
Copyright

by

Alexander Joshua Hoganson

2021

The Report Committee for Alexander Joshua Hoganson

Certifies that this is the approved version of the following Report:

SHM Racer: Dynamic Race Condition Detection

Using Shared Memory Traps

APPROVED BY

SUPERVISING COMMITTEE:

August Shi, Supervisor

Robert Leyendecker

SHM Racer: Dynamic Race Condition Detection

Using Shared Memory Traps

by

Alexander Joshua Hoganson

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2021

iv

Acknowledgements

Professor August Shi and Robert Leyendecker provided excellent feedback and

direction for this report. Professor Milos Gligoric’s lectures on the application of Java

Pathfinder were especially applicable to some of the challenges faced in this project. While

the implementation does not specifically utilize JPF style tools, the lectures about object

listeners inspired the SHM Library design.

Abstract

SHM Racer: Dynamic Race Condition Detection

Using Shared Memory Traps

Alexander Joshua Hoganson, M.S.E.

The University of Texas at Austin, 2021

Supervisor: August Shi

This project investigated different types of data races that can exist within C code,

and then incrementally built a race condition detector, SHM Racer, using an assortment of

thread safety violation/data race violation detection methods. The objective of this report

was to demonstrate the tradeoffs/benefits of certain race condition finding tools, and

construct a tool that could minimize false positive race errors while maximizing the number

of found data races. Race condition detection using static analysis can log false

positives/false negatives due to a missed understanding of complex synchronization

patterns. Dynamic analysis can often minimize false positives, but its ability to slow

runtime performance can make this type of analysis impractical. The decided approach was

to develop SHM Racer: a shared memory library that provides a shared memory access

interface to multiple threads. SHM Racer would also use its knowledge of thread contexts

and near-miss analysis data to dynamically modify its shared memory response

performance with the intent of expanding critical sections. The aim of this approach was

to increase the likelihood of race condition occurrence without significantly altering

v

vi

runtime performance. Test observations demonstrated that while expanding critical

sections does increase the probability of detecting data races without producing false

positives, there are significant performance/race condition detection impacts if the critical

sections are expanded without accommodating for happens-before and already found race

errors. Using a combination of near miss analysis and dangerous pair pruning, there was

an observable performance improvement in analyzed code performance. However, while

there were no false positives detected by SHM Racer, there were still missed race violations

due to the tool’s effects on thread synchronization patterns. Even though SHM Racer did

miss finding race violations, its false positive minimization and configurable delay

thresholds make it very effective at catching basic data races without having to learn

synchronization patterns.

vii

Table of Contents

List of Tables ... ix

List of Figures ..x

1. INTRODUCTION..1

1.1 Background ..1

1.1.1 System Impact of Data Races ..1

1.1.2 Data Race Detection Techniques ...4

1.1.3 Shared Memory Libraries ..6

1.2 Problem Definition...8

2. SOLUTION: SHM RACER ...9

2.1 Solution Architecture ...9

2.2 Phase 1 Solution ...11

2.2.1 Interface Module ..11

2.2.2 Trap Module ..11

2.2.3 SHM Access Module ...14

2.3 Phase 2 Solution ...14

2.3.1 Transaction Analytics Module ...15

2.3.2 Trap Module ..16

3. TESTING/RESULTS ...18

3.1 Testing Configuration ..18

3.2 Results ..19

3.2.1 ThreadSanitizer Results ...19

3.2.2 Phase 1 Results ..20

 viii

3.2.3 Phase 2 Results ..21

3.2.4 Comparing Phase 1&2 Results ..24

4. FUTURE WORK ...26

4.1 HB Inference Detection ..26

5. CONCLUSION ..29

Appendix A ..30

References ..34

 ix

List of Tables

Table 1.1: Race Conditions Explained Using Pipelined Processor Semantics4

Table 2.1: Execution Trap Sequence Table for Figure 2.1 ..13

Table 2.2: Phase 2 Delay Formulas..17

Table 3.1: Phase 1 Condensed Race Conditions Found Results21

Table 3.2: Phase 2 Condensed Race Conditions Found Results22

Table 3.3: Phase 1 vs. Phase 2 Comparison ...24

 x

List of Figures

Figure 1.1: Basic Data Race Violation Example ...2

Figure 1.2: “Dirty Write” Example ...3

Figure 1.3: Serialized SHM Library with Race Conditions ..7

Figure 2.1: Solution High Level Design Diagram...10

Figure 2.2: Race Condition Trap Example ..12

Figure 3.1: THREAD_SET_RMW_RACE_MAX Example ..19

Figure 4.1: HB Relationship Example...26

Figure 4.2: Inferring HB Relationships ...28

 1

1. INTRODUCTION

1.1 Background

Concurrent systems, whether they are embedded Linux or multi-stack web

applications, often require resource sharing between parallel system contexts. While there

may be significant benefits associated with implementing concurrent systems, there are

data correctness risks within concurrent system design. A concurrent system can be

negatively influenced by race conditions: flaws which occur when the real time

synchronization of events within a software system impacts the system’s data correctness

[1]. There are many aspects of concurrent software systems’ designs that can cause race

conditions to occur: context switches, signals, hardware interrupts, and data races. This

report will specifically analyze the data race type: “simultaneous access to the same

memory location by multiple threads, where at least one of the accesses modifies the

memory location” [2].

1.1.1 SYSTEM IMPACT OF DATA RACES

The impact of data races can either be observable, or unobservable due to the

flaky nature of concurrent synchronization patterns. For example, if a test suite executes

all system functionality without observing a data race, that does not necessarily mean all

code flows are protected from data races. The difficulty of locating race conditions during

development has occasionally led to catastrophic system failures in the field. In 2003, a

race condition inside a GE energy management system’s alarm subsystem caused a

power line fault to go unnoticed, resulting in the North American Blackout of 2003 [3].

Between 1985 and 1987 a data race bug in a computer-controlled radiation therapy

machine known as the Therac-25 led to patients receiving massive overdoses of radiation

and 6 deaths [4].

 2

Figure 1.1 describes a thread unsafe function setValue that should increment value

by 30 every time it is called. If there was only a single thread X executing setValue, the

end value would predictably be 32 + 30 = 62. However, if another thread, thread Y, were

introduced after thread X has loaded value into tmp but before thread X has executed its

final write to value, then the result could vary from 62 to 92. 62 would result if thread X

was first to load value into tmp, but executes its last write to value after thread Y has

executed its last write. 92 would result if thread X was first to load value into tmp, but

executed its last write to value before thread Y loads value into tmp. 92 is the intended

result of any two calls to this function: 32 + 2*(30) = 92.

volatile int value = 32;

void setValue(void *args) {
 int tmp = value;
 for(int i = 0; i < 30; i++) {
 value = (tmp++);
 }
}

Figure 1.1: Basic Data Race Violation Example

Even with a basic example the range of possible outcomes varies significantly when

a race condition occurs. If the data race leads to value becoming the correct value 92, the

data race still poses a threat to correctness that could be exposed during another execution.

