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Real-life transportation systems are subject to numerous uncertainties in their 

operation. Researchers have suggested various reliability measures to characterize their 

network-level performances. One of these measures is given by travel time reliability, 

defined as the probability that travel times remain below certain (acceptable) levels. 

Existing reliability assessment (and optimization) techniques tend to be computationally 

intensive. In this dissertation we develop computationally efficient alternatives. In 

particular, we make the following three contributions. 

In the first contribution, we present a novel reliability assessment methodology 

when the source of uncertainty is given by road capacities. More specifically, we present 

a method based on the theory of Fourier transforms to numerically approximate the 

probability density function of the (system-wide) travel time. The proposed methodology 

takes advantage of the established computational efficiency of the fast Fourier transform. 
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In the second contribution, we relax the common assumption that probability 

distributions of the sources of uncertainties are known explicitly. In reality, this 

distribution may be unavailable (or inaccurate) as we may have no (or insufficient) data 

to calibrate the distributions. We present a new method to assess travel time reliability 

that is distribution-free in the sense that the methodology only requires that the first N 

moments (where N is any positive integer) of the travel time to be known and that the 

travel times reside in a set of known and bounded intervals. Instead of deriving exact 

probabilities on travel times exceeding certain thresholds via computationally intensive 

methods, we develop analytical probability inequalities to quickly obtain upper bounds 

on the desired probability.  

Because of the computationally intensive nature of (virtually all) existing 

reliability assessment techniques, the optimization of the reliability of transportation 

systems has generally been computationally prohibitive. The third and final contribution 

of this dissertation is the introduction of a new transportation network design model in 

which the objective is to minimize the unreliability of travel time. The computational 

requirements are shown to be much lower due to the assessment techniques developed in 

this dissertation. Moreover, numerical results suggest that it has the potential to form a 

computationally efficient proxy for current simulation-based network design models. 
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Chapter 1: Introduction 

1.1 MOTIVATION 

Travel time has long been recognized as an important criterion in the route choice 

selection process of travelers. More recently, empirical studies have demonstrated that, 

besides the (mean) travel time, travel time variability is another important criterion 

(Knight, 1974; Jackson and Jucker, 1981; Abdel-Aty et al., 1995; Noland and Small, 

1995; Bates et al., 2001; Brownstone and Small, 2005; Asensio and Matas, 2008). Studies 

on the valuation of reliability are typically based on the theory of discrete choice, using 

either revealed preference data (Lam and Small, 2001) or, much more commonly, stated 

preference data (e.g., Abdel-Aty et al., 1995; Bates et al., 2001; Asensio and Matas, 

2008). Several studies have even concluded that the variability of travel time is a more 

important criterion in route choice than the mean travel time value (e.g., Bates et al., 

2001; Liu et al., 2004, Lemp and Kockelman, 2010). Hence, questions that naturally arise 

are how reliable travel times are and how one can improve reliability. In this dissertation, 

we will address these questions at a network level, rather than at a link level or from the 

perspective of an individual traveler (although the techniques developed can easily be 

adapted to examine the reliability assessment problem from a single individual’s 

perspective). To date, only a limited number of studies have examined the transportation 

network reliability problem from an aggregate perspective (see Section 1.2 for a 

comprehensive literature review). These studies tend to be computationally intensive and/ 

or are based on restrictive modeling assumptions. Thus, there is a need for a new 
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generation of reliability assessment techniques that are computationally light and, at the 

same time, are premised on more realistic modeling assumptions. This dissertation 

presents significant progress in this direction by complementing existing work and  

relaxing frequently found assumptions. 

1.2 LITERATURE REVIEW 

It is widely accepted that the reliability of a transportation system is critical for 

society at large (Berdica, 2002). In terms of transportation networks, the reliability 

literature has its roots in the study of what has become known as connectivity or 

terminal reliability (Wakabayashi and Iida, 1992; Bell and Iida, 1997; Asakura et al., 

2003). This type of study examines the probability that specific Origin-Destination (OD) 

pairs in a network remain connected when links are subject to complete failures. Because 

of the binary character of the link performance (they are either in service or not, or more 

generally, provide an acceptable level of service or not), connectivity reliability tends to 

be more appropriate for extreme events (e.g., earthquakes).  

Travel time reliability relates to the probability that travel times remain below 

acceptable levels. The earliest studies in this area used extensive computer simulation to 

determine the reliability of travel times (e.g., Asakura and Kashiwadani, 1991), while 

later studies employed sensitivity analysis to reduce the computational burden (Du and 

Nicholson, 1997; Bell et al., 1999). In an attempt to further improve on the computational 

efficiency, Sumalee and Watling (2003) proposed an approach to obtain bounds on the 

reliability by only considering a subset of all possible scenarios. However, as the authors 

have noted, the approximation scheme is efficient only in situations where a large 
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fraction of the probability mass is concentrated on a relatively small number of scenarios.  

Recently, the same authors proposed a novel approach based on the partitioning of the 

sample space to obtain bounds on the reliability of travel time (Sumalee and Watling, 

2008).  

The output of network-level reliability studies is typically a single scalar 

performance index (e.g., the probability that the system travel time exceeds a 

predetermined threshold) as a summary of the overall system performance. Clark and 

Watling (2005) departed from this philosophy and constructed the entire Probability 

Density Function (PDF) of the system-wide travel time. With the entire PDF it becomes 

possible to evaluate the probability that the travel time exceeds any given value.  Bell 

(2000) and Bell and Cassir (2002) also assumed a novel approach by taking a more 

pessimistic view in the assessment of travel time reliability. They proposed models based 

on game theory to assess the worst case performance of a network in terms of its travel 

time.  

Chen et al. (1999) introduced the notion of capacity reliability, which is defined 

as the probability that the transportation system can accommodate a given demand level 

at an acceptable level of service. A comprehensive simulation-based framework to assess 

this particular form of reliability was presented and discussed in Chen et al. (2002). More 

recently, Sumalee and Karauchi (2006) used the concept of capacity reliability to 

evaluate network reliability in the wake of a major disaster. 

If there were no uncertainty in a transportation network, the above probabilistic 

reliability measures would either be zero or one. In the current literature, the sources of 

uncertainty in a transportation network are often categorized as demand uncertainty 
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(e.g., Asakura and Kashiwadani, 1991; Waller et al., 2001; Clark and Watling, 2005; Lam 

et al. 2008) or capacity uncertainty (e.g., Wakabayashi and Iida, 1992; Chen et al. 2002; 

Sumalee and Watling, 2003; Sumalee and Watling, 2008; Ng and Waller, 2009a). A 

major theme in these studies is the assumption of statistical independence. Unless the 

study is simulation-based (Chen et al., 2002 assumed that capacity degradations were 

correlated continuous random variables; for a comprehensive review of this correlation-

based approach, see Ng et al., 2010), it is often necessary to make the independence 

assumption for mathematical tractability. However, as pointed out in Lo and Tung 

(2003), while it is true that for certain situations the modeling of dependencies is crucial 

for the validity of the reliability assessment (e.g., during floods and earthquakes when 

certain areas are simultaneously affected), for other situations, the assumption of 

independence might be justifiable (e.g., traffic accidents, parking violations).  Apart from 

this, the validity of the independence assumption might also depend on the geographical 

region in which the network is located as certain regions are more prone to incidents that 

would give rise to dependent capacity reductions in a road network. Because of the 

challenging nature, only a very limited number of studies have attempted to relax the 

assumption of independence. For instance, by postulating a multivariate normal 

distribution for the link flows in a network, Clark and Watling (2005) were able to model 

dependencies. Sumalee and Watling (2003, 2008) used a cause-based failure framework 

to introduce correlations in the capacity degradations. 

A final criterion to characterize the transportation network reliability assessment 

literature is travel behavior under uncertainty. Three assumptions can be found in the 

literature. The first possibility assumes that travelers exhibit non-adaptive behavior, i.e, 
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they do not change their paths as a function of the unfolding scenario. One motivation for 

such behavior is that travelers simply do not have enough time to react because of the 

unpredictability of events (Clark and Watling, 2005). On the other extreme, Lo and Tung 

(2003) suggested that people have learned about the possible scenarios, based on which 

they have settled in a single, fixed, long-term equilibrium pattern accounting for the 

uncertainties. An immediate consequence of the non-adaptivity assumption is that only a 

single, representative run of traffic assignment (e.g., based on some nominal levels of 

demand and capacity) is needed to predict travel patterns. Another possibility 

hypothesizes that only the travelers on affected routes (i.e, routes whose capacities have 

reduced) have the ability to change their paths while travelling. The behavior underlying 

this type of partial adaptivity has been coined partial user equilibrium (Sumalee and 

Watling, 2003). The third and final possibility allows for fully adaptive behavior, i.e, for 

every single scenario travelers decide on a new path to follow (e.g., Chen et al, 2002). 

Clearly, there is still little consensus on travel behavior under uncertainty. Various 

network equilibrium models – with different behavioral assumptions – have been 

proposed in the literature to model this behavior (Yin and Ieda, 2001; Watling, 2002; Lo 

and Tung, 2003; Yin et al., 2004; Lo et al., 2006; Shao et al., 2006; Siu and Lo, 2008; 

Szeto et al., 2006; Zhou and Chen, 2008; Lam et al., 2008; Ng and Waller, 2009b).  

1.3 PROBLEM DEFINITION 

In order to be more precise about the contribution of this dissertation, some 

mathematical notation is needed. Let A denote the set of links in a transportation network 

(with some abuse of notation, we shall also refer to the cardinality of this set as A; from 
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the context it should be clear what is meant). And let av , ac and f
at  denote the traffic 

volume, capacity and free-flow speed on link a A , respectively. In the transportation 

network reliability literature (e.g., Chen et al. 2002; Lo and Tung, 2003; Ng and Waller, 

2009a), the travel time ta on link a is often assumed to be given by the Bureau of Public 

Roads (BPR) volume-delay function (Bureau of Public Roads, 1964): 

1f a
a a

a

v
t t

c




  
       

. 

For notational convenience, the parameters α and β are assumed to be link independent, 

which can easily be relaxed by the addition of a subscript. Uncertainties in capacity (e.g., 

Lo and Tung, 2003; Ng and Waller, 2009a) and link flows (e.g., Clark and Watling, 

2005) translate into uncertainties in the travel times according to the above nonlinear 

relation.  

Throughout this dissertation, the tilde (~) on a lower case letter is used to denote 

its random counterpart. For example, if the road capacity is random, we write ac instead 

of ac . On occasions, capital letters are also used to denote random variables. For 

instance, the total random travel time on link a is denoted as aT . From the context, it 

should be clear what variables are random. The random variable of interest in network-

level reliability assessment is the total system travel time (TSTT): 

 

1

A

aa
T T


 , 
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In particular, from a reliability perspective, we are mainly interested in the unreliability 

function ( )R x  of T at x (here and in the subsequent we use Pr(A) to denote the probability 

of event A), which is defined as: 

 ( ) PrR x T x  . 

Equivalently, one can examine the PDF of T as it uniquely determines ( )R x . Direct 

estimation (i.e, via simulation) of the unreliability function is computationally 

prohibitive. Computationally efficient methodologies are needed to complement and 

supplement existing techniques in the current literature. They will also form the starting 

to optimize reliability in a transportation network. 

Let us close this section with two remarks. First, notice that in the probability 

literature, ( )R x is oftentimes referred to as the reliability function (e.g., Ross, 2002). 

However, unlike in the transportation reliability literature – where small values of ( )R x  

are desirable – in the probability literature, high values of ( )R x  typically indicate “good” 

system performance (where T would for example correspond to the lifetime of a 

component of a machine). For this reason, we have chosen to call ( )R x  the unreliability 

function.  Second, we want to note that most techniques developed in this dissertation can 

be readily modified to analyze travel time reliability at the level of a single individual (as 

opposed to an entire network), simply by redefining aT  as the travel time experienced by 

a single traveler (e.g., in a BPR-framework, one would have a aT t  ). However, in light 

of existing work in the travel time reliability assessment literature (that all focused on the 
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TSTT), we take the system-level perspective in this dissertation. The reader should bear 

in mind that the results can be readily modified for a more disaggregate analysis.  

1.4 OUTLINE OF DISSERTATION 

This remainder of this dissertation is organized as follows. Chapter 2 presents a 

novel methodology to assess travel time reliability in a transportation network, when the 

source of uncertainty is given by random road capacities. Specifically, we present a 

method based on the theory of Fourier transforms to numerically approximate the PDF of 

the system-wide travel time. Any common continuous or discrete probability distribution 

can be used to model capacity uncertainty. Theoretical bounds on the approximation 

errors are formally derived, both for general distributions as well as for the specific 

instance of normally distributed capacities. These bounds provide valuable insights into 

the structure of the approximation errors and suggest ways to reduce them. From a 

practical point of view, we propose a procedure based on successively refining the 

computational grid in order to guarantee accurate approximations. The proposed 

methodology takes advantage of the established computational efficiency of the fast 

Fourier transform.  

An assumption that pervades the current transportation system reliability 

assessment literature is that probability distributions of the sources of uncertainty are 

known explicitly. However, this distribution may be unavailable (inaccurate) in reality as 

we may have no (insufficient) data to calibrate the distribution. Chapter 3 relaxes this 

assumption and presents a new method to assess travel time reliability that is distribution-

free in the sense that the methodology only requires that the first N moments (where N is 
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any positive integer) of the travel time to be known and that the travel times reside in a 

set of bounded and known intervals. Because of our modeling approach, all sources of 

uncertainty are automatically accounted for, as long as they are statistically independent. 

Furthermore, the results do not make explicit reference to any specific volume-delay 

function. Instead of deriving exact probabilities on travel times exceeding certain 

thresholds via computationally intensive methods, we develop analytical probability 

inequalities to quickly obtain upper bounds on the desired probability.  

In Chapter 4 we introduce a new transportation network design model that is a 

direct application of the travel time reliability assessment technique developed in Chapter 

3. Unlike in traditional network design models (where the objective is typically to 

minimize system travel time), the proposed model aims to minimize the unreliability of 

transportation networks. The potential of the new model as a computationally efficient 

alternative to existing simulation-based models is examined and discussed. Comparisons 

with traditional network design models aimed at improving system travel time will also 

be made. 

