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Abstract 

SHM Racer: Dynamic Race Condition Detection 

Using Shared Memory Traps 

Alexander Joshua Hoganson, M.S.E. 

The University of Texas at Austin, 2021 

Supervisor:  August Shi 

This project investigated different types of data races that can exist within C code, 

and then incrementally built a race condition detector, SHM Racer, using an assortment of 

thread safety violation/data race violation detection methods. The objective of this report 

was to demonstrate the tradeoffs/benefits of certain race condition finding tools, and 

construct a tool that could minimize false positive race errors while maximizing the number 

of found data races. Race condition detection using static analysis can log false 

positives/false negatives due to a missed understanding of complex synchronization 

patterns. Dynamic analysis can often minimize false positives, but its ability to slow 

runtime performance can make this type of analysis impractical. The decided approach was 

to develop SHM Racer: a shared memory library that provides a shared memory access 

interface to multiple threads. SHM Racer would also use its knowledge of thread contexts 

and near-miss analysis data to dynamically modify its shared memory response 

performance with the intent of expanding critical sections. The aim of this approach was 

to increase the likelihood of race condition occurrence without significantly altering 
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runtime performance. Test observations demonstrated that while expanding critical 

sections does increase the probability of detecting data races without producing false 

positives, there are significant performance/race condition detection impacts if the critical 

sections are expanded without accommodating for happens-before and already found race 

errors. Using a combination of near miss analysis and dangerous pair pruning, there was 

an observable performance improvement in analyzed code performance. However, while 

there were no false positives detected by SHM Racer, there were still missed race violations 

due to the tool’s effects on thread synchronization patterns. Even though SHM Racer did 

miss finding race violations, its false positive minimization and configurable delay 

thresholds make it very effective at catching basic data races without having to learn 

synchronization patterns. 
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1. INTRODUCTION 

1.1 Background 

Concurrent systems, whether they are embedded Linux or multi-stack web 

applications, often require resource sharing between parallel system contexts. While there 

may be significant benefits associated with implementing concurrent systems, there are 

data correctness risks within concurrent system design. A concurrent system can be 

negatively influenced by race conditions: flaws which occur when the real time 

synchronization of events within a software system impacts the system’s data correctness 

[1]. There are many aspects of concurrent software systems’ designs that can cause race 

conditions to occur: context switches, signals, hardware interrupts, and data races. This 

report will specifically analyze the data race type: “simultaneous access to the same 

memory location by multiple threads, where at least one of the accesses modifies the 

memory location” [2]. 

1.1.1 SYSTEM IMPACT OF DATA RACES 

The impact of data races can either be observable, or unobservable due to the 

flaky nature of concurrent synchronization patterns. For example, if a test suite executes 

all system functionality without observing a data race, that does not necessarily mean all 

code flows are protected from data races. The difficulty of locating race conditions during 

development has occasionally led to catastrophic system failures in the field. In 2003, a 

race condition inside a GE energy management system’s alarm subsystem caused a 

power line fault to go unnoticed, resulting in the North American Blackout of 2003 [3]. 

Between 1985 and 1987 a data race bug in a computer-controlled radiation therapy 

machine known as the Therac-25 led to patients receiving massive overdoses of radiation 

and 6 deaths [4]. 
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Figure 1.1 describes a thread unsafe function setValue that should increment value 

by 30 every time it is called. If there was only a single thread X executing setValue, the 

end value would predictably be 32 + 30 = 62. However, if another thread, thread Y, were 

introduced after thread X has loaded value into tmp but before thread X has executed its 

final write to value, then the result could vary from 62 to 92. 62 would result if thread X 

was first to load value into tmp, but executes its last write to value after thread Y has 

executed its last write. 92 would result if thread X was first to load value into tmp, but 

executed its last write to value before thread Y loads value into tmp. 92 is the intended 

result of any two calls to this function: 32 + 2*(30) = 92. 

 
volatile int value = 32; 
 

void setValue(void *args) { 
    int tmp = value; 
    for(int i = 0; i < 30; i++) { 
        value = (tmp++); 
    } 
}  

Figure 1.1: Basic Data Race Violation Example 

Even with a basic example the range of possible outcomes varies significantly when 

a race condition occurs. If the data race leads to value becoming the correct value 92, the 

data race still poses a threat to correctness that could be exposed during another execution. 

Another example of data races impacting program behavior are “dirty writes” [5], 

where one thread is attempting to write a value to an address while another thread is also 

trying to write to the same address. If the write procedure to update volatile shared memory 

does not have enforced serialization constraints, then data corruption is a possible outcome. 

Shared memory libraries as described in section 1.1.3 often mitigate these errors using a 

serialized write lock mechanism. It’s worth noting that the absence of “dirty-writes” does 
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not prevent race conditions like those present in Figure 1.1 from occurring, since even if 

the data accesses themselves are serialized, their ordering may not be guaranteed. 

 
typedef struct{ 

    uint8_t a; 

    uint8_t b; 

}sCustomType; 

 

volatile sCustomType var = {.a = 0, .b = 0}; 

 

void threadX_setVar(void *args) { 

    var.a = 1; 

    var.b = 1; 

} 

 

void threadY_setVar(void *args) { 

    var.a = 2; 

    var.b = 2; 

}  

Figure 1.2: “Dirty Write” Example 

Figure 1.2 shows two functions, threadX_setVar and threadY_setVar, that 

write different information to a shared variable a. If these two functions are executed 

concurrently, the ordering of the individual writes dictates the final result. If 

threadX_setVar finishes both writes before threadY_setVar starts writing, then the 

final result would be {2,2}, but if there’s an interleaving of writes between the various 

threads then the result could be {1,2} or {2,1}. If the sCustomType is trying to represent a 

UINT16 type variable then the non-serialization of writes in this example could 

potentially leave var in a corrupt state. 

