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Functional parallel programming techniques for feed-forward artificial

neural networks trained using backpropagation learning are analyzed. In par-

ticular, the Data Parallel Haskell extension to the Glasgow Haskell Compiler

is considered as a tool for achieving data parallelism. We find much potential

and elegance in this method, and determine that a sufficiently large workload

is critical in achieving real gains. Several additional features are recommended

to increase usability and improve results on small datasets.
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Chapter 1

Introduction

Efficient classification of data is a common problem found in many

fields of study. A wide range of statistical techniques exist for creating auto-

matic classifiers, based upon a set of correctly classified examples. Common

examples include handwriting recognition, automated medical diagnosis, and

detection of network intrusion. The classification technique we have chosen

to focus on is the artificial neural network, specifically the feed-forward vari-

ety using backpropagation as a training algorithm. In general, this provides

a well-performing classifier in terms of accuracy, space, and time, although

initial training can be quite expensive. We are specifically interested in neu-

ral networks because they often have a great potential for parallelism, which

matches the present trend of computational capacity growing in terms of in-

creasingly many cores instead of additional sequential operations per second.

Functional programming languages, such as Haskell, are also well positioned

to take advantage of this shift in hardware architecture. It seems natural,

therefore, to investigate how the unique parallel programming environment

that Haskell offers may be used to aid in the development and use of neural

networks.
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1.1 Neural Networks

Neural networks originated from the study of biological nervous sys-

tems, where it was observed that logical systems could be built to model how

neurons interacted [27]. In our context, we are interested in artificial networks

for their ability to classify data, not mimic biology. Additionally, we want

a method for training these networks so that they give acceptably accurate

classifications. While there are many possible architectures in which neurons

and their connections to each other could be arranged, we restrict ourselves

to a well understood and studied subset, called feed-forward networks. As

the name implies, connections in these networks always proceed in the same

direction, and are always from one grouping of nodes (a layer) to the next. An

example of this type of network is shown in Figure 1.1, with three layers that

are fully connected in sequence.

1.1.1 Feed-Forward

Performing classification with an existing feed-forward network is a

straightforward process of calculating the output of every node, starting with

the inputs, and proceeding layer by layer until the output of each node in the

final output layer is known. Input nodes are assigned values from the example

we would like to classify, which they output unchanged. Every other node’s

output is determined from a two step process. First, the total input to the

node is calculated by taking the sum of all the products of each connection’s

weight and its source node’s output. Then, an activation function is applied,

2



Figure 1.1: Feed-Forward neural network
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which gives the node’s actual output. If we say the connection weight to node

j from node i is wji, the output of a node k is zk, and the activation function

is σ then we can give the output for any non-input node as Equation 1.1.

zk = σ(
∑

j

wjizj) (1.1)

A common choice of activation function is the binary sigmoid function,

shown in Equation 1.2.

σ(t) =
1

1 + e(−t)
(1.2)

This is an attractive function for several reasons. The range of the sigmoid is

(0, 1), which resembles the off-on binary output of the biological neuron. As
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we will see shortly, one of the most important features of the sigmoid function

is that it is smooth at all regions, and therefore differentiable. Finally, it is

non-linear, important because many of the problems we wish to solve with

these networks will be non-linear as well.

Once all nodes’ outputs have been computed, we can take the output

node with the largest activation value as the selected class for the given input.

1.1.2 Backpropagation

The challenge, of course, is how do we create a network with the correct

configuration of weights, so that running the feed-forward algorithm will yield

accurate results? With any non-trivial network, the number of dimensions

we can vary in search of a good network is huge, so we need a method of

optimizing the search for whatever “good” means. We stated previously that

we intend to use a set of data that includes correct input and output values for

the classification task. A “good” result then, is when the network is presented

with a training input vector, the outputs match those in the training output

vector. Taking the sum of the square of the difference for each output results

in a convenient and suitable definition for error.

Now we know the error at each output, which is not useful by itself.

We need to propagate this error to prior layers, so that we can correct it at its

source. This is why the backpropagation algorithm is used, to provide us with

a method for assigning error or blame to the nodes. Backpropagation involves

two steps. First, we work backwards, assigning error to each node based on
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the previous layer’s output (starting of course, with the output layer). Then,

the connection weights are modified based on the error, in a direction that

minimizes future error for this instance.

The error for any hidden node is taken to be the product of the deriva-

tive of the node’s activation function at its current output, and the sum of

all downstream (closer to the output layer) weights multiplied by the error

of the node to which they connect. Intuitively, a node’s responsibility for

downstream error is related to how much it has contributed to the error of

downstream nodes. The derivative of the sigmoid activation function is de-

fined in terms of the function itself, shown in Equation 1.3. This is particularly

nice because if we can keep track of a node’s output, computing the derivative

is very efficient. The error for a hidden node is then given by Equation 1.4,

where oj is the output of node j, and the summation is over every downstream

connection from hidden node j to node i.

dσ(t)

dt
= σ(t)(1− σ(t)) (1.3)

δj = oj(1− oj)
∑

i

wjiδi (1.4)