Another example of data races impacting program behavior are “dirty writes” [5],

where one thread is attempting to write a value to an address while another thread is also

trying to write to the same address. If the write procedure to update volatile shared memory

does not have enforced serialization constraints, then data corruption is a possible outcome.

Shared memory libraries as described in section 1.1.3 often mitigate these errors using a

serialized write lock mechanism. It’s worth noting that the absence of “dirty-writes” does

 3

not prevent race conditions like those present in Figure 1.1 from occurring, since even if

the data accesses themselves are serialized, their ordering may not be guaranteed.

typedef struct{

 uint8_t a;

 uint8_t b;

}sCustomType;

volatile sCustomType var = {.a = 0, .b = 0};

void threadX_setVar(void *args) {

 var.a = 1;

 var.b = 1;

}

void threadY_setVar(void *args) {

 var.a = 2;

 var.b = 2;

}

Figure 1.2: “Dirty Write” Example

Figure 1.2 shows two functions, threadX_setVar and threadY_setVar, that

write different information to a shared variable a. If these two functions are executed

concurrently, the ordering of the individual writes dictates the final result. If

threadX_setVar finishes both writes before threadY_setVar starts writing, then the

final result would be {2,2}, but if there’s an interleaving of writes between the various

threads then the result could be {1,2} or {2,1}. If the sCustomType is trying to represent a

UINT16 type variable then the non-serialization of writes in this example could

potentially leave var in a corrupt state.

Race conditions such as Write-after-read (WAR), Read-after-write (RAW), and

Write-after-write (WAW) are the primary subject of this report. WAR occurs when a

thread Y writes to a variable before it is read by thread X, such that thread X uses the

newly written value instead of the older value. RAW occurs when a thread Y reads a

 4

value right before thread X overwrites it, such that thread Y uses an older value. WAW

occurs when a thread Y writes to a value before thread X covers up that write with a write

to the same value. All of these race conditions are explained using pipelined processor

semantics in Table 1.1.

Table 1.1: Race Conditions Explained Using Pipelined Processor Semantics

Using the information in Table 1.1, we can identify in Figure 1.1 that there are

race conditions, but they are more abstract than pipeline processor semantics, and harder

to intuitively spot. The biggest race condition is a RAW hazard that exists when thread Y

is attempting to read value before X has fully finished writing value. There is also a

potential for a WAR hazard where thread X is writing value before waiting for thread Y

to read value. While a WAW race condition exists, that hazard does not impact the

correctness of the function if the other race conditions are addressed.

1.1.2 DATA RACE DETECTION TECHNIQUES

Race condition detection has been researched for decades, and there is still not a

standardized technique in part because finding all “feasible general or data races is an NP-

hard problem” [6]. The difficulty of finding all feasible general data races stems from a

dependence on “intricate sequences of low-probability events”; a slight modification to a

program’s execution state can either cause the fault to affect the program or pass without

Race condition WAR RAW WAW

Example
t1: R1 = R2 + R4

t2: R4 = R2 + R3

t1: R1 = R2 + R4

t2: R3 = R1 + R5

t1: R1 = R2 + R3

t2: R1 = R3 + R4

Explanation
t2 needs to wait for

t1 to read R4 before

writing to R4

t2 needs to wait

for t1 to write R1

before reading R1

t2 needs to wait for t1 to

write R1 before writing

R1

 5

harm [7]. Even when data races impact a program’s state, data race errors can be still

difficult to detect since an affected program often would not indicate a failure has occurred.

Researchers have proposed and developed static synchronization analysis, dynamic

synchronization analysis, and dynamic delay-injection tools to detect data races within

concurrent programs.

Static synchronization analysis tools execute during build time and attempt to

analyze a code base for obscure code paths or synchronization patterns that can lead to data

races. Warlock [8] and RacerX [9] are examples of static analysis tools that build control

flow graphs (CFGs) of programs and attempt to cycle through all CFG paths while

checking for synchronization states. Both of these tools, while they are more likely to find

more data races since they can analyze rare code flows not covered during runtime, are

also more likely to report false positives if those tools encounter unknown synchronization

patterns.

Dynamic synchronization analysis tools execute during runtime and attempt to

analyze the dynamic state of locking mechanisms and shared memory accesses as they

occur. Eraser analyzes held lock states at run time and determines if shared data is accessed

during intervals without a held lock [10]. Happens-before (HB) detectors, such as

RaceTrack [11] and ThreadSanitizer [12], take advantage of Lamport’s HB relation to

establish a temporal order between memory access operations and determine whether the

order can be guaranteed to have one operation “happen before” the other [13]. These tools

do not suffer from the same false positive issues exhibited by static analysis tools because

analysis is limited to executed code paths. However, this reliance on executed code paths

also implies these tools cannot certify a program of being free from data race errors.

Another issue with dynamic race detection tools is their impact on a program’s dynamic

performance, which interestingly could lead to fewer data race detections [14].

 6

Delay injection tools attempt to expose race conditions via inserting delays during

runtime. These tools are excellent at preventing false positives because they only modify

the timing of the program, and they do not make assumptions about code synchronization

mechanisms. RaceFuzzer [15], CTrigger [16], DataCollider [17], and TSVD [18] are

examples of delay injection tools. RaceFuzzer and CTrigger perform dynamic and static

analysis of a program’s synchronization/data access patterns to determine the optimal

locations to insert delays. DataCollider performs little to no analysis and places delays

within a program in various locations with a fixed probability. TSVD uses a lighter weight

dynamic analysis than CTrigger or RaceFuzzer to dynamically insert delays in thread

unsafe areas of a program based on near miss (NM) and runtime HB inferences. One of

the drawbacks of delay injection tools are that they directly influence program timing.

Dynamic tools with large delays can miss race conditions that exist in shorter time intervals

[14].

1.1.3 SHARED MEMORY LIBRARIES

Shared memory (SHM) provides numerous advantages to a software system: less

disk space, centralized maintenance of data definitions, and multi-process communication

capabilities [19]. A drawback of using SHM is that read/write operations require a

synchronization mechanism in order to prevent data corruption problems or data races.

SHM libraries provide a synchronized interface to SHM with techniques that enforce

serialization of read/writes.

