
Copyright

by

Udit Agarwal

2019

The Dissertation Committee for Udit Agarwal

certifies that this is the approved version of the following dissertation:

Algorithms, Parallelism and Fine-Grained Complexity
for Shortest Path Problems in Sparse Graphs

Committee:

Vijaya Ramachandran, Supervisor

Valerie King

Greg Plaxton

David Zuckerman

Algorithms, Parallelism and Fine-Grained Complexity

for Shortest Path Problems in Sparse Graphs

by

Udit Agarwal

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2019

Acknowledgments

I would like to thank my advisor, Prof. Vijaya Ramachandran, for her guidance

during my PhD. I would also like to thank the rest of my thesis committee: Prof.

Valerie King, Prof. Greg Plaxton, and Prof. David Zuckerman.

I thank the Department of Computer Science for providing me with the TA

support for the major duration of my PhD studies as well as a supplemental Graduate

Calhoun Fellowship for the first three years of my PhD. This research was also

supported in part by National Science Foundation under grant NSF-CCF-1320675

for first three years.

Udit Agarwal

The University of Texas at Austin

December 2019

iv

Algorithms, Parallelism and Fine-Grained Complexity

for Shortest Path Problems in Sparse Graphs

Publication No.

Udit Agarwal, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Vijaya Ramachandran

Computation of shortest paths is one of the classical problems in theoretical

computer science. Given a pair of nodes s and t in a graph G, the goal is to

find a path of minimum weight from s to t. Most graphs that commonly occur

in practice are sparse graphs. In this work, we deal with several computational

problems related to shortest paths in sparse graphs and we present algorithms that

provide significant improvements in performance in both sequential and distributed

settings. We also present fine-grained reductions that establish fine-grained hardness

for several problems related to shortest paths.

In the sequential context, we consider the fine-grained complexity of sparse

v

graph problems whose time complexities have stayed at Õ(mn) over the past several

decades, where m is the number of edges and n is the number of vertices in the input

graph. All of these problems are known to be subcubic equivalent and this shows that

achieving sub-mn running time is hard, but only for dense graphs where m = Θ(n2).

We introduce the notion of a sparse reduction which preserves the sparsity of graphs,

and we present near linear-time sparse reductions between various pairs of graph

problems in the Õ(mn) class. We also introduce the MWC-hardness conjecture,

which states that Minimum Weight Cycle problem cannot be solved in sub-mn time.

We establish that several important graph problems in the Õ(mn) class such as

APSP, second simple shortest path (2-SiSP), Radius, and Betweenness Centrality

are MWC-Hard, establishing sub-mn fine-grained hardness for these problems.

A well-known generalization of the shortest path problem is the k-simple

shortest paths (k-SiSP) problem, where we want to find k simple paths from s to t

in a non-decreasing order of their weight. In this thesis we present a new approach for

computing all pairs k simple shortest paths (k-APSiSP), which is based on forming

suitable path extensions to find simple shortest paths; this method is different from

the ‘detour finding’ technique used in all prior work on computing multiple simple

shortest paths, replacement paths, and distance sensitivity oracles. The Õ(mn) time

bound of our 2-APSiSP algorithm matches the fine-grained time complexity for the

simpler 2-SiSP problem, which is the single source-sink version of this problem.

Computing APSP is one of the most fundamental problems in distributed

computing. We present a simple Õ(n3/2) rounds deterministic algorithm for com-

puting APSP in the well-known Congest model which is the first o(n2) round

deterministic algorithm for this problem. We then improve this further by reducing

the round complexity to Õ(n4/3). We also present a faster algorithm for graphs with

moderate integer edge weights. We develop several derandomization techniques for

our deterministic APSP algorithms. These include efficient deterministic distributed

vi

algorithms for computing a small blocker set, which is a set that intersects a desired

collection of shortest paths, and several deterministic pipelined approaches for com-

puting the shortest path distance values as well as for propagating the messages in

the network. Aside from our deterministic results, all non-trivial distributed algo-

rithms currently known for computing APSP are randomized.

vii

Contents

Acknowledgments iv

Abstract v

List of Tables xiii

List of Figures xv

Chapter 1 Introduction 1

1.1 Shortest Paths . 1

1.2 Overview of Topics . 2

1.2.1 Sequential Results . 2

1.2.1.1 Fine-Grained Complexity for Sparse Graphs 2

1.2.1.2 k-Simple Shortest Paths and Cycles 3

1.2.2 Distributed Results . 4

1.2.2.1 Deterministic Distributed All Pairs Shortest Paths in

Õ(n3/2) Rounds . 4

1.2.2.2 Deterministic Distributed All Pairs Shortest Paths

Through Pipelining 4

1.2.2.3 Faster Deterministic Distributed All Pairs Shortest

Paths . 4

viii

1.3 Organization . 5

I Sequential Results 6

Chapter 2 Fine-Grained Complexity for Sparse Graphs 7

2.1 Introduction . 7

2.2 Definitions of Graph Problems . 10

2.3 Our Contributions . 12

2.4 Weighted Undirected Graphs . 22

2.4.1 Reducing MWC to APSD . 22

2.4.2 Reducing ANSC to APSP in Unweighted Undirected Graphs 31

2.4.3 Bit-Sampling . 33

2.4.3.1 Bit-sampling and Color Coding 33

2.5 Weighted Directed Graphs . 35

2.5.1 Reducing 2-SiSP to Radius and s-t Replacement Paths to Ec-

centricities . 35

2.5.2 Directed ANSC and Replacement Paths 39

2.6 Betweenness Centrality: Reductions 42

2.6.1 2-SiSP to BC . 45

2.6.2 ANSC to Positive ANBC . 47

2.7 Conditional Hardness Under k-DSH 50

2.8 Time Bounds for Sparse Graphs . 51

2.9 Additional Results . 53

2.9.1 k-SiSC Algorithm : Undirected Graphs 53

2.10 Conclusion and Open Problems . 54

Chapter 3 k-Simple Shortest Paths and Cycles 56

3.1 Introduction . 56

ix

3.2 Our Results . 59

3.3 The k-APSiSP Algorithm . 63

3.3.1 The Compute-APSiSP Procedure 64

3.3.2 Computing the Qk Sets . 70

3.3.2.1 Computing Qk for k = 2 70

3.3.2.2 Computing Qk for k ≥ 3 72

3.3.3 Generating k Simple Shortest Cycles 73

3.4 Enumerating Simple Shortest Cycles (k-All-SiSC) 75

3.5 Generating Simple Shortest Paths (k-All-SiSP) 77

3.6 Conclusion and Open Problems . 80

II Distributed Results 83

Chapter 4 Distributed Weighted All Pairs Shortest Paths 84

4.1 Introduction . 84

4.2 The Congest Model . 86

4.3 Related Work . 86

Chapter 5 Deterministic Distributed All Pairs Shortest Paths in Õ(n3/2)

Rounds 90

5.1 Introduction . 90

5.2 Overview of the APSP Algorithm . 90

5.3 Computing Blocker Set Deterministically 94

5.3.1 The Blocker Set Algorithm 97

5.3.2 Algorithms for Computing and Updating Scores 99

5.4 Conclusion . 104

Chapter 6 Improved Distributed Weighted APSP Through Pipelin-

ing 106

x

6.1 Introduction . 106

6.1.1 Other Results . 109

6.2 The Pipelined APSP Algorithm . 111

6.2.1 Our (h, k)-SSP algorithm . 112

6.2.2 Correctness of Algorithm 1 116

6.2.3 Establishing an Upper bound on Z.ν 121

6.2.4 Establishing an Upper Bound on the round r by which an

entry Z is sent . 124

6.2.5 Establishing an Upper Bound on the round r by which Algo-

rithm 1 terminates . 125

6.2.6 Simplified Versions of Short-Range Algorithms in [50] 126

6.3 Faster k-SSP Algorithm using blocker set 128

6.4 Computing Consistent h-hop trees (CSSSP) 130

6.4.1 Computing a Blocker Set . 134

6.5 Additional Results . 136

6.5.1 An Õ(n)-Rounds (1+ε) Approximation Algorithm for Weighted

APSP with Non-negative Integer Edge-Weights 136

6.5.2 A Simple Õ(n4/3) Rounds Randomized Algorithm for Weighted

APSP with Arbitrary Edge-Weights 137

6.6 Conclusion . 138

Chapter 7 Faster Deterministic All Pairs Shortest Paths 140

7.1 Introduction . 140

7.2 Overall APSP Algorithm . 142

7.3 Computing Blocker Set . 145

7.3.1 Randomized Algorithm for Computing Blocker Set 145

7.3.1.1 Analysis of the Randomized Algorithm 149

7.3.2 Deterministic Blocker Set Algorithm 159

xi

7.3.3 Distributed Computation of Terms νPi and νPij 160

7.3.3.1 Computing νPi . 161

7.3.3.2 Computing νPij . 163

7.4 A Õ(n4/3) Rounds Algorithm for Step 6 of Algorithm 5 164

7.4.1 Correctness of Step 9 of Algorithm 11 169

7.5 Helper Algorithms . 172

7.5.1 Helper Algorithms for Randomized Blocker Set Algorithm . . 172

7.5.1.1 Algorithm for Computing Vi and Pi 172

7.5.1.2 Algorithm for Computing Pij 173

7.5.1.3 Algorithm for Computing |Pij | 174

7.5.1.4 Remove Subtrees rooted at z ∈ Z 175

7.5.2 h-hop Shortest Path Extension Algorithm [50] 176

7.5.3 Helper Algorithms for Algorithm 11 176

7.5.3.1 Computing Bottleneck Nodes 176

7.5.3.2 Computing countv,c Values 179

7.6 Conclusion . 180

Bibliography 181

Vita 191

xii

List of Tables

2.1 Our sparse reduction results for undirected graphs. The definitions

for these problems are in Section 2.2. Note that Min-Wt-∆ can be

solved in m3/2 time. 14

2.2 Our sparse reduction results for directed graphs. The definitions for

these problems are in Section 2.2. Note that Min-Wt-∆ can be solved

in m3/2 time. 15

3.1 Our results for directed graphs. All algorithms are deterministic.

(DSO stands for Distance Sensitivity Oracles). 60

4.1 Table comparing our results for non-negative edge-weighted graphs

(including zero edge weights) with previous known results. Here W is

the maximum edge weight and ∆ is the maximum weight of a shortest

path in G. Arb. stands for arbitray edge weights and Int. stands for

integer edge weights. Rand. stands for randomized algorithm and

Det. stands for deterministic algorithm. Dir. stands for directed

graphs and Undir. stands for undirected graphs. 87

6.1 Table comparing our approximate APSP results for non-negative edge-

weighted graphs (including zero edge weights) with previous known

results. 110

xiii

6.2 Notations . 114

7.1 Notations . 146

7.2 List of Notations Used in the Analysis of the Randomized Algorithm 150

7.3 List of Notations Used in the Analysis of the Deterministic Algorithm 162

xiv

List of Figures

2.1 Our sparse reductions for weighted directed graphs. The regular edges

represent sparse O(m + n) reductions, the squiggly edges represent

tilde-sparse O(m + n) reductions, and the dashed edges represent

reductions that are trivial. The n2 label on dashed edge to APSP

denotes an O(n2) time reduction. 17

2.2 Construction of Gi,j,k. 25

2.3 Here Figure (a) represent the MWC C in G. The path πy,z (in bold)

is the shortest path from y to z in G. The path πy1,z2 (in bold) in

Figure (b) is the shortest path from y1 to z2 in Gi,j,k: where the edge

(v1p−1, v
2
p) is absent due to i, j bits. The paths πy,z in G and πy1,z2 in

Gi,j,k together comprise the MWC C. 28

2.4 G′′ for l = 3. The gray and the bold edges have weight 11
9 M

′ and
1
3M

′ respectively. All the outgoing (incoming) edges from (to) A have

weight 0 and the outgoing edges from B have weight M ′. 35

2.5 G′′ for n = 3 in the reduction: MWC ≤sprssprssprs
m+n 2-SiSP 40

2.6 G′ for l = 3 in the reduction: directed s-t Replacement Paths ≤sprssprssprs
m+n

ANSC . 41

xv

2.7 Known sparse reductions for centrality problems, all from [2]. The reg-

ular edges represent sparse O(m + n) reductions, the squiggly edges

represent tilde-sparse O(m+n) reductions, and the dashed edges rep-

resent reductions that are trivial. BC and Min-Wt-∆ (shaded with

gray) are known to be sub-cubic equivalent to APSP [2, 91]. 44

2.8 Sparse reductions for weighted directed graphs. The regular edges

represent sparse O(m + n) reductions, the squiggly edges represent

tilde-sparse O(m+ n) reductions, and the dashed edges represent re-

ductions that are trivial. All problems except APSP are MWCC-hard.

Eccentricities, BC, ANBC and Pos ANBC are also SETH/ k-DSH

hard. ANBC and Pos ANBC (problems inside the dashed circles) are

both not known to be subcubic equivalent to APSP. BC and Eccen-

tricities (in bold) are MWC-hard, sub-cubic equivalent to APSP and

SETH/k-DSH hard. 44

2.9 G′′ for l = 3 in the reduction: directed 2-SiSP .sprssprssprs
m+n Betweenness

Centrality. The gray and the bold edges have weight M ′ and 1
3M

′

respectively. All the outgoing (incoming) edges from (to) A have

weight M ′ + q (0). Here M ′ = 9nWmax where Wmax is the largest

edge weight in G and q is some value in the range from 0 to nWmax. 45

2.10 G′ for n = 3 in the reduction: directed ANSC .sprssprssprs
m+n Pos ANBC. . . 49

3.1 Construction of G′ for k = 3 for Lemma 3.4.1. 76

6.1 This figure gives an example graph G where the union of the edges

on the 2-hop shortest paths from source node b differs from the 2-hop

SSSP constructed by Bellman-Ford (or using our (h, k)-SSP pipelined

algorithm in Chapter 5), and both are different from the 2-hop CSSSP

generated for source node b. 131

xvi

Chapter 1

Introduction

1.1 Shortest Paths

Computation of shortest paths is one of the well studied problems in theoretical

computer science. The goal is to find a shortest path from a source vertex s to a

sink t in a given graph G. In this thesis we study the all-pairs version of shortest

path problem, known as all-pairs shortest paths (APSP).

This problem has been well studied over the years. A simple solution is to

run n single-source shortest path (SSSP) computations using either Dijkstra [27]

for non-negative edge weights or Bellman-Ford [15] for negative edge weights. In

fact there exists algorithms that improve on these running bounds. For APSP with

arbitrary edge weights, there is an O(mn+ n2 log log n) time algorithm for directed

graphs [76] and an even faster O(mn logα(m,n)) time algorithm for undirected

graphs [77], where α is a certain natural inverse of the Ackermann’s function. For

integer weights, there is an O(mn) time algorithm for undirected graphs [85] and an

O(mn+ n2 log log n) time algorithm for directed graphs [42].

For dense graphs (when m = O(n2)), Floyd-Warshall’s algorithm [31] can be

used to compute APSP in O(n3) time, and without any modification, this algorithm

1

works even if the graph has negative edge weights (but no negative weight cycle). For

sparse graphs with negative edge weights, one can use Johnson’s transformation [54]

to transform the graph into a non-negative edge weighted graph in O(mn+n2 log n)

time and then compute APSP on it.

Since most graphs that occur in practice are sparse, in this work our em-

phasis is on algorithms where input size is parameterized in terms of m and n. In

this thesis we explore the shortest path and cycle problems in both sequential and

distributed/parallel settings. We also look at the fine-grained hardness for some of

these problems. In the next section we give an overview of the topics covered in this

thesis.

1.2 Overview of Topics

1.2.1 Sequential Results

1.2.1.1 Fine-Grained Complexity for Sparse Graphs

In Chapter 2 we consider the fine-grained complexity of sparse graph problems whose

time complexities have stayed at Õ(mn) over past several decades, where m is the

number of edges and n is the number of vertices in the input graph. All of these

problems are known to be subcubic equivalent and this shows that achieving sub-mn

running time is hard, but only for dense graphs where m = Θ(n2). Hence the dense

subcubic results are not relevant for sparse graphs.

We introduce the notion of a sparse reduction which preserves the sparsity of

graphs, and we present near linear-time sparse reductions between various pairs of

graph problems in the Õ(mn) class. We also introduce the MWC-hardness conjec-

ture, which states that Minimum Weight Cycle problem cannot be solved in sub-mn

time. We establish that several important graph problems in the Õ(mn) class such

as APSP, second simple shortest path (2-SiSP), Radius, and Betweenness Central-

2

ity are MWC-Hard, establishing sub-mn fine-grained hardness for these problems.

Currently the Minimum Weight Cycle problem can be solved in O(mn) time [71]

and the problem of obtaining a o(mn) time algorithm for MWC is open from many

decades.

We also identify Eccentricities and BC as key problems in the Õ(mn) class

which are simultaneously MWC-hard, SETH-hard and k-DSH-hard, where SETH

is the Strong Exponential Time Hypothesis, and k-DSH is the hypothesis that a

dominating set of size k cannot be computed in time polynomially smaller than nk.

1.2.1.2 k-Simple Shortest Paths and Cycles

In Chapter 2 we showed that k-SiSP does not have a sub-mn time algorithm unless

Minimum Weight Cycle can be solved in sub-mn time. In Chapter 3 we present

several results for the problem of computing k simple shortest paths (k-SiSP), where

we want to find k simple paths from s to t in a non-decreasing order of their weight.

We present a new approach for computing all pairs k simple shortest paths (k-

APSiSP), which is based on forming suitable path extensions to find simple shortest

paths; this method is different from the ‘detour finding’ technique used in all prior

work on computing multiple simple shortest paths, replacement paths, and distance

sensitivity oracles. The Õ(mn) time bound of our 2-APSiSP algorithm matches

the fine-grained time complexity for the simpler 2-SiSP problem, which is the single

source-sink version of this problem. For k = 3 our algorithm runs in O(mn2 +

n3 log n) time, which is almost a factor of n faster than the best previous algorithm.

We also present new results for related paths and cycle problems, such as

enumerating k simple cycles in non-decreasing order of weight, for which we give an

Õ(mn) time algorithm and we also show that it is MWC-hard for any constant k.

3

1.2.2 Distributed Results

1.2.2.1 Deterministic Distributed All Pairs Shortest Paths in Õ(n3/2)

Rounds

In Chapters 4-7 we consider the shortest path problems in the distributed setting,

specifically the all pairs shortest path (APSP) problem. After giving an initial in-

troduction to the distributed APSP problem in Chapter 4, in Chapter 5 we present

an Õ(n3/2) rounds algorithm for computing APSP in directed graphs with arbitrary

edge weights in the well-known Congest model (Section 4.2). This was the first

o(n2) round non-trivial deterministic algorithm for this problem. The most critical

component of this algorithm is a new distributed algorithm for computing a small

blocker set deterministically, which is a set that intersects a desired collection of

shortest paths.

1.2.2.2 Deterministic Distributed All Pairs Shortest Paths Through

Pipelining

Chapter 6 presents an improved deterministic algorithm for the distributed APSP

problem in the Congest model for specific range of integer edge weights (including

zero edge weights) and shortest path distances. The most non-trivial component

of this algorithm is a novel deterministic pipelined algorithm for computing h-hop

shortest path distances for all pairs in a weighted graph. We also introduce the

notion of h-hop Consistent SSSP (CSSSP) collection to create a consistent collection

of h-hop shortest paths across all source nodes.

1.2.2.3 Faster Deterministic Distributed All Pairs Shortest Paths

In Chapter 7 we present an Õ(n4/3) rounds deterministic algorithm for computing

weighted APSP problem in the Congest model. This algorithm works for directed

graphs with arbitrary real edge weights, and it improves on the round bound pre-

4

sented in Chapter 5. The main component of this algorithm is a new faster technique

for computing a small blocker set deterministically and a new pipelined method for

deterministically propagating distance values from source nodes to the blocker nodes

in the network.

1.3 Organization

This thesis is organized as follows: In Chapter 2, we describe our fine-grained results

for the shortest path problems. Chapter 3 describes our results for the k-simple

shortest path and cycle problems. In Chapter 4, we present an overview of the

general strategy used in the distributed APSP algorithms. Chapter 5 describes our

Õ(n3/2) rounds deterministic algorithm for computing all pairs shortest path in the

Congest model. Chapter 6 presents our pipelined approach for the distributed all

pairs shortest paths problem, which yield improvements for specific range of edge

weights and shortest path distances. In Chapter 7, we describe our Õ(n4/3) rounds

deterministic algorithm for the all pairs shortest path problem with arbitrary edge

weights, and it improves on the bound in Chapter 5.

5

Part I

Sequential Results

6

Chapter 2

Fine-Grained Complexity for

Sparse Graphs

2.1 Introduction

In recent years there has been considerable interest in determining the fine-grained

complexity of problems in P, see e.g. [88]. For instance, the 3SUM [35] and OV (Or-

thogonal Vectors) [90, 14] problems have been central to the fine-grained complexity

of several problems with quadratic time algorithms, in computational geometry and

related areas for 3SUM and in edit distance and related areas for OV. APSP (all

pairs shortest paths) has been central to the fine-grained complexity of several path

problems with cubic time algorithms on dense graphs [91].

For several graph problems related to shortest paths that currently have

Õ(n3) 1 time algorithms, equivalence under sub-cubic reductions has been shown

in work starting with [91] between APSP, finding a minimum weight cycle (MWC),

finding a second simple shortest path from a given vertex u to a given vertex v (2-

SiSP) in a weighted directed graph, finding a minimum weight triangle (Min-Wt-∆),
1Õ and Θ̃ can hide sub-polynomial factors; in our new results they only hide polylog factors.

7

etc. This gives compelling evidence that a large class of problems on dense graphs

is unlikely to have sub-cubic algorithms as a function of n, the number of vertices,

unless fundamentally new algorithmic techniques are developed.

We consider a central collection of graph problems related to APSP, which

refines the subcubic equivalence class. We let n be the number of vertices and m

the number of edges. All of the sub-cubic equivalent graph problems mentioned

above (and several others) have Õ(mn) time algorithms; additionally, many sub-

cubic equivalent problems related to minimum triangle detection and triangle listing

have O(m3/2) time complexities for sparse graphs [52]. When a graph is truly sparse

with m = O(n) the Õ(mn) APSP bound is essentially optimal or very close to

optimal, since the size of the output for APSP is n2. Thus, a cubic in n bound

for APSP does not fully capture what is currently achievable by known algorithms,

especially since graphs that arise in practice tend to have m close to linear in n or

at least are sparse, i.e., have m = O(n1+δ) for δ < 1. This motivates our study of

the fine-grained complexity of graph path problems in the Õ(mn) class.

Another fundamental problem in the Õ(mn) class is MWC (MinimumWeight

Cycle). In both directed and undirected graphs, MWC can be computed in Õ(mn)

time using an algorithm for APSP. Recently Orlin and Sedeno-Noda [71] gave an

improved O(mn) time algorithm for directed MWC. This is an important result but

the bound still remains Ω(mn). Finding an MWC algorithm that runs polynomially

faster than mn time is a long-standing open problem in graph algorithms.

We present both fine-grained reductions and hardness results for graph prob-

lems in the Õ(mn) class, most of which are equivalent under sub-cubic reductions

on dense graphs, but now taking sparseness of edges into consideration. We use the

current long-standing upper bound of Õ(mn) for these problems as our reference,

both for our fine-grained reductions and for our hardness results. Our results give a

partial order on hardness of several problems in the Õ(mn) class, with equivalence

8

within some subsets of problems, and gives rise to a hardness conjecture (MWC

hardness) for this class. Most of the sub-cubic reductions in previous work (includ-

ing all in [91]) created dense intermediate problems and hence are not fine-grained

reductions for the Õ(mn) class. Fine-grained reductions and hardness results with

respect to time bounds that consider only n or only m, such as bounds of the form

m2, n2, nc, m1+δ, are given in [78, 5, 3, 4, 45]. One exception is in [2] where some

reductions that preserve graph sparsity are given for problems with Õ(mn) time

algorithms, such as diameter and some betweenness centrality problems. However,

these are either reductions that start from a triangle finding problem that can be

solved in Õ(m3/2), hence not fine-grained reductions for the Õ(mn) class, or start

from a problem, such as Diameter, that is not known to be sub-cubic equivalent to

APSP. In contrast, the time bounds in our fine-grained results for the Õ(mn) class

consider both m and n.

In [66], Lincoln et al. formulated the Min-Weight-k-Clique hypothesis, which

states that a minimum weight k-clique cannot be found in time smaller than nk−o(1)

for sufficiently large edge weights. They show that for all sparsities of the form m =

Θ(n1+1/l) where l is a constant, MWC cannot be computed in O(mn1−ε + n2) time

under Min-Weight-k-Clique hypothesis. Our sparse reduction results for directed

graphs in conjunction with their result show that a large class of problems in the mn

class including Second Shortest Path, Replacement Paths, Radius, and Betweenness

Centrality also do not have O(mn1−ε + n2) time algorithm under Min-Weight-k-

Clique hypothesis. Similarly our sparse reduction result from MWC to APSP in

undirected graphs in conjunction with this result also establishes that there is no

O(mn1−ε + n2) time algorithm for undirected APSP under Min-Weight-k-Clique

hypothesis.

9

2.2 Definitions of Graph Problems

We will deal with either an unweighted graph G = (V,E) or a weighted graph

G = (V,E,w), where the weight function is w : E → R+. We assume that the

vertices have distinct labels with dlog ne bits. Let Wmax and Wmin denote the

largest and the smallest edge weight, and let the edge weight ratio be ρ = Wmax

/Wmin . Let dG(x, y) denote the length (or weight) of a shortest path from x to y in

G, and for a cycle C in G, let dC(x, y) denote the length of the shortest path from

x to y in C. We deal with only simple graphs in this thesis.

We present results for the following graph problems in this chapter.

All Pairs Shortest Paths (APSP). This is the problem of computing the shortest

path distances for every pair of vertices in G together with a concise representation

of the shortest paths, which in our case is an n× n matrix, LastG, that contains, in

position (x, y), the predecessor vertex of y on a shortest path from x to y.

All Pairs Shortest Distances (APSD). Given a graph G = (V,E), the APSD

problem only involves computing the shortest path distances for every pair of vertices

inG. Most of the currently known APSD algorithms, including matrix multiplication

based methods for small integer weights [82, 83, 94], can compute APSP in the same

bound as APSD.

Minimum Weight Cycle (MWC). Given a graph G = (V,E), the minimum

weight cycle problem is to find the weight of a minimum weight cycle in G.

All Nodes Shortest Cycles (ANSC). Given a graph G = (V,E), the ANSC

problem is to find the weight of a shortest cycle through each vertex in G.

Replacement Paths. Given a graph G = (V,E) and a pair of vertices s, t, the

replacement paths problem is to find, for each edge e on the shortest path from s to

t, a shortest path from s to t avoiding e.

k-SiSP. Given a graph G = (V,E) and s, t ∈ V , the k-SiSP problem is to find the k

10

shortest simple paths from s to t: the i-th path must be different from first (i − 1)

paths and must have weight greater than or equal to the weight of any of these (i−1)

paths.

k-SiSC. The corresponding cycle version of k-SiSP is known as k-SiSC, where the

goal is to compute the k shortest simple cycles through a given vertex x, such that

the i-th cycle generated is different from all previously generated (i− 1) cycles and

has weight greater than or equal to the weight of any of these (i− 1) cycles.

Radius. For a given graph G = (V,E), the Radius problem is to compute the value

minx∈V maxy∈V dG(x, y). The center of a graph is the vertex x which minimizes

this value.

Diameter. For a given graph G = (V,E), the Diameter problem is to compute the

value maxx,y∈V dG(x, y).

Eccentricities. For a given graph G = (V,E), the Eccentricities problem is to

compute the value maxy∈V dG(x, y) for each vertex x ∈ V .

Betweenness Centrality (BC). For a given graph G = (V,E) and a node v ∈ V ,

the Betweenness Centrality of v, BC(v), is the value
∑

s,t∈V,s,t 6=v
σs,t(v)
σs,t

, where σs,t is

the number of shortest paths from s to t and σs,t(v) is the number of shortest paths

from s to t passing through v.

As in [2] we assume that the graph has unique shortest paths, hence BC(v)

is simply the number of s, t pairs such that the shortest path from s to t passes

through v.

All Nodes Betweenness Centrality (ANBC). The all-nodes version of Between-

ness Centrality: determine BC(v) for all vertices.

Positive Betweenness Centrality (Pos BC). Given a graph G = (V,E) and a

vertex v, the Pos BC problem is to deternine if BC(v) > 0.

All Nodes Positive Betweenness Centrality (Pos ANBC). The all-nodes ver-

11

sion of Positive Betweenness Centrality.

Reach Centrality (RC). For a given graph G = (V,E) and a node v ∈ V , the

Reach Centrality of v, RC(v), is the value

maxs,t∈V :dG(s,v)+dG(v,t)=dG(s,t) min(dG(s, b), dG(b, t))

2.3 Our Contributions

In this section we give an highlight of our fine-grained results in [7].

I. Sparse Reductions and the mn Partial Order. In Definition 2.3.1 below,

we define the notion of a sparsity preserving reduction (or sparse reduction) from a

graph problem P to a graph problem Q that allows P to inherit Q’s time bound

for the graph problem as a function of both m and n, as long as the reduction is

efficient. Our definition is in the spirit of a Karp reduction [56], but slightly more

general, since we allow a constant number of calls to Q instead of just one call in a

Karp reduction (and we allow polylog calls for Õ(·) bounds).

One could consider a more general notion of a sparsity preserving reduction

in the spirit of Turing reductions as in [37] (which considers functions of a single

variable n). However, for all of the many sparsity preserving reductions we present

here, the simpler notion defined below suffices. It should also be noted that the

simple and elegant definition of a Karp reduction suffices for the vast majority of

known NP-completeness reductions. The key difference between our definition and

other definitions of fine-grained reductions is that it is fine-grained with regard to

both m and n, and respects the dependence on both parameters.

It would be interesting to see if some of the open problems left by our work on

fine-grained reductions for the mn class can be solved by moving to a more general

sparsity preserving reduction in the spirit of a Turing reduction applied to functions

of both m and n. We do not consider this more general version here since we do not

12

need it for our reductions.

Definition 2.3.1 (Sparsity Preserving Graph Reductions). Given graph prob-

lems P and Q, there is a sparsity preserving f(m,n) reduction from P to Q, denoted

by P ≤sprssprssprs
f(m,n) Q, if given an algorithm for Q that runs in TQ(m,n) time on graphs

with n vertices and m edges, we can solve P in O(TQ(m,n)+f(m,n)) time on graphs

with n vertices and m edges, by making a constant number of oracle calls to Q.

For simplicity, we will refer to a sparsity preserving graph reduction as a

sparse reduction, and we will say that P sparse reduces to Q . Similar to Def-

inition 2.3.1, we will say that P tilde-f(m,n) sparse reduces to Q, denoted by

P .sprssprssprs
f(m,n) Q, if, given an algorithm for Q that runs in TQ(m,n) time, we can solve

P in Õ(TQ(m,n) + f(m,n)) time (by making polylog oracle calls to Q on graphs

with Õ(n) vertices and Õ(m) edges). We will also use ≡sprssprssprs
f(m,n) and

∼=sprssprssprs
f(m,n) in place

of ≤sprssprssprs
f(m,n) and .

sprssprssprs
f(m,n) when there are reductions in both directions. In a weighted

graph we allow the Õ term to have a log ρ factor. (Recall that ρ = Wmax/Wmin.

We present several sparse reductions for problems that currently have Õ(mn)

time algorithms. This gives rise to a partial order on problems that are known to

be sub-cubic equivalent, and currently have Õ(mn) time algorithms. For the most

part, our reductions take Õ(m+ n) time (many are in fact O(m+ n) time), except

reductions to APSP take Õ(n2) time. This ensures that any improvement in the

time bound for the target problem will give rise to the same improvement to the

source problem, to within a polylog factor. Surprisingly, very few of the known

sub-cubic reductions for the problems we consider carry over to the sparse case (and

none from [91]). This is due to one or both of the following features.

1. A central technique used in many of the reductions that show sub-cubic equiv-

alence to APSP is to reduce from triangle finding problems such as Min-Wt-∆

(e.g., [2, 91]). These reductions start with a triangle finding problem and pro-

ceed by constructing suitable tripartite graphs where the property of the target

13

Table 2.1: Our sparse reduction results for undirected graphs. The definitions for
these problems are in Section 2.2. Note that Min-Wt-∆ can be solved in m3/2 time.