Once the error has been assigned to each node, the final step is sim-

ple, we update all the connection weights to move in the direction minimizing

the error. The amount in which we move is effectively the speed at which

the network learns. It is common to use a constant η to scale this amount,
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which allows us to manipulate the learning rate. By increasing the rate, we

can minimize error quickly and increase network performance, but we trade off

the ability to differentiate small regions of the solution space, and cause the

results to bounce around without actually improving. A common optimization

is to dynamically change the learning rate in response to the gradient encoun-

tered [19]. For clarity, we assume a fixed learning rate, and update connection

weights based on Equations 1.5 and 1.6.

wji = ∆wji + wji (1.5)

∆wji = ηδiwji (1.6)

Figure 1.2 shows a network that was trained using backpropagation to

correctly classify logical disjunction. This network includes the use of bias

nodes, which have fixed activation values, shown here as 0.95. These inputs

allow the decision boundaries to not be restricted to crossing through the

origin, but instead move depending on the connection weight from the bias to

the node [12]. Table 1.1 gives the activation value for the nodes in the network,

and shows how this leads to a correct classification for all inputs.

1.2 Haskell and Functional Programming

The Haskell language originated from a desire to unify the functional

programming research community around a common syntax, from the multi-

6



Figure 1.2: Neural network approximating logical disjunction

i1 o1

h1

i2 o2

b1 b2

-5.1

-5.1

-4.4

4.4

0.5

1.5

-1.5

tude of functionally inspired languages that had been invented in the 1980’s [17].

The distinguishing and notable features of the language are that it is pure,

functional, lazy and is statically typed. We discuss each of these in turn,

making notes when relevant to how this affects parallel programming.

1.2.1 Purity

In contrast with the vast majority of languages, Haskell disallows side-

effecting statements. There is no built-in notion of destructive update, instead,

changes to data structures are defined in terms of the creation of a new data

structure. This imposes a certain rigour on programs, since it is no longer pos-

sible for any part of the program to manipulate program state. Programming

is done by building up functions which consume only what they are given, and

7



Table 1.1: Node activation values for logical disjunction network

i1 i2 b1 h1 b2 o1 o2 result
0 0 0.95 0.617 0.95 0.216 0.784 false
0 1 0.95 0.010 0.95 0.799 0.201 true
1 0 0.95 0.010 0.95 0.799 0.201 true
1 1 0.95 0.000 0.95 0.806 0.194 true

produce only what their type signatures declare.

1.2.2 Higher-Order Functions

Haskell functions are no different than other datatypes such as integers

or strings. They can be named, passed as arguments, and returned as a result.

Therefore, we say that Haskell supports higher-order functional programming.

This turns out to be a very convenient property for parallel programming,

since it provides an abstraction that often eliminates unnecessary imperative

programming. Consider two program fragments that are intended to do the

same type of work, incrementing a list of integers, shown written in Java first:

for (Integer i : collection) {

i++;

}

and now in Haskell:

map (+1) collection
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While the programmer’s intent in both of these fragments appears the

same, to perform an action over every element of a collection, the Haskell

version is amenable to parallelization, while the Java version is not. This is

because there is no implied order by the use of Haskell’s map function, the

compiler is free to increment the elements forwards, backwards, or all at once.

And in fact, by using the syntactically equivalent parMap function, work on

different parts of the list may happen concurrently. By emphasizing functions

instead of iterative procedures, opportunities for parallelization are greatly

increased.

1.2.3 Laziness

Just as it sounds, laziness is all about doing as little work as is required.

In the context of a programming language, it means that Haskell does not

perform computations unless there is some assurance that the result will be

used. While the obvious benefit would seem to be in performance, since no

computation is faster than doing nothing at all, a more important advantage

may be that it enables more modular programming [18]. In practice, laziness

is not free, since work that is not performed immediately must be remembered

in case it is needed, and is stored as an unused computations (known as a

“thunk”). In certain applications, it can be more space and time efficient to

simply do the work immediately (strict evaluation). Fortunately, Haskell is

only lazy by default, and there are several methods of annotating datatypes

and functions so that evaluation is performed immediately.

9



1.2.4 Static Typing

Finally, Haskell has a static type system with inferencing performed

by the Hindley-Milner algorithm, so that explicit type annotations are rarely

required. In addition to controlling side-effects, this allows for good perfor-

mance. The language can be compiled down to machine code, and performs

quite competitively, even with C in some circumstances. With respect to par-

allelism, static typing is advantageous here as well. It is because of the static

guarantees that pure functions provide that we are able to automatically par-

allelize many loop-like structures in Haskell to run concurrently, and do so in

a safe manner.

10



Chapter 2

Parallelizing Neural Networks

After describing the backpropagation algorithm, Rumelhart et al. [31]

made the following remark which characterizes why we are interested in finding

methods to efficiently parallelize neural networks.

Parallel computers are notoriously difficult to program. Here we

have a mechanism whereby we do not actually have to know how

to write the program in order to get the system to do it.

In other words, we can do the hard work of writing a parallel artificial neural

network once, and then obtain parallel versions of the particular networks that

run on our implementation for free.

