substituting this into Eq. 5.57 means that the Wahba Problem

objective function evaluated at the true attitude may be written in terms of

the Fisher information matrix as

J (δθ) = λ0 − ˆ̄qTKˆ̄q +
1

2
δθTFθθδθ (5.59)

Looking again at Eq. 5.38, it follows that

J (δθ) = J
(
ˆ̄q
)

+
1

2
δθTFθθδθ (5.60)

The form of Eq. 5.60 is not surprising given that the solution to the Wahba

problem is known to produce a maximum likelihood estimate of the attitude.

It is also interesting to note that the difference in the value of the objective

function at the true attitude and the value of the objective function at the

best estimate of the attitude is equivalent to the square of the Mahalanobis

distance[174, 175] between these two attitudes.
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The relation in Eq. 5.60 allows for a number of interesting observations.

First, this relation will be critical in the derivation of the SOAR Filter. Second,

the optimal attitude in terms of δθ may be found by taking the differential of

Eq. 5.60 and setting the result equal to zero,

dJ (δθ) =
[
δθTFθθ

]
dθ = 0 (5.61)

Because dθ is an independent differential it is arbitrary, and it’s coefficient

must be equal to zero if dJ (δθ) is to be zero. Further, because Fθθ is full rank,

it has no null space. Therefore, it is clear that the optimal solution is at δθ = 0.

Because δθ represents a rotation with respect to the estimated attitude, it is

no surprise that the optimal solution should occur at δθ = 0. Further, if the

second differential of Eq. 5.60 is greater than zero, then the optimal solution

minimizes the objective function. Therefore, taking the second differential

yields

d2J (δθ) = dθTFθθdθ > 0 (5.62)

The Fisher information matrix is positive definite, confirming that the optimal

attitude does indeed minimize the objective function.

5.5 Development of SOAR Filter

5.5.1 Maximum Likelihood State Estimation

The objective is to achieve a maximum likelihood estimate of the state

vector at time tk, xk, given an a priori estimate and some set of observations,
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y. Begin by recalling Bayes Theorem,

p (x|y) =
p (y|x) p (x)

p (y)
(5.63)

where p (x|y) is the probability density function (PDF) that describes the

probability of observing the state vector x conditioned on the knowledge of

the observation y.

In the present optimization problem, suppose the objective is to max-

imize the likelihood of the state estimate at time tk conditioned on m new

measurements at time tk and an a priori estimate of the state (with the a

priori estimate conditioned on r old measurements). Using Bayes Theorem,

this may be mathematically expressed as

Max p
(
xk|y1,y2, . . . ,yr+m

)
(5.64)

=
p
(
yr+1, . . . ,yr+m|xk

)
p (xk|y1,y2, . . . ,yr)

p
(
yr+1, . . . ,yr+m

)
Proceed by assuming that each of the new observations are independent,

p
(
yr+1, . . . ,yr+m|xk

)
=

r+m∏
i=r+1

p (yi|xk) (5.65)
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such that the optimization problem in Eq. 5.64 may be rewritten as1

Max p
(
xk|y1,y2, . . . ,yr+m

)
=
p (xk|y1,y2, . . . ,yr)

∏r+m
i=r+1 p (yi|xk)

p
(
yr+1, . . . ,yr+m

) (5.66)

This formulation, of course, makes no assumption about the actual distribu-

tions of the state vector or the measurements. Now, if the a priori estimate

of the state vector at time tk is assumed to have a Gaussian distribution, then

p (xk|y1,y2, . . . ,yr) = C1,k exp

{
−1

2

(
xk − x̂−k

)T (
P−k
)−1 (

xk − x̂−k
)}

(5.67)

where C1,k is a scalar that makes the integral of p(·) equal to unity. This

scalar is a function of the covariance matrix. Moving forward, assume that

the covariance, and hence C1,k, is independent of the state. Similarly, if the

measurement errors are assumed to have a Gaussian distribution

p (yi|xk) = C2,i exp

{
−1

2

(
yi − hi

(
x̂−k
))T

R−1
i

(
yi − hi

(
x̂−k
))}

(5.68)

For the moment, assume the measurements are line-of-sight unit vector ob-

servations such that yi = (ẽi)B and hi
(
x̂−k
)

= TI
B (ei)I . Note that because

(ẽi)B is a unit vector, the domain of yi is the unit sphere. A more detailed

1To help explicitly connect the PDFs shown in Eq. 5.66 to the notation used elsewhere
in this dissertation, consider the following relations. Assume that the state x is an n × 1
vector given by x = [x1 x2 . . . xn]T

x̂+
k = E

[
x+

k

]
=
ˆ ∞
−∞

ˆ ∞
−∞

. . .

ˆ ∞
−∞

xk p
(
xk|y1,y2, . . . ,yr+m

)
dx1 dx2 . . . dxn

x̂−k = E
[
x−k
]

=
ˆ ∞
−∞

ˆ ∞
−∞

. . .

ˆ ∞
−∞

xk p (xk|y1,y2, . . . ,yr) dx1 dx2 . . . dxn
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discussion of the PDF for a unit vector measurement, including the complete

expression for the scalar C2,i, is given in [120]. Making these substitutions,

p (yi|xk) = C2,i exp

{
−1

2

[
(ẽi)B −TI

B (ei)I
]T

R−1
i (5.69)[

(ẽi)B −TI
B (ei)I

]}
Substituting the pseudoinverse for R−1 from Eq. 3.142 and recalling the iden-

tity from Eq. 3.129,

p (yi|xk) = C2,i exp

{
−1

2

1

σ2
φ,i

[
(ẽi)B −TI

B (ei)I
]T

(5.70)[
(ẽi)B −TI

B (ei)I
]}

Therefore, substituting the result of Eq. 5.70 into Eq 5.65,

p
(
yr+1, . . . ,yr+m|xk

)
=

r+m∏
i=r+1

p (yi|xk) (5.71)

= C3,k exp

{
−1

2

r+m∑
i=r+1

1

σ2
φ,i

∥∥(ẽi)B −TI
B (ei)I

∥∥2

}

where C3,k =
∏r+m

i=r+1C2,i. Note that the term in the exponent of Eq. 5.71 is

equivalent to the traditional Wahba Problem objective function to first order if

wi = 1/σ2
φ,i. This demonstrates that solutions to the Wahba Problem produce

a maximum likelihood estimate of the attitude if wi = 1/σ2
φ,i.

Substituting Eq. 5.67 and Eq. 5.71 into Eq. 5.66, a maximum likeli-
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hood estimate of the state exists at

Max p
(
xk|y1,y2, . . . ,yr+m

)
=

C1,k C3,k

p
(
yr+1, . . . ,yr+m

) (5.72)

× exp

{
−1

2

(
xk − x̂−k

)T (
P−k
)−1 (

xk − x̂−k
)}

× exp

{
−1

2

r+m∑
i=r+1

1

σ2
φ,i

∥∥(ẽi)B −TI
B (ei)I

∥∥2

}

Recognizing that the maximum of p
(
xk|y1,y2, . . . ,yr+m

)
occurs at the same

value of the state as the maximum of ln
[
p
(
xk|y1,y2, . . . ,yr+m

)]
, a maximum

likelihood estimate of the state may also be found by finding

Max ln [C1,k] + ln [C3,k]− ln
[
p
(
yr+1, . . . ,yr+m

)]
(5.73)

− 1

2

(
xk − x̂−k

)T (
P−k
)−1 (

xk − x̂−k
)

− 1

2

r+m∑
i=r+1

1

σ2
φ,i

∥∥(ẽi)B −TI
B (ei)I

∥∥2

Because the first three terms do not depend on the estimate of the state, they

may be dropped from the objective function in determining the maximum

likelihood estimate. Dropping the these terms and rewriting as a minimization

problem yields the following form of the objective function

Min L =
1

2

(
xk − x̂−k

)T (
P−k
)−1 (

xk − x̂−k
)

(5.74)

+
1

2

r+m∑
i=r+1

1

σ2
φ,i

∥∥(ẽi)B −TI
B (ei)I

∥∥2

230



5.5.2 Discussion of SOAR Filter State Vector

The objective of the present filter is to estimate the attitude of a vehicle

along with a number of other vehicle parameters. To express the attitude, it

is desired to use a minimal degree representation (a number of different three-

dimensional parameterizations would work here) instead of the constrained

four-dimensional quaternion. Here, the attitude will be represented by the

vector θ:

θ = eθθ (5.75)

Where θ is expressed in the body frame and represents the rotation from the

current best estimate of the attitude to the true attitude. As was observed

earlier, this means that θ̂
−
≡ 0. The implications of this selection are critical

to the proper treatment of attitude in the filter and will be discussed in detail

in the following sections.

In addition to estimating the attitude, the SOAR Filter also estimates

other vehicle parameters that are defined by the parameter vector β. There-

fore, the state vector for the SOAR Filter is given by

x =

[
θ
β

]
(5.76)

5.5.3 Reformulation of SOAR Objective Function

Recalling the relation between the covariance matrix and the Fisher in-

formation matrix from Eq. 5.49, and define the components of the partitioned
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Fisher information matrix as

P−1 ≈ F =

[
Fθθ Fθβ

Fβθ Fββ

]
(5.77)

Substituting this result at time k into the objective function from Eq. 5.74

yields

Min L =
1

2
δθTkF−θθ,kδθk +

1

2
δθTkF−θβ,kδβk +

1

2
δβTkF−βθ,kδθk (5.78)

+
1

2
δβTkF−ββ,kδβk +

1

2

r+m∑
i=r+1

1

σ2
φ,i

∥∥(ẽi)B −TI
B (ei)I

∥∥2

The subscript k is temporarily dropped in the following derivation to abbrevi-

ate notation. Care must be taken here not to confuse the Fθθ generated from

the inverse of the 3 × 3 attitude covariance matrix in Eq. 5.54 with the Fθθ

described in Eq. 5.78 and Eq. 5.77. The Fθθ in Eq. 5.78 and Eq. 5.77 is

the upper 3 × 3 matrix of the inverse of the entire covariance matrix, which

contains both attitude and non-attitude states. The different font is chosen to

help keep this distinction clear.

Further, recognizing that Fθβ = FT
βθ and using the form of the Wahba

Problem cost function from Eq. 5.31,

Min L =
1

2
δθTF−θθδθ + δθTF−θβδβ +

1

2
δβTF−ββδβ + λm0 − q̄TKmq̄ (5.79)

where Km is the measurement Davenport matrix constructed using only the

new measurements. If the measurements are unit vectors, then Km is com-

puted as in the regular Wahba Problem. If the measurements are quaternions

(as is sometimes the case for commercially available star trackers that provide
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a quaternion estimate instead of the raw measurements), then the measured

attitude and measurement covariance matrix are used to create Bm from Eq.

5.55. Now, Bm may be used to compute Km from Eq. 5.32 to Eq. 5.35.

To obtain a more useful expression for Eq. 5.79, begin by looking at

the first term on the right hand side. Recalling the following relation for the

inverse of a partitioned matrix[
A11 A12

A21 A22

]−1

(5.80)

=

[ [
A11 −A12A

−1
22 A21

]−1 −
[
A11 −A12A

−1
22 A21

]−1
A12A

−1
22

−A−1
11 A12

[
A22 −A21A

−1
11 A12

]−1 [
A22 −A21A

−1
11 A12

]−1

]
it may be shown through a little algebra that

Fθθ = P−1
θθ + FθβF

−1
ββFβθ = Fθθ + FθβF

−1
ββFβθ (5.81)

Therefore, the first term in Eq. 5.79 may be rewritten as

1

2
δθTF−θθδθ =

1

2
δθTF−θθδθ +

1

2
δθTF−θβ

(
F−ββ

)−1
F−βθδθ (5.82)

Now, from Eq. 5.60, it is clear that

1

2
δθTF−θθδθ = J (δθ)− J(ˆ̄q−) = J (q̄)− J(ˆ̄q−) (5.83)

and substituting the result from Eq. 5.31 into this expression yields

1

2
δθTF−θθδθ = λ−0 − q̄TK−q̄− J(ˆ̄q−) (5.84)

Therefore, substituting the result of Eq. 5.84 into Eq. 5.82, it may be shown

that

1

2
δθTF−θθδθ = λ−0 − q̄TK−q̄− J(ˆ̄q−) +

1

2
δθTF−θβ

(
F−ββ

)−1
F−βθδθ (5.85)
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As a brief aside, the a-priori Davenport matrix, K−, may be found by using

Eq. 5.32 to Eq. 5.35 and the a-priori attitude profile matrix, B−. The a-priori

attitude and covariance may be used to find B− from Eq. 5.55,

B− =

[
1

2
tr
[(

P−θθ
)−1
]

I3×3 −
(
P−θθ
)−1
]

TI
B̂

(5.86)

where TI
B̂

is found through Eq. 3.11 using ˆ̄q− as the attitude.

Substituting the result of Eq. 5.85 into the objective function from Eq.

5.79 and combining like terms,

Min L =
(
λm0 + λ−0

)
− J

(
ˆ̄q−
)
− q̄T

(
Km + K−

)
q̄ (5.87)

+
1

2
δθTF−θβ

(
F−ββ

)−1
F−βθδθ + δθTF−θβδβ +

1

2
δβTF−ββδβ

Note that this expression contains both q̄ and δθ. These are simply two dif-

ferent ways of expressing the attitude. Therefore, in order to simplify this

expression, note the following relations associated with rotations and quater-

nion multiplication[
δθ/2

1

]
≈ δq̄ = q̄⊗

(
ˆ̄q−
)−1

=

[
q
q4

]
⊗
[
−q̂−

q̂−4

]
(5.88)

Using the definition of the quaternion product, proceed by showing that[
q
q4

]
⊗
[
−q̂−

q̂−4

]
=

[
q̂−4 q− q4q̂

− + q× q̂−

q4q̂
−
4 + qT q̂−

]
(5.89)

=

[
q̂−4 I3×3 −

[
q̂−×

]
−q̂−(

q̂−
)T

q̂−4

]
q̄

Therefore, define the 3× 4 matrix Ψ
(
ˆ̄q−k
)

as

Ψ
(
ˆ̄q−
)

=
[
q̂−4 I3×3 −

[
q̂−×

]
−q̂−

]
(5.90)
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such that

δθ = 2Ψ
(
ˆ̄q−
)

q̄ (5.91)

Now, substituting this identity into Eq. 5.87 allows the objective function to

be written as

Min L =
(
λm0 + λ−0

)
− J

(
ˆ̄q−
)
− q̄T

(
Km + K−

)
q̄ (5.92)

+ 2q̄TΨ
(
ˆ̄q−
)T

F−θβ
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

q̄

+ 2q̄TΨ
(
ˆ̄q−
)T

F−θβδβ +
1

2
δβTF−ββδβ

5.5.4 Finding the Optimal State Update in SOAR

Using a similar approach as for the optimal solution for the regular

Wahba problem, adjoin the attitude quaternion unity norm constraint to the

objective function using a Lagrange multiplier, λ, such that

Min L (q̄,β, λ) =
(
λm0 + λ−0

)
− J

(
ˆ̄q−
)
− q̄T

(
Km + K−

)
q̄ (5.93)

+ 2q̄TΨ
(
ˆ̄q−
)T

F−θβ
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

q̄

+ 2q̄TΨ
(
ˆ̄q−
)T

F−θβδβ +
1

2
δβTF−ββδβ + λ

(
q̄T q̄− 1

)
Taking the differential of L (q̄,β, λ),

dL (q̄,β, λ) =
{
−2q̄T

(
Km + K−

)
(5.94)

+ 4q̄TΨ
(
ˆ̄q−
)T

F−θβ
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

+2δβTFβθΨ
(
ˆ̄q−
)

+ 2λq̄T
}
dq̄

+
{

2q̄TΨ
(
ˆ̄q−
)T

F−θβ + δβTF−ββ

}
dβ +

{
q̄T q̄− 1

}
dλ = 0
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where the first three components of dq̄ are independent differentials and the

fourth component is a dependent differential (this distinction is required be-

cause of the quaternion unity norm constraint). The differentials have been

combined back into dq̄ for brevity. Setting the coefficient of dλ to zero pro-

duces

q̄T q̄− 1 = 0 (5.95)

which simply states that the quaternion unity norm constraint must be satis-

fied. Assuming no constraints on the non-attitude states, dβ is an independent

differential. Therefore, if dJ (q̄,β, λ) is to be zero for an arbitrary dβ, the co-

efficient of dβ must be zero,

2q̄TΨ
(
ˆ̄q−
)T

F−θβ + δβTF−ββ = 0 (5.96)

Rearranging and solving for δβ (again recall that Fββ is symmetric),

δβ = −2
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)
q̄ (5.97)

Now move to the term involving dq̄ = [dqT dq4]T in Eq. 5.94. Because dq

is an independent differential, its coefficients must be zero. Additionally, the

Lagrange multiplier λ is picked such that the coefficient of the dependent

differential dq4 is also zero. Therefore, the coefficient of dq̄ in Eq. 5.94 must

be zero,

− 2q̄T
(
Km + K−

)
+ 4q̄TΨ

(
ˆ̄q−
)T

F−θβ
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

+ 2δβTF−βθΨ
(
ˆ̄q−
)

+ 2λq̄T = 0 (5.98)
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Substituting the optimal value of δβ from Eq. 5.97,

−q̄T
(
Km + K−

)
+ 2q̄TΨ

(
ˆ̄q−
)T

F−θβ
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

(5.99)

− 2q̄TΨ
(
ˆ̄q−
)T

F−θβ
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

+ λq̄T = 0

The middle two terms cancel, leaving

−q̄T
(
Km + K−

)
+ λq̄T = 0 (5.100)

Therefore, if K+ is given by

K+ = Km + K− (5.101)

then Eq. 5.100 may be rewritten as

−q̄TK+ + λq̄T = 0 (5.102)

Recognizing that K+ is symmetric and that the solution to Eq. 5.102 is the

a-posteriori attitude estimate, which allows q̄ to be replaced by ˆ̄q+,

K+ ˆ̄q+ = λˆ̄q+ (5.103)

The optimal ˆ̄q+ may be found using any solution method to the normal Wahba

Problem. Once ˆ̄q+ is known, δβ may be found using Eq. 5.97. The updated

parameter vector, therefore, is simply given by

β+ = β− + δβ = β− − 2
(
F−ββ

)−1
F−βθΨ

(
ˆ̄q−
)

ˆ̄q+ (5.104)
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5.5.5 Finding the Optimal Covariance Update in SOAR

Now that the optimal state update has been derived, it is necessary to

compute the corresponding update to the state covariance matrix. Begin by

rewriting the objective function from Eq. 5.87 as

Min L =
(
λm0 + λ−0

)
− J

(
ˆ̄q−
)
− tr

[
TI
B

(
Bm + B−

)T]
(5.105)

+
1

2
δθTF−θβ

(
F−ββ

)−1
F−βθδθ + δθTF−θβδβ +

1

2
δβTF−ββδβ

As was done in finding the covariance for the regular Wahba Problem in Eq.