Race conditions such as Write-after-read (WAR), Read-after-write (RAW), and 

Write-after-write (WAW) are the primary subject of this report. WAR occurs when a 

thread Y writes to a variable before it is read by thread X, such that thread X uses the 

newly written value instead of the older value. RAW occurs when a thread Y reads a 
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value right before thread X overwrites it, such that thread Y uses an older value. WAW 

occurs when a thread Y writes to a value before thread X covers up that write with a write 

to the same value. All of these race conditions are explained using pipelined processor 

semantics in Table 1.1. 

Table 1.1: Race Conditions Explained Using Pipelined Processor Semantics 

Using the information in Table 1.1, we can identify in Figure 1.1 that there are 

race conditions, but they are more abstract than pipeline processor semantics, and harder 

to intuitively spot. The biggest race condition is a RAW hazard that exists when thread Y 

is attempting to read value before X has fully finished writing value. There is also a 

potential for a WAR hazard where thread X is writing value before waiting for thread Y 

to read value. While a WAW race condition exists, that hazard does not impact the 

correctness of the function if the other race conditions are addressed. 

1.1.2 DATA RACE DETECTION TECHNIQUES 

Race condition detection has been researched for decades, and there is still not a 

standardized technique in part because finding all “feasible general or data races is an NP-

hard problem” [6]. The difficulty of finding all feasible general data races stems from a 

dependence on “intricate sequences of low-probability events”; a slight modification to a 

program’s execution state can either cause the fault to affect the program or pass without 

Race condition WAR RAW WAW 

Example 
t1: R1 = R2 + R4 

t2: R4 = R2 + R3 

t1: R1 = R2 + R4 

t2: R3 = R1 + R5 

t1: R1 = R2 + R3 

t2: R1 = R3 + R4 

Explanation 
t2 needs to wait for 

t1 to read R4 before 

writing to R4 

t2 needs to wait 

for t1 to write R1 

before reading R1 

t2 needs to wait for t1 to 

write R1 before writing 

R1 
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harm [7]. Even when data races impact a program’s state, data race errors can be still 

difficult to detect since an affected program often would not indicate a failure has occurred. 

Researchers have proposed and developed static synchronization analysis, dynamic 

synchronization analysis, and dynamic delay-injection tools to detect data races within 

concurrent programs. 

Static synchronization analysis tools execute during build time and attempt to 

analyze a code base for obscure code paths or synchronization patterns that can lead to data 

races. Warlock [8] and RacerX [9] are examples of static analysis tools that build control 

flow graphs (CFGs) of programs and attempt to cycle through all CFG paths while 

checking for synchronization states. Both of these tools, while they are more likely to find 

more data races since they can analyze rare code flows not covered during runtime, are 

also more likely to report false positives if those tools encounter unknown synchronization 

patterns. 

Dynamic synchronization analysis tools execute during runtime and attempt to 

analyze the dynamic state of locking mechanisms and shared memory accesses as they 

occur. Eraser analyzes held lock states at run time and determines if shared data is accessed 

during intervals without a held lock [10]. Happens-before (HB) detectors, such as 

RaceTrack [11] and ThreadSanitizer [12], take advantage of Lamport’s HB relation to 

establish a temporal order between memory access operations and determine whether the 

order can be guaranteed to have one operation “happen before” the other [13]. These tools 

do not suffer from the same false positive issues exhibited by static analysis tools because 

analysis is limited to executed code paths. However, this reliance on executed code paths 

also implies these tools cannot certify a program of being free from data race errors. 

Another issue with dynamic race detection tools is their impact on a program’s dynamic 

performance, which interestingly could lead to fewer data race detections [14]. 
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Delay injection tools attempt to expose race conditions via inserting delays during 

runtime. These tools are excellent at preventing false positives because they only modify 

the timing of the program, and they do not make assumptions about code synchronization 

mechanisms. RaceFuzzer [15], CTrigger [16], DataCollider [17], and TSVD [18] are 

examples of delay injection tools. RaceFuzzer and CTrigger perform dynamic and static 

analysis of a program’s synchronization/data access patterns to determine the optimal 

locations to insert delays. DataCollider performs little to no analysis and places delays 

within a program in various locations with a fixed probability. TSVD uses a lighter weight 

dynamic analysis than CTrigger or RaceFuzzer to dynamically insert delays in thread 

unsafe areas of a program based on near miss (NM) and runtime HB inferences. One of 

the drawbacks of delay injection tools are that they directly influence program timing. 

Dynamic tools with large delays can miss race conditions that exist in shorter time intervals 

[14]. 

1.1.3 SHARED MEMORY LIBRARIES 

Shared memory (SHM) provides numerous advantages to a software system: less 

disk space, centralized maintenance of data definitions, and multi-process communication 

capabilities [19]. A drawback of using SHM is that read/write operations require a 

synchronization mechanism in order to prevent data corruption problems or data races. 

SHM libraries provide a synchronized interface to SHM with techniques that enforce 

serialization of read/writes. 

However, even if a SHM library can enforce serialization, a SHM library cannot 

enforce ordering of read/write requests. Since the ordering of read/write execution 

determines whether a race condition exists, a serialized SHM library cannot mitigate race 

conditions. Figure 1.3 shows an example of two functions, threadX_setVar and 
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threadY_setVar, that access SHM via SHM library functions SHM_READ and 

SHM_WRITE. If these functions were executed concurrently, a race condition can still 

influence the value of a even with the SHM library providing memory access serialization. 

 
volatile uint8_t a = 0; 

 

void threadX_setVar(void *args) { 

    uint8_t tmp = 0; 

    SHM_READ(&tmp, &a); 

    tmp |= 0x10; 

    SHM_WRITE(&tmp, &a); 

} 

 

void threadY_setVar(void *args) { 

    uint8_t tmp = 0; 

    SHM_READ(&tmp, &a); 

    tmp |= 0x20; 

    SHM_WRITE(&tmp, &a); 

}  

Figure 1.3: Serialized SHM Library with Race Conditions 

The threads executing threadX_setVar and threadY_setVar are both attempting 

to perform a version of Read Modify Write (RMW). However, these RMWs do not occur 

atomically and are broken up into three smaller parts: the read(R), the modify(M), and the 

write(W). Since neither of these operations have their RMW ordering guaranteed relative 

to another thread’s write operations, there is a possibility that a can be equal to any of 0x10, 

