
ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 0

ACELab Technical Report TR-2021-03

Mapping Addresses to L3/CHA Slices in Intel Processors

Document Revision 1.00

July 26, 2021, revised to 2021-09-10

Status: Initial Release

John D. McCalpin

mccalpin@tacc.utexas.edu

Advanced Computing Evaluation Laboratory

Texas Advanced Computing Center

The University of Texas at Austin

www.tacc.utexas.edu

Copyright 2021 The University of Texas at Austin

Permission to copy this report is granted for electronic viewing and single-copy printing. Permissible uses are

research and browsing. Specifically prohibited are sales of any copy, whether electronic or hardcopy, for any

purpose. Also prohibited is copying, excerpting or extensive quoting of any report in another work without the

written permission of one of the report's authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no warranty, express or

implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed.

mailto:mccalpin@tacc.utexas.edu
http://www.tacc.utexas.edu/

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 1

Mapping Addresses to L3/CHA Slices in Intel Processors

John D. McCalpin mccalpin@tacc.utexas.edu

Texas Advanced Computing Center

The University of Texas at Austin

Abstract: The distributed, shared L3 caches in Intel multicore processors are composed of “slices” (typically one “slice” per

core), each assigned responsibility for a fraction of the address space. A high degree of interleaving of consecutive cache lines

across the slices provides the appearance of a single cache resource shared by all cores. A family of undocumented hash

functions is used to distribute addresses to slices, with different hash functions required for different numbers of slices. In all

systems studied to date, the hash consists of a relatively short (16 to 16384 elements) “base sequence” of slice numbers, which

is repeated with binary permutations for consecutive blocks of memory. The specific binary permutation used is selected by

XOR-reductions of different subsets of the higher-order address bits. This report provides the base sequences and permutation

select masks for Intel Xeon Scalable Processors (1st and 2nd generation) with 14, 16, 18, 20, 22, 24, 26, 28 slices, for 3rd

Generation Intel Xeon Scalable Processors with 28 slices, and for Xeon Phi x200 processors with 38 slices.

1. Introduction

Since the release of the quad-core “Nehalem EP” (Xeon 5500 series) processors in 2009, all of Intel’s

“mainstream” Xeon processors have supported an L3 cache shared by all cores on the chip. In the Nehalem EP

and Westmere EP (6 core), the hardware performance counter interface presents the image of a monolithic L3

resource. By the time Intel reached 8 cores with “Sandy Bridge EP” (Xeon E5) in 2012, the bandwidth and

access rate required for an effective L3 cache could not be satisfied by a monolithic resource, and the L3 was

explicitly split into eight “slices” (one per core), with each “slice” responsible for caching 1/8th of the cache line

addresses. To spread the accesses across the slices as uniformly as possible, each aligned block of 8 consecutive

cache lines is assigned to a permutation of the 8 L3 slices using an undocumented hash function. The L1 and L2

caches remain private to the cores, and only on an L2 cache miss does the processor have to compute the hash

function to send the request to the proper L3 slice.

For power-of-two L3 slice counts it is straightforward to generate families of hash functions that can be computed

quickly, and which can be “tuned” to satisfy second-order performance requirements. The former is important

because the computation of the hash function is in the critical path for L3 accesses. Second-order performance

requirements might include a desire to minimize conflicts for some set of important strides, or to ensure that the

first cache line of any 4KiB page has an equal probability of being mapped to any of the slices.

For non-power-of-two L3 slice counts it is only modestly more difficult to design a low-cost hash function with

desired characteristics – if you only need to support one slice count. Foreseeing the challenges of supporting

many non-power-of-two slice counts, Intel developed a general set of hashing functions that have been applied to

all processors from the Sandy Bridge EP to the recent 3rd generation Xeon Scalable Processors.

This report1 presents a methodology for inverting the address-to-slice hash used in many recent Intel

microprocessors. Results are presented for most “large” configurations (14 or more cores) of Intel Xeon Scalable

Processors (1st and 2nd generations), for the Xeon Phi 7250, and for one 3rd-generation (“Ice Lake”) Xeon Scalable

Processor configuration (the 28-core Xeon Gold 6330).

1 Portions of this material were presented at the IXPUG Fall Conference on 2018-09-25, available at

http://dx.doi.org/10.26153/tsw/13161.

mailto:mccalpin@tacc.utexas.edu
http://dx.doi.org/10.26153/tsw/13161

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 2

2. Background and Related Work

 Motivation and Nomenclature

For Intel processors of the Xeon E5 v1/v2/v3/v4 lines (“Sandy Bridge EP”, “Ivy Bridge EP”, “Haswell EP”,

“Broadwell EP”), the L3 cache is shared, distributed, and inclusive2. In this context, “inclusive” means that all

addresses that are cached in any of the private L1 and/or L2 caches of the cores must also have a valid entry in the

L3 cache. This enables the hardware to check in a single location (an L3 slice) for an address and be guaranteed

that its absence there ensures that it is not present in any L1 or L2 cache. Without this property, all L1 and L2

caches would have to be probed/snooped on each L3 miss, and this becomes impractical for more than about four

L3 slices. To enforce inclusion, for any line chosen to be victimized from the L3 cache, the hardware invalidates

the line from all private L1 and L2 caches on the chip before it is invalidated in the L3 cache. Since the L3 cache

is shared by all cores, this means that it is possible for cores to cause cache lines to be invalidated from other

core’s private caches without accessing the same addresses – they simply need to access enough addresses that

map to the same “set” in the L3 cache to overflow that set’s associativity. This loophole in the definition of

“private” can result in unexpected cache misses, lowering performance [1] and opening security holes [2].

Starting with the Xeon Scalable Processors, the L3 cache is shared, distributed, and (at least mostly) exclusive.

Addresses that are cached in the private L1 and L2 caches are not cached in the L3. Instead, lines that are chosen

as victims in the private L2 caches are sent to the L3 to be available for re-use. Limiting probes/snoops of the L1

and L2 caches is still required, but the L3 no longer provides the required information. Instead, these processors

add a new facility called a “Snoop Filter” (SF) that tracks the addresses cached in the L1 and L2 caches. In effect,

the Snoop Filter acts as the cache tags of an inclusive L3 cache but does not contain space to cache the actual

data. Like the inclusive L3 cache in earlier processors, the Snoop Filter is inclusive of the private caches and

cache lines must be evicted from all private caches before the corresponding Snoop Filter entry can be

invalidated. In these processors, the Snoop Filter forms part of the “Caching and Home Agent” (CHA), which is

shared, distributed, and co-located with the L3 cache slices. This combination of CHA/SF/L3 is responsible for

coherence processing and L3 caching for the chip.

The Xeon Phi x200 processors (“Knights Landing”) are slightly different. These processors do not support an L3

cache, but still require inclusive Snoop Filters to avoid excessive snooping of the private caches. As in the Xeon

Scalable Processors, these Snoop Filters are part of the shared, distributed CHA.

For the remainder of this report, any of the terms related to L3, CHA, SF, or “slice” are effectively synonyms –

referring to the distributed caching and coherence functionality of this cluster of units.

 Inversion of the Address-to-Slice Hash

Perhaps the first paper to invert the address-to-L3-slice hash for an Intel processor was [3], which looked at L3

conflicts to derive sets of addresses that mapped to the same L3 slice in a 4-slice processor. The structure of the

formulation (which also appears in all subsequent work) is based on a “binary permutation” operator, with the

specific permutation number selected by XOR-reduction of different subsets of the upper address bits3.

2 The scope of sharing, distribution, and inclusivity is almost always one processor chip in these systems and will be assumed

to be so throughout.
3 The earliest papers assigned addresses to groups based on their L3 cache conflict behavior, and so were unable determine

the actual L3 slice numbers – they just grouped addresses into a set of bins that map 1:1 onto the L3 slices. Later studies

have been able to map lines to the hardware provided L3 slice numbers.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 3

Using the results of that initial paper as an example, three equivalent representations of the XOR reduction

equations for this 4-slice processor are:

1. List the physical address bits involved in each XOR reduction:

𝑝1 = 𝑖31 ⊕ 𝑖30 ⊕ 𝑖29 ⊕ 𝑖27 ⊕ 𝑖25 ⊕ 𝑖23 ⊕ 𝑖21 ⊕ 𝑖19 ⊕ 𝑖18

𝑝2 = 𝑖31 ⊕ 𝑖29 ⊕ 𝑖28 ⊕ 𝑖26 ⊕ 𝑖24 ⊕ 𝑖23 ⊕ 𝑖22 ⊕ 𝑖21 ⊕ 𝑖20 ⊕ 𝑖19 ⊕ 𝑖17

2. Highlight active address bits in each XOR reduction (implying the equations above)

address bit --> i31 i30 i29 i28 i27 i26 i25 i24 i23 i22 i21 i20 i19 i18 i17

M1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0

M2 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1

3. Combine the active address bits into a set of “permutation selector masks” that select address bits that

participate in each XOR reduction. The masks equivalent to the two examples above are:

o M1 = 0xEAAC0000

o M2 = 0xB5FA0000

Version (b) typically provides the greatest intuition, but version (c) allows for a much simpler software

implementation (such as the C language function in Figure 1) and a more concise representation.