5.52, rewrite the attitude term in terms of δθ, where δθ is a small angle

rotation from the best estimate of the body frame,

Min L =
(
λm0 + λ−0

)
− J

(
ˆ̄q−
)

(5.106)

− tr

[(
I3×3 + [−δθ×] +

1

2
[−δθ×]2

)
TI
B̂

(
Bm + B−

)T]
+

1

2
δθTF−θβ

(
F−ββ

)−1
F−βθδθ + δθTFθβδβ +

1

2
δβTFββδβ

If the relation in Eq. 5.101 is true, then the following must also be true

B+ = Bm + B− (5.107)

Substituting this result into Eq. 5.106, the a-posteriori Fisher information

matrix may be computed using the relation given in Eq. 5.47. Therefore, the

differentiation of Eq. 5.106 will yield the following results

F+
θθ = tr

[
TI
B̂

(
B+
)T]

I3×3 −TI
B̂

(
B+
)T

+ F−θβ
(
F−ββ

)−1
F−βθ (5.108)

F+
θβ =

(
F+
βθ

)T
= F−θβ (5.109)
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F+
ββ = F−ββ (5.110)

This makes sense in that the only new information available is in the atti-

tude estimate. The present implementation of the SOAR Filter only allows

line-of-sight unit vector measurements and attitude measurements, therefore

improved estimates of the parameter vector β is only possible through knowl-

edge of the dynamics and correlation between the estimates of the attitude

and parameters. Further, it is interesting to note the relationship between

Eq. 5.108 and Eq. 5.54. The first two terms in Eq. 5.108 are what would be

expected from Eq. 5.54 to go from B+ to F+
θθ in a system where only attitude

states are estimated. The third term, which is new, follows from the inclusion

of non-attitude states.

To compute the a-posteriori covariance matrix, recall the relation for

the inverse of a segmented matrix given in Eq. 5.80. From this relation, it is

straightforward to see that

P+
θθ =

[
F+
θθ − F+

θβ

(
F+
ββ

)−1
F+
βθ

]−1

(5.111)

P+
ββ =

[
F+
ββ − F+

βθ

(
F+
θθ

)−1
F+
θβ

]−1

(5.112)

P+
βθ =

(
F−ββ

)−1
F−βθP

+
θθ (5.113)

A useful identity may be shown by expanding these three equations using the

Woodbury identity.2 As an example, the this identity allows the expression

2The Woodbury identity for matrix inverses is given by:
[
A + C B CT

]−1

= A−1 −

A−1C
[
B−1 + CT A−1C

]−1

CT A−1
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for P+
ββ to be rewritten as

P+
ββ =

(
F+
ββ

)−1
+
(
F+
ββ

)−1
F+
βθP

+
θθF

+
θβ

(
F+
ββ

)−1
(5.114)

Recalling the relations of Eq. 5.109 and Eq. 5.110,

P+
ββ = P−ββ +

(
F−ββ

)−1
F−βθ

[
P+
θθ −P−θθ

]
F−θβ

(
F−ββ

)−1
(5.115)

Using the same procedure, a similar relation may be shown for P+
θθ

P+
θθ = P−θθ +

(
F−θθ
)−1

F−θβ
[
P+
ββ −P−ββ

]
F−βθ

(
F−θθ
)−1

(5.116)

The off-diagonal elements may be found using a similar approach. Directly

from Eq. 5.80 one may write

P+
βθ =

(
F−ββ

)−1
F−βθP

+
θθ (5.117)

The same results may also be found using the standard definition of

the covariance matrix (i.e. a covariance/uncertainty approach rather than an

information approach). Begin by considering the definition of the a-posteriori

attitude covariance

P+
θθ = E

[(
θ+ − E [θ]

) (
θ+ − E [θ]

)T]
(5.118)

Rewriting in terms of the a-priori attitude and the attitude update, θ+ =

θ− + ∆θ, and assuming an unbiased estimator, E [∆θ] = 0,

P+
θθ = E

[(
θ− + ∆θ − E [θ]

) (
θ− + ∆θ − E [θ]

)T]
(5.119)

P+
θθ = P−θθ + E

[
∆θ∆θT

]
(5.120)
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Turning attention to the a-posteriori covariance for the parameter vector,

P+
ββ = E

[(
β+ − E [β]

) (
β+ − E [β]

)T]
(5.121)

where it is assumed that E [∆β] = 0. As with P+
θθ this yields

P+
ββ = P−ββ + E

[
∆β∆βT

]
(5.122)

Using the parameter vector update from Eq. 5.97,

P+
ββ = P−ββ + E

[(
−F−1

ββFβθ∆θ
) (
−F−1

ββFβθ∆θ
)T]

(5.123)

Recognizing that the only random variable is ∆θ, this may be rewritten as

P+
ββ = P−ββ + F−1

ββFβθE
[
∆θ∆θT

]
FθβF

−1
ββ (5.124)

Substituting for E
[
∆θ∆θT

]
from Eq. 5.120 produces the same equation for

P+
ββ as obtained through inversion of the Fisher information matrix in Eq.

5.115. A similar procedure will verify the expressions for P+
θθ and P+

βθ. The

details of this equivalence for P+
θθ and P+

βθ are not presented here for brevity.

5.5.6 Propagation of State and Covariance for SOAR

The only remaining step is to propagate the a-posteriori state estimate

and covariance at time tk forward in time to create the a-priori state estimate

and covariance at time tk+1. Consider a system with the following nonlinear

dynamic model:

ẋ = f (x(t),u(t), t) + G(t)w(t) (5.125)

˙̂x = f (x̂(t),u(t), t) (5.126)
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Proceed by taking the Taylor series expansion of f (x,u, t) about the estimated

trajectory and keep only first-order terms,

ẋ =

[
f (x̂(t),u(t), t) +

(
∂f

∂x

∣∣∣∣
x=x̂(t)

)
(x(t)− x̂(t))

]
+ G(t)w(t) (5.127)

Defining the matrix F (x̂(t), t) as

F (x̂(t), t) =
∂f

∂x

∣∣∣∣
x=x̂(t)

(5.128)

and establishing the following state error vectors,

δx = x− x̂ δẋ = ẋ− ˙̂x (5.129)

allows for Eq. 5.127 to be rewritten as the following linearized model:

δẋ = F (x̂, t) δx + G(t)w(t) (5.130)

This is a standard result that seen in the implementation of the EKF; it is well-

known and discussed thoroughly in the literature.[81, 151, 152] Such a linear

model is known to admit a solution of the form

δx(t) = Φ (t, t0) δx(t0) +

ˆ t

t0

Φ (t, τ) G(τ)w(τ) dτ (5.131)

where Φ (t, t0) is the state transition matrix from t0 to t. Therefore, assuming

that the state error and the process noise are uncorrelated, i.e. E
[
δx(t)w(t)T

]
=

0, it may be shown that

P = E
[
δxδxT

]
(5.132)

= Φ (t, t0) P0Φ (t, t0)T +

ˆ t

t0

Φ (t, τ) G(τ)Q(τ)GTΦ (t, τ)T dτ
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where

Q(τ) = E
[
w(τ)w(τ)T

]
(5.133)

Taking the time derivative of Eq. 5.132 (which requires the application of

Leibniz’s Rule) and recognizing that Φ̇ = FΦ, yields the well known equation

for the propagation of the covariance matrix typically seen in the discrete-

continuous EKF:

Ṗ (t) = F (x̂, t) P (t) + P (t) F (x̂, t)T + G (t) Q (t) G (t)T (5.134)

This expression is used to propagate the covariance between measurement

updates in SOAR.

5.6 Construction of SOAR Algorithm

All the theoretical components required to create the SOAR Filter are

now in place. A brief summary of the SOAR Filter is provided in the following

paragraphs. A flow chart of the SOAR Filter is shown in Fig. 5.1.

Given an a-priori attitude estimate and covariance matrix, compute

the a-priori attitude profile matrix from Eq. 5.55. Use this to create the

a-priori Davenport matrix using Eq. 5.32 through Eq. 5.35.

Next, compute the measurement attitude profile matrix. If the mea-

surements are from unit vectors, create the measurement attitude profile ma-

trix using Eq. 5.15. If, on the other hand, a measured attitude is available,

compute the measurement attitude profile matrix using Eq. 5.55. Because the

Davenport matrix K is a linear homogeneous function of B, the measurement
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attitude profile matrices for all measurement sources (whether they come from

unit vector measurements or quaternion measurements) may be added before

using Eq. 5.32 through Eq. 5.35 to get the measurement Davenport matrix

at any given epoch.

The SOAR Davenport matrix may now be computed through Eq. 5.101.

Use any solution method to the Wahba Problem to solve for the optimal atti-

tude. With the optimal attitude found, use Eq. 5.97 to compute the update

to the parameter vector β. Finally compute the updated covariance matrix

by taking the inverse of the Fisher information matrix found using Eq. 5.108

through Eq. 5.110.

To state vector may be propagated to the next measurement epoch

using Eq. 5.126, and the covariance matrix may be propagated using Eq.

5.134. Once at the next epoch, the procedure is repeated.

5.7 Comparison of SOAR with Other Attitude Filters

5.7.1 Comparison of the SOAR Filter with the Multiplicative Ex-
tended Kalman Filter

The central idea behind the MEKF is to use the unconstrained three-

parameter representation δθ instead of the constrained four-parameter atti-

tude quaternion in the state vector of a regular EKF.[169, 176] This means

that the MEKF estimates δθ̂ and then updates the attitude quaternion by

q̄+ ≈
[
δθ̂/2

1

]
⊗ q̄− (5.135)
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Compute a-priori Davenport Matrix

Compute Measurement Davenport Matrix

 Eq. 5.32 through 5.35

If measurements are unit vectors:If measurements are quaternions:

Combine all measurements into a single
measurement attitude profile matrix:

 Eq. 5.32 through 5.35

Update State Vector & Covariance Matrix

Propagate state estimate and covariance to next measurement time

Update state vector:

Update covariance matrix:

Compute using QUEST,
ESOQ, or similar method

Another
Measurement?

Figure 5.1: SOAR Filter flow chart.
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This update only maintains the quaternion unity norm constraint to first order,

making it common practice to normalize the a-posteriori quaternion, q̄+ =

q̄+/ ‖q̄+‖.

An important similarity between the MEKF and the SOAR Filter is

the objective function used to find the optimal update. Both the MEKF

and SOAR Filter explicitly find the minimum variance state update (under

the assumption that errors are Gaussian) and therefore minimize J = tr
[
P+
]
.

Therefore, the MEKF and the SOAR Filter are expected to behave in a similar

fashion when the errors are small and the MEKF linearization assumptions are

good. Simulation confirms that this is the case. A second important similarity

is that both the MEKF ans SOAR can estimate non-attitude states.

Unlike the MEKF, the SOAR Filter deals directly with the nonlin-

ear nature of attitude representations and the Wahba Problem. Rather than

linearizing the update equation as is required in the MEKF, the SOAR Fil-

ter explicitly solves the constrained quadratic cost function. This allows the

SOAR Filter to directly compute the attitude quaternion.

5.7.2 Comparison of SOAR with Filter QUEST and REQUEST

Filter QUEST[161, 162] and REQUEST[163] are both based on sequen-

tialization of the Wahba Problem. Performing this sequentialization produces

the following recursive filter equation (using the same nomenclature as for the

SOAR Filter) that is called “Filter QUEST” in the literature,[161]

B+
k+1 = Bm

k+1 + αk+1Φ (tk+1, tk) B+
k (5.136)
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where αk+1 ∈ [0 1] and represents reduction in knowledge associated with the

propagation. This is a classic fading memory filter [152] where αk+1 = 0 causes

the filter to ignore the old measurements and αk+1 = 1 makes the filter think

there is no process noise and the measurements are combined as if they were

all taken simultaneously. Therefore, heuristically speaking, the fading memory

factor αk+1 should look something like
∑
σ(tk)

2
φ,i/σ(tk+1)2

φ,i. Note, however,

that the Filter QUEST algorithm picks a suboptimal value for αk+1 to reduce

complexity and increase algorithm speed.

Because the Davenport matrix K is a linear homogeneous function of

attitude profile matrix B, Eq. 5.136 may be written in terms of K instead

of B. This represents the fundamental difference between the Filter QUEST

and REQUEST algorithm: Filter QUEST is a sequentialization on B and RE-

QUEST is a sequentialization on K. Shuster provides an excellent discussion of

the relation between these two algorithms,[164] which are shown to be equiv-

alent when the same selection is made for αk+1. Therefore, the conclusions

made in the comparison with Filter QUEST also hold for REQUEST.

Although not generally true, it is possible to analytically select the

forgetfulness factor (αk+1 in Eq. 5.136) under specific scenarios. Consider a

system with the following assumptions:

1. Only three unit vector measurements are available

2. Each unit vector measurement lies along one of the coordinate axes with

a measurement standard deviation of σφ
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3. The process noise is a zero mean white noise process with Q = qI3×3

4. Steady state filter covariances

5. The attitude covariance matrix is diagonal, Pθθ = pI3×3

Shuster demonstrates[161, 162] that under these conditions the optimal αk+1

may be analytically computed as

αk+1 =
σ2
φ/q + 1−

√
1 + 2σ2

φ/q

σ2
φ/q

(5.137)

This simple equation for αk+1 provides an excellent approximation of the more

general optimal fading memory factor. Note, however, that a typical star

tracker may track many more than three stars and all the unit vector obser-

vations will be separated by an angle less than the camera FOV (i.e. it is

not possible to obtain measurements along each of the coordinate axes). This

means that the αk+1 given in Eq. 5.137 is suboptimal in the general sense.

The SOAR Filter removes all five of the assumptions made in comput-

ing αk+1. As discussed above, the SOAR Filter provides the optimal state

update under the assumption that state vector error and measurement errors

are normally distributed. The SOAR Filter is also capable of estimating other

states in addition to attitude (recall that one of the major drawbacks to Filter

QUEST and REQUEST is their inability to also estimate non-attitude states).

These advantages, however, come at the expense of additional computations.
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5.7.3 Comparison of SOAR with Optimal-REQUEST

The Optimal-REQUEST algorithm[165] finds the attitude that mini-

mizes the objective function

Min JOpt−RQ = tr
[
E
[
∆K (∆K)T

]]
(5.138)

where K = K̂+∆K. Recognizing that ∆K is symmetric, it is straightforward

to show that the 2-norm and Frobenius norm of the matrix ∆K are given by

‖∆K‖2
2 = λmax

(
∆K (∆K)T

)
= λ2

max (∆K) (5.139)

‖∆K‖2
F = tr

[
∆K (∆K)T

]
(5.140)

This means that Optimal-REQUEST minimizes the expected value of the

square of the Frobenius norm of ∆K.