As to why having a parallel implementation is desirable, it has been

widely recognized that future increases in microprocessor performance will

come in the form of increased parallelism instead of faster sequential process-

ing [4]. As an anecdote, the author notes that he recently upgraded from a

2.3 Ghz desktop computer, to one that has a clock rate of 2.26 Ghz. The

difference, taken for granted now, is that the new computer is capable of con-

currently running 16 hardware threads, while the previous machine could only

manage two.

11



2.1 Parallel Algorithms

A common way of looking at parallelism is to divide it into two models:

task parallelism, and data parallelism [3]. We focus later in this paper on data

parallelism, but for completeness, both will be discussed in this chapter. Task

parallelism is a low-level method for explicitly controlling concurrent activities

in a system, often used both for more advanced control structures, and greater

performance in parallel environments. It is characterized by threads, mutexes,

semaphores: the things that make concurrency “notoriously difficult”. Data

parallelism on the other hand, hardly looks like concurrency at all from the

programmers point of view. Programs are written in a sequential style, where

one operation may be performed repeatedly over a large set of data. Behind

the scenes, task parallelism may be used to support this illusion of sequencing.

One significant advantage of the data parallel style is that, given the underlying

technology is correct, parallelism can be exploited without risk of the program

going wrong due to deadlock, livelock, or other concurrency related problems.

2.2 Multiple Network Parallelism

There are several methods which can easily make use of multiple pro-

cessors, even when a whole network has been programmed to run sequentially.

These typically fall on the side of task parallelism, since the operations run

in parallel are distinct and complex, namely the entire feed-forward and back-

propagation algorithms.
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2.2.1 Competing Network Architectures

Choosing a neural network architecture in itself may be quite challeng-

ing, and so experimenting with many different networks simultaneously may

be desirable. Some of the variables that may be adjusted include how many

hidden layers, the number of nodes per layer, fully or partially connected lay-

ers, coding for output nodes, activation functions, and many others.

Training multiple varying architectures can be done using entirely iso-

lated processes, with the only communication required being notification that

the completion criteria (accuracy, training iterations, etc.) has been satisfied.

For example, a problem may require a minimum threshold of accuracy, using

the simplest network architecture. Training and evaluating several increasingly

complex networks, each individual network running sequentially, but with a

sufficient number of them running concurrently, would be a simple way to take

advantage of the multiple processing resources on a single machine.

2.2.2 Varying Initial Conditions

The backpropagation algorithm is a gradient descent method that al-

ways attempts to move in the direction of decreasing error from its starting

location, which is determined by the random connection weights we assign dur-

ing network creation. The usual concern with local optimization techniques is

that they may get stuck in local minima, since there is no inherent mechanism

for a network to determine the difference between a local minima, and the

global minima.

13



There are many techniques for avoiding or reducing the impact of local

minima, such as incorporating momentum (past gradients combined with the

current gradient) into weight correction [12], choosing the initial weights more

carefully [32], and the use of the exponential function as an energy function

(in place of the sum-squared error function) [1].

A standard solution to this local optimization challenge is to simply run

the network multiple times, from different random initial configurations. This

may yield several different solutions, which can be evaluated against each other

in order to determine the best result. Methods exist for determining how many

random networks should be trained in this fashion in order to get acceptably

close to the optimum result [23].

2.3 Single Network Parallelism

In contrast to running many different networks simultaneously, we may

want to focus on executing or training a single network as quickly as possible.

If we have used the multiple network techniques for selecting an architecture,

and have chosen a more refined method for avoiding local minima than rerun-

ning, optimizing a single network could be quite worthwhile. The parallelism

involved is much finer grained however, and therefore more difficult and per-

formance sensitive. At this level, data parallelism starts to become important,

although this distinction can become blurry as some algorithms may incorpo-

rate both task and data parallelism.
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2.3.1 Epoch Training

Updates to each connection weight do not have to be applied immedi-

ately after error backpropagation. Instead, weight updates can be calculated

for each training instance in batch, summed, and then applied at the end of

a training “epoch.” Since the result of running the feed-forward algorithm re-

main the same throughout a single epoch, multiple threads may concurrently

and independently calculate error across training instances. At the end of

the epoch, threads sum up the combined contribution to each weight, and

the next training epoch begins. Summing the weight contributions across a

small number of processors is fast, so this allows both the feed-forward and

backpropagation steps to be parallelized. The disadvantage to this method

is that the cumulative affect of all the backpropagation steps results in much

smoother corrections being made, which increases the risk of becoming stuck

in local minima [12].

2.3.2 Node Parallelism

We can also view a neural network as a collection of independent pro-

cessing units, that is, each node is a simple processor. This extracts the

maximum possible parallelism from the model, but shifts the burden to the

communication links in a way that standard processors, even multi-core, are

not designed for. Hardware has been created that takes advantage of this

model, employing thousands of simple processors in a highly connected mesh

or hypercube arrangement [14] [13]. This hardware is not common however,

15



and it is likely that for quite some time we will be simulating networks with

far more nodes than we have processors available on a single computer.

2.3.3 Layer Parallelism

In the standard feed-forward and backpropagation algorithms, we up-

date nodes one layer at a time, either in the forward or back directions. If epoch

training is not used, then we are repeatedly shifting between sequential evalu-

ation of layers in each direction. In a non-trivial network, each layer may have

a significant amount of work to perform. Feed-forward networks require we

sum the product of each node/connection combination, which corresponds to

multiplication of a vector (the node outputs) by a matrix (connection weights

between two layers). The result of this is the output values for the next layer.