 Chapter 5 concludes this dissertation with a summary of its main contributions, 

the main conclusions and the identification of critical future research directions. 
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Chapter 2: Reliability Assessment with the Fast Fourier Transform 

2.1 INTRODUCTION 

This focus of this chapter is to present a computationally efficient approximation 

scheme to obtain estimates of the PDF of the system travel time (which in turn can be 

used to derive the unreliability function). To this end, we examine the case of travel time 

unreliability induced by independent road capacity variations under non-adaptive travel 

behavior. This work can be seen as a complement to some of the results presented in Lo 

and Tung (2003) and Lo et al., 2006 in which the Central Limit Theorem (CLT) was 

invoked to guarantee normality of the system travel time (by assuming strictly positive 

capacities and the exclusion of pathological cases). However, in the more general case, it 

is not always feasible to rely on the CLT. In this chapter we derive the PDF of the 

system-wide travel time without relying on the CLT (Section 2.6 provides examples in 

which the CLT fails to hold, whereas the proposed methodology remains valid), which 

leads us to a different positioning of the current work: a complement to Clark and 

Watling (2005) who obtained the PDF of the travel time under stochastic demand. Apart 

from the source of uncertainty, the proposed methodology is tremendously different. 

Clark and Watling assumed the multivariate normal distribution based on which they 

were able to obtain analytical expressions for the moments of the random travel time. The 

moments were subsequently used to obtain the PDF of the system travel time by fitting a 

parametric family of PDFs known as Jonhson curves (Jonhson, 1949). The underlying 

principles of our approach are based on the theory of Fourier transforms.  Furthermore, 
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we obtain a numerical approximation of the PDF rather than an analytical expression. 

Finally, while we assume independence, the proposed methodology is able to 

accommodate virtually every continuous or discrete distribution (except for pathological 

cases) in the modeling of capacities. In this chapter we shall develop the framework 

assuming a continuous distribution; modifications to the methodology in the discrete case 

are readily made. 

Following existing literature in this area (e.g., Chen et al., 2002; Lo and Tung, 

2003), we assume that the link travel time ta on link a A  is given by the Bureau of 

Public Roads (BPR) volume-delay function (Bureau of Public Roads, 1964): 

1f a
a a

a

v
t t

c




  
       

.     (2.1) 

Conditional on va, we assume that capacity is the single source of uncertainty in this 

chapter. The objective of this chapter is then to derive a numerical approximation of the 

PDF of system travel time T under the above stated assumptions. 

The remainder of this chapter is organized as follows. In Section 2.2 we present a 

brief review of the theory of Fourier transforms, focusing only on the essential elements 

needed for the understanding of the work in this chapter. Section 2.3 presents the 

approximation scheme. Error bounds on the resulting errors are derived. From a more 

practical point of view, we present a successive refinement scheme in Section 2.4 to 

guarantee accurate approximations. In Section 2.5 we consider the special case when 

capacities are normally distributed random variables. Numerical results for this special 

case are reported in Section 2.6 based on the well-known Nguyen-Dupuis test network.  
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2.2 FOURIER TRANSFORMS 

In this section we present a brief review of Fourier analysis, only focusing on the 

essential elements that aid the reader in the understanding of the work in this chapter. For 

more details and related topics, we refer the reader to the numerous comprehensive 

textbooks available (e.g., Goldberg, 1961; Briggs and Henson, 1995; Howell, 2001). Let 

us start by being more precise about the continuous Fourier transform (henceforth simply 

referred to as the Fourier transform). In the following, we use  and   to denote the set 

of real and complex numbers, respectively. 

 

Definition 2.1 Let f:  be a continuous and absolutely integrable function, i.e, 

( )f t dt




  . 

The Fourier transform of f is then given by the complex-valued function ˆ :f   

ˆ ( ) ( )i tf e f t dt






   

where   and 1i   . The function f can be recovered from its Fourier transform 

f̂ , provided that f̂  is continuous and absolutely integrable, in which case we define the 

Inverse Fourier Transform as: 

1 ˆ( ) ( )
2

i tf t e f d  






  .           □ 
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The domain on which f  is defined is frequently referred to as the spatial or time domain, 

whereas we say that the Fourier transform f̂  is defined on the frequency domain. We 

want to note that the above definition for the Fourier transform pair is not unique. Slight 

variations can be found in the literature (e.g., see Howell, 2001 for a discussion). 

However, they all share the same fundamental properties that make them useful in 

practice. In this dissertation we adopt Definition 2.1 as the Fourier transform.  

This chapter is heavily built on the convolution theorem (Briggs and Henson, 

1995). Let f  and g be two functions defined in the time domain that satisfy the properties 

stated in Definition 2.1. The convolution of f and g (denoted as f g) is the function h 

given by 

( ) ( ) ( )h x f s g x s ds




  .     (2.2) 

The convolution theorem states that the Fourier transform of h equals the product of the 

Fourier transforms of f  and g, i.e,  

ˆ ˆ ˆ( ) ( ) ( )h f g   . 

While f and g can be any arbitrary, “nice” functions (in the sense of Definition 2.1), in 

this chapter we are interested in the special case when they represent PDFs (in this case, 

the Fourier transforms are also known as characteristic functions, Ushakov (1999); 

however, we will employ the name Fourier transform here). Consequently, h can be 

interpreted as the PDF of the sum of two independent random variables with PDFs f and 

g (Feller, 1966). Theoretically, one can apply the inverse Fourier transform to recover h 

(that is, instead of the direct evaluation of the convolution integral (2.2) in the time 
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domain, we have reduced the problem to one of multiplication in the frequency domain). 

Unfortunately, closed-form expressions for Fourier transforms are only available for 

relatively simple functional forms. Hence we need an approximation. This approximation 

is naturally given by the discrete Fourier transform (DFT), as we will demonstrate in 

Section 2.3. For the same reason as in the continuous case, a definition is in order here. 

Let 'y  denote the transpose of the vector y.  

 

Definition 2.2 Let z= 1 2( , ,..., ) 'Nz z z  be an N-dimensional complex-valued vectors in N . 

Furthermore, define 2 /i N
N e   , then the DFT of z is given by 1 2( , ,..., ) ' N

NZ Z Z Z   

where 

( 1)( 1)

1

N
n k

k n N
n

Z z   



  

and k =1, 2,…, N. The vector z can be recovered from Z via the inverse discrete Fourier 

transform (IDFT): 

( 1)( 1)

1

1 N
n k

n k N
k

z Z
N

  



   

where n =1, 2,…, N.                 □ 

 

Based on the matrix representations of the DFT and its inverse (Briggs and Henson, 

1995), it is not hard to see that the number of arithmetic operations for each of the 

transforms is proportional to 2N , i.e,, the number of arithmetic operations is 2( )O N . 

Although polynomial, the DFT and its inverse would not have been as ubiquitous as it is 
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today if there were not more efficient algorithms. This efficient class of algorithms is 

collectively known as the fast Fourier transform (FFT), which has a computational 

complexity of ( log )O N N . To give a hint of why this complexity can be achieved, we 

briefly consider one class of FFT algorithms known as the decimation-in-time algorithms 

(Van Loan, 1992). Without loss of generality, assume that N is some power of 2, i.e, N = 

2L for some positive integer L (the fact that this assumption is always without loss of 

generality is due to a technique called zero-padding, e.g., see Briggs and Henson, 1995). 

Define 2 1n ny z   and 2n nw z , n = 1, 2,…, N/2 that are the odd and even subsequences 

of nz ,n =1, 2,…, N. The DFT of the vector nz can now be re-expressed as (cf. Definition 

2.2): 

 
/2

(2 2)( 1) (2 1)( 1)

1

N
n k n k

k n N n N
n

Z y w    



   

where k =1, 2,…, N. By observing that 

(2 2)( 1) ( 1)( 1)
/2

n k n k
N N      

we can rewrite the above DFT as 

/2 /2
( 1)( 1) 1 ( 1)( 1) 1

/2 /2
1 1

N N
n k k n k k

k n N N n N k N k
n n

Z y w Y W        

 

     . 

In particular,  

1

1 /2
/2 /2 /2

k
k k N k

k N
k N k N N k N

Z Y W

Z Y W







 
  

 

 
 

where k =1, 2,…, N/2. Since /2k N kY Y  , /2k N kW W   and /2 1N
N   , one gets the so-

called butterfly relations 
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1

1
/2

k
k k N k

k
k N k N k

Z Y W

Z Y W










 

 
 

where k =1, 2,…, N/2. That is, we have shown that it is possible to express the DFT of 

the vector nz in terms of the DFTs of its odd and even subsequences (each of length N/2). 

Clearly, we can apply this splitting-idea to the odd and even subsequences of ny and nw , 

until we have sequences of length one (whose DFTs are trivially computed: they are the 

sequences themselves). Using a series of butterfly relations, the DFT of the original 

sequence can then be recovered. 

The discovery of the FFT is often attributed to Cooley and Tukey (1965), 

although the technical birth date of the algorithm can be traced back to 1805 when Gauss 

devised the FFT for his calculations in astronomy (Heideman et al., 1985). However, 

only in 1965, did the FFT become widespread. The importance of the FFT cannot be 

overstated (see Brigham, 1988, for a long list of applications). In this dissertation we 

have to confine ourselves to the limited view that the FFT is an efficient algorithm to 

evaluate the DFT (and IDFT). For more details on the FFT, we refer to the reader to Van 

Loan (1992). 

2.3 THE APPROXIMATION SCHEME AND ITS ERROR BOUNDS 

Recall that the aim of this chapter is to obtain an approximation of the PDF of the 

system-wide travel time T, denoted as  fTSTT. Before we attempt to make any statements at 

the system level, let us present some results at the link level. Throughout this section we 

shall assume that the volume-delay function is given by the BPR function (2.1).  
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Lemma 2.1 Let the PDF of the capacity of link a A be given by fca. Furthermore, 

let f
a ax v t . Then the PDF of Ta is given by 

*
( ) ( *)

( )a ca f
a a

c
f x f c

v t x
 


, 

where 

1/*
1

1

a

f
a a

v
c

x
v t






  

     

. 

Proof Since the BPR function is strictly decreasing as a function of the capacity of the 

link, we have 

Pr[ ] Pr[ *] 1 Pr[ *] 1 ( *)a a a caT x c c c c F c          

where *c  and caF  are the solution to the equation a at v x  and the cumulative 

distribution function of ac , respectively. The PDF of Ta can now be obtained by 

differentiating with respect to x: 

 Pr * *
( *) ( *)

( )
a

ca ca f
a a

d T x dc c
f c f c

dx dx v t x


   


, 

which completes the proof. Q.E.D.    

 

From probability theory it is known that the PDF of a sum of independent random 

variables is given by the convolution of the PDFs involved. Using the current notation, 

this can be stated as 

1 2( ) ... ( )TSTT Af x f f f x    . 
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Note that if, in addition, the capacities are assumed to have identical distributions, the 

goal of this chapter is tremendously simplified as the CLT (Feller, 1966) ensures that the 

TSTT follows some normal distribution (assuming that a typical transportation network 

has a sufficiently large number of links). That is, the task would have reduced to the 

derivation of the mean and variance of the TSTT as they uniquely determine a normal 

distribution. In this chapter, random capacities are allowed to have non-identical 

probability distributions so that the CLT does not necessarily hold. Now, by the 

convolution theorem (cf. Section 2.2) we have 

1 2
ˆ ˆ( ) ( * *...* ) ( )i t
TSTT A a

a

f e f f f dt f 






  .           (2.3) 

Theoretically, Fourier inversion can be invoked to recover fTSTT. Practically, however, this 

might pose some serious challenges. The main difficulty in the application of the 

convolution theorem stems from the absence of closed-form expressions for the Fourier 

transforms of fa. Note that although we have not assumed any specific probability 

distribution for the random capacities yet, we can anticipate that a closed-from expression 

for the Fourier transform is challenging, if not impossible, to obtain for general 

distributions as it involves complex integrations of non-trivial functions in the complex 

domain. Hence we have to resort to approximations.  

The Fourier transform of  fa  is given by 

ˆ ( ) ( )
f

a a

i x
a a

v t

f e f x dx


  . 

In order to numerically approximate this integral, we need to truncate the interval of 

integration to a finite range. In particular, we replace the interval of integration with the 
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finite interval ( , ].f
a av t U  Proposition 2.1 provides an upper bound on the resulting 

truncation error. Note that in Proposition 2.1 we only require that af  be continuous: the 

condition of being absolutely integrable follows directly from the fact that af  is a PDF 

(cf. Definition 2.1). 

 

Proposition 2.1 (Truncation Error) Let af be a continuous PDF. For the truncation error 

ET , there holds 

1/

1/

( )
( ) Pr

( )

f
i t a a a

T a a f
a aU

v v t
E f t e dt c

U v t







  

    
  . 

Proof We have 

1/

1/

( )
( ) ( ) ( ) Pr[ ] Pr

( )

f
i t i t a a a

a a a a a f
a aU U U

v v t
f t e dt f t e dt f t dt T U c

U v t


 



  
   

       
    . 

Q.E.D. 

 

Clearly, the truncation error can be reduced by increasing U. The truncated 

integral will next be approximated at a discrete set of points. To this end, let 

( 1) , 1, 2,..., , 0k k k N         and ( 1) , 1, 2,..., , 0f
n a ax v t n x n N x       . The 

trapezoidal rule for numerical integration (Burden and Faires, 2004) gives 

ˆ ( ) ( )k

f
a a

U
i x

a k a

v t

f e f x dx  
 

 ( 1)( 1) ( 1)( 1)
1

1

1
( ) ( ) ( )

2

f f f
k a a k a a k a a

N
i v t i v t i v ti k n x i k N x

a n a a N
n

e x f x e f x e f x e e              



 
    

 
 .  

(2.4) 
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If we impose the relation: 

2
x

N

              (2.5) 

one can recognize the DFT of the vector  
1

( )
N

a n n
f x


 in (2.4). In other words, the 

approximation (2.4) can be rapidly evaluated using the FFT algorithm! Relation (2.5) is 

known as the reciprocity relation: For a given number of sample points N, a finer grid in 

the spatial domain (i.e, a small value of ∆ω) necessitates a coarser grid in the frequency 

domain (i.e, a large value of ∆x), and vice versa. Equivalently, for a given value of N, the 

length of the interval of integration in the spatial domain is inversely related to the length 

of the interval of integration in the frequency domain. We shall refer to the DFT 

approximation (2.4) as  ˆ DFT
a kf  . The following proposition characterizes the 

discretization error in the approximation. 

 

Proposition 2.2 (Discretization Error) Let af  be a twice continuously differentiable 

PDF. For the discretization error ED in the DFT approximation (2.4) we have  

       2 2
2

2 2

cos( ) ( ) sin( ) ( )ˆ ˆ ( ) max max
12

f
a aDFT a a

D a k a k
x x

d x f x d x f xU v t
E f f x

dx dx
  

     . 