Recalling an important result from eigenvalue-eigenvector stability,[177]

the estimate of the attitude quaternion may be written as,

ˆ̄q = q̄ +
4∑
j=2

[
uTj ∆Kq̄

λ1 − λj

]
uj +H.O.T. (5.141)

where uj are the eigenvectors and λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of the

true Davenport matrix, K. Also recall that the true quaternion is associated

with the largest eigenvalue of K (i.e. u1 ≡ q̄). Because all uj are assumed to

have unity norm and ∆K must be a symmetric matrix, it is straightforward

to show (Jordan decomposition) that uTj ∆Kq̄ ≤ λmax (∆K). Because it can

also be shown that tr [Pθθ] = 4tr
[
E
[(

ˆ̄q− q̄
) (

ˆ̄q− q̄
)T]]

to first order, then

tr [Pθθ] ≤ 4E
[
λ2
max (∆K)

] 4∑
j=2

4∑
l=2

[
1

(λ1 − λj) (λ1 − λl)

]
tr
[
uju

T
l

]
(5.142)
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Note that the double summation is only a function of the true attitude and,

therefore, may be moved outside of the expected value operator. Additionally,

using the 2-norm identity from Eq. 5.139, the above may be rewritten as

tr [Pθθ] ≤ 4E
[
‖∆K‖2

2

]
ζ(K) (5.143)

where

ζ (Kk) =
4∑
j=2

4∑
l=2

[
1

(λ1 − λj) (λ1 − λl)

]
tr
[
uju

T
l

]
(5.144)

Now, recalling that the 2-norm is always less than or equal to the Frobenius

norm, ‖∆K‖2 ≤ ‖∆K‖F , the above inequality may be extended as

tr [Pθθ] ≤ 4E
[
‖∆K‖2

2

]
ζ(K) ≤ 4E

[
‖∆K‖2

F

]
ζ(K) (5.145)

The SOAR Filter, because it provides a maximum likelihood estimate

and assumes normally distributed random variables, provides a minimum vari-

ance estimate of the attitude, i.e. the SOAR Filter minimizes JSOAR = tr [Pθθ].

Now, recalling that JOpt−RQ = E
[
‖∆K‖2

F

]
, will show that

JSOAR ≤ 4JOpt−RQζ(K) (5.146)

Therefore, Optimal-REQUEST and the SOAR Filter provide the minimum to

two different objective functions. The objective functions of the SOAR Filter

and Optimal-REQUEST are related by Eq. 5.146. It is important to note that

the inequality of Eq. 5.146 should not be taken to suggest that the SOAR

Filter’s objective function is better - this inequality simply shows the relation

between the two different objective functions. That being said, the SOAR
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Filter has the advantage that it explicitly addresses the objective of providing

a maximum likelihood estimate of the spacecraft attitude. Finally, because

Optimal-REQUEST is an extension of the REQUEST algorithm (with optimal

αk+1 chosen to minimize Eq. 5.138), the Optimal-REQUEST algorithm is also

unable to estimate non-attitude states.

5.7.4 Comparison of the SOAR Filter with Extended-QUEST

The Extended-QUEST algorithm is the closest of the existing attitude

filtering methods to the SOAR Filter. The Extended-QUEST algorithm is a

solution to the following optimization problem,[166]

JExt−QUEST =
1

2
q̄TKmq̄ +

1

2

[
Rqq

(
q̄− q̄−

)]T [
Rqq

(
q̄− q̄−

)]
(5.147)

+
1

2

[
Rβq

(
q̄− q̄−

)
+ Rββ

(
β − β−

)]T
×
[
Rβq

(
q̄− q̄−

)
+ Rββ

(
β − β−

)]
where Rxx are the square root information matrices that come from the left QR

factorization of the information matrix at each epoch. The Extended-QUEST

algorithm in Eq. 5.147 has been rewritten using the same nomenclature as in

the SOAR Filter to facilitate easy comparison. Strong parallels between the

SOAR Filter and Extended-QUEST are immediately evident by comparing

the SOAR Filter objective function in Eq. 5.79 with the Extended-QUEST

objective function in Eq. 5.147. These similarities produce similar results for

the state vector update. The Extended-QUEST parameter vector update is

given by

β̂
+

= β̂
−
−R−1

ββRβq

[
q̄− ˆ̄q−

]
(5.148)
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which is clearly similar to the SOAR Filter parameter vector update from

Eq. 5.104. The attitude update, however, is significantly different than in

the SOAR Filter. Extended-QUEST finds the optimal a-posteriori attitude

through the solution to

[
Km + RT

qqRqq

]
q̄−RT

qqRqqq̄
− = λq̄ (5.149)

The introduction of the constant vector −RT
qqRqqq̄

− makes the solution to this

problem more difficult than the simple eigenvector-eigenvalue problem in Eq.

5.103 for the SOAR Filter.

Despite strong similarities, there are numerous noteworthy differences

between Extended-QUEST and the SOAR Filter. The first significant differ-

ence is that Extended-QUEST is a square-root information filter and, there-

fore, requires the use of the square-root information matrices that are obtained

through QR factorization. Because the SOAR Filter uses the information ma-

trix directly, QR factorization is not required. Although this reduces compu-

tations in the SOAR Filter, it places the SOAR Filter at a disadvantage from

the standpoint of numerical precision relative to Extended-QUEST.

The second significant difference between the SOAR Filter and Extended-

QUEST is how they express the attitude error. Extended-QUEST treats the

attitude quaternion error from an additive standpoint, rather than a multi-

plicative standpoint. Although the term “additive” is used here, it is important

to note that the Extended-QUEST algorithm explicitly enforces the quater-

nion unity norm constraint in generating the quaternion update. Therefore,
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the update here should not be confused with additive updates that do not

preserve the unity norm constraint.

The difference between using an additive or multiplicative quaternion

update has two significant implications. The first is that the covariance as-

sociated with Rqq is related to δq̄A = q̄ − ˆ̄q−, rather than the multiplicative

attitude quaternion error described in Eq. 5.40: δq̄ = q̄ ⊗ ˆ̄q−. This changes

the physical significance of the resulting Pqq in Extended-QUEST.

The second major implication of using the additive quaternion error

is related to the optimal update. The additive representation of the attitude

quaternion error requires the solution of a more general objective function.

When the first differential of Eq. 5.147 is set to zero, Extended-QUEST re-

quires the solution to Eq. 5.149, which is of the following form

(K− λI4×4) q̄ + g = 0 (5.150)

Psiaki demonstrates a robust method for finding the desired solution to this

problem.[166] Solving Eq. 5.150, however, requires more computation than

simply finding the largest eigenvalue/eigenvector of K using a method such

as QUEST or ESOQ. This means that solving for the optimal attitude in the

SOAR Filter (as described in Eq. 5.103) will be faster than finding the optimal

attitude in Extended-QUEST.
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5.8 Example: Estimation of Attitude and Gyro Bias

Consider a scenario where a filter is required to estimate the attitude

of a spacecraft and the gyro bias, bg. Rather than have the filter estimate the

angular velocity, which would require models for external torques, the gyro

measurements of angular velocity are taken to be truth. This is a common

practice for spacecraft attitude filters - sometimes referred to as “flying the

gyros.”

5.8.1 Theoretical Set-up for Example

Begin the derivation of this example SOAR error model by recalling the

attitude error quaternion described in Eq. 5.40. Taking the time derivative of

this equation,

δ ˙̄q = ˙̄q⊗ ˆ̄q−1 + q̄⊗ ˙̄̂q−1 (5.151)

Recalling the quaternion kinematic equation,

˙̄q =
1

2

[
ω
0

]
⊗ q̄ or ˙̄̂q =

1

2

[
ω̂
0

]
⊗ ˆ̄q (5.152)

and recognizing that ω = ω̂+ δω, it is possible to show that to first order,[81]

δ ˙̄q = −
[

[ω̂×] δq
0

]
+

1

2

[
δω
0

]
(5.153)

Or equivalently,

δq̇ = − [ω̂×] δq +
1

2
δω (5.154)

δq̇4 = 0 (5.155)
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For small angles, δq ≈ δθ/2. Under these conditions Eq. 5.154 becomes

δθ̇ = − [ω̂×] δθ + δω (5.156)

All that is needed to obtain a final expression for the attitude error is a better

understanding of δω. Assume that the angular velocity is not a state to be

estimated, but is a quantity provided by a rate-integration gyro. Further

assume a gyro measurement model[178] given by

ω̃ = [I3×3 + Sg + Γg] (ω + bg + wω) (5.157)

where Sg is the scale-factor error matrix, Γg is the misalignment error matrix,

ω̃ is the measured angular velocity, bg is the gyro bias, and wω is zero mean

white noise. This general model is simplified by assuming that there is no scale-

factor error, Sg = 03×3, and that there is no misalignment error, Γg = 03×3.

Under these conditions, the gyro measurement model becomes

ω̃ = ω + bg + wω (5.158)

The simplified measurement model of Eq. 5.158 is sometimes called Far-

renkopf’s gyro model and was first introduced in [179]. Further assume that

the gyro bias behaves as a first-order Gauss-Markov process:

ḃg = −1

τ
bg + wḃ (5.159)

where τ is the correlation time and wḃ is a zero mean white noise process. It

may further be shown that the variance of wḃ is 2σ2/τ .[152] This continuous-
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time differential equation may be rewritten in discrete form as:[151, 152]

bg(tk+1) = exp

[
−tk+1 − tk

τ

]
bg(tk) + σ

{
1− exp

[
−2

tk+1 − tk
τ

]} 1
2

v1

(5.160)

where v1 ∼ N(0, I3×3). Therefore,

ω̂ = E [ω] = ω̃ − b̂g (5.161)

˙̂
bg = E

[
ḃg

]
= −1

τ
b̂g (5.162)

Noting that ω = ω̂ + δω,

δω = − (δbg + wω) (5.163)

where δbg = bg − b̂g. Finally, substituting this into Eq. 5.156 yields the

differential equation governing the attitude estimation error

δθ̇ = − [ω̂×] δθ − (δbg + wω) (5.164)

Similarly, the differential equation governing the bias estimation error is given

by

δḃg = −1

τ
δbg + wḃ (5.165)

Recalling the linear error model from Eq. 5.130,

δx =

[
δθ(t)
δbg(t)

]
(5.166)

w =

[
wω

wḃ

]
(5.167)

F (x̂, t) =

[
− [ω̂(t)×] −I3×3

03×3 − 1
τ
I3×3

]
(5.168)
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G (t) =

[
−I3×3 03×3

03×3 I3×3

]
(5.169)

Additionally, let Q (t) = E
[
wwT

]
. If wω and wḃ are assumed to be uncorre-

lated, it is straightforward to show that

Q (t) =

[
E
[
wωw

T
ω

]
03×3

03×3 E
[
wḃwT

ḃ

] ]
(5.170)

5.8.2 Example Results

Two test cases are considered. The first is a scenario with typical sensor

errors and noise. In the first scenario, only SOAR Filter errors and covariances

are shown. The second scenario is a stressing case that contains very large a-

priori attitude errors and bias errors. The measurement noise is also increased.

Results for the second scenario are presented for the SOAR Filter, the MEKF,

and Filter QUEST.

The first test case has performance specifications as described in Table

5.1. The results for this test case are shown in Fig. 5.2 and Fig. 5.3. Star

tracker measurements were made available to the filter at a frequency of 1

Hz. The fact that almost all the results for the bias error lie within the ±1 σ

bounds indicates that the process noise could be reduced from the theoretically

predicted value.

The second test case has performance specifications as described in Ta-

ble 5.2. The results for this test case are shown in Fig. 5.4 and Fig. 5.5

The exact same noise and observations are applied to each filter technique
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Figure 5.2: Estimated attitude errors for the SOAR Filter in scenario 1 (normal
case with small errors).

in order to facilitate direct comparison. Under these extreme conditions, Fil-

ter QUEST is unable to converge because it is not estimating the gyro bias

and because of its suboptimal fading memory factor. Both the MEKF and

the SOAR Filter converge for this test case. Despite being given equivalent

a-priori information and processing the exact same measurements, significant

differences are observed prior to filter convergence. In all cases, the SOAR

Table 5.1: Summary of noise levels for SOAR Filter validations (scenario 1).

Description Initial Conditions / Standard Deviation
a-priori attitude error 1 deg about eθ = [0.58 0.58 0.58]T

a-priori bias error bg − b̂g = [0.25 − 0.5 0.375]T deg/hr
Star observation error σφ,i = 10 arcsec
Gyro measurement error σω = 0.05 deg/hr
Gyro bias Gauss-Markov error σ = 0.05 deg/hr

correlation time of τ = 1 hr

258



0 100 200 300 400 500 600
-0.1

0

0.1

ro
ll

b
ia

s
e
rr

o
r,

d
e
g
/h

r

SOAR bias estimate error

1-sigma bounds on estimated bias

0

0.1

p
it
c
h

b
ia

s
e
rr

o
r,

d
e
g
/h

r

0 100 200 300 400 500 600
-0.1

0

p
it
c
h

b
ia

s
e
rr

o
r,

d
e
g
/h

r

0 100 200 300 400 500 600
-0.1

0

0.1

time, sec

y
a
w

b
ia

s
e
rr

o
r,

d
e
g
/h

r

Figure 5.3: Estimated bias errors for the SOAR Filter in scenario 1 (normal
case with small errors).

Filter performs as well or better than the MEKF. In both the attitude es-

timation and the bias estimation, the SOAR Filter has lower overshoot (the

overshoot is induced by the very poor a-priori guess) and faster convergence.

As was noted before, however, the SOAR Filter and the MEKF minimize the

same objective function and are expected to exhibit similar behavior once the

filter converges. The results shown in Fig. 5.4 support this observation. To

make this observation clearer, a zoom-in of the roll-axis attitude error (see Fig.

5.6) shows that the SOAR Filter and the MEKF exhibit identical performance

after the filter converges. Similar results may be seen for the other attitude

errors and all of the bias errors.
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Table 5.2: Summary of noise levels for SOAR Filter validations (scenario 2).

Description Initial Conditions / Standard Deviation
a-priori attitude error 179 deg about eθ = [0.58 0.58 0.58]T

a-priori bias error bg − b̂g = [90 − 90 67.5]T deg/hr
Star observation error σφ,i = 1 deg
Gyro measurement error σω = 0.5 deg/hr
Gyro bias Gauss-Markov error σ = 0.5 deg/hr

correlation time of τ = 1 hr
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Figure 5.4: Comparison of the estimated attitude errors for the MEKF, Filter
QUEST, and the SOAR Filter in in scenario 2 (stressing case with large errors).
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Figure 5.5: Comparison of the estimated bias errors for the MEKF, Filter
QUEST, and the SOAR Filter in in scenario 2 (stressing case with large errors).
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Figure 5.6: Zoom-in of roll-axis attitude error for scenario 2 (stressing case
with large errors).
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Chapter 6

Spacecraft Optical Navigation

This chapter provides two case study examples of the estimation of

position, velocity, and attitude for a spacecraft using the optical navigation

measurements given in Chapter 4. Spacecraft position and velocity are esti-

mated using an Extended Kalman Filter (EKF) and the attitude is estimated

using the newly developed SOAR Filter, which was introduced in Chapter 5.

This chapter begins with a very brief review of the EKF. Next, in

Section 6.2, the dynamics model used to propagate the spacecraft trajectory

is presented. Because this model requires ephemeris information for each of

the simulated planets, the JPL ephemeris files are introduced in Section 6.3.

With these preliminary concepts complete, the last two sections focus on the

two case studies.

The first case study, presented in Section 6.4, demonstrates optical

navigation for a robotic spacecraft performing a fly-by of Venus. This case

study uses real images collected by the MESSENGER spacecraft during its

June 2007 fly-by of this planet.

The second case study, presented in Section 6.5, demonstrates opti-

cal navigation for a crewed vehicle performing an autonomous lunar return
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in February 2024. In this case, it is assumed that the spacecraft has lost

contact with Earth and must meet the vehicle reentry constraints without us-

ing ground-based navigation resources. Synthetic images of both the Earth

and Moon are generated and used to assess the performance of a completely

autonomous lunar return with only optical navigation measurements.