Reduction Prior Results (Undirected) Our Results

MWC MWC ≤ Min-Wt-∆ [79] a. Sparse Õ(n2)

≤ APSD a. Dense Õ(n2) reduction Reduction

b. Θ(n2) edges in reduced graphs b. Θ(m) edges in

Min-Wt-∆ ≤ APSD (trivial) reduced graphs

ANSC Sparse Õ(mn
3−ω
2) reduction [93] Sparse Õ(n2) Reduction

(Unweighted) a. randomized a. deterministic

≤ APSP b. polynomial calls to APSP b. Õ(1) calls to APSP

c. gives randomized Õ(n
ω+3
2) c. gives deterministic

time algorithm [93] Õ(nω) time algorithm

problem can be used to detect a desired triangle. However, a cycle can have

Θ(n) vertices, and using such an approach starting with MWC would create

n-partite graphs with Θ(n2) vertices. Hence this approach does not work in

our sparse setting and this highlights the need to develop new techniques to

reduce from MWC. Further as noted above, in the sparse setting, all triangle

finding and enumeration problems are in Õ(m3/2) time, which is an asymptot-

ically smaller bound than mn for graphs with m = o(n2). Hence reductions to

triangle finding problems (e.g., [79] in the dense case) are not relevant in the

sparse setting (unless the mn time bound can be improved).

2. Many of the known sub-cubic reductions convert a sparse graph into a dense

one (e.g., [79, 91]), and again these are not relevant in the sparse setting.

Tables 2.1 and 2.2 summarize the improvements our reductions achieve over

prior results.

(a) Undirected Graphs: Finding the weight of a minimum weight cycle (MWC) is

14

Table 2.2: Our sparse reduction results for directed graphs. The definitions for these
problems are in Section 2.2. Note that Min-Wt-∆ can be solved in m3/2 time.

Reduction Prior Results (Directed) Our Results

MWC Dense Õ(n2) MWC ≤ Min-Wt-∆ [79] Sparse O(m)

≤ 2-SiSP Dense O(n2) Min-Wt-∆ ≤ 2-SiSP [91] Reduction

2-SiSP Sparse O(n2) 2-SiSP ≤ APSP [41] Sparse Õ(m)

≤ Radius; but Dense sub-n3 APSP ≤ Min-Wt-∆ [91] Reductions

≤ BC Sparse Õ(m) Min-Wt-∆ ≤ Radius, BC [2]

Replacement Sparse O(n2) Rep. Paths ≤ APSP [41] Sparse Õ(m)

paths but Dense sub-n3 APSP ≤ Min-Wt-∆ [91] Reductions

≤ ANSC; Sparse O(m) Min-Wt-∆ ≤ ANSC (trivial)

≤ Eccentricities Sparse Õ(m) Min-Wt-∆ ≤ Eccentricities [2]

ANSC Sparse O(m) ANSC ≤ APSP (trivial) Sparse Õ(m)

≤ ANBC but Dense sub-n3 APSP ≤ Min-Wt-∆ [91] Reduction

Sparse Õ(m) Min-Wt-∆ ≤ ANBC [2]

15

a fundamental problem. A simple sparse O(m+ n) reduction from MWC to APSD

is known for directed graph but it does not work in the undirected case mainly

because an edge can be traversed in either direction in an undirected graph, and

known algorithms for the directed case would create non-simple paths when applied

to an undirected graph. Roditty and Williams [79], in a follow-up to [91], pointed

out the challenges of reducing from undirected MWC to APSD in sub-nω time,

where ω is the matrix multiplication exponent, and then gave a Õ(n2) reduction

from undirected MWC to undirected Min-Wt-∆ in a dense bipartite graph. But a

reduction that increases the density of the graph is not helpful in our sparse setting.

Instead, in this chapter we give a sparse Õ(n2) time reduction from undirected MWC

to APSD. Similar techniques allow us to obtain a sparse Õ(n2) time reduction from

undirected ANSC (All Nodes Shortest Cycles) [93, 81], which asks for a shortest

cycle through every vertex) to APSP. This reduction improves the running time for

unweighted ANSC in dense graphs [93], since we can now solve it in Õ(nω) time using

the unweighted APSP algorithm in [82, 12]. Our ANSC reduction and resulting

improved algorithm is only for unweighted graphs and extending it to weighted

graphs appears to be challenging.

We introduce a new bit-sampling technique in these reductions. This tech-

nique contains a simple construction with exactly log n hash functions for Color

Coding [13] with 2 colors. Our bit-sampling method also gives the first near-linear

time algorithm for k-SiSC in weighted undirected graphs.

The full proofs of Theorems 2.3.2 and 2.3.3 are in Section 2.4.1 and Sec-

tion 2.9.1 respectively.

Theorem 2.3.2. In a weighted undirected n-node m-edge graph with edge weight ra-

tio ρ = Wmax/Wmin where Wmax is the largest edge weight and Wmin is the smallest

edge weight, MWC can be computed with 2 · log n · log ρ calls to APSD on graphs with

2n nodes, at most 2m edges, and edge weight ratio at most ρ, with O(n+m) cost for

16

MWC 2SiSP

2SiSC

s-t replacement
paths

ANSC

Radius

Eccentricities APSP

[6]
n2

Figure 2.1: Our sparse reductions for weighted directed graphs. The regular edges
represent sparse O(m+n) reductions, the squiggly edges represent tilde-sparse O(m+
n) reductions, and the dashed edges represent reductions that are trivial. The n2

label on dashed edge to APSP denotes an O(n2) time reduction.

constructing each reduced graph, and with additional O(n2 · log n · log(nρ)) processing

time. Additionally, every edge in the reduced graph retains its corresponding edge

weight from the original graph. Hence, MWC .sprssprssprs
n2 APSD.

In undirected graphs with integer weights at most Wmax , APSD can be

computed in Õ(Wmax · nω) time [82, 83]. In [79], the authors give an Õ(Wmax · nω)

time algorithm for undirected MWC in such graphs by preprocessing using a result

in [67] and then making Õ(1) calls to an APSD algorithm. By applying our sparse

reduction in Theorem 2.3.2 we can get an alternate simpler Õ(Wmax · nω) time

algorithm for MWC in undirected graphs.

The following result gives an improved algorithm for ANSC in undirected

unweighted graphs.

Theorem 2.3.3. In undirected unweighted graphs, ANSC .sprssprssprs
n2 APSP and ANSC

can be computed in Õ(nω) time.

(b) Directed Graphs. We give several nontrivial sparse reductions starting from

MWC in directed graphs, as noted in the following theorem (also highlighted in

Figure 2.1).

Theorem 2.3.4 (Directed Graphs.). In weighted directed graphs:

17

1. MWC ≤sprssprssprs
m+n 2-SiSP ≤sprssprssprs

m+n s-t replacement paths ≡sprssprssprs
m+n ANSC .sprssprssprs

m+n Eccen-

tricities

2. 2-SiSP .sprssprssprs
m+n Radius ≤sprssprssprs

m+n Eccentricities, and

3. 2-SiSP .sprssprssprs
m+n BC

Sparse Reductions for Directed versus Undirected Graphs. We present fewer

fine-grained reductions for undirected graphs than for directed graphs. This is due to

the following reasons: First, the 2-SiSC, 2-SiSP and Replacement Paths problem can

be solved in near-linear time in undirected graphs and hence they are not part of our

partial order for undirected graphs. Second, as highlighted before, an edge can be

traversed in either direction in an undirected graph hence a shortest cycle problem,

especially when the size of the cycle is unrestricted, cannot be readily reduced to a

shortest path problem in undirected graphs. We confront this problem with our bit-

sampling technique, which we use in all of our reductions involving cycle problems

in undirected graphs. This technique also gives a new near-linear time algorithm for

weighted k-SiSC, a new Õ(nω) time algorithm for unweighted ANSC, and a simple

Õ(Wmax · nω) algorithm for MWC with integer weights in [1 . . .Wmax].

II. Conditional Hardness Results. Conditional hardness under fine-grained re-

ductions falls into several categories such as 3SUM hardness [35], OV hardness [90,

14, 88], SETH hardness [51, 90, 88] and sub-cubic APSP hardness for graph problems

on dense graphs [91].

In our work we focus on the mn class, the class of graph path problems

for which the current best algorithms run in Õ(mn) time. This class differs from

all previous classes considered for fine-grained complexity since it depends on two

parameters of the input, m and n. To formalize hardness results for this class we

use the following notion of a sub-mn time bound.

18

Definition 2.3.5 (Sub-mn). A function g(m,n) is sub-mn if g(m,n) = O(mα ·nβ),

where α, β are constants such that α+ β < 2.

A straightforward application of the notions of sub-cubic and sub-quadratic

to the two-variable function mn would have resulted in a simpler but less powerful

definition for sub-mn, namely that of requiring a time bound O((mn)δ), for some

δ < 1. Another weaker form of the above definition would have been to require α ≤ 1

and β ≤ 1 with at least one of the two being strictly less than 1. The above definition

is more general than either of these. It considers a bound of the form m3/n2 to be

sub-mn even though such a bound for the graph problem with be larger than n3 for

dense graphs. Thus, it is a very strong definition of sub-mn when applied to hardness

results. (Such a definition could be abused when giving sub-mn reductions, but all

of our sub-mn reductions are linear or near-linear in the sizes of input and output,

and thus readily satisfy the sub-mn definition while being very efficient.)

We say that a problem is MWC-hard if there is a sub-mn reduction from

Minimum Weight Cycle to this problem. Our fine-grained reductions are based on

this MWC hardness assumption, i.e. there is no sub-mn time algorithm for MWC

(Minimum Weight Cycle).

Definition 2.3.6 (MWC Hardness). A problem Q is said to be MWC-Hard if

there is a sub-mn reduction from MWC (Minimum Weight Cycle) to Q.

The following observation follows from this definition.

Observation 2.3.7. If a problem Q is MWC-Hard, then there is no sub-mn time

algorithm for Q unless MWC (Minimum Weight Cycle) can be computed in sub-mn

time.

Directed MWC is a natural candidate for hardness for the mn class since it is

a fundamental problem for which a simple Õ(mn) time algorithm has been known for

many decades, and very recently, an O(mn) time algorithm [71]. But a sub-mn time

19

algorithm remains as elusive as ever. Further, through the fine-grained reductions

that we came up with in this work, many other problems in the mn class have MWC

hardness for sub-mn time as noted in the following theorem.

Theorem 2.3.8. The following problems on directed graphs do not have sub-mn

time algorithms: 2-SiSP, 2-SiSC, s-t Replacement Paths, ANSC, Radius, BC, and

Eccentricities assuming that MWC cannot be computed in sub-mn time.

In [66], Lincoln et al. showed that MWC is hard under the Min-Wt-k-Clique

Conjecture. This result in conjunction with Theorem 2.3.8 shows that the prob-

lems in the Õ(mn) class including 2-SiSP, 2-SiSC, Replacement Paths, Radius, BC,

Eccentricities and ANSC are also Min-Wt-k-Clique hard.

We now discuss the SETH and k-DSH hardness of Eccentricities and BC,

which are also MWC and Min-Wt-k-Clique hard.

SETH and k-DSH hardness for Diameter, Eccentricities and BC. Another

fundamental graph problem in the Õ(mn) class is Diameter, which has a trivial sub-

mn reduction to Eccentricities. Even though Diameter is in the Õ(mn) class, we do

not have an MWC-hardness result for it (nor is a sub-cubic reduction from MWC

known). However computing Diameter in sub-m2 time in graphs with m = O(n)

edges was shown to be SETH-hard in [78] for both directed and undirected graphs.

The Strong Exponential Time Hypothesis (SETH) [51] states that that for every

δ < 1 there exists a k such that there is no 2δ·n time algorithm for k-SAT. On the

other hand, a SETH-based conditional hardness is not known for either MWC or

APSP. The construction in [78] that gives sub-m2 hardness for Diameter on very

sparse graphs also gives a sub-mn hardness under SETH listed below.

Theorem 2.3.9 (Sub-mn Hardness Under SETH). Under SETH, Eccentricities

does not have a sub-mn time algorithm in an unweighted or weighted graph, either

directed or undirected.

20

The k Dominating Set Hypothesis (k-DSH) [72] states that there exists k0

such that for all k ≥ k0, a dominating set of size k in an undirected graph on n

vertices cannot be found in O(nk−ε) for any constant ε > 0. It is known that k-DSH

hardness implies SETH-hardness, and a sub-m2 hardness result for Diameter under

k-DSH for even values of k was shown in [78] for graphs with Õ(n) edges. We show

that Diameter is k-DSH hard for sub-mn time for all values of k, both odd and

even, thus strengthening the SETH and k-DSH hardness results for Diameter and

Eccentricities.

Eccentricities as a Central Problem for mn. We observe that directed Ec-

centricities is a central problem in the mn class: If a sub-mn time algorithm is

obtained for directed Eccentricities, not only would it refute k-DSH, SETH and

MWC hardness (Definition 2.3.6) it would also imply sub-mn time algorithms for

several MWC-hard problems: 2-SiSP, 2-SiSC, s-t Replacement Paths, ANSC and

Radius in directed graphs as well as Radius and Eccentricities in undirected graphs.

APSP. APSP has a special status in the mn class. Since its output size is n2, it has

near-optimal algorithms [85, 42, 76, 77] for graphs with m = O(n). Also, the n2 size

for the APSP output means that any inference made through sparse reductions to

APSP will not be based on a sub-mn time bound but instead on a sub-mn+n2 time

bound. It also turns out that the SETH and k-DSH hardness results for Diameter

depend crucially on staying with a purely sub-mn bound, and hence even though

Diameter has a simple sparse n2 reduction to APSP, we do not have SETH or k-DSH

hardness for computing APSP in sub-mn+ n2 time.

Betweenness Centrality (BC). We discuss this problem in Section 2.6. Sparse

reductions for several variants of BC were given in [2] but none established MWC-

hardness. We give nontrivial sparse reductions to establish MWC hardness for some

important variants of BC. Our results show that BC and Eccentricities are key

problems in the mn class that are MWC-hard and SETH/k-DSH hard while being

21

sub-cubic equivalent to APSP. Fig. 2.8 in Section 2.6 is an enhancement of Fig. 2.1

that includes our results for BC variants.

Separation of Time Bounds for Sparse Graphs. It is readily seen that the

Õ(m3/2) bound for triangle finding problems is a better bound than the Õ(mn)

bound for the mn class. But imposing a total ordering on functions of two variables

requires some care. For example, maximal 2-connected subgraphs of a given directed

graph can be computed in O(m3/2) time [24] as well as in O(n2) time [43]. with m3/2

a better bound for very sparse graphs and n2 for very dense graphs, In Section 2.8 we

motivate a natural definition of what it means for for one time bound to be smaller

than another time bound for sparse graphs. By our definitions, m3/2 is a smaller

time bound than both mn and n2 for sparse graphs. Our definitions establish that

the problems related to triangle listing must have provably smaller time bounds for

sparse graphs than the mn class under the hardness conjectures and fine-grained

reductions for the MWC class.

Overview of the Chapter. Sections 2.4 and 2.5 present our sparse reductions

for undirected and directed graphs. Section 2.6 present our sparse reductions for

centrality problems in directed graphs. In Sections 2.7 and 2.8 we present SETH and

k-DSH hardness results, and the resulting provable split of the sub-cubic equivalence

class under these hardness results for sparse time bounds.

2.4 Weighted Undirected Graphs

2.4.1 Reducing MWC to APSD

In undirected graphs, the only known sub-cubic reduction from MWC to APSD [79]

uses a dense reduction to Min-Wt-∆. Described in [79] for integer edge weights

of value at most Wmax, it first uses an algorithm in [67] to compute, in O(n2 ·

log n log nWmax) time, a 2-approximation W to the weight of a minimum weight

22

cycle as well as shortest paths between all pairs of vertices with pathlength at most

W/2. The reduced graph for Min-Wt-∆ is constructed as a (dense) bipartite graph

with edges to represent all of these shortest paths, together with the edges of the

original graph in one side of the bipartition. This results in each triangle in the

reduced graph corresponding to a cycle in the original graph, and with a minimum

weight cycle guaranteed to be present as a triangle. An MWC is then constructed

using a version of Color Coding [13] with 2 colors.

The approach in [79] does not work in our case, as we are dealing with sparse

reductions. Instead, we give a sparse reduction directly from MWC to APSD. In

contrast to [79], where finding a minimum weight 3-edge triangle gives the MWC

in the original graph, in our reduction the MWC is constructed as a path P in a

reduced graph followed by a shortest path in the original graph.

One may ask if we can sparsify the dense reduction from MWC to Min-Wt-∆

in [79] but such a reduction, though very desirable, would immediately refute MWCC

and would achieve a major breakthrough by giving an Õ(m3/2) time algorithm for

undirected MWC.

We now sketch our sparse reduction from undirected MWC to APSP. We

start with stating from [79] the notion of a ‘critical edge’ and then present some

additional properties we will use.

Lemma 2.4.1 ([79]). Let G = (V,E,w) be a weighted undirected graph, where w :

E → R+, and let C = 〈v1, v2, . . . , vl〉 be a cycle in G. There exists an edge (vi, vi+1)

on C such that dw(C)
2 e−w(vi, vi+1) ≤ dC(v1, vi) ≤ bw(C)

2 c and d
w(C)
2 e−w(vi, vi+1) ≤

dC(vi+1, v1) ≤ bw(C)
2 c. The edge (vi, vi+1) is called the critical edge of C with respect

to the start vertex v1.

Lemma 2.4.2. Let C be a minimum weight cycle in weighted undirected graph G.

Let x and y be two vertices on C and let π1x,y and π2x,y be the paths from x to y in

C. W.l.o.g. assume that w(π1x,y) ≤ w(π2x,y). Then π1x,y is a shortest path from x to

23

y and π2x,y is a second simple shortest path from x to y, i.e. a path from x to y that

is shortest among all paths from x to y that are not identical to π1x,y.

Proof. Assume to the contrary that π3x,y is a second simple shortest path from x

to y of weight less than w(π2x,y). Let π3x,y deviate from π1x,y at vertex u and then

merge back at vertex v. Then the subpaths from u to v in π1x,y and π3x,y together

form a cycle of weight strictly less than w(C), resulting in a contradiction as C is a

minimum weight cycle in G.

Observation 2.4.3. Let G = (V,E,w) be a weighted undirected graph. Let C =

〈v1, v2, . . . , vl〉 be a minimum weight cycle in G, and let (vp, vp+1) be its critical edge

with respect to v1. W.l.o.g. assume that dG(v1, vp) ≥ dG(v1, vp+1). If G′ is obtained

by removing edge (vp−1, vp) from G, then the path P = 〈v1, vl, . . . , vp+1, vp〉 is a

shortest path from v1 to vp in G′.

Observation 2.4.3 holds since the path P there must be either a shortest path

or a second simple shortest path in G by the above lemma, so in G′ it must be a

shortest path.

In our reduction we construct a collection of graphs Gi,j,k, each with 2n

vertices (containing 2 copies of V) and O(m) edges, with the guarantee that, for

the minimum weight cycle C, in at least one of the graphs the edge (vp−1, vp) (in

Observation 2.4.3) will not connect across the two copies of V and the path P of

Observation 2.4.3 will be present. Then, if a call to APSP computes P as a shortest

path from v1 to vp (across the two copies of V), we can verify that edge (vp, vp+1) is

not the last edge on the computed shortest path from v1 to vp in G, and so we can

form the concatenation of these two paths as a possible candidate for a minimum

weight cycle. The challenge is to construct a small collection of graphs where we

can ensure that the path we identify in one of the derived graphs is in fact the

simple path P in the input graph. We overcome this challenge by using our new

24

V1 V2

all
edges
from
E

no edges
between
vertices
in V2

u1 v2

a1

w(u, a)

c1

f1
g2

w(f, g)

(u1, v2) present if (u, v) ∈ E
and u’s i-th bit is j
and Wmax

2k
< w(u, v) ≤ Wmax

2k−1

Figure 2.2: Construction of Gi,j,k.

bit-sampling technique which allows us to selectively sample edges from G to place

in these constructed graphs Gi,j,k such that P is guaranteed to be identified in one

of these graphs.

Each Gi,j,k has two copies of each vertex u ∈ V , u1 ∈ V1 and u2 ∈ V2. All

edges in G are present on the vertex set V1, but there is no edge that connects any

pair of vertices within V2. In Gi,j,k there is an edge from u1 ∈ V1 to v2 ∈ V2 iff there

is an edge from u to v in G, and u’s i-th bit is j, and Wmax

2k
< w(u, v) ≤ Wmax

2k−1 . All

the edges in Gi,j,k retain their weights from G. Thus, the edge (u1, v2) is present

in Gi,j,k with weight w only if (u, v) is an edge in G with the same weight w and

further, certain conditions (as described above) hold for the indices i, j, k. This is our

bit-sampling method. Here, 1 ≤ i ≤ dlog ne, j ∈ {0, 1} and k ∈ {1, 2, . . . , dlog ρe},

so we have 2 · log n · log ρ graphs. Figure 2.2 depicts the construction of graph Gi,j,k.

The first condition for an edge (u1, v2) to be present in Gi,j,k is that u’s i-th

bit must be j. This ensures that there exist a graph where the edge (v1p−1, v
2
p) absent

and the edge (v1p+1, v
2
p) is present (as vp−1 and vp+1 differ on at least 1 bit). To

contrast with a similar step in [79], we need to find the path P in the sparse derived

graph, while in [79] it suffices to look for the 2-edge path that represents P in a

triangle in their dense reduced graph.

25

The second condition — that an edge (u1, v2) is present only if Wmax

2k
<

w(u, v) ≤ Wmax

2k−1 — ensures that there is a graph Gi,j,k in which, not only is edge

(v1p+1, v
2
p) present and edge (v1p−1, v

2
p) absent as noted by the first condition, but also

the shortest path from v11 to v2p is in fact the path P in Observation 2.4.3, and does

not correspond to a false path where an edge in G is traversed twice. In particular,

we show that this second condition allows us to exclude a shortest path from v11

to v2p of the following form: take the shortest path from v1 to vp in G on vertices

in V1, then take an edge (v1p, x
1), and then the edge (x1, v2p). Such a path, which

has weight dC(v1, vp) + 2w(x, vp), could be shorter than the desired path, which has

weight dC(v1, vp+1) +w(vp+1, vp). In our reduction we avoid selecting this ineligible

path by requiring that the weight of the selected path should not exceed dG(v1, vp)

by more than Wmax/2
k−1. We show that these conditions suffice to ensure that P

is identified in one of the Gi,j,k, and no spurious path of shorter length is identified.

Notice that, in contrast to [79], we do not estimate the MWC weight by computing

a 2-approximation. Instead, this second condition allows us to identify the critical

edge in the appropriate graph.

MWC-to-APSP(G); . this gives a simpler Õ(Wmax · nω) time algorithm for
MWC with small integer weights than [79]
1: wt←∞
2: for 1 ≤ i ≤ dlog ne, j ∈ {0, 1}, and 1 ≤ k ≤ dlog ρe do
3: Compute APSP on Gi,j,k
4: for y, z ∈ V do
5: if dGi,j,k(y1, z2) ≤ dG(y, z) + Wmax

2k−1 then
6: Check if LastGi,j,k(y1, z2) 6= LastG(y, z)

7: if both checks in Steps 5-6 hold then
8: wt← min(wt, dGi,j,k(y1, z2) + dG(y, z))

9: return wt

In the following two lemmas we identify three key properties of a path π from

y1 to z2 (y 6= z) in a Gi,j,k that (I) will be satisfied by the path P in Observation 2.4.3

26

for y1 = v11 and z2 = v2p in some Gi,j,k (Lemma 2.4.4), and (II) will cause a simple

cycle in G to be contained in the concatenation of π with the shortest path from y

to z computed by APSP (Lemma 2.4.5). Once we have these two Lemmas in hand,

it gives us a method to find a minimum weight cycle in G (described in Algorithm

MWC-to-APSP) by calling APSP on each Gi,j,k and then identifying all pairs y1, z2

in each graph that satisfy these properties. Since the path P is guaranteed to be one

of the pairs, and no spurious path will be identified, the minimum weight cycle can

be identified. We now fill in the details.

Lemma 2.4.4. Let C = 〈v1, v2, . . . , vl〉 be a minimum weight cycle in G and let

(vp, vp+1) be its critical edge with respect to the start vertex v1. W.l.o.g. assume that

dG(v1, vp) ≥ dG(v1, vp+1). Then there exists an i ∈ {1, . . . , dlog ne}, j ∈ {0, 1} and

k ∈ {1, 2, . . . , dlog ρe} such that the following conditions hold:

(i) dGi,j,k(v11, v
2
p) + dG(v1, vp) = w(C)

(ii) LastGi,j,k(v11, v
2
p) 6= LastG(v1, vp)

(iii) dGi,j,k(v11, v
2
p) ≤ dG(v1, vp) + Wmax

2k−1

Proof. Let i, j and k be such that: vp−1 and vp+1 differ on i-th bit and j be the i-th

bit of vp+1 and k be such that Wmax

2k
< w(vp, vp+1) ≤ Wmax

2k−1 . Hence, edge (v1p−1, v
2
p)

is not present and the edge (v1p+1, v
2
p) is present in Gi,j,k and so LastGi,j,k(v11, v

2
p) 6=

LastG(v1, vp), satisfying part 2 of the lemma.

Let us map the path P in Observation 2.4.3 to the path P ′ in Gi,j,k, such that

all vertices except vp are mapped to V1 and vp is mapped to V2 (bold path from v11 to

v2p in Figure 2.3b). Then, if P ′ is a shortest path from v11 to v2p in Gi,j,k, both parts 1

and 3 of the lemma will hold. So it remains to show that P ′ is a shortest path. But

if not, an actual shortest path from v11 to v2p in Gi,j,k would create a shorter cycle

in G than C, and if that cycle were not simple, one could extract from it an even

shorter cycle, contradicting the fact that C is a minimum weight cycle in G.

27

v1

vp−1

vp

vp+1

G

(a) MWC C in G. Shortest path
from v1 to vp is highlighted.

v11(y1)

v1p−1

v2p(z
2)

v1p+1

• i, j, k are such that:
1. i-th bit of vp+1(vp−1) is
j(j)
2. Wmax/2

k < w(vp, vp+1) ≤
Wmax/2

k−1.
• Alg. MWC-to-APSP’ will
compute w(C) in this
Gi,j,k in wt (line 6)

Gi,j,k

(b) Shortest path from
y1 to z2 in Gi,j,k.

Figure 2.3: Here Figure (a) represent the MWC C in G. The path πy,z (in bold) is
the shortest path from y to z in G. The path πy1,z2 (in bold) in Figure (b) is the
shortest path from y1 to z2 in Gi,j,k: where the edge (v1p−1, v

2
p) is absent due to i, j

bits. The paths πy,z in G and πy1,z2 in Gi,j,k together comprise the MWC C.

28

Lemma 2.4.5. If there exists i ∈ {1, . . . , dlog ne}, j ∈ {0, 1}, k ∈ {1, 2, . . . , dlog ρe},

and y, z ∈ V such that the following conditions hold:

(i) dGi,j,k(y1, z2) + dG(y, z) = wt for some wt

(ii) LastGi,j,k(y1, z2) 6= LastG(y, z)

(iii) dGi,j,k(y1, z2) ≤ dG(y, z) + Wmax

2k−1

Then G has a simple cycle of weight at most wt that contains z.

Proof. Let πy,z be a shortest path from y to z in G (see Figure 2.3a) and let πy1,z2

be a shortest path from y1 to z2 in Gi,j,k (Figure 2.3b). Let π′y,z be the path

corresponding to πy1,z2 in G.

Now we need to show that the path π′y,z is simple. Assume that π′y,z is not

simple. It implies that the path πy1,z2 must contain x1 and x2 for some x ∈ V . Now

if x 6= z, then we can remove the subpath from x1 to x2 (or from x2 to x1) to obtain

an even shorter path from y1 to z2.

It implies that the path πy1,z2 contains z1 as an internal vertex. Let πz1,z2

be the subpath of πy1,z2 from vertex z1 to z2. If πz1,z2 contains at least 2 internal

vertices then this would be a simple cycle of weight less than wt, and we are done.

Otherwise, the path πz1,z2 contains exactly one internal vertex (say x1). Hence path

πz1,z2 corresponds to the edge (z, x) traversed twice in graphG. But the weight of the

edge (x, z) must be greater than Wmax

2k
(as the edge (x1, z2) is present inGi,j,k). Hence

w(πz1,z2) > Wmax

2k−1 and hence dGi,j,k(y1, z2) ≥ dG(y, z) +w(πz1,z2) > dG(y, z) + Wmax

2k−1 ,

resulting in a contradiction as condition 3 states otherwise. (It is for this property

that the index k in Gi,j,k is used.) Thus path πy1,z2 does not contain z1 as an internal

vertex and hence π′y,z is simple.

If the paths πy,z and π′y,z do not have any internal vertices in common, then

πy,z ◦ π
′
y,z corresponds to a simple cycle C in G of weight wt that passes through y

29

and z. Otherwise, we can extract from πy,z ◦ π
′
y,z a cycle of weight smaller than wt.

This establishes the lemma.

Proof of Theorem 2.3.2: To compute the weight of a minimum weight cycle in G

in Õ(n2 + TAPSP), we use procedure MWC-to-APSP. By Lemmas 2.4.4 and 2.4.5,

the value wt returned by this algorithm is the weight of a minimum weight cycle in

G.

An Õ(Wmax · nω) time algorithm for MWC with small integer weights is

given in [79]. By using the Õ(Wmax.n
ω) algorithm for APSP with small integer edge

weights [83], Alg. MWC-to-APSP gives a simpler Õ(Wmax · nω) time algorithm for

this problem.

Sparse Reduction to APSD:We now describe how to avoid using the Lastmatrix

in the reduction. A 2-approximation algorithm for finding a cycle of weight at most

2t, where t is such that the minimum-weight cycle’s weight lies in the range (t, 2t],

as well as distances between pairs of vertices within distance at most t, was given

by Lingas and Lundell [67]. This algorithm can also compute the last edge on each

shortest path it computes, and its running time is Õ(n2 log(nρ)). For a minimum

weight cycle C = 〈v1, v2, . . . , vl〉 where the edge (vp, vp+1) is a critical edge with

respect to the start vertex v1, the shortest path length from v1 to vp or to vp+1 is at

most t. Thus using this algorithm, we can compute the last edge on a shortest path

for such pair of vertices in Õ(n2 log(nρ)) time.

In our reduction to APSD, we first run the 2-approximation algorithm on the

input graph G to obtain the Last(y, z) for certain pairs of vertices. Then, in Step

5 we check if LastGi,j,k(y1, z2) 6= LastG(y, z) only if LastG(y, z) has been computed

(otherwise the current path is not a candidate for computing a minimum weight

cycle). It appears from the algorithm that the Last values are also needed in the

Gi,j,k. However, instead of computing the Last values in each Gi,j,k, we check for the

30

shortest path from y to z only in those Gi,j,k graphs where the LastG(y, z) has been

computed, and the edge is not present in Gi,j,k. In other words, if Last(y, z) = q,

we will only consider the shortest paths from y1 to z2 in those graphs Gi,j,k where

q’s i-th bit is not equal to j. Thus our reduction to APSD goes through without

needing APSP to output the Last matrix. This gives rise to an improved algorithm

for MWC with small integer weights.

2.4.2 Reducing ANSC to APSP in Unweighted Undirected Graphs

For our sparse Õ(n2) reduction from ANSC to APSP in unweighted undirected

graphs, we use the graphs from the previous section, but we do not use the index k,

since the graph is unweighted.

Our reduction exploits the fact that in unweighted graphs, every edge in a

cycle is a critical edge with respect to some vertex. Thus we construct 2dlog ne

graphs Gi,j , and in order to construct a shortest cycle through vertex z in G, we

will set z = v2p in the reduction in the previous section. Then, by letting one of the

two edges incident on z in the shortest cycle through z be the critical edge for the

cycle, the construction from the previous section will allow us to find the length of a

minimum length cycle through z, for each z ∈ V , with the post-processing algorithm

ANSC-to-APSP.

ANSC-to-APSP
1: for each vertex z ∈ V do wt[z]←∞
2: for 1 ≤ i ≤ dlog ne, j ∈ {0, 1} do
3: Compute APSP′ on Gi,j,
4: for y, z ∈ V do
5: if dGi,j,(y

1, z2) ≤ dG(y, z) + 1 then
6: Check if LastGi,j,(y1, z2) 6= LastG(y, z)

7: if both checks in Steps 5-6 hold then
8: wt[z]← min(wt[z], dGi,j,(y

1, z2) + dG(y, z))

9: return wt array

31

Correctness of the above sparse reduction follows from the following two lem-

mas, which are similar to Lemmas 2.4.4 and 2.4.5.