Proof Since we have simply used the trapezoidal rule in (2.4), the standard bound on the 

discretization error for the trapezoidal rule applies (Burden and Faires, 2004), provided 

that we make a slight modification. More precisely, we have to consider the errors in the 

real and imaginary components of the approximation separately. Let Re[z] and Im[z] 
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denote the real and imaginary parts of the complex number z=a+bi, respectively (that is, 

Re[z]=a and Im[z]=b). Then, for the error in the real part of the approximation we have 

     
1

2
2

2

cos( ) ( )ˆ ˆRe[ ] Re[ ] ( )
12

a

f
aDFT a a

a k a k

x

d x f xU v t
f f x

dx


 



     (2.6) 

for some 1 ( , ]f
a a av t U  . Likewise, for the imaginary part we have 

     
2

2
2

2

sin( ) ( )ˆ ˆIm[ ] Im[ ] ( )
12

a

f
aDFT a a

a k a k

x

d x f xU v t
f f x

dx


 



     (2.7) 

for some 2 ( , ]f
a a av t U  . By taking the sum of (2.6) and (2.7) and bounding the second 

derivatives by their maximum values we get the desired result. Q.E.D. 

 

From the result in Proposition 2.2 we can make at least three important 

observations. First, there is a trade-off between the truncation and discretization error: 

The larger the truncation error, the smaller the discretization error, ceteris paribus (and 

vice versa). Second, in order to make exact statements about the discretization error, we 

need to bound some second order derivatives.  Depending on the choice of the PDF, this 

might not be analytically tractable (of course, one can use numerical methods to obtain 

such bounds for each link). Third, the result tells us that the DFT approximation is an 

O((∆x)2) method. For instance, reducing the grid spacing ∆x by ½ would reduce the 

discretization error by a factor of 4, again everything else being equal. Before we 

proceed, we want to note that the magnitudes of the derived error bounds are relative to 

the absolute value of the Fourier transform which is bounded by one: 
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ˆ ( ) ( ) ( ) ( ) 1k k

f f f
a a a a a a

i t i t
a k a a a

v t v t v t

f f t e dt f t e dt f t dt 
  

       .     (2.8) 

Once ˆ ( )DFT
a kf   have been evaluated for each link in the transportation network, 

point-wise multiplication is performed as a proxy for (2.3). As the terms ˆ ( )DFT
a kf   are 

approximations themselves, the estimate of ˆ ( )TSTT kf   will be subject to errors. To derive 

a bound on this estimate, note that we can write 

1 1

ˆ ˆ( ) ( )
A A

DFT
a k a k

a a

f f 
 

   

 
1 1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
A A A

DFT DFT DFT
A k A k a k A k a k a k

a a a

f f f f f f     
  

  

 
    

 
   . 

By the triangle inequality, we get 

1 1

ˆ ˆ( ) ( )
A A

DFT
a k a k

a a

f f 
 

   

 
1 1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
A A A

DFT DFT DFT
A k A k a k A k a k a k

a a a

f f f f f f     
  

  

 
    

 
    

so that 

1 1

ˆ ˆ( ) ( )
A A

DFT
a k a k

a a

f f 
 

   

1 1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
A A A

DFT DFT DFT
A k A k a k A k a k a k

a a a

f f f f f f     
  

  

 
    

 
   . 

Thus, if we assume that ˆ ( ) 1DFT
a kf   , we get the following result which bounds the 

“propagation error” in terms of the discretization error. 
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Proposition 2.3 (Error propagation by multiplication) Suppose that ˆ ( ) 1DFT
a kf    , 

then 

11 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
A A A

DFT DFT
a k a k a k a k

aa a

f f f f   
 

    .   (2.9) 

Furthermore, if af is a twice continuously differentiable PDF, then 

   2 2
2

2 2
1 1

cos( ) ( ) sin( ) ( )( )ˆ ˆ( ) ( ) ( ) max max
12

fA A
a aDFT a a

a k a k
x x

a a

d x f x d x f xU v t
f f x

dx dx
 

 


          

(2.10) 

Proof By assumption, we have ˆ ( ) 1DFT
a kf   , so that 

1 1

1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
A A A A

DFT DFT DFT
a k a k A k A k a k a k

a a a a

f f f f f f     
 

   

 
     

 
     

where we have used (2.8) to deduce that 
1

1

ˆ ( ) 1
A

a k
a

f 




 . By an induction argument, we 

establish (2.9). Now, suppose that af is a twice continuously differentiable PDF, then 

inequality (2.10) follows directly from Proposition 2.2. Q.E.D. 

 

As with the discretization error, we see that the “propagation error” reduces at a quadratic 

rate. The product 
1

ˆ ( )
A

DFT
a k

a

f 

  will next be deconvoluted via the IDFT. Before 

embarking on formulae, we want to comment on the way we have defined ωk in (2.4). 

Recall that ( 1) , 1,2,..k k k N     , so that we only obtain approximations of the 

Fourier transforms at non-negative frequencies ωk. This might seem unnatural given our 
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definition of the inverse Fourier transform in Section 2.2 (which requires that ω assumes 

both non-positive as well as non-negative values). Next we show that this is without loss 

of generality. To establish this, we need the following lemma (we want to note that 

Lemma 2.2 remains valid for arbitrary complex-valued functions; we have stated the 

lemma as is, given the focus of the current chapter).  

 

Lemma 2.2 The Fourier transform ˆ( )f  satisfies the equality 

ˆ ˆ( ) ( )i x i xe f e f         (2.11) 

where z denotes the complex conjugate of z. 

Proof Let us write ˆ ( ) ( ) ( )f g ih    , where g(ω) and h(ω) are real-valued functions. 

Using Euler’s formula (Howell, 2001), the left hand side of (2.11) can then be rewritten 

as: 

  ˆ ( ) cos( ) sin( ) ( ) ( )i xe f x i x g ih          

          ( ) cos( ) ( )sin( ) ( )sin( ) ( ) cos( )g x h x i g x h x           . 

Since 

  ˆ ( ) cos( ) sin( ) ( ) ( )i xe f x i x g ih         

   ( ) cos( ) ( )sin( ) ( )sin( ) ( ) cos( )g x h x i g x h x            

the equality follows. Q.E.D.  

Now, as  

0

0

1 1 1ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2 2

i t i t i t
TSTT TSTT TSTT TSTTf t e f d e f d e f d       

  

 

 

     , 
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By the change of variable ω = -s, we get 

0

0 0 0 0

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i t ist ist ist ist
TSTT TSTT TSTT TSTT TSTTe f d e f s ds e f s ds e f s ds e f s ds  

   
 



         , 

where the second equality follows from the fact that ˆ ˆ( ) ( )g g   for real-valued 

functions g (e.g., see Howell, 2001). Lemma 2.2 yields the third equality; the last equality 

follows from the linearity property of complex integrals. Therefore, we have shown that 

0

1 ˆ( ) Re ( )i t
TSTT TSTTf t e f d  



    
  
 . 

Using this result, Fourier inversion can now be realized via the trapezoidal rule as 

follows. Define 0
f

a aa
t v t and let 0 ( 1) , 1, 2,..,nt t n x n N     , then 

( )TSTT nf t  

 0 0( 1)( 1)( 1) ( 1)( 1)
1

1

1ˆ ˆ ˆRe ( ) ( ) ( )
2

k

N
i t i N ti k n x i N n x

TSTT k TSTT TSTT N
k

e f e f f e e     


        



  
   

 
  

 0 0( 1)( 1)( 1) ( 1)( 1)
1

1

1ˆ ˆ ˆRe ( ) ( ) ( )
2

k

N
i t i N tDTF i k n x DTF DTF i N n x

TSTT k TSTT TSTT N
k

e f e f f e e     


        



  
   

 
  

( )TSTT nf t   

where we have defined
1

ˆ ˆ( ) ( )
A

DTF DFT
TSTT k a k

a

f f 


 . Assuming that the reciprocity relation 

(2.5) holds, one can recognize (up to a scaling factor of 1/N) the IDFT of the vector 

 0

1

ˆ ( ) k
N

i tDTF
TSTT k

k
f e 


 in the above approximation. Thus we can again use the FFT to rapidly 

evaluate the approximation. The next proposition characterizes the error involved in this 
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inversion procedure. To simplify notation, we have assumed that the reciprocity relation 

(2.5) holds.  

 

Proposition 2.4 (Inversion error) Let af be a twice continuously differentiable PDF. 

Define ˆ( , ) Re[ ( )]RE i t
TSTT TSTTf t e f  , ˆ( , ) Im[ ( )]IM i t

TSTT TSTTf t e f   and assume that they 

are twice continuously differentiable (as a function of ). Let ( 1)N     , then 

( ) ( )TSTT n TSTT n trapezoidal propagationf t f t E E      (2.12) 

where 

2 2
2

2 2

( , ) ( , )
( ) max max

12

RE IM
TSTT n TSTT n

trapezoidal

d f t d f t
E

d d 

 
 


    

and 

   2 2
2

2 2
1

cos( ) ( ) sin( ) ( )( )( 1)
( ) max max

12

fA
a aa a

propagation
x x

a

d x f x d x f xU v tN
E x

dx dx


 


     

       
   2 2

2 2
1

cos( ) ( ) sin( ) ( )( )
2 max max

12

fA
a aa a

x x
a

d x f x d x f xU v t
x

dx dx


   . 

Proof Define ˆ ˆ( ) ( ) ( )DFT
TSTT k TSTT k TSTT kf f     , where ( )TSTT k  is the error in the 

approximation of ˆ ( )TSTT kf  . Using this relation, we can write 

( ) ( ) ( ) ( ) ( )TSTT n TSTT n TSTT n trapezoidal n error nf t f t f t f t f t     

where 

( )trapezoidal nf t  
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 0 0( 1)( 1)( 1) ( 1)( 1)
1

1

1ˆ ˆ ˆRe ( ) ( ) ( )
2

k

N
i t i N tk n i N n x

TSTT k N TSTT TSTT N
k

e f f f e e      


       



  
   

 
  

and 

( )error nf t  

 0 0( 1)( 1)( 1) ( 1)( 1)
1

1

1
Re ( ) ( ) ( )

2
k

N
i t i N tk n i N n x

TSTT k N TSTT TSTT N
k

e e e         


       



  
   

 
  

That is, ( )trapezoidal nf t is the trapezoidal rule-based approximation of ( )TSTT nf t  using the 

exact values of ˆ
TSTTf  (which are unknown) and ( )error nf t is an error term that comes into 

existence as we use approximate values of ˆ
TSTTf  in the inversion process. From the 

triangle inequality it now follows that 

( ) ( ) ( ) ( ) ( )TSTT n TSTT n TSTT n trapezoidal n error nf t f t f t f t f t    . 

Analogous to Proposition 2.2, we have the bound: 

2 2
2

2 2

( , ) ( , )
( ) ( ) ( ) max max

12

RE IM
TSTT n TSTT n

TSTT n trapezoidal n

d f t d f t
f t f t

d d 

 
 


    . 

For ( )error nf t , we have 

( )error nf t  




 

0 0( 1)( 1)( 1) ( 1)( 1)
1

1

1
Re[ ( ) ] Re[ ( ) ( ) ]

2
k

N
i t i N tk n i N n x

TSTT k N TSTT TSTT N
k

e e e                



 
  

 


0 0( 1)( 1)( 1) ( 1)( 1)
1

1

1
( ) ( ) ( )

2
k

N
i t i N tk n i N n x

TSTT k N TSTT TSTT N
k

e e e         


       



  
   

 
  

1
1

1 1
( ) | ( ) | | ( ) |

2 2

N

TSTT k TSTT TSTT N
k
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1 1
1 1 1 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
2 2

N A A A
DFT DFT DFT

a k a k a a a N a N
k a a a

f f f f f f
      
    

  
      

 
    

   2 2
2

2 2
1

cos( ) ( ) sin( ) ( )( )( 1)
( ) max max

12

fA
a aa a

x x
a

d x f x d x f xU v tN
x

dx dx


 


     

where we have used Proposition 2.3 to arrive at the last two inequalities. Using the 

reciprocity relation and noting that 1N  completes the proof. Q.E.D. 

 

Let us now take a step back and interpret the bound on the inversion error. First, 

note that the error bound involves the maximization of some functions consisting of the 

second order derivative of ˆ
TSTTf (cf. Propositions 2.2 and 2.3). Unfortunately, since ˆ

TSTTf  

is not known, we are not able to evaluate the right-hand side of (2.12).  However, 

Proposition 2.4 does provide valuable insights into the approximation scheme. The first 

observation is that the error can be decomposed into two parts. The first part Etrapezoidal is 

the discretization error introduced by the trapezoidal rule as if we knew the exact values 

of ˆ
TSTTf . The size of this error component can be reduced by decreasing ∆ω. Furthermore, 

the proposition tells us that the bound improves at a quadratic rate as a function of ∆ω. 

The second part of the error bound Epropagation is a result of the propagation of errors.  That 

is, this error term is introduced because of the truncation (Proposition 2.1), discretization 

(Proposition 2.2) and multiplication (Proposition 2.3) of the Fourier transform. This error 

term decreases (approximately) at a linear rate as a function of ∆x.  

Although it is not possible to evaluate the right-hand side of (2.12), we believe 

that the bound in Proposition 2.4 (and in fact, all other bounds derived in this section) are 
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too conservative. That is, the accuracy is often much higher than can be expected based 

on the bounds alone. This phenomenon was also observed in the authoritative work by 

Abate and Whitt (1992) who recognized that in practice it is often necessary to apply a 

successive refinement procedure to aid determining the accuracy of DFT approximations. 

In order words, an approximation is declared to be sufficiently accurate when subsequent 

refinements of the computational parameters do not yield noticeable differences in the 

approximated values. Before we present such a scheme in the next section, we have 

summarized the approximation procedure outlined in this section in Figure 2.1, where we 

have used TSTTf  to denote the resulting approximation of TSTTf . The pseudo-code 

associated with the procedure is also provided below. Note that we have not explicitly 

included ∆ω as an input parameter, the rationale being that once N and ∆x are fixed, the 

reciprocity relation uniquely determines ∆ω. Furthermore, we want to emphasize that 

link flows av  are part of the input to the procedure (cf. Lemma 2.1). These can, for 

example, be obtained via the solution of some traffic assignment problem, as is done in 

the numerical case study in Section 2.6. 

 

 

Figure 2.1: A summary of the Fourier-based approximation scheme. 

 

 

 



 30

Pseudo-code Fourier-based Approximation Scheme 

 

INPUT , , , , , , f
ca a aN x f v t  . 

OUTPUT ( )TSTT nf t , 0 ( 1) , 1, 2,..,nt t n x n N     , where 0
f

a aa
t v t . 

Step 1  

Evaluate ( 1) , 1, 2,..k k k N     where 2 N x    . For each link a A , use the 

FFT to evaluate (2.4) to obtain the approximations ˆ ( ),DFT
a kf  ( 1) , 1, 2,..k k k N     . 