6.1 Review of the Extended Kalman Filter (EKF)

The Kalman Filter, originally developed in the early 1960s,[180, 181] is

now one of the most common techniques used for real-time navigation. The

Kalman Filter is a recursive estimation algorithm that provides a minimum

variance estimate of some state, x, given a set of measurements, y. The

Kalman Filter assumes linear dynamics such that

ẋ = Fx + Gw (6.1)

where w is zero mean white noise. It also assumes a linear measurement model,

y = Hx + v (6.2)

where v is zero mean white noise. Unfortunately, the present problem has both

nonlinear dynamics and nonlinear measurements. One of the most common

methods for dealing with this type of problem is through the EKF, which

linearizes the state error and measurement residual about the best estimate of

the state. The derivation of the EKF is well known and is omitted here for

brevity. Detailed discussions of the EKF may be found in numerous different

references, including [150], [151], [152], and [182]
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The version of the EKF used here is the continuous-discrete EKF. This

means that the measurement updates occur at discrete times, but the trajec-

tory and covariance is propagated in a continuous fashion between these up-

dates. What follows is a brief summary of the key equations in the continuous-

discrete EKF.

Suppose the dynamics of a system are governed by the following non-

linear model,

ẋ = f (x(t),u(t), t) + G(t)w(t) (6.3)

Further assume that the measurements are given by some nonlinear measure-

ment model,

ỹ = h (x(t), t) + v(t) (6.4)

Linearizing about the reference trajectory, define the the Jacobian matrices

F =
∂f

∂x

∣∣∣∣
x̂

H =
∂h

∂x

∣∣∣∣
x̂

(6.5)

where H is the measurement sensitivity matrix discussed in the last section of

Chapter 4. Therefore, in the EKF, the state update given a new measurement,

ỹi, taken at time ti is given by

x̂+
i = x̂−i + Ki

[
ỹi − h

(
x̂−i , ti

)]
(6.6)

and the covariance update is given by

P+
i = [In×n −KiHi] P

−
i (6.7)

where Ki is the Kalman gain and is given by

Ki = P−i HT
i

[
HiP

−
i HT

i + Ri

]−1
(6.8)
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Note, however, that it is sometimes advantageous to use the Joseph form of

the covariance update

P+
i = [In×n −KiHi] P

−
i [In×n −KiHi]

T + KiRiK
T
i (6.9)

which is valid for any gain matrix Ki. Although Eq. 6.7 and Eq. 6.9 are

mathematically identical if the optimal Ki is chosen, the Joseph form of the

covariance update has the advantage of introducing less error into P+
i if there

are errors in Ki. The Joseph form, however, is more computationally expensive

than the update given in Eq. 6.7.

After the update, the state is propagated to time ti+1 using Eq. 6.3.

The covariance is also propagated to the next measurement time using

Ṗ (t) = F (x̂, t) P (t) + P (t) F (x̂, t)T + G (t) Q (t) G (t)T (6.10)

6.2 Translational Spacecraft Dynamics Model

The translational dynamics model used here assumes that gravity is

the only force acting on the spacecraft. Therefore, the effects of various non-

conservative environmental forces (e.g. solar radiation pressure, waste venting,

drag, etc.) are not considered. Additionally, it is assumed that the Sun and

planets act as point masses. This reduces the spacecraft translational dynamic

problem to the classic n-body orbital mechanics problem. This problem is

discussed thoroughly in the literature. Especially nice presentations of this

material may be found in [153] and [183].
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The classic result for the acceleration experienced by a spacecraft in an

n-body system, which is presented without derivation for brevity, is given by

r̈sc = −µj
rsc

‖rsc‖3 +
n∑
k=1
k 6=j

µk

(
rk − rsc

‖rk − rsc‖3 −
rk

‖rk‖3

)
(6.11)

where body j is the central body, rsc is the position of the spacecraft with

respect to the central body, rk is the position of the k-th celestial body with

respect to the central body, and µk is the gravitational constant of the k-

th celestial body. It is important to note that the trajectories of the n − 1

perturbing bodies are not propagated in this simulation. Rather, the position

of any celestial body at any point in time is obtained from the JPL ephemeris

files discussed in Section 6.3.

To use the EKF, it is also necessary to compute the Jacobian of the

translational state vector. If the state vector for the translational states is

given by

x =

[
rsc
ṙsc

]
(6.12)

then the Jacobian from Eq. 6.5, F = ∂ẋ/∂x, is well known to be

F =
∂ẋ

∂x
=

[
03×3 I3×3

U 03×3

]
(6.13)

where

U =− µj

‖rsc‖3 I3×3 +
3µj

‖rsc‖5 rscr
T
sc (6.14)

−
n∑
k=1
k 6=j

µk

(
1

‖rk − rsc‖3 I3×3 +
3

‖rk − rsc‖5 (rk − rsc) (rk − rsc)
T

)
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6.3 Jet Propulsion Laboratory Ephemeris Files

JPL maintains a set of high-precision ephemerides for a number of

bodies in our solar system. Various types of ephemeris files are available, but

the DE405 ephemeris files are used here. More information about the JPL

DE405 ephemeris files may be found in [184].

The DE405 ephemeris files may be easily obtained trough the JPL

Solar System Dynamics website. The ephemeris files typically obtained from

JPL are ASCII files and are usually available in 20-year blocks. It is frequently

convenient to combine multiple blocks (if ephemerides are required over a time

interval that spans more than one of the 20-year blocks) into a contiguous

block. The ASCII files must also be converted into a binary format for use

with the ephemeris generation software. The ephemeris generating software

used here is the MATLAB Based Solar System Ephemeris Toolbox developed

at the NASA Kennedy Space Center.1

6.4 Case Study 1: Optical Navigation of a Robotic Space-
craft during a Venus Fly-by

Consider a robotic spacecraft performing a planetary fly-by as the first

of two different case studies. This case study is used to highlight the major

issues associated with optical navigation during a planetary encounter and

provide a representative sample of the navigation performance achievable using

1The MATLAB Based Solar System Ephemeris Toolbox is publicly available through the
Open Channel Foundation at http://www.openchannelsoftware.com/
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only optical navigation. The MESSENGER spacecraft’s June 2007 fly-by of

Venus is used to help provide concrete mission context. During this fly-by,

numerous images were taken by the wide angle camera on the Mercury Dual

Imaging System (MDIS). In this case study, the actual images acquired by the

MDIS are used.2 Although both raw and calibrated images are available, only

the raw images are used in the subsequent analyses. It is important to note

that all images are stored as expressed in the frontal image plane (see Fig. 3.7).

Therefore, as is discussed at the end of Section 3.3, the raw image file must be

flipped vertically (i.e. first row becomes the last row, and last row becomes the

first row) to transform the image from the frontal image plane to the actual

detector plane. Additionally, each image is accompanied by a label file that

contains useful data such as: PDS product ID; date and time that the image

was taken; camera exposure duration; estimated spacecraft position, velocity,

and attitude; camera resolution; and much more. A complete discussion of

the label file for the Engineering Data Record (EDR) images may be found

in [185]. For the remainder of this discussion, the position, velocity, and

attitude estimates obtained from these label files are assumed to represent

truth. Therefore, the state errors presented below actually represent deviations

from the state estimated by the MESSENGER navigation team.

Many images of Venus were taken during the 5-6 June 2007 fly-by.

Images were acquired by both the wide angle camera and the narrow angle

2These images are publicly available and may obtained through the NASA Planetary
Data System’s Geosciences Node operated by Washington University in St. Louis. The
PDS Geosciences Node may be found online at http://ode.rsl.wustl.edu/.
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camera. Here, only the images taken by the wide angle camera will be used

for optical navigation. Further, as the MESSENGER spacecraft approached

the periapsis of the Venus fly-by trajectory, the planet became too large to

fit entirely within the camera FOV. Images acquired during this period are

omitted from the optical navigation procedure because a sufficient portion of

the planet horizon is not visible in the image. After these constraints are

applied, a total of 13 images remain that are suitable for optical navigation.

The location of the spacecraft on the fly-by trajectory when of all 13 of these

images were taken is shown in Fig. 6.1. The first image was taken before the

fly-by and the remaining 12 images were taken after the fly-by. The last 12

images are equally spaced in time with 1 hour between each image. Note that

Fig. 6.1 also contains three example images with the best fit ellipse from the

image processing algorithm developed in Chapter 4 superimposed in red. A

brief summary of some relevant details for all 13 images is provided in Table

6.1.

These 13 images are used to generate the optical navigation measure-

ments discussed in Chapter 4. Although Fig. 6.1 lists the measurement error

for a few different cases, the measurement errors for all 13 cases are shown

graphically in Fig. 6.2. The top plot in this figure shows the absolute error

(with respect to the estimated state from the MESSENGER image label file)

and the bottom plot normalizes this error with respect to range between the

spacecraft and Venus. First, note that the magnitude of the measurement

error in the radial direction is significantly larger than in the crosstrack di-
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Image ID: 1
Date: 05 June 2007 Time: 21:18:29.737 UTC
PDS Product ID: ew0089565636k
Image Size: 1024 x 1024 pixels
Measurement Error:* 88.1 km

44.8 km
(radial direction)
(transverse direction)

Image ID: 2
Date: 06 June 2007 Time: 01:18:19.750 UTC
PDS Product ID: ew0089580026f
Image Size: 512 x 512 pixels (binned to reduce image size)
Measurement Error:* -370.8 km

55.1 km
(radial direction)
(transverse direction)

Image ID: 13
Date: 06 June 2007 Time: 12:18:19.746 UTC
PDS Product ID: ew0089619626f
Image Size: 512 x 512 pixels (binned to reduce image size)
Measurement Error:* -4029.1 km (radial direction)

c)

b)

a)

IDs 2-13
ID 1

Venus

a

b
c

Measurement Error:* -4029.1 km
169.7 km

(radial direction)
(transverse direction)

*Measurement error is taken as the difference between the measured
position generated from the image processing algorithm and the
position estimate from the MESSENGER image label file.

Figure 6.1: Image geometry for June 2007 MESSENGER fly-by of Venus. The
black boxes on the trajectory diagram denote the spacecraft location at the
time that each of the 13 images were acquired. The example raw images a-c
are superimposed with red ellipses indicating the horizon location estimated
by the image processing algorithm. Raw images are from [93].
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Table 6.1: Summary of MESSENGER images used in Venus fly-by case study.
All images were taken with the MDIS wide angle camera.

Image Image
ID PDS Product ID Date Time (UTC) Resolution
1 ew0089565636k 5 June 2007 21:18:29.737 1024× 1024
2 ew0089580026f 6 June 2007 01:18:19.750 512× 512
3 ew0089583626f 6 June 2007 02:18:19.759 512× 512
4 ew0089587226f 6 June 2007 03:18:19.758 512× 512
5 ew0089590826f 6 June 2007 04:18:19.747 512× 512
6 ew0089594426f 6 June 2007 05:18:19.747 512× 512
7 ew0089598026f 6 June 2007 06:18:19.747 512× 512
8 ew0089601626f 6 June 2007 07:18:19.747 512× 512
9 ew0089605226f 6 June 2007 08:18:19.758 512× 512
10 ew0089608826f 6 June 2007 09:18:19.757 512× 512
11 ew0089612426f 6 June 2007 10:18:19.746 512× 512
12 ew0089616026f 6 June 2007 11:18:19.747 512× 512
13 ew0089619626f 6 June 2007 12:18:19.746 512× 512

rection. This is as expected given the pencil-shaped covariance discussed in

Section 4.9 (and shown pictorially in Fig. 4.27).

The speed at which these measurements may be made depends on the

resolution of the image (in this case either a 1024×1024 or a 512×512 image)

and the size of the body in the image. The image processing algorithm will

run faster if the observed object is smaller (takes up fewer pixels). The run

times seen for processing each of the 13 images in this case study are shown

in Table 6.2. The time required to generate the initial measurement and to

generate the refined measurement are both provided. Note that these run

times are for the image processing algorithm as implemented in MATLAB

(not compiled to C) and no attempt has been made to optimize the algorithm
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Table 6.2: Summary of image processing run times required to generate optical
navigation measurements. These run times correspond to the image processing
algorithm implemented in MATLAB V 7.8.0.347 (R2009a) and run on a laptop
computer with Windows Vista, a 2.0 GHz Intel Core 2 Duo CPU, and 4 GB
of RAM.

Image Image Processing Run Time
ID Initial Measurement Refined Measurement
1 72.744 sec 209.176 sec
2 11.101 sec 29.811 sec
3 8.399 sec 21.475 sec
4 6.214 sec 15.155 sec
5 5.473 sec 12.173 sec
6 4.577 sec 10.367 sec
7 4.173 sec 9.161 sec
8 4.171 sec 8.436 sec
9 3.939 sec 7.771 sec
10 3.316 sec 7.411 sec
11 3.128 sec 6.959 sec
12 2.979 sec 6.696 sec
13 2.808 sec 6.428 sec

or code implementation for speed.

Now, consider a scenario where the initial conditions of the spacecraft

at the first image location (see Table 6.3) have a 1σ position error of 1 km, and

a 1σ velocity error of 2 m/s. These states may be propagated forward in time

using the EOM discussed in Section 6.2. In this simulation, only gravitational

effects from Venus and the Sun are considered, with planetary ephermedies

obtained from the JPL DE405 ephemeris files. If no process noise is assumed,

the results are as shown in Fig. 6.3. This figure shows the covariance of the

final state with no measurements and the covariance of the final state with
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an EKF that only uses the 13 optical navigation measurements. Results of

a Monte Carlo analysis are superimposed on these covariance ellipsoids and

demonstrate good agreement.

The displacement of these covariance ellipses (and of the Monte Carlo

results) from the spacecraft location estimated by the MESSENGER naviga-

tion team (blue dot at origin of Fig. 6.3) indicates that the simple n-body

problem from Section 6.2 does not capture all the dynamics. This, of course,

is as expected. Therefore, process noise is added to account for these unmod-

eled dynamics. Here, it was found that simply adding diagonal process noise
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Figure 6.2: Measurement error from instantaneous position fix generated from
apparent diameter and centroid of Venus.
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Table 6.3: Initial conditions for MESSENGER fly-by of Venus at 21:18:29.737
UTC on 5 June 2007. These quantities are expressed in a Venus-relative
reference frame.

Quantity x-direction y-direction z-direction
Position 62372.8 km 3343.4 km 23175.5 km
Velocity -8.536 km/s -1.557 km/s -3.934 km/s

3σ error ellipse with no measurements

3σ error ellipse after EKF with only
optical navigation measurements

Location ofLocation of
spacecraft
position from
MESSENGER
data file

Figure 6.3: Spacecraft position covariance at the end of the Venus fly-by (lo-
cation of last image). Covariance is shown for a fly-by with no measurements
(gray ellipse and black dots for Monte Carlo results) and a fly-by that uses
only optical navigation measurements in an EKF (pink ellipse and red dots
for Monte Carlo results). Results assume no process noise.
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to the acceleration terms provided good results,

Q =

[
03×3 03×3

03×3 σ2
aI3×3

]
(6.15)

where σa is the standard deviation of the process noise on the acceleration

term.

Once process noise is added, the position and velocity errors are as

shown in Fig. 6.4 and Fig. 6.5, respectively. The addition of process noise

allows for much of the offset seen in the end-state position estimates shown

in Fig. 6.3 to be removed. Further, a quick comparison between Fig. 6.2

with Fig. 6.4 shows that the filtered position error is an order of magnitude

smaller than the measurement errors. The filtered position and velocity errors

fall within the 1σ covariance bounds for most of the trajectory, and fall within

the 3σ covariance bounds for all points.

It is interesting to note the continued growth of the covariance in the

radial direction (for both position and velocity). The covariance bounds in the

radial direction do not show the same level of reduction with new measure-

ments as is seen in the crosstrack directions. This result is easy to explain.

First, growth of the covariance between measurement times is expected from

the covariance propagation equation shown in Eq. 6.10. Unfortunately, as is

evident from Eq. 4.107, the measurement covariance in the radial direction

also grows with distance from the target. This means that each successive

optical navigation measurement from Image ID 2-13 has a larger and larger

measurement covariance in the radial direction. These effects combine to cre-

275



0 5 10 15
-500

0

500

ra
d
ia

l
e
rr

o
r,

k
m

No measurements

EKF and only optical measurements

1 covariance bounds

0

500

tr
a
n
s
v
e
rs

e
in

-p
la

n
e

e
rr

o
r,

k
m

0 5 10 15
-500tr

a
n
s
v
e
rs

e
in

-p
la

n
e

e
rr

o
r,

k
m

0 5 10 15
-500

0

500

time from first image, hours

o
u
t-

o
f-

p
la

n
e

e
rr

o
r,

k
m

Figure 6.4: Position error for June 2007 MESSENGER Venus fly-by.
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Figure 6.5: Velocity error for June 2007 MESSENGER Venus fly-by.
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ate a continued growth of the radial covariance as the spacecraft flies farther

away from Venus.