0x20, or 0x30. If the RMW is treated as a single atomic operation, then the final result will 

consistently be 0x30 regardless of which thread starts executing first. It can be tempting to 

assert that since making this particular RMW operation atomic resolves the race condition, 

that extending the SHM library with a SHM_RMW command will fix most race 

conditions. However, in large-scale enterprise codebases, usually the M part of RMW is 

not as straightforward as applying an OR mask and varies significantly between processes. 
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1.2 Problem Definition 

Now that shared data accesses are the norm in concurrent software systems, race 

conditions/data races are consistent problems challenging software determinism and 

correctness. Many tools, including those referenced in section 1.1, have detected race 

conditions with varying degrees of success. At an enterprise scale, the best tools will 

attempt to limit the number of false positives while also attempting to find as many true 

positives as possible. Minimizing false positives prevents engineering organizations from 

spending time on non-issues, whereas maximizing reported true positives helps an 

engineering organization improve concurrent software quality. TSVD had very promising 

results, although that tool was specifically designed to analyze C# programs [18]. Since 

C/C++ are primarily the languages used for embedded system development [20], there is a 

motivation to implement a TSVD themed tool in C or C++. 

Therefore, we propose SHM Racer, a solution modeled after TSVD that uses a C-

based SHM library to set data race traps according to near miss data. This will minimize 

the quantity of false positives while providing a C compatible technique to perform near 

miss (NM) data collection and maximize reported true positives. 
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2. SOLUTION: SHM RACER 

SHM Racer was built iteratively in 2 phases, starting with a basic solution that 

inserts fixed weight delays within each SHM access instruction (Phase 1), and then 

incrementally adding features from TSVD to optimize SHM Racer’s detection and runtime 

performance (Phase 2). This solution is specifically written to perform race condition 

analysis on sets of concurrent pthread programs that use a common SHM library. The 

constraint that all programs must use a common SHM library still accommodates 

enterprise-scale embedded software development environments. SHM access interfaces at 

the enterprise level are moving towards standardization [21] and thread/process meta-data 

can easily be made into an input requirement using compiler macros. SHM Racer code is 

currently located within the SHM Racer GitHub v1.0 release [22]. 

2.1 Solution Architecture 

SHM Racer is primarily a SHM library facilitating SHM read or write transactions. 

This SHM library receives concurrent requests, serializes its SHM activities, and performs 

the requested read/write actions. In addition to its routine operations, this SHM library 

leverages pthread-specific context information to set data race traps and delay responses 

to requests. A trap (section 2.2.2) is a technique to expand a critical section such that 

another thread can expose a WAR, RAW, or WAW race condition. The phase 1 design 

will implement a fixed delay trap mechanism. The phase 2 SHM library will cache NM 

race conditions, or race conditions that could have occurred if the gap between two SHM 

requests were reduced below a certain threshold. NM data will be combined with TSVD’s 

dangerous pair pruning techniques to dynamically construct a performance-optimal trap 

set. 
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The high level SHM Racer design is illustrated by Figure 2.1. Pthread Clients issue 

SHM_OP requests to an Interface Module, which forwards these requests to a Trap 

Module. The Trap Module determines trap delays, possibly holds current requests until 

traps clear, and then returns to the Interface Module. The Interface Module then forwards 

SHM_OPs to the SHM Access Module, which unwraps the SHM_OPs and performs a 

serialized read/write on the actual SHM. Finally, the Interface Module will send a return 

status to the Pthread Client in addition to SHM data if the request was a read. 

 

 

Figure 2.1: Solution High Level Design Diagram 
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2.2 Phase 1 Solution 

2.2.1 INTERFACE MODULE 

The interface module allows pthread clients to access the SHM Library over a 

common SHM_OP interface. The SHM_OP interface will automatically extract calling 

context meta-data (thread id, file, function, line, etc.) from the pthread client, and pass this 

data to the Trap and SHM Access Modules within the SHM library. Interface Module 

interactions with the Trap Module may lead to delayed responses to SHM_OP requests, 

since the Trap Module may attempt to catch race conditions by intentionally holding a 

request. 

2.2.2 TRAP MODULE 

The Trap Module is responsible for setting traps and detecting SHM_OP requests 

that trigger traps. A trap essentially delays one thread’s SHM_OP request while waiting 

for other threads to execute SHM_OPs during that delay interval. Figure 2.2 illustrates this 

concept using two threads X and Y. When a thread X executes a read SHM_OP, the Trap 

Module will delay thread X. Meanwhile, if thread Y executes a write SHM_OP on the 

same memory location during the time thread X has a trap delay, then the Trap Module 

will record a trap violation that indicates a WAR race condition. When this module receives 

a SHM_OP request, this module will first check if there are any active traps that are being 

triggered by the current request. This involves the Trap Module searching through a table 

and determining whether a trap entry has memory overlapping with the current request and 

at least one of those SHM_OP access types is a write. If a trap violation is detected, and it 

was not previously detected, then an error message will be logged. 
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Figure 2.2: Race Condition Trap Example 

 Once trap violations caused by the current request have been recorded, then the 

Trap Module will determine the trap delay for the current SHM_OP request. The phase 1 

Trap Module will use a fixed trap delay. The Trap Module will insert an entry into the trap 

table, sleep by this delay, and remove the trap from the trap table before allowing the 

SHM_OP read/write operation to complete. 