Step 2 

Evaluate
1

ˆ ˆ( ) ( )
A

DTF DFT
TSTT k a k

a

f f 


 ( 1) , 1, 2,..k k k N     . 

Step 3 

Use the FFT to evaluate  

 0 0( 1)( 1)( 1) ( 1)( 1)
1

1

( )

1ˆ ˆ ˆRe ( ) ( ) ( )
2

k

TSTT n

N
i t i N tDTF i k n x DTF DTF i N n x

TSTT k TSTT TSTT N
k

f t

e f e f f e e     


        



  
   

 




where 0 ( 1) , 1, 2,..,nt t n x n N     . 

 

As a final remark, we want to note that although we have presented our results 

assuming the BPR function, the methodology in this section is much more general and 

remains applicable as long as the volume-delay function yields a PDF for the link travel 

time (cf. Lemma 2.1) for which the Fourier transform is defined (cf. Definition 2.1). Of 

course, the specifics of the error analysis will change, depending on the volume-delay 

function chosen. 
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2.4 ACCURACY CHECKING VIA SUCCESSIVE REFINEMENT 

The theoretical error bounds derived in the previous section provide valuable 

insights into the structure of the error. Moreover, they suggest ways to improve on the 

accuracy. However, as we have noted, they tend to be too conservative. Following Abate 

and Whitt (1992), in this section we provide a successive refinement scheme to 

empirically guarantee the accuracy of the approximations.   

Given a transportation network, suppose that we want to assess whether the pair 

( , )N x  yields a sufficiently accurate approximation of fTSTT. In the following, let us use 

( , )TSTTf N x  to denote the result of the approximation scheme depicted in Figure 2.1 with 

N and ∆x being the input parameters. Intuitively (and based on Proposition 2.2), if we 

increase the number of sampling points N by a factor 1K   and simultaneously decrease 

∆x by the same factor – leading to the new approximation ( , / )TSTTf KN x K  – the 

discretization error should reduce. If this reduction in error is relatively small, it is 

reasonable to believe that ( , )TSTTf N x  is an accurate approximation, given the current 

interval of integration (which has a length of ( 1)N x  ). In this latter case, given ∆x, the 

only way the approximation might be improved is by enlarging the interval of integration, 

while maintaining the same grid spacing, which leads us to evaluate ( , )TSTTf KN x . To 

ensure that the grid spacing (in light of the discretization error) is sufficiently small on 

this larger interval, we compare ( , )TSTTf KN x  and 2( , / )TSTTf K N x K  – note that the 

range of integration is the same in both cases. If these two approximations do not differ 

significantly and if the difference between ( , )TSTTf N x  and ( , )TSTTf KN x  is also small, 
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we declare that the parameters ( , )N x  yield a sufficiently accurate approximation of  

fTSTT. Let us summarize this successive refinement accuracy checking procedure 

( 0  denotes a pre-specified tolerance level): 

 

Pseudo-code Accuracy Checking via Successive Refinement 

 

INPUT , , ,N x K  . 

OUTPUT Decision whether ( , )TSTTf N x is an accurate approximation. 

Step 1  

Evaluate ( , )TSTTf N x and ( , / )TSTTf KN x K . 

IF max ( , / ) ( , ) max ( , )TSTT TSTT TSTTf KN x K f N x f N x       , then 

STOP and OUTPUT: ( , )TSTTf N x is not a sufficiently accurate approximation. 

ELSE GoTo Step 2. 

Step 2 

Evaluate ( , )TSTTf KN x and 2( , / )TSTTf K N x K . 

IF 2max ( , / ) ( , ) max ( , )TSTT TSTT TSTTf K N x K f KN x f KN x       , then 

STOP and OUTPUT: ( , )TSTTf N x is not a sufficiently accurate approximation. 

ELSE GoTo Step 3. 
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Step 3 

IF max ( , ) ( , ) max ( , )TSTT TSTT TSTTf N x f KN x f N x       , then 

STOP and OUTPUT ( , )TSTTf N x is a sufficiently accurate approximation 

ELSE STOP and OUTPUT: ( , )TSTTf N x is not a sufficiently accurate approximation.  

 

Remarks 

1. The proposed accuracy checking procedure requires the specification of K. For 

obvious reasons, K must be such that KN and K2N are integers. However, note that the 

computational burden increases with K since we multiply the number of grid points by 

this value. Finally, K must be such that successive refined estimates have grid points in 

common (see next remark). 

2. Note that successively refined estimates of the PDF cannot be compared at all grid 

points on which they are defined. For instance, in Step 1 we evaluate ( , )TSTTf N x  and 

( , / )TSTTf KN x K . If K=5/4, the computational grids in the evaluation 

of ( , )TSTTf N x and ( , / )TSTTf KN x K are given by 

0, ∆x, 2∆x, 3∆x, 4∆x, 5∆x, 6∆x, 7∆x, 8∆x,…, (N-1)∆x, 

and  

0, 4/5∆x, 8/5∆x, 12/5∆x, 16/5∆x, 4∆x, 24/5∆x, 28/5∆x, 

 32/5∆x, 36/5∆x, 8∆x,…, 4/5(5/4N-1)∆x, 

respectively. Hence, we can only compare ( , )TSTTf N x  and ( , / )TSTTf KN x K  at grid 

points that are a multiple of 4∆x and that are less or equal to (N-1)∆x. However, we do 
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not believe that this is a serious issue as N tends to be large in practice, ensuring a 

sufficiently large number of common grid points. In light of this observation, the 

maxima between differences in the accuracy checking procedure are to be taken 

among common grid points. 

3. There are several ways to obtain an initial guess of ( , )N x . One possibility is by trial 

and error. Due to the computational efficiency of the FFT, one can guess a set of 

values and rapidly evaluate its performance by the visual inspection of the resulting 

PDF.  When the PDF looks convincing (from experience, we can say that it is very 

easy to recognize inaccurate approximations), one can execute the above successive 

refinement scheme to check the accuracy more thoroughly.  

2.5 THE SPECIAL CASE OF NORMALLY DISTRIBUTED CAPACITIES 

Until now, we have not made any specific assumptions on the distribution of the 

random capacities. Except for pathological cases, any continuous or discrete probability 

distribution could have been used in the proposed methodology (with appropriate 

modifications in the discrete case, e.g., for discrete distributions we would start with the 

DFT instead of the continuous Fourier transform). In this and the next section we 

illustrate – without loss of generality – the proposed methodology based on the normal 

distribution, i.e, we assume that the capacity of link a has a normal distribution with 

mean µa and standard deviation a , denoted as ~ ( , )a a ac N   , where µa can be taken as 

the practical (i.e, not the maximum) capacity of the link (Sheffi, 1985).  Other probability 

distributions have been used in the literature. For example, Chen et al., (2002) and Lo and 
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Tung (2003) adopted the uniform distribution in order to illustrate their work (cf. Chapter 

4).  

 

Proposition 2.5 Let ~ ( , )a a ac N   , then 
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Moreover, fa achieves its maximum at  
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and it is non-decreasing when *f
a av t x x  and non-increasing when *x x . 

Proof Since ~ ( , )a a ac N   , from Lemma 2.1 it follows that fa is given by (2.13). To 

prove the second part of the proposition, note that 
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A finite real-valued solution to the equation   / 0adf x dx  can be obtained by solving the 

equation 

 2 2 2 1 0a a a a a ay v v y         (2.14) 
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as the exponential function does not contain roots on the real line. The solutions to (2.14) 

are given by 

 2 2

,
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2
a a a

a

y
v

   
 

  
 . 

In terms of the x variable we have 
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Without loss of generality, one can assume that  2 1 0a   , so that 

 2 2 24 1a a a a        . 

Therefore, the only root in the range f
a ax v t  is given by 
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Next we argue that the only stationary point x+ must be a (global) maximum of  fa. To see 

this, note that 

 fa must be decreasing after some sufficiently large value of x as it is a PDF on the 

support ( , ]f
a av t  , i.e, it has to integrate to one.  

 We have lim ( ) 0f
a a

ax v t
f x


 . 

From these two observations it is clear that x+ cannot be a point of inflection or a global 

minimum, as that would lead to contradictions of the above observations. Therefore, it 

must be a global maximum. Q.E.D. 
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From Proposition 2.5 we can see one important implication of a normally 

distributed capacity: the PDF (2.13) decreases very slowly, i.e, its right tail behaves like 

1 1/1/ x   as x → ∞. In other words, travel times can potentially be very high (with 

relatively large probabilities) on links whose capacities are normal random variables. In 

light of Proposition 2.1, we have 

 

Proposition 2.6 Let ~ ( , )a a ac N   , then 
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Proof This follows directly from Proposition 2.1 and the fact that 
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when ~ ( , )a a ac N   . Q.E.D. 

 

From Proposition 2.2, we know that the bound on the discretization error in the 

DFT approximation is O((∆x)2). However, in order to calculate a specific value for this 

bound based on the normality assumption, we need to be able to maximize a function 

involving the second derivative of (2.13) which is not particularly attractive from an 

analytical point of view (cf. Proposition 2.2). Of course, one can resort to numerical 

techniques, but we won’t pursue such a strategy here since we rely on the successive 

refinement procedure to guarantee the accuracy of the approximations. However, to 
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illustrate the analytical approach, we derive an explicit bound that is of lower order, but 

that does not involve any derivatives at all. 

 

Proposition 2.7 Let ~ ( , )a a ac N   , then 

 4 2 ( *) ( )D a a NE x f x f x   . 

Proof As in Proposition 2.2, we first derive bounds on the discretization error for the real 

and imaginary parts separately. Consider the DFT approximation of  ˆRe[ ]a kf  on the 

interval [xn, xn+1], i.e, 

1
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  . 

Let us focus on intervals [xn, xn+1] for which xn+1 ≤ x* (Note that by choosing a 

sufficiently small value for ∆x we can always ensure that the range ( , *]f
a av t x  is covered 

by an integer number of non-overlapping intervals of the form [xn, xn+1]. In the following 

we shall assume that the choice of ∆x is such that this is always the case). From 

Proposition 2.5, we know that fa is non-decreasing when x ≤ x*. Since | cos( ) | 1t  , the 

discretization error in the interval [xn, xn+1] can be bounded by 

 12 ( ) ( )a n a nx f x f x  . 

Let *max{ | }nM n x x  , then we have for the total discretization error in the range x ≤ 

x* : 
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1 1
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       .  (2.15) 
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Let us now examine the intervals [xn, xn+1] for which xn ≥ x*. As fa is non-increasing for x 

≥ x*, the discretization error in the interval [xn, xn+1] can now be bounded by 

 12 ( ) ( )a n a nx f x f x   , 

so that the total discretization error in the range x ≥ x* is bounded above by 

     
1

12 ( ) ( ) 2 ( ) ( ) 2 ( *) ( )
N

a n a n a M a N a a N
n M

x f x f x x f x f x x f x f x





        .      (2.16) 

The sum of (2.15) and (2.16) yields an upper bound on the discretization error for the 

DFT approximation of  ˆRe[ ]a kf  . Using the same approach, one can easily show that 

the same bound applies to  ˆIm[ ]a kf  . Invoking the triangle inequality completes the 

proof. Q.E.D. 

 

It is clear that analogs of Propositions 2.3 and 2.4 can also be derived based on the 

normality assumption. However, as we rely on the successive refinement scheme, we 

chose not to do so. Instead, let us examine some numerical results. 

2.6 NUMERICAL DEMONSTRATION 

In this section we present a numerical case study based on the Nguyen-Dupuis 

test network (Nguyen and Dupuis, 1984). This test network has been extensively used in 

the transportation literature, including for reliability studies (e.g., Lo and Tung, 2003). 

The results in this section are obtained using the FFT algorithm as implemented in 

MATLAB. For a more detailed discussion of the specifics of the algorithm, we refer the 

reader to the official MATLAB documentation.  
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Consider the network given in Figure 2.2. For our analysis, we will use the data 

for this network as reported in Lo and Tung (2003) with a number of slight modifications. 

For example, we randomly lowered the nominal link capacities and demand values as we 

prefer to work with smaller, manageable numbers. Table 2.1 summarizes the data for the 

analysis (recall that for link (i, j), i is the tail and j is the head of the link). The last 

column contains the randomly generated standard deviations of the link capacities. 

Following Lo and Tung, we set α = 1 and β = 2 throughout this case study. For the OD 

demand, we have rescaled their values to 4 units (from node 1 to node 2 and from node 4 

to 3) and 3 units (from node 1 to node 3 and from node 4 to 2). We shall henceforth refer 

to these values as the base values.  

 

 

Figure 2.2: Nguyen-Dupuis test network. 
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Table 2.1: Data for the Nguyen-Dupuis network used in the current case study 

Link Tail Head Free flow travel time Nominal capacity Standard deviation
1 8 2 10 5 1
2 11 2 10 4 0.4 
3 11 3 10 5 1.3 
4 13 3 10 4 0.7 
5 1 5 10 3 0.8 
6 4 5 10 3 0.7 
7 5 6 10 4 0.9 
8 12 6 10 3 0.8 
9 6 7 10 5 0.6 
10 7 8 10 4 0.5 
11 12 8 30 2 0.5 
12 4 9 20 5 0.8 
13 5 9 10 3 0.5 
14 6 10 10 3 0.5 
15 9 10 10 3 0.3 
16 7 11 10 4 0.7 
17 10 11 10 5 0.7 
18 1 12 10 5 1.4 
19 9 13 20 4 1.1 

 

Based on a procedure of trial and error, we have set K=5/4 and 0.001  . All 

PDFs in this section were obtained with N=216, ∆x=0.05 and ∆ω=0.0019, unless stated 

otherwise. We have checked the accuracy of the resulting approximations with the 

successive refinement procedure described in Section 2.4. As conjectured in the 

literature, theoretical error bounds tend to be too conservative in practice. To confirm this 

in our specific instance, we evaluated the truncation error (Proposition 2.6) and 

discretization error (Proposition 2.7) for the above combination of parameters that were 

found to be typically of order 10-4 and 10-3, respectively (note that these values are 

absolute, rather than relative errors which makes them relatively large). 
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We first analyze the impact of demand on the travel time distribution. To this end, 

we assume that the change in demand values is such that they do not influence the 

nominal capacities and their standard deviations (see Lo and Tung, 2003 for a motivation 

of this assumption). Three demand levels are considered. For each demand level, we 

solve for a new deterministic user equilibrium (Wardrop, 1952) assuming the nominal 

capacities in Table 2.1 (we want to note that any other traffic assignment model could 

have been used; one could even simply use traffic detector data to obtain link volumes, if 

available). The resulting link flows are then used as input in the proposed Fourier-based 

methodology to derive the PDF of the system travel time. Figure 2.3 shows the PDFs for 

a range of different demand values – ranging from 0.75 times the base demand to 1.5 

times as large. From the figure, it is clear that the increase in demand introduces more 

variance in the TSTT which makes higher travel times possible. Furthermore, note that 

the mode of the PDF is shifting to the right when demand is increased. We want to 

emphasize that in the above we have assumed non-adaptive behavior (to the unfolding 

scenario) since for each demand level we obtain a single set of link flows that is based on 

a single capacity value (i.e, the nominal capacity). Clark and Watling (2005) adopted the 

same approach in their numerical case study. 