Definition: The “binary permutation” operator is a simple permutation operator that can be
implemented very cheaply in hardware or software.
For an input sequence 𝑎 with elements 𝑎𝑖 : 0 ≤ 𝑖 < 2𝑛, applying binary permutation 𝑝 (0 ≤ 𝑝 < 2𝑛)
generates the permuted output sequence 𝑏 with elements 𝑏𝑖 = 𝑎𝑖⊕𝑝 : 0 ≤ 𝑖 < 2𝑛.

Here (and throughout), ⊕ is the binary exclusive-OR operator.
What do these permutations do to the sequence?

• Binary permutation 0 is the identity operator.

• Binary permutation 1 swaps elements in every even/odd pair.

• Binary permutation 2𝑛−1 swaps the first and last halves of the sequence.

• Binary permutation 2𝑛 − 1 reverses the sequence.

Definition: The “XOR reduction” operator is the generalization of the 2-input binary exclusive-OR
(“XOR”) to sequences. The XOR reduction operator returns the “parity” of a bit sequence – i.e., 0 if the
number of bits set in the input sequence is even and 1 if the number of bits set is odd.
The operator is typically applied to an explicitly indexed vector of 1-bit values. If the argument is a multi-
bit number (or an expression evaluating to a multi-bit number), the operator is applied to the bit vector
implied by the binary representation of that number.

int compute_perm(long addr, long *SelectorMasks)

{

 long i,j,k;

 int computed_perm = 0;

 for (int bit=0; bit<sizeof(SelectorMasks); bit++) {

 k = SelectorMasks[bit] & addr; // bitwise AND with mask

 j = __builtin_popcountl(k); // count number of bits set

 i = j%2; // compute parity

 computed_perm += (i<<bit); // scale and accumulate

 }

 return (computed_perm);

}

Figure 1: A function for computing the permutation number associated with an address using a set of permutation selector masks.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 4

Subsequent research [4] used similar methodologies to present XOR selector patterns for 2, 4, and 8 L3 slices, and

showed that the selectors were the same across processor generations (Sandy Bridge, Ivy Bridge, Haswell) at

these power-of-two slice counts.

Yarom, et al. [5] removed some of the ambiguity from the earlier works by labeling the L3 slices (in this case

according to the co-located core as determined by latency measurements4), and greatly extended earlier work by

deriving a compact representation of the nonlinear part of the hash function required for systems with non-power-

of-2 slice counts. This was soon followed by publication of results using hardware performance counters to

identify the slice numbers[8] in processors with 2, 4, 6, and 8 slices.

More recently, a complete formulation of the address hash function for the Intel Xeon Phi x200 processors has

been reported [9][10]. That formulation is not posed in terms of the same structure as the previous work

discussed in this section but has been transformed into a compatible representation for this report.

3. Methodology

 Measurements

Identification of the L3/CHA slice responsible for each physical address is a straightforward exercise using the

L3/CHA hardware performance counters in the “uncore” of the Intel processor chips [11].

• Allocate and zero a large block of memory on a 2MiB boundary with Transparent Huge Pages enabled.

• Program one L3/CHA performance counter in each CHA to measure LLC_LOOKUPS.READ

• For each 2MiB-aligned sub-block of the array:

o Get the physical address of the base of the 2MiB-aligned segment (using /proc/self/pagemap)

o Has this 2MiB page already been mapped?

 Yes: skip to next 2MiB virtual address in array

 No: Continue with Mapping

o Mapping: For each cache line in the 2MiB region:

 Read the LLC_LOOKUPS.READ counter in each CHA

 Repeat 1000x: (read address, MFENCE, flush address, MFENCE)

 Read the LLC_LOOKUPS.READ counter in each CHA

 Perform “sanity checking” on results

• Pass: record the matching CHA number and move to next cache line, else

• Fail: Repeat measurements for current cache line

o After completing the mapping of the 32768 cache lines in one 2MiB page, save the results (32768

one-byte values), with the physical address of the base of the 2MiB page in hexadecimal as part

of the file name.

The entire program was run repeatedly so that it would be allocated as many different 2MiB pages as possible,

continuing until the collection of results showed adequate coverage of the physical address bits of interest.

The “sanity checking” for these measurements consists of a variety of ad hoc tests looking to see if any fail.

• Compute min, avg, max delta LLC_LOOKUPS.READ over the CHAs and compute 3 tests:

o If (max/1000 > 0.95): g1 = pass; else g1 = fail

o If (min/1000 < 0.20): g2 = pass; else g2 = fail

o If (avg/1000 < 0.40): g3 = pass; else g3 = fail

• Check to see how many CHAs report >0.95 of the expected value

o If 0: g4 = fail (equivalent to g1)

4 Note that the L3/CHA slice numbers from the hardware performance counters do not match the numbers of the co-located

cores in most processor models. See [6][7] for review and discussion of the mappings in a variety of Intel processors.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 5

o If 1: g4 = pass

o If >1: g4 = fail

• If g1, g2, g3, g4 all pass, then accept results, otherwise immediately repeat testing on this address

• After every 100 fails, sleep for 1 second.

• After 10 sleeps, abort the program.

Except on the Xeon Phi 7250 systems, the program typically repeats less than 1% of the measurements and very

rarely requires the one-second “sleep” delay. Subsequent analysis showed that these ad hoc rules resulted in zero

errors in more than 3 billion measurements (over 100000 2MiB pages).

The Xeon Phi systems tested had too much “noise” in the measurements to obtain reliable results in a practical

time frame, so the results here were derived from the full mapping presented in [9][10], but re-cast to be

consistent with the formulation used here for the Xeon Scalable Processors. A small set of mappings (28 2MiB

pages) were collected in September 2018 on TACC systems. These did not provide enough data on their own to

allow inversion of the address mapping function, but were in perfect agreement with the results of [9][10].

A summary of the systems tested and the mapping data gathered is presented in Table 1.

Code Name
L3/CHA

slices
Model(s) tested

2MiB
pages

mapped

KNL 38 Xeon Phi 7250 28

SKX 14 Xeon Gold 6132 & Gold 5120 22097

SKX & CLX 16 Xeon Gold 6142 & Silver 4216 756

SKX 18 Xeon Gold 6150 268

SKX 20 Xeon Gold 6148 3187

SKX 22 Xeon Gold 6152 26422

SKX 24 Xeon Platinum 8160 33028

SKX & CLX 26 Xeon Platinum 8170 & 8260 1018

SKX & CLX 28 Xeon Platinum 8180 & 8280 7859

ICX 28 Xeon Gold 6330 5600

Table 1: Summary of address to L3/CHA mapping data collected. “KNL” is “Knights Landing” (Xeon Phi x200). “SKX” is “Skylake

Xeon” (1st generation Xeon Scalable Processor). “CLX” is “Cascade Lake Xeon” (2nd generation Xeon Scalable Processor). “ICX” is

“Ice Lake Xeon” (3rd generation Xeon Scalable Processor). No differences were found between SKX and CLX processors with the same

number of L3 slices.

 Analytical Formulation

The analytical formulation used to represent these address hashing functions is a slight simplification of that used

in prior publications5, particularly [5]. For each of the systems tested, the data showed the following properties:

• The sequence of L3/CHA numbers in aligned, power-of-two block sizes shows a relatively small number

of unique patterns.

• For a suitable choice of the power-of-two block size, all observed sequences of L3/CHA numbers are

“binary permutations” of each other.

5 See Appendix A for a detailed description of the differences between the formulations.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 6

• In each case, it is possible to derive a “base sequence” that applies to the block starting at address zero,

and to compute the binary permutation number of all subsequent blocks using XOR-reduction of subsets

of the high-order address bits.

These observations and definitions lead to a simple structure that will be used here to encapsulate the mapping

from physical address to L3/CHA slice number.

Some nomenclature conventions:

• “m” is the number of bits in sequence length (i.e., SeqLength = 2m)

• The physical address A can be divided into three parts:

bits >(m+5) bits (m+5):6 bits 5:0

“sequence number” “index” (Unused here)

Used to compute binary

permutation number

Cache line number inside sequence

– number that gets permuted
(Inside cache line)

• “M” is the set of m permutation selector masks (introduced in Section 2)

o “M(A)” means “applying” the vector of “m” selector masks to an address to obtain a composite

binary permutation number “p”
o Figure 1 provides a concrete implementation of the meaning of this operator

• “perm” is the binary permutation number for an address

o Note: The computed binary permutation number will be the same for all elements of a sequence

because the permutation selector mask bits are all zero for the address bits within (and below) the

sequence.