 Table 2.1 represents a concurrent execution of the setValue function from Figure 

1.1. For this example, the trap delays vary based on what thread executes a SHM_OP. 

Thread X will use a 1.0 second fixed trap delay and thread Y will use a 0.5 second fixed 

trap delay. Having different fixed trap delays for threads X and Y allows the detection of a 

WAR that otherwise would not have been detected with uniform fixed delays. 
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Time(s) Thread ID SHM_OP Type Trap Violation Trap Delay 

0.0s X Read N/A 1.0s 

0.1s Y Read N/A 0.5s 

0.6s Y Write WAR 0.5s 

1.0s X Write WAW 1.0s 

1.1s Y Write WAW 0.5s 

Table 2.1: Execution Trap Sequence Table for Figure 2.1 

Thread X in this particular scenario is first to issue a SHM_OP command to read 

value into tmp. SHM Library checks the list of known traps, sees there are none currently 

set, and then sets a trap for 1.0 second(s). While the SHM Library holds thread X for 1.0 

second(s), thread Y issues a SHM_OP command to read value into tmp. Read after read is 

not a data race, so the SHM Library does not log a trap violation. The SHM Library does 

however decide to set a trap for thread Y for 0.5s. Since there are no concurrent accesses 

to SHM from thread X during this time since thread X is held in a trap, thread Y’s trap 

expires without catching any violations. Then thread Y executes its first write to value at 

0.6 second(s), which violates the trap set by thread X at 0.0 second(s). Thread Y sets a trap 

for 0.5 second(s) after reporting its own trap violation. When thread X’s original trap 

releases, then thread X will execute its first write to value at 1.0 second(s), violating the 

trap set by thread Y at 0.6 second(s). Finally, when thread Y executes its second write to 

value it will violate the trap set by thread X at 1.0 second(s). This particular trap setting 

sequence actually catches all but two potential race conditions within this function, and 

contains no false positives. If thread Y has its read operation delayed to occur after thread 

X has a trap set during a write, then the trap module would have detected a RAW. Also, if 

thread Y held its trap for the read longer, then thread X could have triggered a WAR 
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violation instead of thread Y. The WAR trap violation is mutually exclusive to whichever 

thread violates it first in this particular example. 

 This example provides concrete evidence that delay injection tools can find race 

condition issues, but with the caveat that they cannot necessarily find all race conditions 

due to delay injection effects on ordering. Since a delay can expand a critical section using 

a trap, this expansion theoretically should make it easier for other threads to trigger trap 

violations. In reality, the expansions of a critical section can prevent the trapped threads 

from triggering other traps as they wait in standby states for extended periods of time. Not 

only can delays cause race conditions to be missed, but they can also negatively impact 

program performance. For the Figure 1.1 example, if all thread X SHM_OPs are delayed 

by 1.0 seconds(s) and all thread Y SHM_OPs are delayed by 0.5 second(s), then the 

expectation for concurrent execution time is 31*(1.0s) = 31.0 second(s) rather than less 

than 0.1 seconds. This same observation occurred when TSVD was executed on programs 

where the delays were fixed and did not decay, at one time recording maximum overhead 

of 6600% for a single module [18]. 

2.2.3 SHM ACCESS MODULE 

 The SHM Access Module reads from or writes to volatile shared memory based on 

the request from the Interface Module. This module has serialized data access, and simply 

moves data between volatile shared memory and SHM_OP request data structures. 

2.3 Phase 2 Solution 

The phase 2 solution inherits the Interface Module, Trap Module, and SHM Access 

Module from the phase 1 design. The phase 2 design will attempt to trim down the trap 

delays so that they are small enough to not severely impact program performance while 
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also exposing as many race conditions as possible. Near miss (NM) data can be used to 

track dangerous pairs of memory accesses, eliminate pairs that would cause excess program 

delays, and provide future program executions with prior program execution data. This 

solution persists NM and trap data across execution cycles, allowing each additional 

execution to use information gathered in previous runs to influence trap settings in future 

runs. This persistent concept is represented by a variable known as a cycle count, or the 

number of program executions since the NM and trap data were clear. We added the 

Transaction Analytics Module to the Phase 2 Solution to help determine dynamic trap 

delays based on NM data. Modifications were made to the Trap Module to consume data 

provided by the Transaction Analytics Module and calculate optimal trap delays. HB 

inferences were originally considered as a candidate component for the phase 2 solution, 

but that component was excluded due to its ability to cause true race conditions to be 

ignored (section 4.1). The time required to develop HB inference detection also contributed 

towards this decision. 

2.3.1 TRANSACTION ANALYTICS MODULE 

 The Transaction Analytics Module records NM race condition violations and uses 

data collected by the Trap Module to construct a dangerous pair table indicating pairs of 

NM SHM_OPs that need to influence trap delays. As SHM_OPs are serviced, their 

execution times are compared to previously serviced SHM_OPs. If at least one of two 

SHM_OPs {a,b} are a write, the two operations occur within a certain threshold 𝐷𝑛𝑚 

(Table 2.2), and a trap does not currently exist for that pair, then those two SHM_OPs are 

a NM pair, or NM(a,b). If a trap violation does not exist for a SHM_OP pair then that pair 

gets added to the dangerous pair table 𝐷𝑃_𝐿𝑖𝑠𝑡𝑎, a table that represents dangerous pairs 

that could lead to triggered race conditions against SHM_OP a’s traps. If a SHM_OP b 
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triggers a trap that was set by a then the Pair Pruner removes any dangerous pairs from 

𝐷𝑃_𝐿𝑖𝑠𝑡𝑎 that link to b. 

 The 𝐷𝑃_𝐿𝑖𝑠𝑡𝑎 stores a single preferred trap delay for each dangerous pair NM(a,b) 

using the average of NM intervals for that pair. This module is also responsible for 

detecting when a trap gets set for a SHM_OP a, and incrementing Tnm(𝑎): a quantity 

signifying the number of traps set since a NM occurred. Whenever a new NM involving a 

SHM_OP a occurs, then this module will clear Tnm(𝑎). Tnm(𝑎) represents the staleness 

of NM data for a given SHM_OP a since it counts the number of traps set since the most 

recent NM. 