Our second experiment is to examine the effect of changes in the standard 

deviations of the capacities on the PDF of the travel time. Three levels of standard 

deviation are considered. We assume that the demand level is given by the “base 

demand” and that the capacities are the nominal capacities reported in Table 2.1. Using 

these values, we solve for a deterministic user equilibrium, which yields one set of link 

flows. For each level of standard deviation considered (using the same set of link flows 
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for each level of standard deviation), we apply the proposed methodology to obtain a 

PDF. Figure 2.4 shows the results. As can be anticipated, the increase in standard 

deviations leads to more variation, rendering both smaller as well as larger travel times 

more likely (the values given in Table 2.1 serve as the base standard deviations, denoted 

as base SD in the figure). However, this change in travel time is not symmetric, in the 

sense that the right tail of the probability distribution becomes much heavier than the left 

tail. Note that, as opposed to Figure 2.3 (and Figure 2.5 below), in order to arrive at 

Figure 2.4, we have only solved for a single set of link flows to obtain the three different 

PDFs shown (in Figures 2.3 and 2.5 three sets of link flows were necessary). The reason 

for this is our implicit assumption that the set of link flows remains unchanged as a 

function of the standard deviations of road capacities, which is merely a consequence of 

the fact that we used the conventional deterministic user equilibrium assignment (where 

the standard deviation of capacity is not a model parameter) to obtain the link flows. 

Nonetheless, we believe that this assumption is appropriate to illustrate the methodology. 

Furthermore, note that we have still assumed non-adaptivity: to obtain each of the PDFs 

in Figure 2.4, we only rely on one scenario of the capacities (the nominal capacities). 

Finally, we investigate the impact of a change in the nominal capacities. Here we assume 

that changes in the nominal capacity do not affect the magnitudes of the standard 

deviations. Three levels of nominal capacities are considered. For each of the three levels 

of nominal capacities considered, we solve for a new deterministic user equilibrium using 

the base demand values and the capacities’ standard deviations reported in Table 2.1, 

resulting in three different sets of link flows (note that we have again assumed non 

adaptive travel behavior since each set of link flows is obtained based on a single 
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realization of the capacities). These three sets of link flows are then used as input to 

obtain the three depicted PDFs in Figure 2.5. From the BPR function in (2.1) it is clear 

that when the volume-to-capacity ratio increases, the travel time increases as well. 

Moreover, it increases more rapidly when this ratio exceeds unity.  This observation can 

be recognized in Figure 2.5: When the nominal capacity is at 75% of their base values 

(the maximum volume-to-capacity ratio in this case was found to be 1.3), uncertainty can 

lead to relatively extreme realizations of the travel time (note the PDF displays a lot of 

variance).  Reducing the capacities to their nominal values (the maximum volume-to-

capacity ratio in this case was found to be 1) decreases the variance of the travel time, so 

that a smaller range of travel times are possible. The further reduction in variance yields 

the further concentration of the probability mass around a smaller range of values. 

 

Figure 2.3: Impact demand on travel time reliability. 
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Figure 2.4: Impact of capacities’ standard deviations on travel time reliability, assuming 
base demand values. 

 
 The computational time in the above numerical experiments was quite modest: 

Given N=216, ∆x=0.05 and ∆ω=0.0019, it took less than 3 seconds to construct the PDF 

on a Linux machine with an Intel® 3.00GHz Xeon™ CPU and 32 GB of memory (of 

course, three more successively refined runs were needed to declare this set of parameters 

to be sufficiently accurate. The longest computational time among these runs was less 

than 5 seconds). In another computational test, we used the Sioux-Falls network (e.g., see 

Lam et al., 2008) that consists of 76 links. With N = 217, ∆x = 0.001 and ∆ω = 0.047 we 

recorded a computational time of about 21 seconds (the longest computation in the 

accuracy checking procedure was recorded to be about 34 seconds, Figure 2.6).  
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Figure 2.5: Impact of capacities on travel time reliability, assuming base demand values. 

 
 Despite this computational efficiency, it is always good practice to explore 

opportunities for further improvement, especially when analyzing large networks that 

consists of thousands of links. Before we can suggest any such strategies, let us focus on 

potential difficulties in the proposed methodology. One such difficulty is potentially 

presented by travel times with small variances (e.g., due to capacities with small 

variations or small volume-to-capacity ratios) that manifest themselves as PDFs that are 

“peaked” (i.e, a large fraction of the probability mass is concentrated in a small range of 

travel times, e.g., see Figure 2.5). Such peaked PDFs are difficult to integrate 

numerically, often requiring an overly fine grid. In fact, certain PDFs in the above figures 

could have been obtained using a finer grid (for example, the PDF for the case of 1.5 

times the base demand in Figure 2.3 could have been obtained using N = 214, ∆x = 0.2), 
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but for ease of presentation, we have used a larger N so that all PDFs could be 

constructed using a common set of parameters. One possible remedy to deal with such 

links is to treat them as being deterministic and simply discard them in the reliability 

analysis. In order to obtain  fTSTT  including the discarded links, one can always right-shift 

the resulting PDF by the amount of discarded “deterministic travel time”. The same trick 

can be applied to links with relatively low traffic volumes that are not expected to 

contribute much to the overall travel time. This will be especially the case when the 

variance of the capacity is small too. An alternative of discarding the links would be to 

use different grids for each of the links in the network: Links with small variances are 

analyzed with a finer grid, whereas links characterized by a higher uncertainty are 

analyzed with a coarser grid. However, this might not be always feasible because of the 

reciprocity relation. To see this, from the reciprocity relation (2.5) we know that once N 

and ∆x are fixed, ∆ω and the range of integration in the frequency domain are fixed as 

well. Since the DFTs are to be multiplied point-wise for a set of common frequency 

values ωk  (cf. Figure 2.1), it is not always possible to choose a different set of N and ∆x 

for each link such that the resulting set of ωk values coincide (or that a sufficiently large 

set of common ωk values exists). Much of the above complications can be attributed to 

the requirement of the FFT for uniform grid spacings. That is, ∆x and ∆ω are required to 

be the same throughout the intervals of integration (whereas, ideally, we would like a 

finer grid in a range where the integrand fluctuates more heavily and a coarser grid when 

the integrand does not change that much). This leads us to the idea to use the non-

uniform DFT (Dutt and Rokhlin, 1993) which might be more attractive when there is a 

very diverse set of PDFs. Another strategy would be to use higher order quadrature rules 



 48

(e.g., the Simpsons rule, Press et al., 2007) instead of the trapezoidal rule. The number of 

gird points could potentially be further reduced. 

 As a final remark, from the figures in this section it is clear that for independent 

but not identically distributed capacities, the CLT does not apply as the resulting PDFs 

tend to be skewed to the right. That this is not due to the relatively small number of links 

in the Nguyen-Dupuis network is corroborated by the Sioux-Falls network. Figure 2.6 

shows the resulting PDF for the system travel time based on the network data reported in 

Suwansirikul et al. (1987) – we have doubled the reported capacities in order to get 

volume-to-capacity ratios closer to one – and a set of randomly generated standard 

deviations. As before, the PDF is asymmetric, with a fat right tail, contradicting a normal 

distribution.  

 

Figure 2.6: PDF for TSTT in the Sioux-Falls network. Clearly, the PDF is skewed to the 
right. 
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Chapter 3: Distribution-free Reliability Assessment 

3.1 INTRODUCTION 

An assumption that pervades the current transportation system reliability 

assessment literature is that probability distributions of the sources of uncertainty are 

known explicitly. However, this distribution may be unavailable (inaccurate) in reality as 

we may have no (insufficient) data to calibrate the distribution. In this chapter we relax 

this assumption and present a new method to assess travel time reliability that is 

distribution-free in the sense that the methodology only requires that the first N moments 

(where N is any positive integer) of the travel time to be known and that the travel times 

reside in a set of bounded and known intervals. Instead of deriving exact probabilities on 

travel times exceeding certain thresholds via computationally intensive methods, we 

develop analytical probability inequalities to quickly obtain upper bounds on the desired 

probability.  

Following recent work in this field (such as Lo and Tung, 2003; Lo et al., 2006), 

we assume that aT are independent random variables. However, as opposed to the above 

cited work – where the source of uncertainty was restricted to road capacities – we do not 

impose any assumptions on the underlying source of uncertainty, provided that the 

uncertainties exhibit the property of statistical independence. Of course, for concreteness, 

the reader is free to think of the random travel times as results of independent capacity 

variations due to, for example, minor traffic accidents, Lo and Tung (2003). However, at 

the same time, the reader should bear in mind that the results in this chapter are much 

more general. Furthermore, notice that the results do make explicit reference to any 
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volume-delay function. In this chapter we derive nontrivial upper bounds on the 

unreliability function for a range of interesting values. 

The remainder of this chapter is organized as follows. In Section 3.2 we collect 

some inequalities that are used repeatedly in this work. Bounds using first order moments 

only are formally derived in Section 3.3. In Section 3.4 we develop a new class of bounds 

that can potentially include moments up to order N. Some convexity results with regard 

to the bounds are discussed in Section 3.5. A numerical case study using the Sioux Falls 

test network is conducted in Section 3.6.  

3.2 SOME USEFUL INEQUALITIES 

In this section we collect a number of inequalities that will be used repeatedly in 

Sections 3.3 and 3.4 to arrive at the main results of this work.  

 

Lemma 3.1 (Chernoff, 1952) Let T1, T2,…, TA  be non-negative random variables and let 
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aa
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  . Then for 0  we have 
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where [ ]E X denotes the mathematical expectation of the random variable X. 

Proof Since 0T   with probability one and 0  , we have 
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ii
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 (3.1) 

where we have applied Markov inequality (Ross, 2002) to obtain the inequality. As 0   

was arbitrary, the tightest possible bound is obtained by taking the infimum. Q.E.D. 



 51

We want to emphasize that due to the minimization operation, the upper bound in Lemma 

3.1 is always at least as tight as when the conventional Markov inequality is employed 

(which corresponds to the special case of 1  ).  

Another inequality that will be of fundamental importance in the current chapter 

is due to Madansky (1959).  

 

Lemma 3.2 (Madansky, 1959) Let f(.) be a convex function and let Y denote a random 

variable with bounded support, i.e, there exists real numbers a and b such 

that a Y b  with probability one. Then 
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. 

 

The inequalities in Lemmas 3.1 and 3.2 consist of first order moments only. In the 

numerical case study in Section 3.6, we will see that the inclusion of higher order 

moments can substantially improve the bounds. The next lemma is invaluable in the 

development of these higher order bounds. 

 

Lemma 3.3 Let 0   and suppose that X  is a non-negative random variable that is 

bounded from above, i.e, there exists a real number b such that X b  with probability 

one. Then 
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Proof Using the Taylor series expansion of the exponential function and the linearity 

property of the mathematical expectation, we have 
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Since X b with probability one, we have N k N N k NX X X b  with probability one. 

Hence,  
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which completes the proof. Q.E.D. 

 

Two immediately corollaries are: 

Corollary 3.1 ( 1)N   Let 0   and suppose that X  is a non-negative random variable 

that is bounded from above, i.e, there exists a real number b such that X b  with 

probability one. Then 

   [ ]
exp( ) 1 exp( ) 1

E X
E X b

b
    . 
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Corollary 3.2 ( 2)N   Let 0   and suppose that X  is a non-negative random variable 

that is bounded from above, i.e, there exists a real number b such that X b  with 

probability one. Then 

   
2

2
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E X
E X E X b b

b
        . 

3.3 AN UPPER BOUND USING FIRST ORDER MOMENTS 

In this section we derive an upper bound on the unreliability function of T . 

Contrary to existing research in this area (e.g., Chen et al., 2002; Sumalee and Watling, 

2008), we do not require that the probability distributions are known. We only assume 

that the mean travel times are given and that the travel times lie within known and finite 

intervals. The main result of this section is summarized in Proposition 3.1. Its proof is 

inspired by Hoeffding (1963). 

 

Proposition 3.1 (Upper bound using first order moment) Suppose 

that al a aut T t  with probability one. Moreover, assume that aT are independent, then 
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Proof By independence and Madansky inequality, (3.1) reduces to 
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Applying the arithmetic mean- geometric mean (AM-GM) inequality we have 
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Hence  
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(3.2) 

Since 0  was arbitrary, the result follows. Q.E.D. 

 

We conclude this section with two remarks. First, one has no guarantee that the 

above derived bound (and the bounds in the next section) always assumes values in the 

natural interval [0,1]. However, to follow standard practice – for instance, nothing 

guarantees that Markov inequality (Ross, 2002) yields bounds valued between 0 and 1 (it 

often does not) – we have chosen to state the bounds as above. In numerical studies, one 

can always adjust the bounds to ensure that they lie in the natural interval (see Section 

3.6). Second, one could further bound the right-hand side of (3.2), for instance, by using 

the BPR-function. However, the resulting bounds will become less tight, which was part 

of our motivation to work with travel times directly. 

 



 55

3.4 BOUNDS USING THE FIRST N MOMENTS 

In the previous section, we have derived bounds that were based on first order 

moments only. As such, they might not be as tight as one wants in practice. In this section 

we develop a more general framework to develop bounds that potentially can incorporate 

moments of order up to N, provided that they exist. A careful inspection of the proof of 

Proposition 3.1 reveals that the fundamental reason that higher order moments cannot be 

incorporated into the bounds developed in Section 3.3 is that Madansky inequality (cf. 

Lemma 3.2) do not account for these higher order moments. Hence, a fundamentally 

different approach is needed. Lemma 3.3 forms the foundation of this new approach. For 

notational convenience, but also from a practical perspective (where N cannot be an 

arbitrarily large number), in this section we present results for the cases 2N  only. Of 

course, when there is a reason to believe that on top of the mean and variance of travel 

times, higher order moments are known as well, Lemma 3.3 can be readily used to extend 

the results presented in this section.  

In order to illustrate the importance of the inclusion of higher order moments, we 

start with an alternative upper bound that only relies on mean values (cf. Proposition 3.1).  

 

Proposition 3.2 (Alternative upper bound using first order moment) Suppose 

that a auT t with probability one. Moreover, assume that aT are independent, then 
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Proof By independence and Corollary 3.1, (3.1) reduces to 
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Since 0  was arbitrary, the result follows. Q.E.D. 