• “S” is the “base sequence” of 2m slice numbers

• “index” will refer to the cache line number within a sequence (address bits (m+5):6), or equivalently the

index of a slice number in the base sequence S

The full mapping of address to slice is then:

𝑆(𝑀(𝐴) ⨁ 𝑖𝑛𝑑𝑒𝑥)
In steps:

1. Compute the binary permutation number by applying the permutation selector masks to the address

2. Permute the index using that binary permutation number

3. Select the base sequence element at the permuted index

The 16-slice processors tested have a very simple structure that serves as a first concrete example. Every 16

cache line addresses are mapped onto L3s [0…15] using a binary permutation of the sequence [0…15]. Address

bits [5:0] are offsets within each cache line, address bits [9:6] form the index within each sequence, and address

bits [37:10] contribute to the permutation selectors. The base sequence is the identity permutation [0...15], i.e.,

the first 16 cache line addresses in memory are mapped to L3/CHA slices [0…15] in ascending order. There are a

maximum of 16 binary permutations of this base sequence (all of which are observed in the data), so we need four

permutation select equations. In the mask notation, the permutation associated with the sequence whose base

address is 𝐴 (for addresses below 238) is computed by:

𝑝0 = ⨁(0x1b5f575400 ∙ 𝐴)

𝑝1 = ⨁(0x2eb5faa800 ∙ 𝐴)

𝑝2 = ⨁(0x3cccc93000 ∙ 𝐴)

𝑝3 = ⨁(0x31aeeb1000 ∙ 𝐴)

Then the binary permutation applied to the base sequence is

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 7

𝑝𝑒𝑟𝑚 = ∑ 𝑝𝑖 × 2𝑖

3

𝑖=0

Applying these masks to address 0 yields permutation 0 – consistent with the assertion that the sequence at

address 0 is the base sequence. The second 16-cache-line sequence in memory starts at address 16*64=1024, or

0x400 in hex, which only overlaps with the mask for p0, so the second 16 cache-line sequence is permutation 1 of

the base sequence. After compensating for slight differences in formulation and address ranges used (see

Appendix A), comparing these results to those of [8] shows that the current mask for p0 matches theirs for 2/4/8

slices, the current mask for p1 is the same as theirs for 4/8 slice configurations, and the current mask for p2 is the

same as theirs for 8 slice processors.

The non-power-of-2 case with the simplest structure is the 20-slice configuration. In this case the base sequence

has a length of 256 elements, with all 256 possible binary permutations observed. The base sequence in this case

is nonlinear, mapping the 8-bit index onto a permutation of the allowed L3/CHA slice numbers of [0…19]. The

base sequence contains the values [0...15] 13 times each and the values [16...19] 12 times each. Note that the

binary permutation operator can only rearrange the values within the base sequence, so every permutation will

display the same non-uniformity with respect to bulk allocations across the L3/CHA slices.

 Derivation of Sequence Lengths, Permutation Select Masks, and Base Sequences

When this work was initiated, it was by no means clear that all Intel processors of interest would contain address

hashing functions with the same sorts of properties, or that the measurement approach would result in reliable

identification of the address to L3/CHA slice mappings. The workflow presented here does not resemble the

original exploratory process, and instead represents a somewhat optimized process for obtaining the parameters of

the family of hash functions observed to be in use.

For each slice count, the first major step is to identify the length of the base sequence. Due to the nature of the

XOR reductions and the address-based binary permutations, we find that all power-of-two sequence lengths

longer than some minimum value can also serve as base sequences – indeed it is possible that the hardware

implementation uses a single long sequence length for all slice counts, but that the internal symmetries of the base

sequence allow it to be subdivided into smaller, functionally equivalent, base sequences. For each system, data

was collected on aligned 2MiB pages, corresponding to blocks of 32768 cache lines. For every processor

configuration, each 32768-cacheline block was found to be a binary permutation of every other 32768-cacheline

block for that processor. The same was found for 16384-cacheline blocks. For block sizes less than 16384

cachelines some processors deviated from the perfect binary permutation structure. Results are summarized in

Table 2, showing base sequence lengths from 24 to 214.

Code Name
L3/CHA

slices
Model(s) tested

Base Sequence
Length

Unique patterns
observed

KNL 38 Xeon Phi 7250 4096 4096

SKX 14 Xeon Gold 6132 16384 2048

SKX & CLX 16 Xeon Gold 6142 & Silver 4216 16 16

SKX 18 Xeon Gold 6150 4096 2048

SKX 20 Xeon Gold 6148 256 256

SKX 22 Xeon Gold 6152 16384 4096
SKX 24 Xeon Platinum 8160 512 512

SKX & CLX 26 Xeon Platinum 8170 & 8260 16384 8192

SKX & CLX 28 Xeon Platinum 8180 & 8280 4096 4096

ICX 28 Xeon Gold 6330 16384 4096
Table 2: Minimum sequence length such that all observed sequences are binary permutations of each other. For the five cases in blue

italics, multiple binary permutations result in the same output sequence.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 8

The formulation of the hash makes it possible to derive the masks for the permutation selectors from a relatively

small number of experiments. For each address bit above the top of the sequence, we need to find (at least) one

pair of addresses that differ only in that bit. For the measurements used here, single-bit address differences in the

address bits from the top of the sequence to bit 20 can be found within every 2MiB page. For address bits 21 and

higher, the base addresses of the 2MiB pages are compared to find at least one pair that differs in only that bit.

Any pair of sequences with starting addresses that differ in only one particular bit will be binary permutations of

each other, and the permutation number that converts one sequence to the other depends only on the starting

address bit that differs. (Note that the binary permutation is its own inverse, so the permutation is the same in

either direction.)

Table 3 provides an illustration of how the permutations associated with single-bit address changes can be

separated into contributions to each of the permutation select bits, using the 26-slice SKX/CLX processor as an

example. The row values are expanded from the observed permutations using:

𝑝𝑒𝑟𝑚𝑗 = ∑ 𝑝𝑖𝑗 × 2𝑖 , 20 ≤ 𝑗 ≤ 37

13

𝑖=0

Here 𝑗 is the row index (corresponding to bits of the physical address) and 𝑖 is the column index (corresponding to

the individual bits of the binary permutation number).

The values are then gathered by columns to create address masks (Table 4) that can be applied as described in

Section 3.2 to obtain the permutation number used for the sequence starting at that address:

𝑀𝑖 = ∑ 𝑝𝑖𝑗 × 2𝑗 , 0 ≤ 𝑖 ≤ 13

37

𝑗=20

Address
bit

Single-
address-bit

permutation
p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

37 9686 1 0 0 1 0 1 1 1 0 1 0 1 1 0

36 11558 1 0 1 1 0 1 0 0 1 0 0 1 1 0

35 9061 1 0 0 0 1 1 0 1 1 0 0 1 0 1
34 11931 1 0 1 1 1 0 1 0 0 1 1 0 1 1

33 1393 0 0 0 1 0 1 0 1 1 1 0 0 0 1

32 68 0 0 0 0 0 0 0 1 0 0 0 1 0 0

31 1172 0 0 0 1 0 0 1 0 0 1 0 1 0 0

30 10784 1 0 1 0 1 0 0 0 1 0 0 0 0 0
29 3815 0 0 1 1 1 0 1 1 1 0 0 1 1 1

28 1691 0 0 0 1 1 0 1 0 0 1 1 0 1 1

27 11897 1 0 1 1 1 0 0 1 1 1 1 0 0 1

26 1225 0 0 0 1 0 0 1 1 0 0 1 0 0 1

25 2047 0 0 0 1 1 1 1 1 1 1 1 1 1 1

24 3915 0 0 1 1 1 1 0 1 0 0 1 0 1 1
23 3190 0 0 1 1 0 0 0 1 1 1 0 1 1 0

22 1514 0 0 0 1 0 1 1 1 1 0 1 0 1 0

21 11313 1 0 1 1 0 0 0 0 1 1 0 0 0 1

20 12191 1 0 1 1 1 1 1 0 0 1 1 1 1 1
Table 3: Example analysis for the 16384-cacheline sequences used by the 26-slice SKX/CLX processors. For each address bit (column 1),

column 2 shows the binary permutation number that relates a sequence at one address to the sequence at the address differing only in that

bit. The remaining columns show how each bit of the binary permutation number depends on each of the single-address-bit changes.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 9

Permutation
Selector

Address Mask

p13 0x3C48300000

p12 0x0

p11 0x1469B00000

p10 0x36BFF00000

p9 0xC7B100000

p8 0x3A03500000
p7 0x24B6500000

p6 0x2B2FC00000

p5 0x1A6AE00000

p4 0x269AB00000

p3 0x41F500000

p2 0x39A2900000
p1 0x3433D00000

p0 0xE3F300000
Table 4: The values in Table 3 are gathered by column to generate these masks for the 26-slice SKX/CLX processors. The masks are used

as described in Section 3.2 to compute the binary permutation number applied to the base sequence for that address.

The formulation of the base sequence used here is unambiguous – the “base sequence” is the sequence that starts

at physical address zero, where the XOR-based permutation selectors must return permutation 0 – the identity

permutation. It is not generally possible to test at physical address zero, but the “self-inverse” property of the

binary permutation operator means that the base sequence can be retrieved from any sequence by simply applying

the computed binary permutation number based on the sequence’s starting address. The permutation masks are

ambiguous in some cases, as will be discussed in Section 4.2.

Given the base sequence and permutation selector masks, all measured data can be validated.