Lemma 2.4.6. Let C = 〈z, v2, v3, . . . , vq〉 be a minimum length cycle passing through

vertex z ∈ V . Let (vp, vp+1) be its critical edge such that p = b q2c + 1. Then there

exists an i ∈ {1, . . . , dlog ne} and j ∈ {0, 1} such that the following conditions hold:

(i) dGi,j (v
1
p, z

2) + dG(vp, z) = len(C)

(ii) LastGi,j (v
1
p, z

2) 6= LastG(vp, z)

(iii) dGi,j (v
1
p, z

2) ≤ dG(vp, z) + 1

Lemma 2.4.7. If there exists an i ∈ {1, . . . , dlog ne} and j ∈ {0, 1} and y, z ∈ V

such that the following conditions hold:

(i) dGi,j (y
1, z2) + dG(y, z) = q for some q where dG(y, z) = b q2c

(ii) LastGi,j (y
1, z2) 6= LastG(y, z)

(iii) dGi,j (y
1, z2) ≤ dG(y, z) + 1

Then there exists a simple cycle C passing through z of length at most q in G.

Proof of Theorem 2.3.3: We now show that the entries in the wt array returned

by the above algorithm correspond to the ANSC output for G. Let z ∈ V be an

arbitrary vertex in G and let q = wt[z]. Let y′ be the vertex in Step 5 for which we

obtain this value of q. Hence by Lemma 2.4.7, there exists a simple cycle C passing

through z of length at most q in G. If there were a cycle through z of length q′ < q

then by Lemma 2.4.6, there exists a vertex y′′ such that conditions in Step 5 hold

for q′, and the algorithm would have returned a smaller value than wt[z], which is

a contradiction. This is a sparse Õ(n2) reduction since it makes O(log n) calls to

APSP, and spends Õ(n2) additional time.

32

It would be interesting to see if we can obtain a reduction from weighted

ANSC to APSD or APSP. The above reduction does not work for the weighted case

since it exploits the fact that for any cycle C through a vertex z, an edge in C that

is incident on z is a critical edge for some vertex in C. However, this property need

not hold in the weighted case.

2.4.3 Bit-Sampling

We use the bit-sampling technique in our reductions for undirected graphs: from

weighted MWC to APSP (Section 2.4.1), unweighted ANSC to unweighted APSP

(Section 2.4.2) and from weighted k-SiSC to k-SiSP (Section 2.9.1). This technique

is crucial to all of these reductions. Using this technique, we obtain a new near-

linear time algorithm for undirected k-SiSC, a new Õ(nω) algorithm for unweighted

undirected ANSC and a simpler Õ(Wmax · nω) algorithm for weighted MWC. Here

we describe how this technique is different from the ‘bit-encoding’ technique in [2]

and how it gives an explicit construction for Color Coding for 2 colors.

2.4.3.1 Bit-sampling and Color Coding

Color Coding is a method introduced by Alon, Yuster and Zwick [13]. For the special

case of 2 colors, the method constructs a collection C of O(log n) different 2-coloring

on an n-element set V , such that for every pair {x, y} in V , there is a 2-coloring

in C that assigns different colors to x and y. When the elements of V have unique

log n-bit labels, e.g., by numbering them from 0 to n− 1, our bit-sampling method

on index i (ignoring indices j and k) can be viewed as an explicit construction of

exactly dlog ne hash functions for the 2-perfect hash family: the i-th hash function

assigns to each element the i-th bit in its label as its color.

In our construction we actually use 2 log n functions (using both i and j)

since we need a stronger version of color coding where, for any pair of vertices x,

33

y, there is a hash function that assigns color 0 to x and 1 to y and another that

assigns 1 to x and 0 to y. This is needed in order to ensure that when x = vp−1 and

y = vp+1, the edge (v1p−1, v
2
p) is absent and the edge (v1p+1, v

2
p) is present. A different

variant of Color Coding with 2 colors is used in [79] in their dense reduction from

undirected MWC to Min-Wt-∆, and we do not immediately see how to apply our

bit-sampling technique there.

Our bit-sampling method differs from a ‘bit-encoding’ technique used in some

reductions in [2, 1], where the objective is to preserve sparsity in the constructed

graph while also preserving paths from the original graph G = (V,E). This technique

creates paths between two copies of V by adding Θ(log n) new vertices with O(log n)

bit labels, and using theO(log n) bit labels on these new vertices to induce the desired

paths in the constructed graph. The bit-encoding technique (from [2]) is useful for

certain types of reductions, and we use it in our sparse reduction from 2-SiSP to

Radius in Section 2.5, and from 2-SiSP to BC in Section 2.6.

The bit-sampling technique we use in our reduction here is different from this

bit-encoding technique. Here the objective is to selectively sample the edges from

the original graph to be placed in the reduced graph, based on the bit-pattern of the

end points and the edge weight. In our construction, we create Θ(log n) different

graphs, where in each graph the copies of V are connected by single-edge paths,

without requiring additional intermediate vertices.

In Section 2.9.1, we give another application of our bit-sampling technique

to obtain a new near-linear time algorithm for k-SiSC in undirected graphs (see

definition in Section 2.2). Note that this problem is not in the mn class and this

result is relevant here as an application of our new bit-sampling technique.

34

v0(s) v1 v2
v3(t)G

z0o
z1o z2o

z2i

z0i z1i
0

0

dG(v1, t)

0 0

dG(s, v1) dG(v2, t)

0

dG(s, v2) 0

0

y0o
y0i

y1o y1i y2o y2i
0 0 0

A B

C1,0 C1,1

C2,0 C2,1

Figure 2.4: G′′ for l = 3. The gray and the bold edges have weight 11
9 M

′ and 1
3M

′

respectively. All the outgoing (incoming) edges from (to) A have weight 0 and the
outgoing edges from B have weight M ′.

2.5 Weighted Directed Graphs

2.5.1 Reducing 2-SiSP to Radius and s-t Replacement Paths to

Eccentricities

A sparse O(n2) reduction from 2-SiSP to APSP was given in [41]. Our sparse

reduction from 2-SiSP to Radius refines this result and the sub-mn partial order by

plugging the Radius and Eccentricities problems within the sparse reduction chain

from 2-SiSP to APSP. Also, in Section 2.5.2 we show MWC ≤sprssprssprs
m+n 2-SiSP, thus

establishing MWC-hardness for both 2-SiSP and Radius. Our 2-SiSP to Radius

reduction here is unrelated to the sparse reduction in [41] from 2-SiSP to APSP.

The input is G = (V,E,w), with source s and sink t in V , and a shortest

path P (s = v0 → v1 vl−1 → vl = t). We need to compute a second simple s-t

shortest path. Figure 2.4 gives an example of our reduction to an input G′′ to the

Radius problem for l = 3. Our reduction differs from a sub-cubic reduction from

Min-Wt-∆ to Radius in [2] which transforms minimum weight triangle to Radius by

35

creating a 4-partite graph. However, since Min-Wt-∆ can be solved in O(m3/2) time

this is not relevant to us. Instead, we give a more complex reduction from 2-SiSP

where the second shortest path can have Θ(n) edges and hence we cannot start with

a k-partite graph for some constant k.

In G′′ we first map every edge (vj , vj+1) lying on P to the vertices zjo and zji

such that the shortest path from zjo to zji corresponds to the shortest path from s

to t avoiding the edge (vj , vj+1). We then add vertices yjo and yji in the graph and

connect them to vertices zjo and zji by adding edges (yjo , zjo) and (yji , zji), and then

additional edges from yjo to other yko and yki vertices such that the longest shortest

path from yjo is to the vertex yji , which in turn corresponds to the shortest path from

zjo to zji . In order to preserve sparsity, we have an interconnection from each yjo

vertex to all yki vertices (except for k = j) with a sparse construction by using 2 log n

additional vertices Cr,s in a manner similar to a bit-encoding technique used in [2] in

their reduction from Min-Wt-∆ to Betweenness Centrality (this technique however,

is different from the new ‘bit-sampling’ technique used in Section 2.4), and we have

two additional vertices A,B with suitable edges to induce connectivity among the

yjo vertices. In our construction, we ensure that the center is one of the yjo vertices

and hence computing the Radius in the reduced graph gives the minimum among all

the shortest paths from zjo to zji . This corresponds to a shortest replacement path

from s to t.

Lemma 2.5.1. In weighted directed graphs, 2-SiSP .sprssprssprs
m+n Radius and s-t Replace-

ment Paths .sprssprssprs
m+n Eccentricities

Proof. We are given an input graph G = (V,E), a source vertex s and a sink/target

vertex t and we wish to compute the second simple shortest path from s to t. Let P

(s = v0 → v1 vl−1 → vl = t) be the shortest path from s to t in G.

Constructing the reduced graph G′′: We first create the graph G′, which contain G

and l additional vertices z0,z1,. . .,zl−1. We remove the edges lying on P from G′.

36

For each 0 ≤ i ≤ l− 1, we add an edge from zi to vi of weight dG(s, vi) and an edge

from vi+1 to zi of weight dG(vi+1, t). Also for each 1 ≤ i ≤ l − 1, we add a zero

weight edge from zi to zi−1.

Now form G′′ from G′. For each 0 ≤ j ≤ l − 1, we replace vertex zj by

vertices zji and zjo and we place a directed edge of weight 0 from zji to zjo , and we

also replace each incoming edge to (outgoing edge from) zj with an incoming edge

to zji (outgoing edge from zjo) in G′.

Let Wmax be the largest edge weight in G and let M ′ = 9nWmax. For each

0 ≤ j ≤ l− 1, we add additional vertices yji and yjo and we place a directed edge of

weight 0 from yjo to zjo and an edge of weight 11
9 M

′ from zji to yji .

We add 2 additional vertices A and B, and we place a directed edge from A

to B of weight 0. We also add l incoming edges to A (outgoing edges from B) from

(to) each of the y′jos of weight 0 (M ′).

We also add edges of weight 2M ′

3 from yjo to yki (for each k 6= j). But due to

the addition of O(n2) edges, graph G′ becomes dense. To solve this problem, we add

a gadget in our construction that ensures that ∀0 ≤ j ≤ l − 1, we have at least one

path of length 2 and weight equal to 2M ′

3 from yjo to yki (for each k 6= j) (similar to

[2]). In this gadget, we add 2dlog ne vertices of the form Cr,s for 1 ≤ r ≤ dlog ne and

s ∈ {0, 1}. Now for each 0 ≤ j ≤ l − 1, 1 ≤ r ≤ dlog ne and s ∈ {0, 1}, we add an

edge of weight M ′

3 from yjo to Cr,s if j′s r-th bit is equal to s. We also add an edge of

weight M ′

3 from Cr,s to yji if j’s r-th bit is not equal to s. So overall we add 2n log n

edges that are incident to Cr,s vertices; for each yjo we add log n outgoing edges to

Cr,s vertices and for each yji we add log n incoming edges from Cr,s vertices.

We can observe that for 0 ≤ j ≤ l − 1, there is at least one path of weight
2M ′

3 from yjo to yki (for each k 6= j) and the gadget does not add any new paths

from yjo to yji . The reason is that for every distinct j, k, there is at least one bit

(say r) where j and k differ and let s be the r-th bit of j. Then there must be an

37

edge from yjo to Cr,s and an edge from Cr,s to yki , resulting in a path of weight 2M ′

3

from yjo to yki . And by the same argument we can also observe that this gadget

does not add any new paths from yjo to yki .

We call this graph as G′′. Figure 2.4 depicts the full construction of G′′ for

l = 3. We now establish the following three properties.

(i) For each 0 ≤ j ≤ l−1, the longest shortest path in G′′ from yjo is to the vertex yji.

It is easy to see that the shortest path from yjo to any of the vertices in G or any of

the z’s has weight at most nWmax. And the shortest paths from yjo to the vertices A

and B have weight 0. For k 6= j, the shortest path from yjo to yko and yki has weight

M ′ and 2
3M

′ respectively. Whereas the shortest path from yjo to yji has weight at

least 10nWmax as it includes the last edge (zji , yji) of weight 11
9 M

′ = 11nWmax. It

is easy to observe that the shortest path from yjo to yji corresponds to the shortest

path from zjo to zji .

(ii) The shortest path from zjo to zji corresponds to the replacement path for the

edge (vj , vj+1) lying on P . Suppose not and let Pj (s vh vk t) (where

vh is the vertex where Pj separates from P and vk is the vertex where it joins P)

be the replacement path from s to t for the edge (vj , vj+1). But then the path πj

(zjo → zj−1i zho → vh ◦ Pj(vh, vk) ◦ vk → zki → zko zji) (where Pj(vh, vk) is

the subpath of Pj from vj to vk) from zjo to zji has weight equal to wt(Pj), resulting

in a contradiction as the shortest path from zjo to zji has weight greater than that

of Pj .

(iii) One of the vertices among yjo’s is a center of G′′. It is easy to see that none

of the vertices in G could be a center of the graph G′′ as there is no path from any

v ∈ V to any of the yjo ’s in G′′. Using a similar argument, we can observe that

none of the z’s, or the vertices yji ’s could be a potential candidate for the center of

G′′. For vertices A and B, the shortest path to any of the yji ’s has weight exactly
5
3M

′ = 15nWmax, which is strictly greater than the weight of the largest shortest

38

path from any of the yjo ’s. Thus one of the vertices among yjo ’s is a center of G′′.

Thus by computing the radius in G′′, from (i), (ii), and (iii), we can compute

the weight of the shortest replacement path from s to t, which by definition of 2-SiSP,

is the second simple shortest path from s to t. This completes the proof of 2-SiSP

.sprssprssprs
m+n Radius.

Now, if instead of computing Radius in G′′ we compute the Eccentricities

of all vertices in G′′, then from (i) and (ii) we can compute the weight of the

replacement path for every edge (vj , vj+1) lying on P , thus solving the replacement

paths problem. So s-t Replacement Paths .sprssprssprs
m+n Eccentricities.

Constructing G′′ takes O(m + n log n) time since we add O(n) additional

vertices and O(m + n log n) additional edges, and given the output of Radius (Ec-

centricities), we can compute 2-SiSP (s-t Replacement Paths) in O(1) (O(n)) time

and hence the cost of both reductions is O(m+ n log n).

2.5.2 Directed ANSC and Replacement Paths

We first describe a sparse reduction from directed MWC to 2-SiSP, which we will

use for reducing ANSC to the s-t replacement paths problem. This reduction is

adapted from a sub-cubic non-sparse reduction from Min-Wt-∆ to 2-SiSP in [91].

The reduction in [91] reduces Min-Wt-∆ to 2-SiSP by creating a tripartite graph.

Since starting from Min-Wt-∆ is not appropriate for our results (as discussed in our

sparse reduction to directed Radius), we start instead from MWC, and instead of

the tripartite graph used in [91] we use the original graph G with every vertex v

replaced with 2 copies, vi and vo.

In this reduction, as in [91], we first create a path of length n with vertices

labeled from p0 to pn, which will be the initial shortest path. We then map every

edge (pi, pi+1) to the vertex i in the original graph G such that the replacement

path from p0 to pn for the edge (pi, pi+1) corresponds to the shortest cycle passing

39

1o 1i

2o 2i

3o 3i

p0 p1 p2 p3

G′

0 0 0

3W

2W

W

W

2W

3W

Figure 2.5: G′′ for n = 3 in the reduction: MWC ≤sprssprssprs
m+n 2-SiSP

through i in G. Thus computing 2-SiSP (i.e., the shortest replacement path) from

p0 to pn in the constructed graph corresponds to the minimum weight cycle in the

original graph. Figure 2.5 gives an example of the constructed graph for n = 3.

Lemma 2.5.2. In weighted directed graphs, MWC ≤sprssprssprs
m+n 2-SiSP

Proof. To compute MWC in G, we first create the graph G′, where we replace every

vertex z by vertices zi and zo, and we place a directed edge of weight 0 from zi to

zo, and we replace each incoming edge to (outgoing edge from) z with an incoming

edge to zi (outgoing edge from zo). We also add a path P (p0 → p1 pn−1 → pn)

of length n and weight 0.

Let Q = n·Wmax , whereWmax is the maximum weight of any edge in G. For

each 1 ≤ j ≤ n, we add an edge of weight (n− j + 1)Q from pj−1 to jo and an edge

of weight jQ from ji to pj in G′ to form G′′. Figure 2.5 depicts the full construction

of G′′ for n = 3. This is an (m + n) reduction, and it can be seen that the second

40

v0 = s
v1 v2

v3 = t

G

z0 z1 z2

0

dG(v1, t)

0

dG(s, v1) dG(v2, t)

0

dG(s, v2)

0

Figure 2.6: G′ for l = 3 in the reduction: directed s-t Replacement Paths ≤sprssprssprs
m+n

ANSC

simple shortest path from p0 to pn in G′′ corresponds to a minimum weight cycle in

G.

We now establish the equivalence between ANSC and the s-t replacement

paths problem under (m+n)-reductions by first showing an (m+n)-sparse reduction

from s-t replacement paths problem to ANSC. We then describe a sparse reduction

from ANSC to the s-t replacement paths problem, which is similar to the reduction

from MWC to 2-SiSP.

Lemma 2.5.3. In weighted directed graphs, s-t replacement paths ≡sprssprssprs
m+n ANSC

Proof. We are given an input graph G = (V,E), a source vertex s and a sink vertex t

and we wish to compute the replacement paths for all the edges lying on the shortest

path from s to t. Let P (s = v0 → v1 vl−1 → vl = t) be the shortest path from s

to t in G.

(i) Constructing G′: We first create the graph G′, as described in the proof of

Lemma 2.5.1. Figure 2.6 depicts the full construction of G′ for l = 3.

(ii) We now show that for each 0 ≤ i ≤ l − 1, the replacement path from s to t for

the edge (vi, vi+1) lying on P has weight equal to the shortest cycle passing through

zi. If not, assume that for some i (0 ≤ i ≤ l − 1), the weight of the replacement

41

path from s to t for the edge (vi, vi+1) is not equal to the weight of the shortest cycle

passing through zi.

Let Pi (s vj vk t) (where vj is the vertex where Pi separates from

P and vk is the vertex where it joins P) be the replacement path from s to t for

the edge (vi, vi+1) and let Ci (zi zp → vp vq → zq zi) be the shortest cycle

passing through zi in G′.

If wt(Pi) < wt(Ci), then the cycle C ′i (zi → zi−1 zj → vj ◦Pi(vj , vk)◦vk →

zk → zk−1 zi) (where Pi(vj , vk) is the subpath of Pi from vj to vk) passing through

zi has weight equal to wt(Pi) < wt(Ci), resulting in a contradiction as Ci is the

shortest cycle passing through zi in G′.

Now if wt(Ci) < wt(Pi), then the path P ′i (s vp◦Ci(vp, vq)◦vq vl) where

Ci(vp, vq) is the subpath of Ci from vp to vq, is also a path from s to t avoiding the

edge (vi, vi+1), and has weight equal to wt(Ci) < wt(Pi), resulting in a contradiction

as Pi is the shortest replacement path from s to t for the edge (vi, vi+1).

We then compute ANSC in G′. And by (ii), the shortest cycles for each of

the vertices z0, z1, . . . , zl−1 gives us the replacement paths from s to t. This leads to

an (m+ n) sparse reduction from s-t replacement paths problem to ANSC.

Now for the other direction, we are given an input graph G = (V,E) and

we wish to compute the ANSC in G. We first create the graph G
′′ , as described

in Lemma 2.5.2. We can see that the shortest path from p0 to pn avoiding edge

(pj−1, pj) corresponds to a shortest cycle passing through j in G. This gives us an

(m+ n)-sparse reduction from ANSC to s-t replacement paths problem.

2.6 Betweenness Centrality: Reductions

In this section, we consider sparse reductions for Betweenness Centrality and related

problems. In its full generality, the Betweenness Centrality of a vertex v is the sum,

across all pairs of vertices s, t, of the fraction of shortest paths from s to t that

42

contain v as an internal vertex. This problem has a Õ(mn) time algorithm due to

Brandes [21]. Since there can be an exponential (in n) number of shortest paths

from one vertex to another, this general problem can deal with very large numbers.

In [2], a simplified variant was considered, where it is assumed that there is a unique

shortest path for each pair of vertices, and the Betweenness Centrality of vertex v,

BC(v), is defined as the number of vertex pairs s, t such that v is an internal vertex

on the unique shortest path from s to t. We will also restrict our attention to this

variant here.

A number of sparse reductions relating to the following problems were given

in [2].

• Betweenness Centrality (BC) of a vertex v, BC(v).

• Positive Betweenness Centrality (Pos BC) of v: determine whether BC(v) > 0.

• All Nodes Betweenness Centrality (ANBC): compute, for each v, the value of

BC(v).

• Positive All Nodes Betweenness Centrality (Pos ANBC): determine, for each

v, whether BC(v) > 0.

• Reach Centrality (RC) of v: compute

maxs,t∈V :dG(s,v)+dG(v,t)=dG(s,t) min(dG(s, v), dG(v, t)).

Figure 2.7 gives an overview of the previous fine-grained results given in [2]

for Centrality problems. In this figure, BC is the only centrality problem that is

known to be sub-cubic equivalent to APSP, and hence is shaded in the figure (along

with Min-Wt-∆). None of these sparse reductions in [2] imply MWC hardness for

any of the centrality problems since Diameter is not MWC-hard (or even sub-cubic

equivalent to APSP), and Min-Wt-∆ has an Õ(m3/2) time algorithm, and so will

give a sub-mn algorithm for MWC if it is MWC-hard. On other hand, Diameter

43

RC Diameter Pos BC Pos ANBC

BC ANBC

Min-Wt-∆

Figure 2.7: Known sparse reductions for centrality problems, all from [2]. The
regular edges represent sparse O(m + n) reductions, the squiggly edges represent
tilde-sparse O(m+n) reductions, and the dashed edges represent reductions that are
trivial. BC and Min-Wt-∆ (shaded with gray) are known to be sub-cubic equivalent
to APSP [2, 91].

MWC

2SiSP
≡sprssprssprs
m+n

2SiSC
[6]

replacement
paths

ANSC

Pos
ANBC ANBC

Radius Eccentricities APSP

BC

n2
n2

Figure 2.8: Sparse reductions for weighted directed graphs. The regular edges repre-
sent sparse O(m+n) reductions, the squiggly edges represent tilde-sparse O(m+n)
reductions, and the dashed edges represent reductions that are trivial. All problems
except APSP are MWCC-hard. Eccentricities, BC, ANBC and Pos ANBC are also
SETH/ k-DSH hard. ANBC and Pos ANBC (problems inside the dashed circles)
are both not known to be subcubic equivalent to APSP. BC and Eccentricities (in
bold) are MWC-hard, sub-cubic equivalent to APSP and SETH/k-DSH hard.

is known to be both SETH-hard [78] and k-DSH Hard (Section 2.7) and hence all

these problems in Figure 2.7 (except Min-Wt-∆) are also SETH and k-DSH hard.

In this section, we give a sparse reduction from 2-SiSP to BC, establishing

MWC-hardness for BC. We also give a tilde-sparse reduction from ANSC to Pos

ANBC, and thus we have MWC-hardness for both Pos ANBC and for ANBC, though

neither problem is known to be in the sub-cubic equivalence class. (Both have Õ(mn)

time algorithms, and have APSP-hardness under sub-cubic reductions.)

Figure 2.8 gives an updated partial order of our sparse reductions for weighted

directed graphs; this figure augments Figure 2.1 by including the sparse reductions

44

v0(s)
v1 v2

v3(t)G

z0o
z1o z2o

z2i

z0i z1i
0

0

dG(v1, t)

0 0

dG(s, v1) dG(v2, t)

0

dG(s, v2) 0

0
y0o

y0i
y1o y1i y2o y2i

0 0 0

A

C1,0 C1,1

C2,0 C2,1

Figure 2.9: G′′ for l = 3 in the reduction: directed 2-SiSP .sprssprssprs
m+n Betweenness

Centrality. The gray and the bold edges have weight M ′ and 1
3M

′ respectively. All
the outgoing (incoming) edges from (to) A have weight M ′ + q (0). Here M ′ =
9nWmax where Wmax is the largest edge weight in G and q is some value in the
range from 0 to nWmax.

for BC problems given in this section.

2.6.1 2-SiSP to BC

Our sparse reduction from 2-SiSP to BC is similar to the reduction from 2-SiSP to

Radius described in Section 2.5. The input is G = (V,E,w), with source s and sink

t in V , and a shortest path P (s = v0 → v1 vl−1 → vl = t). We need to compute

a second simple s-t shortest path. Figure 2.9 gives an example of our reduction to

an input G′′ to the BC problem for l = 3.

In our reduction, we first map every edge (vj , vj+1) to new vertices yjo and yji

such that the shortest path from yjo to yji corresponds to the replacement path from

s to t for the edge (vj , vj+1). We then add an additional vertex A and connect it to

vertices yjo ’s and yji ’s. We also ensure that the only shortest paths passing through

A are from yjo to yji . We then do binary search on the edge weights for the edges

45

going from A to yji ’s with oracle calls to the Betweenness Centrality problem, to

compute the weight of the shortest replacement path from s to t, which by definition

of 2-SiSP, is the second simple shortest path from s to t.

Lemma 2.6.1. In weighted directed graphs, 2-SiSP .sprssprssprs
m+n BC

Proof. We are given an input graph G = (V,E), a source vertex s and a sink/target

vertex t and we wish to compute the second simple shortest path from s to t. Let P

(s = v0 → v1 vl−1 → vl = t) be the shortest path from s to t in G.

(i) Constructing G′′: We first construct the graph G′′, as described in the proof of

Lemma 2.5.1, without the vertices A and B. For each 0 ≤ j ≤ l − 1, we change

the weight of the edge from zji to yji to M ′ (where M ′ = 9nWmax and Wmax is the

largest edge weight in G).

We add an additional vertex A and for each 0 ≤ j ≤ l−1, we add an incoming

(outgoing) edge from (to) yjo (yji). We assign the weight of the edges from yjo ’s to

A as 0 and from A to yji ’s as M ′ + q (for some q in the range 0 to nM).

Figure 2.9 depicts the full construction of G′′ for l = 3.

We observe that for each 0 ≤ j ≤ l − 1, a shortest path from yjo to yji with

(zji , yji) as the last edge has weight equal to M ′ + dG′′(zjo , zji).

(ii) We now show that the Betweenness Centrality of A, i.e. BC(A), is equal to l

iff q < dG′′(zjo , zji) for each 0 ≤ j ≤ l − 1. The only paths that passes through the

vertex A are from vertices yjo ’s to vertices yji ’s. For j 6= k, as noted in the proof

of Lemma 2.5.1, there exists some r, s such that there is a path from yjo to yki that

goes through Cr,s and has weight equal to 2
3M

′. However a path from yjo to yki has

weight M ′+ q, which is strictly greater than 2
3M

′ and hence the pairs (yjo , yki) does

not contribute to the Betweenness Centrality of A.

Now if BC(A), is equal to l, it implies that the shortest paths for all pairs

(yjo , yji) passes through A and there is exactly one shortest path for each such pair.

Hence for each 0 ≤ j ≤ l − 1, M ′ + q < M ′ + dG′′(zjo , zji). Thus q < dG′′(zjo , zji)

46

for each 0 ≤ j ≤ l − 1.

On the other hand if q < dG′′(zjo , zji) for each 0 ≤ j ≤ l − 1, then the path

from yjo to yji with (zji , yji) as the last edge has weight M ′+ dG′′(zjo , zji). However

the path from yjo to yji passing through A has weight M ′ + q < M ′ + dG′′(zjo , zji).

Hence every such pair contributes 1 to the Betweenness Centrality of A and thus

BC(A) = l.

Thus using (ii), we just need to find the minimum value of q such that

BC(A) < l in order to compute the value min0≤j≤l−1 dG′′(zjo , zji). We can find

such q by performing a binary search in the range 0 to nM and computing BC(A)

at every layer. Thus we make O(log nWmax) calls to the Betweenness Centrality

algorithm.

As observed in the proof of Lemma 2.5.3, we know that the shortest path

from zjo to zji corresponds to the replacement path for the edge (vj , vj+1) lying on

P . Thus by making O(log nWmax) calls to the Betweenness Centrality algorithm,

we can compute the second simple shortest path from s to t in G. This completes

the proof.

The cost of this reduction is O((m+ n log n) · log nWmax).

2.6.2 ANSC to Positive ANBC

We now describe a tilde-sparse reduction from the ANSC problem to the All Nodes

Positive Betweenness Centrality problem (Pos ANBC). Sparse reductions from Min-

Wt-∆ and from Diameter to Pos ANBC are given in [2]. However, Min-Wt-∆ can

be solved in O(m3/2) time, and Diameter is not known to be MWC-hard, hence

neither of these reductions can be used to show hardness of the All Nodes Positive

Betweenness Centrality problem relative to MWC hardness. (Recall that Pos ANBC

is not known to be subcubic equivalent to APSP.)

Our reduction is similar to the reduction from 2-SiSP to the Betweenness

47

Centrality problem, but instead of computing betweenness centrality through one

vertex, it computes the positive betweenness centrality values for n different nodes.

The input is G = (V,E,w) and we wish to compute the ANSC in G.

In this reduction, we first split every vertex x into vertices xo and xi such that

the shortest path from xo to xi corresponds to the shortest cycle passing through x

in the original graph. We then add additional vertices zx for each vertex x in the

original graph and connect it to the vertices xo and xi such that the only shortest

path passing through zx is from xo to xi. We then perform binary search on the edge

weights for the edges going from zx to xi with oracle calls to the Positive Betweenness

Centrality problem, to compute the weight of the shortest cycle passing through x

in G.

Lemma 2.6.2. In weighted directed graphs, ANSC .sprssprssprs
m+n Pos ANBC

Proof. We are given an input graph G = (V,E) and we wish to compute the ANSC

in G. Let Wmax be the largest edge weight in G.

(i) Constructing G′: Now we construct a graph G′ from G. For each vertex x ∈ V ,

we replace x by vertices xi and xo and we place a directed edge of weight 0 from xi

to xo, and we also replace each incoming edge to (outgoing edge from) x with an

incoming edge to xi (outgoing edge from xo) in G′. We can observe that the shortest

path from xo to xi in G′ corresponds to the shortest cycle passing through x in G.

For each vertex x ∈ V , we add an additional vertex zx in G′ and we add an

edge of weight 0 from xo to zx and an edge of weight qx (where qx lies in the range

from 0 to nWmax) from zx to xi.

Figure 2.10 depicts the full construction of G′ for n = 3.

We observe that the shortest path from xo to xi for some vertex x ∈ V passes

through zx only if the shortest cycle passing through x in G has weight greater than

qx.

(ii) We now show that for each vertex x ∈ V , Positive Betweenness Centrality of zx

48

1o 1i 2o 2i 3o 3i
G

0 0 0

z1 z2 z3

0 0 0q1 q2 q3

Figure 2.10: G′ for n = 3 in the reduction: directed ANSC .sprssprssprs
m+n Pos ANBC.

is true, i.e., BC(zx) > 0 iff the shortest cycle passing through x has weight greater

than qx. It is easy to see that the only path that pass through vertex zx is from xo

to xi (as the only outgoing edge from xi is to xo and the only incoming edge to xo

is from xi).

Now if BC(zx) > 0, it implies that the shortest path from xo to xi passes

through zx and hence the path from xo to xi corresponding to the shortest cycle

passing through x has weight greater than qx.

On the other hand, if the shortest cycle passing through x has weight greater

than qx, then the shortest path from xo to xi passes through zx. And hence BC(zx) >

0.

Then using (ii), we just need to find the maximum value of qx such that

BC(zx) > 0 in order to compute the weight of the shortest cycle passing through

x in the original graph. We can find such qx by performing a binary search in the

range 0 to nWmax and computing Positive Betweenness Centrality for all nodes at

every layer. Thus we make O(log nWmax) calls to the Pos ANBC algorithm. This

completes the proof.

The cost of this reduction is O((m+ n) · log nWmax).

49

2.7 Conditional Hardness Under k-DSH

Here we improve on a result shown in [78] that a sub-m2 algorithm for Diameter

would refute k-DSH for even values of k by showing sub-mn hardness for Diameter

for both odd and even values of k. Since Diameter trivially reduces to Eccentricities

and BC [2] and k-DSH hardness implies SETH hardness, this result also holds for

Eccentricities and BC, and relative to both k-DSH and SETH.

Lemma 2.7.1. Suppose for some constant α there is an O(mα · n2−α−ε) time algo-

rithm, for some ε > 0, for solving Diameter in an unweighted m-edge n-node graph,

either undirected or directed. Then there exists a k′ > 0 such that for all k ≥ k′, the

k-Dominating Set problem can be solved in O(nk−ε) time.

Proof. When k is even we use a construction in [78]. To determine if undirected

graph G = (V,E) has a k-dominating set we form G′ = (V ′, E′), where V ′ = V1∪V2,

with V1 containing a vertex for each subset of V of size k/2 and V2 = V . We add an

edge from a vertex v ∈ V1 to a vertex x ∈ V2 if the subset corresponding to v does

not dominate x. We induce a clique in the vertex partition V2. As shown in [78],

G′ has diameter 3 if G has a dominating set of size k and has diameter 2 otherwise,

and this gives the reduction when k is even.