However, even if a SHM library can enforce serialization, a SHM library cannot

enforce ordering of read/write requests. Since the ordering of read/write execution

determines whether a race condition exists, a serialized SHM library cannot mitigate race

conditions. Figure 1.3 shows an example of two functions, threadX_setVar and

 7

threadY_setVar, that access SHM via SHM library functions SHM_READ and

SHM_WRITE. If these functions were executed concurrently, a race condition can still

influence the value of a even with the SHM library providing memory access serialization.

volatile uint8_t a = 0;

void threadX_setVar(void *args) {

 uint8_t tmp = 0;

 SHM_READ(&tmp, &a);

 tmp |= 0x10;

 SHM_WRITE(&tmp, &a);

}

void threadY_setVar(void *args) {

 uint8_t tmp = 0;

 SHM_READ(&tmp, &a);

 tmp |= 0x20;

 SHM_WRITE(&tmp, &a);

}

Figure 1.3: Serialized SHM Library with Race Conditions

The threads executing threadX_setVar and threadY_setVar are both attempting

to perform a version of Read Modify Write (RMW). However, these RMWs do not occur

atomically and are broken up into three smaller parts: the read(R), the modify(M), and the

write(W). Since neither of these operations have their RMW ordering guaranteed relative

to another thread’s write operations, there is a possibility that a can be equal to any of 0x10,

0x20, or 0x30. If the RMW is treated as a single atomic operation, then the final result will

consistently be 0x30 regardless of which thread starts executing first. It can be tempting to

assert that since making this particular RMW operation atomic resolves the race condition,

that extending the SHM library with a SHM_RMW command will fix most race

conditions. However, in large-scale enterprise codebases, usually the M part of RMW is

not as straightforward as applying an OR mask and varies significantly between processes.

 8

1.2 Problem Definition

Now that shared data accesses are the norm in concurrent software systems, race

conditions/data races are consistent problems challenging software determinism and

correctness. Many tools, including those referenced in section 1.1, have detected race

conditions with varying degrees of success. At an enterprise scale, the best tools will

attempt to limit the number of false positives while also attempting to find as many true

positives as possible. Minimizing false positives prevents engineering organizations from

spending time on non-issues, whereas maximizing reported true positives helps an

engineering organization improve concurrent software quality. TSVD had very promising

results, although that tool was specifically designed to analyze C# programs [18]. Since

C/C++ are primarily the languages used for embedded system development [20], there is a

motivation to implement a TSVD themed tool in C or C++.

Therefore, we propose SHM Racer, a solution modeled after TSVD that uses a C-

based SHM library to set data race traps according to near miss data. This will minimize

the quantity of false positives while providing a C compatible technique to perform near

miss (NM) data collection and maximize reported true positives.

 9

2. SOLUTION: SHM RACER

SHM Racer was built iteratively in 2 phases, starting with a basic solution that

inserts fixed weight delays within each SHM access instruction (Phase 1), and then

incrementally adding features from TSVD to optimize SHM Racer’s detection and runtime

performance (Phase 2). This solution is specifically written to perform race condition

analysis on sets of concurrent pthread programs that use a common SHM library. The

constraint that all programs must use a common SHM library still accommodates

enterprise-scale embedded software development environments. SHM access interfaces at

the enterprise level are moving towards standardization [21] and thread/process meta-data

can easily be made into an input requirement using compiler macros. SHM Racer code is

currently located within the SHM Racer GitHub v1.0 release [22].

2.1 Solution Architecture

SHM Racer is primarily a SHM library facilitating SHM read or write transactions.

This SHM library receives concurrent requests, serializes its SHM activities, and performs

the requested read/write actions. In addition to its routine operations, this SHM library

leverages pthread-specific context information to set data race traps and delay responses

to requests. A trap (section 2.2.2) is a technique to expand a critical section such that

another thread can expose a WAR, RAW, or WAW race condition. The phase 1 design

will implement a fixed delay trap mechanism. The phase 2 SHM library will cache NM

race conditions, or race conditions that could have occurred if the gap between two SHM

requests were reduced below a certain threshold. NM data will be combined with TSVD’s

dangerous pair pruning techniques to dynamically construct a performance-optimal trap

set.

 10

The high level SHM Racer design is illustrated by Figure 2.1. Pthread Clients issue

SHM_OP requests to an Interface Module, which forwards these requests to a Trap

Module. The Trap Module determines trap delays, possibly holds current requests until

traps clear, and then returns to the Interface Module. The Interface Module then forwards

SHM_OPs to the SHM Access Module, which unwraps the SHM_OPs and performs a

serialized read/write on the actual SHM. Finally, the Interface Module will send a return

status to the Pthread Client in addition to SHM data if the request was a read.

Figure 2.1: Solution High Level Design Diagram

 11

2.2 Phase 1 Solution

2.2.1 INTERFACE MODULE

The interface module allows pthread clients to access the SHM Library over a

common SHM_OP interface. The SHM_OP interface will automatically extract calling

context meta-data (thread id, file, function, line, etc.) from the pthread client, and pass this

data to the Trap and SHM Access Modules within the SHM library. Interface Module

interactions with the Trap Module may lead to delayed responses to SHM_OP requests,

since the Trap Module may attempt to catch race conditions by intentionally holding a

request.

2.2.2 TRAP MODULE

The Trap Module is responsible for setting traps and detecting SHM_OP requests

that trigger traps. A trap essentially delays one thread’s SHM_OP request while waiting

for other threads to execute SHM_OPs during that delay interval. Figure 2.2 illustrates this

concept using two threads X and Y. When a thread X executes a read SHM_OP, the Trap

Module will delay thread X. Meanwhile, if thread Y executes a write SHM_OP on the

same memory location during the time thread X has a trap delay, then the Trap Module

will record a trap violation that indicates a WAR race condition. When this module receives

a SHM_OP request, this module will first check if there are any active traps that are being

triggered by the current request. This involves the Trap Module searching through a table

and determining whether a trap entry has memory overlapping with the current request and

at least one of those SHM_OP access types is a write. If a trap violation is detected, and it

was not previously detected, then an error message will be logged.

 12

Figure 2.2: Race Condition Trap Example

 Once trap violations caused by the current request have been recorded, then the

Trap Module will determine the trap delay for the current SHM_OP request. The phase 1

Trap Module will use a fixed trap delay. The Trap Module will insert an entry into the trap

table, sleep by this delay, and remove the trap from the trap table before allowing the

SHM_OP read/write operation to complete.

 Table 2.1 represents a concurrent execution of the setValue function from Figure

1.1. For this example, the trap delays vary based on what thread executes a SHM_OP.

Thread X will use a 1.0 second fixed trap delay and thread Y will use a 0.5 second fixed

trap delay. Having different fixed trap delays for threads X and Y allows the detection of a

WAR that otherwise would not have been detected with uniform fixed delays.