4. Results

 Permutation Selector Masks

Table 5 and Table 6 summarize the address hash information for each of the systems tested, including the

permutation selector masks used to compute the permutation of the base sequence to be used for each sequence

starting address. The “Low addr bit” is the first address bit above the top of each sequence. The “High addr bit”

depends on the range of physical addresses used in the measurements and indicates the maximum address for

which these permutation selectors are valid. In each of the cases for which the number of unique patterns found is

less than the sequence length, one or more of the permutation selector masks have zero values and correspond to

one possible set of permutation bits that are not used – see Section 4.2 for discussion of these zero values.

For the SKX 18-slice processor, the collected data was enough to obtain the dependence of the permutations on

address bits 18-33 and 36 directly (i.e., via single-address bit differences). The dependence of the permutations

on address bit 34 was inferred from sequences that differed in 2 address bits (36 and 34). None of the

measurements included pages with address bits 37 or 35 set, so those dependencies remain unknown. The masks

in Table 5 include contributions for address bits 36 and 34-18, but not 35 or 37, so they are labelled as only being

valid to address bit 34.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 10

Code Name SKX SKX & CLX SKX SKX SKX

#slices 14 16 18 20 22

Low addr bit 20 10 18 14 20

High addr bit 37 37 34 37 37

Base Sequence
Length

16384 16 4096 256 16384

Unique patterns 2048 16 2048 256 4096

p0 0x3880c00000 0x1b5f575400 0x4c8fc0000 0x3ecbad4000 0x3880c00000

p1 0x263a700000 0x2eb5faa800 0x105380000 0x35cf7c000 0x3433d00000

p2 0x1d14c00000 0x3cccc93000 0x62b8c0000 0x387242c000 0xf1d600000

p3 0x41f500000 0x31aeeb1000 0x41f500000 0xe2f28c000 0x41f500000

p4 0x1025400000 0x0 0x46d780000 0x1c5e518000 0x1025400000

p5 0x2cd5100000 0x0 0x4d5140000 0x38bca30000 0x2cd5100000

p6 0x1d90300000 0x0 0x15d80c0000 0xfb2eb4000 0x1d90300000

p7 0x0 0x0 0x133f480000 0x1f65d68000 0x1209a00000

p8 0x3a03500000 0x0 0x1203500000 0x0 0x3a03500000

p9 0xc7b100000 0x0 0x433280000 0x0 0xc7b100000

p10 0x0 0x0 0x0 0x0 0x0

p11 0x1469b00000 0x0 0x1469b40000 0x0 0x1469b00000

p12 0x0 0x0 0x0 0x0 0x0

p13 0x3c48300000 0x0 0x0 0x0 0x3c48300000

Table 5: Address hash properties and permutation selector masks for the first half of the systems tested. Masks for permutation selector

bits beyond the length of the base sequence are in grey. The SKX 18-slice results do not include contributions from address bits 37 or 35.

Code Name SKX SKX & CLX SKX & CLX ICX KNL

#slices 24 26 28 28 38

Low addr bit 15 20 18 20 18

High addr bit 37 37 37 37 37

Base Sequence
Length

512 16384 4096 16384 4096

Unique patterns 512 8192 4096 4096 4096

p0 0x2b72c98000 0xe3f300000 0x32770c0000 0x3880c00000 0x32770C0000

p1 0x16e5930000 0x3433d00000 0x3433d40000 0x390100000 0x2BBAC80000

p2 0x2dcb260000 0x39a2900000 0x39a2900000 0x38bea00000 0x39A2900000

p3 0x1b964c0000 0x41f500000 0x3857680000 0x41f500000 0x1B964C0000

p4 0x1c5e518000 0x269ab00000 0x1ad2880000 0x1025400000 0x055B940000

p5 0x38bca30000 0x1a6ae00000 0x1a6ae40000 0x2cd5100000 0x05E3F80000

p6 0x1a0b8f8000 0x2b2fc00000 0x2b2fc40000 0x1d90300000 0x1767FC0000

p7 0x1f65d68000 0x24b6500000 0x24b6540000 0x25aa600000 0x3B3F480000

p8 0x15b9648000 0x3a03500000 0x3a03500000 0x3a03500000 0x258A4C0000

p9 0x0 0xc7b100000 0xc7b100000 0xc7b100000 0x3033280000

p10 0x0 0x36bff00000 0xaf7c80000 0x0 0x2936EC0000

p11 0x0 0x1469b00000 0x28218c0000 0x1469b00000 0x1469B40000

p12 0x0 0x0 0x0 0x0 0x0

p13 0x0 0x3c48300000 0x0 0x3c48300000 0x0

Table 6: Address hash properties and permutation selector masks for the second half of the systems tested. Masks for permutation selector

bits beyond the length of the base address sequence are in grey.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 11

 Ambiguity in Permutation Selector Masks

In Section 3.3 it was claimed that the formulation of the base sequence used here was “unambiguous” –

corresponding to the sequence of values starting at address zero. For the processors with fewer observed patterns

than available permutations, however, the derived permutation selector masks are not unique – i.e., when

comparing sequences whose addresses vary in a single bit, multiple matching permutation numbers are found.

Using any of these matching permutation numbers for each single-bit address change will result in a functionally

correct solution, but with different permutation select masks.

The entries in Table 5 and Table 6 were produced by selecting the smallest-numbered matching permutation for

each single-bit address change. When there are 2𝑞 matching permutations for each single-bit address change,

choosing the smallest permutation numbers results in zero values for all address bits in 𝑞 of the permutation

selectors – e.g., the column under p12 in Table 3. Choosing the larger of the 2 matching permutation numbers

would result in all “1” values in p12 in Table 3.

While it is conceivable that the ambiguity is due to deliberate “skipping” of permutation selector bits (as

suggested by the structure of the current results in Table 5 and Table 6), it seems more likely that the apparent

absence of some permutation numbers is due to correlations of the base sequence with the binary permutation

operator, with multiple permutation numbers acting to produce identical output sequences. Intuitively, it seems

more likely that the single-address-bit permutation numbers are approximately uniformly distributed across the

matching permutation numbers, leading to a very large set of possible combinations of models that match the

observations. The potential for disambiguation of these cases remains an open question.

Due to the linearity of the binary permutation operator, in each ambiguous case the multiple matching

permutations for each single-address-bit change are related to each other by the same set of “identity

permutations” that map the base sequence back to itself. Direct application of all the possible binary permutation

operators on each of the base sequences shows a striking commonality in these “identity permutations”, as

reported in Table 7. While it may not be surprising that the 14-slice and 28-slice hashes share several identity

permutations (given the common prime factor of 7), it does seem surprising that the 18, 22, and 26-slice hashes

are also so closely related. It seems likely that these common identity permutations imply important structural

similarities across the family of base sequence generators in use.

Processor slices SeqLength Identity Permutations

SKX/CLX 26 16384 6371

SKX 22 16384 1269 6371 7190

ICX 28 16384 1269 6371 7190

SKX 18 4096 1139 6245 7190

SKX 14 16384 134 1139 1269 6245 6371 7190 7312

Table 7: Permutations (other than 0) mapping the base sequence onto itself. If the base sequence for the SKX 18-slice system is extended to

16384 elements, the values 6245 and 7190 (plus four more values > 8192) become identity permutations.

 Base Sequences

The full set of base sequences derived here are provided as text files in the same repository as this document:

https://hdl.handle.net/2152/87595. Appendix B contains a listing of the accompanying files. Several of the

shorter sequences are encoded as text in Appendix C.

The initial elements of each of the derived base sequences are presented in Table 8. Some features jump out:

• All sequences begin with slice 0.

• Five cases show a linear mapping of index to slice number over the first 14-16 entries.

https://hdl.handle.net/2152/87595

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 12

• The five cases that start with the linear mapping are the also the only five cases for which the first “L”

entries form a permutation of the indices [0…L-1].

• The SKX 18/20 slice results match exactly in the first 26 entries.

• The SKX 22/26/28 slice results match exactly in the first pass through their respective range of slice

numbers, with entries at index 16 and above replaced by binary permutation 1 of the indices in that range.

• The 16-slice processor uses the trivial base sequence composed of the sequence of slice numbers [0…15].