If k is odd, so k = 2r+1, we make n calls to graphs derived from G′ = (V ′, E′)

as follows, where now each vertex in V1 represents a subset of r vertices in V . For

each x ∈ V let Vx be the set {x}∪{neighbors of x in G}, and let Gx be the subgraph

of G′ induced on V − Vx. If G has a dominating set D of size k that includes vertex

x then consider any partition of the remaining 2r vertices in D into two subsets of

size r each, and let u and v be the vertices corresponding to these two sets in V1.

Since all paths from u to v in Gx pass through V2 − Vx, there is no path of length

2 from u to v since every vertex in V2 − Vx is covered by either u or v. Hence the

diameter of Gx is greater than 2 in this case. But if there is no dominating set of

50

size k that includes x in G, then for any u, v ∈ V1, at least one vertex in V2 − Vx is

not covered by both u and v and hence there is a path of length 2 from u to v. If

we now compute the diameter in each of graphs Gx, x ∈ V , we will detect a graph

with diameter greater than 2 if and only if G has a dominating set of size k.

Each graph Gx has N = O(nr) vertices and M = O(nr+1) edges. If we now

assume that Diameter can be computed in time O(Mα · N2−α−ε), then the above

algorithm for k Dominating Set runs in time O(n ·Mα ·N2−α−ε) = O(n2r+1−εr+α),

which is O(nk−ε) time when k ≥ 3 + 2α
ε . The analysis is similar for k even. In the

directed case, we get the same result by replacing every edge in G′ with two directed

edges in opposite directions.

2.8 Time Bounds for Sparse Graphs

Let T (m,n) be a function which is defined for m ≥ n− 1. We will interpret T (m,n)

as a time for an algorithm on a connected graph and we will refer to T (m,n) as a

time bound for a graph problem. We now focus on formalizing the notion of a time

bound T (m,n) being smaller than another time bound T ′(m,n) for sparse graphs.

If the time bounds T (m,n) and T ′(m,n) are of the form mαnβ , then one

possible way to check if T (m,n) is smaller than T ′(m,n) is to check if the exponents

of m and n in T (m,n) are individually smaller than the corresponding exponents in

T ′(m,n). But using this approach, we would not be able to compare between time

boundsm1/2n andmn1/2. Another possible way is to use a direct extrapolation from

the single variable case and define T (m,n) to be (polynomially) smaller than T ′(m,n)

if T (mn) = O((T ′(m,n))1−ε) for some constant ε > 0. But such a definition would

completely ignore the dependence of the functions on each of their two variables.

We would want our definition to take into account the sparsity of the graph, i.e.,

as a graph becomes sparser, the smaller time bound has smaller running time. To

incorporate this idea, our definition below asks for T (m,n) to be a factor of mε

51

smaller than T ′(m,n), for some ε > 0. Further, this requirement is placed only on

sufficiently sparse graphs (and for a weakly smaller time bound, we also require a

certain minimum edge density). The consequence of this definition is that when one

time bound is not dominated by the other for all values of m, the domination needs

to hold for sufficiently sparse graphs in order for the dominated function to be a

smaller time bound for sparse graphs.

Definition 2.8.1 (Comparing Time Bounds for Sparse Graphs). Given two

time bounds T (m,n) and T ′(m,n),

(i) T (m,n) is a smaller time bound than T ′(m,n) for sparse graphs if there exist

constants γ, ε > 0 such that T (m,n) = O
(

1
mε · T

′(m,n)
)
for all values of

m = O(n1+γ).

(ii) T (m,n) is a weakly smaller time bound than T ′(m,n) for sparse graphs if

there exists a positive constant γ such that for any constant δ with γ > δ > 0,

there exists an ε > 0 such that T (m,n) = O
(

1
mε · T

′(m,n)
)
for all values of m

in the range m = O(n1+γ) and m = Ω(n1+δ).

Part (i) in above definition requires a polynomially smaller (in m) bound

for T (m,n) relative to T ′(m,n) for sufficiently sparse graphs. For example, m3

n2 is

a smaller time bound than m3/2, which in turn is a smaller time bound than mn;

m2 is a smaller time bound than n3. A time bound of n
√
m is a weakly smaller

bound than m
√
n for sparse graphs by part (ii) but not a smaller bound since the

two bounds coincide when m = O(n).

Our definition for comparing time bounds for sparse graphs is quite strong

as it allows us to compare a wide range of time bounds. For example, using this

definition we can say that n
√
m is a weakly smaller bound than m

√
n for sparse

graphs. Whereas if we use the possible approaches that we discussed before then we

would not be able to compare these two time bounds.

52

With Definition 2.8.1 in hand, the following lemma is straightforward.

Lemma 2.8.2. Let T1(m,n) = O(mα1nβ1) and T2(m,n) = O(mα2nβ2) be two time

bounds, where α1, β1, α2, β2 are constants.

(i) T1(m,n) is a smaller time bound than T2(m,n) for sparse graphs if α2 + β2 >

α1 + β1.

(ii) T1(m,n) is a weakly smaller time bound than T2(m,n) for sparse graphs if

α2 + β2 = α1 + β1, and α2 > α1.

Definition 2.8.1, in conjunction with Lemma 2.8.2 and Theorem 2.3.9, lead

to the following provable separation of time bounds for sparse graph problems in the

sub-cubic equivalence class:

Theorem 2.8.3 (Split of Time Bounds for Sparse Graphs.). Under either

SETH or k-DSH, triangle finding problems in the sub-cubic equivalence class have

algorithms with a smaller time bound for sparse graphs than any algorithm we can

design for Eccentricities.

2.9 Additional Results

2.9.1 k-SiSC Algorithm : Undirected Graphs

This section deals with an application of our bit-sampling technique to obtaining

a new near-linear time algorithm for k-SiSC in undirected graphs (see definition

below). Note that this problem is not in the mn class and this result is included

here as an application of the bit-sampling technique.

k-SiSC is the problem of finding k simple shortest cycles passing through a

vertex v. Here the output is a sequence of k simple cycles through v in non-decreasing

order of weights such that the i-th cycle in the output is different from the previous

53

i−1 cycles. The corresponding path version of this problem is known as k-SiSP and

is solvable in near linear time in undirected graphs [57].

We now use our bit-sampling technique (described in Section 2.4) to get a

near-linear time algorithm for k-SiSC, which was not previously known. We obtain

this k-SiSC algorithm by giving a tilde-sparse Õ(m+n) time reduction from k-SiSC

to k-SiSP. This reduction uses our bit-sampling technique for sampling the edges

incident to v and creates dlog ne different graphs. Here we only use index i of our

bit-sampling method.

Lemma 2.9.1. In undirected graphs, k-SiSC .sprssprssprs
(m+n) k-SiSP.

Proof. Let the input be G = (V,E) and let x ∈ V be the vertex for which we need

to compute k-SiSC. Let N (x) be the neighbor-set of x. We create dlog ne graphs

Gi = (Vi, Ei) such that ∀1 ≤ i ≤ dlog ne, Gi contains two additional vertices x0,i

and x1,i (instead of the vertex x) and ∀y ∈ N (x), the edge (y, x0,i) ∈ Ei if y’s i-th

bit is 0, otherwise the edge (y, x1,i) ∈ Ei. This is our bit-sampling method.

The construction takes O((m + n) · log n) time and we observe that every

cycle through x will appear as a path from x0,i to x1,i in at least one of the Gi.

Hence, the k-th shortest path in the collection of k-SiSPs from x0,i to x1,i in log n

Gi, 1 ≤ i ≤ dlog ne (after removing duplicates), corresponds to the k-th SiSC passing

through x.

Using the undirected k-SiSP algorithm in [57] that runs in O(k ·(m+n log n)),

we obtain an O(k log n · (m + n log n)) time algorithm for k-SiSC in undirected

graphs.

2.10 Conclusion and Open Problems

We have given an extensive collection of sparse reductions for path problems in

Õ(mn) class and have established MWC as a key problem for this class. Several

54

open problems remain of which we mention two.

Our reduction from ANSC to APSP in undirected graphs only works for the

unweighted case. An open question here is to extend this reduction to the weighted

case or to come up with an altogether different reduction.

The directed and undirected versions of most of these problems are known

to be subcubic equivalent [91]. However such an equivalence is not known for the

sparse case. For path problems, the undirected versions trivially reduces to their

directed versions though nothing is known for the reverse case. Nothing is known in

either direction for cycle problems. It will be interesting to see if one can establish

sparse reductions for these problems.

55

Chapter 3

k-Simple Shortest Paths and

Cycles

3.1 Introduction

In this work we study a related problem to computing shortest paths, known as k

simple shortest paths (k-SiSP). In Chapter 2 we showed that the 2-SiSP problem is

MWC-Hard and it cannot be solved in sub-mn time unless Minimum Weight Cycle

can be solved in sub-mn time. In this section we describe our new algorithms and

fundamentally new techniques for several problems related to finding multiple simple

shortest paths and cycles in a graph.

In the k simple shortest paths (k-SiSP) problem, given a pair of vertices s, t,

the output is a sequence of k simple paths from s to t, where the i-th path in the

collection is a shortest simple path in the graph that is not identical to any of the

i − 1 paths preceding it in the output. (Note that these k simple shortest paths

need not have the same weight.) It is noted in [30] that the k-SiSP problem is more

common than the version where a path can contain cycles.

In this work we consider the problem of generating multiple simple shortest

56

paths (SiSP) and cycles (SiSC) in a weighted directed graph under the following set-

ups: the k simple shortest paths for all pairs of vertices (k-APSiSP), k simple shortest

paths in the overall graph (k-All-SiSP), and the corresponding problem of finding

simple shortest cycles in the overall graph (k-All-SiSC). We obtained significantly

faster algorithms for k-APSiSP for small values of k, and fast algorithms, that also

appear to be the first nontrivial algorithms, for the remaining two problems for all

k ≥ 1. Implicit in our method for k-All-SiSC are new algorithms for finding k

simple shortest cycles through a specified vertex (k-SiSC) and through every vertex

(k-ANSiSC) in weighted directed graphs.

The techniques we use in our algorithms are of special interest: We use two

path extension techniques, a new method for k-APSiSP, and another for k-All-SiSP

that is related to a method used in [25] for fully dynamic APSP, but which is still

new for the context in which we use it.

Related Work For the case when the k shortest paths need not be simple, the

all-pairs version (k-APSP) was considered in the classical papers of Lawler [61, 62]

and Minieka [69]. The most efficient current algorithm for k-APSP runs the k-

SSSP algorithm in [30] on each of the n vertices in turn, leading to a bound of

O(mn + n2 log n + kn2). It was noted in Minieka [69] that the all-pairs version of

k shortest paths becomes significantly harder when simple paths are required, i.e.,

that the problem we study here, k-APSiSP, appears to be significantly harder than

k-APSP.

Even for a single source-sink pair, the problem of generating k simple shortest

paths (k-SiSP) is considerably more challenging than the unrestricted version con-

sidered in [30]. Yen’s algorithm [92] finds the k simple shortest paths for a specific

pair of vertices in O(k ·(mn+n2 log n)). This time bound was improved slightly [41],

using Pettie’s faster APSP algorithm [76], to O(k(mn+ n2 log log n)). On the other

hand, it is shown in [91] that if the second simple shortest path for a single source-

57

sink pair (i.e., k = 2 in k-SiSP) can be found in O(n3−δ) time for some δ > 0, then

APSP can also be computed in O(n3−α) time for some α > 0; the latter is a major

open problem. Thus, for dense graphs, where m = Θ(n2), we cannot expect to im-

prove the Õ(mn) bound, even for 2-SiSP, unless we solve a major and long-standing

open problem for APSP.

The k-SiSP problem is much simpler in the undirected case and is known to

be solvable in O(k(m+n log n)) time [57]. For unweighted directed graphs, Roditty

and Zwick [80] gave an Õ(km
√
n) randomized algorithm for directed k-SiSP. They

also showed that k-SiSP can be solved with O(k) executions of an algorithm for the

2-SiSP problem.

A problem related to 2-SiSP is the replacement paths problem. In the s-t

version of this problem, we need to output a shortest path from s to t when an edge

on the shortest path p is removed; the output is a collection of |p| paths, each a

shortest path from s to t when an edge on p is removed. Clearly, given a solution

to the s-t replacement paths problem, the second shortest path from s to t can be

computed as the path of minimum weight in this solution. This is essentially the

method used in all prior algorithms for 2-SiSP (and with modifications, for k-SiSP),

and thus the current fastest algorithms for 2-SiSP and replacement paths have the

same time bound. For the all-pairs case that is of interest to us, the output for the

replacement paths problem would be O(n3) paths, where each path is shortest for a

specific vertex pair, when a specific edge in its shortest path is removed. In view of

the large space needed for this output, in the all-pairs version of replacement paths,

the problem of interest is distance sensitivity oracles (DSO). Here, the output is a

compact representation from which any specific replacement path can be found with

O(1) time. The first such oracle was developed in Demetrescu et. al. [26], and it

has size O(n2 log n). The current best construction time for an oracle of this size is

O(mn log n+n2 log2 n) time for a randomized algorithm, and a log factor slower for

58

a deterministic algorithm, given in Bernstein and Karger [17]. Given such an oracle,

the output to 2-APSiSP can be computed with O(n) queries for each source-sink

pair, i.e., with O(n3) queries to the DSO.

To the best of our knowledge, for k > 1 the problem of generating k simple

shortest cycles in the overall graph in non-decreasing order of their weights (k-

All-SiSC) has not been studied before, and neither has k-SiSC (k Simple Shortest

Cycles through a given node) or k-ANSiSC (k All Nodes Simple Shortest Cycles);

for k = 1, 1-All-SiSC asks for a minimum weight cycle and 1-ANSiSC is the ANSC

problem [93], both of which can be found in Õ(mn) time, and 1-SiSC can be solved

in Õ(m + n) time. On the other hand, enumerating simple (or elementary) cycles

in no particular order — which is thus a special case of k-All-SiSC — has been

studied extensively [86, 89, 84, 53]. The first polynomial time algorithm was given

by Tarjan [84], and ran in O(kmn) time for k cycles. This result was improved to

O(k ·m+ n) by Johnson [53]. We do not expect to match this linear time result for

k-All-SiSC since it includes the minimum weight cycle problem for k = 1.

3.2 Our Results

A summary of our results is given in Table 2.1.

Computing k simple shortest paths for all pairs (k-APSiSP) in G. We came

up with a new approach to the k-APSiSP problem, which computes the sets P ∗k (x, y)

as defined below. Our method introduces the key notion of a ‘nearly k SiSP set’,

Qk(x, y), defined as follows.

Definition 3.2.1. Let G = (V,E) be a directed graph with non-negative edge weights.

For k ≥ 2, and a vertex pair x, y, let k∗ = min{r, k}, where r is the number of simple

paths from x to y in G. Then,

1. P ∗k (x, y) is the set of k∗ simple shortest paths from x to y in G

59

Problem Known Results Our Results

2-APSiSP O(n3 +mn log2 n) O(mn+ n2 log n)O(mn+ n2 log n)O(mn+ n2 log n)

(using DSO [17])

3-APSiSP Õ(mn3) [92] O(mn2 + n3 log n)O(mn2 + n3 log n)O(mn2 + n3 log n)

k-SiSC — O(k · (mn+ n2 log logn))O(k · (mn+ n2 log logn))O(k · (mn+ n2 log log n))

k-ANSiSC — O(mn+ n2 log n)O(mn+ n2 log n)O(mn+ n2 log n) if k = 2k = 2k = 2

and O(k · (mn2 + n3 log logn))O(k · (mn2 + n3 log log n))O(k · (mn2 + n3 log logn)) if k > 2k > 2k > 2

k-All-SiSC — Õ(kmn)Õ(kmn)Õ(kmn)

k-All-SiSP — Õ(k)Õ(k)Õ(k) if k < nk < nk < n and Õ(n)Õ(n)Õ(n) if k ≥ nk ≥ nk ≥ n per path

amortized, after a startup cost of O(m)O(m)O(m)

Table 3.1: Our results for directed graphs. All algorithms are deterministic. (DSO
stands for Distance Sensitivity Oracles).

2. Qk(x, y) is the set of k nearly simple shortest paths from x to y, defined as

follows. If k∗ = k and the k − 1 simple shortest paths from x to y share the

same first edge (x, a) then Qk(x, y) contains these k− 1 simple shortest paths,

together with the simple shortest path from x to y that does not start with

edge (x, a), if such a path exists. Otherwise (i.e, if either the former or latter

condition does not hold), Qk(x, y) = P ∗k (x, y).

Our algorithm for k-APSiSP first constructs Qk(x, y) for all pairs of vertices

x, y, and then uses these sets in an efficient algorithm, Compute-APSiSP, to com-

pute the P ∗k (x, y) for all x, y. The latter algorithm runs in time O(k · n2 + n2 log n)

for any k, while our method for constructing the Qk(x, y) depends on k. For k = 2

we present an O(mn+n2 log n) time method to compute the Q2(x, y) sets; this gives

a 2-APSiSP algorithm that matches Yen’s bound of O(mn+n2 log n) for 2-SiSP for

a single pair of vertices. It is also faster (by a poly-logarithmic factor) than the best

algorithm for DSO (distance sensitivity oracles) for the all-pairs replacement paths

60

problem [17]. In fact, we also show that the Q2(x, y) sets can be computed in O(n2)

time using a DSO, and hence 2-APSiSP can be computed in O(n2 log n) time plus

the time to construct the DSO.

For k ≥ 3 our algorithm to compute the Qk sets makes calls to an algorithm

for (k−1)-APSiSP, so we combine the two components together in a single recursive

method, APSiSP, that takes as input G and k, and outputs the P ∗k sets for all vertex

pairs. The time bound for APSiSP increases with k: it is faster than Yen’s method

for k = 3 by a factor of n (and hence is faster than the current fastest method by

almost a factor of n), it matches Yen for k = 4, and its performance degrades for

larger k.

If a faster algorithm can be designed to compute the Qk sets, then we can

run Compute-APSiSP on its output and hence compute k-APSiSP in additional

O(k ·n2+n2 log n) time. Thus, a major open problem left by our results is the design

of a faster algorithm to compute the Qk sets for larger values of k.

New Approach: Computing simple shortest paths without finding de-

tours. Our method for computing k-APSiSP (using the Qk(x, y) sets) extends an

existing simple path in the data structure to create a new simple path by adding a

single incoming edge. This approach differs from all previous approaches to finding k

simple paths and replacement paths. All known previous algorithms for 2-SiSP com-

pute replacement paths for every edge on the shortest path (by computing suitable

‘detours’). In fact, Hershberger et al. [46] present a lower bound for k-SiSP, exclu-

sively for the class of algorithms that use detours, by pointing out that all known

algorithms for k-SiSP compute replacement paths, and all known replacement path

algorithms use detours. In contrast, our method may enumerate and inspect paths

that are not detours, including paths with cycles. Thus our method is fundamentally

new.

Generating k simple shortest cycles and paths (k-All-SiSC, k-SiSC, k-

61

ANSiSC) and k-All-SiSP. We consider the problem of generating the k simple

shortest cycles in the graph G in non-increasing order of their weight (k-All-SiSC). In

Section 3.4 we came up with an algorithm for k-All-SiSC that runs in Õ(k ·mn) time

by generating each successive simple shortest cycle in G in Õ(mn) time. The same

algorithm can be used to enumerate all simple cycles in G in non-decreasing order of

their weights. Recall that the related problem of simply enumerating simple cycles in

a graph in no particular order was a very well-studied classical problem [86, 89, 84, 53]

until an algorithm that generates successive cycles in linear time was obtained [53].

Our algorithm does not match the linear time bound per successive cycle, but it is to

be noted that 1-All-SiSC (i.e., the problem of generating a minimum weight cycle)

is a very fundamental and well-studied problem for which the current best bound is

Õ(mn).

Our algorithm for k-All-SiSC creates a auxiliary graph on which suitable

SiSP computation can be performed to generate the desired output. Using the same

auxiliary graph, we came up with fast algorithms for k-SiSC and k-ANSiSC.

Complementing our result for k-All-SiSC, we present in Section 3.5 an al-

gorithm for k-All-SiSP that generates each successive simple path in Õ(k) time if

k < n, and in Õ(n) time if k > n, after an initial start-up cost of O(m) to find

the first path. This time bound is considerably faster than that for k-All-SiSC.

Our method, All-SiSP, is again one of extending existing paths by an edge (as is

Compute-APSiSP); it is, however, a different path extension method.

Path Extensions. We use two different path extension methods, one for k-APSiSP

and the other for k-All-SiSP. Path extensions have been used before in the hidden

paths algorithm for APSP [55] and more recently, for fully dynamic APSP [25]. Our

path extension method for k-All-SiSP is inspired by a method in [25] to compute

‘locally shortest paths’ for fully dynamic APSP. Our path extension method for

k-APSiSP appears to be new.

62

Here are the main theorems we establish for our algorithmic results. In all

cases, the input is a directed graph G = (V,E) with nonnegative edge weights.

Theorem 3.2.2. Given an integer k > 1, and the nearly simple shortest paths sets

Qk(x, y) (Definition 3.2.1) for all x, y ∈ V , Algorithm Compute-APSiSP produces

the k simple shortest paths for every pair of vertices in O(k · n2 + n2 log n) time.

Theorem 3.2.3. (i) Algorithm 2-APSiSP correctly computes 2-APSiSP in

O(mn+ n2 log n) time.

(ii) For k > 2, Algorithm APSiSP correctly computes k-APSiSP in

T (m,n, k) time, where T (m,n, k) ≤ n·T (m,n, k−1)+O(mn+n2 ·(k+log n)).

(iii) T (m,n, 3), the time bound for algorithm APSiSP for k = 3, is O(m · n2 + n3 ·

log n).

Theorem 3.2.4. (k-All-SiSC) After an initial start-up cost of O(mn + n2 log n)

time, we can compute each successive simple shortest cycle in O(mn + n2 log logn)

time. This computes k-All-SiSC.

Theorem 3.2.5. (k-All-SiSP) After an initial start-up cost of O(m) time to generate

the first path, Algorithm All-SiSP computes each succeeding simple shortest path

with the following bounds:

(i) amortized O(k + log n) time if k = O(n) and O(n+ log k) time if k = Ω(n);

(ii) worst-case O(k · log n) time if k = O(n), and O(n · log k) time if k = Ω(n).

3.3 The k-APSiSP Algorithm

In this section, we present our algorithm to compute k-APSiSP on a directed graph

G = (V,E) with non-negative edge-weight function wt. The algorithm has two main

steps. In the first step it computes the nearly k-SiSP sets Qk(x, y) for all pairs x, y.

63

In the second step it computes the exact k-SiSP sets P ∗k (x, y) for all x, y using the

Qk(x, y) sets. This second step is the same for any value of k, and we describe this

step first in Section 3.3.1. We then present efficient algorithms to compute the Qk

sets for k = 2 and k > 2.

In our algorithms we maintain the paths in each P ∗k (x, y) and Qk(x, y) set in

an array in non-decreasing order of edge-weights.

3.3.1 The Compute-APSiSP Procedure

In this section we present an algorithm, Compute-APSiSP, to compute k-APSiSP.

This algorithm takes as input, the graph G, together with the nearly k-SiSP sets

Qk(x, y), for each pair of distinct vertices x, y, and outputs the k∗ simple shortest

paths from x to y in the set P ∗k (x, y) for each pair of vertices x, y ∈ V (note that k∗,

which is defined in Definition 3.2.1, can be different for different vertex pairs x, y).

As noted above, the construction of the Qk(x, y) sets will be described in the next

section.

The right (left) subpath of a path π is defined as the path obtained by removing

the first (last) edge on π. If π is a single edge (x, y) then this path is the vertex y

(x).

Lemma 3.3.1. Suppose there are k simple shortest paths from x to y, all having

the same first edge (x, a). Then ∀i, 1 ≤ i ≤ k, the right subpath of the i-th simple

shortest path from x to y has weight equal to the weight of the i-th simple shortest

path from a to y.

Proof. By induction on k. Since subpaths of shortest paths are shortest paths, the

statement holds for k = 1. Assume the statement is true for all h ≤ k, and consider

the case when the h + 1 simple shortest paths from x to y all share the same first

edge (x, a). Inductively, the right subpath of each of the first h simple shortest

paths have the weight equal to the corresponding simple shortest paths from a to y.

64

Suppose the weight of the right subpath πa,y of the (h+ 1)-th simple shortest path

from x to y is not equal to the weight of the (h+ 1)-th simple shortest path from a

to y. Hence, if π′a,y is the (h+ 1)-th simple shortest path from a to y, we must have

wt(πa,y) > wt(π
′
a,y).

Since πxa,y is the (h+ 1)-th simple shortest path from x to y and wt(πa,y) >

wt(π
′
a,y), there exists at least one path from a to y that contains x and is also the

j-th simple shortest path from a to y, where j ≤ h+1. Let this path be π′′a,y. Let the

subpath of π′′a,y from x to y be π′′xa′,y. But then wt(π′′xa′,y) < wt(π
′′
a,y) ≤ wt(π

′
a,y) <

wt(πa,y) < wt(πxa,y). But this is a contradiction to our assumption that all the

first h + 1 simple shortest paths from x to y contains (x, a) as the first edge. This

contradiction establishes the induction step and the lemma.

Algorithm Compute-APSiSP computes the P ∗k (x, y) sets by extending an

existing path by an edge. In particular, if the k-SiSPs from x to y all use the same

first edge (x, a), then it computes the k-th SiSP by extending the k-th SiSP from

a to y (otherwise, the sets P ∗k (x, y) are trivially computed from the sets Qk(x, y)).

The algorithm first initializes the P ∗k (x, y) sets with the corresponding Qk(x, y) sets

in Step 4. In Step 5, it checks whether the shortest k − 1 paths in P ∗k (x, y) have

the same first edge and if so, by definition of Qk(x, y), this P ∗k (x, y) may not have

been correctly initialized, and may need to update its k-th shortest path to obtain

the correct output. In this case, the common first edge (x, a) is added to the set

Extensions(a, y) in Step 7. We explain this step below.

We define the k-Left Extended Simple Path (k-LESiP) πxa,y from x to y as the

path πxa,y = (x, a) ◦ πa,y, where the path πa,y is the k-th shortest path in Qk(a, y),

and ◦ denotes the concatenation operation. In our algorithm we will construct k-

LESiPs for those pairs x, y for which the k − 1 simple shortest paths all start with

the edge (x, a). The algorithm also maintains a set Extensions(a, y) for each pair

of distinct vertices a, y; this set contains those edges (x, a) incoming to a which are

65

Algorithm 1 Compute-APSiSP(G = (V,E), wt, k, {Qk(x, y),∀x, y})
1: Initialize:
2: H ← φ {H is a priority queue.}
3: for all x, y ∈ V, x 6= y do
4: P ∗k (x, y)← Qk(x, y)
5: if the k − 1 shortest paths in P ∗k (x, y) have the same first edge then
6: Let (x, a) be the first edge in the (k − 1) shortest paths in P ∗k (x, y)
7: Add (x, a) to the set Extensions(a, y)
8: if |Qk(a, y)| = k then
9: π ← the path of largest weight in Qk(a, y)

10: π′ ← (x, a) ◦ π
11: Add π′ to H with weight wt(x, a) + wt(π)

12: Main Loop:
13: while H 6= φ do
14: π ← Extract-min(H)
15: Let π = (xa, y) and π′ a path of largest weight in P ∗k (x, y)
16: if |P ∗k (x, y)| = k − 1 then
17: add π to P ∗k (x, y) and set update flag
18: else if wt(π) < wt(π′) then
19: Replace π′ with π in P ∗k (x, y) and set update flag
20: if update flag is set then
21: for all (x′, x) ∈ Extensions(x, y) do
22: Add (x′, x) ◦ π to H with weight wt(x′, x) + wt(π)

66

the first edge on all k − 1 SiSPs from x to y. In addition to adding the common

first edge (x, a) in the (k − 1) SiSPs in P ∗k (x, y) to Extensions(a, y) in Step 7, the

algorithm creates the k-LESiP with start edge (x, a) and end vertex y using the k-th

shortest path in the set P ∗k (a, y), and adds it to heap H in Steps 8-11. Let U denote

the set of P ∗k (x, y) sets which may need to be updated; these are the sets for which

the if condition in Step 5 holds.

In the main while loop in Steps 13-22, a min-weight path is extracted in each

iteration. We establish below that this min-weight path is added to the corresponding

P ∗k in Step 17 or 19 only if it is the k-th SiSP; in this case, its left extensions are

created and added to the heap H in Step 22, and we note that some of these paths

could be cyclic.

Lemma 3.3.2. Let G = (V,E) be a directed graph with non-negative edge weight

function wt, and ∀x, y ∈ V , let the set Qk(x, y) contain the nearly k-SiSPs from

x to y. Then, algorithm Compute-APSiSP correctly computes the sets P ∗k (x, y)

∀x, y ∈ V .

Proof. First, we need to show that the paths in sets P ∗k (x, y) are indeed simple.

Clearly, the paths added to P ∗k from sets Qk in Step 4 are already simple (from the

definition of Qk). So we only need to show that the paths added to P ∗k in Steps

17 and 19 are simple. To the contrary assume that some of the paths that are

added to P ∗k are non-simple. Clearly these paths must be of length greater than 1.

Let πxa,y = x → a y be the first minimum weight path extracted from H that

contains a cycle and was added to P ∗k in Step 17 or 19. Clearly, P ∗k (x, y) ∈ U and

(x, a) ∈ Extensions(a, y) and the right subpath πa,y must be in P ∗k (otherwise the

path πxa,y would never have been added to heap H in Step 11 or 22). The right

subpath πa,y must also be simple (as wt(πa,y) < wt(πxa,y)), and it must contain x

in order to create a cycle in πxa,y. Let πxa′,y (a′ 6= a) be the subpath of πa,y from x

to y. Now there are two cases depending on whether πxa,y was added to P ∗k in Step

67

17 or 19.

If πxa,y was added to P ∗k (x, y) in Step 17 and as P ∗k (x, y) ∈ U , it implies that

all k − 1 paths in Qk(x, y) have same first edge (x, a) and there is no simple path

from x to y in Qk(x, y) with some first edge (x, a′′) 6= (x, a). This is a contradiction

as the subpath πxa′,y of πa,y contains (x, a′) 6= (x, a) as its first edge.

Otherwise, let πxa′′,y ∈ Qk(x, y) (a′′ 6= a) be the path that was removed

from P ∗k in Step 19 to accommodate πxa,y. Thus, we have wt(πxa′,y) < wt(πxa,y) <

wt(πxa′′,y), which is a contradiction as πxa′′,y ∈ Qk(x, y) and is the shortest path

from x to y avoiding edge (x, a) (as the other k − 1 shortest paths in Qk(x, y) have

(x, a) as the first edge). As path πxa,y is arbitrary, hence all paths in P ∗k are simple.

Now we need to show that P ∗k (x, y) indeed contains the k∗ SiSPs from x to

y.

From the definition of Qk(x, y), it is evident that P ∗k (x, y) indeed contains the

k−1 SiSPs from x to y. We now need to show that the k-th shortest path in each of

the sets P ∗k is indeed the corresponding k-th SiSP. To the contrary assume that there

exists a P ∗k set that does not contain the correct k-th SiSP. Let πxa,y = x→ a y

be the minimum weight k-th SiSP that is not present in P ∗k . Clearly, πxa,y /∈ Qk(x, y)

(otherwise it would have been added to P ∗k (x, y) in Step 4). This implies that πxa,y

has the same first edge as that of the k−1 SiSPs from x to y and hence P ∗k (x, y) ∈ U

and (x, a) ∈ Extensions(a, y). By Lemma 3.3.1, the right subpath of πxa,y must

have weight equal to the k-th SiSP from a to y. Thus, there are at least k SiSPs

from a to y and the set P ∗k (a, y) contains all the k SiSPs from a to y. And as

(x, a) ∈ Extensions(a, y), a path π′xa,y with the k-th SiSP from a to y as the right

subpath and weight equal to wt(πxa,y) must have been added to H either in Step

11 or 22 and would have been added to P ∗k (x, y) in Step 17 or 19, resulting in a

contradiction to our assumption that P ∗k (x, y) does not contain all the k SiSPs.

Thus, P ∗k (x, y) does contain the k∗ SiSPs from x to y.

68

The time bound for Algorithm Compute-APSiSP in Theorem 3.2.2 is es-

tablished with the following sequence of simple lemmas.

Lemma 3.3.3. There are O(kn2) paths in P ∗k , and O(n2) elements across all Ex-

tensions sets.

Proof. |P ∗k (x, y)| = O(kn2) since there are at most k paths in each of the n · (n− 1)

sets P ∗k (x, y). For the second part, exactly one edge is contributed to a Extensions

set by each P ∗k (x, y) ∈ U in Step 7.

Lemma 3.3.4. Each P ∗k (x, y) set is updated at most once in the main while loop.