 13

Time(s) Thread ID SHM_OP Type Trap Violation Trap Delay

0.0s X Read N/A 1.0s

0.1s Y Read N/A 0.5s

0.6s Y Write WAR 0.5s

1.0s X Write WAW 1.0s

1.1s Y Write WAW 0.5s

Table 2.1: Execution Trap Sequence Table for Figure 2.1

Thread X in this particular scenario is first to issue a SHM_OP command to read

value into tmp. SHM Library checks the list of known traps, sees there are none currently

set, and then sets a trap for 1.0 second(s). While the SHM Library holds thread X for 1.0

second(s), thread Y issues a SHM_OP command to read value into tmp. Read after read is

not a data race, so the SHM Library does not log a trap violation. The SHM Library does

however decide to set a trap for thread Y for 0.5s. Since there are no concurrent accesses

to SHM from thread X during this time since thread X is held in a trap, thread Y’s trap

expires without catching any violations. Then thread Y executes its first write to value at

0.6 second(s), which violates the trap set by thread X at 0.0 second(s). Thread Y sets a trap

for 0.5 second(s) after reporting its own trap violation. When thread X’s original trap

releases, then thread X will execute its first write to value at 1.0 second(s), violating the

trap set by thread Y at 0.6 second(s). Finally, when thread Y executes its second write to

value it will violate the trap set by thread X at 1.0 second(s). This particular trap setting

sequence actually catches all but two potential race conditions within this function, and

contains no false positives. If thread Y has its read operation delayed to occur after thread

X has a trap set during a write, then the trap module would have detected a RAW. Also, if

thread Y held its trap for the read longer, then thread X could have triggered a WAR

 14

violation instead of thread Y. The WAR trap violation is mutually exclusive to whichever

thread violates it first in this particular example.

 This example provides concrete evidence that delay injection tools can find race

condition issues, but with the caveat that they cannot necessarily find all race conditions

due to delay injection effects on ordering. Since a delay can expand a critical section using

a trap, this expansion theoretically should make it easier for other threads to trigger trap

violations. In reality, the expansions of a critical section can prevent the trapped threads

from triggering other traps as they wait in standby states for extended periods of time. Not

only can delays cause race conditions to be missed, but they can also negatively impact

program performance. For the Figure 1.1 example, if all thread X SHM_OPs are delayed

by 1.0 seconds(s) and all thread Y SHM_OPs are delayed by 0.5 second(s), then the

expectation for concurrent execution time is 31*(1.0s) = 31.0 second(s) rather than less

than 0.1 seconds. This same observation occurred when TSVD was executed on programs

where the delays were fixed and did not decay, at one time recording maximum overhead

of 6600% for a single module [18].

2.2.3 SHM ACCESS MODULE

 The SHM Access Module reads from or writes to volatile shared memory based on

the request from the Interface Module. This module has serialized data access, and simply

moves data between volatile shared memory and SHM_OP request data structures.

2.3 Phase 2 Solution

The phase 2 solution inherits the Interface Module, Trap Module, and SHM Access

Module from the phase 1 design. The phase 2 design will attempt to trim down the trap

delays so that they are small enough to not severely impact program performance while

 15

also exposing as many race conditions as possible. Near miss (NM) data can be used to

track dangerous pairs of memory accesses, eliminate pairs that would cause excess program

delays, and provide future program executions with prior program execution data. This

solution persists NM and trap data across execution cycles, allowing each additional

execution to use information gathered in previous runs to influence trap settings in future

runs. This persistent concept is represented by a variable known as a cycle count, or the

number of program executions since the NM and trap data were clear. We added the

Transaction Analytics Module to the Phase 2 Solution to help determine dynamic trap

delays based on NM data. Modifications were made to the Trap Module to consume data

provided by the Transaction Analytics Module and calculate optimal trap delays. HB

inferences were originally considered as a candidate component for the phase 2 solution,

but that component was excluded due to its ability to cause true race conditions to be

ignored (section 4.1). The time required to develop HB inference detection also contributed

towards this decision.

2.3.1 TRANSACTION ANALYTICS MODULE

 The Transaction Analytics Module records NM race condition violations and uses

data collected by the Trap Module to construct a dangerous pair table indicating pairs of

NM SHM_OPs that need to influence trap delays. As SHM_OPs are serviced, their

execution times are compared to previously serviced SHM_OPs. If at least one of two

SHM_OPs {a,b} are a write, the two operations occur within a certain threshold 𝐷𝑛𝑚

(Table 2.2), and a trap does not currently exist for that pair, then those two SHM_OPs are

a NM pair, or NM(a,b). If a trap violation does not exist for a SHM_OP pair then that pair

gets added to the dangerous pair table 𝐷𝑃_𝐿𝑖𝑠𝑡𝑎, a table that represents dangerous pairs

that could lead to triggered race conditions against SHM_OP a’s traps. If a SHM_OP b

 16

triggers a trap that was set by a then the Pair Pruner removes any dangerous pairs from

𝐷𝑃_𝐿𝑖𝑠𝑡𝑎 that link to b.

 The 𝐷𝑃_𝐿𝑖𝑠𝑡𝑎 stores a single preferred trap delay for each dangerous pair NM(a,b)

using the average of NM intervals for that pair. This module is also responsible for

detecting when a trap gets set for a SHM_OP a, and incrementing Tnm(𝑎): a quantity

signifying the number of traps set since a NM occurred. Whenever a new NM involving a

SHM_OP a occurs, then this module will clear Tnm(𝑎). Tnm(𝑎) represents the staleness

of NM data for a given SHM_OP a since it counts the number of traps set since the most

recent NM.

2.3.2 TRAP MODULE

 The phase 2 Trap Module has the sole purpose of creating delays that are

performance optimal and catching as many race conditions as possible. The internals of the

phase 2 Trap Module are mostly the same as the phase 1 Trap Module with the exception

of how delays are determined. Those delays, represented by 𝐷𝑖, are a either a default delay

𝐷𝑜 or the averaged NM data for a SHM_OP a, δi(𝑎), multiplied by a coefficient 𝐶𝑖 that

corresponds to the program’s real time assessment of race condition risk with a particular

SHM_OP. The formulas for calculating 𝐷𝑖 and other relevant variables are provided in

Table 2.2. 𝐶𝑖 is a decay function that scales δi(a) lower as new traps get set due to Tnm(𝑎).

A newly detected NM will increase 𝐶𝑖 back to 1, whereas each new trap will scan the

relevant near miss entries and exponentially decay 𝐶𝑖 further. A single NM detected during

program initialization for example will not be allowed to penalize future runtime

performance if that NM only occurs one time. If NMs are transformed into caught race

conditions, then they will be removed from the dangerous pair table to prevent race

condition redetection and unnecessary trap delays.