The performance of the optical navigation system in this situation is

limited by a number of different factors. First, the geometry of this fly-by

trajectory after the spacecraft passes periapsis is poor - a problem that is likely

to be encountered in most fly-by scenarios. As is shown from the trajectory

diagram at the bottom of Fig. 6.3, the spacecraft moves in nearly a straight line

away from the planet, meaning that the spacecraft is moving primarily along

radial direction. This means that the pencil-shaped measurement covariance

will have (approximately) the same orientation from image to image. The

end result is a poorer estimate of position and velocity in the radial direction

than would be possible in a scenario that exhibits significant changes in image

geometry.

The second major issues limiting performance is image resolution. With

the exception of the first image, all of the images used in this analysis had a

resolution of 512×512 pixels. Although the detector on MESSENGER’s MDIS

wide angle camera was a 1024× 1024 CCD, the image was frequently binned

into a 512× 512 array by combining four adjacent pixels into one pixel. This

binning was required to reduce the image size so that the 1 Hz data throughput

requirement could be satisfied (full frame images could only be sent at 0.25

Hz).[125] This reduced resolution was acceptable because spatial sampling

requirements could be met with only a 512 × 512 image.[125] Although a

512× 512 image may meet science spatial sampling requirements, the reduced
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resolution degrades the accuracy of the optical navigation measurements that

may be extracted from the image. In the wide angle camera, for example, an

error of 1/10 pixel corresponds to a line-of-sight direction error of about 3.7

arcsec for the 1024 × 1024 image, but increases to 7.4 arcsec for the binned

512× 512 image.

A third source of error is the atmosphere of Venus. Optical navigation

measurements that rely on accurate identification of the horizon of a target

with an atmosphere is a difficult task. This difficulty has been experienced by

both humans and robotic missions. Recall from earlier discussions that astro-

nauts taking measurements with a space sextant could only locate a point in

the blurry Earth horizon with a repeatability of a few kilometers.[28] Alter-

nately, and of particular relevance here, the MESSENGER optical navigation

team did not use optical navigation during the Earth or Venus fly-bys primar-

ily due to difficulties of accurately determining the horizon in the presence of

an atmosphere.[66] In the present work, it was found that good results could

be achieved if the radius of Venus was increased by about 75-115 km, which is

commensurate with the altitude of the upper cloud layer on Venus.

6.5 Case Study 2: Human Cislunar Navigation

As a second motivating example, consider a crewed spacecraft on a

lunar return trajectory. With crew onboard the vehicle, it is likely that the

ability to return to Earth independent of ground-based tracking will be re-

quired.[186] It is worth noting here that the problem of an autonomous lunar
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return has been an active area of research in recent years. Some of the notable

recent works include [35] and [187], which provide additional details about the

problem and discuss alternative approaches.

For this example scenario, suppose that the crewed spacecraft performs

a three-burn Trans-Earth Injection (TEI) sequence. The return trajectory oc-

curs from 19-24 February 2024 and the spacecraft states after each of the three

burns are as shown in Table 6.4.3 Further suppose that communication be-

tween Earth and the spacecraft is lost after the third burn. This means that

the vehicle must perform autonomous navigation from this point until entry in-

terface (typically about 3.5-4 days for most return trajectories). In the present

study the autonomous return is performed using only optical navigation mea-

surements. Because no real images of the Earth and Moon throughout an

entire lunar return were available, synthetic images of the Earth and Moon

were created using the techniques outlined in Section 3.9.2.

For a situation of this type, crew safety is of primary importance and

other requirements associated with nominal operations may be relaxed. The

most important parameter for Earth re-entry is the entry flight path angle

(FPA). The reference trajectory described in Table 6.4 has an entry velocity

of 10.985 km/s with an entry FPA of −5.86◦. For Apollo, the total entry

FPA error was required to be less than 1.0◦ - and only half of this error (0.5◦)

could be from navigation related errors.[187] For more complicated re-entry

3This reference trajectory was generously provided by Sara Scarritt at the Department
of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin.
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Table 6.4: Summary of spacecraft states on lunar return trajectory after each
of the three TEI maneuvers.

Quantity TEI 1 TEI 2 TEI 3
Date (in year 2024) February 19 February 20 February 20
Time (UTC) 03:27:10.4 01:23:22.6 11:04:15.5

Position
x-axis 2290.1 km -78060.1 km -109299.0 km
y-axis 346576.6 km 331573.6 km 337307.4 km
z-axis 184942.7 km 209991.8 km 179256.2 km

Velocity
x-axis 1.2305 km/s -1.1858 km/s 0.5123 km/s
y-axis 0.1275 km/s 0.1040 km/s 0.0686 km/s
z-axis 0.1815 km/s -0.6233 km/s -0.8046 km/s

scenarios, the entry FPA requirement is expected to be much tighter (e.g.

an FPA error less than 0.1◦ is required for the skip entry planned for Orion

[35]). Even for a vehicle such as the Orion, which nominally plans to have

a skip entry, it may be possible to relax this requirement in the event of a

communication system failure by performing a different type of entry. These

off-nominal entries would likely come at the cost of decreased performance

(e.g. less control over landing ellipse, higher deceleration experienced by crew,

etc.). Therefore, the remainder of this case study assumes that the entry FPA

navigation error must be less than 0.5◦.

6.5.1 Attitude Estimation

For this scenario, assume that the vehicle is equipped with two star

trackers with a 20◦× 20◦ FOV. Each star tracker is further assumed to have a

1024×1024 pixel CCD detector. The star trackers are mounted perpendicular

to one another. One star tracker has the camera boresight pointing along the

280



vehicle y-axis, and the other has the camera boresight pointing along the ve-

hicle z-axis. Each of these star trackers use the QUEST algorithm to compute

an attitude quaternion using stars within the camera FOV. The quaternions

generated by these star trackers are supplied to the attitude filter at a rate of

1 Hz.

It is also assumed that the vehicle is equipped with an IMU similar

to Honeywell’s MIMU (see [188] for detailed instrument specifications). This

device provides data to the attitude filter at 40 Hz. As was done in the

examples of Chapter 5, the angular velocity measurements from the gyro are

taken as truth (angular velocity is not estimated). The gyro bias is modeled

as a first-order Gauss-Markov process and is estimated in real-time by the

attitude filter onboard the spacecraft.

These measurements are processed by the newly developed SOAR Fil-

ter. For a rigid-body spacecraft rotating with an initial angular velocity of 1

deg/sec, the results of first hour of attitude filtering are shown in Fig. 6.6 and

Fig. 6.7. These results clearly indicate that a steady-state attitude covariance

is quickly reached.

6.5.2 Position and Velocity Estimation

The lunar return case study discussed here provides a different per-

spective than what was seen in the Venus case study. Many of the difficulties

experienced in the Venus fly-by are no longer present. These differences result

in a noticeable improvement for the lunar return example, despite a similar
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Figure 6.6: Attitude error from SOAR Filter.
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Figure 6.7: Gyro bias error from SOAR Filter.

282



level of measurement noise. The most important difference is the viewing ge-

ometry throughout the trajectory. Recall that the Venus optical navigation

images were primarily taken after the fly-by as the spacecraft moved in nearly a

straight line away from the planet. For the case of the lunar return trajectory,

shown in Fig. 6.8, there is a changing geometry between the spacecraft trajec-

tory and Earth. Additionally, the spacecraft may image the Moon during the

return, supplying an optical observation that can become nearly perpendicular

in direction to the line-of-sight to the Earth.

Trajectory of
the Moon TEI 1

TEI 2
TEI 3

a

IDs 1-22

Earth b

Figure 6.8: Image geometry for 19-24 February 2024 lunar return trajectory
with a three-burn TEI sequence. The black boxes along the spacecraft return
trajectory denote the 22 different locations at which images are acquired.
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During the lunar return, images of the Earth and Moon were taken

at 22 different locations (resulting in a total of 44 images). These 22 imaging

locations are spaced equally in time (four hours between each imaging location)

and all occur on the final return arc after the third TEI burn. The camera used

to capture these images is assumed to have a 9.2◦×9.2◦ FOV and a 1024×1024

CMOS detector. As an example, the synthetic images from the first image

location (ID 1) and the last image location (ID 22) are provided in Fig. 6.9

and Fig. 6.10, respectively. The instantaneous position fix measurement error

(from apparent diameter and centroid) for all 22 of the Earth images is shown

in Fig. 6.11. These results are also shown for all 22 of the Moon images in

Fig. 6.12.

It is interesting to compare the results of Fig. 6.11 with those seen

in the Venus fly-by (see Fig. 6.2). This is a reasonable comparison because

Earth and Venus have a similar diameter, and both have an atmosphere. A

quick inspection will show that the images of Earth, on average, have a slightly

lower error. This is to be expected because the images of Earth are at higher

resolution. The minimum angular width of a single pixel in the MDIS wide

angle camera used in the Venus fly-by is about 74.0 arcsec (10.5◦ FOV with

imaged binned to 512 × 512), while the minimum angular width of a single

pixel for the camera used in the lunar return is about 32.3 arcsec (9.2◦ FOV

with 1024× 1024 image).

Star horizon measurements are also investigated in this case study. Ini-

tial studies demonstrated that it was difficult to obtain reasonable star-horizon
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a) Synthetic image of Earth b) Synthetic image of Moon

Figure 6.9: Synthetic images of the Earth and Moon (with no surface texture
map) at point a (ID 1) on the reference lunar return trajectory from Fig.
6.8. The raw images are superimposed with red ellipses indicating the horizon
location estimated by the image processing algorithm.

a) Synthetic image of Earth b) Synthetic image of Moon

Figure 6.10: Synthetic images of the Earth and Moon (with no surface texture
map) at point b (ID 22) on the reference lunar return trajectory from Fig.
6.8. The raw images are superimposed with red ellipses indicating the horizon
location estimated by the image processing algorithm.
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Figure 6.11: Measurement error from instantaneous position fix generated
from apparent diameter and centroid of the Earth.
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Figure 6.12: Measurement error from instantaneous position fix generated
from apparent diameter and centroid of the Moon.
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measurements in a single image. If the image had a short exposure time to

obtain a good planet horizon measurement, only very bright stars would be

visible. Stars of sufficient brightness were too few in number to be practically

useful. Even if these bright stars were detected, the signal-to-noise ratio was

much lower than desired. Alternatively, if the exposure time was lengthened,

then the planet becomes overexposed. This creates problems in accurately de-

termining the horizon location. Therefore, in this study, information from two

separate images is combined to generate star-horizon measurements. One im-

age with a short exposure time is used to create the horizon estimate. Another

image with a longer exposure time is used to detect stars.

An additional factor contributing to improved performance of the lu-

nar return over the Venus fly-by is the direction of spacecraft motion. In the

Venus fly-by, the spacecraft was moving away from the planet, causing both

the propagated a-priori state covariance and the measurement covariance to

grow (especially in the radial direction) with each successive image. For the

case of a lunar return, however, the spacecraft is approaching the Earth. Al-

though the propagated a-priori state covariance still grows between images,

the measurement covariance associated with an image that contain the Earth

becomes smaller with each each successive image. This creates a stabilizing

effect on the filtered state estimate that prevents the continued covariance

growth in the radial direction that was seen in the Venus fly-by example.

Two different kinds of optical navigation measurements are available for

inclusion into the EKF. If only centroid and apparent diameter measurements
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of both the Earth and Moon are used, a representative example of the filtered

position and velocity error is shown in Fig. 6.13 and Fig. 6.14, respectively.

If, on the other hand, only star-horizon measurements are used (again using

both the Earth and the Moon), the filtered results are as shown Fig. 6.15 and

Fig. 6.16. If both measurement types are used, the results are as shown Fig.

6.17 and Fig. 6.18. The example shown in here assumes apparent diameter

and centroid measurements of the Earth only and star-horizon measurements

from the Moon only. It was found that when both measurement types are

used, it is better to only use one measurement type from each image at each

time. The error in apparent diameter and centroid measurement and the

star-horizon measurement are correlated (because both of these measurement

types rely on the best-fit ellipse of the horizon). Including two measurements

from the same image in an EKF update causes an unrealistic reduction in

the covariance that can lead to filter divergence. Increasing process noise may

prevent filter divergence in this case, but introduces other problems. Therefore

all cases shown here use one Earth-based measurement and one Moon-based

measurement at each measurement time.

If the estimated state and covariance at each time are propagated for-

ward to entry interface, the uncertainty in the entry FPA may be assessed.

This quantity is important in an autonomous lunar return because it is the

current onboard estimate of the entry FPA that will be used to determine if

a trajectory correction maneuver is required. The estimated entry FPA errors

for the three measurement scenarios described above are shown in Fig. 6.19,
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Figure 6.13: Filtered position error for autonomous lunar return using only
apparent diameter and centroid measurements of the Earth and Moon.
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Figure 6.14: Filtered velocity error for autonomous lunar return using only
apparent diameter and centroid measurements of the Earth and Moon.
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Figure 6.15: Filtered position error for autonomous lunar return using only
star-horizon measurements measured from the Earth and Moon.
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Figure 6.16: Filtered velocity error for autonomous lunar return using only
star-horizon measurements measured from the Earth and Moon.
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Figure 6.17: Filtered position error for autonomous lunar return using appar-
ent diameter, centroid, and star-horizon measurements.
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Figure 6.18: Filtered velocity error for autonomous lunar return using apparent
diameter, centroid, and star-horizon measurements.
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Fig. 6.20, and Fig. 6.21.

All three measurement scenarios are capable of meeting the ±0.5◦ entry

FPA error constraint. Further, the 1σ covariance for the predicted entry FPA

falls below the entry FPA error constraint more than 24 hours prior to entry for

all cases. The apparent diameter and centroid only measurement scenario (Fig.

6.19) appears to provide the quickest covariance convergence. This is likely

because the centroid and apparent diameter measurements provide an estimate

of the range to the planet (although the covariance of the measurement is very

large in the radial direction) and the star-horizon measurements do not provide

any range information.
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Figure 6.19: Entry FPA error generated by propagating current estimate state
and covariance forward to entry interface. Results are for filter that only uses
apparent diameter and centroid measurements of the Earth and Moon.
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Figure 6.20: Entry FPA error generated by propagating current estimate state
and covariance forward to entry interface. Results are for filter that only uses
star-horizon measurements measured from the Earth and Moon.
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Figure 6.21: Entry FPA error generated by propagating current estimate state
and covariance forward to entry interface. Results are for filter that uses
apparent diameter and centroid measurements of the Earth only, and star-
horizon measurements from the Moon only.
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Chapter 7

Technology Development

Engineering is an applied field. Therefore, the work of the previous

chapters would be incomplete without a serious discussion of what is necessary

to take these ideas from paper to reality.

Beyond the theoretical contributions of this dissertation that allow for

an improved assessment of the performance of an optical navigation system

(see Section 1.5 for a full discussion of the contributions of this work), a few of

these contributions represent technological advances that directly lend them-

selves to implementation on a functioning spacecraft. The new technology

here is not the optical measurement types - the idea of using planet apparent

diameter, planet centroid, and star-horizon measurements for spacecraft nav-

igation is well established and has been in use since the 1960s. Rather, the

new technology introduced in this work is in how these measurement types

are obtained from an image. Further, and perhaps most significant, is the

introduction of a new attitude filtering method.

Using the methods outlined in the NASA Systems Engineering Hand-

book, [189] technology assessment is a two-step process. The first step is

determining the current Technology Readiness Level (TRL). A TRL assess-
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ment, as performed in Section 7.1, helps establish the current maturity of the

technology in question. Once the current state of the technology is known,

the second step is to conduct an Advancement Degree of Difficulty (AD2) as-

sessment to determine issues associated with maturing the technology from

the current state-of-the-art to what is necessary for implementation in a flight

system. This analysis is performed in Section 7.2.

7.1 Technology Readiness Level

The 1-9 TRL scale shown in Fig. 7.1 was first developed by NASA

in the 1980s. Detailed discussions of this system and its applications may be

found in [189] and [190]. The use of this TRL scale to evaluate the maturity

of technologies is commonplace in NASA [189] and the Department of De-

fense.[191] The TRL scale has been shown to provide a useful framework for

tracking the progress of technology development over a wide array of different

applications.

Both the image processing algorithm for extracting optical navigation

measurements and the SOAR Filter are believed to be currently at TRL 3.

The exit criteria that NASA uses to determine if TRL 3 has been completed

is “ documented analytical/experimental results validating predictions of key

parameters.”[190] The exit criteria for TRL 4, on the other hand, requires

“documented test performance demonstrating agreement with analytical pre-

dictions.”[190]

For the image processing algorithm, the work in Chapter 4 and Chapter
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Figure 7.1: The Technology Readiness Level (TRL) scale. Original image from
[189], courtesy of NASA.