2.3.2 TRAP MODULE 

 The phase 2 Trap Module has the sole purpose of creating delays that are 

performance optimal and catching as many race conditions as possible. The internals of the 

phase 2 Trap Module are mostly the same as the phase 1 Trap Module with the exception 

of how delays are determined. Those delays, represented by 𝐷𝑖, are a either a default delay 

𝐷𝑜 or the averaged NM data for a SHM_OP a, δi(𝑎),  multiplied by a coefficient 𝐶𝑖 that 

corresponds to the program’s real time assessment of race condition risk with a particular 

SHM_OP. The formulas for calculating 𝐷𝑖  and other relevant variables are provided in 

Table 2.2. 𝐶𝑖 is a decay function that scales δi(a) lower as new traps get set due to Tnm(𝑎). 

A newly detected NM will increase 𝐶𝑖 back to 1, whereas each new trap will scan the 

relevant near miss entries and exponentially decay 𝐶𝑖 further. A single NM detected during 

program initialization for example will not be allowed to penalize future runtime 

performance if that NM only occurs one time. If NMs are transformed into caught race 

conditions, then they will be removed from the dangerous pair table to prevent race 

condition redetection and unnecessary trap delays. 
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Variable Formula 

𝐴/𝐵 Set of all SHM_OPs from the perspective of the primary thread(A) or secondary 

thread(B) 

{Time, Thread ID, Read/Write, File/Function/Line, Offset} 

a = ∈ A  

b = ∈ 𝐵  

Dnm = 5 seconds 

Do = 0 seconds 

Di(a) = {
δi(a) ∗ Ci(a), δi Defined

Do, 𝐷𝑃𝐿𝑖𝑠𝑡𝑎 =  ∅
 

Ci(a) =
1

(3Tnm(a))
 

δi(a) =
1

n
( ∑ δnm
δnm∈DP_Lista

)  

DP_Lista = 𝑁𝑀(𝑎, 𝑏) ∀ 𝑏 ∈ 𝐵 

NM(a, b) 

=

{
 
 

 
 
b.time − a. time,

∃ x ∈ {a, b} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥. 𝑟𝑤 = 𝑤
a. offset ∩ b. offset

𝑏. 𝑡𝑖𝑚𝑒 − 𝑎. 𝑡𝑖𝑚𝑒 ≤  Dnm
∄ {𝑎, 𝑏} 𝑖𝑛 𝐶𝑎𝑢𝑔ℎ𝑡 𝑇𝑟𝑎𝑝𝑠

 

N/A, Otherwise

 

Tnm(a) = {
Tnm(a) + 1, Trap set for nm pair

0, Near miss occurs for nm pair
 

Table 2.2: Phase 2 Delay Formulas 
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3. TESTING/RESULTS 

3.1 Testing Configuration 

SHM Racer phase 1 and 2 solutions, as well as ThreadSanitizer [12] for 

comparison, were tested on 12 “thread set” C programs; these programs were written 

specifically for testing, and exercise a diverse combination of synchronization patterns and 

data races. These test programs are located within the SHM Racer GitHub v1.0 release 

[22]. We developed these programs based on previous experiences with race conditions in 

school and work settings, with an emphasis on creating thread safe and thread unsafe 

programs. A “thread set” data structure was used to define sets of concurrent threads and 

their corresponding functions to execute as pthreads, in addition to global timeout settings. 

When the test program executes, it iterates through and runs each thread set, clearing 

existing lock/synchronization states in between each set. Threads can either exit normally 

or get cancelled by the main thread if a timeout occurs. At the end of each thread set a log 

is printed indicating the amount of time the thread set took to complete in addition to 

detected race conditions. 

Since this tool analyzes race conditions through a shared memory library, the thread 

sets under test had to access volatile shared memory using SHM_OP commands. Other 

synchronization mechanisms like semaphores or mutexes did not require additional 

modification. Trap delay functionality was disabled during ThreadSanitizer evaluation, but 

programs still accessed SHM through the SHM_OP command interface. 

The thread set programs were closely analyzed before testing to determine potential 

race condition violations. Overall, the thread sets generated for testing were 50% thread 

safe and 50% data race prone. There is an equal emphasis on testing thread safe programs 

since the presence of thread safe techniques can potentially slow the performance of SHM 
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Racer for both phase 1 and phase 2 designs. A sample thread set with 5 threads and 60 data 

races, THREAD_SET_RMW_RACE_MAX, is provided in Figure 3.1. There are a few 

macro functions like THREAD_SET_BUILDER, THREAD_FUNC_BUILDER, and 

PTHREAD_HELPER_BUILDER that help the pre-compiler build thread sets. Basically, 

this code will create a thread set with 5 pthreads where each pthread will execute 

readModifyWrite once started and timeout after 100 seconds. 

The phase 1 SHM Racer had its fixed delay interval altered from 0 to 5 seconds 

between testing runs, whereas the phase 2 SHM Racer had its cycle count adjusted from 0 

to 6 cycles to allow NM data on previous runs to be used in later runs. This was done 

specifically to observe how these parameters can influence race condition detection 

capabilities and overall runtime. 
void readModifyWrite(void *args) { 

    uint8_t tmp = 0; 

    SHM_OP(SHM_READ, a, tmp); 

    tmp |= 0x20; 

    SHM_OP(SHM_WRITE, a, tmp); 

} 

 

PTHREAD_HELPER_BUILDER(RUN_FUNC_RMW_RACE, readModifyWrite) 

 

THREAD_SET_BUILDER(THREAD_SET_RMW_RACE_MAX, 100) 

    THREAD_FUNC_BUILDER(0, RUN_FUNC_RMW_RACE), 

    THREAD_FUNC_BUILDER(1, RUN_FUNC_RMW_RACE), 

    THREAD_FUNC_BUILDER(2, RUN_FUNC_RMW_RACE), 

    THREAD_FUNC_BUILDER(3, RUN_FUNC_RMW_RACE), 

    THREAD_FUNC_BUILDER(4, RUN_FUNC_RMW_RACE) 

}  

Figure 3.1: THREAD_SET_RMW_RACE_MAX Example 

3.2 Results 

3.2.1 THREADSANITIZER RESULTS 

 ThreadSanitizer did not detect any race conditions when programs accessed shared 

memory through the serialized SHM Library. We made additional changes to the SHM 
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Library to specifically deserialize the SHM Access Module for ThreadSanitizer to see if 

those changes led to race condition detections. This modification resulted in a single RAW 

true positive detection within THREAD_SET_COUNTER_RACE_DOUBLE. Running 

this test multiple times yielded varying detection results, but none of those runs produced 

more than 2 race condition detections. One of the potential reasons for ThreadSanitizer’s 

poor performance is its reliance on shared data access occurring within a relatively short 

window before reporting a data race violation. The thread sets under test execute over a 

relatively short run time and do not appear to have two concurrent accesses occurring close 

enough together during normal execution to trigger a ThreadSanitizer warning. 