• Unlike previous generational changes, the 3rd generation Xeon Scalable Processor (ICX) 28-slice uses a

different address hash than the 1st and 2nd gen Xeon Scalable Processors (SKX/CLX) with 28 slices.

index
SKX
14

SKX
22

SKX
26

ICX 28
KNL
38

SKX
18

SKX
28

SKX
24

SKX
20

SKX
16

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 19 11 1 3 11 1
2 2 2 2 2 2 2 2 10 2 2
3 3 3 3 3 17 9 3 9 9 3
4 4 4 4 18 15 7 4 7 7 4

5 5 5 5 19 28 12 5 20 12 5
6 6 6 6 20 13 5 6 13 5 6
7 7 7 7 21 30 14 7 22 14 7
8 8 8 8 8 5 1 8 5 1 8

9 9 9 9 9 22 10 9 6 10 9
10 10 10 10 10 7 3 10 15 3 10
11 11 11 11 11 20 8 11 12 8 11
12 12 12 12 26 10 6 12 2 6 12
13 13 13 13 27 25 13 13 17 13 13

14 4 14 14 18 8 4 14 8 4 14
15 11 15 15 25 27 15 15 19 15 15

16 1 17 17 1 1 1 17 1 1

17 0 16 16 0 18 10 16 2 10

18 3 19 19 3 3 3 19 11 3

19 2 18 18 2 16 8 18 8 8

20 5 21 21 19 14 6 21 6 6

21 4 20 20 18 29 13 20 21 13

22 7 5 23 21 12 4 23 12 4

23 6 14 22 20 31 15 22 23 15

24 9 1 25 9 4 0 25 4 0

25 8 10 24 8 23 11 24 23 11

26 11 19 15 11 26 10 27 14 18

27 10 16 20 10 37 17 26 21 17

28 13 7 3 27 11 7 1 3 7

29 12 12 16 26 24 12 16 16 12

30 5 17 9 19 33 17 11 9 17

31 10 18 18 24 34 14 18 18 18

32 2 18 18 16 16 8 18 0 8

33 3 19 19 17 3 3 19 3 3

34 0 16 16 14 18 10 16 10 10

35 1 17 17 15 1 1 17 9 1

36 6 14 22 6 31 15 22 23 15

37 7 5 23 7 12 4 23 4 4

Table 8: Initial elements of each of the base sequences by processor and number of L3/CHA slices. The outlines indicate the number of

L3/CHA slices “L” for each processor. Slice numbers that equal the index number in the first “L” entries are highlighted in green.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 13

5. Analysis

 Common Features of the Permutation Selector Masks

Review of the permutation selector mask values in Table 5 and Table 6 shows some significant commonalities.

The SKX 14-slice, SKX 22-slice, and ICX 28-slice processors have identical mask values for 9 of the 11 or 12

non-zero selectors. Starting with the SKX 14-slice mask values, Figure 2 shows how the values are transformed

to the values for ICX 28-slice, SKX 22-slice, SKX 26-slice, and SKX 28-slice, using only a handful of constants.

 c1 c2 c3 c4/c5/c6

 0x0025aa600000 0x0037a3c00000 0x0036bff00000 0x003c48300000

 0x000000040000

 0x000000080000

perm
bit SKX-14 ICX-28 SKX-22 SKX-26 SKX-28

0 Base <- match <- match <-- XOR c3 <- ^c4^c5^c6

1 Base <-- XOR c1 <-- XOR c2 <- match <- XOR c5

2 Base <-- XOR c1 <-- XOR c2 <-- XOR c3 <- match

3 Base <- match <- match <- match <- ^c4^c6

4 Base <- match <- match <-- XOR c3 <- ^c4^c6
5 Base <- match <- match <-- XOR c3 <- XOR c5

6 Base <- match <- match <-- XOR c3 <- XOR c5

7 null <-- XOR c1 <-- XOR c2 <-- XOR c3 <- XOR c5

8 Base <- match <- match <- match <- match
9 Base <- match <- match <- match <- match

10 null null null <-- XOR c3 <- ^c4^c6
11 Base <- match <- match <- match <- ^c4^c5^c6
12 null null null null null

13 Base <- match <- match <- match <- XOR c4
Figure 2: Starting with the permutation selector mask values for SKX 14-slice, the values for four other configurations can be computed

using only a small number of constants.

Only one minor commonality was seen between the mask values used for KNL and those used by any of the new

processors – the mask used for permutation bit 11 matches that from the first four entries in Figure 2 except for

having address bit 18 set. (This is the same as XOR’ing the value with the constant c5 from Figure 2.)

No commonalities were seen between the SKX 16-slice masks and those used by the other configurations. This is

not surprising – the 16-slice case has a trivial base sequence and does not require that the permutation selector

masks be chosen with consideration of the repeat patterns in the base sequence.

The SKX 20-slice and SKX 24-slice share mask values only with each other and show a pattern similar to that

seen in Figure 2.

• Three of the mask values are identical (for permutation bits p4, p5, p7)

• SKX 20-slice p8 mask value is zero (due to the 256-element sequence length)

• SKX 24-slice p8 mask value is 0x15b9648000

o The SKX 24-slice mask values for permutation bits 0, 1, 2, 3, 6 are equal to the corresponding

SKX 20-slice values XOR’d with the constant 0x15b9648000

In the available address bits, SKX 18-slice masks match those of SKX 14, SKX 22, and ICX 28 for three

permutation select bits (p3, p5, p8) and differ in only address bit 18 for a fourth (p11).

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 14

 Bulk Distribution of Addresses across the Slices

While the statistical properties of the hash functions can, of course, be derived from the complete representation,

many analyses were performed directly on the collected data before the complete representation was available.

These provide insights into the some of the performance implications of the hashing functions used and may be

useful in identifying a common underlying family of hash functions, of which these are specific instantiations

As noted in Section 3.2, the binary permutation functions used in these address hashes simply reorder the

allocation of cache line addresses to slices and cannot change the overall counts. For almost all configurations,

the minimum (aligned, power-of-2) block size that results in asymptotically uniform distribution of lines across

the slices is the same as the base sequence block size.

Table 9 shows the number of cache line addresses assigned to each slice for any permutation of the base sequence,

or for the minimum block size that provides the same relative distribution. As expected, the power-of-two slice

count (16) shows perfectly uniform distribution across every naturally aligned sequence of 16 addresses. The

remainder of the SKX/CLX/ICX configurations show a small degree of non-uniformity, with the most heavily

allocated slices receiving 1.6% to 3.7% more cache lines than with a uniform distribution. The KNL platform is

slightly more uneven, with the 16 most heavily loaded CHAs receiving 7.6% more cache lines than would be

expected for a maximally uniform distribution. For most systems, the shortest block size that provides

asymptotically uniform distribution is the same as the base sequence length. KNL is one exception – the first and

last halves of the base sequence have the same counts of CHA allocations, so the table shows results for 2048-

cacheline half-sequences6. The 18-slice SKX/CLX processors are also an exception, with each 512-element

aligned sequence showing the same bulk allocation across the slices.

The color-coding in Table 9 suggests certain commonalities in structure across the hash functions. The structure

can be modeled as an iterative decomposition into one, two, or three power-of-two groups, with the members of

each group receiving the same number of cache line addresses. For the SKX/CLX processors, the groups are

mapped to the L3/CHA numbers in descending order of size (e.g., 8, 4, 2 for the 14-slice configuration). For the

KNL and ICX processors, the decomposition follows the same pattern but the mapping onto slice numbers is

swizzled in two slightly different ways. Note that the ratios of cache lines allocated to each group of slices are

the same for the SKX/CLX 28-slice processor and the ICX 28-slice processor, but the ICX 28-slice processor

requires a 4x longer sequence to achieve this asymptotically uniform distribution.

In comparing the results of Table 9 with the discussion of re-used permutation selector mask values in Section

5.1, we see correlations between the number of slices and the mask values. Specifically, two of the three

configurations that divide the number of slices into two different factors of two (SKX 20-slice, SKX 24-slice)

have closely related mask values, and the configurations that divide the slices into three different factors of two

(SKX 14-slice, SKX 22-slice, SKX 26-slice, SKX 28-slice, and ICX 28-slice7) have common mask values

(though with fairly complex relationships). The SKX 18-slice does not follow these relationships – it has a non-

linear initial base sequence (like SKX 20-slice and SKX 24-slice), but shares mask values in common with the set

of configurations that divide the slices into three factors of two and use base sequences that are initially linear.

6 Note that the binary permutation operator cannot move any elements of the sequence from the lower half to the upper half

unless it swaps all the items in the lower and upper halves. This ensures that if any aligned power-of-two subset of the base

sequence has asymptotically uniform distribution across the slices, all larger aligned power-of-two sequence sizes will also

retain this property.
7 KNL does not share these mask values, but it was a standalone product released a year earlier than any of the others and

may have represented an earlier stage of development of the address hashing functions.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 15

1st and 2nd gen Xeon Scalable Processors (Skylake Xeon / Cascade Lake Xeon)

L3/CHA
slice

number
14 slice 16 slice 18 slice 20 slice 22 slice 24 slice 26 slice 28 slice KNL

ICX 28
slice

0 1192 1 29 13 772 21 638 149 52 596
1 1192 1 29 13 772 21 638 149 52 596
2 1192 1 29 13 772 21 638 149 58 596
3 1192 1 29 13 772 21 638 149 58 596
4 1192 1 29 13 772 21 638 149 52 596
5 1192 1 29 13 772 21 638 149 52 596
6 1192 1 29 13 772 21 638 149 58 596
7 1192 1 29 13 772 21 638 149 58 596

8 1200 1 29 13 772 21 638 149 52 600
9 1200 1 29 13 772 21 638 149 52 600

10 1200 1 29 13 772 21 638 149 58 600
11 1200 1 29 13 772 21 638 149 58 600

12 1024 1 29 13 772 21 638 149 52 512
13 1024 1 29 13 772 21 638 149 52 512

14

1 29 13 772 21 638 149 58 596
15 1 29 13 772 21 638 149 58 596

16

24 12 752 22 644 150 52 596
17

24 12 752 22 644 150 52 596

18

12 752 22 644 150 58 596
19

12 752 22 644 150 58 596

20

512 22 644 150 52 596
21

512 22 644 150 52 596

22

22 644 150 58 600
23 22 644 150 58 600

24

512 128 52 600
25

512 128 52 600

26

128 58 512
27 128 58 512
28

 52

29

 52
30

 58

31

 58

32

 48
33

 48

34

 48
35

 48

36

 48
37 48

Table 9: Counts of cache lines allocated to each L3/CHA slice for the base sequence, or for the minimum block size yielding the same

distribution pattern. Colors indicate relative degree of loading across the slices.