6 of this dissertation clearly satisfies the criteria for completing TRL 3. The

Venus fly-by case study demonstrates the functionality of the image processing

algorithm (as written in MATLAB) using real mission data. The lunar return

case study provides another demonstration of the algorithm’s performance
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using simulated images. These results indicate that this image processing

algorithm is capable of providing the predicted optical navigation information.

To complete TRL 4, however, requires a breadboard validation in a laboratory

environment. The work of this dissertation stopped short of performing the

laboratory-based hardware demonstrations that would be required to advance

this technology to TRL 4.

For the SOAR Filter, the work in Chapter 5 of this dissertation also

satisfies the criteria for completing TRL 3. Because this is a completely new

algorithm, this dissertation provides all that is necessary to complete TRL 1-3.

This discussion of the SOAR Filter contains the initial theoretical foundations

necessary for TRL 1 and the algorithm development (including feasibility and

benefits) necessary for TRL 2. The simulations at the end of Chapter 5 and in

the second case study of Chapter 6 validate the functionality and performance

of the SOAR Filter (as written in MATLAB) using simulated measurements.

These results indicate that the SOAR Filter is capable of estimating attitude

and non-attitude states with a performance that exceeds that of existing fil-

ters in many scenarios. As with the image processing algorithm, laboratory

validation of this filter was not performed. The SOAR Filter, therefore, has

not yet been matured to a TRL 4.

7.2 Advancement Degree of Difficulty

Given that these technologies are still at a low TRL, it is worthwhile to

consider how they could be matured to the point that missions may consider
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implementing them. Because most NASA missions require a technology to be

at TRL 6 by the Preliminary Design Review (PDR), focus will be placed on

advancing these technologies from their current state of TRL 3 through TRL

6. Note, however, that TRL 6 cannot be reached without a detailed design

of the entire technology subsystem, which may require the advancement from

TRL 5 to TRL 6 to be targeted towards a particular mission.

7.2.1 Image Processing Algorithm

A summary of the recommended steps for advancing the image pro-

cessing algorithm to TRL 6 is shown in Table 7.1.

The first major challenge with obtaining TRL 6 for this image process-

ing algorithm is testing in a “relative environment.” For TRL 5, it is expected

that a scaled relevant environment may be constructed. Depending on testbed

availability, mission needs, and the available budget, there are numerous meth-

ods for doing this. The first is to have a static test article viewing a static

object, such as an illuminated sphere. Images may then be taken under vary-

ing ambient lighting conditions and with the target object being illuminated

from different directions (and with varying intensity). This process may be

repeated under many different static configurations. A more comprehensive

(and much more complicated and expensive) approach would be to perform

this type of analysis on air bearing testbed, similar to the Formation Control

Testbed (FCT) at JPL.[192] This testbed is a five degree-of-freedom system

with two translational degrees-of-freedom and three rotational degrees of free-
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Table 7.1: Summary of recommended steps for maturing the optical navigation
imaging processing algorithm from its current state (TRL 3) through TRL 6.

TRL Recommended steps to complete each TRL
4 Transfer algorithm from MATLAB to C (or a similar language

that can easily be run on a real system). Load the software onto
a processor on a table-top system, sometimes called a “flat-sat.”
Demonstrate operation of the system using simulated measure-
ments. Next, connect the processor (and image processing algo-
rithm) to real sensors. Provide controlled stimuli to the senors in
a laboratory setting and use the results to verify sensor response
and the image processing algorithm’s ability to interpret the data
from the real sensors. Demonstrate that the laboratory results
agree with the performance predicted by simulation. The final
definition of the “relevant environment” must also be established.

5 Provide initial demonstration of technology in a relevant environ-
ment. Use a camera to take images of an object in the laboratory,
such as an illuminated sphere, and demonstrate the autonomous
estimation of relative position under many different lighting and
noise conditions. This relative positioning exercise could probably
be considered a scaled “relevant environment.” Again, demon-
strate that the test results agree with the performance predicted
by simulation.

6 Demonstrate a prototype of the technology in a relevant envi-
ronment. For this system to be demonstrated without scaling,
images must be acquired from space. Lighting effects associated
with the limb of planets with an atmosphere would also be diffi-
cult to simulate on the ground. This test must also demonstrate
the proper interfaces with other relevant spacecraft subsystems.

dom. This allows for the testing of a system in motion, rather than just a static

case. This would also allow for the optical navigation measurements to be fed

into a filter, where its information could be combined with real accelerometer

and gyro measurements. In addition to the illuminated target object used to
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simulate a celestial body, the cameras on the test article could take images of

pseudo-stars mounted on a dome around the testbed.

This scaled environment, however, may not be suitable for the demon-

stration of TRL 6. Completion of TRL 6 frequently requires demonstration of

the technology through the full range of expected operating conditions. This

cannot be done for optical navigation on the ground without scaling. Further,

there are numerous significant environmental effects that may not be easily

simulated in ground-based tests. The most important is the affect of a plane-

tary atmosphere, as viewed from space, on the quality of the optical navigation

measurements. For this reason, it is anticipated that advancement of the image

processing algorithm to TRL 6 will require some form of space-based testing.

The ISS may provide an accessible testbed for demonstrating the image

processing algorithm in a relevant environment suitable for advancement to

TRL 6. This is reminiscent of the optical navigation experiments that were

flown on Skylab in the 1970s, as was discussed in Section 2.2.3 (although

the technology being tested here is quite different). Another option is to use

data collected by spacecraft currently in orbit, similar to what was done with

the Venus fly-by example in Chapter 6. The difference is that an analysis at

this level would require access to all of the raw instrument data (e.g. images,

accelerometers, gyros, star trackers, etc.) in the exact form as would be seen by

the onboard system - this fidelity of data was not available for the Venus fly-by

case study. To obtain appropriate images at a regular enough interval to fully

demonstrate the image processing algorithm, it may be necessary to specifically
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task an existing spacecraft to collect this data, rather than simply pull existing

data that has already been collected. Further, obtaining images under the

broad range of environmental conditions required to satisfy TRL 6 may require

the tasking of more than one existing spacecraft. It may be easier to fly

the image processing algorithm as a technology demonstration experiment on

a relevant mission, similar in concept to what was done with the Optical

Navigation Camera experiment that was flown on the Mars Reconnaissance

Orbiter.

Demonstrating of a relevant environment also includes properly simu-

lating interfaces with other spacecraft subsystems. The schematic in Fig. 7.2

provides a notional diagram of some of the major interfaces. The identification

and simulation of these interfaces is one of the reasons that it is difficult to

advance a technology to TRL 6 without the context of a specific mission.

A system such as this has a large number of interfaces. Therefore, as

part of the advancement to TRL 4, it will likely be necessary to draft (or

obtain for existing sensors or equipment) an Interface Definition Document

(IDD) that explicitly outlines the interface specifications for each component.

Further, to perform an integrated test, it will also be necessary to create an

Interface Requirements Document (IRD) to define the physical and functional

interface between the components at each interface. Depending on the sophis-

tication of the test and equipment, this may be all that is required to achieve

TRL 4 (because TRL 4 may be demonstrated with a “breadboard” setup that

allows for ad-hoc component selection). Advancing to TRL 5 (and, subse-
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quently, to TRL 6), however, requires testing in a relevant environment. This

requires proper interface modeling. At this point, it will become necessary to

draft an Interface Control Document (ICD) which provides a physical descrip-

tion of the interface between two components (e.g. drawing, schematic, etc.).

Without an ICD, it is impossible to know that the system is being tested with

all of the appropriate interface specifications.

The first set of interfaces that merit discussion are those that occur
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Figure 7.2: Notional schematic of major GNC subsystem interfaces that are
important for demonstration of a relevant environment for the image process-
ing algorithm and SOAR Filter. Note that the image processing algorithm and
the SOAR Filter are part of the software on the flight computer’s processor.
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within the GNC subsystem. These interfaces are expected to be the most crit-

ical for the creation of a relevant environment. The second class of important

interfaces are those that connect components of the GNC subsystem to other

spacecraft subsystems. The major connections in this area are expected to

be with the power subsystem and with the communications subsystem. Un-

der normal operating conditions, the communication subsystem may be one of

the major sources of navigation information (through radiometric tracking).

There may also be scenarios where it is desirable to combine optical navigation

measurements with radiometric navigation measurements on the spacecraft.

Another major challenge moving forward with the image processing

algorithm is expected to be the demonstration of the robustness of the op-

tical navigation measurements. This is especially important for autonomous

operations. Further, in the event that the measurement is incorrect, how reli-

ably can the image processing algorithm identify the erroneous measurement?

Some simple methods for this type of error checking were presented in Chap-

ter 4. The probability of obtaining a faulty measurement and, subsequently,

the probability of detecting that faulty measurement, is expected to be highly

dependent on the specific mission scenario and spacecraft hardware. Further,

the probabilistic nature of the MSAC algorithm, although it adds robustness

to the ellipse model fitting step, makes it harder to prove overall algorithm

robustness. It is anticipated that any demonstration or verification of the ro-

bustness of this image processing algorithm will be largely empirical (rather

than theoretical).
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7.2.2 SOAR Filter

A summary of the recommended steps for advancing the SOAR Filter

to TRL 6 are shown in Table 7.2.

As with the image processing algorithm, the primary difficulty is test-

ing in a relevant environment. Fortunately, it is easier to obtain a relevant

environment for the SOAR Filter. The SOAR Filter only address the problem

Table 7.2: Summary of recommended steps for maturing the SOAR Filter
from its current state (TRL 3) through TRL 6.

TRL Recommended steps to complete each TRL
4 Transfer algorithm from MATLAB to C (or a similar language

that can easily be run on a real system). Load the software onto
a processor on a table-top system, sometimes called a “flat-sat.”
Demonstrate operation of the system using simulated measure-
ments. Next, connect the processor (and SOAR Filter) to real
sensors. Provide controlled stimuli to the senors in a labora-
tory setting and use the results to verify sensor response and the
SOAR Filter’s ability to interpret the data from the real sensors.
Demonstrate that the laboratory results agree with the perfor-
mance predicted by simulation. The final definition of the “rele-
vant environment” must also be established.

5 Provide initial demonstration of the SOAR Filter in a relevant
environment. Because this technology deals only with attitude es-
timation, a relevant environment is simply a platform that freely
allows motion in the three rotational degrees-of-freedom. Again,
demonstrate that the test results agree with the performance pre-
dicted by simulation.

6 Demonstrate a prototype of the technology in a relevant environ-
ment. As for TRL 5, the relevant environment is a platform that
freely allows motion in the three rotational degrees-of-freedom.
This test must also demonstrate the proper interfaces with other
relevant spacecraft subsystems.
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of attitude filtering. Therefore, any of a number of different testbeds that

allow for testing in three rotational degrees-of-freedom environment may be

suitable. The method of choice will depend on testbed availability, specific

mission needs, and the available budget.

An air bearing testbed may be capable of providing the relevant en-

vironment for the demonstrations necessary to achieve TRL 5 and TRL 6.

Numerous facilities and institutions have testbeds equipped with a hemispher-

ical air bearing that permits three rotational degrees-of-freedom, such as the

Integrated Attitude Control System (IACS) developed at the Georgia Institute

of Technology.[193] On such a testbed, the SOAR Filter may be demonstrated

using real gyro measurements. Star trackers may take images of pseudo-stars

mounted on a dome around the testbed, and the resulting measurements may

be used to test the full quaternion measurement input to the SOAR Filter. Re-

alistic simulation of a sun sensor, magnetometer, or horizon sensor should also

be performed to demonstrate unit vector measurement inputs to the SOAR

Filter.

An alternative test platform is a free floating experiment on a parabolic

microgravity flight.1 The NASA Reduced Gravity Research Program provides

a mechanism for researchers to perform short duration tests of equipment in

1The term “microgravity” is a bit of a misnomer. Gravity, of course, is still there and is
acting on the aircraft, test article, and researchers with the same force as if the aircraft were
in normal flight. A more accurate description would be to say that the aircraft, and the
test article within the aircraft, are in “free fall.” The terms “microgravity” and “reduced
gravity” are used here because they are the terminology commonly used to described this
type of environment.
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a microgravity environment. This program uses a C-9B aircraft flown out of

Ellington Field in Houston, TX, that performs parabolic flights over the Gulf

of Mexico. Each parabola provides the researchers onboard the aircraft with

approximately 25 seconds of microgravity. There is a precedence for using

these parabolic flights to test attitude determination and control systems that

require three rotational degrees-of-freedom.[195] As is shown in Fig. 7.3, free

floating experiments may be released in the test area during a parabola and are

free to translate and rotate in a uninhibited fashion. Although the about 25

Free floating experiments are allowed to
translate throughout a specified region of the
aircraft cabin and are capable of rotating freely
about all three axes (with the exception of a
usually negligible amount of drag).

Cabin dimensions and motion of the aircraft
typically limit the duration of free floats to 6-8
seconds before the test article impacts the wall
of the aircraft or leaves the acceptable test area.

A free floating test article, the Variable Inertia
Test Platform (VITP) in this example image, is
limited in size – making microgravity flights a
good method for demonstrating a technology
in flight-relevant form factor.

Figure 7.3: Image of author deploying a three degree-of-freedom attitude con-
trol experiment on a parabolic microgravity flight in April 2003. A similar
experimental set-up could be used to test the SOAR Filter. The image on the
right is jsc2003e27939 from [194], courtesy of NASA.

306



seconds of microgravity is typically achieved in each parabola, a free floating

experiment typically lasts for only 6-8 seconds before its translational motion

causes it to impact the wall of the aircraft or exit the test area. Therefore,

any testing of the SOAR Filter in this environment would have to work within

these time constraints. Tests that require continuous filter operation for longer

than a few seconds are not suitable for for this test platform. Alternatively,

tests that only require a few seconds of data or tests that would allow multiple

short data sets to be combined are good candidates for microgravity flights.

A third potential test platform is a university-built nanosatellite or pi-

cosatellite. The University of Texas at Austin, for example, has a vibrant

student-built satellite program. The school’s Satellite Design Lab (SDL) has a

proven track record of designing, building, and delivering small spacecraft.[196]

Recent accomplishments of the SDL include PARADIGM, which was deployed

from the Space Shuttle Endeavor (STS-127) on 30 July 2009 (see Fig. 7.4),

and the larger FASTRAC Spacecraft which is currently scheduled to launch

as a payload aboard a Minotaur IV launch vehicle from Kodiak, AK, in May

2010. Small, student-built satellites such as these provide an excellent plat-

form for demonstrating certain types of new technologies - such as the SOAR

Filter. Demonstration of this attitude filter on one of these vehicles would be

a major step forward in advancing this technology to the point where it may

be considered for a larger flight project.

A fourth testing option would be to obtain raw instrument data (e.g.

gyros, star trackers, sun sensors, etc.) in the exact form and at the same
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Figure 7.4: Images of PARADIGM deployment taken from the Space Shuttle
Endeavor (STS-127) on 30 July 2009. The image on the left is S127-E-012774
and image on the right is S127-E-012776; both images are from [197], courtesy
of NASA.

frequency as would be seen by the onboard system. This data could then

be fed to the processor across properly simulated instrument interfaces. As

with the similar option for testing the optical navigation image processing

algorithm, this may require specific tasking of an existing spacecraft. The

data needed for this test, however, is much easier to obtain, may be collected

from a wider array of existing satellites, and is less intrusive to the day-to-day

operations of the existing satellite.

It is worth noting again testing the SOAR Filter in a relevant envi-
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ronment requires simulation of the interfaces in addition to the operational

conditions. The major interfaces for the SOAR Filter are similar to those

for the image processing algorithm, and are shown graphically in Fig. 7.2.

The primary difference will be in the sensor suite. The interface requirements

that are necessary for advancing through TRL 4, TRL 5, and TRL 6 for the

image processing algorithm are also necessary for advancing the SOAR Filter

through these same milestones.

For all the SOAR Filter tests and analyses described in Table 7.2, the

performance of the SOAR Filter should be compared with the performance of

the MEKF (the current state-of-the-art attitude filter).
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Chapter 8

Conclusions

8.1 Conclusions

This dissertation provides an in-depth study of optical navigation for

a spacecraft in a planetary system. Significant contributions are made in the

following four major areas:

1. Optical sensor models

2. Image processing algorithm for extraction of optical navigation measure-

ments

3. New non-linear attitude filter (SOAR Filter)

4. Optical navigation performance analysis

These four items are discussed in more detail in the following paragraphs.

First, in Chapter 3, a new optical sensor model is developed. A detailed

discussion of the various error sources (both internal and external to the sensor)

provides the foundation for a derivation of the resulting errors in optical line-

of-sight measurements. These errors are shown to correspond to specific terms

frequently used for camera calibration. A method for creating synthetic images

of stars and planets is also introduced. These developments allow for the
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construction of a new and more sophisticated representation of the line-of-

sight covariance matrix that may be constructed directly from the camera

error statistics. These covariance results are compared with other models

from the literature.