Proof. A path can be added to P ∗k (x, y) at most once in Step 17 since its size will

increase to k after the addition. Also, a path is added at most once in either Step 17

or Step 19 since paths are extracted from H in nondecreasing order of their weights.

Lemma 3.3.5. The number of k-LESiPs added to heap H is O(n2).

Proof. For each k-LESiP, the right subpath must be the k-th shortest path in P ∗k .

For each pair of vertices x, y ∈ V , there is at most one entry across the Extensions

sets (say edge (x, a) ∈ Extensions(a, y)) and hence at most one k-LESiP will be

added to heap H in Step 11 for pair (x, y). By lemma 3.3.4, we know that the set

P ∗k (a, y) is updated at most once and hence at most one k-LESiP will be added to

heap H for pair (x, y) in Step 22. Thus, there are only O(n2) k-LESiPs that were

added to the heap H in the algorithm.

Lemma 3.3.6. Algorithm Compute-APSiSP runs in O(kn2 + n2 log n) time.

Proof. A binary heap suffices for H. The initialization for loop in Steps 3-11 takes

O(kn2) time to initialize and inspect the P ∗k sets. It is executed at most n2 times

and, outside of the inspection of P ∗k (x, y) an iteration costs Θ(log n) time (cost for

69

insertion in heap), thus contributing O(n2 log n) to the running time. The while

loop is executed O(n2) times as by lemma 3.3.5, O(n2) elements are added to the

heap. The extract-min operation takes Θ(log n) time and hence Step 14 contributes

O(n2 log n) to the running time. Steps 15-19 takes constant time per iteration and

hence add O(n2) to the total running time. By lemma 3.3.3, Step 22 is executed

O(n2) times and contributes O(n2 log n) to the running time. Thus, the total running

time of the algorithm is O(kn2 + n2 log n).

3.3.2 Computing the Qk Sets

3.3.2.1 Computing Qk for k = 2

We now give an O(mn + n2 log n) time algorithm to compute Q2(x, y) for all pairs

x, y. This method uses the procedure fast-exclude from Demetrescu et al. [26],

which we now describe (full details of this algorithm can be found in [26]).

Given a rooted tree T , edges (u1, v1) and (u2, v2) on T are independent [26] if

the subtree of T rooted at v1 and the subtree of T rooted at v2 are disjoint. Given

the weighted directed graph G = (V,E), the SSSP tree Ts rooted at a source vertex

s ∈ V , and a set S of independent edges in Ts, algorithm fast-exclude in [26]

computes, for each edge e ∈ S, a shortest path from s to every other vertex in

G− {e}. This algorithm runs in time O(m+ n log n).

We will compute the second path in each Q2(x, y) set, for a given x ∈ V ,

by running fast-exclude with x as source, and with the set of outgoing edges

from x in the shortest path tree rooted at x, Tx, as the set S. Clearly, this set S is

independent, and hence algorithm fast-exclude will produce its specified output.

Now consider any vertex y 6= x, and let (x, a) be the first edge on the shortest path

from x to y in Tx. By its specification, fast-exclude will compute a shortest path

from x to y that avoids edge (x, a) in its output, which is the second path needed

for Q2(x, y). This holds for every vertex y ∈ V − {x}. Thus we have:

70

Lemma 3.3.7. The Q2(x, y) sets for pairs x, y can be computed in O(mn+n2 log n)

time.

This leads to the following algorithm for 2-APSiSP. Its time bound in The-

orem 3.2.3, part (i) follows from Lemma 3.3.7 and the time bound for Compute-

APSiSP given in Section 3.3.1.

Algorithm 2 2-APSiSP(G = (V,E);wt)

1: for each x ∈ V do
2: Compute a shortest path in each Q2(x, y), y ∈ V −{x} (Dijkstra with source
x)

3: Compute the second path in each Q2(x, y), y ∈ V −{x}, using fast-exclude
with source x and S = {(x, a) ∈ Tx}

4: Compute-APSiSP(G, wt, 2, {Q2(x, y),∀x, y})

The space bound is O(n2) since the Q2 sets contain O(n2) paths and the call

to Compute-APSiSP takes O(n2) space.

Computing the Q2 sets from distance sensitivity oracle. Let a DSO D

with constant query time be given. For each x, y ∈ V , let πxy be the shortest

path from x to y. The second SiSP in Q2(x, y) is the shortest path from x to

y avoiding the first edge on πxy, so we can compute the second SiSP in Q2(x, y)

by making O(1) queries to D. Thus, O(n2) queries suffice to compute the second

SiSP in all Q2(x, y) sets. A DSO with constant query time can be computed by

a randomized algorithm in O(n log n · (m + n log n)) time, and deterministically in

O(n log2 n · (m+ n log n)) time [17]. Since Compute-APSiSP runs in O(n2 log n),

this gives a Õ(mn) time algorithm for 2-APSiSP. It is not clear if we can efficiently

compute 2-APSiSP directly from a DSO, without using the Q2 sets and Compute-

APSiSP.

71

3.3.2.2 Computing Qk for k ≥ 3

Our algorithm will use the following types of sets. For each vertex x ∈ V , let Ix be

the set of incoming edges to x. Also, for a vertex x ∈ V , and vertices a, y ∈ V −{x},

let P ∗xk (a, y) be the set of k simple shortest paths from a to y in G− Ix, the graph

obtained after removing the incoming edges to x. Recall that we maintain all P ∗

and Q sets as sorted arrays.

Algorithm APSiSP(G, k) first computes the sets P ∗xk−1(a, y), for all vertices

a, y ∈ V . Then it computes each Qk(x, y) as the set of all paths in the set P ∗k−1(x, y),

together with a shortest path in
⋃
{(x,a) outgoing from x}{(x, a)◦p | p ∈ P ∗xk−1(a, y)}

(which is not present in P ∗k−1(x, y)).

Algorithm 3 APSiSP(G = (V,E), wt, k)

1: if k = 2 then
2: compute Q2 sets using algorithm in Section 3.3.2.1
3: else
4: for each x ∈ V do
5: Ix ← set of incoming edges to x
6: Call APSiSP(G− Ix, wt, k − 1) to compute P ∗xk−1(u, v) ∀u, v ∈ V
7: for each y ∈ V − {x} do
8: Qk(x, y)← P ∗xk−1(x, y)
9: for all (x, a) ∈ E do

10: counta ← number of paths in Qk(x, y) with (x, a) as the first edge
11: Let Z(x, y) =

⋃
{(x,a) outgoing from x}(x, a) ◦ P ∗xk−1(a, y)[counta + 1]

12: Qk(x, y)← Qk(x, y) ∪ { a shortest path in Z(x, y)}
13: Compute-APSiSP(G,wt, k, {Qk(x, y) ∀x, y ∈ V })

To compute the P ∗xk−1 sets, APSiSP(G,wt, k) recursively calls APSiSP(G−

Ix, wt, k − 1) n times, for each vertex x ∈ V . Once we have computed the P ∗xk−1
sets, the Qk(x, y) sets are readily computed as described in steps 8 - 12. After the

computation of Qk(x, y) sets, APSiSP(G,wt, k) calls Compute-APSiSP(G,wt, k,

{Qk(x, y)∀x, y ∈ V }) to compute the P ∗k sets, which is the output of the k-APSiSP

problem. This establishes the following lemma and part (ii) of Theorem 3.2.3.

72

Lemma 3.3.8. Algorithm APSiSP (G,wt, k) correctly computes the sets P ∗k (x, y)

∀x, y ∈ V .

Proof of Theorem 3.2.3, part (iii). The for loop starting in Step 4 is executed n

times, and for k = 3 the cost of each iteration is dominated by the call to Algorithm

2-APSiSP in Step 6, which takes O(mn+n2 log n) time. This contributes O(mn2 +

n3 log n) to the total running time. The inner for loop starting in Step 7 is executed

n times per iteration of the outer for loop, and the cost of each iteration is O(k+dx).

Summing over all x ∈ V , this contributes O(kn2 + mn) to the total running time.

Step 13 runs in O(n2 log n) time as shown in Section 3.3.1. Thus, the total running

time is O(mn2 + n3 log n).

The space bound for APSiSP is O(k2 · n2), as the P ∗k−1 and Qk sets contain

O(kn2) paths, and the recursive call to APSiSP(G−Ix, wt, k−1) needs to maintain

the P ∗r−1 and Qr sets at each level of recursion. The call to Compute-APSiSP

takes O(kn2) space as noted earlier.

k-APSiSP. The performance of Algorithm APSiSP degrades by a factor of n with

each increase in k. Thus, it matches Yen’s algorithm (applied to all-pairs) for k = 4,

and for larger values of k its performance is worse than Yen.

Since finding the P ∗k sets is at least as hard as finding the Qk sets (as long

as the running time is Ω(k · n2 + n2 log n)), it is possible that the for loop starting

in Step 4 could be replaced by a faster algorithm for finding the Qk sets, which in

turn would lead to a faster algorithm for k-APSiSP.

3.3.3 Generating k Simple Shortest Cycles

k-SiSC. This is the problem of generating the k simple shortest cycles through a

specific vertex z in G. We can reduce this problem to k-SiSP by forming G′z, where

we replace vertex z by vertices zi and zo in G′z, we place a directed edge of weight 0

73

from zi to zo, and we replace each incoming edge to (outgoing edge from) z with an

incoming edge to zi (outgoing edge from zo) in G′z. Then the k-th simple shortest

path from zo to zi in G′z can been seen to correspond to the k-th simple shortest

cycle through z in G. This gives an O(k · (mn + n2 log log n)) time algorithm for

computing k-SiSC using [41]. We also observe that we can solve k-SiSP from s to t

in G if we have an algorithm for k-SiSC: create G′ by adding a new vertex x∗ and

zero weight edges (x∗, s), (t, x∗), and then call k-SiSC for vertex x∗. Thus k-SiSP

and k-SiSC are equivalent in complexity in weighted directed graphs.

k-ANSiSC. This is the problem of generating k simple shortest cycles that pass

through a given vertex x, for every vertex x ∈ V . For k = 1 this problem can be

solved in O(mn + n2 log log n) time by computing APSP [93]. For k = 2, we can

reduce this problem to k-APSiSP by forming the graph G′ where for each vertex x,

we replace vertex x in G by vertices xi and xo in G′, we place a directed edge of

weight 0 from xi to xo, and we replace each edge (u, x) in G by an edge (uo, xi) in

G′ (and hence we also replace each edge (x, v) in G by an edge (xo, vi) in G′). For

k > 2, k-ANSiSC can be computed in O(k ·n ·(mn+n2 log logn)) time by computing

k-SiSC for each vertex.This leads to the following theorem.

Theorem 3.3.9. Let G be a directed graph with non-negative edge weights. Then,

(i) k-SiSC can be computed in O(k · (mn + n2 log log n)) time, the same time as

k-SiSP.

(ii) 2-ANSiSC can be computed in O(mn+n2 log n) time, and for k > 2, k-ANSiSC

can be computed in O(k · n · (mn + n2 log logn)) time, the same time as n

applications of k-SiSP.

74

3.4 Enumerating Simple Shortest Cycles (k-All-SiSC)

In this section we give a method to generate each successive simple shortest cycle in

G (k-All-SiSC) in Õ(m · n) time. For enumerating simple paths in non-decreasing

order of weight (k-All-SiSP), we give a faster method in Section 3.5 that uses again

a path extension method, different from the one used in Section 3.3.1.

Let the input graph be G = (V,E). From G we form the graph G′ = (V ′, E′)

as in the construction for k-ANSiSC in Section 3.3.3. We then proceed as follows.

We assume the vertices are numbered 1 through n. Our algorithm for k-All-SiSC

maintains an array A[1..n], where each A[j] contains a triple (ptrj , wj , kj); here ptrj

is a pointer to the shortest cycle, not yet generated, that contains j as the minimum

vertex (if such a cycle exists), wj is the weight of this cycle, and kj is the number

of shortest simple cycles through vertex j that have already been generated. (Note

that any given cycle is assigned to exactly one position in array A.)

Initially, we compute the entry for each A[j] by running Dijkstra’s algorithm

with source jo on the subgraph G′j of G
′ induced on V ′j = {xi, xo | x ≥ j}, to find a

shortest path p from jo to ji; we then initialize A[j] with a pointer to the cycle in G

associated with p, and with its weight, and with kj = 0.

For each k ≥ 1, we generate the k-th simple shortest cycle in G by choosing a

minimum weight cycle in array A. Let this entry be in A[r] and let κ = kr. We then

compute the (κ+ 1)-th shortest cycle through vertex r by computing the (κ+ 1)-th

shortest simple path from vertex ro to vertex ri in G′ using a k-SiSP algorithm. The

entry for A[r] is now updated to a pointer to this newly computed simple cycle and

its weight, and kr is updated to κ+ 1.

The time bound in Theorem 3.2.4 is seen by noting that the initialization

takes O(mn+n2 log n) for the n calls to Dijkstra’s algorithm. Thereafter, we generate

each new cycle in the slightly faster APSP time bound of O(mn + n2 log logn)

with the k-SiSP algorithm in [41], by maintaining the relevant information from

75

x

G

e1

e2

d1

d2

Figure 3.1: Construction of G′ for k = 3 for Lemma 3.4.1.

the computation of earlier cycles. We now show that this time bound is optimal

with respect to the Minimum Weight Cycle problem by showing that the problem of

generating the k-th simple shortest cycle in a graph after the first k − 1 cycles have

been generated is at least as hard as the Min-Wt-Cyc problem.

Hardness Result. We establish a hardness result for the k-th-All-SiSC problem,

which is the problem of computing the k-th simple shortest cycle in G after the k−1

simple shortest cycles in G have been computed (for any constant k > 1).

Lemma 3.4.1. Min-Wt-Cyc ≤(m+n) k-th-All-SiSC.

Proof. Suppose we are given an instance of the Min-Wt-Cyc, a directed graph G =

(V,E). Now we’ll reduce this instance of the problem to that of computing k-th-All-

SiSC in a weighted directed graph.

Now create a directed graph G′ = (V ′, E′) such that it contains G as its

subgraph and 2(k − 1) additional vertices coming from the vertex partitions D =

{di}k−1i=1 and E = {ei}k−1i=1 . Fix some x ∈ V . For each 1 ≤ i ≤ k − 1, add edges of

weight 0 from x to di, from di to ei and from ei to x.

Figure 3.1 depicts the full construction of G′ for k = 3.

Now the first (k−1) min-weight cycles in G′ correspond to the cycles involving

vertices x, di and ei (for each 1 ≤ i ≤ k − 1). And the k-th min-weight cycle in G′

76

corresponds to the minimum weight cycle in G.

As the number of vertices and edges in G′ are linear in the number of vertices

and edges, respectively, in G, we get the desired result.

A similar algorithm can generate successive simple shortest paths. But in the

next section, we present a faster algorithm for this problem.

3.5 Generating Simple Shortest Paths (k-All-SiSP)

Our algorithm for k-All-SiSP is inspired by the method in [25] for fully dynamic

APSP. With each path π we will associate two sets of paths L(π) and R(π) as

described below. Similar sets are used in [25] for ‘locally shortest paths’ but here

they have a different use.

Left and right extensions. Let P be a collection of simple paths. For a simple path

πxy from x to y in P, its left extension set L(πxy) is the set of simple paths π′ ∈ P

such that π′ = (x′, x) ◦ πxy, for some x′ ∈ V . Similarly, the right extension set

R(πxy) is the set of simple paths π′′ = πxy ◦ (y, y′) such that π′′ ∈ P. For a trivial

path π = 〈v〉, L(π) is the set of incoming edges to v, and R(π) is the set of outgoing

edges from v.

Algorithm All-SiSP, generates all simple shortest paths inG in non-decreasing

order of weight. To generate the k shortest simple paths in G, we can terminate the

while loop after k iterations. Algorithm All-SiSP initializes a priority queue H

with the edges in G, and it initializes the extension sets for the vertices in G. In

each iteration of the main loop, the algorithm extracts the minimum weight path

π in H as the next simple path in the output sequence. It then generates suitable

extensions of π to be added to H as follows. Let the first edge on π be (x, a) and

the last edge (b, y). Then, All-SiSP left extends π along those edges (x′, x) such

that there is a path πx′b in L(l(π)); it also requires that x′ 6= y, since extending to

77

x′ would create a cycle in the path. It forms similar extensions to the right in the

for loop starting at Step 15.

Algorithm 4 All-SiSP(G = (V,E);wt)

1: Initialization:
2: H ← φ {H is a priority queue.}
3: for all (x, y) ∈ E do
4: Add (x, y) to priority queue H with wt(x, y) as key
5: Add (x, y) to L(〈y〉) and R(〈x〉)
6: Main loop:
7: while H 6= φ do
8: π ← Extract-min(H)
9: Add π to the output sequence of simple paths

10: Let πxb = `(π) and πay = r(π) (so (x, a) ((b, y)) is the first (last) edge on π)
11: for all πx′b ∈ L(πxb) with x′ 6= y do
12: Form πx′y ← (x′, x) ◦ π and add πx′y to H with wt(πx′y) as key
13: Add πx′y to L(πxy) and to R(πx′b)

14: for all πay′ ∈ R(πay) with y′ 6= x do
15: Perform steps complementary to Steps 12 and 13

We establish correctness in the following two lemmas, and then we prove

Theorem 3.2.5.

Lemma 3.5.1. Every path generated by Algorithm All-SiSP is a simple path.

Proof. Since edge weights are non-negative, the first path generated by Algorithm 4

is a minimum weight edge inserted in Step 4, which is a simple path. Assume the

algorithm generates a path with a cycle, and let σ be the first path extracted in

Step 8 that contains a cycle. Let (x′, a) and (b, y) be the first and last edges on

σ. Since σ contains a cycle, it contains at least two edges so (x′, a) and (b, y) are

distinct edges.

Consider the step when the non-simple path σ is placed on H. This does not

occur in Step 4 since σ contains at least two edges. So σ is placed on H in some

iteration of the while loop. Let π be the path extracted from H in this iteration; π

78

is a simple path by assumption since it was extracted from H before σ. Then σ is

added to H either as a left extension of π (in Step 12) or as a right extension of π

in a step complementary to Step 12 in the for loop in Step 15.

Consider the left extension case, and let σ be formed when processing path

πx′b ∈ L(l(π)) with x′ 6= y in Step 11. Thus σ is formed as (x′, x) ◦ π in Step 12.

But (x′, x) ◦ π = (x′, x) ◦ `(π) ◦ (b, y) = πx′b ◦ (b, y). Since πx′b ∈ L(l(π)), it was also

placed in H in either Step 4 or Step 12. And as wt(πx′b) < wt(σ), the path πx′b

is simple. Since πx′b is simple, a cycle can be formed in σ only if x′ = y. But this

is specifically forbidden in the condition in Step 11. A similar argument applies to

right extensions added to H in Step 15. Hence σ is a simple path, and Algorithm 4

does not generate any path containing a cycle.

Lemma 3.5.2. Algorithm All-SiSP generates all simple paths in G in non-decreasing

order of their weights.

Proof. Clearly the algorithm correctly generates the minimum weight edge in G as

the minimum weight simple path in the output in the first iteration of the while

loop. By Lemma 3.5.1 all generated paths are simple. Also, these simple paths are

generated in non-decreasing order of weight since any path added to H in Steps

12 and 15 has weight at least as large as the weights of the paths that have been

extracted at that time, due to non-negative edge-weights. It remains to show that

no simple path in G is omitted in the sequence of simple paths generated.

Suppose the algorithm fails to generate all simple shortest paths in G and

let π be a simple path of smallest weight that is not generated by Algorithm 4. Let

π be a path with first edge (x, a) and last edge (b, y); (x, a) 6= (b, y) since all single

edge paths is added to H in Step 4, and will be extracted in a future iteration. Let

πab be the subpath of π from a to b. By assumption, the paths πxb = `(π) and

πay = r(π) are placed in the output by Algorithm 4 since they are simple paths with

79

weight smaller than the weight of π. Without loss of generality assume that πxb was

extracted from H before πay.

Clearly, πxb was inserted in H before πay was extracted. In the iteration

of the while loop when πxb was added to H, πxb was added to L(πab) in Step 13

since r(πxb) = πab. In the later iteration when πay was extracted from H, the

paths in L(`(πay)) are considered in Step 12. But `(πay) = πab. When the paths in

L(`(πay)) = L(πab) are considered in Step 11 during the processing of πay, the path

πxb will be one of the paths processed, and in Step 12 the path (x, a) ◦ πay = π will

be formed and added to H. Thus π will be added to H, and hence will be extracted

and added to the output sequence.

Proof of Theorem 3.2.5. We will maintain paths with pointers to their left and right

subpaths, so each path takes O(1) space. For the amortized bound we will implement

H as a Fibonacci heap. The initialization takes O(m) time. Each L and R set can

contain at most n−2 paths, and further, since extensions are formed only with paths

already in H, each of these sets has size min{k, n−2}. The k-th iteration of the while

loop takes time O(log |H|) for the extract-min operation, and O(min{k, n}) time for

the processing of the L and R sets. At the start of the k-th iteration, the number of

paths inH is at most O(m+k·min{k, n}), and sincem = O(n2), log |H| = O(log(n+

k)). Hence the amortized time for the k-th iteration is O(min{k, n}+ log(n+ k)).

For the worst-case bound we will use a binary heap. Then, the initializa-

tion takes O(m) time to build a heap on the m edges, and the k-th iteration costs

O(min{k, n} · log(n+ k)) for the heap operations.

3.6 Conclusion and Open Problems

We have presented a new algorithm for the problem of generating k simple short-

est paths for every pair of vertices in a weighted directed graph (k-APSiSP). This

80

algorithm is of special interest since it is the first algorithm that does not use the

‘detour finding’ technique for computing multiple simple shortest paths. In fact, all

previous algorithms known for finding multiple simple shortest paths, replacements

paths, and distance sensitivity oracles find the solution by computing ‘detours’. In

contrast, we have introduced a novel path extension method. We have then consid-

ered the problem of enumerating simple cycles in the graph in non-decreasing order

of their weights (k-All-SiSC), and we have given an algorithm that generates each

successive simple cycle in Õ(mn) time. Finally, we have used a different path exten-

sion technique to obtain a very efficient algorithm to generate the k simple shortest

paths in the entire graph (k-All-SiSP).

Our k-All-SiSP algorithm is nearly optimal if the paths need to be output. It

is also not difficult to see that our bounds for 2-APSiSP and k-All-SiSC (for constant

k) are the best possible to within a polylog factor for sparse graphs unless the long-

standing Õ(mn) bounds for APSP and minimum weight cycles are improved. In

recent work [6] we give several fine-grained reductions that demonstrate that the

minimum weight cycle problem holds a central position for a class of problems that

currently have Õ(mn) time bound on sparse graphs, both directed and undirected.

For undirected graphs, our k-All-SiSP algorithm gives an algorithm with the

same bound. Also, our k-APSiSP algorithm works for undirected graphs, and this

gives a faster algorithm for k = 2 and matches the previous best bound for k = 3

(using [57]). However, our algorithms for the three variants of finding simple shortest

cycles do not work for undirected graphs. This is addressed in the work presented

in Chapter 2, where the fine-grained reductions also give new algorithms for finding

shortest cycles in undirected graphs.

We conclude with two avenues for further research.

1. The main open question for k-APSiSP is to come up with faster algorithms

to compute the Qk(x, y) sets for larger values of k. This is the key to a faster k-

81

APSiSP algorithm using our approach, for k > 2.

2. The space requirements of algorithms are high. Can we come up with

space-efficient algorithms that match our time bounds?

82

Part II

Distributed Results

83

Chapter 4

Distributed Weighted All Pairs

Shortest Paths

4.1 Introduction

In the previous chapters (Chapter 2 and 3) we studied the shortest path problems in

the sequential setting. In Chapters 5, 6 and 7, we study the shortest paths problem

in the distributed setting, specifically the weighted all pairs shortest path (APSP)

problem.

The design of distributed algorithms for various network (or graph) problems

such as shortest paths [65, 70, 28, 50] and minimum spanning tree [36, 75, 38, 59]

is a well-studied area of research. The most widely considered model for studying

distributed algorithms is the Congest model [73] (also see [28, 50, 49, 65, 70, 39]),

described in more detail below in Section 4.2. In Chapters 5, 6 and 7, we consider

the problem of computing all pairs shortest paths (APSP) in a weighted directed (or

undirected) graph in this model.

The problem of computing all pairs shortest paths (APSP) in distributed

networks is a very fundamental problem, and there has been a considerable line of

84

work for the Congest model as described later. However, for a weighted graph no

deterministic algorithm was known in this model other than a trivial method that

runs in n2 rounds. In Chapter 5 we present the first algorithm for this problem in

the Congest model that computes weighted APSP deterministically in less than

n2 rounds. Our algorithm computes APSP deterministically in O(n3/2 ·
√

log n)

rounds in this model in both directed and undirected graphs. We follow up on this

result with an improved Õ(n4/3) rounds deterministic APSP algorithm described in

Chapter 7. In Chapter 6 we present a deterministic APSP algorithm that improves

the round complexity for moderate integer edge weights.

Our APSP algorithms in Chapters 5, 6 and 7 follows the general 3-phase

strategy initiated by Ullman and Yannakakis [87] for parallel computation of path

problems in directed graphs:

1. Compute h-hop shortest paths for each source for a suitable value of h. (An

h-hop path is a path that contains at most h edges.)

2. Find a small blocker set Q that intersects all paths computed in Step 1. (With

randomization, this step is very simple: a random sample of the vertices of size

O((n/h) · log n) satisfies this property w.h.p. in n.)

3. Compute shortest paths between all pairs of vertices in Q, and using this

information and the h-hop trees from Step 1, compute the APSP output at

each node in V .

Congest directed APSP algorithms that fall in this framework include the

randomized algorithm in Huang et al. [50] that runs in Õ(n5/4) rounds for polyno-

mial integer edge-weights, the deterministic algorithm presented in this chapter for

arbitrary edge-weights, and the deterministic algorithm in Chapter 6 that improves

on the result in this chapter for moderate integer edge-weights, and the algorithm

in Chapter 7 that improves the APSP round complexity for arbitrary edge weights.

85

We now describe the Congest model for which we propose our APSP algo-

rithms.

4.2 The Congest Model

In the Congest model [73], there are n independent processors interconnected in a

network. We refer to these processors as nodes. These nodes are connected in the

network by bounded-bandwidth links which we refer to as edges. The network is

modeled by a graph G = (V,E) where V is the set of processors and E is the set of

edges or links between these processors. Here |V | = n and |E| = m.

Each node is assigned a unique ID between 1 and poly(n) and has infinite

computational power. Each node has limited topological knowledge and only knows

about its incident edges. For the weighted APSP problem we consider, each edge

has a positive integer weight bounded by poly(n). Also if the edges are directed, the

corresponding communication channels are bidirectional and hence the communica-

tion network can be represented by the underlying undirected graph UG of G (this

model is also used in [50, 47, 40]).

The computation proceeds in rounds. In each round each processor can send

a message of size O(log n) along edges incident to it, and it receives the messages sent

to it in the previous round. The model allows a node to send different message along

different edges though we do not need this feature in our algorithm. The performance

of an algorithm in the Congest model is measured by its round complexity, which

is the worst-case number of rounds of distributed communication. Hence the goal is

to minimize the round complexity of an algorithm.

4.3 Related Work

We compare our results for distributed APSP with other results in Table 4.1.

86

Table 4.1: Table comparing our results for non-negative edge-weighted graphs (in-
cluding zero edge weights) with previous known results. Here W is the maximum
edge weight and ∆ is the maximum weight of a shortest path in G. Arb. stands for
arbitray edge weights and Int. stands for integer edge weights. Rand. stands for
randomized algorithm and Det. stands for deterministic algorithm. Dir. stands for
directed graphs and Undir. stands for undirected graphs.

Problem: Exact Weighted APSP

Author Arb./ Int. Rand. / Undir. / Round
weights Det. (Dir. & Undir.) Complexity

Huang et al. [50] Int. Rand. Dir. & Undir. Õ(n5/4)

Elkin [28] Arb. Rand. Undir. Õ(n5/3)

Our Result [10]
Arb. Det. Dir. & Undir. Õ(n3/2)

(Ch. 5)

Int. Det. Dir. & Undir.

Õ(n3/2−ε/4)

Our Result [8]
(when W ≤ n1−ε)

Õ(n3/2−ε/3)

(Ch. 6)
(when ∆ ≤ n3/2−ε)

Arb. Rand. Dir. & Undir. Õ(n4/3)

Bernstein &
Arb. Rand. Dir. & Undir. Õ(n)

Nanongkai [18]

Our Result [9]
Arb. Det. Dir. & Undir. Õ(n4/3)

(Ch. 7)

87

Prior Work.

Unweighted APSP. For APSP in unweighted undirected graphs, O(n)-round algo-

rithms were given independently in [49, 74]. An improved n+O(D)-round algorithm

was then given in [65], where D is the diameter of the undirected graph. Although

this latter result was claimed only for undirected graphs, the algorithm in [65] is

also a correct O(n)-round APSP algorithm for directed unweighted graphs. The

message complexity of directed unweighted APSP was reduced to mn + O(m) in a

recent algorithm [47] that runs in min{2n, n + O(D)}rounds (where D is now the

directed diameter of the graph). A lower bound of Ω(n/ log n) for the number of

rounds needed to compute the diameter of the graph in the Congest model is given

in [33].

Weighted APSP. While unweighted APSP is well-understood in the Congest

model much remains to be done in the weighted case. For deterministic algorithms,

weighted SSSP for a single source can be computed in n rounds using the classic

Bellman-Ford algorithm [15, 32], and this leads to a simple deterministic weighted

APSP algorithm that runs in O(n2) rounds. Nothing better was known for the

number of rounds for deterministic weighted APSP until our current results.

Exact Randomized APSP Algorithms. Even with randomization, nothing

better than n2 rounds was known for exact weighted APSP until recently, when

Elkin [28] gave a randomized weighted APSP algorithm that runs in Õ(n5/3) rounds

for graphs with arbitrary edge weights and this was further improved to Õ(n5/4)

rounds in Huang et al. [50] for integer edge weights. Recently Bernstein and Nanongkai

[19] gave a Õ(n) rounds randomized APSP algorithm for graphs with arbitrary edge

weights. This result subsumes both of these previous results. All of these results

hold with high probability in n.

Derandomizing Distributed Algorithms. Censor-Hillel et al. [23] semi-formalized

a template of combining bounded independence with the method of conditional ex-

88

pectation for derandomizing an algorithm for computing Maximal Independent Set

(MIS) in the distributed setting. In Section 7.3.2 we instead use a linear-sized sample

space for generating pairwise independent random variables and then use an aggre-

gration of suitable parameters of sample point values to derandomize our randomized

blocker set algorithm.

Deterministic Approximation Algorithms for APSP. There are deterministic

algorithms for approximating weighted all pairs shortest path problem, and these

run in Õ(n) rounds for both directed [63] and undirected graphs [63, 44, 29].

89

Chapter 5

Deterministic Distributed All

Pairs Shortest Paths in Õ(n3/2)

Rounds

5.1 Introduction

In this Chapter we describe our Õ(n3/2) rounds deterministic weighted APSP algo-

rithm in the Congest model. Our distributed APSP algorithm is quite simple and

we give an overview in Section 5.2. It uses the notion of a blocker set introduced

by King [58] in the context of sequential fully dynamic APSP computation. Our de-

terministic distributed algorithm for computing a blocker set is the most nontrivial

component of our algorithm, and is described in Section 5.3.

5.2 Overview of the APSP Algorithm

Let G = (V,E) be an edge-weighted graph (directed or undirected) with weight

function w and with |V | = n and |E| = m. The Congest model assumes that every

90

message is of O(log n)-bit size, which restricts w(e) to be an O(log n) size integer

value. However, outside of this restriction imposed by the Congest model, our

algorithm works for arbitrary edge-weights (even negative edge-weights as long as

there is no negative-weight cycle). Given a path p we will use weight or distance to

denote the sum of the weights of the edges on the path and length (or sometimes

hops) to denote the number of edges on the path. We denote the shortest path

distance from a vertex x to a vertex y in G by δ(x, y). In the following we will

assume that G is directed, but the same algorithm works for undirected graphs as

well.

An h-hop shortest path from a source s to a vertex v is the minimum weight

path from s to v with at most h hops. In the case of multiple paths with the same

weight from s to v we assume that v chooses the path with its parent vertex of

minimum id. We will use h =
√
n · log n in our algorithm.

Our overall APSP algorithm is given in Algorithm 1.

Algorithm 1 Overall APSP algorithm
Input: set of sources S, number of hops h
1: For each x ∈ S in sequence: Compute h-hop shortest paths starting from

source x.
2: Compute a blocker set Q of size Θ(n logn

h) for the h-hop shortest paths computed
in Step 1 (described in Section 5.3).