 Introduction to Base Sequence Generating Functions

Very few non-power-of-two base sequences have been transformed into compact generator functions that are

plausibly related to the actual hardware implementation. The 6-slice case was studied by [5], and includes a

simple nonlinear function to map from a 7-bit permuted index number to a slice number in the range of [0…5].

The structure of the generator function is easier to see in the 6-slice case, so we begin by reviewing that case.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 16

Let 𝑖0 through 𝑖6 be the (permuted) address bits above the top of the sequence, then8:

𝑠2 = (𝑖0 ⊕ 𝑖5) ∙ (𝑖2 + (𝑖3 ∙ (𝑖4 + 𝑖5)))

𝑠1 = 𝑖1 ∙ 𝑠2̅

𝑠0 = 𝑖0 ⊕ 𝑖1 ⊕ 𝑖2 ⊕ 𝑖3 ⊕ 𝑖4 ⊕ 𝑖6

Here ⊕ is the binary XOR operator, ∙ is the logical AND operator, + is the logical OR operator, and the overbar

is the logical NOT operator. The slice number used is 4𝑠2 + 2𝑠1 + 𝑠0 (in ordinary integer arithmetic).

The formulation for 𝑠2 is carefully structured to be “true” 34.375% of the time – close to the 33.333% of the time

the high-order bit of the slice number would be set if the sequence displayed a perfectly uniform distribution

across the slices. The formulation for 𝑠1 ensures that 𝑠2 and 𝑠1 cannot both be set at the same time, preventing the

function from generating references to the non-existent slice numbers 6 or 7 in its 3-bit output. The formula for

𝑠0 is a simple alternating swizzle. The slight overabundance of “true” values of 𝑠2 is responsible for the slight

overrepresentation of slices 4 and 5 in the 128-element sequence – slices 0 to 3 are allocated 21 lines each and

slices 4 and 5 are allocated 22 lines each in the base sequence (and in all its binary permutations).

The permutation selector masks used to derive the above differ slightly from those used here (i.e., type (c) as

discussed in Appendix A) but the overall structure of the equations is minimally changed.

 Compact Generating Function for the 24-slice SKX/CLX Processors

Following the example of the 6-slice generating function, the base sequence for the 24-slice SKX/CLX processors

was reduced to a compact set of equations. The 512-line base sequence uses 9 (permuted) address bits, which are

converted to a 5-bit output value that is constrained to the range [0…23] and are computed from:

𝑠4 = (𝑖0 ⊕ 𝑖5 ⊕ 𝑖6) ∙ ((𝑖2 ⊕ 𝑖7 ⊕ 𝑖8) + 𝑖4 + 𝑖5) ∙ (((𝑖2 ⊕ 𝑖7) + 𝑖3 + 𝑖8) ⊕ ((𝑖2 ⊕ 𝑖7) ∙ 𝑖3 ∙ 𝑖8))

𝑠3 = (𝑖1 ⊕ 𝑖6 ⊕ 𝑖7) ∙ 𝑠4

𝑠2 = 𝑖2 ⊕ 𝑖3 ⊕ 𝑖6

𝑠1 = 𝑖0 ⊕ 𝑖1 ⊕ 𝑖2 ⊕ 𝑖6

𝑠0 = 𝑖0 ⊕ 𝑖2 ⊕ 𝑖3 ⊕ 𝑖4 ⊕ 𝑖8

The 𝑠4 equation is significantly more complex than in the 6-slice case, but it has the same probability of being

“true” – 34.375% of the time (176 of 512 vs 44 of 128). The equation for 𝑠3 ensures that the two high-order bits

cannot be set at the same time, preventing the selector from generating slice numbers in the range of [24…31] in

its 5-bit output. This similarity also leads to the same degree of non-uniformity in the bulk allocations – each

512-line permutation of the base sequence assigns 21 addresses to each of slices [0…15] and 22 to each of slices

[16…23]. The remaining terms are simple XOR swizzles.

 Approximating a Base Sequence – SKX 14-slice

The observations in Table 8 suggest that the structure of the base sequences may be amenable to additional

simplification – especially if some errors in the prediction are tolerable. Taking the SKX 14-slice results as an

example, the base sequence begins with 𝑆𝑖 = 𝑖 for 0 ≤ 𝑖 < 14, then the 15th and 16th elements of the sequence are

from a different pattern (with slice numbers of 4 and 11). Reviewing the next few 16-element sub-blocks of the

base sequence shows that either 14 or 15 of the entries in every 16-element sub-block can be correctly predicted

by a binary permutation of the first 16 values. In every sub-block the predicted slice numbers derived from

permuting the first 14 of the 16 elements were always correct, while the predicted values obtained from permuting

the last two elements were usually (but not always) wrong. These must have been produced by higher-order

terms in the base sequence generator.

Given this encouraging result from manual investigation, the process was automated to include all 1024 16-

element sub-blocks of the base sequence. For each sub-block, the “best” permutation of the first 16 elements was

8 The formulation follows that of [5] but parentheses have been added to the first equation to clarify the order of operations.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 17

found and recorded. Results showed 768 sub-blocks contained two mispredictions each, 168 contained one

misprediction each, and the remaining 88 were correct in all 16 elements. The total number of mispredictions

using this approach is 1704 of 16384, or about 10.4%. With these permutation numbers, the amount of data

required to specify the base sequence was reduced from 65536 bits (16384 values at 4 bits each) to 4160 bits

(16*4 bits for the first 16 entries, plus 1024*4=4096 bits for the permutation numbers of the 1024 sub-blocks).

On additional inspection, it was found that the optimum permutation for each sub-block could be computed by

XOR-reduction of the sub-block number. This allows an approximation to the 16384-element base sequence to

be represented very compactly as:

𝑝0 = ⨁(0x1d5 ∙ 𝑏𝑙𝑘)

𝑝1 = ⨁(0x2aa ∙ 𝑏𝑙𝑘)

𝑝2 = ⨁(0x24c ∙ 𝑏𝑙𝑘)

𝑝3 = ⨁(0x2c4 ∙ 𝑏𝑙𝑘)

Where “blk” is the sub-block number in the base sequence – i.e., address bits 19:10. The binary permutation

applied to the first 16 elements of the base sequence is:

∑ 𝑝𝑖 × 2𝑖

3

𝑖=0

This formulation provides correct slice numbers for 89.6% of the elements of the base sequence while requiring

only about 104 bits of storage (16*4 bits for the base sequence and 4*10 bits for the sub-block permutation

selector masks). If one drops storage of the base sequence and simply uses with 𝑆𝑖 = 𝑖 for all 16 elements, then

the results will be correct for 87.5% of the locations, with illegal slice numbers of 14 and 15 for the remainder,

but at a total data requirement of only 40 bits (4 10-bit selector masks).

After generating a 16384-element “approximate base sequence” using this approach, the permutation selector

masks from Table 5 are used to generate permutations for higher addresses, as in previous sections.

6. Summary

A methodology has been presented for converting address-to-L3/CHA-slice measurements into a compact

representation based on a “base sequence” of 16 to 16384 slice numbers plus a set of “permutation selector”

masks. For each cache line address, the permutation selector masks are applied to the physical address to compute

a permuted index. The element of the base sequence at the permuted index contains the slice number for that

address. Complete base sequences (as lists) and permutation selector masks for all physical addresses below 256

GiB9 are provided for Xeon Scalable Processors (1st and 2nd generation) with 14, 16, 18, 20, 22, 24, 26, 28 slices,

for Xeon Scalable Processors (3rd generation) with 28 slices, and for Xeon Phi x200 Processors with 38 slices.

A relatively compact set of 5 binary equations is provided to reproduce the base sequence for the Xeon Scalable

Processors (1st and 2nd generation) with 24 slices, and a simple approximation is derived that provides correct slice

identification for almost 90% of addresses on the 14-slice models.

Many characteristics of the results presented here suggest that the base sequences used in these systems are

generated by nonlinear functions of a single “family”. From an implementation perspective, it is likely that there

is a single “root” generating function, with model-specific mask values selecting the desired address bits to

9 Except for the SKX 18-slice processor, where the masks are only valid for addresses in the first 32 GiB.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 18

participate in each of the clauses of the operator. It is hoped that the availability of this data will encourage

further study in the topic.

Caveat Emptor:
The mappings reported appear to be correct and applicable across different systems using the same processors, but

it remains unknown whether these processors can configure alternate address mapping functions – either at

manufacturing time or in later microcode updates.