 17

Variable Formula

𝐴/𝐵 Set of all SHM_OPs from the perspective of the primary thread(A) or secondary

thread(B)

{Time, Thread ID, Read/Write, File/Function/Line, Offset}

a = ∈ A

b = ∈ 𝐵

Dnm = 5 seconds

Do = 0 seconds

Di(a) = {
δi(a) ∗ Ci(a), δi Defined

Do, 𝐷𝑃𝐿𝑖𝑠𝑡𝑎 = ∅

Ci(a) =
1

(3Tnm(a))

δi(a) =
1

n
(∑ δnm
δnm∈DP_Lista

)

DP_Lista = 𝑁𝑀(𝑎, 𝑏) ∀ 𝑏 ∈ 𝐵

NM(a, b)

=

{

b.time − a. time,

∃ x ∈ {a, b} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥. 𝑟𝑤 = 𝑤
a. offset ∩ b. offset

𝑏. 𝑡𝑖𝑚𝑒 − 𝑎. 𝑡𝑖𝑚𝑒 ≤ Dnm
∄ {𝑎, 𝑏} 𝑖𝑛 𝐶𝑎𝑢𝑔ℎ𝑡 𝑇𝑟𝑎𝑝𝑠

N/A, Otherwise

Tnm(a) = {
Tnm(a) + 1, Trap set for nm pair

0, Near miss occurs for nm pair

Table 2.2: Phase 2 Delay Formulas

 18

3. TESTING/RESULTS

3.1 Testing Configuration

SHM Racer phase 1 and 2 solutions, as well as ThreadSanitizer [12] for

comparison, were tested on 12 “thread set” C programs; these programs were written

specifically for testing, and exercise a diverse combination of synchronization patterns and

data races. These test programs are located within the SHM Racer GitHub v1.0 release

[22]. We developed these programs based on previous experiences with race conditions in

school and work settings, with an emphasis on creating thread safe and thread unsafe

programs. A “thread set” data structure was used to define sets of concurrent threads and

their corresponding functions to execute as pthreads, in addition to global timeout settings.

When the test program executes, it iterates through and runs each thread set, clearing

existing lock/synchronization states in between each set. Threads can either exit normally

or get cancelled by the main thread if a timeout occurs. At the end of each thread set a log

is printed indicating the amount of time the thread set took to complete in addition to

detected race conditions.

Since this tool analyzes race conditions through a shared memory library, the thread

sets under test had to access volatile shared memory using SHM_OP commands. Other

synchronization mechanisms like semaphores or mutexes did not require additional

modification. Trap delay functionality was disabled during ThreadSanitizer evaluation, but

programs still accessed SHM through the SHM_OP command interface.

The thread set programs were closely analyzed before testing to determine potential

race condition violations. Overall, the thread sets generated for testing were 50% thread

safe and 50% data race prone. There is an equal emphasis on testing thread safe programs

since the presence of thread safe techniques can potentially slow the performance of SHM

 19

Racer for both phase 1 and phase 2 designs. A sample thread set with 5 threads and 60 data

races, THREAD_SET_RMW_RACE_MAX, is provided in Figure 3.1. There are a few

macro functions like THREAD_SET_BUILDER, THREAD_FUNC_BUILDER, and

PTHREAD_HELPER_BUILDER that help the pre-compiler build thread sets. Basically,

this code will create a thread set with 5 pthreads where each pthread will execute

readModifyWrite once started and timeout after 100 seconds.

The phase 1 SHM Racer had its fixed delay interval altered from 0 to 5 seconds

between testing runs, whereas the phase 2 SHM Racer had its cycle count adjusted from 0

to 6 cycles to allow NM data on previous runs to be used in later runs. This was done

specifically to observe how these parameters can influence race condition detection

capabilities and overall runtime.
void readModifyWrite(void *args) {

 uint8_t tmp = 0;

 SHM_OP(SHM_READ, a, tmp);

 tmp |= 0x20;

 SHM_OP(SHM_WRITE, a, tmp);

}

PTHREAD_HELPER_BUILDER(RUN_FUNC_RMW_RACE, readModifyWrite)

THREAD_SET_BUILDER(THREAD_SET_RMW_RACE_MAX, 100)

 THREAD_FUNC_BUILDER(0, RUN_FUNC_RMW_RACE),

 THREAD_FUNC_BUILDER(1, RUN_FUNC_RMW_RACE),

 THREAD_FUNC_BUILDER(2, RUN_FUNC_RMW_RACE),

 THREAD_FUNC_BUILDER(3, RUN_FUNC_RMW_RACE),

 THREAD_FUNC_BUILDER(4, RUN_FUNC_RMW_RACE)

}

Figure 3.1: THREAD_SET_RMW_RACE_MAX Example

3.2 Results

3.2.1 THREADSANITIZER RESULTS

 ThreadSanitizer did not detect any race conditions when programs accessed shared

memory through the serialized SHM Library. We made additional changes to the SHM

 20

Library to specifically deserialize the SHM Access Module for ThreadSanitizer to see if

those changes led to race condition detections. This modification resulted in a single RAW

true positive detection within THREAD_SET_COUNTER_RACE_DOUBLE. Running

this test multiple times yielded varying detection results, but none of those runs produced

more than 2 race condition detections. One of the potential reasons for ThreadSanitizer’s

poor performance is its reliance on shared data access occurring within a relatively short

window before reporting a data race violation. The thread sets under test execute over a

relatively short run time and do not appear to have two concurrent accesses occurring close

enough together during normal execution to trigger a ThreadSanitizer warning.

3.2.2 PHASE 1 RESULTS

Overall, the results were very promising in terms of finding race conditions.

However, due to the frequency of delays the runtime of thread sets were often greatly

stretched, with some thread sets exceeding timeouts. Condensed phase 1 testing results

with data race thread sets are in Table 3.1. Complete results are located in Appendix A

with the label “Phase 1 Test Results”. There were no false positives reported in any of the

examples, but there were 57 missed race conditions with the best-case fixed delay. The

missed race conditions occurred specifically in thread sets like

THREAD_SET_RMW_RACE_MAX where ordering made it impossible to actually catch

race conditions in traps on the first run.

 Adding fixed length trap delays enforced a global penalty to shared memory

accesses that ultimately led to unnecessary decreases to program performance without a

meaningful increase in race condition findings. In some cases, the increase in the trap delay

actually led to the phase 1 design finding more race conditions. For example, a 5 second

trap delay caught 33 race conditions versus 32 race conditions caught with a 1 second trap

 21

delay. However, this added detection came with a 735 second delay to thread set

performance whereas a smaller delay would have sufficed. As the fixed delay increased to

10 seconds all thread sets with multiple SHM_OPs delayed significantly without catching

more race conditions than the 5 second delay.