Second, in Chapter 4, the four standard optical navigation measure-

ment types are introduced. Next, a new image processing algorithm is devel-

oped that allows for the robust and autonomous extraction of two types of

optical navigation measurements from a raw image. Practical implementation

issues are discussed in detail throughout this chapter. The performance of this

algorithm is demonstrated on real images from numerous different spacecraft.

Additionally, a new theoretical derivation of the measurement covariance is

provided and the results are validated through a Monte Carlo analysis using

synthetic images. Finally, the measurement sensitivity matrices are derived.

Third, in Chapter 5, a new nonlinear attitude filter called the Sequential

Optimal Attitude Recursion (SOAR) Filter is developed. This filter is based on

maximum likelihood estimation and is capable of estimating both attitude and

non-attitude states. The SOAR Filter provides superior performance (relative

to existing attitude filters) when angular errors are large and is shown to

provide identical performance to the MEKF when errors are small. The SOAR

Filter algorithm is compared to numerous other attitude filtering techniques

from a theoretical standpoint. An example simulation is performed where the

filter is required to estimate both attitude and gyro bias. In this example, the

SOAR Filter provides better performance than the MEKF and Filter QUEST.
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Fourth, in Chapter 6, an end-to-end demonstration of completely au-

tonomous optical navigation is provided for two different scenarios: a Venus

fly-by and a lunar return. For the Venus fly-by, real images collected by the

MESSENGER spacecraft during its 2007 Venus fly-by are used. Optical nav-

igation measurements are autonomously extracted from these images using

the image processing algorithms from Chapter 4. This demonstrates that the

algorithms developed here work with real images. Post fly-by position and

velocity errors are shown to be substantially reduced by the inclusion of opti-

cal navigation measurements. Next, for the lunar return, synthetic images of

the Earth and Moon are created using the methods from Chapter 3 and then

processed using the same image processing algorithms as used in the Venus

fly-by example. Performance is shown using different combinations of opti-

cal measurements. The requirement for this scenario is to meet a 0.5 degree

entry FPA constraint - the predicted 1σ entry FPA error falls within this con-

straint at about 25-35 hours prior to entry, depending on the measurement

combination used.

Additionally, initial recommendations for technology development are

outlined in Chapter 7. This chapter highlights that the work of this disserta-

tion advances two different technologies, (1) a new image processing algorithm

for the autonomous generation of optical navigation measurements and (2) a

new nonlinear attitude filter called the SOAR Filter, from concept generation

through TRL 3. The contents of Chapter 7 describe a number of alternative

methods for advancing these technologies from their current state through
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TRL 6.

8.2 Future Work

There are numerous opportunities to continue the research presented

in this dissertation. A sampling of some of these opportunities is provided

below.

With regards to the sensor model and synthetic image generation, there

are a few different areas that provide opportunities for future work. The first

place for future work is the explicit inclusion of a blooming model for CCDs.

Although blooming is not a problem in CMOS detectors and only occurs in

CCDs when pixels approach (or exceed) their full well capacity, it would be

a nice feature to include for the study of over-exposed images. This addition

to the CCD detector model could also look at the effect of anti-bloom drains

on the sensor response. A second area for future work is the incorporation of

albedo surface maps and surface texture maps for planets and moons. The

models introduced in Chapter 3 assume that the observed body is a smooth

triaxial ellipsoid with a uniform albedo. While this is sufficient for testing the

horizon-finding algorithms used here, the inclusion of these surface maps will

add an additional layer of realism to the images. A third area of future work

is improving the fidelity of the lighting profile models - especially for planets

with an atmosphere. In this work, a simple bidirectional reflectance model

was used. Although this model may be sufficient for many mission scenarios,

it may not be adequate (depending on mission requirements) for spacecraft
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operating very close to a planet with an atmosphere, such as spacecraft in

LEO. It may also be interesting to look at modeling the light reflected by a

planet with Minnaert functions.[112, 198]

There is also room for future work on the image processing algorithm.

The first opportunity for future work is adding the capability to autonomously

determine the lighting direction in the image. The method used in this dis-

sertation assumes that the lighting direction is known from an a-priori state

estimate or from a sun sensor. It is possible that the lighting direction may be

extracted directly from the image without these other sources of information

- some references are given in Chapter 4 that show this being done in differ-

ent applications. Incorporating this capability may help the image processing

algorithm be less reliant on other sources of data. The second area for future

work is in the method used for improving the location of the horizon points.

The current horizon refinement technique uses a series of horizon sweeps and

a brute-force method for minimizing the lighting profile residual. This ap-

proach is computationally expensive and is significantly less reliable than the

remaining components of the image processing algorithm. A better horizon

refinement process could improve algorithm performance. In many ways, this

improvement goes hand-in-hand with the improvements in the planet lighting

profile discussed above. A third area for future work is in developing rigor-

ous error detection algorithms for the image processing algorithm. It will be

necessary to develop robust methods for autonomously detecting erroneous

measurements if this type of system to be used in a truly autonomous fashion.
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Finally, there are numerous opportunities for future work on the SOAR

Filter. The first area of future work is taking a formal look at the convergence

properties of the SOAR Filter. The examples cases generated as part of this

dissertation show empirically that the SOAR Filter generally exhibits supe-

rior convergence when compared to other attitude filter types. It would be

interesting to see if this could be proved theoretically. A second area of future

work is considering how additional measurement types (things other than at-

titude measurements and unit vector measurements) could be included in the

SOAR Filter. A third area is to look at the structure of the state update and

covariance update to see if these expressions may be written in a way that

maximizes computational speed and algorithm robustness (e.g. minimize use

of inverses) for implementation on a real system.
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Appendix A

Quaternion Mathematics

This appendix describes key results from Quaternion Mathematics -

especially as they relate to rotations. The quaternion operations are intro-

duced here for easy reference (and with a nomenclature consistent with the

rest of this dissertation) without derivation. More information about quater-

nion mathematics may be found in [80] and [78].

A.1 Definition of the Quaternion

The quaternion is described by a 4-tuple of real numbers. It consists of a

vector component that exists in R3 and a scalar component. The nomenclature

used for this varies significantly in the literature, but the following notation is

used throughout this dissertation

q̄ =

[
q
q4

]
=


q1

q2

q3

q4

 (A.1)
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A.2 Quaternion Multiplication

Given two quaternions, q̄ and p̄, define the multiplication of these two

quaternions (also called the quaternion product) as

q̄⊗ p̄ =

[
q4p + p4q− q× p

q4p4 − qTp

]
(A.2)

where the symbol ⊗ denotes the quaternion multiplication operator. Note that

this quaternion product is backwards when compared to the classical quater-

nion product, as is standard practice in the attitude determination community.

This is done so that the order of quaternion multiplication mirrors the order of

DCM multiplication for sequential rotations. If the classical quaternion prod-

uct is denoted by �, then q̄⊗ p̄ = p̄� q̄. The only difference in Eq. A.2 for

these two conventions is in the sign of the cross product term.

The quaternion product as shown in Eq. A.2 allows for sequential

rotations in the same manner as DCMs:

TA
C = TB

CTA
B = T

(
q̄BC
)
T
(
q̄AB
)

= T
(
q̄BC ⊗ q̄AB

)
= T

(
q̄AC
)

(A.3)

Further, it is sometimes convenient to write the quaternion product as

a standard matrix-vector multiplication. Rewriting Eq. A.2 in this form will

show that

q̄⊗ p̄ =

[
q4I3×3 − [q×] q
−qT q4

] [
p
p4

]
= Ξ(q̄) p̄ (A.4)
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A.3 Complex Conjugate and Inverse of a Quaternion

The complex conjugate of the quaternion q̄ is given by

q̄∗ =

[
−q
q4

]
(A.5)

Next, in keeping with the standard definition of an inverse,

q̄⊗ q̄−1 = q̄−1 ⊗ q̄ = 1 (A.6)

From this relation, it may be shown that the inverse of a quaternion may be

computed from the conjugate as

q̄−1 =
q̄∗

‖q̄‖
(A.7)

where ‖q̄‖ is the norm of the quaternion. If the quaternion in question is an

attitude quaternion, then it has unity norm, ‖q̄‖ = 1. This means that, for an

attitude quaternion, the complex conjugate of the quaternion is the same as

the inverse of the quaternion. Further, if the attitude quaternion q̄ describes a

rotation from frame A to frame B, then it is shown in [80] that the equivalence

of the attitude quaternion conjugate and inverse is analogous to the following

well known relation for rotation matrices(
TA
B

)−1
=
(
TA
B

)T
(A.8)

A.4 Norm of a Quaternion

The norm of a quaternion is a description of its length. Therefore,

define the quaternion norm as

‖q̄‖ =
√

q̄∗ ⊗ q̄ (A.9)
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By the definition of the quaternion product and quaternion complex conjugate,

the vector part of the quaternion will be exactly zero. All that remains is the

scalar component. Therefore, it is also true that

‖q̄‖2 = qTq + q2
4 = q2

1 + q2
2 + q2

3 + q2
4 (A.10)
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Appendix B

Star Catalogs

A star catalog is a database that contains a list of stars along with

information about each of those stars (e.g. right ascension, declination, mag-

nitude, etc.). A very nice discussion of the evolution of star charts and star

catalogs from antiquity to modern times may be found in [199].

In modern spacecraft applications, existing star catalogs are typically

used to generate mission-specific star catalogs for use onboard the vehicle. If

information regarding the star brightness is to be used by onboard algorithms,

the star magnitudes from the reference catalog must be adjusted according

the the spectral sensitivity of the detector. Further, and more importantly,

star trackers are typically defocused. This means that two stars that appear

close to one another will blur together and appear as a single star, rather than

appear as two distinct stars. This phemenona can introduce a significant bias

in the measured direction to the observed star. This problem is discussed in

more detail in [200] and [19].

There are a number of different star catalogs that are frequently used

to create the star catalog stored onboard the spacecraft. Some of these are

summarized in Table B.1.
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Table B.1: Summary of some of the star catalogs that are commonly used as a
starting point for creating mission-specific star catalogs on modern spacecraft.

Star Year Number Suggested
Catalog Created of Stars References
SKY2000 V5 Master Catalog 2005/2006 299,460 [201]
HIPPARCOS Catalog 1997 118,218 [202], [203]
Tycho-2 Catalog 2000 2,539,913 [202], [204]
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Appendix C

Numerical Algorithm for Computing the

Direction to the Center of an Object from a

Projected Ellipse

Suppose that an ellipse on a detector is formed by the perspective

projection of a sphere or ellipsoid. The line-of-sight direction from the camera

to the three dimensional center of the observed object is not formed by a

vector originating at the center of the ellipse. In other words, using the ellipse

centroid in Eq. 3.22 will not form the line-of-sight direction to the center of

the observed object. This fact may be seen graphically in Fig. C.1.

Therefore, an iterative scheme was developed by the author to find

the point on the detector plane that creates a line-of-sight to the center of

the observed object. The approach derived here will work regardless of if the

target object is a sphere or an ellipsoid.

In this iterative scheme, let the estimate of the point on the detector

that produces a line-of-sight to the center of the observed object at iteration k

be described by [xc,k, yc,k] and let the geometric center of the ellipse generated

by the image processing algorithm be described by [x̃0, ỹ0]. The value of [x̃0, ỹ0]

does not change from iteration to iteration. Initialize this routine by assuming
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lens
location

bounds of cone that form
horizon of observed object

line-of-sight to center
of observed object

location

line-of-sight from
center of ellipse

of observed object

ellipse formed on detector by the
perspective projection of observed object

CCD/CMOS detector

Figure C.1: Graphical depiction of the perspective projection of a sphere onto
the detector plane. Note that the three-dimensional center of the observed
object does not project to the centroid of the ellipsoid on the image plane.
Angles are exaggerated for clarity.

that [
xc,0
yc,0

]
=

[
x̃0

ỹ0

]
(C.1)

This initial guess would be true if the line-of-sight to the observed object lies

exactly along the camera boresight direction.

Now, use the current guess of the line-of-sight direction to the target

object center to compute the range to the target object using Eq. 4.85. Then

use the relations of Eq. 4.89 through Eq. 4.93 to generate the ellipse that

would be created if this guess were true. If the resulting location of the ellipse

center at this iteration, [x0,k, y0,k], does not agree (to within some tolerance)

with the measured location of the ellipse center from the image processing
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algorithm, [x̃0, ỹ0], then an update is required. This may be performed by a

simple update of the form[
xc,k+1

yc,k+1

]
=

[
xc,k
yc,k

]
+

{[
x̃0

ỹ0

]
−
[
x0,k

y0,k

]}
(C.2)

which is to say that the update of [xc,k, yc,k] behaves approximately like the

update of [x0,k, y0,k]. In practice, this iterative routine was found to be ex-

tremely stable. In all cases this routine converged to within machine precision

in 3-4 iterations. To date, no cases have been experienced where this iterative

routine fails. No formal study of the routine’s stability has been performed.
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Appendix D

Derivation of The QUaternion ESTimation

(QUEST) Algorithm

The QUEST derivation presented here is based on the work of Shuster

and Oh.[157] This derivation picks up where Eq. 5.37 leaves off. Recall that

the solution to the Wahba problem may be written as

Kq̄ = λq̄ (D.1)

Here, the 4× 4 matrix K is the Davenport matrix given by

K =

[
S− µI3×3 z

zT µ

]
(D.2)

where

S = B + BT (D.3)

µ = tr [B] (D.4)

[z×] = BT −B or z =
m∑
i=1

wi (ẽi)B × (ei)I (D.5)

Now, expanding Eq. D.1 using the definitions provided in Eq. 5.32[
(S− µI3×3) q + zq4

zTq + µq4

]
=

[
λq
λq4

]
(D.6)
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Further, recalling that the Gibbs vector is given by g = q/q4, the above

expression may be rearranged to show

(S− µI3×3) g + z = λg (D.7)

zTg + µ = λ (D.8)

Further rearrangement of Eq. D.7 yields

g = [(λ+ µ) I3×3 − S]−1 z (D.9)

Proceed by looking for a more convenient way of expressing [(λ+ µ) I3×3 − S]−1.

Let the eigenvalues of S be given by ξ:

det [S− ξI3×3] = 0 (D.10)

The characteristic equation for an arbitrary 3-by-3 matrix is known to be given

by

−ξ3 + 2σξ2 − kξ + δ = 0 (D.11)

where

σ =
1

2
tr [S] = tr [B] = µ (D.12)

k = tr [adjS] = −1

2

[
tr
[
S2
]
− tr [S]2

]
(D.13)

δ = det [S] (D.14)

Finally, by the Cayley-Hamilton theorem[205] S is known to also satisfy the

characteristic equation:

−S3 + 2µS2 − kS + δ = 0 (D.15)
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Returning to the problem of rewriting [(λ+ µ) I3×3 − S]−1, express this equa-

tion as an infinite series in S

f(S) = [(λ+ µ) I3×3 − S]−1 = b0I3×3 +
∞∑
j=1

bjS
j (D.16)

Note from Eq. D.15 that any Sj for j ≥ 3 may be rewritten as a quadratic

function of S. Therefore, let f(S) be given by the following quadratic function

f(S) = [(λ+ µ) I3×3 − S]−1 = γ−1
[
αI3×3 + βS + S2

]
(D.17)

Multiplying both sides of the expression by [(λ+ µ) I3×3 − S],

I3×3 = γ−1
[
αI3×3 + βS + S2

]
[(λ+ µ) I3×3 − S] (D.18)

Expanding this function, eliminating cubic terms of S with Eq. D.15, and

collecting in terms of I3×3, S, and S2 yields

I3×3 = γ−1
[
((λ+ µ)α− δ) I3×3 + ((λ+ µ)β − α + k) S + ((λ+ µ)− β − 2µ) S2

]
(D.19)

Recognizing that I3×3, S, and S2 are linearly independent, separate the above

equation by coefficients:

1 = γ−1 ((λ+ µ)α− δ) (D.20)

γ = (λ+ µ)α− δ = (λ+ µ)(λ2 − µ2 + k)− δ

0 = (λ+ µ)β − α + k (D.21)

α = (λ+ µ)β + k = λ2 − µ2 + k
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0 = (λ+ µ)− β − 2µ (D.22)

β = λ+ µ− 2µ = λ− µ

Substituting Eq. D.17 into Eq. D.9 an easily obtainable solution to the Gibbs

vector in terms of α, β, and γ is given by

g = γ−1
[
αI3×3 + βS + S2

]
z =

1

γ
y (D.23)

where

y =
[
αI3×3 + βS + S2

]
z (D.24)

Unfortunately to obtain α, β, and γ (and hence the solution), it is necessary

to first find the eigenvalue, λ. By substituting Eq. D.23 into Eq. D.8,

λ = µ+ zTγ−1
[
αI3×3 + βS + S2

]
z (D.25)

After plugging in values for α, β, and γ, it is clear that the above equation is

quartic in λ,

p(λ) = c4λ
4 + c3λ

3 + c2λ
2 + c1λ+ c0 = 0 (D.26)

Some tedious algebra will show that

c4 = 1

c3 = 0

c2 = −2µ2 + k − zTz (D.27)

c1 = −δ − zTSz

c0 = −µ
(
kµ− δ − µ3

)
− zT

[(
k − µ2

)
I3×3 − µS + S2

]
z
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The root in Eq. D.25 may be solved through Newton-Raphson[206] iteration:

dp(λ)

dλ
= 4λ3 + 2c2λ+ c1 (D.28)

λk+1 = λk −
λ4
k + c2λ

2
k + c1λk + c0

4λ3
k + 2c2λk + c1

(D.29)

Because the largest eigenvalue is known to be close to λ0, this should be

picked as the initial guess for the iteration routine. From here, it is possible

to compute α, β, and γ directly with easily obtainable values. Therefore, the

attitude quaternion may be computed as

q̄ =
1√

1 + gTg

[
g
1

]
=

1√
γ2 + yTy

[
y
γ

]
(D.30)

Note that the solution method used in the QUEST algorithm introduces

a singularity for a 180 degree rotation. In practice, this singularity is avoided

through the use of successive rotations. If the attitude is found to be near a

singularity, a 180 degree rotation is performed about the x-axis and then the

QUEST algorithm attempts to find the attitude. If the singularity persists,

180 degree rotations about the y-axis and z-axis are attempted. After the

singularity has been removed and the attitude is computed with respect to the

rotated frame, the appropriate 180 degree rotation must be undone to arrive

at the vehicle attitude with respect to the desired frame.