 

The inclusion of variance information yields Proposition 3.3. 

Proposition 3.3 (Upper bound using second order moment) Suppose that a auT t with 

probability one. Moreover, assume that aT are independent, then 
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Since 0  was arbitrary, the result follows. Q.E.D. 

 

Three remarks are in order. First, a sufficient condition for the Central Limit 

Theorem (CLT) to hold, i.e, for T  to converge in distribution to some normal random 

variable – note that in such a case the development of bounds on the unreliability 

function would be simplified – is that aT are bounded and [ ]aa
Var T   (Billingsley, 

1995). Here we have used Var[X] to denote the variance of the random variable X. The 

former assumption is by definition satisfied in the current chapter; the assumption that 

[ ]aa
Var T   is a much stronger assumption that we do not impose here (cf. Lo et al., 

2006). Consequently, our results hold in much more generality. Second, note that the 

bound in Proposition 3.1 is an explicit function of the left end point alt of the support of 

aT , in Propositions 3.2 and 3.3 the bounds only depend on the right end point aut of the 

support. From the proofs of Propositions 3.2 and 3.3, it is clear that aT can be bounded 

from below too, i.e, there can exist a value 0alt   such that al at T  with probability one. 

But since the bound will not involve this lower end point, we have chosen not to 

explicitly state this bounded-from-below-assumption in the propositions. Third, notice 
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that we have not explicitly stated the assumption that the moments are finite since the 

boundedness assumption on aT implies that all its moments exist. 

3.5 SOME PROOFS OF CONVEXITY 

The bounds derived in the previous sections all involve the minimization of some 

univariate function in  . Clearly, any feasible choice for   results in a valid bound. In 

particular, one can set 1  , so that the standard Markov inequality is obtained in (3.1). 

By solving the minimization problems, tighter bounds can be found. To ensure global 

optimality, convexity of the objective functions is desired. In this section we prove that 

the functions in Propositions 3.1 and 3.2 are indeed convex via second order 

characterizations. Although no formal proof is provided, we conjecture that the function 

in Propositions 3.3 is also convex. Some empirical evidence to support this conjecture is 

provided in the next section. In any case (i.e, convex or not), we want to emphasize that 

the bounds are valid for any feasible choice for  . Moreover, as will be seen in Section 

3.6, irrespective of whether we have convexity, the bounds are useful. In other words, 

convexity is a luxury, not a necessity, in the current chapter. The following two results 

are of crucial importance in establishing convexity in the current section (Boyd and 

Vandenberghe, 2004). 

 

Lemma 3.4 If f  is convex and non-decreasing and if h is convex, then ( ) ( ( ))g f h   

is also convex. 
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Lemma 3.5 Let iH , i =1,2,…A be convex functions. Moreover, let i  be non-negative 

real numbers, then i ii
H  is also convex. 

 

Proposition 3.4 The function 
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in Proposition 3.1 is convex. 

Proof Note that we can rewrite 1( )g   as 

1 1 1( ) ( ( ))g f h   
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Thus if we can show that 1( )h   is convex, we have proved the claim as 1( )f x  is clearly 

convex and non-decreasing for 0, 1x A  . Indeed, 1( )h   is convex since 
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By Lemma 3.5, the result follows. Q.E.D. 
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With the aid of a computer algebra package, one can establish the next convexity result. 

Proposition 3.5 The function 
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in Proposition 3.2 is convex. 

Proof As above, we can rewrite 2 ( )g   as 
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If 2 ( )h   is convex, the claim follows directly from Lemma 3.4. To prove convexity of 

2 ( )h  , by Lemma 3.5, it suffices to show that  
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With some tedious algebra, one can show that 
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One can verify that the discriminant of the quadratic equation 2at bt c  is given by 

2 24 [ ] exp( )( [ ] )a au au a auE T t A t E T t   

which is non-positive since [ ]a auE T t . This implies that 2 0at bt c   , completing the 

proof. Q.E.D. 

 

It is easy to see that proving convexity requires numerous tedious algebraic 

manipulations, especially when higher order moments are involved. However, given the 

usefulness of the bounds (see next section), we believe that convexity is a pure luxury in 

the current chapter. Hence, let us simply conclude this section with a conjecture that the 

function  
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  (3.3) 

is convex. In the next section, we will present some empirical evidence to support this 

conjecture. 

3.6 NUMERICAL DEMONSTRATION 

In this section we use the well-known Sioux Falls network (Figure 3.1) to 

illustrate the bounds derived in the previous sections (note that for the Sioux Falls 

network 76A  ). The network data reported in Suwansirikul et al. (1987) provide the 

starting point of our numerical analysis. Without loss of generality, we solved an instance 
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of the deterministic user equilibrium assignment (Sheffi, 1985) based on the data in 

Suwansirikul et al. (1987). The resulting total travel times on the links are assumed to be 

the expected values [ ]aE T . Upper and lower bounds on the travel times are obtained by 

the multiplication of their mean values with factors qal and qau where 0 1al auq q   , i.e,  

[ ]al al at q E T  and [ ]au au at q E T . Likewise, the second moments are obtained by the 

multiplication of  2
[ ]aE T  with 1c   (since  220 [ ] [ ] [ ]a a aVar T E T E T   ) such that 

 2 2 2[ ] ( ) / 4 ( [ ]) .a au al ac E T t t E T    This bound on the largest possible second moment 

can, for example, be found in Theorem 4.1 of Seaman and Odell (1985). It follows from 

the fact that a Bernoulli random variable (Ross, 2002) has the highest possible variance 

among all random variables on [0,1]. 

To evaluate the bounds derived in Propositions 3.1 through 3.3, we employ the 

“fminbnd” routine available in MATLAB which is an optimization procedure based on 

golden section search and parabolic interpolation (Press et al., 2007). The interval in 

which to search for an optimal value for   was constrained to be (0,50]  that was 

empirically found to contain a minimizer for the cases considered. Computational tests 

demonstrated the effectiveness and computational efficiency of this optimization 

technique (e.g., Figure 3.2 was obtained within 1 second on an HP laptop computer with 

a 4.00 GHz AMD Turion™ Dual-Core Processor and 4 GB RAM). Note that from the 

convexity results in Section 3.5 it is known that the resulting bounds in Proposition 3.1 

and 3.2 are global minima, whereas it is not guaranteed that the bound from Proposition 

3.3 is minimized with respect to . However, based on our computational experience, we 
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conjecture that they are in fact global minima. Some empirical evidence to support this 

conjecture will be presented at the end of this section.   

 

Figure 3.1: Sioux Falls test network with node and link numbers. 

 

Unless stated otherwise, we set 0.2alq   and 3auq   in the following numerical 

experiments. Figure 3.2 depicts the upper bounds from Propositions 3.1 through 3.3 for 

the case 1.1c   as a function of the TSTT (using the demand values reported in 

Suwansirikul et al., 1987). While it was not necessary in our case study, one can always 

adjust the predicted bounds so that the resulting value lies between 0 and 1 (cf. the 

remark at the end of Section 3.3). That is, suppose that the predicted upper bound (i.e, the 
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theoretical bounds derived in Sections 3.3 and 3.4) is given by zu, then the adjusted upper 

bound would be given by min{1, zu}. 

From Figure 3.2, we can make several interesting observations.  A theoretical 

upper bound on the TSTT is given by the TSTT associated with the case when 

[ ]a au aT q E T , henceforth referred to as the worst case TSTT (Note that the worst case 

TSTT is an bound on the TSTT. They are not to be confused with the bounds derived in 

Sections 3.3 and 3.4 that were bounds on the right-tail probability of the TSTT). The 

worst case TSTT for the instance examined in Figure 3.2 is equal to 302 hours. All upper 

bounds are able to capture this fact very accurately: they predict a probability of zero that 

the worst case TSTT is exceeded. In fact, they predict that a much larger range of TSTT 

values are not possible (see Figure 3.2). From the figure, we can also that in this specific 

instance, the bound in Proposition 3.3 is tighter than the bound in Proposition 3.1 which 

is turn is tighter than the bound in Proposition 3.2. Since the bounds in Proposition 3.1 

and Proposition 3.3 are developed using fundamentally different approaches (e.g., in 

Proposition 3.1 we relied on Madansky inequality and in Proposition 3.3 we did not), it is 

not possible to assess the importance of the inclusion of variance information based on 

these two bounds. To do this, we need to consider the bounds from Propositions 3.2 and 

3.3. From Figure 3.2 it is clear that the incorporation of variance information results in 

substantially tighter bounds in this case. For example, for TSTT = 130 hours, the bound 

from Proposition 3.2 predicts that this TSTT value is exceeded with a probability of at 

most 0.43, whereas, the bound from Proposition 3.3 tells us that the probability is at most 

0.09 (which is a reduction in uncertainty of about 80%!). Finally, while not really 
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relevant from a reliability perspective (since we are mostly interested in the likelihood 

that relatively high TSTT values are exceed), we note that for TSTT values less than 

about 102 hours, the bounds are trivial (the mean TSTT in this case was 101 hours, i.e, 

[ ] 101aE T  ). 

 

Figure 3.2: Upper bounds on the unreliability function for 1.1c  . 

 

Before we proceed to the next numerical experiment, let us first take a step back 

and examine in a thought experiment under what circumstances variance/ second order 

moment information is likely to result in tighter bounds. Clearly, the higher the variance, 

the less information it actually gives us. Hence it seems to be logical that when the 

variance increases (due to an increase in the second order moment), ceteris paribus, the 

difference between the bounds from Propositions 3.2 and 3.3 will get smaller. Figure 3.3 

( 2.2c  ) confirms this reasoning. It shows that the bound from Proposition 3.3 has 
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moved much closer to the bound from Proposition 3.1 (which obviously has not changed 

as it does not depend on the second order moment). In the limiting case when 

2 2 2[ ] ( ) / 4 ( [ ])a au al aE T t t E T    (cf. Seaman and Odell, 1985), the bound in Proposition 

3.3 becomes less tight than its counterpart from Proposition 3.1, see Figure 3.4. At first, it 

might seem contradictory that a bound that contains variance information is less tight 

than one that does not, this is perfectly fine since the bounds were derived using very 

different approaches. Moreover, the bound from Proposition 3.3 almost coincides with 

the bound in Proposition 3.2. Note that we have not given any theoretical guarantee on 

the ordering of the bounds. This would require a discussion of the sharpness of the 

bounds, i.e, whether there exists random travel times such that the bounds are attained, 

which we have left as an important future research topic. In light of these observations, 

for now we suggest to use the minimum of the upper bounds as the bound in reliability 

studies. 

We want to emphasize that our bounds are distribution-free. Hence, we believe 

that any (simulation) exercise to evaluate the bounds based on specific distributional 

assumptions (of course, if distributions were known, one would not adopt the proposed 

distribution-free approach to begin with!) would be misleading since the quality of the 

bounds can be made better or worse, depending on the choice of the underlying 

probability distributions. However, for a very rough idea of how the bounds compares to 

specific distributions, we have used Monte Carlo simulation to estimate a number of 

points of the unreliability function based on the normal, gamma and extreme value (type 

1) distributions, see Figure 3.5. Each estimate was obtained based on 10000 samples, 
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using the same mean and variance as the instance in Figure 3.2. As can be seen, the 

closeness to the bound is a function of the probability distribution chosen.   

 

Figure 3.3: Upper bounds on the unreliability function for c = 2.2. 

 

Figure 3.4: Upper bounds on the unreliability function under maximum variance. 
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Figure 3.5: Monte Carlo estimates of the unreliability function. 

 

Before we conclude our numerical case study, we present some observations to 

support our conjecture that the function (3.3) is convex. One indication is that all bounds 

shown in the above figures are continuous. If the function had multiple local minima (i.e, 

non-convex), discontinuities would likely appear at certain points. Another indication is 

provided by a visual inspection of (3.3). Figure 3.6 shows three (t = 114, 122 and 129) 

typical graphs of (3.3) using the Sioux Falls network data and 1c  . Clearly, the functions 

are nicely convex in the range considered (it can be verified that outside this range the 

functions simply increase without bound). However, we are fully aware that these 

observations, by no means, constitute a proof of convexity. On the other hand, we have 

demonstrated that the bounds are extremely useful since they enable us to make 
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nontrivial probabilistic statements on the system travel time (whether the functions 

involved are convex or not) using rather minimal assumptions. 

 

Figure 3.6: Three typical convex graphs of 3( )g  . 
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Chapter 4: Transportation Network Design for Travel Time Reliability 

4.1 INTRODUCTION 

The problem of judiciously selecting links for capacity expansions in 

transportation networks is known as the transportation network design problem (NDP). 

Virtually all network design models examined in the literature have the objective of 

minimizing the (expected) total system travel time. For example, Abdulaal and LeBlanc 

(1979), Suwansirikul et al. (1987), Marcotte (1983), Meng et al. (2001), Friesz et al. 

(1992), LeBlanc and Boyce (1986), Patriksson and Rockafellar (2002), Mouskos (1991) 

and Ng and Waller (2009c) minimized the TSTT based on the user optimal static traffic 

assignment paradigm. Other authors suggested to use the system optimal traffic 

assignment problem as a computationally viable proxy for the otherwise NP-hard 

problem (e.g., LeBlanc (1975), Hoang (1982), LeBlanc and Abdulaal (1979), Dantzig et 

al. (1979), LeBlanc and Abdulaal (1984) and, more recently, Ng and Waller, 2009a). For 

a comprehensive overview of these NDP problems, we refer to Magnanti and Wong 

(1984), or more recently, Yang and Bell (1998). Models based on dynamic traffic 

assignment (DTA) have been introduced to alleviate concerns regarding the time-

invariant nature of classical static models (e.g., Janson (1995), Waller et al. (2006), Li et 

al. (2003), Waller and Ziliaskopoulos (2001) and Karoonsoontawong and Waller, 2005). 

However, the increased modeling realism has substantially increased the computational 

burden.  As such, DTA-based NDP models are typically limited to small networks (Ng et 

al., 2009). 
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Alternative objective functions (other than system travel time) has barely been 

considered in the NDP literature. Chen et al. (2003) formulated an NDP with the 

objective of maximizing the mean and minimizing the variance of profits in the context 

of a Build-Operate-Transfer scheme. Sumalee et al. (2006) presented an NDP to 

maximize the probability that the system travel time remains below certain threshold 

levels, using the travel time reliability assessment technique developed by Clark and 

Watling (2005). In Chen et al. (2007), the objective was to minimize the budget 

requirements so that it was guaranteed that the TSTT remains below a pre-specified level. 