Test Case Race Conditions Found

Given Fixed Delay

Actual Race

Conditions

1s 5s

THREAD_SET_COUNTER_RACE_DOUBLE 3 3 6

THREAD_SET_COUNTER_MIXED 3 3 6

THREAD_SET_RMW_RACE_DOUBLE 2 2 6

THREAD_SET_RMW_HB_FAKE 1 2 6

THREAD_SET_MAILMAN 3 3 6

THREAD_SET_RMW_RACE_MAX 20 20 60

TOTAL 32 33 90

Table 3.1: Phase 1 Condensed Race Conditions Found Results

3.2.3 PHASE 2 RESULTS

Similar to the phase 1 testing, the phase 2 testing covered the same test cases and

had no false positives. Condensed phase 2 testing results with data race thread sets are in

Table 3.2. The complete phase 2 test results are located within Appendix A with the label

“Phase 2 Test Results”. Instead of executing the test cases using a configurable fixed delay

these test cases were executed using a varying cycle number to run through thread sets

 22

multiple times. As the cycle numbers were increased, the number of race conditions

detected increased until eventually plateauing for most test cases. The phase 2 SHM Racer

detected more race conditions than the phase 1 SHM Racer for all thread sets at 72 with 6

cycles, but higher cycle counts contributed to longer runtimes up to 183 seconds for 6

cycles.

Test Case Race Conditions Found

Given Cycle Count

Actual Race

Conditions

2 Cycles 6 Cycles

THREAD_SET_COUNTER_RACE_DOUBLE 2 5 6

THREAD_SET_COUNTER_MIXED 2 5 6

THREAD_SET_RMW_RACE_DOUBLE 2 4 6

THREAD_SET_RMW_HB_FAKE 2 3 6

THREAD_SET_MAILMAN 3 6 6

THREAD_SET_RMW_RACE_MAX 20 49 60

TOTAL 31 72 90

Table 3.2: Phase 2 Condensed Race Conditions Found Results

Even though this tool scales a trap delay according to the average near miss interval,

there is still the issue of traps not catching race conditions. This is caused specifically by

the Pair Pruner module not allowing traps to get set for SHM_OPs that have caught all

potential near misses. If the first thread to execute

THREAD_SET_COUNTER_RACE_DOUBLE for instance has successfully caught all of

 23

the second thread’s race violations impacting the first thread’s SHM_OPs, then on the next

execution cycle, the first thread will not set any traps at all and therefore it is possible that

it could not even have the opportunity to perform slow enough to trigger the second

thread’s traps set in response to near misses that occurred during previous execution cycles.

However, this Pair Pruner behavior also leads to catching race conditions that would have

otherwise not been caught by the fixed delay SHM Racer. By eliminating traps for resolved

near miss pairs, the phase 2 design is able to speed up threads enough for those threads to

trigger other race condition traps or set other traps during earlier execution windows for

other threads to trigger. This behavior was evident in

THREAD_SET_RMW_RACE_MAX in addition to

THREAD_SET_COUNTER_RACE_DOUBLE.

Using the average of near misses for a given SHM_OP definitely allowed the tool

to find a delay that tried to cover specific SHM_OP race conditions without penalizing

other SHM_OPs. One of the issues with using the average near miss time is that the

presence of traps themselves can cause these times to be longer than needed. When there

is a near miss attributed to the trap delays’ impact on dynamic performance, that near miss

might not be achievable on the next cycle. This was certainly the case with

THREAD_SET_COUNTER_RACE_DOUBLE, where a RAW near miss was detected.

However, since all near miss pairs concerning a read in the first thread are resolved, that

first thread will not trap delay that read on the following execution cycle. This type of

behavior ensures the RAW can never be triggered. However, from the perspective of the

second thread, the near miss for that write is still cached and therefore the second thread

will continue to set traps for each of its 30 write operations, assuming that each trap has an

opportunity to catch the first thread’s read operation. This is a big motivation to use a delay

 24

decay function that takes into consideration the age of a near miss, such that the second

thread will not continue to suffer a performance penalty for an older near miss.

3.2.4 COMPARING PHASE 1&2 RESULTS

Both phase 1 and phase 2 SHM Racers performed better than the other at some

points during testing. Table 3.1 demonstrates the phase 2 SHM Racer does well as the cycle

count increases, whereas the phase 1 has an exponential increase in runtime without seeing

a bigger improvement in race condition detection. However, as the cycle count decreases

for the phase 2 SHM Racer, it has potentially a lot more delays to insert because it has just

recently learned the average near miss times, and has not run long enough to start pruning

dangerous pairs. If there are many near misses close to the near miss threshold, then the

average near miss delay will skew high. In addition to the trap delays being much larger,

the phase 2 SHM Racer also needs to run through the code multiple times. If the race

conditions are all relatively close to each other, the Trap Module could possibly select

delays that are much too large, and skewed by the larger near miss intervals created by the

trap delays.

Design Phase Race Conditions Found Runtime (seconds)

PHASE 1(5 sec) 33 737

PHASE 2(6 cycle) 72 183

PHASE 1(0.00001 sec) 31 2

PHASE 2(2 cycle) 31 28

Table 3.3: Phase 1 vs. Phase 2 Comparison

 25

 The phase 1 SHM Racer struggled much more than the phase 2 SHM Racer when

handling thread safe programs with fixed delays over 1 second. The phase 2 SHM Racer

took 34 seconds to execute 6 cycles of THREAD_SET_COUNTER_SAFE_DOUBLE, but

the phase 1 SHM Racer took 63 seconds using a 1 second delay to execute just 1 cycle.

This is an interesting observation, because it demonstrates how the NM data combined

with the exponential decay function helps the phase 2 SHM Racer naturally lower its trap

delays as dangerous pairs become less dangerous. The phase 1 SHM Racer’s fixed delays

cause 1 second traps to be set nearly 60 seconds after what the phase 2 design would have

considered to be a NM.

With race condition detectors, the primary incentive is to find as many data races

as possible in a reasonable amount of time. This is why we believe the phase 2 SHM Racer

is a better option than the phase 1 SHM Racer. While phase 1 can do exceptionally well

runtime-wise with smaller interval data races, its inability to adjust its delay during runtime

makes it very difficult to accommodate wider data race intervals, and find extra race

conditions that are hidden by fixed trap delays. Phase 2 achieved a higher race condition

detection ability without compromising as much on runtime performance. The phase 2

design detected more than double the race conditions detected by the phase 1 design, and

had its highest detection result occur with a runtime that was roughly 1/4th that of the phase

1 design.

 26

4. FUTURE WORK

Phase 1 and 2 designs do not currently have a technique to prevent inserting delays

in locations where there are HB relationships. This could lead to excess delays and

unnecessary increases to the SHM Racer’s runtime performance. While originally

considered as a candidate for the Phase 2 design, HB inference detection was not included

because it could make HB inferences that obscured true race conditions. HB inference

detection could be designed to more accurately identify true HB pairs and mitigate the risks

of making invalid HB inferences if we had more time.