7. Acknowledgments

This work has been supported by grants from the National Science Foundation, including award numbers 1663578 and

1854828. Special thanks to the Dell Customer Solutions Center for providing access to six of the processor configurations

reported here. Thanks to Yuval Yarom for helping me understand the mapping inversion procedure, and to Gabriel

Rodríguez Álvarez for additional test results and many helpful technical discussions.

8. References

[1] J. D. McCalpin, “HPL and DGEMM Performance Variability on the Xeon Platinum 8160 Processor,” in

SC18: International Conference for High Performance Computing, Networking, Storage and Analysis,

Dallas, TX, USA, Nov. 2018, pp. 225–237. doi: 10.1109/SC.2018.00021.

[2] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, “Attack Directories, Not

Caches: Side Channel Attacks in a Non-Inclusive World,” in 2019 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, May 2019, pp. 888–904. doi: 10.1109/SP.2019.00004.

[3] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel Attacks against Kernel Space ASLR,” in

2013 IEEE Symposium on Security and Privacy, Berkeley, CA, May 2013, pp. 191–205. doi:

10.1109/SP.2013.23.

[4] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic Reverse Engineering of Cache Slice Selection in Intel

Processors,” in 2015 Euromicro Conference on Digital System Design, Madeira, Portugal, Aug. 2015, pp.

629–636. doi: 10.1109/DSD.2015.56.

[5] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the Intel Last-Level Cache,” 2015/905, Sep.

2015. [Online]. Available: https://eprint.iacr.org/2015/905

[6] J. D. McCalpin, “Mapping Core and L3 Slice Numbering to Die Location in Intel Xeon Scalable Processors,”

Texas Advanced Computing Center, Austin, Texas, USA, TR-2021-01b, Feb. 2021. [Online]. Available:

http://dx.doi.org/10.26153/tsw/13119

[7] J. D. McCalpin, “Mapping Core, CHA, and Memory Controller Numbers to Die Locations in Intel Xeon Phi

x200 (‘Knights Landing’, ‘KNL’) Processors,” Texas Advanced Computing Center, Austin, Texas, USA, TR-

2021-02. [Online]. Available: http://dx.doi.org/10.26153/tsw/13120

[8] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon, “Reverse Engineering Intel Last-

Level Cache Complex Addressing Using Performance Counters,” in Research in Attacks, Intrusions, and

Defenses, vol. 9404, H. Bos, F. Monrose, and G. Blanc, Eds. Cham: Springer International Publishing, 2015,

pp. 48–65. doi: 10.1007/978-3-319-26362-5_3.

[9] S. Kommrusch, M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño, “Optimizing Coherence Traffic in

Manycore Processors using Closed-Form Caching/Home Agent Mappings,” IEEE Access, pp. 1–1, 2021, doi:

10.1109/ACCESS.2021.3058280.

[10] S. Kommrusch, M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño, “Coherence Traffic in Manycore

Processors with Opaque Distributed Directories,” ArXiv201105422 Cs, Nov. 2020, Accessed: Jul. 26, 2021.

[Online]. Available: http://arxiv.org/abs/2011.05422
[11] Intel Corporation, “Intel® Xeon® Processor Scalable Memory Family Uncore Performance Monitoring

Reference Manual,” Intel Corporation, 336274–001, Jul. 2017.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 19

Appendix A: Equivalent Formulations

The literature contains a variety of slightly different formulations for the construction of the hash function,

particularly with respect to the details of the permutation selector masks, M. Consider three structures for the

selector masks for a hypothetical processor with 16 slices as presented in Figure 3. For version (a) (as used here),

let 𝑀𝑎 be the mask formulation from Figure 3(a), then the slice number is computed

𝑆(𝑀𝑎(𝐴) ⨁ 𝑖𝑛𝑑𝑒𝑥)
For version (b), augmenting the masks with scaled identity matrix causes the binary permutation operator to be

absorbed into the 𝑀𝑏(𝐴) operation, so the slice number is computed independently for each cache line

𝑆(𝑀𝑏(𝐴))
For version (c), the masks are augmented with any invertible binary matrix and the slice number is computed as in

(b) – but with a base sequence function (𝑆̃) that is permuted from the one used in (a) and (b):

𝑆̃(𝑀𝑐(𝐴))

(a) Mask formulation as used here – address bits within a sequence ("index") are not used to compute the mask but are permuted using the binary
permutation computed for the entire sequence.

"sequence number" -- address bits above top of sequence
"index" -- address bits

inside sequence

addr bit --> 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

Ma0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0

Ma1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0

Ma2 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0

Ma3 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

(b) Equivalent mask formulation – Masks extended with identity matrix and applied to each cache line address to obtain the permuted index value.

"sequence number" -- address bits above top of sequence
"index" -- address bits

inside sequence

addr bit --> 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

Mb0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1

Mb1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0

Mb2 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0

Mb3 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0

(c) Equivalent mask formulation – Mask extended with any non-singular pattern for "index" bits and applied to each cache line address to obtain
permuted index value.

"sequence number" -- address bits above top of sequence "index" -- address bits
inside sequence

addr bit --> 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

Mc0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1

Mc1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Mc2 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0

Mc3 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0

Figure 3: Example of three equivalent structures of the permutation selector mask matrix. (a) is the formulation used here, (b) is a

commonly used formulation that is exactly equivalent, (c) provides the same mapping, but with a modified base sequence function.

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 20

Appendix B : List of Associated Data Files

The following plain text files contain the complete base sequences and permutation selector masks derived in this

report and are available at the same location as this report: https://hdl.handle.net/2152/87595
The READ_ME.txt file describes the naming conventions and file formats used in the data files.

READ_ME.txt

BaseSequence_ICX_28-slice.txt

BaseSequence_KNL_38-slice.txt

BaseSequence_SKX_14-slice.txt

BaseSequence_SKX_16-slice.txt

BaseSequence_SKX_18-slice.txt

BaseSequence_SKX_20-slice.txt

BaseSequence_SKX_22-slice.txt

BaseSequence_SKX_24-slice.txt

BaseSequence_SKX_26-slice.txt

BaseSequence_SKX_28-slice.txt

PermSelectMasks_ICX_28-slice.txt

PermSelectMasks_KNL_38-slice.txt

PermSelectMasks_SKX_14-slice.txt

PermSelectMasks_SKX_16-slice.txt

PermSelectMasks_SKX_18-slice.txt

PermSelectMasks_SKX_20-slice.txt

PermSelectMasks_SKX_22-slice.txt

PermSelectMasks_SKX_24-slice.txt

PermSelectMasks_SKX_26-slice.txt

PermSelectMasks_SKX_28-slice.txt

Appendix C: Base Sequences Encoded as Text

For the shorter sequences, it is practical to include the sequence values encoded as text (“a” == 0, “b” == 1, …).

The 16-element sequence is simply the values [0…15]. Only a few cases are short enough for this to be a

tolerable method of conveyance.

SKX/CLX 20-slice base sequence (256 elements)

alcjhmfobkdignepbkdignepalsrhmrsidkbpengjctqofqtjclaofmhidsrperskbidngpelajc

mhoflajcmhofsridrspecjalfohmtqbkqtgndibkepgnsralrshmepgndibkfohmcjalfohmcjal

qtgntqbkmhoflajcrspesridngpekbidqtoftqjcofmhjclapengidkbpengidkbofqtjctqgnep

bkdihmrsalsrhmfoalcjgnqtbktq

SKX/CLX 24-slice base sequence (512 elements)
This sequence should match the values from the equations in Section 5.4 for the indices [0…511].

adkjhunwfgpmcritbcligvmxexovdqjsadkjxevovgxmsbqlbcliwfupuhwntarkonehrktalibc

upwfpmfgqlsbsjqdvoxeonehjsdqlqbsmxgvpmfgitcrkratnwhuitcrpmfgnwhukjadjsdqoneh

mxgvlqbsqlsbpmfgvoxesjqdrktaonehupwftircwfupbclitarkehonxevoadkjsbqlvgxmgvmx

bclidqjsexovhunwadkjcritfwpubslqgfmpexovdajkatkrhunwfwpucbilrctiwfupuhwndajk

qdsjxevovgxmcbilxmvgilcbsjqdnohewnuhrktatircmpgfpufwitcrkratnoheovexjsdqlqbs

mpgfjkdaovexmpgflqbsitcrpufwnohekratrktawnuhmpgftircqlsbxmvgnohesjqdhenoqdsj

cbilvgxmwfuprctidajkuhwnhunwatkrcbilfwpugvmxbslqdajkexov

https://hdl.handle.net/2152/87595
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/READ_ME.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_ICX_28-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_KNL_38-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_14-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_16-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_18-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_20-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_22-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_24-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_26-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/BaseSequence_SKX_28-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_ICX_28-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_KNL_38-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_14-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_16-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_18-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_20-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_22-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_24-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_26-slice.txt
https://repositories.lib.utexas.edu/bitstream/handle/2152/87595/PermSelectMasks_SKX_28-slice.txt

ACELab TR-2021-03 Intel Address to L3/CHA Mapping

McCalpin 21

SKX/CLX 28-slice base sequence (4096 elements)
Here “a” to “z” indicate slices 0 to 25, augmented by the “|” character for slice 26 and “{” for slice 27.