3: for each c ∈ Q in sequence: compute SSSP tree rooted at c.
4: for each c ∈ Q in sequence: broadcast ID(c) and the shortest path distance

values δh(x, c) for each x ∈ S.
5: Local Step at node v ∈ V : for each x ∈ S compute the shortest path distance
δ(x, v) using the received values.

In Step 1 the h-hop SSSPs along with the h-hop shortest path distances,

δh(x, v), are computed at every vertex v for each source x ∈ V . These paths can be

easily converted to form a rooted tree at x by first computing 2h-hop shortest paths

and then just extracting out the first h-hop paths.

Step 2 computes a blocker set Q of q = Θ((n log n)/h) nodes for the collection

91

of h-hop SSSPs constructed in Step 1. This step is described in detail in Section 5.3,

where we describe a distributed implementation of King’s sequential method [58].

Our method computes the blocker set Q in O(nh + (n2 log n)/h) rounds. We now

give the definition of a blocker set for a collection of rooted h-hop trees.

Definition 5.2.1 (Blocker Set [58]). Let H be a collection of rooted h-hop trees in

a graph G = (V,E). A set Q ⊆ V is a blocker set for H if every root to leaf path

of length h in every tree in H contains a vertex in Q. Each vertex in Q is called a

blocker vertex for H.

In Step 3 of Algorithm 1 we compute δ(c, v) for each c ∈ Q and for all v ∈ V .

In Step 4 each blocker vertex c broadcasts all of the δh(x, c) values, for each source

x ∈ S, it computed in Step 1. Finally, in Step 5 each node v computes δ(x, v)

for each x ∈ S using the values it computed or received in the earlier steps. More

specifically, v computes δ(x, v) as:

δ(x, v) = min

{
δh(x, v), min

c∈Q
(δh(x, c) + δ(c, v))

}
(5.1)

Lemma 5.2.2. The δ(x, v) values computed at each v in Step 5 of Algorithm 1 are

the correct shortest path distances.

Proof. Fix vertices x, v and consider a shortest path p from x to v. If p has at most

h edges then w(p) = δh(x, v) and this value is directly computed at v in Step 1.

Otherwise by the property of the blocker set Q we know that there is a vertex c ∈ Q

which lies along p within the h-hop SSSP tree rooted at x that is constructed in

Step 1. Let p1 be the portion of p from x to c and let p2 be the portion from c to v.

So w(p1) = δh(x, c), w(p2) = δ(c, v) and w(p) = w(p1) + w(p2).

The value δh(x, c) is received by v in the broadcast step for center c in Step 4.

The value δ(c, v) is computed at v when SSSP with root c is computed in Step 3.

Hence v has the information needed to compute δ(x, v) in Step 5 for each x using

92

Equation 5.1.

We now bound the number of rounds needed for each step in Algorithm 1

(other than Step 2). For this we first state bounds for some simple primitives that

will be used to execute these steps.

Lemma 5.2.3. Given a source s ∈ V , using the Bellman-Ford algorithm:

(a) the shortest path distance δ(s, v) can be computed at each v ∈ V in n rounds.

(b) the h-hop shortest path distance δh(s, v) can be computed at each v ∈ V in h

rounds.

Lemma 5.2.4. A node v can broadcast k local values to all other nodes reachable

from it deterministically in O(n+ k) rounds.

Proof. We construct a BFS tree rooted at v in at most n rounds and then we pipeline

the broadcast of the k values. The root v sends the i-th value to all its children in

round i for 1 ≤ i ≤ k. In a general round, each node x that received a value in the

previous round sends that value to all its children. It is readily seen that the i-th

value reaches all nodes at hop-length d from v in the BFS tree in round i + d − 1,

and this is the only value that node x receives in this round.

Lemma 5.2.5. All v ∈ V can broadcast a local value to every other node they can

reach in O(n) rounds deterministically.

Proof. This broadcast can be done in O(n) rounds in many ways, for example by

piggy-backing on an O(n) round unweighted APSP algorithm [65, 47] (and also

[49, 74] for undirected graphs) where now each message contains the value sent by

source s in addition to the current shortest path distance estimate for source s.

Lemma 5.2.6. Algorithm 1 runs in O(n · h+ (n2/h) · log n) rounds assuming Step

2 can be implemented to run within this bound.

93

Proof. Let the size of the blocker set be q = n
h · log n. Using part (b) of Lemma 5.2.3

and Lemma 6.4.2, Step 1 can be computed in O(n · h) rounds. Step 3 can be

computed in O(n · q) = O((n2/h) · log n) rounds by part (a) of Lemma 5.2.3. Step

4 can be computed in O(n · q) = O((n2/h) · log n) rounds by Lemma 5.2.4 (using

k = n). Finally, Step 5 involves only local computation and no communication. This

establishes the lemma.

In Section 5.3 we give a description of our deterministic algorithm to compute

Step 2 in O(n ·h+ (n2/h) · log n) rounds, which leads to our main theorem (by using

h =
√
n · log n).

Theorem 5.2.7. Algorithm 1 is a deterministic distributed algorithm for weighted

APSP in directed or undirected graphs that runs in O(n3/2 ·
√

log n) rounds in the

Congest model.

5.3 Computing Blocker Set Deterministically

The simplest method to find a blocker set is to chose the vertices randomly. An early

use of this method for path problems in graphs was in Ullman and Yannakakis [87]

where a random set of O(
√
n·log n) distinguished nodes was picked. It is readily seen

that some vertex in this set will intersect any path of O(
√
n) vertices in the graph

(and so this set would serve as a blocker set of size O((n log n)/h)for our algorithm

if h =
√
n). Using this observation an improved randomized parallel algorithm (in

the PRAM model) was given in [87] to compute the transitive closure. Since then

this method of using random sampling to choose a suitable blocker set has been used

extensively in parallel and dynamic computation of transitive closure and shortest

paths, and more recently, in distributed computation of APSP [50].

It is not clear if the above simple randomized strategy can be derandomized

in its full generality. However, for our purposes a blocker set only needs to intersect

94

all paths in the set of hop trees we construct in Step 1 of Algorithm 1. For this, a

deterministic sequential algorithm for computing a blocker set was given in King [58]

in order to compute fully dynamic APSP. This algorithm computes a blocker set of

size O((n/h) ln p) for a collection F of h-hop trees with a total of p leaves across all

trees (and hence p root to leaf paths) in an n-node graph. In our setting p ≤ n2

since we have n trees and each tree could have up to n leaves.

King’s sequential blocker set algorithm uses the following simple observation:

Given a collection of p paths each with exactly h nodes from an underlying set V

of n nodes, there must exist a vertex that is contained in at least ph/n paths. The

algorithm adds one such vertex v to the blocker set, removes all paths that are covered

by this vertex and repeats this process until no path remains in the collection. The

number of paths is reduced from p to at most (1− h/n) · p when the blocker vertex

v is removed, hence after O((n/h) ln p) removals of vertices, all paths are removed.

Since p is at most n2 the size of the blocker set is O((n log n)/h). King’s sequential

algorithm for finding a blocker set runs in O(n2 log n) deterministic time.

We now describe our distributed algorithm to compute a blocker set. As in

King [58], for each vertex v in a tree Tx in the collection of trees H we define:

• scorex(v) is the number of leaves at depth h in Tx that are in the subtree

rooted at v in Tx;

• score(v) =
∑

x scorex(v).

Thus, score(v) is the number of root-to-leaf length paths of length h in the collection

of trees H that contain vertex v. Initially, our distributed algorithm computes all

scorex(v) and score(v) for all vertices v ∈ V and all h-hop trees Tx in O(n·h) rounds.

Then through an all-to-all broadcast of score(v) to all other nodes for all v, all nodes

identify the vertex c with maximum score as the next blocker vertex to be removed

from the trees and added to the blocker set Q. (In case there are multiple vertices

95

with the maximum score the algorithm chooses the vertex of minimum id having this

maximum score. This ensures that all vertices will locally choose the same vertex

as the next blocker vertex once they have received the scores of all vertices.) We

repeat this process until all scores are zeroed out. By the discussion above (and as

observed in [58]) we will identify all the vertices in Q in O((n · log n)/h) repeats of

this process.

What remains is to obtain an O(n) round procedure to update the score and

scorex values at all nodes each time a vertex c is removed so that we have the correct

values at each node for each tree when the leaves covered by c are removed from the

tree.

If a vertex v is a descendant of the removed vertex c in Tx then all paths in

Tx that pass through v are removed when c is removed and hence scorex(v) needs to

go down to zero for each such tree Tx where v is a descendant of the chosen blocker

node c. In order to facilitate an O(n)-round computation of these updated scorex

values in each tree at all nodes that are descendants of c, we initially precompute

at every node v a list Ancx(v) all of its ancestors in each tree Tx. This is computed

in O(n ·h) rounds using our Ancestors algorithm (Algorithm 4). Thereafter, each

time a new blocker vertex c is selected to be removed from the trees and added to

Q, it is a local computation at each node v to determine which of the Ancx(v) sets

at v contain c and to zero out scorex(v) for each such x.

The other type of vertices whose scores change after a vertex c is removed are

the ancestors of c in each tree. If v is an ancestor of c in Tx then after c is removed

scorex(v) needs to be reduced by scorex(c) (i.e., c’s score before it was removed and

added to Q) since these paths no longer need to be covered by v. For these ancestor

updates we give an O(n)-round algorithm that runs after the addition of each new

blocker node to Q and correctly updates the scores for these ancestors in every tree.

(Algorithm 6). These algorithms together give the overall deterministic algorithm

96

(Algorithm 2) for the computation of the blocker set Q in O(n · h + (n2 log n)/h)

rounds. We present an improved blocker set algorithm that runs in O(nq +
√

∆hk)

rounds in Section 6.3 and another one that runs in Õ(nh) rounds in Section 7.3.

We now give the details of our algorithms. Recall that we use the h-hop

CSSSP algorithm (described in Section 6.4) for Step 1 in Algorithm 1. Hence after

that step, for each tree Ts rooted at s every node v in the tree knows its shortest

path distance from s, δ(s, v), its hop length hs(v) and its parent node in Ts. We also

determine for each node its children in Ts. We can compute this in one round for

each Ts by have each node send its child status to its parent. Thus after n rounds

all nodes know all their children in every tree Ts.

5.3.1 The Blocker Set Algorithm

Algorithm 2 Compute-Blocker

Input: h-hop CSSSP Collection of all h-hop trees Tx; Output: set Q
1: Initialization [lines 2-6]:
2: Run Algorithm 3 to compute scores for all v ∈ V
3: For each Tx compute the ancestors of each vertex v in Tx in Ancx(v) using

Algorithm 4
4: for each v ∈ V do
5: Local Step: score(v)←

∑
x∈V scorex(v)

6: broadcast score(v) to all nodes in V (using Lemma 5.2.5)

7: Add blocker vertices to blocker set Q [lines 8-12]:
8: while there is a node c with score(c) > 0 do
9: for each v ∈ V do

10: Local Step: select the node c with max score as next vertex in Q
11: Run Algorithms 5 and 6 to update scorex(v) for each x ∈ V and score(v)

12: broadcast score(v) to all nodes in V and receive score(x) from all other
nodes x

Algorithm 2 gives our distributed deterministic method to compute a blocker

set. It uses a collection of helper algorithms that are described in the next section.

This blocker set algorithm is at the heart of our main algorithm (Algorithm 1, Step 2)

97

for computing the exact weighted APSP.

Step 2 of Algorithm 2 executes Algorithm 3 to compute all the initial scores

at all nodes v. Step 3 involves running Algorithm 4 for pre-computing ancestors of

each node in every Tx. Step 5 is a local computation (no communication) where

all nodes v compute their total score by summing up the scores for all trees Tx to

which they belong. And in Step 6, each node v broadcasts its score value to all other

nodes.

The while loop in Steps 8-12 of Algorithm 2 runs as long as there is a node

with positive score. In Step 10, the node with maximum score is selected as the

vertex c to be added to Q (and if there are multiple nodes with the maximum score,

then among them the node with the minimum ID is selected, so that the same node

is selected locally at every vertex). In Step 11, after blocker vertex c is selected, each

node v checks whether it is a descendant of c in each Tx and if so update its score for

that tree using Algorithm 5. This is followed by an execution of Algorithm 6 which

updates the scores at each node v for each tree Tx in which v is an ancestor of c.

Then in Step 12, all the nodes broadcast their score to all other nodes so that they

can all select the next vertex to be added to Q. This leads to the following lemma,

assuming the results shown in the next section.

Lemma 5.3.1. Algorithm 2 correctly computes the blocker set Q in O(n ·h+n · |Q|)

rounds.

Proof. Step 2 runs in O(n · h) rounds (by Lemma 5.3.2) and so does Step 3 (see

Lemma 5.3.3). Step 5 is a local computation and the broadcast in Step 6 runs in

O(n) rounds by Lemma 5.2.5.

The while loop starting in Step 8 runs for |Q| iterations since a new blocker

vertex is added to Q in each iteration. In each iteration, Step 10 is a local compu-

tation as is the execution of Algorithm 5 in Step 11. Algorithm 6 in Step 11 runs in

O(n) rounds (Lemma 5.3.6). The all-to-all broadcast in Step 12 is the same as the

98

initial all-to-all broadcast in Step 6 and runs in O(n) rounds. Hence each iteration

of the while loop runs in O(n) rounds giving the desired bound.

5.3.2 Algorithms for Computing and Updating Scores

In this section we give the details of our algorithms for computing initial scores

(Algorithm 3) and for updating these scores values once a blocker vertex c is selected

and added to the blocker set Q (Algorithms 4-6).

Algorithm 3 Compute Initial scores for a node v in Tx
1: Initialization [Local Step]: if hx(v) = h then scorex(v) ← 1 else
scorex(v)← 0

2: In round r > 0:
3: send: if r = h− hx(v) + 1 then send 〈scorex(v)〉 to parentx(v)
4: receive [lines 5-9]:
5: if r = h− hx(v) then
6: let I be the set of incoming messages to v
7: for each M ∈ I do
8: let M = 〈score−〉 and let the sender be w
9: if w is a child of v in Tx then scorex(v)← scorex(v) + score−

Algorithm 3 gives the procedure for computing the initial scores for a node

v in a tree Tx. In Step 1 each leaf node at depth h initializes its score for Tx to 1

and all other nodes set their initial score to 0. In a general round r > 0, nodes with

hx(v) = h+1−r send out their scores to their parents and nodes with hx(v) = h−r

will receive all the scores from its children in Tx and set its score equal to the sum

of these received scores (Steps 5-9).

Lemma 5.3.2. Algorithm 3 computes the initial scores for every node v in Tx in

O(h) rounds.

Proof. The leaves at depth h correctly initialize their score to 1 locally in Step 1.

Since we only consider paths of length h from the root x to a leaf, it is readily

seen that a node v that is hx(v) hops away from x in Tx will receive scores from its

99

children in round h − hx(v) and thus will have the correct scorex(v) value to send

in Step 3.

For every x ∈ V , every node v ∈ Tx will run this algorithm to compute their

score in Tx. Since every run of Algorithm 3 for a given x takes h rounds, all the

initial scores can be computed in O(n · h) rounds.

Algorithm 4 Ancestors (v, x): Algorithm for computing ancestors of node v in
Tx at round r
1: Initialization [Local Step]: Ancx(v)← φ
2: In round r > 0:
3: send [lines 4-8]:
4: if r = 1 then
5: send 〈v〉 to v’s children in Tx
6: else
7: let 〈y〉 be the message v received in round r − 1
8: send 〈y〉 to v’s children in Tx
9: receive [lines 10-11]:

10: let 〈y〉 be the message v received in this round
11: add y to Ancx(v)

Algorithm 4 describes our algorithm for precomputing the ancestors of each

node v in a tree Tx of height h. In round 1, every node v sends its ID to its children

in Tx as described in Step 5. And in a general round r, v sends the ID of the ancestor

that it received in round r− 1 (Steps 7-8). If a node v receives the ID of an ancestor

y, then it immediately adds it to its ancestor set, Ancx(v) (Steps 10-11).

Lemma 5.3.3. For a tree Tx of height h rooted at vertex x, Algorithm 4 correctly

computes the set of ancestors for all nodes v in Tx in O(h) rounds.

Proof. We show that all nodes v correctly computes all their ancestors in Tx in the

set Ancx(v) using induction on round r. We show that by round r, every node v has

added all its ancestors that are at most r hops away from v.

100

If r = 1, then v’s parent in Tx (say y) would have send out its ID to v in

Step 5 and v would have added it to Ancx(v) in Step 11.

Assume that every node v has already added all ancestors in the set Ancx(v)

that are at most r − 1 hops away from v.

Let u be the ancestor of v in Tx that is exactly r hops away from v. Then by

induction, u ∈ Ancx(y) since u is exactly r − 1 hops away from y and thus y must

have send u’s ID to v in round r in Step 8 and hence v would have added u to its

set Ancx(v) in round r in Step 11.

Once we have pre-computed the Ancx(v) sets for all vertices v and all trees

Tx using Algorithm 4, updating the scores at each node for all trees in which it is a

descendant of the newly chosen blocker node c becomes a purely local computation.

Algorithm 5 describes the algorithm at node v that updates its scores after a vertex c

is added as a blocker node to Q. At node v for each given Tx, v checks if c ∈ Ancx(v)

and if so update its score values in Steps 4-5.

Algorithm 5 Algorithm for updating scores at v when v is a descendant of new
blocker node c

Input: blocker vertex c added to Q.
There is no communication in this algorithm, it is entirely a local computation
at v.

1: if score(v) 6= 0 then
2: for each x ∈ V do
3: if c ∈ Ancx(v) then
4: score(v)← score(v)− scorex(v)
5: scorex(v)← 0

Lemma 5.3.4. Given a blocker vertex c, Algorithm 5 correctly updates the scores of

all nodes v such that v is a descendant of c in some tree Tx.

Proof. Fix a vertex v and a tree Tx such that v is a descendant of c in Tx. By

Lemma 5.3.3 c ∈ Ancx(v), and thus v will correctly update its score values in

Steps 4-5.

101

We now move to the last remaining part of the blocker set algorithm: our

method to correctly update scores at ancestors of the newly chosen blocker node c in

each Tx. Recall that if v is an ancestor of c in Tx we need to subtract scorex(c) from

scorex(v). Here, in contrast to Algorithms 4 and 5 for nodes that are descendants of

c in a tree, we do not precompute anything. Instead we give an O(n)-round method

in Algorithm 6 to correctly update scores for each vertex for all trees in which that

vertex is an ancestor of c.

Before we describe Algorithm 6 we establish the following lemma, which is

key to our O(n)-round method.

Lemma 5.3.5. Fix a vertex c. For each root vertex x ∈ V −{c}, let πx,c be the path

from x to c in the h-hop SSSP tree Tx. Let T = ∪x∈V−{c}{e | e lies on πx,c}, i.e., T

is the set of edges that lie on some πx,c. Then T is an in-tree rooted at c.

Proof. If not, there exists some x, y ∈ V − {c} such that πx,c and πy,c coincide first

at some vertex z and the subpaths in πx,c and πy,c from z to c are different.

Let these paths coincide again at some vertex z′ (such a vertex exists since

their endpoint is same) after diverging from z. Let the subpath from z to z′ in πx,c

be π1z,z′ and the corresponding subpath in πy,c be π2z,z′ . Similarly let πx,z be the

subpath of πx,c from x to z and let πy,z be the subpath of πy,c from y to z.

Clearly both π1z,z′ and π
2
z,z′ have equal weight (otherwise one of πx,c or πy,c

cannot be a shortest path). Thus the path πx,z ◦ π2z,z′ is also a shortest path.

Let (a, z′) be the last edge on the path π1z,z′ and (b, z′) be the last edge on

the path π2z,z′ .

Now since the path πx,z′ has (a, z′) as the last edge and we break ties using

the IDs of the vertices, hence ID(a) < ID(b). But then the shortest path πy,z′ must

also have chosen (a, z′) as the last edge and hence πy,z ◦ π1z,z′ must be the subpath

of path πy,c, resulting in a contradiction

Lemma 5.3.5 allows us to re-cast the task for ancestor nodes to the following

102

Algorithm 6 Pipelined Algorithm for updating scores at v for all trees Tx in which
v is an ancestor of newly chosen blocker node c

Input: current blocker set Q, newly chosen blocker node c
1: Send [lines 2-3]: (only for c)
2: Local Step at c: create a list listc and for each x ∈ V do add an entry
Z = 〈x, scorex(c)〉 to listc if scorex(c) 6= 0; then set scorex(c) to 0 for each
x ∈ V and set score(c) to 0

3: Round i: let Z = 〈x, scorex(c)〉 be the i-th entry in listc; send 〈Z〉 to c’s parent
in Tx

4: In round r > 0: (for vertices v ∈ V −Q− {c})
5: send [lines 6-8]:
6: if v received a message in round r − 1 then
7: let that message be 〈Z〉 = 〈x, scorex(c)〉.
8: if v 6= x then send 〈Z〉 to v’s parent in Tx
9: receive [lines 10-11]:

10: if v receives a message M of the form 〈x, scorex(c)〉 then
11: scorex(v)← scorex(v)− scorex(c); score(v)← score(v)− scorex(c)

(where we use the notation in the statement of Lemma 5.3.5): the new blocker node

c needs to send scorex(c) to all nodes on πx,c for each tree Tx. Recall that in the

Congest model for directed graphs the graph edges are bi-directional. Hence this

task can be accomplished by having c send out scorex(c) for each tree Tx (other than

Tc) in n − 1 rounds, one score per round (in no particular order) along the parent

edge for Tx. Each message 〈x, scorex(c)〉 will move along edges in πx,c (in reverse

order) along parent edges in Tx from c to x. Consider any node v. In general it will

be an ancestor of c in some subset of the n − 1 trees Tx. But the characterization

in Lemma 5.3.5 establishes that the incoming edge to v in all of these trees is the

same edge (u, v) and this is the unique edge on the path from c to v in the h-hop

SSSP. In fact, the messages for all of the trees in which v is an ancestor of c will

traverse exactly the same path from c to v. Hence, for the messages sent out by c

for the different trees in n − 1 different rounds (one for each tree other than Tc), if

each vertex simply forwards any message 〈x, scorex(c)〉 it receives to its parent in

103

tree Tx all messages will be pipelined to all ancestors in n − 1 + h rounds. This is

what is done in Algorithm 6, whose steps we describe below, for completeness.

Step 2 of Algorithm 6 is local computation at the new blocker vertex c where

for each Tx to which c belongs, c adds an entry 〈x, scorex(c)〉 to a local list listc.

In round i, c sends the i-th entry in its list, say 〈y, scorey(c)〉, to its parent in Ty.

For node v other than c, in a general round r > 0, if v receives a message for some

x ∈ V it updates its score value for x (Steps 10-11) and then forwards this message

to its parent in Tx in round r + 1 (Step 6-8).

Lemma 5.3.6. Given a new blocker vertex c, Algorithm 6 correctly updates the

scores of all nodes v in every tree Tx in which v is an ancestor of c in O(n + h)

rounds.

Proof. Correctness of Algorithm 6 was argued above. For the number of rounds, c

sends out it last message in round n− 1, and if πv,c has length k then v receives all

messages sent to it by round n− 1 + k. Since we only have h-hop trees k ≤ h for all

nodes, and the lemma follows.

5.4 Conclusion

We have presented a new distributed algorithm for the exact computation of weighted

all pairs shortest paths in both directed and undirected graphs. This algorithm runs

in O(n3/2 ·
√

log n) rounds and is the first o(n2)-round deterministic algorithm for

this problem in the Congest model. At the heart of our algorithm is a determin-

istic algorithm for computing blocker set. Our blocker set construction may have

applications in other distributed algorithms that need to identify a relatively small

set of vertices that intersect all paths in a set of paths with the same (relatively long)

length.

In Chapter 6 we present a deterministic pipelined approach to solve the

104

weighted all pairs shortest path problem. This approach gives an improvement in

the round complexity for graphs with moderate integer edge weights. In Chapter 7,

we present a Õ(n4/3) rounds deterministic APSP algorithm that improves on the

Õ(n3/2) round bound presented in this chapter. The main component of this algo-

rithm is a new faster method for computing blocker set deterministically and a new

approach to propagate distance values from source nodes to blocker nodes.

105

Chapter 6

Improved Distributed Weighted

APSP Through Pipelining

6.1 Introduction

In Chapter 5 we presented a Õ(n3/2) rounds deterministic weighted all pairs shortest

path algorithm in the Congest model for graphs with arbitrary edge weights. In this

Chapter we focus on graphs with non-negative integer edge weights and we present

a deterministic all pairs shortest path algorithm that provides improvement in the

round complexity for graphs with moderate integer edge weights in the Congest

model (Table 4.1 compare our results with other related results).

In sequential computation, shortest paths can be computed much faster in

graphs with non-negative edge-weights (including zero weights) using the classic

Dijkstra’s algorithm [27] than in graphs with negative edge weights. Additionally,

negative edge-weights raise the possibility of negative weight cycles in the graph,

which usually do not occur in practice, and hence are not modeled by real-world

weighted graphs. Thus, in the distributed setting, it is of importance to design fast

shortest path algorithms that can handle non-negative edge-weights, including edges

106

of weight zero.

The presence of zero weight edges creates challenges in the design of dis-

tributed algorithms as observed in [50]. One approach used for positive integer edge

weights is to replace an edge of weight d with d unweighted edges and then run an un-

weighted APSP algorithm such as [65, 47] on this modified graph. This approach is

used in approximate APSP algorithms [70, 63]. However such an approach fails when

zero weight edges may be present. There are a few known algorithms that can handle

zero weights, such as our Õ(n3/2)-round deterministic APSP algorithm (described

in Chapter 5) for graphs with arbitrary edge weights, and the randomized weighted

APSP algorithms of Huang et al. [50] (for polynomially bounded non-negative integer

edge weights), and of Elkin [28] and Bernstein and Nanongkai [18] for arbitrary edge

weights. However no previous sub-n3/2-round deterministic algorithm was known

for weighted APSP that can handle zero weights.

All of our results hold for both directed and undirected graphs and we will

assume w.l.o.g. that G is directed. Here is a summary of our results.

1. A Pipelined APSP Algorithm for Weighted Graphs. In this work we came

up with a new pipelined approach for computing h-hop APSP, or more generally,

(h, k)-SSP, the h-hop shortest path problem for k given sources (this problem is

called the k-source short-range problem in [50]). We sometimes add an additional

constraint that the shortest paths have distance at most 4 in G.

Our pipelined Algorithm 1 in Section 6.2 is compact and easy to implement,

and has no large hidden constant factors in its bound on the number of rounds. It can

be viewed as a (substantial) generalization of the pipelined method for unweighted

APSP given in [47], which is a refinement of [65]. Our algorithm uses key values

that depend on both the weighted distance and the hop length of a path, and it can

store multiple distance values for a source at a given node, with the guarantee that

the shortest path distance will be identified. This algorithm (Algorithm 1) achieves

107

the bounds in the following theorem.

Theorem 6.1.1. Let G = (V,E) be a directed or undirected edge-weighted graph,

where all edge weights are non-negative integers (with zero-weight edges allowed).

The following deterministic bounds can be obtained in the Congest model for short-

est path distances at most 4.

(i) (h, k)-SSP in 2
√
4kh+ k + h rounds.

(ii) APSP in 2n
√
4+ 2n rounds.

(iii) k-SSP in 2
√
4kn+ n+ k rounds.

2. Faster Deterministic APSP for Non-negative, Moderate Integer

Weights. We improve on the bounds given in (ii) and (iii) of Theorem 6.1.1 by

combining our pipelined Algorithm 1 with the deterministic APSP algorithm in

Chapter 5. This gives our improved APSP Algorithm 3, with the bounds stated in

the following Theorems 6.1.2 and 6.1.3. To obtain these improved bounds we also

present an improved deterministic distributed algorithm to find a blocker set [10].

In our improved blocker set method we define the notion of a consistent col-

lection of h-hop trees, CSSSP (Definition 6.4.1 in Section 6.4), and a simple method

to compute such a collection. This result may be of independent interest.

Theorem 6.1.2. Let G = (V,E) be a directed or undirected edge-weighted graph,

where all edge weights are non-negative integers bounded by W (with zero-weight

edges allowed). The following deterministic bounds can be obtained in the Congest

model.

(i) APSP in O(W 1/4 · n5/4 log1/2 n) rounds.

(ii) k-SSP in O(W 1/4 · nk1/4 log1/2 n) rounds.

108

Theorem 6.1.3. Let G = (V,E) be a directed or undirected edge-weighted graph,

where all edge weights are non-negative integers (with zero edge-weights allowed), and

the shortest path distances are bounded by 4. The following deterministic bounds

can be obtained in the Congest model.

(i) APSP in O(n(4 log2 n)1/3) rounds.

(ii) k-SSP in O((4kn2 log2 n)1/3) rounds.

The range of values for W and ∆ for which our results in Theorem 6.1.2 and

6.1.3 improve on the Õ(n3/2) deterministic APSP bound presented in Chapter 7 are

stated in the following Corollary.

Corollary 6.1.4. Let G = (V,E) be a directed or undirected edge-weighted graph

with non-negative edge weights (and zero-weight edges allowed). The following de-

terministic bounds hold for the Congest model for 1 ≥ ε ≥ 0.

(i) If the edge weights are bounded by W = n1−ε, then APSP can be computed in

O(n3/2−ε/4 log1/2 n) rounds.

(ii) For shortest path distances bounded by ∆ = n3/2−ε, APSP can be computed in

O(n3/2−ε/3 log2/3 n) rounds.

The corresponding bounds for the weighted k-SSP problem are:

O(n5/4−ε/4k1/4 log1/2 n) (when W = n1−ε) and O(n7/6−ε/3k1/3 log2/3 n) (when ∆ =

n3/2−ε). Note that the result in (i) is independent of the value of ∆ (it depends only

on W) and the result in (ii) is independent of the value of W (it depends only on

∆).

6.1.1 Other Results

1. Simplifications to Earlier Algorithms. Our techniques simpler methods for

some of procedures in two previous distributed weighted APSP algorithms that han-

109

Table 6.1: Table comparing our approximate APSP results for non-negative edge-
weighted graphs (including zero edge weights) with previous known results.

Problem: (1 + ε)-Approximation Weighted APSP

Author handle zero Randomized / Round
weights Deterministic Complexity

Nanongkai [70] No Randomized Õ(n/ε2)

Lenzen & Patt-Shamir [63] No Deterministic Õ(n/ε2)

Our Result Yes Deterministic Õ(n/ε2)

dle zero weight edges. In Section 6.2.6 we present simple deterministic algorithms

that match the congest and dilation bounds in [50] for two of the three procedures

used there: the short-range and short-range-extension algorithms. Our simplified al-

gorithms are both obtained using a streamlined single-source version of our pipelined

APSP algorithm (Algorithm 1).

2. Approximate APSP for Non-negative Edge Weights. In Section 6.5.1

we present an algorithm that matches the earlier bound for computing approximate

APSP in graphs with positive integer edge weights [70, 63] by obtaining the same

bound for non-negative edge weights. Table 6.1 compares our results with the pre-

vious results.

Theorem 6.1.5. Let G = (V,E) be a directed or undirected edge-weighted graph,

where all edge weights are non-negative integers polynomially bounded in n, and

where zero-weight edges are allowed. Then, for any ε > 0 we can compute (1 + ε)-

approximate APSP in O((n/ε2) · log n) rounds deterministically in the Congest

model.

3. Randomized APSP for Arbitrary Edge-Weights. We present a simple

randomized APSP algorithm for directed graphs with arbitrary edge-weights that

110

runs in Õ(n4/3) rounds, w.h.p. in n. No nontrivial sub-n3/2 round algorithm was

known prior to this result.

Theorem 6.1.6. Let G = (V,E) be a directed or undirected edge-weighted graph with

arbitrary edge weights. Then, we can compute weighted APSP in G in the Congest

model in Õ(n4/3) rounds, w.h.p. in n.

The corresponding bound for k-SSP is Õ(n+n2/3k2/3). This result improves

on the prior Õ(n3/2)-round (deterministic) bound presented in Chapter 5 but it has

been subsumed by a very recent result in [18] that gives an Õ(n) rounds randomized

algorithm for weighted APSP.

6.2 The Pipelined APSP Algorithm

We present a pipelined distributed algorithm to compute weighted APSP for shortest

path distances at most ∆. The starting point for our algorithm is the distributed

algorithm for unweighted APSP in [47], which is a streamlined variant of an earlier

APSP algorithm [65]. This unweighted APSP algorithm is very simple: each source

initiates its distributed BFS in round 1. Each node v retains the best (i.e., shortest)

distance estimate it has received for each source, and stores these estimates in sorted

order (breaking ties by source id). Let d(s) (or dv(s)) denote the shortest distance

estimate for source s at v and let pos(s) be its position in sorted order (pos(s) ≥ 1).