The fact that the minimization of travel time unreliability has barely been considered is 

most likely due to the (virtually) non-existence of (computationally efficient) reliability 

assessment techniques. For instance, Chen et al. (2009) simply used Monte Carlo 

simulation to evaluate travel time reliability. With the new computationally efficient 

methodologies introduced in this dissertation, the situation has changed. In this chapter 

we present a new network design model that is aimed at improving the reliability of 

travel time and which is substantially less computationally intensive than current 

simulation-based models. The model uses the distribution-free approach presented in 

Chapter 3 as the basis for reliability assessment.  

The remainder of this chapter is organized as follows. Before we present the new 

network design model in Section 4.3, we first present a simple example to give us some 

insights into how designing for reliability differs from designing for system travel time 

(Section 4.2). Numerical experiments demonstrate the computational performance of the 

proposed model in Section 4.5. Comparisons with traditional network design models will 

be made throughout this chapter.  
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4.2 DESIGN FOR RELIABILITY VERSUS SYSTEM TRAVEL TIME 

In this section we consider the the 2-link, 2-node test network shown in Figure 

4.1. Node O generates d units of travel demand destined for node D. The nodes are 

connected by two links whose link-performance functions are given by 

2
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where 1z and 2z are non-negative integers, denoting the amount of capacity additions to 

link 1 and 2, respectively. (Note that the integrality assumption is totally without loss of 

generality as long as the amount of capacity additions is countable, which is always the 

case in practice). Notice that the capacity/ travel time on link 2 is fully deterministic, i.e, 

2[ ] 0Var t  , whereas the travel time on link 1 is uncertain. Furthermore, as in Chapter 2, 

we make the assumption that the variance of the capacities do not change due to capacity 

additions. (Note that the variance of the travel times will generally change due to the 

rerouting of traffic). While the network in Figure 4.1 is very simple, it allows us to gain a 

number of insights into the reliability optimal NDP (RO-NDP). 

 

 
 

Figure 4.1: Two-Link Test Network 

 

Let 1 2*t v v  , from Lemma 2.1, we have 
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        (4.1) 

To determine the link flows, we (analytically) solve for the deterministic user 

equilibrium (Sheffi, 1985) using the nominal capacity values. Once the distribution of 

1c is specified, (4.1) can be readily evaluated. Here we assume that 1c is normally 

distributed with mean 1c  and standard deviation 1 . Suppose that 1 2z z K  for some 

positive integer K. Since we have assumed that 1z and 2z are non-negative integers, we 

can easily enumerate all feasible solutions of the RO-NDP (our goal here is to examine 

properties of the reliability optimal network design problem rather than devising solution 

algorithms). In the following, we examine a number of instances of the problem 

(assuming 60d  ), illustrating the various scenarios that might occur. 

Scenario 1 (Travel time optimal and reliability optimal network design solutions 

are very different) Consider the instance 1 2 120, 25, 6, 20c c K    . The upper part 

of Figure 4.2 depicts the travel time unreliability (4.1) for * 70t  versus the amount of 

capacity expansion 1z  (recall that 1z  uniquely determines 2z  via the relation 2 1z K z  ). 

The lower figure shows the conventional TSTT (obtained assuming nominal capacity 

values) versus 1z . The figure demonstrates that any addition of capacity to link 1 will 

increase system’s reliability. Furthermore, the more capacity is added, the more reliable 

the network becomes. This might seem intuitive as one might argue that since the travel 

time on link 1 is random (and the travel time on link 2 is fully deterministic), one can 
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increase link 1’s capacity to increase the reliability of the network. Below (scenario 3), 

we will demonstrate that such reasoning is fundamentally flawed. In this specific 

instance, the optimal solution to the reliability optimal network design problem is given 

by 1 220, 0.z z   This is clearly diametrically opposite to the solution of the 

conventional system optimal network design problem, as the TSTT increases with 1z .  

Scenario 2 (Travel time optimal and reliability optimal network design solutions 

coincide) Consider the instance 1 2 110, 25, 3, 20, * 75c c K t     . Figure 4.3 shows 

the resulting reliability (upper figure) and TSTT values (lower figure) for this instance. 

As opposed to Figure 4.2, increasing capacity on link 1 is optimal both in terms of 

reliability as well as system travel time.  

 

Figure 4.2: System optimal and reliability optimal network design solutions are 
diametrically opposite. 
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Figure 4.3: System optimal and reliability optimal network design solutions coincide. 

 

Scenario 3 (Capacity expansion on uncertain link can lead to an increase in 

unreliability) Consider the instance 1 2 125, 10, 6, 30c c K    . The scenarios above 

might have given the reader the impression that any capacity additions to links with 

random travel times might be beneficial for the reliability of a stochastic transportation 

network. Figure 4.4 shows that this reasoning does not necessarily hold. Consider the 

case * 69t  . Figure 4.4 shows that after a certain amount of capacity additions ( 1 12z  in 

this case), any additional capacity on link 1 would be detrimental for the reliability of the 

network! The upper figure in Figure 4.5 shows the PDFs of the total travel time on link 1 

associated with three different capacity expansions decisions ( 1 1 15, 12, 30z z z   ). By 

expanding the capacity on link 1, the link becomes more attractive for travelers, whereas 

link 2 becomes less attractive. (One might argue that this it is simply a consequence of 
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the DUE assumption where travelers do not consider travel time variability in their route 

choice. However, in real-life situations, we believe that it is reasonable to anticipate more 

travelers on a link when its capacity has been increased.) Due to the increased travel 

volume on link 1, the PDF is shifting to the right as 1z increases. Moreover, the PDF 

becomes slightly flatter.  The PDF of the TSTT is shown in the lower part of the figure 

(that can be simply obtained by a translation of the PDFs in the upper figure). The figure 

shows that certain ranges of the TSTT become more likely (e.g., 69-70 hours) with an 

increasing value of 1z , whereas the higher TSTT values become less likely due to the 

more rapid decay of the PDFs when 1z is larger. It is not difficult to imagine that one can 

construct examples in which any addition of capacity to link 1 results in a less reliable 

system. Figure 4.5 shows such an instance ( 1 2 130, 10, 6, 25, * 69c c K t     ).  

 

Figure 4.4: Capacity expansion on the random link can increase unreliability. 
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Figure 4.5: Upper: PDFs of the total travel time on link 1 for three different capacity 
expansion decisions. Lower: PDFs of TSTT for three different capacity expansion 
decisions. 

 

Figure 4.6: Any Capacity addition on the stochastic link decreases system reliability. 
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4.3 MODEL FORMULATION 

To introduce the new network design model RO-NDP, some notation is in order. 

Let us collect some old and introduce some new notation: 

V   = set of all nodes in a transportation network. 

A   = set of all links in a transportation network. 

( )f     = capacity expansion cost function. 

B   = total budget for capacity expansion. 

rs
av   = traffic volume on link a from travelers going from r V  to s V . 

av   = total traffic volume on link a. 

rsq   = travel demand for travel from r V  to s V . 

ac   = nominal capacity on link a. 

ay   = amount of capacity to be added to link a. 

au   = maximum level of additional capacity on link a. 

 i   = the set of links emanating from node i V . 

 1 i   = the set of links incident to node i V . 

 

Traditional network design models typically assume that future link flows (and 

hence future travel times) can be predicted with certainty. Here we relax this assumption 

and assume that only “mean values” can be predicted together with a range in which the 

actual travel times lie. The objective of our model is to minimize an upper bound on the 

unreliability of the system travel time. Following Chapter 3, we do not assume that we 
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know exact probability distributions assumptions, so that this is the best we can do. In 

particular, the objective is to minimize the function (cf. Proposition 3.1): 

1

0
1

( )

[ ](exp( ) exp( )) exp( ) exp( )1
inf exp( *)

a

A
A

a au al au al al au

a au al

UB y

E T t t t t t t
t

A t t

   




               


 

where we have – for notational convenience – suppressed the dependence of [ ]aE T , aut  

and alt  on av  and ay . Of course, other objective functions are possible (e.g., one that 

includes variance information, cf. Proposition 3.3). While in the assessment methodology 

in Chapter 3 the user is free to estimate [ ]aE T  using every possible way (s)he can think 

of, in this chapter we assume that [ ]aE T  is predicted by the solution of the traditional 

user optimal traffic assignment problem (Sheffi, 1985). That is, we equate travel times 

resulting from the solution of a static traffic assignment problem (using the nominal 

parameter values)  to [ ]aE T . In order to capture the uncertainties in these predictions, we 

specify a set of factors qal and qau, 0 1al auq q    (cf. Chapter 3) to describe the 

uncertainty intervals. The RO-NDP can now be stated as the following bi-level 

optimization problem (Bard, 1998) to capture the sequential nature of the decision 

making process (transportation planners determine capacity expansions, road users react 

to these by finding new alternative routes): 

min
ay

 1( )aUB y           (4.2) 

subject to           

( )a
a

f y B           (4.3) 
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0 a ay u      a A      (4.4) 
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and  

[ ] ( , )a a a a aE T v t v y  

In (4.2) the objective of minimizing the upper bound on the unreliability function is 

expressed. Constraint (4.3) imposes a budget constraint, while constraint (4.4) ensures 

that the expansion of road capacities has a (physical) limit.  The assumed route choice 

behavior – the traditional deterministic user equilibrium (Sheffi, 1985) – is specified in 

(4.5) to (4.10). Bi-level problems are known to be among the most challenging 

optimization problems (Bard, 1998). One solution method is the use of meta-heuristics. 
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4.4 SOLUTION METHOD: GENETIC ALGORITHM 

To address the computational challenges of the RO-NDP, we employ genetic 

algorithms (GAs) that have a demonstrated record of solving challenging optimization 

problems and, in particular, NDPs (e.g., see Ng et al., 2009 and the references therein). A 

GA is an iterative procedure aimed at finding the global optimum in complex 

optimization problems (Goldberg, 1989). At each generation, it maintains a population of 

candidate solutions (also known as chromosomes) that evolves according to principles 

from natural selection (survival of the fittest) and genetics (crossover and mutation). For 

this work, we have implemented a GA in the Java programming language. A candidate 

solution is encoded as a string of non-negative real numbers. Therefore, the length of the 

string is equal to the number of links present in the network under consideration. Each 

number in the chromosome corresponds to a value of the expansion decision ya. Without 

loss of generality, here we assume that ya can assume five different values:  

3
0, , , ,

4 2 4
a a a

a a

c c c
y c

  
 

.    (4.11) 

That is, we can either “do nothing”, add a quarter of the existing nominal capacity, add a 

half of the existing nominal capacity, add three quarters of the existing nominal capacity 

or double the existing nominal capacity.  The fitness values (i.e, the unreliability) of the 

chromosomes are obtained by evaluating (4.2). Notice that in order to evaluate (4.2), one 

must solve the traffic assignment problem (4.5)-(4.10) and a uni-dimensional 

optimization problem to determine the optimal value for  . We employed the Frank-

Wolfe algorithm (1956) and golden section search (Press et al., 2007) for these purposes. 

If the budget constraint (4.3) is violated, the unreliability of the chromosome is 
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automatically set to 1 in order to discourage infeasibilities in future iterations. 

Chromosomes for reproduction are selected based on the roulette wheel selection 

algorithm. We applied single point crossover (which occurs with probability pc) and 

random mutations (which occurs with probability pm) to maintain diversity in the pool of 

candidate solutions.  

4.5 NUMERICAL CASE STUDY 

As noted above, in the absence of specific probability distributions describing the 

sources of uncertainty, one can at best minimize an upper bound on the unreliability. On 

the other hand, one can also think of the bound as a proxy for the exact unreliability since 

the relative (and not the absolute) performances of capacity expansion decisions are the 

most critical. Some empirical evidence to support such a hypothesis was already 

presented in Figure 3.5. Here we will further examine this approximation using the 

Nguyen-Dupuis test network introduced in Chapter 2, Figure 2.2. For the OD demand, 

we have rescaled their values to 6 units (from node 1 to node 2 and from node 4 to 3) and 

4 units (from node 1 to node 3 and from node 4 to 2) in order to ensure higher volume-to- 

capacity ratios. Furthermore, here we have set 0.15,  4   . The nominal capacities 

and link flows in this network have been repeated in Table 4.1 for the reader’s 

convenience. We will assume that the sources of uncertainties are the road capacities and 

that they vary independently. Following Chen et al. (2009), we use the following 

procedure to estimate the unreliability of the system travel time. 
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INPUT S, *t  

SET * 0S   

FOR k = 1 to S 

Sample from the random capacities. 

Evaluate the system travel time based on the realized capacities, denote it by TSTTk . 

IF TSTTk *t  THEN * * 1S S   

END 

OUTPUT: * /S S  

 

The fraction * /S S  (where S is a positive integer denoting the number of replications) is 

then used as an estimate of the unreliability of the system at *t  (Feller, 1966). Beyond 

small networks, the above Monte-Carlo procedure is computationally prohibitive. Next 

we investigate whether the (much more computationally efficient) RO-NDP can serve as 

a good proxy for the NDP where the objective function is evaluated based on the above 

Monte-Carlo procedure (Chen et al., 2009). To this end, we will solve two NDPs: RO-

NDP and the NDP proposed in Chen et al. (2009). We set * ( ,0) 3024a a aa
t v t v   

minutes, the current “nominal” system travel time (i.e, assuming nominal capacity 

values).  

First, we examine the simulation-based based NDP. We assume that the capacities 

are uniform random variables (following Lo and Tung, 2003 and Chen et al., 2002). More 

specifically, we assume that that they are given by 

(1 ( 0.5,0.5))a a ac y c U        (4.12) 
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where ( 0.5,0.5)U   denotes a uniform random variable on the interval [-0.5,0.5]. 

Following Chen et al. (2009), to initiate the GA we randomly generated a set of r = 32 

initial candidate capacity expansion plans by randomly choosing links (until the entire 

budget of 15B   units is used) and assigning one of the five possible values of ya to it 

(also in a random fashion). The cost function that will be used is given 

by ( ) 4 /a a af y y c . Again following Chen et al. (2009), we use pc = 0.3, pm = 0.2 in our 

calculations. The maximum number of generations is limited to 400 and the number of 

replications is S = 2000. The resulting optimal budget allocation decisions are given in 

Table 4.1 in the column named “f(ya) (MC)” (note that the entire budget has been used). 

The resulting estimate of the probability that the TSTT exceeds *t  is 0.21, while the 

initial unreliability was 0.89. A computation time of about 50 minutes were needed to 

complete the 400 iterations on a Linux machine, equipped with an Intel 3.00 GHz Xeon 

CPU and 32 GB of memory. 