4.1 HB INFERENCE DETECTION

volatile uint8_t a = 0;

sem_t x_to_y_mutex;

void *threadX_setVar(void *args) {

 uint8_t tmp = 0;

 SHM_READ(&tmp, &a);

 tmp |= 0x10;

 SHM_WRITE(&tmp, &a);

 sem_post(&x_to_y_mutex);

}

void *threadY_setVar(void *args) {

 sem_wait(&x_to_y_mutex);

 uint8_t tmp = 0;

 SHM_READ(&tmp, &a);

 tmp |= 0x20;

 SHM_WRITE(&tmp, &a);

}

int main() {

 sem_init(&x_to_y_mutex, 0, 0);

 pthread_t X, Y;

 pthread_create(&X, NULL, threadX_setVar, NULL);

 pthread_create(&Y, NULL, threadY_setVar, NULL);

 pthread_join(X, NULL);

 pthread_join(Y, NULL);

 sem_destroy(&x_to_y_mutex);

 return 0;

}

Figure 4.1: HB Relationship Example

 27

To help explain HB inference, Figure 4.1 shows a simple thread safe program based

on Figure 1.3 that exhibits a HB relationship between thread X and thread Y. In this

example the semaphore design leads to threadX_setVar executing before

threadY_setVar, since the mutex is initialized to 0 and threadY_setVar’s sem_wait

depends on threadX_setVar incrementing the mutex with sem_post. If this program were

tested using either the phase 1 or 2 design, unnecessary traps would get set at each

SHM_OP, and the dynamic performance of the program would be slowed exactly in

proportion to the inserted delays. HB relationships would ideally be inferred by execution,

and used to avoid delaying code paths that have them.

 If threadX_setVar sets two traps that both lead to threadY_setVar executing its

SHM_OPs after thread X’s traps’ have cleared, the traps’ impact on program performance

can be used to infer a HB relationship. The sequence graph in Figure 4.2 outlines the HB

inferences that a future design could make. If the introduction of trap delays by thread X

causes thread Y’s SHM_OPs to be delayed at least by that amount then a HB inference

will be made.

 28

Figure 4.2: Inferring HB Relationships

 This HB inference approach has a few flaws, specifically if the reason for thread

Y’s delayed SHM_OPs was due to non-synchronization-based behavior. If

threadY_setVar replaced the sem_wait with a sleep(t), then a HB inference would be

made that did not actually exist, and a trap delay in thread X roughly greater than t could

have exposed race conditions. If HB was used to prevent traps from being set by thread X,

then it is possible the HB inference would be responsible for preventing race condition

detection in specific executions. This is the major reason why HB inference detection was

excluded from the final phase 2 design. However, with more time to solve these issues, HB

inference could be a valuable runtime optimizing feature for SHM Racer.

 29

5. CONCLUSION

This project analyzed various types of race condition detectors and developed a

delay injection tool, SHM Racer, based on the TSVD near-miss approach [18]. SHM Racer

used a shared memory library design to listen for shared memory access requests and set

traps for race condition violations. In the first phase of the design, the trap module used

fixed length delays. Testing data showed that while the tool could catch race conditions,

fixed delays did not provide enough race condition coverage or scalable runtime

performance. The second phase of SHM Racer used dynamic delay calculations based on

near miss race condition detections and was able to detect more race conditions after

cycling through program sets multiple times. While the second phase design improved on

the first phase design, there were still missed race violations due to delay injections causing

near misses to occur that would not hold true on future execution cycles. Altogether there

were no false positives, and the tool caught 80% of race condition violations during testing.

An adjustment to this tool that would increase the number of race violations found is setting

shared memory traps from both perspectives of a violation instead of just from the

perspective of the older shared memory access. If the tool had this improvement, it could

hold an operation it thinks can trigger a trap belonging to another thread that has not been

set yet. Also, even though HB inferences can lead to race violations not being detected,

this tool could certainly benefit from HB inferences eliminating unnecessary delays. The

second phase SHM Racer’s configurability, solution architecture, and race condition

detection performance make for an effective delay injection race detection tool, but

certainly with room for improvement.

 30

Appendix A

Phase 1 Test Results (Race Conditions Found)

Test Case Race Conditions Found Given

Fixed Delay

Actual Race

Conditions

0s 0.00001s 1s 5s

THREAD_SET_EMPTY_SINGLE 0 0 0 0 0

THREAD_SET_EMPTY_DOUBLE 0 0 0 0 0

THREAD_SET_COUNTER_RACE_DOUBLE 0 3 3 3 6

THREAD_SET_COUNTER_SAFE_DOUBLE

0 0 0 0 0

THREAD_SET_COUNTER_MIXED 0 3 3 3 6

THREAD_SET_READ_RACE_DOUBLE 0 0 0 0 0

THREAD_SET_RMW_RACE_DOUBLE 0 2 2 2 6

THREAD_SET_RMW_SAFE_DOUBLE 0 0 0 0 0

THREAD_SET_RMW_HB_DOUBLE 0 0 0 0 0

THREAD_SET_RMW_HB_FAKE 0 0 1 2 6

THREAD_SET_MAILMAN 0 3 3 3 6

THREAD_SET_RMW_RACE_MAX 0 20 20 20 60

TOTAL 0 31 32 33 90

 31

Phase 1 Test Results (Runtime Performance)

Test Case Execution Time Given Fixed Delay (seconds)

0s 0.00001s 1s 5s

THREAD_SET_EMPTY_SINGLE <1 <1 <1 <1

THREAD_SET_EMPTY_DOUBLE <1 <1 <1 <1

THREAD_SET_COUNTER_RACE_DOUBLE <1 <1 32 155

THREAD_SET_COUNTER_SAFE_DOUBLE

<1 <1 63 310

THREAD_SET_COUNTER_MIXED <1 <1 32 155

THREAD_SET_READ_RACE_DOUBLE <1 <1 2 5

THREAD_SET_RMW_RACE_DOUBLE <1 <1 3 10

THREAD_SET_RMW_SAFE_DOUBLE <1 <1 5 20

THREAD_SET_RMW_HB_DOUBLE <1 <1 5 20

THREAD_SET_RMW_HB_FAKE 2 2 5 12

THREAD_SET_MAILMAN <1 <1 9 40

THREAD_SET_RMW_RACE_MAX <1 <1 3 10

TOTAL 2 2 159 737

 32

Phase 2 Test Results (Race Conditions Found)