A flow chart describing the actual implementation of the QUEST algo-

rithm is provided in Fig. D.1.
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Compute B and z from measurements and reference directions

Compute additional required constants

Use Newton-Raphson iteration to find eigenvalue
iterate this equation until ||λk+1 – λk|| < tol

Compute additional a few more constants

Compute quaternion

Figure D.1: Flow chart for QUEST algorithm.
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Appendix E

Derivation of Relation Between Fisher

Information Matrix and Attitude Profile

Matrix

In Chapter 5, equations are presented that allow for the transformation

between the 3 × 3 Fisher Information Matrix for the attitude-only problem,

Fθθ, and the 3×3 attitude profile matrix, B. These relations, given in Eq. 5.54

and Eq. 5.55, were originally developed by Shuster in [120]. These relations

are as follows:

P−1
θθ ≈ Fθθ = tr

[
TI
B̂
BT
]
I3×3 −TI

B̂
BT (E.1)

B =

[
1

2
tr [Fθθ] I3×3 −Fθθ

]
TI
B̂

(E.2)

Although these results are well known and widely used, the details

of the derivations are not readily available in the literature. This appendix

provides a detailed derivation of both of these results.

E.1 Derivation of Fθθ as function of B

The objective of this section is to prove the following result

Fθθ = tr
[
TI
B̂
BT
]
I3×3 −TI

B̂
BT (E.3)
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Begin by recalling, from Eq. 5.52, that the Wahba Problem objective function

may be written as

J (δθ) = λ0 − tr

[(
I3×3 + [−δθ×] +

1

2
[−δθ×]2

)
TI
B̂
BT

]
(E.4)

and that, from Eq. 5.47, the Fisher Information Matrix may be found by

Fθθ = E

[
∂2J(δθ)

∂δθ∂δθ

]
(E.5)

Because Eq. E.5 requires the second derivative of J (δθ) with respect

to δθ, terms in J (δθ) that are scalar or linear in δθ are unimportant in the

computation of Fθθ. Therefore,

Fθθ = E

[
∂2J(δθ)

∂δθ∂δθ

]
= E

[
∂2

∂δθ∂δθ

(
−tr

[
1

2
[−δθ×]2 TI

B̂
BT

])]
(E.6)

To compact notation, define the matrix W as

W = TI
B̂
BT (E.7)

It is interesting to note that by inserting the definition of B from Eq. 5.15,

W = TI
B̂
BT =

m∑
i=1

wiT
I
B̂

(ei)I (ẽi)
T
B =

m∑
i=1

wi (ei)B̂ (ẽi)
T
B (E.8)

it may be observed that W is symmetric in the noise-free case. Even in the

presence of noise, W should be very nearly symmetric. Therefore, for the

present derivation, assume that W ≈WT . Substituting W into Eq. E.6,

Fθθ = −1

2
E

[
∂2

∂δθ∂δθ

(
tr
[
[−δθ×]2 W

])]
(E.9)
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Although it may not be the most elegant approach, term-by-term dif-

ferentiation is a straightforward and effective method for computing Fθθ. The

fact that this is only a 3× 3 matrix makes this tractable. Begin by expanding

the terms within the trace operator. If δθ = [δθ1 δθ2 δθ3]T , then explicitly

expanding [−δθ×]2 yields

[−δθ×]2 =

 −δθ2
2 − δθ2

3 δθ1δθ2 δθ1δθ3

δθ1δθ2 −δθ2
1 − δθ2

3 δθ2δθ3

δθ1δθ3 δθ2δθ3 −δθ2
1 − δθ2

2

 (E.10)

Further, if the elements in W are given by

[−δθ×]2 =

 w11 w12 w13

w21 w22 w23

w31 w32 w33

 (E.11)

then the diagonal terms of the 3× 3 matrix [−δθ×]2 W are as follows

[
[−δθ×]2 W

]
11

= δθ1δθ2w21 − w11

(
δθ2

2 + δθ2
3

)
+ δθ1δθ3w31 (E.12)

[
[−δθ×]2 W

]
22

= δθ1δθ2w12 − w22

(
δθ2

1 + δθ2
3

)
+ δθ2δθ3w32 (E.13)[

[−δθ×]2 W
]

33
= δθ1δθ3w13 − w33

(
δθ2

1 + δθ2
2

)
+ δθ2δθ3w23 (E.14)

Therefore, the sum of Eq. E.12, Eq. E.13, and Eq. E.14 is the trace of the

3× 3 matrix [−δθ×]2 W. Computing the trace and grouping like terms,

tr
[
[−δθ×]2 W

]
=− (w22 + w33) δθ2

1 − (w11 + w33) δθ2
2 (E.15)

− (w11 + w22) δθ2
3 + (w21 + w12) δθ1δθ2

+ (w31 + w13) δθ1δθ3 + (w23 + w32) δθ2δθ3
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Therefore, the second derivative of the scalar tr
[
[−δθ×]2 W

]
with respect to

δθ may be computed as

∂2

∂δθ∂δθ

(
tr
[
[−δθ×]2 W

])
(E.16)

=

 −2 (w22 + w33) (w21 + w12) (w31 + w13)
(w21 + w12) −2 (w11 + w33) (w23 + w32)
(w31 + w13) (w23 + w32) −2 (w11 + w22)


which is equivalent to

∂2

∂δθ∂δθ

(
tr
[
[−δθ×]2 W

])
= −2tr [W] I3×3 + W + WT (E.17)

Recalling that W ≈WT produces the following relation

∂2

∂δθ∂δθ

(
tr
[
[−δθ×]2 W

])
= −2tr [W] I3×3 + 2W (E.18)

Now, substituting Eq. E.18 into Eq. E.9 yields

Fθθ = −1

2
E [−2tr [W] I3×3 + 2W] (E.19)

Finally, substituting for W from Eq. E.7, yields

Fθθ = tr
[
TI
B̂
BT
]
I3×3 −TI

B̂
BT (E.20)

This completes the detailed derivation of Eq. 5.54 in Chapter 5.

E.2 Derivation of B as function of Fθθ

The objective of this section is to prove the following result

B =

[
1

2
tr [Fθθ] I3×3 −Fθθ

]
TI
B̂

(E.21)
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This may be shown by solving Eq. E.20 (or Eq. 5.54) for B. Therefore,

recall from Eq. E.20 that

Fθθ = tr
[
TI
B̂
BT
]
I3×3 −TI

B̂
BT (E.22)

Taking the trace of both sides shows that

tr [Fθθ] = 3tr
[
TI
B̂
BT
]
− tr

[
TI
B̂
BT
]

(E.23)

And, therefore,

tr
[
TI
B̂
BT
]

=
1

2
tr [Fθθ] (E.24)

Substituting this result back into Eq. E.22,

Fθθ =
1

2
tr [Fθθ] I3×3 −TI

B̂
BT (E.25)

Rearranging shows that

TI
B̂
BT =

1

2
tr [Fθθ] I3×3 −Fθθ (E.26)

Recalling that Fθθ is symmetric, the transpose of Eq. E.26 is given by

BTB̂
I =

1

2
tr [Fθθ] I3×3 −Fθθ (E.27)

Now, multiplying through on the right by TI
B̂

yields

B =

[
1

2
tr [Fθθ] I3×3 −Fθθ

]
TI
B̂

(E.28)

This completes the detailed derivation of Eq. 5.55 in Chapter 5.
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[137] Haĺı̌r, R. and Flusser, J., “Numerically Stable Direct Least Squares Fit-

ting of Ellipses,” 6th International Conference in Central Europe on

355



Computer Graphics and Visualization (WSCG ’98), Bory, Czech Re-

public, 9-13 Feb 1998.

[138] Maini, E., “Robust Ellipse-Specific Fitting for Real-Time Machine Vi-

sion,” Lecture Notes in Computer Science, Vol. 3704, 2005, pp. 318–327.

[139] Fischler, M. and Bolles, R., “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated

Cartography,” Communications of the ACM , Vol. 24, No. 6, 1981, pp. 381–

395.

[140] Torr, P. and Zisserman, A., “Robust Computation and Parametriza-

tion of Multiple View Relations,” IEEE 6th International Conference on

Computer Vision, Bombay, India, 4-7 Jan 1998.

[141] Torr, P. and Zisserman, A., “MLESAC: A New Robust Estimator with

Application to Estimating Image Geometry,” Computer Vision and Im-

age Understanding , Vol. 78, No. 1, 2000, pp. 138–156.

[142] Huber, P., Robust Statistics , John Wiley and Sons, New York, NY, 1981.

[143] Wilcox, R., Introduction to Robust Estimation and Hypothesis Testing ,

Academic Press, San Diego, CA, 1997.

[144] Mortari, D., “Search-Less Algorithm for Star Pattern Recognition,” The

Journal of the Astronautical Sciences , Vol. 45, No. 2, April-June 1997,

pp. 179–194.

356



[145] Mortari, D., Samaan, M., Bruccoleri, C., and Junkins, J., “The Pyramid

Star Identification Technique,” Navigation, Vol. 51, No. 3, 2004, pp. 171–

183.

[146] Koenderink, J. and Pont, S., “Irradiation Direction from Texture,” Jour-

nal of the Optical Society of America, A: Optics, Image Science, and

Vision, Vol. 20, No. 10, 2003, pp. 1875–1882.

[147] Varma, M. and Zisserman, A., “Estimating Illumination Direction from

Textured Images,” IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2004.

[148] Roatsch, T., “Mars Express HRSC Radiometric RDR V1.0, MEX-M-

HRSC-3-RDR-V2.0,” European Space Agency, 2004.

[149] Enright, J., “Moon-Tracking Modes for Star Trackers,” Journal of Guid-

ance, Control, and Dynamics , Vol. 33, No. 1, Jan-Feb 2010, pp. 171–185.

[150] Tapley, B., Schutz, B., and Born, G., Statistical Orbit Determination,

Elsevier Academic Press, Burlington, MA, 2004.

[151] Brown, R. and Hwang, P., Introduction to Random Signals and Applied

Kalman Filtering, Third Edition, John Wiley & Sons, New York, NY,

1997.

[152] Gelb, A., Applied Optimal Estimation, The MIT Press, Cambridge, MA,

1974.

357



[153] Battin, R., An Introduction to the Mathematics and Methods of Astrody-

namics, Revised Edition, AIAA Educational Series, Reston, VA, 1999.

[154] Wahba, G., “A Least Squares Estimate of Satellite Attitude,” SIAM

Review , Vol. 7, No. 3, July 1965, pp. 409.

[155] Keat, J., “Analysis of Least-Squares Attitude Determination Routine

DOAOP,” Tech. Rep. CSC/TM-77/6034, Computer Sciences Corp, Feb

1977.

[156] Markley, F. and Mortari, D., “Quaternion Attitude Estimation Using

Vector Observations,” The Journal of the Astronautical Sciences , Vol. 48,

No. 2/3, April-September 2000, pp. 359–380.

[157] Shuster, M. and Oh, S., “Three-Axis Attitude Determination from Vec-

tor Observations,” Journal of Guidance and Control , Vol. 4, No. 1,

January-February 1981, pp. 70–77.

[158] Mortari, D., “ESOQ: A Closed-Form Solution to the Wahba Problem,”

The Journal of the Astronautical Sciences , Vol. 45, No. 2, April-June

1997, pp. 195–204.

[159] Mortari, D., “ESOQ-2 Single-Point Algorithm for Fast Optimal Space-

craft Attitude Determination,” Advances in the Astronautical Sciences ,

Vol. 95, No. 2, 1997, pp. 817–826.

358



[160] Markley, F., “Attitude Determination Using Vector Observations and

the Singular Value Decomposition,” The Journal of the Astronautical

Sciences , Vol. 36, No. 3, 1988, pp. 245–258.

[161] Shuster, M., “A Simple Kalman Filter and Smoother for Spacecraft At-

titude,” Journal of the Astronautical Sciences , Vol. 37, No. 1, January-

March 1989, pp. 89–106.

[162] Shuster, M., “New Quests for Better Attitudes,” Flight Mechanics/Estimation

Theory Symposium, NASA Goddard Space Flight Center, 21-23 May

1991.

[163] Bar-Itzhack, I., “REQUEST: A Recursive QUEST Algorithm for Se-

quential Attitude Determination,” Journal of Guidance, Control, and

Dynamics , Vol. 19, No. 5, Sept-Oct 1996, pp. 1034–1038.

[164] Shuster, M., “Filter QUEST or REQUEST,” Journal of Guidance, Con-

trol, and Dynamics , Vol. 32, No. 2, March-April 2009, pp. 643–645.

[165] Choukroun, D., Bar-Itzhack, I., and Oshman, Y., “Optimal-REQUEST

Algorithm for Attitude Determination,” Journal of Guidance, Control,

and Dynamics , Vol. 27, No. 3, May-June 2004, pp. 418–425.

[166] Psiaki, M., “Attitude-Determination Filtering via Extended Quaternion

Estimation,” Journal of Guidance, Control, and Dynamics , Vol. 23,

No. 2, March-April 2000, pp. 206–214.

359



[167] Markley, F., “Attitude Determination and Parameter Estimation Using

Vector Observations: Theory,” The Journal of the Astronautical Sci-

ences , Vol. 37, No. 1, January-March 1989, pp. 41–58.

[168] Markley, F., “Attitude Determination and Parameter Estimation Using

Vector Observations: Application,” The Journal of the Astronautical

Sciences , Vol. 39, No. 3, July-September 1991, pp. 367–381.

[169] Crassidis, J., Markley, F., and Cheng, Y., “Survey of Nonlinear Attitude

Estimation Methods,” Journal of Guidance, Control, and Dynamics ,

Vol. 30, No. 1, 2007, pp. 12–28.

[170] Wiesel, W., Spaceflight Dynamics, Second Edition, Irwin/McGraw-Hill,

Boston, MA, 1997.

[171] Hull, D., Optimal Control Theory for Applications , Springer, New York,

NY, 2003.

[172] Mortari, D., “n-Dimensional Cross Product and its Application to the

Matrix Eigenanalysis,” Journal of Guidance, Control, and Dynamics ,

Vol. 20, No. 3, 1997, pp. 509–515.

[173] Sorenson, H., Parameter Estimation: Principles and Problems , Marcel

Dekker, Inc, New York, NY, 1980.

[174] Rencher, A., Multivariate Statistical Inference and Applications , John

Wiley and Sons, Inc., New York, NY, 1998.

360



[175] Morrison, D., Multivariate Statistical Methods, Fourth Edition, Brooks/Cole,

Belmont, CA, 2005.

[176] Markley, F., “Attitude Error Representations for Kalman Filtering,”

Journal of Guidance, Control, and Dynamics , Vol. 26, No. 2, March-

April 2003, pp. 311–317.

[177] Atkinson, K., An Introduction to Numerical Analysis, Second Edition,

John Wiley & Sons, New York, NY, 1989.
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