The vector-matrix product operation is very widely used, and highly-

optimized versions exist in numerical linear algebra software packages, exam-

ples of which are LAPACK [2] and BLAS [24]. Additionally, it can be readily

parallelized [6]. Matrix operations are also a prototypical example of data

parallel algorithms, since we specify an operation to be performed over a large

set of data.
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Chapter 3

Data Parallel Haskell

The Glasgow Haskell Compiler (GHC) contains a rich set of paral-

lel/concurrent programming models, supporting explicit threads, semi-explicit

hints for concurrency, data parallelism [26], and transactional memory [15]. To

some extent, all of these components utilize the underlying Concurrent Haskell

system [30]. This is important, so that as these higher-level abstractions are

built, developers do not need to reinvent the wheel with respect to thread

management and scheduling, mapping to underlying hardware, and the in-

teractions that concurrency can have with other well-established parts of the

system, such as input/output, exceptions and the foreign-function C inter-

face [20].

The Data Parallel Haskell (DPH) extension to GHC is one of these

powerful abstractions, allowing a developer to write purely functional code

that is executed by multiple processors, with most of the hard work carried

out automatically by the system [29]. This includes vectorization of both data

structures and functions, division of workload (even with nested, irregularly

sized data structures), and assignment and execution on whatever hardware

is available at runtime. The ability to work on more than just flat data struc-

17



tures, called nested data parallelism, is discussed first. We then describe the

additional parallel array syntax, the critical vectorization/flattening operation,

and the mapping to underlying hardware.

3.1 Nested Data Parallelism

Data parallelism is usually performed on flat data, which makes the

division of labor between processing units straightforward, since the operation

to be performed is identical across the data. Many applications could benefit

from parallel operations over more complicated types, where data may be

stored in sparse vectors or matrices, or may be represented by a recursive

data type, such as a tree. In these situations, the problem is more easily

described by nesting calls to parallel collection-oriented functions. Without

that capability, program modularity suffers, and the programmer may have to

resort to task-parallelism to express an otherwise fundamentally data-parallel

algorithm [8]. One of the key features in DPH, and its inspiration, NESL [7], is

the flattening operation which converts these irregular nested collections into

traditional flat arrays for processing.

3.2 Parallel Array Comprehension Syntax

Haskell natively supports a form of syntactic sugar for building lists,

called list comprehensions [21], which resembles “set-builder” notation from set

theory. For example, we may specify all of the multiples of three in set-builder

18



notation by equation 3.1.

{3x : x ∈ N} (3.1)

The equivalent notation in the Haskell language is shown below, along

with an example of its output. This is, of course, an infinite list, so we use the

take function to restrict output to the first ten examples. List comprehensions

have the notion of order, unlike pure set-builder notation, and are widely used

in Haskell.

> let k = [ 3*x | x <- [1..] ]

> take 10 k

[3,6,9,12,15,18,21,24,27,30]

List comprehensions are also used to define computations. The dot

product of two lists is shown below, which utilizes an additional “parallel list”

syntax. That is, elements are pulled from lists a and b at the same time,

multiplied, and used to produce a list of elements which are then summed to

give the final result.

> let as = [1,4,3]

> let bs = [2,1,3]

> sum [ a * b | a <- as | b <- bs ]

15

This style of expressing computations is the standard interface into the

DPH system, through the very similar parallel array comprehension syntax.

19



The primary difference from the previously shown parallel list comprehensions

is that DPH acts upon parallel arrays, which are denoted with the syntax

[:a:], where a is the type of element stored in the array. The function defini-

tion for dot product over arrays, defined with parallel array comprehensions is

shown below. Notice that the only difference between the array and list syntax

is the use of the parallel array brackets, and an explicit parallel summation

function.

dotp as bs = sumP [: a * b | a <- as | b <- bs :]

This syntax illustrates the minimal interface required to perform data

parallel computation. The DPH system desugars this syntax into standard

function application, which then receives standard treatment, including opti-

mizations and profiling support from the Haskell compiler. Much of the rest

of DPH is implemented simply as library functions.

3.3 Flattening Transformation

DPH may be used with very complicated data. Nested arrays, user-

defined types, product types, and recursive data types are all allowed and

can be acted on in the same way as a flat list of floating point numbers.

This is extremely powerful in allowing programmers to continue operating at

a high level of abstraction, without sacrificing opportunities for parallelism.

The key to this happening is the vectorization, or flattening operation that is

performed. The goal of vectorization is to take potentially nested programs and

20



data, and convert them to run on flat vectors of primitive types. Vectorization

is a very complex operation, so we will only describe three important aspects,

conversion from nested to flat arrays, the representation of user-defined types

as unboxed arrays, and the construction of vectorized functions.

3.3.1 Flattening Nested Arrays

As an example of how nested arrays can be transformed into something

flat again, we take a ragged matrix, with varying numbers of elements per row,

and turn it into an array that can be processed with standard data parallel

algorithms.