3.2.2 PHASE 1 RESULTS 

Overall, the results were very promising in terms of finding race conditions. 

However, due to the frequency of delays the runtime of thread sets were often greatly 

stretched, with some thread sets exceeding timeouts. Condensed phase 1 testing results 

with data race thread sets are in Table 3.1. Complete results are located in Appendix A 

with the label “Phase 1 Test Results”. There were no false positives reported in any of the 

examples, but there were 57 missed race conditions with the best-case fixed delay. The 

missed race conditions occurred specifically in thread sets like 

THREAD_SET_RMW_RACE_MAX where ordering made it impossible to actually catch 

race conditions in traps on the first run. 

 Adding fixed length trap delays enforced a global penalty to shared memory 

accesses that ultimately led to unnecessary decreases to program performance without a 

meaningful increase in race condition findings. In some cases, the increase in the trap delay 

actually led to the phase 1 design finding more race conditions. For example, a 5 second 

trap delay caught 33 race conditions versus 32 race conditions caught with a 1 second trap 
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delay. However, this added detection came with a 735 second delay to thread set 

performance whereas a smaller delay would have sufficed. As the fixed delay increased to 

10 seconds all thread sets with multiple SHM_OPs delayed significantly without catching 

more race conditions than the 5 second delay. 

 

Test Case Race Conditions Found 

Given Fixed Delay 

Actual Race 

Conditions 

1s 5s 

THREAD_SET_COUNTER_RACE_DOUBLE 3 3 6 

THREAD_SET_COUNTER_MIXED 3 3 6 

THREAD_SET_RMW_RACE_DOUBLE 2 2 6 

THREAD_SET_RMW_HB_FAKE 1 2 6 

THREAD_SET_MAILMAN 3 3 6 

THREAD_SET_RMW_RACE_MAX 20 20 60 

TOTAL 32 33 90 

Table 3.1: Phase 1 Condensed Race Conditions Found Results 

3.2.3 PHASE 2 RESULTS 

Similar to the phase 1 testing, the phase 2 testing covered the same test cases and 

had no false positives. Condensed phase 2 testing results with data race thread sets are in 

Table 3.2. The complete phase 2 test results are located within Appendix A with the label 

“Phase 2 Test Results”. Instead of executing the test cases using a configurable fixed delay 

these test cases were executed using a varying cycle number to run through thread sets 
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multiple times. As the cycle numbers were increased, the number of race conditions 

detected increased until eventually plateauing for most test cases. The phase 2 SHM Racer 

detected more race conditions than the phase 1 SHM Racer for all thread sets at 72 with 6 

cycles, but higher cycle counts contributed to longer runtimes up to 183 seconds for 6 

cycles. 

 

Test Case Race Conditions Found 

Given Cycle Count 

Actual Race 

Conditions 

2 Cycles 6 Cycles 

THREAD_SET_COUNTER_RACE_DOUBLE 2 5 6 

THREAD_SET_COUNTER_MIXED 2 5 6 

THREAD_SET_RMW_RACE_DOUBLE 2 4 6 

THREAD_SET_RMW_HB_FAKE 2 3 6 

THREAD_SET_MAILMAN 3 6 6 

THREAD_SET_RMW_RACE_MAX 20 49 60 

TOTAL 31 72 90 

Table 3.2: Phase 2 Condensed Race Conditions Found Results 

Even though this tool scales a trap delay according to the average near miss interval, 

there is still the issue of traps not catching race conditions. This is caused specifically by 

the Pair Pruner module not allowing traps to get set for SHM_OPs that have caught all 

potential near misses. If the first thread to execute 

THREAD_SET_COUNTER_RACE_DOUBLE for instance has successfully caught all of 
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the second thread’s race violations impacting the first thread’s SHM_OPs, then on the next 

execution cycle, the first thread will not set any traps at all and therefore it is possible that 

it could not even have the opportunity to perform slow enough to trigger the second 

thread’s traps set in response to near misses that occurred during previous execution cycles. 

However, this Pair Pruner behavior also leads to catching race conditions that would have 

otherwise not been caught by the fixed delay SHM Racer. By eliminating traps for resolved 

near miss pairs, the phase 2 design is able to speed up threads enough for those threads to 

trigger other race condition traps or set other traps during earlier execution windows for 

other threads to trigger. This behavior was evident in 

THREAD_SET_RMW_RACE_MAX in addition to 

THREAD_SET_COUNTER_RACE_DOUBLE. 

Using the average of near misses for a given SHM_OP definitely allowed the tool 

to find a delay that tried to cover specific SHM_OP race conditions without penalizing 

other SHM_OPs. One of the issues with using the average near miss time is that the 

presence of traps themselves can cause these times to be longer than needed. When there 

is a near miss attributed to the trap delays’ impact on dynamic performance, that near miss 

might not be achievable on the next cycle. This was certainly the case with 

THREAD_SET_COUNTER_RACE_DOUBLE, where a RAW near miss was detected. 

However, since all near miss pairs concerning a read in the first thread are resolved, that 

first thread will not trap delay that read on the following execution cycle. This type of 

behavior ensures the RAW can never be triggered. However, from the perspective of the 

second thread, the near miss for that write is still cached and therefore the second thread 

will continue to set traps for each of its 30 write operations, assuming that each trap has an 

opportunity to catch the first thread’s read operation. This is a big motivation to use a delay 
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decay function that takes into consideration the age of a near miss, such that the second 

thread will not continue to suffer a performance penalty for an older near miss. 