In a general round r, node v sends out a shortest distance estimate d(s) if r =

d(s) + pos(s). Since d(s) is non-decreasing and pos(s) is increasing, there will be at

most one d(s) at v that can satisfy this condition. It is shown in [47] that shortest

distances for all sources arrive at v in at most 2n rounds under this schedule and

only one message is sent out by v for each source. The key to the 2n-round bound

is that if the current best distance estimate d(s) for a source s reaches v in round

r then r < d(s) + pos(s). Since d(s) < n for any source s and pos(s) is at most n,

111

shortest path values for all sources arrive at any given node v in less than 2n rounds.

For our weighted case, since d(s) is at most 4 for all s, v, it appears plausible

that the above pipelining method would apply here as well. Unfortunately, this does

not hold since we allow zero weight edges in the graph. The key to the guarantee that

a d(s) value arrives at v before round d(s) + pos(s) in the unweighted case in [47] is

that the predecessor y that sent its dy(s) value to v must have had dy(s) = dv(s)−1.

(Recall that in the unweighted case, dy(s) is simply the hop-length of the path

taken from s to y.) If we have zero-weight edges this guarantee no longer holds for

the weighted path length, and it appears that the key property of the unweighted

pipelining methodology no longer applies. Since edge weights larger than 1 are also

possible (as long as no shortest path distance exceeds 4), the hop length of a path

can be either greater than or less than its weighted distance.

6.2.1 Our (h, k)-SSP algorithm

Algorithm 1 is our pipelined algorithm for a directed graph G = (V,E) with non-

negative edge-weights. The input is G, together with the subset S of k vertices for

which we need to compute h-hop SSPs. An innovative feature of this algorithm

is that the key κ it uses for a path is not its weighted distance, but a function of

both its hop length l and its weighted distance d. More specifically, κ = d · γ + l,

where γ =
√
kh/∆. This allows the key to inherit some of the properties from the

algorithm in [47] through the fact that the hop length is part of κ’s value, while also

retaining the weighted distance which is the actual value that needs to be computed.

The new key κ by itself is not sufficient to adapt the algorithm for unweighted

APSP in [47] to the weighted case. In fact, the use of κ can complicate the compu-

tation since one can have two paths from s to v, with weighted distances d1 < d2,

and yet for the associated keys one could have κ1 > κ2 (because the path with the

smaller weight can have a larger hop-length). Our algorithm handles this with an-

112

other unusual feature: it may maintain several (though not all) of the key values it

receives, and may also send out several key values, even some that it knows cannot

correspond to a shortest distance. These features are incorporated into a carefully

tailored algorithm that terminates in O(
√
4kh) rounds with all h-hop shortest path

distances from the k sources computed.

It is not difficult to show that eventually every shortest path distance key

arrives at v for each source from which v is reachable when Algorithm 1 is executed.

In order to establish the bound on the number of rounds, we show that our pipelined

algorithm maintains two important invariants:

Invariant 1: If an entry Z is added to listv in round r, then r < dZ.κ +

pos(Z)e, where Z.κ is Z ′s key value.

Invariant 2: The number of entries for a given source s at listv is at most√
4h/k + 1.

Invariant 1 is the natural generalization of the unweighted algorithms [65, 47]

for the key κ that we use. On the other hand, to the best of our knowledge, Invariant

2 has not been used before, nor has the notion of storing multiple paths or entries

for the same source at a given node. By Invariant 2, the number of entries in any

list is at most
√
4kh+k, so pos(Z) ≤

√
4kh+k for every list at every round. Since

the value of any κ is at most 4 · γ + h, by Invariant 1 every entry is received by

round 2
√
4kh+ k + h.

We now give the details of Algorithm 1 starting with a step-by-step descrip-

tion followed by its analysis. Recall that the key value we use for a path π is

κ = d · γ + l, where γ =
√
kh/∆, d is the weighted path length, and l is the hop-

length of π. At each node v our algorithm maintains a list, listv, of the entries and

associated data it has retained. Each element Z on listv is of the form Z = (κ, d, l, x),

where x is the source vertex for the path corresponding to κ, d, and l. The elements

113

Table 6.2: Notations
Global Parameters:

S set of sources
k number of sources, or |S|
h maximum number of hops in a shortest path
4 maximum weighted distance of a shortest path
n number of nodes
γ parameter equal to

√
hk/∆

Local Variables at node v:
d∗x current shortest path distance from x to v; same as d∗x,v
listv list at v for storing the SP and non-SP entries

Variables/Parameters for entry Z = (κ, d, l, x) in listv:
κ key for Z; κ = d · γ + h

d weight (distance) of the path associated with this entry
l hop-length of the path associated with this entry
x start node (i.e. source) of the path associated with this entry
p parent node of v on the path associated with this entry
ν number of entries for x at or below Z in listv (not stored explicitly)

flag-d∗ flag to indicate if Z is the current SP entry for source x
pos position of Z in listv in a round r; same as posr, posrv
SP shortest path

on listv are ordered by key value κ, with ties first resolved by the value of d, and

then by the label of the source vertex. We use Z.ν to denote the number of keys

for source x stored on listv at or below Z. The position of an element Z in listv

is given by pos(Z), which gives the number of elements at or below Z on listv. If

the vertex v and the round r are relevant to the discussion we will use the notation

posrv(Z), but we will remove either the subscript or the superscript (or both) if they

are clear from the context. We also have a flag Z.flag-d∗which is set if Z has the

smallest (d, κ) value among all entries for source x (so d is the shortest weighted

distance from s to v among all keys for x on listv). A summary of our notation is

in Table 6.2.

Initially, when round r = 0, listv is empty unless v is in the source set S.

114

Each source vertex x ∈ S places an element (0, 0, 0, x) on its listx to indicate a path

of weight 0 and hop length 0 from x to x, and Z.flag-d∗is set to true. In Step 1 of

the Initialization round 0, node v initializes the distance from every source to ∞.

In Step 2 every source vertex initializes the distance from itself to 0 and adds the

corresponding entry in its list. There are no Sends in round 0.

Initialization: Initialization procedure for Algorithm 1 at node v
Input: set of sources S
1: for each x ∈ S do d∗x ←∞
2: if v ∈ S then d∗v ← 0; add an entry Z = (0, 0, 0, v) to listv; Z.flag-d∗← true

Algorithm 1 Pipelined (h, k)-SSP algorithm at node v for round r
Input: A set of sources S
1: send [Steps 1-2]: if there is an entry Z with dZ.κ+ posrv(Z)e = r
2: then compute Z.ν and form the message M = 〈Z, Z.flag-d∗, Z.ν〉 and send
M to all neighbors

3: receive [Steps 3-13]: let I be the set of incoming messages
4: for each M ∈ I do
5: let M = (Z− = (κ−, d−, l−, x), Z−.flag-d∗, Z−.ν) and let the sender be y.
6: κ← κ− + w(y, v) · γ + 1; d← d− + w(y, v); l← l− + 1
7: Z ← (κ, d, l, x); Z.flag-d∗← false; Z.p ← y (Z may be added to listv in

Step 11 or 13)
8: let Z∗ be the entry for x in listv such that Z∗.flag-d∗= true, if such an entry

exists (otherwise d∗x =∞)
9: if Z−.flag-d∗= true and l ≤ h and ((d < d∗x) or (d = d∗x and Z.κ <
Z∗.κ) or (d = d∗x and Z.κ = Z∗.κ and Z.p < Z∗.p)) then

10: d∗x ← d; Z.flag-d∗← true; Z∗.flag-d∗← false (if Z∗ exists)
11: Insert(Z)
12: else
13: if there are less than Z−.ν entries for x with key ≤ Z.κ then Insert(Z)

In a general round r, in Step 1 of Algorithm 1, v checks if listv contains an

entry Z with dZ.κ + posv(Z)e = r. If there is such an entry Z then v sends Z to

its neighbors, along with Z.ν and Z.flag-d∗ in Step 2. Steps 3-13 describe the steps

taken at v after receiving a set of incoming messages I from its neighbors. In Step 7

115

Insert(Z): Procedure for adding Z to listv
1: insert Z in listv in sorted order of (κ, d, x)
2: if ∃ an entry Z ′ for x in listv such that Z ′ .flag-d∗= false and pos(Z ′) > pos(Z)

then
3: find Z

′ with smallest pos(Z ′) such that pos(Z ′) > pos(Z) and Z
′
.flag-d∗=

false
4: remove Z ′ from listv

an entry Z is created from an incoming message M , updated to reflect the d and l

values at v. Step 9 checks if Z has a shorter distance than the current shortest path

entry, Z∗, at v, or a shorter hop-length (if the distance is the same), or a parent with

smaller ID (if both distance and hop-length are same). And if so, then Z is marked

as SP in Step 10 and is then inserted in listv in Step 11. Otherwise, if Z is a non-SP

it is inserted into listv in Step 13 only if the number of entries on listv for source x

with key < Z.κ in listv is less than Z−.ν. This is the rule that decides if a received

entry that is not the SP entry is inserted into listv.

Steps 1-4 of procedure Insert perform the addition of a new entry Z to listv.

In Step 1 Z is inserted in listv in the sorted order of (κ, d, x). The algorithm then

moves on to remove an existing entry for source x on listv if the condition in Step 2

holds. This condition checks if there is a non-SP entry above Z in listv. If so then

the closest non-SP entry above Z is removed in Steps 3-4.

Algorithm 1 performs these steps in successive rounds. We next analyze it for

correctness and we also show that it terminates with all shortest distances computed

before round r = d2
√
4kh+ k + he.

6.2.2 Correctness of Algorithm 1

We now provide proofs for establishing correctness of Alg. 1. The initial Observations

and Lemmas given below establish useful properties of an entry Z in a listv and

of posrv(Z) and its relation to posry(Z
−). We then present the key lemmas. In

116

Lemma 6.2.11, we show that the collection of entries for a given source x in listv

can be mapped into (d, l) pairs with non-negative l values such that d = d∗ for the

shortest path entry, and the d values for all other entries are distinct and larger than

d∗. (It turns out that we cannot simply use the d values already present in Z’s entries

for this mapping since we could have two different entries for source x on listv, Z1

and Z2, that have the same d value.) Once we have Lemma 6.2.11 we are able to

bound the number of entries for a given source at listv by h
γ + 1 in Lemma 6.2.13,

and this establishes Invariant 2 (which is stated in Section 6.2.1). Lemma 6.2.14

establishes Invariant 1. In Lemma 6.2.15 we establish that all shortest path values

reach node v. With these results in hand, the final Lemma 6.2.16 for the round

bound for computing (h, k)-SSP with shortest path distances at most 4 is readily

established, which then gives Theorem 6.1.1.

Observations and Lemmas 6.2.1-6.2.8: In the following Observations and Lem-

mas we point out the key facts about an entry Z in listv in our Algorithm 1. We

use these in our proofs in this section.

Observation 6.2.1. Let Z be an entry for a source x ∈ S added to listv in round r.

Then if Z is removed from listv in a round r′ ≥ r, it was replaced by another entry

for x, Z ′, such that posr′v (Z) > posr
′
v (Z ′) and Z.κ ≥ Z ′.κ.

Proof. An entry is removed from listv only in Step 4 of Insert, and this occurs at

most once in round r′ (through a call from either Step 11 or Step 13 of Algorithm 1).

But immediately before that removal an entry Z ′ with a smaller value was inserted

in listv in Step 1 of Insert.

Lemma 6.2.2. Let Z be an entry in listv. Then posr
′
v (Z) ≥ posrv(Z) for all rounds

r′ > r, for which Z exists in v’s list.

Proof. If not, then it implies that there exists Z ′ such that Z ′ was below Z in v’s list

in round r and was replaced by another entry Z ′′ that was above Z in a round r′′

117

such that r′ ≥ r
′′
> r and hence posr

′′

v (Z
′′
) > posr

′′

v (Z
′
). But by Observation 6.2.1

this cannot happen and thus resulting in a contradiction.

Observation 6.2.3. Let Z be an entry for source x that was added to listv. If there

exists a non-SP entry for x above Z in listv, then the closest non-SP entry above Z

will be removed from listv.

Proof. This is immediate from Steps 1-4 of the procedure Insert.

Observation 6.2.4. Let Z− be an entry for a source x sent from y to v in round r,

and let Z be the corresponding entry created for possible addition to listv in Step 7

of Algorithm 1. If Z is not added to listv, then there is an entry Z ′ 6= Z in listv

with Z ′.flag-d∗= true, and there are at least Z−.ν entries for x with key ≤ Z.κ at

the end of round r.

Proof. This is immediate from Steps 8 and 9 of Algorithm 1 where the current entry

Z∗ with Z∗.flag-d∗= true is verified to have a shorter distance (or a smaller key if

Z and Z∗ have the same distance), and by the check in Step 13.

Observation 6.2.5. Let Z∗ be a current SP entry for a source x ∈ S present in

listv. Then Z∗.l ≤ h.

Proof. This is immediate from the check in Step 9.

The above Observation should be contrasted with the fact that listv could

contain entries Z with Z.l > h, but only if flag-d∗(Z) = false. In fact it is possible

that listv contains an entry Z ′ 6= Z∗ with Z ′.d = d∗ and l > h since such an entry

would fail the check in Step 9 but could then be inserted in Step 13 of Algorithm 1.

Lemma 6.2.6. Let Z be an entry for source x that is present on listv in round r.

Let r′ > r, and let c and c′ be the number of entries for source x on listv that have

key value less than Z’s key value in rounds r and r′ respectively. Then c′ ≥ c.

118

Proof. If c′ < c then an entry for x that was present below Z in round r must have

been removed without having another entry for x being inserted below Z. But by

Observation 6.2.1 this is not possible since any time an entry for source x is removed

from listv another entry for source x with smaller key value is inserted in listv.

Lemma 6.2.6 holds for every round greater than r, even if Z is removed from

listv. The following stronger lemma holds for rounds greater than r when Z remains

on listv.

Lemma 6.2.7. Let Z be a non-SP entry for source x that is present on listv in

round r. Let r′ > r, and let c and c′ be the number of entries for source x on listv

that have key value less than Z’s key value in rounds r and r′ respectively. Then

c′ = c.

Proof. If a new entry Z ′ with key < Z.κ for x is added, then by Observation 6.2.3

the closest non-SP entry for x with key > Z
′
.κ must be removed from listv and thus

c
′ ≤ c. Then using Lemma 6.2.6 we have c′ = c.

Lemma 6.2.8. Let Z− be an entry for source x sent from y to v and suppose the

corresponding entry Z (Step 7 of Algorithm 2) is added to listv in round r. Then

there are at least Z−.ν entries at or below Z in listv for source x.

Proof. Let us assume inductively that this result holds for all entries on listv and

listy with key value at most Z.κ at all previous rounds and at y in round r as well.

(It trivially holds initially.)

Let Z−1 be the (Z−.ν − 1)-th entry for source x in listy. Since Z−1 has a key

value smaller than Z− it was sent to v in an earlier round r′. If the corresponding

entry Z1 created for possible addition to listv in Step 7 of Algorithm 1, was inserted

in listv then by inductive assumption there were at least Z−1 .ν = Z−.ν − 1 entries

for x at or below Z1 in listv. And by Lemma 6.2.6 this holds for round r as well and

hence the result follows since Z is present above Z1 in listv.

119

And if Z1 was not added to listv in round r′, then by Observation 6.2.4 there

were already Z−.ν − 1 entries for x with key ≤ Z1.κ and by Lemma 6.2.6 there are

at least Z−.ν − 1 entries for x with key ≤ Z1.κ ≤ Z.κ on listv at round r and hence

the result follows.

Establishing posry(Z−) ≤ posrv(Z): For an entry Z− sent from y to v such that

Z is the corresponding entry created for possible addition to listv in Step 7 of

Algorithm 1, in Lemma 6.2.9 and Corollary 6.2.10 we establish that if Z is added to

listv then posry(Z−) ≤ posrv(Z), which is an important property of pos.

Lemma 6.2.9. Let Z− be an entry sent from y to v in round r and let Z be the

corresponding entry created for possible addition to listv in Step 7 of Algorithm 1.

For each source xi ∈ S, let there be exactly ci entries for xi at or below Z− in listy.

If Z is added to listv, then for each xi ∈ S, there are at least ci entries for xi at or

below Z in listv.

Proof. If not there exists an xi ∈ S with strictly less than ci entries for xi at or

below Z in listv.

Let Z−1 be the ci-th entry for xi in listy (if xi is Z’s source, then Z−1 is Z−). If

Z−1 is not Z−, it is below Z− in listy and so was sent in a round r′ < r; if Z−1 = Z−

then r′ = r. Let Z1 be the corresponding entry created for possible addition to listv

in Step 7 of Algorithm 1.

If Z1 was added to listv and is also present in listv in round r, then by Lemma

6.2.8 and 6.2.6, there will be at least ci entries for xi at or below Z1, resulting in

a contradiction. And if Z1 was removed from listv in a round r
′′
< r, then by

Lemma 6.2.6, the number of entries for xi with key ≤ Z1.κ should be at least cj .

Now if Z1 was not added to listv in round r′, then by Observation 6.2.4,

we must already have at least ci entries for xi with key ≤ Z1.κ in round r′ and by

Lemma 6.2.6, this must hold for all rounds r′′ > r as well.

120

Corollary 6.2.10. Let Z− be an entry sent from y to v in round r and let Z be the

corresponding entry created for possible addition to listv in Step 7 of Algorithm 1.

If Z is added to listv, then posry(Z−) ≤ posrv(Z).

6.2.3 Establishing an Upper bound on Z.ν

In this section (Lemmas 6.2.11-6.2.13) we establish an upper bound on the value of

Z.ν. This upper bound on Z.ν immediately gives a bound on the maximum number

of entries that can be present in listv for a source x ∈ S.

Lemma 6.2.11. Let C be the entries for a source x ∈ S in listv in round r. Then

the entries in C can be mapped to (d, l) pairs such that each l ≥ 0 and each Z ∈ C

is mapped to a distinct d value with Z.κ = d · γ + l. Also d = d∗x if Z is a current

shortest path entry, otherwise d > d∗x.

Proof. We will establish this result by induction on j, the number of entries in C.

For the base case, when j = 1, we can map d and l to the pair in the single entry

Z since Z.κ = d · γ + l. Assume inductively that the result holds at listu for all

nodes u when the number of entries for x is at most j − 1. Consider the first time

|C| becomes j at listv, and let this occur when node y sends Z− to v and this is

updated and inserted as Z in listv in round r.

If Z is inserted as a new shortest path entry with distance value d∗, then the

distinct d values currently assigned to the j − 1 entries for source x in listv must

all be larger than d∗ hence we can simply assign the d and l values in Z as its (d, l)

mapping.

If Z is inserted as a non-SP entry then it is possible that the d value in Z

has already been assigned to one of the j − 1 entries for source x on listv. If this

is the case, consider the entries for source x with key value at most Z−.κ in listy

(at node y). By the check in Step 13 of Algorithm 1 we know that there are j such

values. Inductively these j entries have j distinct d− values assigned to them, and

121

we transform these into j distinct values for listv by adding w′x(y, v) · γ + 1 to each

of them. For at least one of these d− values in y, call it d−1 , it must be the case that

d′ = d−1 +w′x(y, v) ·γ+1 is not assigned to any of the j−1 entries for source x below

Z in listv. Let Z−1 be the entry in y’s list that is associated with distance d−1 . We

show that the associated l value for d′ in Z on listv must be greater than 0.

(d′ + w′x(y, v)) · γ + l = Z.κ

= Z−.κ+ w′x(y, v) · γ + 1

≥ Z−1 .κ+ w′x(y, v) · γ + 1 (since (posy(Z−) > posy(Z
−
1)))

= d′ · γ + l−1 + w′x(y, v) · γ + 1

= (d′ + w′x(y, v)) · γ + l−1 + 1

Hence l ≥ l−1 + 1 > 0.

Since Z is a non-SP entry we also need to argue that d′ + w′x(y, v) 6= d∗x. If

not then by induction, it implies that the entry Z−1 for x in y’s list correspond to the

current shortest path entry for x in listy. Since Z−1 gives the shortest path distance

from x to y, the corresponding shortest path entry for x must be below Z in v’s list

and by induction, it must have d∗x associated with it. This results in a contradiction

since we chose the distance value, d′ + w′x(y, v), such that it was different from the

distances associated with the other (j − 1) entries for x in v’s list.

We have shown that the lemma holds the first time a j-th entry is added to

listv for source x. To complete the proof we now show that the lemma continues

to hold if a new entry Z for source x is added to listv while keeping the number of

entries at j. The argument is the same as the case of having j entries for source x

for the first time except that we also need to consider duplication of a d value at

an entry above the newly inserted Z. For this we proceed as in the previous case.

122

Let Z be inserted in position p ≤ j. We assign a d value to Z as in the previous

case, taking care that the d value assigned to Z is different from that for the p − 1

entries below Z. Suppose Z’s d value has been assigned to another entry Z ′′ in listv

above Z. Then, we consider Z ′, the entry that was removed (in Step 5 of Insert)

in order to keep the total number of entries for source x at j. We assign to Z ′′ the

value d′ that was assigned to Z ′. Since Z ′′ has a larger key value than Z ′ we will

need to use an l′′ at least as large as that used for Z ′ (call it l′) in order satisfy the

requirement that Z ′′.κ = d′ · κ + l′′. Since l′ must have been non-negative, l′′ will

also be non-negative as required, and all d values assigned to the entries for x will

be distinct.

Lemma 6.2.12. Let Z be the current shortest path distance entry for a source x ∈ S

in v’s list. Then the number of entries for x below Z in listv is at most γ · nk .

Proof. By Lemma 6.2.11, we know that the keys of all the entries for x can be

mapped to (d, l) pairs such that each entry is mapped to a distinct d value and

l > 0.

We have Z.κ = d∗x · γ + l∗x, where l∗x is the hop-length of the shortest path

from x to v. Let Z ′′ be an entry for x below Z in v’s list. Then, Z ′′ .κ ≤ Z.κ. It

implies

d
′′ · γ + l

′′ ≤ d∗x · γ + l∗x

d
′′ · γ ≤ d∗x · γ + (l∗x − l

′′
)

d
′′ ≤ d∗x +

(l∗x − l
′′
)

γ

≤ d∗x +
(h− 1)

γ

< d∗x +
h

γ

123

= d∗x +
h

γ2
· γ

= d∗x +
n

k
· γ

Thus d′′ < d∗x + n
k · γ. Since d

′′ ≥ d∗x, there can be at most n
k · γ entries for x

below Z in listv.

Lemma 6.2.13. For each source x ∈ S, v’s list has at most n
k · γ + 1 entries for x.

Proof. On the contrary, let Z be an entry for source x ∈ S with the smallest key

such that Z is the (γ · nk + 2)-th entry for x in listv. Let y be the sender of Z to v

and let the corresponding entry in y’s list be Z−.

If Z was added as a non-SP entry, then by Lemma 6.2.8 there are at least

γ · nk + 2 entries for x at or below Z− in listy, resulting in a contradiction as Z is

the entry with the smallest key that have this ν value.

Otherwise if Z was added as a current shortest path entry, then by

Lemma 6.2.12, Z can have at most γ · nk entries below it in any round and hence

there are at most γ · nk + 1 at or below Z in listv in all rounds (and if Z is later

marked as non-SP then by Lemma 6.2.7 Z.ν will stay fixed at that value), again

resulting in a contradiction.

6.2.4 Establishing an Upper Bound on the round r by which an

entry Z is sent

Lemma 6.2.14. If an entry Z is added to listv in round r then r < Z.κ+ posrv(Z).

Proof. The lemma holds in the first round since all entries have non-negative κ, any

received entry has hop length at least 1, and the lowest position is 1 so for any entry

Z received by v in round 1, Z.κ+ pos1v(Z) ≥ 1 + 1 > 1.

Let r be the first round (if any) in which the lemma is violated, and let it

occur when entry Z is added to listv. So r ≥ Z.κ+posrv(Z). Let r1 = Z.κ+posrv(Z)

124

(so r1 < r by assumption).

Since Z was added to listv in round r, Z− was sent to v by a node y in round

r. So r = Z−.κ + posry(Z
−). But Z.κ > Z−.κ and posrv(Z) ≥ posry(Z

−), hence r

must be less than Z.κ+ posrv(Z).

Lemma 6.2.15. Let π∗x,v be a shortest path from source x to v with the minimum

number of hops among h-hop shortest paths from x to v. Let π∗x,v have l∗ hops and

shortest path distance d∗x,v. Then v receives an entry Z∗ = (κ, d∗x,v, l
∗, x) by round

r < Z∗.κ+ posrv(Z
∗).

Proof. If an entry Z∗ = (κ, d∗x,v, l
∗, x) is placed on listv by v then by Lemma 6.2.14

it is received before round Z∗.κ + posrv(Z
∗) and hence it will be sent in round r =

Z∗.κ+posrv(Z
∗) in Step 1. It remains to show that an entry for path π∗x,v is received

by v. We establish this for all pairs x, v by induction on key value κ.

If κ = 0, then it implies that the shortest path is the vertex x itself and thus

the statement holds for κ = 0. Let us assume that the statement holds for all keys

< κ and consider the path π∗x,v with key κ = d∗x,v · γ + l∗.

Let (y, v) be the last edge on the path π∗x,v and let π∗x,y be the subpath of

π∗x,v from x to y. By construction the path π∗x,y is a shortest path from x to y and

its hop length l∗ − 1 is the smallest among all shortest paths from x to y. Hence by

the inductive assumption an entry Z− with Z−.κ = d∗x,y ·γ+ l∗−1 (which is strictly

less than Z∗.κ) is received by y before round Z−.κ + pos
′
y(Z

−) (by Lemma 6.2.14)

and is then sent to v in round r′ = Z−.κ + posr
′
y (Z−) in Step 1. Thus v adds the

shortest path entry for x, Z∗, to listv by the end of round r′.

6.2.5 Establishing an Upper Bound on the round r by which Algo-

rithm 1 terminates

Lemma 6.2.16. Algorithm 1 correctly computes the h-hop shortest path distances

from each source x ∈ S to each node v ∈ V by round (n− 1)γ + h+ n · γ + k.

125

Proof. An h-hop shortest path has hop-length at most h and weight at most n− 1,

hence a key corresponding to a shortest path entry will have value at most (n−1)γ+h.

Thus by Lemma 6.2.15, for every source x ∈ S every node v ∈ V should have received

the shortest path distance entry, Z∗, for source x by round r = (n−1)γ+h+posrv(Z
∗).

Now we need to bound the value of posrv(Z∗). By Lemma 6.2.13, we know

that there are at most γ · nk + 1 entries for each source x ∈ S in a node v’s list. Now

as there are k sources, v’s list has at most (γ · nk + 1) · k ≤ γ · n + k entries, thus

posrv(Z
∗) ≤ γ · n+ k and hence r ≤ (n− 1)γ + h+ γ · n+ k.

Since γ =
√

hk
n , Lemma 6.2.16 establishes the bounds given in Theorem 6.1.1.

6.2.6 Simplified Versions of Short-Range Algorithms in [50]

We describe here simplified versions of the short-range and short-range-extension

algorithms used in the randomized Õ(n5/4) round APSP algorithm in Huang et

al. [50]. Our short-range Algorithm 2 is implicit in our pipelined APSP algorithm

(Algorithm 1) and is much simpler than it since it is for a single source.

Given a hop-length h and a source vertex x, the short-range algorithm in [50]

computes the h-hop shortest path distances from source x in a graph G′ (obtained

through ‘scaling’) where ∆ ≤ n − 1. The scaled graph has different edge weights

for different sources, and hence h-hop APSP is computed through n h-hop SSSP (or

short-range) computations, each of which runs with dilation (i.e., number of rounds)

Õ(n
√
h) and congestion (i.e., maximum number of messages along an edge) O(

√
h).

By running this algorithm using each vertex as source, h-hop APSP is computed inG′

in O(n
√
h) rounds w.h.p. in n using a scheduling result in Ghaffari’s framework [39],

which gives a randomized method to execute this collection of different short-range

executions simultaneously in Õ(dilation + n · congestion) = Õ(n
√
h) rounds.

The short-range algorithm in [50] for a given source runs in two stages:.

126

Initially every zero edge-weight is increased to a positive value α = 1/
√
h and then h-

hop SSSP is computed using a BFS variant in Õ(n/α) = Õ(n
√
h) rounds. This gives

an approximation to the h-hop SSSP where the additive error is at most hα =
√
h.

This error is then fixed by running the Bellman-Ford algorithm [15] for h rounds.

The total round complexity of this SSSP algorithm is Õ(n
√
h) and the congestion is

O(
√
h).

Algorithm 2 Round r of short-range algorithm for source x
(initially d∗ ← 0; l∗ ← 0 at source x)

(at each node v ∈ V)
1: send: if dd∗ ·

√
h+ l∗e = r then send (d∗, l∗) to all the neighbors

2: receive [Steps 2-6]: let I be the set of incoming messages
3: for each M ∈ I do
4: let M = (d−, l−) and let the sender be y.
5: d← d− + w(y, v); l← l− + 1
6: if d < d∗ or (d = d∗ and l < l∗) then set d∗ ← d; l∗ ← l

We now present a simplified short-range algorithm (Algorithm 2) with the

same dilation O(n
√
h) and congestion O(

√
h). Here d∗ is the current best estimate

for the shortest path distance from x at node v and l∗ is the hop-length of the

corresponding path. Source node x initializes d∗ and l∗ values to zero and sends

these values to its neighbors in round 0 (Step 1). At the start of a round r, each

node v checks if its current d∗ and l∗ values satisfy dd∗ ·
√
h + l∗e = r, and if so, it

sends this estimate to each of its neighbors. To bound the number of such messages

v sends throughout the entire execution, we note that v will send another message in

a future round only if it receives a smaller d∗ value with higher dd∗ ·
√
h+ l∗e value.

But since l∗ ≤ h and d∗ values are non-negative integers, v can send at most
√
h

messages to its neighbors throughout the entire execution. A proof similar to [47]

(a simplified version of Lemma 6.2.14) shows that as long as edge-weights are non-

negative, v will always receive the message that creates the pair d∗, l∗ at v before

round dd∗ ·
√
h+ l∗e.

127

If shortest path distances are bounded by ∆, Algorithm 2 runs in d∆ ·
√
h+he

rounds with congestion at most
√
h. And if ∆ ≤ n − 1 (as in [50]), then we can

compute shortest path distances from x to every node v in O(n
√
h) rounds.

We can similarly simplify the short-range-extension algorithm in [50], where

some nodes already know their distance from source x and the goal is to compute

shortest paths from x by extending these already computed shortest paths to u

by another h hops. To implement this, we only need to modify the initialization

in Algorithm 2 so that each such node u initializes d∗ with this already computed

distance. The round complexity is again O(∆
√
h) and the congestion per source is

O(
√
h). This gives us the following result.

Lemma 6.2.17. Let G = (V,E) be a directed or undirected graph, where all edge

weights are non-negative distances (and zero-weight edges are allowed), and where

shortest path distances are bounded by ∆. Then by using Algorithm 2, we can compute

h-hop SSSP and h-hop extension in O(∆
√
h) rounds with congestion bounded by

√
h.

As in [50] we can now combine our Algorithm 2 with Ghaffari’s randomized

framework [39] to compute h-hop APSP and h-hop extensions (for all source nodes)

in Õ(∆
√
h+n

√
h) rounds w.h.p. in n. The result can be readily modified to include

the number of sources, k, by sending the current estimates (d∗, l∗) in round dd∗·γ+l∗e

, where γ =
√
hk/∆ as in Algorithm 1 (instead of dd∗ ·

√
h+ l∗e), and the resulting

algorithm runs in O(
√

∆hk) rounds with congestion bounded by
√

∆h/k. Then

we can compute h-hop k-SSP and h-hop extensions for all k sources in Õ(
√

∆hk)

rounds.

6.3 Faster k-SSP Algorithm using blocker set

In this section we give faster APSP and k-SSP algorithms. The overall Algorithm 3

has the same structure as the deterministic O(n3/2 ·
√

log n) round weighted APSP

128

algorithm in Chapter 5 but we use a variant of Algorithm 1 in place of Bellman-Ford,

and we also present new methods within two of the steps.

In our improved Algorithm 3, Steps 3-5 are unchanged from the algorithm in

Chapter 5 (Algorithm 1). However we give an alternate method for Step 1, which

computes h-hop CSSSP, since the method in Chapter 5 (Algorithm 1) takes Θ(n ·h)

rounds, which is too large for our purposes. Our new method is very simple and uses

Algorithm 1 and runs in O(
√
4hk) rounds. The following lemma is straightforward

and can be established by replacing Bellman-Ford algorithm with Algorithm 1 in

Lemma 6.4.3.

Lemma 6.3.1. h-hop CSSSPs can be computed in O(
√
4hk) rounds using Algo-

rithm 1.

For Step 2 we use the overall blocker set algorithm from Chapter 5 (Algo-

rithm 2), which runs in O(n · h + (n2 log n)/h) rounds and computes a blocker set

of size q = O((n log n)/h) for the h-hop trees constructed in Step 1 of Algorithm 3.