Test Case Race Conditions Found Given Cycle

Number

Actual Race

Conditions

1 2 3 6

THREAD_SET_EMPTY_SINGLE 0 0 0 0 0

THREAD_SET_EMPTY_DOUBLE 0 0 0 0 0

THREAD_SET_COUNTER_RACE_DOUBLE 0 2 5 5 6

THREAD_SET_COUNTER_SAFE_DOUBLE

0 0 0 0 0

THREAD_SET_COUNTER_MIXED 0 2 5 5 6

THREAD_SET_READ_RACE_DOUBLE 0 0 0 0 0

THREAD_SET_RMW_RACE_DOUBLE 0 2 3 4 6

THREAD_SET_RMW_SAFE_DOUBLE 0 0 0 0 0

THREAD_SET_RMW_HB_DOUBLE 0 0 0 0 0

THREAD_SET_RMW_HB_FAKE 0 2 3 3 6

THREAD_SET_MAILMAN 0 3 6 6 6

THREAD_SET_RMW_RACE_MAX 0 20 34 49 60

TOTAL 0 31 56 72 90

 33

Phase 2 Test Results (Runtime Performance)

Test Case Execution Time Given Cycle Number (Seconds)

1 2 3 6

THREAD_SET_EMPTY_SINGLE <1 <1 <1 <1

THREAD_SET_EMPTY_DOUBLE <1 <1 <1 <1

THREAD_SET_COUNTER_RACE_DOUBLE <1 2 6 15

THREAD_SET_COUNTER_SAFE_DOUBLE

<1 3 10 34

THREAD_SET_COUNTER_MIXED <1 2 6 15

THREAD_SET_READ_RACE_DOUBLE <1 <1 <1 <1

THREAD_SET_RMW_RACE_DOUBLE <1 2 6 22

THREAD_SET_RMW_SAFE_DOUBLE <1 3 8 38

THREAD_SET_RMW_HB_DOUBLE <1 3 8 38

THREAD_SET_RMW_HB_FAKE 2 8 12 36

THREAD_SET_MAILMAN <1 3 5 5

THREAD_SET_RMW_RACE_MAX <1 2 5 14

TOTAL 2 28 56 183

 34

References

1. Huffman, D.. The Synthesis of Sequential Switching Circuits. Journal of the Franklin

Institute, vol. 257, no. 3, Elsevier Ltd, 1954, pp. 161–190, doi:10.1016/0016-

0032(54)90574-8.

2. Boehm, H.. How to Miscompile Programs with “Benign” Data Races. HotPar. 2011.

pp. 1-4.

3. Andersson, G., et al. Causes of the 2003 major grid blackouts in North America and

Europe, and recommended means to improve system dynamic performance, in

IEEE Transactions on Power Systems, vol. 20, no. 4, IEEE, 2005, pp. 1922-1928,

doi: 10.1109/TPWRS.2005.857942.

4. Leveson, N., and C. Turner. An Investigation of the Therac-25 Accidents. Computer

(Long Beach, Calif.), vol. 26, no. 7, IEEE, 1993, pp. 18–41,

doi:10.1109/MC.1993.274940.

5. Celko, J.. Joe Celko’s Sql for Smarties: Advanced Sql Programming / Joe Celko. Fifth

edition., Morgan Kaufmann, 2015, pp. 21-27.

6. Netzer, R., and B. Miller. What Are Race Conditions? Some Issues and Formalizations.

ACM Letters on Programming Languages and Systems, vol. 1, no. 1, ACM, 1992,

pp. 74–88, doi:10.1145/130616.130623.

7. Klein, P., et al. Detecting Race Conditions in Parallel Programs That Use Semaphores.

Algorithmica, vol. 35, no. 4, Springer-Verlag, 2003, pp. 321–45,

doi:10.1007/s00453-002-1004-3.

8. Sterling, N. Warlock-A Static Data Race Analysis Tool. USENIX Winter 1993

Conference, USENIX, 1993.

9. Engler, D., and K. Ashcraft. RacerX: Effective, Static Detection of Race Conditions and

Deadlocks. Operating Systems Review, vol. 37, no. 5, ACM, 2003, pp. 237–52,

doi:10.1145/1165389.945468.

10. Savage, S., et al. Eraser: a Dynamic Data Race Detector for Multithreaded Programs.

ACM Transactions on Computer Systems, vol. 15, no. 4, ACM, 1997, pp. 391–411,

doi:10.1145/265924.265927.

11. Yu, Y., et al. RaceTrack : Efficient Detection of Data Race Conditions via Adaptive

Tracking. Operating Systems Review, vol. 39, no. 5, ACM, 2005, pp. 221–34,

doi:10.1145/1095809.1095832.

12. Serebryany, K., and T. Iskhodzhanov. ThreadSanitizer: Data Race Detection in

Practice. Proceedings of the Workshop on Binary Instrumentation and

Applications, ACM, 2009, pp. 62–71, doi:10.1145/1791194.1791203.

 35

13. Lamport, L.. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, vol. 21, no. 7, ACM, 1978, pp. 558–65,

doi:10.1145/359545.359563.

14. Yu, M., et al. Efficient Noise Injection for Exposing Hidden Data Races. The Journal

of Supercomputing, vol. 76, no. 1, Springer Nature B.V, 2020, pp. 292–323,

doi:10.1007/s11227-019-03031-0.

15. Sen, K.. Race Directed Random Testing of Concurrent Programs. Proceedings of the

29th ACM SIGPLAN Conference on Programming Language Design and

Implementation, ACM, 2008, pp. 11–21, doi:10.1145/1375581.1375584.

16. Park, S., et al. CTrigger: Exposing Atomicity Violation Bugs from Their Hiding Places.

Computer Architecture News, vol. 37, no. 1, 2009, pp. 25–36,

doi:10.1145/2528521.1508249.

17. Erickson, J., et al. Effective Data-Race Detection for the Kernel. OSDI. Vol. 10. No.

10. 2010, pp. 1-16.

18. Li, G., et al. Efficient Scalable Thread-Safety Violation Detection: Finding thousands

of concurrency bugs during testing. ACM SIGOPS SOSP ’19, ACM, 2019, pp.

162-180, doi:10.1145/3341301.3359638.

19. Adve, S., and K. Gharachorloo. Shared Memory Consistency Models: a Tutorial.

Computer (Long Beach, Calif.), vol. 29, no. 12, IEEE, 1996, pp. 66–76,

doi:10.1109/2.546611.

20. Edwards, S.. Languages for Digital Embedded Systems / Stephen A. Edwards. Kluwer

Academic Publishers, 2000.

21. Dagum, L., and R. Menon. OpenMP: An Industry Standard API for Shared-Memory

Programming. IEEE Computational Science & Engineering, vol. 5, no. 1, IEEE,

1998, pp. 46–55, doi:10.1109/99.660313.

22. Hoganson, A.. Initial SHM Racer Release. GitHub Release, v1.0, doi:

10.5281/zenodo.4738421.