3.2.4 COMPARING PHASE 1&2 RESULTS 

Both phase 1 and phase 2 SHM Racers performed better than the other at some 

points during testing. Table 3.1 demonstrates the phase 2 SHM Racer does well as the cycle 

count increases, whereas the phase 1 has an exponential increase in runtime without seeing 

a bigger improvement in race condition detection. However, as the cycle count decreases 

for the phase 2 SHM Racer, it has potentially a lot more delays to insert because it has just 

recently learned the average near miss times, and has not run long enough to start pruning 

dangerous pairs. If there are many near misses close to the near miss threshold, then the 

average near miss delay will skew high. In addition to the trap delays being much larger, 

the phase 2 SHM Racer also needs to run through the code multiple times. If the race 

conditions are all relatively close to each other, the Trap Module could possibly select 

delays that are much too large, and skewed by the larger near miss intervals created by the 

trap delays. 

 

Design Phase Race Conditions Found Runtime (seconds) 

PHASE 1(5 sec) 33 737 

PHASE 2(6 cycle) 72 183 

PHASE 1(0.00001 sec) 31 2 

PHASE 2(2 cycle) 31 28 

Table 3.3: Phase 1 vs. Phase 2 Comparison 
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 The phase 1 SHM Racer struggled much more than the phase 2 SHM Racer when 

handling thread safe programs with fixed delays over 1 second. The phase 2 SHM Racer 

took 34 seconds to execute 6 cycles of THREAD_SET_COUNTER_SAFE_DOUBLE, but 

the phase 1 SHM Racer took 63 seconds using a 1 second delay to execute just 1 cycle. 

This is an interesting observation, because it demonstrates how the NM data combined 

with the exponential decay function helps the phase 2 SHM Racer naturally lower its trap 

delays as dangerous pairs become less dangerous. The phase 1 SHM Racer’s fixed delays 

cause 1 second traps to be set nearly 60 seconds after what the phase 2 design would have 

considered to be a NM. 

With race condition detectors, the primary incentive is to find as many data races 

as possible in a reasonable amount of time. This is why we believe the phase 2 SHM Racer 

is a better option than the phase 1 SHM Racer. While phase 1 can do exceptionally well 

runtime-wise with smaller interval data races, its inability to adjust its delay during runtime 

makes it very difficult to accommodate wider data race intervals, and find extra race 

conditions that are hidden by fixed trap delays. Phase 2 achieved a higher race condition 

detection ability without compromising as much on runtime performance. The phase 2 

design detected more than double the race conditions detected by the phase 1 design, and 

had its highest detection result occur with a runtime that was roughly 1/4th that of the phase 

1 design. 
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4. FUTURE WORK 

Phase 1 and 2 designs do not currently have a technique to prevent inserting delays 

in locations where there are HB relationships. This could lead to excess delays and 

unnecessary increases to the SHM Racer’s runtime performance. While originally 

considered as a candidate for the Phase 2 design, HB inference detection was not included 

because it could make HB inferences that obscured true race conditions. HB inference 

detection could be designed to more accurately identify true HB pairs and mitigate the risks 

of making invalid HB inferences if we had more time. 

4.1 HB INFERENCE DETECTION 

volatile uint8_t a = 0; 

sem_t x_to_y_mutex; 

 

void *threadX_setVar(void *args) { 

    uint8_t tmp = 0; 

    SHM_READ(&tmp, &a); 

    tmp |= 0x10; 

    SHM_WRITE(&tmp, &a); 

    sem_post(&x_to_y_mutex); 

} 

 

void *threadY_setVar(void *args) { 

    sem_wait(&x_to_y_mutex); 

    uint8_t tmp = 0; 

    SHM_READ(&tmp, &a); 

    tmp |= 0x20; 

    SHM_WRITE(&tmp, &a); 

} 

 

int main() { 

    sem_init(&x_to_y_mutex, 0, 0); 

    pthread_t X, Y; 

    pthread_create(&X, NULL, threadX_setVar, NULL); 

    pthread_create(&Y, NULL, threadY_setVar, NULL); 

    pthread_join(X, NULL); 

    pthread_join(Y, NULL); 

    sem_destroy(&x_to_y_mutex); 

    return 0; 

}  

Figure 4.1: HB Relationship Example 
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To help explain HB inference, Figure 4.1 shows a simple thread safe program based 

on Figure 1.3 that exhibits a HB relationship between thread X and thread Y. In this 

example the semaphore design leads to threadX_setVar executing before 

threadY_setVar, since the mutex is initialized to 0 and threadY_setVar’s sem_wait 

depends on threadX_setVar incrementing the mutex with sem_post. If this program were 

tested using either the phase 1 or 2 design, unnecessary traps would get set at each 

SHM_OP, and the dynamic performance of the program would be slowed exactly in 

proportion to the inserted delays. HB relationships would ideally be inferred by execution, 

and used to avoid delaying code paths that have them. 

 If threadX_setVar sets two traps that both lead to threadY_setVar executing its 

SHM_OPs after thread X’s traps’ have cleared, the traps’ impact on program performance 

can be used to infer a HB relationship. The sequence graph in Figure 4.2 outlines the HB 

inferences that a future design could make. If the introduction of trap delays by thread X 

causes thread Y’s SHM_OPs to be delayed at least by that amount then a HB inference 

will be made. 
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Figure 4.2: Inferring HB Relationships 

 This HB inference approach has a few flaws, specifically if the reason for thread 

Y’s delayed SHM_OPs was due to non-synchronization-based behavior. If 

threadY_setVar replaced the sem_wait with a sleep(t), then a HB inference would be 

made that did not actually exist, and a trap delay in thread X roughly greater than t could 

have exposed race conditions. If HB was used to prevent traps from being set by thread X, 

then it is possible the HB inference would be responsible for preventing race condition 

detection in specific executions. This is the major reason why HB inference detection was 

excluded from the final phase 2 design. However, with more time to solve these issues, HB 

inference could be a valuable runtime optimizing feature for SHM Racer. 
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5. CONCLUSION 

This project analyzed various types of race condition detectors and developed a 

delay injection tool, SHM Racer, based on the TSVD near-miss approach [18]. SHM Racer 

used a shared memory library design to listen for shared memory access requests and set 

traps for race condition violations. In the first phase of the design, the trap module used 

fixed length delays. Testing data showed that while the tool could catch race conditions, 

fixed delays did not provide enough race condition coverage or scalable runtime 

performance. The second phase of SHM Racer used dynamic delay calculations based on 

near miss race condition detections and was able to detect more race conditions after 

cycling through program sets multiple times. While the second phase design improved on 

the first phase design, there were still missed race violations due to delay injections causing 

near misses to occur that would not hold true on future execution cycles. Altogether there 

were no false positives, and the tool caught 80% of race condition violations during testing. 