In code prior to vectorization, ragged arrays are simply parallel arrays

of parallel arrays, with the type [:[:a:]:]. A sensible flat representation

would be to simply stack the individual rows into an array, one after another,

and keep track of their individual starting and ending positions. Indeed, this is

precisely how the vectorization operation proceeds [29]. Once the desugaring of

parallel array notation has occurred, we have standard Haskell types, and our

ragged matrix has the type PA (PA a), or a parallel array containing parallel

arrays of elements of type a. The concrete representation of the matrix is a

single flat array, along with what DPH calls a segment descriptor, which is a

structure recording the lengths of the nested arrays, their starting indices, and

how many data elements the segment descriptor contains. This type, which

contains no more nesting, is referred to as being “unlifted”. The final type is

therefore a product of the flat array, and its segment descriptor.
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3.3.2 Unboxing User-Defined Types

In most instances, arrays of user-defined types in Haskell are repre-

sented as arrays of thunks, which when evaluated, yield the requested data.

This is part of how Haskell implements laziness, but it has serious negative

effects for data parallel computations. One problem is that it destroys locality

of data. A significant amount of work is done in the flattening transformation

to arrange data in a flat vector. Having to then dereference and evaluate each

array element would be extremely expensive. While main memory is often

thought of as “random access”, there are significant performance gains possi-

ble from fetching items in order from memory, so that cache lines and spatial

locality are used effectively [16].

The alternative to using thunks, is to store data “unboxed”, without

the overhead required to support lazy evaluation. This is analogous to the

difference between storing structures as array elements directly in C, and hav-

ing an array of pointers to structs. In order to achieve good performance, the

representation of types, including user-defined types, must be controlled. This

is accomplished through a feature of Haskell’s type system called associated

types [9], which allow varying data representations. A representation can be

specified for parallel arrays specifically, enabling primitive types like Integer

and Double to be raw byte arrays. Pair types like (a,b) are represented as

pairs of parallel arrays, showing the flexibility of associated types, since this

is essentially the inverse of how they are stored by default (arrays of thunks

to pairs).
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3.3.3 Function Lifting

Now that we have some idea how data representation works for parallel

arrays, we need to understand how work is performed on these structures. As

an example, we consider applying the sigmoid function across a parallel array

of node outputs. We have defined sigmoid in standard Haskell below.

sigmoid :: Double -> Double

sigmoid t = 1 / (1 + (exp (negate t)))

Function lifting refers to converting standard “unlifted” functions to

work in the context of parallel arrays. It is analogous to the lifting operation

that occurs with monads [25], which is used to transform an existing function

into one that operates in a different (“lifted”) context. Say we had a list, which

is a monad, and wanted to apply the sigmoid operation to every element. We

have a version of sigmoid, but it only works on a single number. One method

for achieving this is to produce a new version of sigmoid, which works in the

List monad (as well as any other monad type), by use of the liftM function,

which is demonstrated below.

> sigmoid 0.2

0.549833997312478

> let a = [0.2, 0.3, -0.4]

> let sigmoidM = liftM sigmoid

> sigmoidM a

[0.549833997312478, 0.574442516811659, 0.401312339887548]

23



For vectorization, we actually require three functions, the standard

scalar version, a lifted version, and the combination of these is used to form

the vectorized version [29]. The lifted version of a function is then used in any

other vectorization operations. Applying the lifting rules, we can construct

a lifted sigmoidL. Constants are replaced by collections of the same (large

enough to match the size of the input), internal function calls are replaced by

lifted variants, and parameters are left alone.

Our lifted sigmoid might look like the following, where subscripted L’s

show the replacement of a function with its lifted version.

sigmoid :: [:Double:] -> [:Double:]

sigmoid t = n /L (n +L (expL (negateL t)))

where

n = (replicateP (lengthP t) 1}

At the core of DPH are implementations for primitive functions, like

lifted addition (+L) and the lifted exponential function (expL). There are

currently two implementations, seq for purely sequential operation, and par

for multi-core environments. Either of these modules can be included when

the program is linked, giving us the ability to choose a sequential or parallel

backend.
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3.4 Mapping to Hardware

Finally, we look at how the flattened data representation, and vec-

torized functions work together along with the Haskell run-time concurrency

system, to provide speedups for data parallel operations. Prior to DPH, the

GHC compiler contained a mature parallel runtime [26], with support for ex-

plicit and semi-explicit parallelism. DPH puts this infrastructure to work, so

it is only concerned with mapping to the relatively high-level runtime offered

through GHC.

For a programmer, parallelism can be exploited by simply using the par

and pseq functions to mark computations as candidates for running concur-

rently. These computations are called “sparks”, and are placed in pools that

idle physical processors are able to work on. Meanwhile, idle threads execute

these sparks as they become free. Keeping a group of system threads alive is

more efficient than continuously creating threads for new work. When a user

runs a program, they are able to specify by a run-time flag how many hard-

ware threads (referred to as “capabilities”) should be allocated to the program

(including the option of having this determined automatically).