To use the proposed RO-NDP model, the parameters qal and qau need to be 

specified. In order to estimate the highest possible travel times on a link, a traffic 

assignment is solved with the lowest possible capacities, i.e, we set 0.5a ac c  with 

probability one, see (4.11) and (4.12). The lowest possible travel times can be estimated 

by setting 2.5a ac c (i.e., a ay c ). Comparing to the base case ( 0,a a ay c c  ), estimates 

of qau and qal can be obtained, see Table 4.1 under the columns qau and qal. With these 

estimates (and the same GA-parameters as above), we can solve the RO-NDP model. The 

proposed budget allocation decisions are given in Table 4.1 in the column named “f(ya) 

(RO-NDP)”. The computational time was negligible (less than 10 seconds on a standard 
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laptop computer). This solution, if implemented in the above simulation-based NDP 

(assuming uniform capacities), gives us a probability that the TSTT exceeds 3024 

minutes of 0.27.  Hence we see that using the new RO-NDP model, one is able to get 

quite reasonable approximations (here within 6 percentage points) of the computationally 

intensive, simulation-based NDP. Moreover, while the computation time was around 50 

minutes using the Monte-Carlo based approach, the computation time using the RO-NDP 

model was minimal. For large-scale networks, it is clear that Monte-Carlo simulation is 

computationally prohibitive.  

In the last column of Table 4.1 we have also shown the best capacity expansion 

decision found in a conventional NDP (C-NDP) where the objective is to minimize the 

expected system travel time. The optimal value was found to be 2712 minutes. This 

solution if implemented in the RO-NDP model would yield a bound on the unreliability 

of 0.98, whereas the optimal RO-NDP solution implemented in C-NDP would give an 

expected TSST of 2759 minutes. It is interesting to note that the optimal solution to the 

C-NDP problem tends to prescribe capacity expansions to links that are not considered 

for expansion in the RO-NDP model.  

Figure 4.7 presents some insights (in the form of histograms) into the variability 

(in terms of the system travel time) of the different solutions reported in Table 4.1, using 

2000 samples. Notice that the optimal solution of RO-NDP gives a fatter right tail than 

other solutions, again suggesting that multi-objective optimization is appropriate.  

A special case of the NDP is project ranking. In order to investigate how the 

distribution-free reliability assessment method performs in ranking projects, a number of 

capacity expansion projects (with three choices in each instance) on the Nguyen-Dupuis 
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network is examined, see Table 4.2. The projects will be ranked using Monte-Carlo 

simulation – assuming (4.12) – and the distribution-free paradigm. The project resulting 

in the smallest unreliability is chosen (here we set * 4082t   minutes). For example, in 

the first instance (see Table 4.2), project 1 proposes to allocate 4 units (of the total budget 

of 20 units) to each of the links 1, 2, 3, 4, 5, project 2 proposes allocate to 4 units to each 

of the links 6, 7, 8, 9, 10, and project 3 proposes to allocate 4 units to links 15, 16, 17, 18, 

19. Using Monte-Carlo simulation, it can be determined that the project that results in the 

smallest unreliability is project 2. The same conclusion can be reached using the much 

more computationally efficient distribution-free method (see last column of Table 4.2). In 

fact, in all instances that have been examined, the project rankings were identical, 

suggesting that the distribution-free methodology can be used as a computationally 

efficient proxy for the simulation-based methods when projects need to be ranked. 

 
Figure 4.7: Upper: Histogram TSTT Monte-Carlo simulation-based solution. Middle: 
Histogram TSTT RO-NDP solution. Lower: Histogram TSTT C-NDP solution. 
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Table 4.1: Summary optimal budget allocations Nguyen- Dupuis test network 

Link ca va qau qal f(ya) (MC) f(ya) (RO-NDP) f(ya) (C-NDP)

1 5 5.54 10.31 0.42 0 0 0
2 4 4.46 9.75 0.40 0 0 2
3 5 5.17 8.92 0.48 3 0 0
4 4 4.83 11.31 0.34 0 0 2
5 3 3.75 12.53 0.31 3 4 1
6 3 4.05 13.93 0.26 0 0 2
7 4 5.17 10.92 0.28 1 0 0
8 3 3.88 11.03 0.28 0 1 0
9 5 6.33 12.49 0.30 1 0 1
10 4 3.16 5.38 0.73 0 0 0
11 2 2.37 11.24 0.35 3 0 0
12 5 5.95 10.23 0.34 4 4 0
13 3 2.63 10.00 0.70 0 0 0
14 3 2.72 4.56 0.55 0 0 0
15 3 3.75 14.10 0.32 0 0 4
16 4 3.17 5.62 0.74 0 0 1
17 5 6.47 11.20 0.28 0 0 1
18 5 6.25 11.13 0.31 0 3 0
19 4 4.83 11.31 0.34 0 3 1

Table 4.2: Project Ranking based on Monte-Carlo Simulation and the distribution-free 
approach 

Project 1 Project 2 Project 3 Monte-
Carlo 

Distribution-
free 

f(y1) = f(y2) = 
f(y3) = f(y4) = 

f(y5) = 4 

f(y6) = f(y7) =
f(y8) = f(y9) = 

f(y10) = 4 

f(y15) = f(y16) =
f(y17) = f(y18) = 

f(y19) = 4 
Project 2 Project 2 

f(y1) = f(y3) = 
f(y5) = f(y7) = 

f(y9) = 4 

f(y2) = f(y4) =
f(y6) = f(y8) = 

f(y10) = 4 

f(y10) = f(y12) =
f(y14) = f(y16) = 

f(y18) = 4 
Project 1 Project 1 

f(y2) = f(y3) = 
f(y4) = f(y5) = 5 

f(y7) = f(y8) =
f(y9) = f(y10) = 5 

f(y16) = f(y17) =
f(y18) = f(y19) = 5 

Project 2 Project 2 

 f(y3) = f(y5) = 
f(y7) = f(y9) = 5 

f(y4) = f(y6) =
f(y8) = f(y10) = 5 

f(y12) = f(y14) =
f(y16) = f(y18) = 5 Project 1 Project 1 

f(y2) = f(y3) = f(y4) 

= 6.67  
f(y7) = f(y8) =
f(y9) = 6.67 

f(y16) = f(y17) =
f(y18) = 6.67 

Project 2 Project 2 

 f(y3) = f(y5) = 
f(y7)  = 6.67 

f(y4) = f(y6) =
f(y8) = 6.67 

f(y12) = f(y14) =
f(y16) = 6.67 

Project 1 Project 1 
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Chapter 5: Summary, Conclusions and Extensions 

 
Real-life transportation systems are subject to numerous uncertainties in their 

operation. Researchers have studied the resulting unreliability from different 

perspectives. In this dissertation we examine reliability at the network level. One of the 

measures to characterize network reliability is given by travel time reliability, which is 

defined as the probability that the (system) travel time remains below certain (acceptable) 

threshold levels. Existing reliability assessment (and optimization) techniques tend to be 

computationally intensive. In this dissertation we developed computationally efficient 

alternatives.  

In Chapter 2 we presented a new travel time reliability assessment methodology 

assuming independent, random capacity variations and non-adaptive behavior. As such, 

the methodology is most useful when capacity uncertainty is caused by, for example, 

minor traffic incidents and in transportation planning problems where travelers are 

assumed to have settled in a long-term equilibrium pattern in face of these uncertainties 

(Lo and Tung, 2003). Chapter 2 complements parts of the work in Lo and Tung (2003) 

and Lo et al. (2006) in the sense that we do not rely on the CLT in deriving the PDF of 

the system travel time. The CLT oftentimes requires restrictive and hard to verify 

conditions (Feller, 1966). Numerical examples demonstrated that the CLT does not 

necessarily hold in the case of independent but not identically distributed normal road 

capacities, whereas the proposed methodology remains valid. Alternatively, the work in 

Chapter 2 can be seen as a complement to Clark and Watling (2005) who derived the 
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PDF for the travel time in a network characterized by uncertain demand, using a 

fundamentally different approach.  

 

The proposed methodology has the following features: 

 The methodology provides a numerical approximation of the PDF of the system-wide 

travel time.  

 Any common continuous or discrete probability distribution can be used to model the 

uncertain capacities (with slight modifications in the discrete case).   

 The methodology relies on the established computational efficiency of the fast Fourier 

transform. 

 

Theoretical bounds on the approximation errors were formally derived, both for 

general probability distributions as well as for the special case of normally distributed 

capacities. These bounds give us important insights into the structure of the errors as well 

as how errors might be reduced. Unfortunately, these bounds tend to be too conservative 

in practice. Therefore, we followed the authoritative work by Abate and Whitt (1992), 

and proposed a successive refinement scheme to guarantee the accuracy of the 

approximations.  

A numerical case study based on the assumption of normally distributed 

capacities demonstrated that the results of the methodology are consistent with intuition: 

increased demand levels, lower nominal capacities and higher capacity uncertainty shift 

the probability mass to the right, i.e, make higher travel times more likely. The numerical 

examples have shown that the resulting PDFs are skewed to the right with relatively fat 
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right tails, an indication that the CLT is not applicable.  In other words, the CLT might 

lead to overly optimistic conclusions on travel time reliability and it is therefore of crucial 

importance to rigorously justify the application of the CLT, which, except under specific 

assumptions (Lo et al., 2006) is not always mathematically tractable. The case study also 

demonstrated the computational efficiency of the approximation scheme. For instance, 

the PDF for the Sioux Falls network that consists of 76 links was constructed in about 21 

seconds, excluding the accuracy checking procedure.  

Despite the computational efficiency, it is always good practice to explore 

opportunities for further improvement, especially when analyzing large networks that 

consist of thousands of links. To this end, we have suggested various strategies to 

improve on the computation time that are, however, left as future work: 

 

 Discarding links with small uncertainties and small volume-to-capacity ratios from the 

reliability analysis (which basically reduces the network size). 

 The use of the non-uniform DFT to handle a diverse range of capacity variations in a 

network. From a numerical integration perspective, integrals associated with links with 

small uncertainties are substantially different from those characterized by large 

uncertainties. The former typically requires a finer computational grid in specific 

regions of the domain of integration. 

 The use of higher order quadrature rules, e.g., the Simpsons rule. Higher order 

quadrature rules tend to achieve similar accuracy levels with a coarser computational 

grid, i.e, are less computationally intensive.  
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A final interesting extension of this work would be to incorporate some form of 

dependence in the capacities, or at least, measure the impact of such dependence on the 

PDF quantitatively. Unfortunately, we believe that such an extension is not feasible 

within the current Fourier framework. To see this, simply note that the fundamental result 

that underlies the proposed methodology is the convolution theorem. Without the 

assumption of statistical independence, the convolution theorem is no longer applicable. 

A fundamentally new approach is required. 

 

In Chapter 3, we relaxed the common assumption that the exact probability 

distributions of the sources of uncertainty are known explicitly. In reality, these 

distributions may be unavailable (inaccurate) because we may have no (insufficient) data 

to calibrate the distribution. We presented a travel time reliability assessment technique 

based on probability inequalities. Instead of the specification of the probability 

distributions, the methodology only requires the specification of moments (up to order N) 

and a set of bounded intervals in which the random quantities are expected to reside. The 

price to pay for this relaxation is that we only obtain upper bounds on the unreliability 

function as opposed to exact probabilities of events (that are only as good as the 

underlying assumptions on the probability distributions). We also departed from previous 

modeling paradigms in that we directly worked with travel time rather than, for example, 

road capacities (we argue that it is much easier to answer the question what the variance 

of travel time is than what the variance of road capacity is). The only assumption is that 

the travel times are independent across links (Lo and Tung, 2003; Lo et al., 2006).  
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A numerical case study using the well-known Sioux Falls test network revealed a 

number of important properties of the bounds. First, the bounds were found to be 

nontrivial for the most interesting (in terms of reliability assessment) subset of the 

feasible region, i.e, the higher travel times. Second, first order moment-based bounds can 

potentially be significantly improved by the inclusion of higher order moments. The 

improvement is larger when the additional information is more informative. For example, 

a smaller second order moment (i.e, smaller variance) is more informative than larger 

values (i.e, larger variances). Third, the proposed methodology is extremely 

computationally efficient. 

The introduction of the distribution-free paradigm is without doubt a major 

contribution to the transportation systems reliability literature. While we have developed 

bounds that are extremely useful (until now, not much – if anything – could be said about 

transportation system reliability given only information regarding moments and supports 

of random quantities), there is a substantial amount of work left for future research. For 

example, the sharpness of the bounds needs to be examined: are there travel times with 

given moments that attain the bounds? The independence assumption is consistent with 

the state-of-the-art in the current reliability assessment literature. However, it is 

straightforward to imagine situations where stochastic dependencies cannot be ignored 

(e.g., because of correlations in link flows). Fundamentally new statistical techniques are 

needed to account for such dependencies.  

 

The final contribution of this dissertation (Chapter 4) is the introduction of a new 

network design model that aims at minimizing the unreliability of travel time (while 
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virtually all existing network design models have the objective of minimizing system 

travel time). As opposed to the handful of existing publications in this area, the proposed 

model (RO-NDP) – which is based on the distribution-free reliability assessment 

technique developed in Chapter 3 – does not assume that exact probability distributions 

are known and is computationally feasible. While the model is primarily intended for 

situations where one is not able to specify exact distributions, we have demonstrated that 

it also has the potential to serve as a (computationally efficient) proxy for an existing 

simulation-based network design model that does require the specification of exact 

distributions (Chen et al., 2009). We showed that for the relatively small Nguyen-Dupuis 

test network the computation time can already reach 50 minutes, whereas the RO-NDP is 

much less computationally demanding due to the semi-analytical nature of the objective 

function. Results also suggested that the distribution-free reliability assessment 

methodology can be safely used in ranking capacity expansion projects that are aimed at 

improving the reliability of a transportation system. Numerical experiments demonstrated 

that network design solutions resulting from the RO-NDP model can be significantly 

different from capacity expansion decisions resulting from conventional network design 

models aiming at minimizing the (expected) system travel time. Hence, it would be 

interesting to develop bi-objective network design models that can provide a rational 

trade-off between the two objectives. The assumption of independence has been inherited 

from the reliability assessment technique developed in Chapter 3. The development of 

reliability assessment methodologies that are able to incorporate stochastic dependencies 

can thus also lead to network design models in which dependencies are accounted for. On 

the other hand, it will be interesting to investigate how well the current model can serve 
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as a proxy for the case when dependencies are present. However, this is left as future 

work. A final extension of this work would be the formulation and analysis of NDPs that 

employs higher order moments in characterizing network reliability. 

 

In line with the state-of-the-art in this area, in this dissertation the time-

dependency of unreliability has not been accounted for. Clearly, in addition to the 

modeling of spatial dependencies, another critical long-term research effort would be to 

incorporate temporal dependencies in measuring and optimizing the reliability of 

transportation networks.  
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