An adjustment to this tool that would increase the number of race violations found is setting 

shared memory traps from both perspectives of a violation instead of just from the 

perspective of the older shared memory access. If the tool had this improvement, it could 

hold an operation it thinks can trigger a trap belonging to another thread that has not been 

set yet. Also, even though HB inferences can lead to race violations not being detected, 

this tool could certainly benefit from HB inferences eliminating unnecessary delays. The 

second phase SHM Racer’s configurability, solution architecture, and race condition 

detection performance make for an effective delay injection race detection tool, but 

certainly with room for improvement. 
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Appendix A 

Phase 1 Test Results (Race Conditions Found) 

Test Case Race Conditions Found Given 

Fixed Delay 

Actual Race 

Conditions 

0s 0.00001s 1s 5s 

THREAD_SET_EMPTY_SINGLE 0 0 0 0 0 

THREAD_SET_EMPTY_DOUBLE 0 0 0 0 0 

THREAD_SET_COUNTER_RACE_DOUBLE 0 3 3 3 6 

THREAD_SET_COUNTER_SAFE_DOUBLE 

0 0 0 0 0 

THREAD_SET_COUNTER_MIXED 0 3 3 3 6 

THREAD_SET_READ_RACE_DOUBLE 0 0 0 0 0 

THREAD_SET_RMW_RACE_DOUBLE 0 2 2 2 6 

THREAD_SET_RMW_SAFE_DOUBLE 0 0 0 0 0 

THREAD_SET_RMW_HB_DOUBLE 0 0 0 0 0 

THREAD_SET_RMW_HB_FAKE 0 0 1 2 6 

THREAD_SET_MAILMAN 0 3 3 3 6 

THREAD_SET_RMW_RACE_MAX 0 20 20 20 60 

TOTAL 0 31 32 33 90 
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Phase 1 Test Results (Runtime Performance) 

Test Case Execution Time Given Fixed Delay (seconds) 

0s 0.00001s 1s 5s 

THREAD_SET_EMPTY_SINGLE <1 <1 <1 <1 

THREAD_SET_EMPTY_DOUBLE <1 <1 <1 <1 

THREAD_SET_COUNTER_RACE_DOUBLE <1 <1 32 155 

THREAD_SET_COUNTER_SAFE_DOUBLE 

<1 <1 63 310 

THREAD_SET_COUNTER_MIXED <1 <1 32 155 

THREAD_SET_READ_RACE_DOUBLE <1 <1 2 5 

THREAD_SET_RMW_RACE_DOUBLE <1 <1 3 10 

THREAD_SET_RMW_SAFE_DOUBLE <1 <1 5 20 

THREAD_SET_RMW_HB_DOUBLE <1 <1 5 20 

THREAD_SET_RMW_HB_FAKE 2 2 5 12 

THREAD_SET_MAILMAN <1 <1 9 40 

THREAD_SET_RMW_RACE_MAX <1 <1 3 10 

TOTAL 2 2 159 737 
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Phase 2 Test Results (Race Conditions Found) 

Test Case Race Conditions Found Given Cycle 

Number 

Actual Race 

Conditions 

1 2 3 6 

THREAD_SET_EMPTY_SINGLE 0 0 0 0 0 

THREAD_SET_EMPTY_DOUBLE 0 0 0 0 0 

THREAD_SET_COUNTER_RACE_DOUBLE 0 2 5 5 6 

THREAD_SET_COUNTER_SAFE_DOUBLE 

0 0 0 0 0 

THREAD_SET_COUNTER_MIXED 0 2 5 5 6 

THREAD_SET_READ_RACE_DOUBLE 0 0 0 0 0 

THREAD_SET_RMW_RACE_DOUBLE 0 2 3 4 6 

THREAD_SET_RMW_SAFE_DOUBLE 0 0 0 0 0 

THREAD_SET_RMW_HB_DOUBLE 0 0 0 0 0 

THREAD_SET_RMW_HB_FAKE 0 2 3 3 6 

THREAD_SET_MAILMAN 0 3 6 6 6 

THREAD_SET_RMW_RACE_MAX 0 20 34 49 60 

TOTAL 0 31 56 72 90 
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Phase 2 Test Results (Runtime Performance) 

Test Case Execution Time Given Cycle Number (Seconds) 

1 2 3 6 

THREAD_SET_EMPTY_SINGLE <1 <1 <1 <1 

THREAD_SET_EMPTY_DOUBLE <1 <1 <1 <1 

THREAD_SET_COUNTER_RACE_DOUBLE <1 2 6 15 

THREAD_SET_COUNTER_SAFE_DOUBLE 

<1 3 10 34 

THREAD_SET_COUNTER_MIXED <1 2 6 15 

THREAD_SET_READ_RACE_DOUBLE <1 <1 <1 <1 

THREAD_SET_RMW_RACE_DOUBLE <1 2 6 22 

THREAD_SET_RMW_SAFE_DOUBLE <1 3 8 38 

THREAD_SET_RMW_HB_DOUBLE <1 3 8 38 

THREAD_SET_RMW_HB_FAKE 2 8 12 36 

THREAD_SET_MAILMAN <1 3 5 5 

THREAD_SET_RMW_RACE_MAX <1 2 5 14 

TOTAL 2 28 56 183 
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