abcdefghijklmnoprqtsvuxwzy|{bqlsstqrwxuv{|yzsdqjdcbahgfelkjiponmnmpojilkfehgbadcmng

hyz{|uvwxqrstpofe|{zyxwvutsrqopmnklijghefcdabwxuvstqroxev{|yzhgfedcbaponmlkjiefghab

cdmnopijklvuxwrqtsvmxgzy|{|{zydcjitsrqxwvuklijopmncdabghefjilknmpobadcfehgyz{|abklq

rstuvwxbadcfehgjilknmpoqrstuvwxyz{|abkltsrqxwvu|{zydcjicdabghefklijopmnmnopijklefgh

abcdvmxgzy|{vuxwrqtsoxev{|yzwxuvstqrponmlkjihgfedcbaxwvutsrqpofe|{zyghefcdabopmnkli

jfehgbadcnmpojilkuvwxqrstmnghyz{|{|yzsdqjstqrwxuvlkjiponmdcbahgfeijklmnopabcdefghzy

|{bqlsrqtsvuxwcdabghefklijopmntsrqxwvu|{zyhwnuqrstuvwxyz{|ufwpbadcfehgjilknmpoponml

kjihgfedcbaklab{|yzwxuvstqrjqdszy|{vuxwrqtsmnopijklefghabcduvwxqrstirctyz{|fehgbadc

nmpojilkghefcdabopmnklijxwvutsrqtkra|{zyzy|{vexorqtsvuxwijklmnopabcdefghlkjiponmdcb

ahgfe{|yzgxmvstqrwxuvdcbahgfelkjiponmstqrwxuv{|yzghmnrqtsvuxwzy|{vexoabcdefghijklmn

opopmnklijghefcdabtkra|{zyxwvutsrqirctyz{|uvwxqrstnmpojilkfehgbadcvuxwrqtsjqdszy|{e

fghabcdmnopijklhgfedcbaponmlkjiwxuvstqrslqb{|yzyz{|ufwpqrstuvwxjilknmpobadcfehgklij

opmncdabghef|{zyhwnutsrqxwvufepozy|{vuxwrqtsmnopijklefghabcdponmlkjihgfedcbaghmn{|y

zwxuvstqrqrstuvwxyz{|irctbadcfehgjilknmpocdabghefklijopmntsrqxwvu|{zytkralkjiponmdc

bahgfe{|yzklabstqrwxuvzy|{jidcrqtsvuxwijklmnopabcdefghghefcdabopmnklijxwvutsrqhwnu|

{zyuvwxqrstufwpyz{|fehgbadcnmpojilkufwpyz{|uvwxqrstnmpojilkfehgbadcopmnklijghefcdab

hwnu|{zyxwvutsrqrqtsvuxwzy|{jidcabcdefghijklmnopdcbahgfelkjiponmstqrwxuv{|yzklabkli

jopmncdabghef|{zytkratsrqxwvuyz{|irctqrstuvwxjilknmpobadcfehghgfedcbaponmlkjiwxuvst

qrghmn{|yzvuxwrqtsfepozy|{efghabcdmnopijkltcri|{zyxwvutsrqopmnklijghefcdabnmpojilkf

ehgbadcarktyz{|uvwxqrststqrwxuv{|yzoxevdcbahgfelkjiponmabcdefghijklmnoprqtsvuxwzy|{

vmxgjilknmpobadcfehgyz{|unwhqrstuvwx|{zypofetsrqxwvuklijopmncdabghefefghabcdmnopijk

lvuxwrqtsbqlszy|{wxuvstqrsdqj{|yzhgfedcbaponmlkjisdqj{|yzwxuvstqrponmlkjihgfedcbamn

opijklefghabcdbqlszy|{vuxwrqtstsrqxwvu|{zypwfucdabghefklijopmnbadcfehgjilknmpoqrstu

vwxyz{|unwhijklmnopabcdefghzy|{vmxgrqtsvuxw{|yzoxevstqrwxuvlkjiponmdcbahgfefehgbadc

nmpojilkuvwxqrstarktyz{|xwvutsrqdcji|{zyghefcdabopmnklij|{zypwfutsrqxwvuklijopmncda

bghefjilknmpobadcfehgyz{|unwhqrstuvwxwxuvstqrsdqj{|yzhgfedcbaponmlkjiefghabcdmnopij

klvuxwrqtsbqlszy|{nmpojilkfehgbadcarktyz{|uvwxqrsttcri|{zyxwvutsrqopmnklijghefcdaba

bcdefghijklmnoprqtsvuxwzy|{vmxgstqrwxuv{|yzopefdcbahgfelkjiponm{|yzoxevstqrwxuvlkji

ponmdcbahgfeijklmnopabcdefghzy|{vmxgrqtsvuxwxwvutsrqtcri|{zyghefcdabopmnklijfehgbad

cnmpojilkuvwxqrstarktyz{|mnopijklefghabcdbqlszy|{vuxwrqtscdij{|yzwxuvstqrponmlkjihg

fedcbabadcfehgjilknmpoqrstuvwxyz{|unwhtsrqxwvu|{zypwfucdabghefklijopmnzy|{jqdsrqtsv

uxwijklmnopabcdefghlkjiponmdcbahgfe{|yzslqbstqrwxuvuvwxqrstefopyz{|fehgbadcnmpojilk

ghefcdabopmnklijxwvutsrqhgnm|{zyponmlkjihgfedcbagxmv{|yzwxuvstqrvexozy|{vuxwrqtsmno

pijklefghabcdcdabghefklijopmntsrqxwvu|{zylkbaqrstuvwxyz{|ijcdbadcfehgjilknmpoyz{|ij

cdqrstuvwxjilknmpobadcfehgklijopmncdabghef|{zylkbatsrqxwvuvuxwrqtsvexozy|{efghabcdm

nopijklhgfedcbaponmlkjiwxuvstqrgxmv{|yzopmnklijghefcdabhgnm|{zyxwvutsrqefopyz{|uvwx

qrstnmpojilkfehgbadcdcbahgfelkjiponmstqrwxuv{|yzslqbrqtsvuxwzy|{jqdsabcdefghijklmno

pghefcdabopmnklijxwvutsrqlkba|{zyuvwxqrstirctyz{|fehgbadcnmpojilklkjiponmdcbahgfe{|

yzgxmvstqrwxuvzy|{vexorqtsvuxwijklmnopabcdefghqrstuvwxyz{|ufwpbadcfehgjilknmpocdabg

hefklijopmntsrqxwvu|{zyhwnujqdszy|{vuxwrqtsmnopijklefghabcdponmlkjihgfedcbaslqb{|yz

wxuvstqrhgfedcbaponmlkjiwxuvstqrslqb{|yzvuxwrqtsjqdszy|{efghabcdmnopijklklijopmncda

bghef|{zyhgnmtsrqxwvuyz{|ufwpqrstuvwxjilknmpobadcfehgrqtsvuxwzy|{vexoabcdefghijklmn

opdcbahgfelkjiponmstqrwxuv{|yzgxmvirctyz{|uvwxqrstnmpojilkfehgbadcopmnklijghefcdabt

kra|{zyxwvutsrqefghabcdmnopijklvuxwrqtsnmhgzy|{wxuvstqropef{|yzhgfedcbaponmlkjijilk

nmpobadcfehgyz{|arktqrstuvwx|{zytcritsrqxwvuklijopmncdabghefstqrwxuv{|yzcdijdcbahgf

elkjiponmabcdefghijklmnoprqtsvuxwzy|{balkpwfu|{zyxwvutsrqopmnklijghefcdabnmpojilkfe

hgbadcunwhyz{|uvwxqrstfehgbadcnmpojilkuvwxqrstunwhyz{|xwvutsrqpwfu|{zyghefcdabopmnk

lijijklmnopabcdefghzy|{balkrqtsvuxw{|yzcdijstqrwxuvlkjiponmdcbahgfetsrqxwvu|{zytcri

cdabghefklijopmnbadcfehgjilknmpoqrstuvwxyz{|arktopef{|yzwxuvstqrponmlkjihgfedcbamno

pijklefghabcdnmhgzy|{vuxwrqts

	1. Introduction
	2. Background and Related Work
	2.1. Motivation and Nomenclature
	2.2. Inversion of the Address-to-Slice Hash

	3. Methodology
	3.1. Measurements
	3.2. Analytical Formulation
	3.3. Derivation of Sequence Lengths, Permutation Select Masks, and Base Sequences

	4. Results
	4.1. Permutation Selector Masks
	4.2. Ambiguity in Permutation Selector Masks
	4.3. Base Sequences

	5. Analysis
	5.1. Common Features of the Permutation Selector Masks
	5.2. Bulk Distribution of Addresses across the Slices
	5.3. Introduction to Base Sequence Generating Functions
	5.4. Compact Generating Function for the 24-slice SKX/CLX Processors
	5.5. Approximating a Base Sequence – SKX 14-slice

	6. Summary
	7. Acknowledgments
	8. References
	Appendix A : Equivalent Formulations
	Appendix B : List of Associated Data Files
	Appendix C : Base Sequences Encoded as Text