The actual mapping from parallel structures to individual sequential

cores is done through a mechanism called Distributed Types [11] [22]. These

represent at the type level the distinction between parallel and sequential

operations, as well as the necessary synchronization that is required to dis-

tribute work. Synchronization is achieved in the creation and destruction of

distributed types, primarily through the splitD and joinD functions. Split-
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ting takes an array and divides it into chunks, evenly distributed across the

available members of a group of threads called a “gang”. This can then be

operated on sequentially by each gang member. Joining happens after the

parallel array has been split, and work done on each chunk, and serves as a

coordination mechanism for each of the gang threads. Finally, joining returns

a parallel array, that can be again split and worked on for the next operation.

One of the important optimizations that occurs in this process is automatic

removal, or “fusion”, of unnecessary split/join pairs [29].
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Chapter 4

Implementation

Data Parallel Haskell has the potential to be used almost transparently

by the user. Parallel arrays are just another type of data, with constructors for

creating new instances, and functions that operate upon the data. In practice

however, the system is still quite experimental. While it has been available as

part of stable feature releases, going back to version 6.8 of GHC in late 2007,

it is currently still a “technology preview”, with the main goals of encouraging

experimentation and early feedback. In order to use a current implementation,

with significant performance and stability fixes, the latest development version

of the GHC compiler must be acquired and built from source.

4.1 Sequential Implementation

In the course of evaluating both neural networks and Haskell, a small

sequential neural network library was built, capable of reading input, using

backpropagation to learn from examples, and performing classification on a

test set, as well as evaluating its own accuracy. This implementation was

tested using several datasets from the UCI Machine Learning Repository [5].

Results from training several networks of varying sizes against the UCI letter
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recognition data set are shown in Figure 4.1. Performing these experiments

were important in order for us to gain insight into how many nodes were

required for good results. Clearly, a problem that requires more nodes will

have increased potential for parallel speedup, as any implementation overhead

becomes dwarfed by the actual computation.

4.2 Interface Limitations

Parallel array comprehension syntax, automatic vectorization of func-

tions and data structures, and tight integration with the existing Haskell

thread system are the high points of what DPH provides the programmer

in the current implementation. There are some pitfalls however, which make

using this style of parallelism difficult. The first, is the requirement that all

vectorized code reside in dedicated modules. The next limitation we discuss

is the cost of marshalling data across the boundary of vectorized and unvec-

torized modules, which we find to be significant. Finally, we examine the

treatment of matrices, which must be managed as nested data structures.

4.2.1 Module Vectorization

Any code that performs operations on parallel arrays needs to be vec-

torized, and vectorization is currently a whole-module transformation. That

is, GHC cannot selectively choose to vectorize only those functions which are

used in parallel array context, it must act on the entire module in which those

functions reside. This is an improvement over languages like NESL [7], which
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require whole-program transformation, but is not ideal. Improvements in this

area appear to be on their way, Chakravarty et al. have a strategy for perform-

ing “partial vectorization”, even down to the sub-expression level [10]. This is

what currently allows vectorized and non-vectorized modules to co-exist. In-

creasing the granularity and automation of vectorization will be a significant

usability improvement in the library.

4.2.2 Marshalling Overhead

Any data that will be worked on in parallel first needs to be in a sup-

ported container. The cost involved in this operation, if done frequently, can

dominate execution time. A minor change to our sequential program to invoke

the parallel dot product operation during the feed-forward stage yielded signif-

icantly worse performance than simply running sequentially. Profiling results

showed that most of the program execution time was spent creating Gang ob-

jects (groups of threads). Moreover, adding additional processing cores to the

system actually made performance worse, meaning the cost of gang creation in-

creases with additional hardware threads to be utilized. Investigation showed

that gang creation spawns new OS threads every time work is requested from

vectorized code, one thread per capability (physical core requested at run-

time). Since thread creation costs are significantly greater than the relatively

small matrix multiplication operation cost, we are not able to take advantage

of the division of workload between cores.

In order to show real gains, it is imperative that we minimize the num-
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ber of times we create parallel arrays from scratch, since this leads to thread

creation in order to handle distributed computations. Otherwise, we spend

more time setting up the system than doing real work. Comments in the

source code acknowledge this is a “hack”, and we feel that decreasing gang

creation costs through use of a more permanent thread pool could make the

entire system far more usable, especially for small tasks. This is the same

optimization currently used for assigning “spark” computations to threads.

4.2.3 Matrices

Support for matrices is critical for many algorithms that would typically

be used in a data parallel context. Both the feed-forward and backpropagation

algorithms are defined in terms of matrix operations. Unfortunately, there is

currently very poor support for creating matrices from non-vectorized code.

Converting from flat structures (both arrays and lists) is supported natively,

but since matrices are treated as “nested” data, there are more restrictions.

Creating matrices requires understanding how DPH represents nested struc-

tures internally, through the use of segment descriptors, which provide indexes

into flattened arrays. We were able to create matrices for representing con-

nection weights, doing so required being familiar with how nested data is

represented as flat structures, and constructing the flat version ourselves.
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4.3 Strategy

There are two main components we discuss for a DPH implementa-

tion of a neural network. The representation of the neural network structure,

and how we create vectorized implementations of data parallel algorithms to

operate on the network structure.

4.3.1 Network Representation

The choice of neural network representation is crucial for achieving

good performance, but we also want something that is easily extensible. We are

able to use standard Haskell primitive types, records, and tuples as elements of

parallel arrays, and maintain sensible representations in memory. For example,

we know that for any given node, we will be maintaining its output value, and it

may be useful to store its error as well, for use in updating connection weights

during backpropagation. Using a record type is ideal, since it allows us to

extend the information contained in a node, without affecting any existing

code. However, we do not want to jeopardize the efficient layout of node

outputs by using anything other than a byte array. Due to the vectorization

procedure, we can have it both ways. The following definition is high level and

extensible, but will be implemented as two separate arrays of doubles, making

indexing and data parallel operations efficient. In standard non-vectorized

code, an array of Node types would instead be represented by an array of

thunks/pointers to the actual storage site, requiring an additional level of

indirection, and greatly increasing the costs to access and manipulate data in
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a uniform way.

data Node = Node {output :: Double, error :: Double}

With nodes defined, we can now think about layers of the network as

parallel arrays of nodes.

type Layer = [:Node:]

The connection weights from one layer to another are straightforward

to define as a matrix.

type FullConnection = [:[:Double:]:]

Layers that are not fully connected could be represented with a sparse

matrix instead, which takes greater advantage of nested data parallelism, since

some rows will have more data (and require more computation) than others.

Sparse matrix multiplication is one of the common examples used with DPH,

and we reuse the definition given in its status report [11]. Each row is now

a vector of index/value pairs. The status report gives a succinct definition of

dot product on this sparse structure as well.

type SparseVector = [:(Int,Double):]

type PartialConnection = [:SparseVector:]
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4.3.2 Vectorized Function

We require vectorized versions of the feed-forward and backpropagation

algorithm. These are very similar, so we only show the feed-forward version

here. As mentioned previously, vectorization is enabled by module, so we must

keep all vectorized components together. Marshalling of parallel arrays is re-

quired so that external functions can utilize data parallel operations. This

is accomplished by converting flat PArray a structures into the parallel form

[:a:] using the low-level marshalling functions toPArrayP, fromPArrayP, and

fromNestedPArrayP. As shown here, the feedForward function is only a wrap-

per that allows data to pass into the vectorized module, which we explicitly

disable from any inlining optimizations.

feedForward :: PArray Double

-> PArray (PArray Double)

-> PArray Double

{-# NOINLINE feedForward #-}

feedForward i w =

toPArrayP (feedForward’

(fromPArrayP i)

(fromNestedPArrayP w))

Working from the bottom up, we know we will need an activation func-

tion, so we define the binary sigmoid as a scalar function. Vectorization will

lift this into something that works on arrays, automatically.
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sigmoid :: Double -> Double

sigmoid t = 1 / (1 + (exp (negate t)))

For clarity, we separate the function that produces an actual node’s

activation value from the full layer’s feed-forward step. This function’s type

indicates that it takes two vectors, and produces a single number, the activa-

tion value of a node. The first argument is the vector of input node values,

and the second is a vector of the weights connecting each of those inputs to

the node we are currently considering. The zipWithP function multiplies each

input node value with the corresponding weight, in parallel. The result of that

is passed to sumP, which performs a summation on all the products, to form

the input to our node. Finally, we use the activation function we just defined

to squash the node’s input into the output range (0, 1).

activation :: [:Double:] -> [:Double:] -> Double

activation i c = sigmoid (sumP (zipWithP (*) i c))

We are able to compute the entire layer at the same time, so the

feedForward’ function uses a parallel array comprehension to perform the

activation function using every row of the connection weight matrix. The

final result is a vector of output values for the layer, calculated in parallel.

feedForward’ :: [:Double:] -> [:[:Double:]:] -> [:Double:]

feedForward’ i w = [: activation i c | c <- w :]
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4.4 Test Environment

Testing was conducted on an Apple Mac Pro, with two quad-core Xeon

2.26GHz Xeon 5520 processors, and 6GB of memory. Memory was arranged as

a single 1GB module for each of the six memory channels (three per processor).

Each physical processor core is exposed as two processors to the operating

system due to hyperthreading, the total number of concurrent threads that

can execute is 16. One complexity of testing on this platform is the “turbo

mode” feature, which dynamically varies the clock speed of the processing

cores based on load. A die not using all of its cores is able to disable some,

and increase the power to those remaining. This can result in a small but

measurable increase to performance for applications utilizing less than the full

number of physical cores. In practice, this means that system clock speed is

likely to be 2.53Ghz with one to two cores active, 2.4Ghz with three to four,

and 2.26Ghz with five or more active. It may also be part of the reason that

performance at low thread counts had a relatively high variance, as shown in

our benchmarks. We also speculate that it may contribute to the localized

dip in performance that was consistently seen after surpassing 5 threads. This

was not corrected for in our measurements, since it is simply the reality of this

platform, and is likely to be more commonplace in the future.

Final testing and benchmarked code was compiled using the Glasgow

Haskell Compiler, built from the latest development source obtained on July

14, 2009. The dph-par array library was used in all cases to produce multi-

threaded code. Parallel garbage collection was enabled by default. The com-
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piler flags used were those recommended to give the best performance for vec-

torized DPH code: -threaded, -fcpr-off, -funfolding-use-threshold30,

-funbox-strict-fields, and -Odph.

4.5 Results

We examined our data parallel feed-forward implementation by running

500 iterations between two fully-connected layers with the same number of

nodes. We varied the number of processing elements from one to 16, the full

range that was possible in our test environment. We also varied the number

of nodes in each layer, to determine at what point initialization costs are

overcome by the extra processing capacity.

Previous results in the DPH status report showed significant speedups

on a similar problem, sparse matrix/vector multiplication, where the smallest

matrix used had one million non-zero elements [11]. This roughly corresponds

to two layers of one thousand nodes each in our application. Absolute run

time is shown for a network this size in Figure 4.5. Performance improves sig-

nificantly with each additional processor up to the fourth, with all subsequent

additions having mixed results.

We validated that with large enough data sets, we can get very en-

couraging results. With 7,000 nodes in each layer, we have 49 million weights

that must be calculated, and here we see an advantage even up to 16 threads.

Figure 4.5 illustrates the run time being reduced from 1422ms with a single

thread, to 222ms with 16 threads, a 6.4x speedup. As we consistently observed,
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there is a great deal more variation when using between 3 and 7 processors.

However, as was discussed previously, smaller workloads do not see the

same types of gains. In fact, performance can decrease with every additional

processor. Figure 4.5 shows the results of using two 100-node layers, which

demonstrates how performance can be strictly decreasing as more processors

are used. In between that example and the positive results for large workloads,

we find that there is a range of workloads where adding a small number of

processors is beneficial, but performance begins to decrease again after too

many are involved. On this test platform, for this problem, the cutoff was

on the order of 10 milliseconds. That is, when an individual feed-forward

operation (determining the output of the entire next layer) took greater than

10 milliseconds, we started to see some improvement when using all available

processors. At 300 nodes (6ms), we saw the first improvement when moving

from one to two threads, while at 500 nodes (11ms), we began to see a slight

improvement when using all 16 threads.

We can examine the effect of changing the workload size by plotting in-

creasing sizes along with their speedup per additional processor. This is shown

in Figure 4.5, and makes it clear how smaller workloads are hurt by additional

processors, medium-sized workloads only achieve speedups for small thread

counts, and more predictable speedups are achievable for large workloads.

One consequence of note is that there may be a need for a more in-

telligent system for determining how many processors to use for a distributed

task. Currently, only one setting can be given at program initialization time,
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which is not ideal for all machines or problem sizes. For example, we would

only want to use a single thread for calculating layer outputs that involved a

small number of connections, but might want several threads for a step that

had millions of connections. Currently, we must optimize either for the large

or small case, at the expense of the other, or complicate our code with multiple

implementations of the same function (vectorized, and scalar).
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Figure 4.1: Training results for UCI Letter Recognition, varying single-layer
network sizes
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Figure 4.2: Run time of single feed-forward iteration for two 1000-node layers
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Figure 4.3: Run time of single feed-forward iteration for two 7000-node layers
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Figure 4.4: Relative speedup for varying workloads
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Figure 4.5: Run time of single feed-forward iteration for two 100-node layers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3
4

5
6

Processors

T
im

e(
m

s)

43



Chapter 5

Conclusions

We looked at a standard tool for performing automatic classification,

feed-forward neural networks using backpropagation for learning, and exam-

ined several different methods for taking advantage of parallelism. These in-

cluded both task and data parallel techniques. The functional programming

language Haskell, and its Data Parallel Haskell library were analyzed for ap-

plication to the problem of parallelizing neural network learning and classifi-

cation.

We found many desirable features from the DPH library that would

allow us to program simultaneously at a high level of abstraction, but with-

out sacrificing some critical performance-oriented features such as efficient data

representation. The vectorization transformation provided a powerful abstrac-

tion for describing parallel array operations in a very readable format.

A strategy for implementing a data parallel neural network was de-

scribed, demonstrating how different aspects of DPH are used. Unfortunately,

we found that small tasks are currently unsuitable for use with DPH, due to

the static notion of capabilities and how thread gangs are initialized. Since

operating system thread creation time may be greater than our task, any in-

44



crease in the number of threads results in lower overall performance. Since

system capabilities are static, mixing tasks that can take advantage of only a

small number of threads, and those that can use many, may optimize one task

at the expense of the other.

For larger network sizes, with millions of connections, we demonstrated

significant speedups, repeating the positive results seen in other applications

with this tool. Our best result was speedup of 6.4 over a single-threaded

execution, on a machine with 8 physical processor cores, capable of running

16 concurrent threads.

Finally, we note that going forward, the startup costs of the DPH sys-

tem should be more carefully considered to broaden the applicability of this

tool to smaller problems. Operating the neural network described here has

significant opportunities for parallelism, but this takes place in a large number

of small steps, making startup overhead critical.

The Data Parallel Haskell compiler extensions and library are still in-

complete, rapidly changing, and experimental. However, the abstractions are

powerful, and performance gains are real. We look forward to the necessary

usability improvements that will enable developers to use this more seamlessly

in their applications.
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