But this gives only an Õ(n3/2) bound for Step 2 (by setting h = Õ(
√
n)), so it

will not help us to improve the bound on the number of rounds for APSP beyond

Algorithm 1. Instead we modify and improve a key step where that earlier blocker

set algorithm has a Θ(n · h) round preprocessing step. We give the details of our

method for Step 2 in Section 6.4.1.

Algorithm 3 Overall k-SSP algorithm (adapted from Algorithm 1 (Chapter 5))
Input: set of sources S, number of hops h
1: Compute h-hop CSSSP rooted at each source x ∈ S (described in Section 6.4).
2: Compute a blocker set Q of size Θ(n logn

h) for the h-hop CSSSP computed in
Step 1 (described in Section 6.4.1).

3: for each c ∈ Q in sequence: compute SSSP tree rooted at c.
4: for each c ∈ Q in sequence: broadcast ID(c) and the shortest path distance

values δh(x, c) for each x ∈ S.
5: Local Step at node v ∈ V : for each x ∈ S compute the shortest path distance
δ(x, v) using the received values.

129

Lemma 6.3.2. Algorithm 3 computes k-SSP in O(n
2 logn
h +

√
4hk) rounds.

Proof. The correctness of Algorithm 3 is established in Lemma 5.2.2. Step 1 runs in

O(
√
4hk) rounds by Lemma 6.3.1. In Section 6.4.1 we will give an O(n · q+

√
4hk)

rounds algorithm to find a blocker set of size q = O(n logn
h). Steps 3 and 4 take

O(n · q) rounds (Lemma 5.2.6). Step 5 has no communication. Hence the overall

bound for Algorithm 3 is O(n · q +
√
4hk) rounds. Since q = O(n logn

h) this gives

the desired bound.

Proofs of Theorem 6.1.3 and 6.1.2: Using h = n4/3·log2/3 n
(2k·4)1/3

in Lemma 6.3.2 we ob-

tain the bounds in Theorem 6.1.3.

If edge weights are bounded by W , the weight of any h-hop path is at most

hW . Hence by Lemma 6.3.2, the k-SSP algorithm (Algorithm 3) runs in O(n
2 logn
h +

h
√
Wk) rounds. Setting h = n log1/2 n/(W 1/4k1/4) we obtain the bounds stated in

Theorem 6.1.2.

6.4 Computing Consistent h-hop trees (CSSSP)

We first present our new notion of computing Consistent h-hop trees, which forms an

important component of our blocker set algorithm. We then describe our algorithm

for computing blocker set.

Recall that an h-hop shortest path from a source s to a vertex v in G is a

path of minimum weight from s to v among all paths with at most h hops. If we

consider the graph consisting of an h-hop shortest path from a source s to every

vertex in G reachable from s within h hops, it need not form a tree since the prefix

of an h-hop shortest path may not itself be an h-hop shortest path. The parent

pointers for the h-hop shortest paths computed by Bellman-Ford algorithm [15]

(or our pipelined (h, k)-SSP algorithm in Chapter 5) suffer from a similar problem:

the tree constructed by the parent pointers could have height greater than h (see

130

a

b

d c

1
1 8

1

(i) Example graph
G.

a

b

d c

(ii) Edges on 2-
hop shortest paths
from source node
b.

a

b

d c

(iii) 2-hop SSSP for
source node b con-
structed by Bellman-
Ford.

b

d c

(iv) 2-hop CSSSP
for source node b.

Figure 6.1: This figure gives an example graph G where the union of the edges on
the 2-hop shortest paths from source node b differs from the 2-hop SSSP constructed
by Bellman-Ford (or using our (h, k)-SSP pipelined algorithm in Chapter 5), and
both are different from the 2-hop CSSSP generated for source node b.

Fig 6.1).

Within the algorithm for computing blocker set in our APSP algorithm (de-

scribed in Section 5.3), there are algorithms for updating the ‘scores’ of the ancestor

and descendant nodes of a newly chosen blocker node in the collection of trees that

contain h-hop shortest paths. The efficient methods used in these algorithms are

based on having a consistent set of paths across all trees in the collection. In order

to create a consistent collection of paths across all sources, we introduce the following

definition of an h-hop Consistent SSSP (CSSSP) collection.

Definition 6.4.1 (CSSSP). Let H be a collection of rooted trees of height h in

a graph G = (V,E). Then H is an h-hop CSSSP collection (or simply an h-hop

CSSSP) if for every u, v ∈ V the path from u to v is the same in each of the trees

in H (in which such a path exists), and is the h-hop shortest path from u to v in the

h-hop tree Tu rooted at u. Further, each Tu contains every vertex v that has a path

with at most h hops from u in G that has distance δ(u, v).

Running h iterations of Bellman-Ford (or our pipelined (h, k)-SSP algorithm

in Chapter 5) is not guaranteed to construct a CSSP collection. At the same time,

we observe that the trees in an h-hop CSSSP collection may not contain all h-hop

131

shortest paths: In particular, if every shortest path from source s to a vertex x has

more than h hops, then the h-hop tree for source s in the CSSSP collection is not

required to have x in it (see Fig. 6.1).

Our method to construct an h-hop CSSSP collection is very simple: We

execute Bellman-Ford algorithm to construct 2h-hop SSSPs instead of h-hop SSSPs

(Note that if there are two different shortest paths between a pair of vertices u and

v, then the one with shorter hop-length is preferred and in case of a tie, the one

with smaller last edge ID is preferred). Our CSSSP collection will retain the initial

h hops of each of these 2h-hop SSSPs. In other words, each vertex v willl set the

parent pointer p(v) to NIL for a source s if the hop-length of the corresponding path

is greater than h. In [8] we show that this simple construction results in an h-hop

CSSSP collection. Thus we are able to construct h-hop CSSSPs by incurring just a

constant factor overhead in the number of rounds over the bound for constructing

h-hop SSSPs.

Lemma 6.4.2. Consider running Bellman-Ford algorithm (or our pipelined (h, k)-

SSP algorithm in Chapter 5) using the hop-length bound 2h. Let C be the collection

of h-hop trees formed by retaining the initial h hops in each of these 2h-hop SSSPs.

Then the collection C forms an h-hop CSSSP collection.

Proof. If not, then there exist vertices u, v and trees Tx, Ty such that the paths from

u to v in Tx and Ty are different. Let πxu,v and πyu,v be the corresponding paths in

these trees.

There are three possible cases: (1) when wt(πxu,v) 6= wt(πyu,v) (2) when paths

πxu,v and πyu,v have same weight but different hop-lengths (3) when both πxu,v and

πyu,v have same weight and hop-length.

(1) wt(πxu,v) 6= wt(πyu,v): w.l.o.g. assume that wt(πxu,v) < wt(πyu,v). Now if

we replace πyu,v in Ty with πxu,v, we get a path of smaller weight from y to v of hop-

length at most 2h. But then node v should have picked this lighter path during the

132

execution of Bellman-Ford with y as the source node, resulting in a contradiction.

(2) paths πxu,v and πyu,v have same weight but different hop-lengths. W.l.o.g.

assume that path πxu,v has smaller hop-length than πyu,v. Then κ(πxu,v) < κ(πyu,v)

and hence κ(πyy,u ◦ πxu,v) < κ(πyy,u ◦ πyu,v). And again v would have picked the path

πyy,u ◦ πxu,v as the shortest path from y during the execution of Bellman-Ford with

y as the source, since paths with smaller hop-length are preferred even if they have

same weighted distance.

(3) both πxu,v and π
y
u,v have same weight and hop-length. W.l.o.g. assume that

these two paths have the smallest hop-length for which the paths differ. Let (a, v)

be the last edge on the path πxu,v and let (b, v) be the last edge on the path πyu,v.

W.l.o.g. assume that ID(a) < ID(b) (a cannot equal b since the resulting smaller

hops subpaths πxu,a and πyu,a would be different, which is not possible). Then again

during the execution of Bellman-Ford with y as the source, v would have chosen the

path πyy,u ◦ πxu,v as the shortest path from y instead of πyy,v, since paths with smaller

parent ID are preferred even if they have same weight and hop-length.

Lemma 6.4.3. h-hop CSSSPs can be computed in O(nh) rounds using the Bellman-

Ford algorithm.

We now show two properties of an h-hop CSSSP collection that we will use

in our blocker set algorithm in the next section. In the following, we call a tree T

rooted at a vertex c an out-tree if all the edges incident to c are outgoing edges from

c and we call T an in-tree if all the edges incident to c are incoming edges.

Lemma 6.4.4. Let C be an h-hop CSSSP collection. Let c be a vertex in G and let

T be the union of the edges in the collection of subtrees rooted at c in the trees in C.

Then T forms an out-tree rooted at c.

Proof. If not, there exist nodes u and v and trees Tx and Ty such that the path from

c to u in Tx and path from c to v in Ty first diverge from each other after starting

133

from c and then coincide again at some vertex z. But since C is an h-hop CSSSP

collection, by Lemma 6.4.2 the path from c to z in the collection C is unique.

Lemma 6.4.5. Let C be an h-hop CSSSP collection. Let c be a vertex in G and let

T be the union of the edges on the tree-path from the root of each tree in C to c (for

the trees that contain c). Then T forms an in-tree rooted at c.

Proof. If not, then there exist nodes x and y such that the path from x to c in Tx

and path from y to c in Ty first coincide at some vertex z and then diverge from each

other. But since C is an h-hop CSSSP collection, by Lemma 6.4.2 the path from z

to c in the collection C is unique.

6.4.1 Computing a Blocker Set

Our overall blocker set algorithm runs in O(n
2 logn
h +

√
4hk) rounds. It differs from

the blocker set algorithm in Chapter 5 (Algorithm 2) by developing faster algorithms

for two steps that take O(nh) rounds in the earlier blocker set algorithm.

The first step in Algorithm 2 (Chapter 5) that takes O(nh) rounds is the

step that computes the initial ‘scores’ at all nodes for all h-hop trees in the CSSSP

collection. The score of node v in an h-hop tree is the number of v’s descendants

in that tree. Here we compute scores for all trees at all nodes in O(
√
4hk) rounds

with a timestamp pipelining technique introduced in [47] for propagating values from

descendants to ancestors in the shortest path trees within the same bound as the

APSP algorithm.

To explain the second O(nh)-round step in Algorithm 2 (Chapter 5), we

first give a recap of the blocker set algorithm in Chapter 5 (Algorithm 2). This

algorithm picks nodes to be added to the blocker set greedily. The next node that

is added to the blocker set is one that lies in the maximum number of paths in the

h-hop trees that have not yet been covered by the already selected blocker nodes. To

identify such a node, the algorithm maintains at each node v a count (or score) of the

134

number of descendant leaves in each tree, since the sum of these counts is precisely

the number of root-to-leaf paths in which v lies. Once all vertices have their overall

score, the new blocker node c can be identified as one with the maximum score.

It now remains for each node v to update its scores to reflect the fact that paths

through c no longer exist in any of the trees. This update computation is divided

into two steps in Algorithm 2 (Chapter 5). In both steps, the main challenge is for a

given node to determine, in each tree Tx, whether it is an ancestor of c, a descendant

of c, or unrelated to c.

1. Updates at Ancestors. For each v, in each tree Tx where v is an ancestor of c, v

needs to reduce its score for Tx by c’s score for Tx since all of those descendant leaves

have been eliminated. In Chapter 5 an O(n)-round pipelined algorithm (using the

in-tree property for CSSSP in Lemma 6.4.5) (Algorithm 6) is given for this update

at all nodes in all trees, and this suffices for our purposes.

2. Updates at Descendants. For each v, in each tree Tx where v is a descendant of c,

v needs to reduce its score for Tx to zero, since all descendant leaves are eliminated

once c is removed. In Chapter 5, this computation is performed by an O(nh)-round

precomputation in which each vertex identifies all of its ancestors in all of the h-hop

trees and thereafter can readily identify the trees in which it is a descendant of a

newly chosen blocker node c once c broadcasts its identity to all nodes. But this is

too expensive for our purposes.

Here, we perform no precomputation but instead in Algorithm 4 we use the

property in Lemma 6.4.4 for CSSSP to develop a method similar to the one for

updates at ancestors. Initially c creates a list, listc, where it adds the IDs of all

the source nodes x such that c lies in tree Tx. In round i, c sends the i-th entry

〈x〉 in listc to all its children in Tx. Since T (in Lemma 6.4.4) is a tree, every node

v receives at most one message in a given round r. If v receives the message for

source x in round r, it forwards this message to all its children in Tx in the next

135

Algorithm 4 Pipelined Algorithm for updating scores at v in trees Tx in which v
is a descendant of newly chosen blocker node c
Input: Q: blocker set, c: newly chosen blocker node, S: set of sources

(only for c)
1: Local Step at c: create listc to store the ID of each source x ∈ S such that
scorex(c) 6= 0; for each x ∈ S do set scorex(c)← 0; set score(c)← 0

2: Send: Round i: let 〈x〉 be the i-th entry in listc; send 〈x〉 to c’s children in
Tx.
(round r > 0 : for vertices v ∈ V −Q− {c})

3: send[lines 3-4]: if v received a message 〈x〉 in round r − 1 then
4: if v 6= x then send 〈x〉 to v’s children in Tx
5: receive[lines 5-6]: if v receives a message 〈x〉 then
6: score(v)← score(v)− scorex(v); scorex(v)← 0

round, r + 1, and also sets its score for source x to 0. Similar to the algorithm for

updating ancestors of c [10], it is readily seen that every descendant of c in every

tree Tx receives a message for x by round k + h− 1.

Lemma 6.4.6. Algorithm 4 correctly updates the scores of all nodes v in every tree

Tx in which v is a descendant of c in k + h− 1 rounds.

6.5 Additional Results

6.5.1 An Õ(n)-Rounds (1+ε)Approximation Algorithm for Weighted

APSP with Non-negative Integer Edge-Weights

Here we deal with the problem of finding (1+ε)-approximate solution to the weighted

APSP problem. If edge-weights are strictly positive, the following result is known.

Theorem 6.5.1 ([70, 63]). There is a deterministic algorithm that computes (1+ε)-

approximate APSP on graphs with positive polynomially bounded integer edge weights

in O((n/ε2) · log n) rounds.

The above result does not hold when zero weight edges are present. Here

136

we match the deterministic O((n/ε2) · log n)-round bound for this problem with an

algorithm that also handles zero edge-weights.

We first compute reachability between all pairs of vertices connected by zero-

weight paths. This is readily computed in O(n) rounds, e.g., using [65, 47] while

only considering only the zero weight edges (and ignoring the other edges).

We then consider shortest path distances between pairs of vertices that have

no zero-weight path connecting them. The weight of any such path is at least 1. To

approximate these paths we increase the zero edge-weights to 1 and transform every

non-zero edge weight w(e) to n2 ·w(e). Let this modified graph be G′ = (V,E,w′) .

Thus the weight of an l-hop path p in G′, w′(p), satisfies w′(p) ≤ w(p) ·n2 + l. Since

the modified graph G′ has polynomially bounded positive edge weights, we can use

the result in Theorem 6.5.1 to compute (1 + ε/3)-approximate APSP on this graph

in Õ(9n/ε2) rounds.

Fix a pair of vertices u, v. Let p be a shortest path from u to v in G, and let

its hop-length be l. Then w′(p) ≤ n2 · w(p) + l. Let p′ be a (1 + ε/3)-approximate

shortest path from u to v, and let its hop-length be l. Then w′(p′) ≤ (1+ε/3)·w′(p) ≤

(1 + ε/3) · (n2 ·w(p) + l). Dividing w′(p′) by n2 gives us w′(p′)/n2 < w(p)(1 + ε/3) +

(l/n2)(1 + ε/3) < w(p) + w(p)ε/3 + 2/n ≤ w(p)(1 + ε/3) + 2ε/3 ≤ w(p)(1 + ε) (as

long as ε > 3/n and since w(p) ≥ 1), and this establishes Theorem 6.1.5.

6.5.2 A Simple Õ(n4/3)Rounds Randomized Algorithm for Weighted

APSP with Arbitrary Edge-Weights

We adapt the randomized framework of Huang et al. [50] to obtain a simple ran-

domized algorithm for weighted APSP with arbitrary edge weights. Our randomized

algorithm runs in Õ(n4/3) rounds w.h.p. in n. We describe our randomized algorithm

below.

As described in Section 6.2.6, Huang et al.[50] use two algorithms short-range

137

and short-range-extension for integer-weighted APSP for which they have random-

ized algorithms that run in Õ(n
√
h) rounds w.h.p. in n. (We presented simplified

versions of these two algorithms in Section 6.2.6.) Since we consider arbitrary edge

weights here, we will instead use h rounds of the Bellman-Ford algorithm [15] for

both steps, which will take O(kh) rounds for k source nodes.

We keep the remaining steps in [50] unchanged: These steps involve having

every ‘center’ c broadcast its estimated shortest distances, δ(c′, c), from every other

center c′, and each source node x ∈ S sending its correct shortest distance, δ(x, c), to

each center c. (The set of centers is a random subset of vertices in G of size Õ(
√
n).)

These steps are shown in [50] to take Õ(n +
√
nkq) rounds in total w.h.p. in n,

where q = Θ(n logn
h). This gives an overall round complexity Õ(kh+ n+

√
nkq) for

our algorithm. Setting h = n2/3/k1/3 and q = n1/3k1/3 log n, we obtain the desired

bound of Õ(n+ n2/3k2/3) in Theorem 6.1.6.

6.6 Conclusion

We have presented new deterministic distributed algorithms for weighted shortest

paths (both APSP, and for k sources) in graphs with moderate non-negative in-

teger weights. Our contributions include a novel pipelined strategy for computing

weighted shortest paths, improvements to the distributed deterministic construction

of a blocker set, and simplifications to earlier shortest path algorithms in [50, 10].

A key feature of our shortest path algorithms is that they can handle zero-weighted

edges, which are known to present a challenge in the design of distributed algorithms

for non-negative integer weights (see [50]). We have also present an approximate

APSP algorithm that can handle zero-weighted edges.

Our work leaves a couple of major open problems. We could obtain a

faster deterministic APSP algorithm with non-negative polynomially bounded in-

teger weights if our pipelined strategy can be made to works with Gabow’s scaling

138

technique [34]. Our current algorithm assumes that all sources see the same weight

on each edge, while in the scaling algorithm each source sees a different edge weight

on a given edge. While this can be handled with n different SSSP computations in

conjunction with the randomized scheduling result of Ghaffari [39], it will be very

interesting to see if a deterministic pipelined strategy could achieve the same result.

In Chapter 7 we present a Õ(n4/3) round deterministic APSP algorithm that

improves on the results presented in this Chapter and Chapter 5. The main compo-

nent of this algorithm is a faster algorithm for computing blocker set deterministi-

cally and a new approach to propagate distance values from source nodes to blocker

nodes.

139

Chapter 7

Faster Deterministic All Pairs

Shortest Paths

7.1 Introduction

In this Chapter we present an Õ(n4/3) rounds deterministic algorithm for the weighted

APSP problem. Table 4.1 (Chapter 4) compares our result with the earlier results

for this problem. All of these results as well as our new result can handle zero

weight edges, and these algorithms are qualitatively different from algorithms for

unweighted APSP.

Our new deterministic algorithm directly improves on the APSP algorithm

in Chapter 5 (Algorithm 1, Chapter 5). The algorithm in Chapter 5 (Algorithm 1)

computes Step 1 in O(n · h) rounds by running the distributed Bellman-Ford algo-

rithm for h hops from each source. Our algorithm leaves Step 1 unchanged, but it

improves on both Step 2 and Step 3.

For Step 2, in Chapter 5 we described a deterministic algorithm that greedily

chooses vertices to add to Q at the cost of O(n) rounds per vertex added, for the

cleanup cost for removing paths that are covered by this newly chosen vertex; this

140

is after an initial start-up cost of O(n · h). This gives an overall cost of O(nh+ nq)

for Step 2, where q = |Q| = O((n/h) · log n). Our new contribution is to constuct

Q in a sequence of polylog(n) steps, where each step adds several vertices to Q.

Our method incurs a cleanup cost of O(|S| · h) rounds per step after an initial

start-up cost of O(|S| · h) rounds for an arbitrary source set S, thereby removing

the dependence on q from this bound. (S = V gives the standard setting used in

previous APSP algorithms.) We achieve this by framing the computation of a small

blocker set as an approximate set cover problem on a related hypergraph. We then

adapt the efficient NC algorithm in Berger et al. [16] for computing an approximate

minimum set cover in a hypergraph to an Õ(|S| · h)-round Congest algorithm. As

in [16] this involves two main parts. We first give a randomized Õ(|S| · h)-round

algorithm that computes a blocker set of expected size Õ(n/h) using only pairwise

independent random variables. We then derandomize this algorithm, again with an

Õ(|S| · h)-round algorithm.

For Step 3, in Chapter 5 we gave a deterministic O(n · q)-round algorithm,

and [50] gave a randomized Õ(n · √q + n ·
√
h)-round algorithm. We replace the

n ·
√
h randomized algorithm used in [50] with a simple n ·h round algorithm (similar

to Step 1). The randomized O(n · √q) method in [50] computes the reversed q-sink

shortest paths problem that appears to use randomization in a crucial manner, by

invoking the randomized scheduling result of Ghaffari [39], which allows multiple

algorithms to run concurrently in O(∆ + κ · log n) rounds, where ∆ bounds the

dilation of any of the concurrent algorithms and κ bounds the congestion on any

edge when considering all algorithms. It is known that this result in [39] cannot

be derandomized in a completely general setting. For Step 3, our contribution is

to give a deterministic Õ(n · √q)-round algorithm for the reversed q-sink shortest

paths problem. Our algorithm uses a simple round-robin pipelined approach. To

obtain the desired round bound we rephrase the algorithm to work in frames which

141

allows us to establish suitable progress in the pipelining to show that it terminates in

Õ(n·√q) rounds. We note that the standard known results on efficiently broadcasting

multiple values, and on sending or receiving messages using the routing schedule in

an undirected APSP algorithm [48, 64] do not apply to this setting.

Finally we obtain the Õ(n4/3) bound on the number of rounds by balancing

the Õ(nh) bound for Steps 1 and 2 with the Õ(n ·√q) bound for the reversed q-sink

shortest path problem, as stated in the following theorem.

Theorem 7.1.1. There is a deterministic distributed algorithm that computes APSP

on an n-node graph with arbitrary non-negative edge-weights, directed or undirected,

in Õ(n4/3) rounds.

Theorem 7.1.1 improves on prior results for deterministic APSP on weighted

graphs in the Congest model. If randomization is allowed, the very recent result

in [19] gives an Õ(n)-round randomized algorithm, which is close to the known lower

bound of Ω(n) rounds [22], that holds even for unweighted APSP.

Roadmap. In Section 7.2 we present our overall APSP algorithm. Section 7.3

sketches our blocker set algorithm and Section 7.4 gives our pipelined algorithm for

the reversed q-sink shortest path problem. Section 7.5 gives additional details about

our results in Sections 7.3 and 7.4.

7.2 Overall APSP Algorithm

Algorithm 5 gives our overall APSP algorithm. In Step 1 we use the (simple) O(n·h)-

round algorithm in [8] to compute h-hop Consistent SSSP (CSSSP) for the vertex

set V (Definition 6.4.1, Chapter 5). The advantage of using h-hop CSSSPs instead of

other types of h-hop shortest paths is that the CSSSPs create a consistent collection

of paths across all trees in the collection, i.e. a path from u to v is same in all trees

T in the CSSSP collection C (in which such a path exists). We exploit this useful

142

property of CSSSPs throughout this chapter.

Algorithm 5 Overall APSP Algorithm
Input: number of hops h = n1/3

1: Compute h-hop CSSSP for set V using the algorithm in Chapter 5.
2: Compute a blocker set Q of size Õ(nh) for the h-hop CSSSP computed in Step 1

(described in Section 7.3).
3: For each c ∈ Q in sequence: Compute h-hop in-SSSP rooted at c.
4: For each c ∈ Q in sequence: Broadcast ID(c) and the shortest path distance

value δh(c, c′) for each c′ ∈ Q.
5: Local Step at node x ∈ V : For each c ∈ Q compute the shortest path distance

values δ(x, c) using the distance values received in Step 4.
6: Run Algorithms 10 and 11 described in Section 7.4 to propagate each distance

value δ(x, c) from source x ∈ V to blocker node c ∈ Q.
7: For each x ∈ V in sequence: Compute extended h-hop shortest paths starting

from every c ∈ Q using Bellman-Ford algorithm (described in Section 7.5.2).

Step 2 computes a blocker set Q (Definition 5.2.1, Chapter 5). Our deter-

ministic blocker set algorithm for Step 2 is completely different from the blocker set

algorithms in Chapters 5 and 6 with significant improvement in the round complex-

ity. We describe this algorithm in Section 7.3. Our blocker set algorithm is based on

the NC approximate Set Cover algorithm of Berger et al. [16] and runs in Õ(|S| · h)

rounds, where S is the set of sources. Previous deterministic blocker set algorithms

in Chapters 5 and 6 have an additional Õ(n · |Q|) term in the round complexity.

In Step 3 we compute, for each c ∈ Q, the h-hop in-SSSP rooted at c, which

is the set of in-coming h-hop shortest paths ending at node c. We can compute

these h-hop in-SSSPs in O(h) rounds per source using Bellman-Ford algorithm [15].

In Step 4 every blocker node c ∈ Q broadcasts its ID and the corresponding h-hop

shortest path distance values δh(c, c′) for every c′ ∈ Q. Step 5 is a local computation

step where every node x computes its shortest path distances δ(x, c) to every c ∈ Q

using the shortest path distance values it computed and received in Steps 3 and 4

respectively.

In Step 6 every node x wants to send each shortest path distance value δ(x, c)

143

it computed in Step 5 to blocker node c ∈ Q. This is the reversed q-sink shortest

path problem, where q = |Q|, and is the other crucial step in our APSP algorithm.

This step requires sending Õ(n5/3) different distance values across Õ(n2/3) different

sources (using |Q| = Õ(n2/3)). A trivial solution is to broadcast all these messages in

the network, resulting in a round complexity of Õ(n5/3) rounds. However this is the

only method known so far to implement this step deterministically. In Section 7.4

we give a pipelined algorithm for implementing this step more efficiently in Õ(n4/3)

rounds. After the execution of Step 6 every blocker node c ∈ Q knows its shortest

path distance from every node x ∈ V .

Finally, in Step 7 for every source x ∈ V , we run Bellman-Ford algorithm for

h hops with distance values δ(x, c) used as the initialization values at every blocker

node c ∈ Q. These constructed paths are also known as extended h-hop shortest

paths [50]. After this step, each t ∈ V knows the shortest path distance value δ(x, t)

from every source x ∈ V , which gives the desired APSP output. We describe Step 7

in Section 7.5.2.

Proof of Theorem 7.1.1. Fix a pair of nodes x and t. If the shortest path from x to

t has less than h hops, then δ(x, t) = δh(x, t) and the correctness is straightforward

from Lemma 6.4.2.

Otherwise, we can divide the shortest path from x to t into subpaths x to

c1, c1 to c2, . . ., cl to t where ci ∈ Q for 1 ≤ i ≤ l and each of these subpaths have

hop-length at most h. Since x knows δh(x, c1) from Step 3 and δh(ci, ci+1) distance

values from Step 4, it can correctly compute δ(x, cl) distance value in Step 5. And

from Lemmas 7.4.1 and 7.4.4, cl knows the distance value δ(x, cl) after Step 6. Since

the shortest path from cl to t has hop-length at most h, from Lemma 7.5.7 t will

compute δ(x, t) in Step 7.

Step 1 runs in O(nh) = O(n4/3) rounds (Lemma 6.4.3, Chapter 5). In Sec-

tion 7.3, we will give an Õ(nh) = Õ(n4/3) rounds algorithm to compute a blocker set

144

of size q = Õ(nh) = Õ(n2/3) (Step 2). Step 3 takes O(|Q| · h) = Õ(n) rounds using

Bellman-Ford algorithm (Lemma 6.4.3, Chapter 5). Since |Q|2 = Õ(n
2

h2
) = Õ(n4/3),

Step 4 takes Õ(n4/3) rounds using Lemma 5.2.5 (Chapter 5). Step 5 is local computa-

tion and has no communication. From Lemmas 7.4.1 and 7.4.5, Step 6 takes Õ(n4/3)

rounds and Step 7 can be computed in O(nh) = O(n4/3) rounds using Lemma 7.5.7.

Hence the overall algorithm runs in Õ(n4/3) rounds.

7.3 Computing Blocker Set

In this section we describe our algorithm to compute a small blocker set. We frame

this problem as that of finding a small set cover in an associated hypergraph. We then

adapt the efficient NC algorithm for finding a provably good approximation to this

NP-hard problem given in Berger et al. [16] to obtain our deterministic distributed

algorithm.

As in [16] our algorithm has two parts. We first present a randomized algo-

rithm to find a blocker set of size Õ(n/h) in Õ(|S| · h) rounds using only pairwise

independence. This is described in Section 7.3.1. Then in Section 7.3.2 we describe

how to use the exhaustive search technique of Luby [68] along with the ideas from [16]

to derandomize this algorithm, again in Õ(|S| · h) rounds. In our overall APSP al-

gorithm S = V but we will also use this algorithm in Section 7.4 with a different set

for S.

7.3.1 Randomized Algorithm for Computing Blocker Set

Given a hypergraph H = (V, F), a subset of vertices R is a set cover for H if R

contains at least one vertex in every edge in F . Computing a set cover of minimum

size is NP-hard. Berger et al. [16] gave an efficient NC algorithm to compute an

O(log n) approximation to the minimum set cover.

We can map the problem of computing a minimum blocker set for an h-hop

145

Table 7.1: Notations

Global Parameters:
C h-hop CSSSP collection
S set of sources in C
h number of hops in a path
n number of nodes
ε, δ positive constants ≤ 1/12

Q blocker set (being constructed)
score(v) number of root-to-leaf paths in C that contain v (local var. at v)

Vi set of nodes v with score(v) ≥ (1 + ε)i−1

Pi set of paths in C with at least one node in Vi
Pij set of paths in Pi with at least (1 + ε)j−1 nodes in Vi

scoreij(v) number of paths in Pij that contain v (local var. at v)

CSSSP collection C in a graph G = (V,E) to the minimum set cover problem in the

hypergraph H = (V, F) where V remains the vertex set of G and each edge in F

consists of the vertices in a root-to-leaf path in a tree in C. This hypergraph has

n vertices and at most n · |S| edges, where S is the number of sources (i.e., trees)

in C. Each edge in F has exactly h vertices. We now use this mapping to rephrase

the algorithm in [16] in our setting, and we derive an Õ(|S| · h)-round randomized

algorithm to compute a blocker set of expected size within O(log n) of the optimal

size, using only pairwise independent random variables. Since we know there exists

a blocker set of size O((n/h) · log n) the size of the blocker set constructed by this

randomized algorithm is Õ(n/h).

Our randomized blocker set method is in Algorithm 6. Table 7.1 presents the

notation we use for this section. In Step 1 for each node v we compute score(v), the

number of h-hop shortest paths in CSSSP collection C that contain node v. This can

be done in O(|S| ·h) rounds for all nodes v ∈ V using Algorithm 3 in Chapter 5. Our

algorithm proceeds in stages from i = log1+ε n
2 down to 2 (Steps 2-17), where ε is a

small positive constant ≤ 1/12, such that at the start of stage i, all nodes in V have

score value at most (1 + ε)i and in stage i we focus on Vi, the set of nodes v with

146

Algorithm 6 Randomized Blocker Set Algorithm
Input: S: set of source nodes; h: number of hops; C: collection of h-hop CSSSP for
set S; ε, δ: positive constants ≤ 1/12

1: Compute score(v) for all nodes v ∈ V using an algorithm from [10].
2: for stage i = log1+ε n

2 down to 1 do . All nodes have score less than (1 + ε)i

3: Compute Vi and broadcast it using the algorithm described in Section 7.5.1.1.

4: Compute P vi (at each v ∈ V) using Algorithm 13 (Section 7.5.1.1).
5: for phase j = log1+ε h down to 1 do
6: while there is a path in Pi with atleast (1 + ε)j−1 nodes in Vi do
7: Compute (a) P vij (at each v ∈ V) using Algorithm 14 and

(b) |Pij | using Algorithm 15 (Section 7.5).
8: Compute scoreij(v) for all nodes v ∈ Vi (using Algorithm 3

(Chapter 5)) and broadcast scoreij(v) values.
9: if there exists c ∈ Vi such that scoreij(c) > (δ3/(1 + ε)) · |Pij | then

10: Local Step at v ∈ V : add c to Q. Break ties with scoreij value
and node ID.

11: else . Run a selection procedure to select a set of nodes
12: Local Step at v ∈ Vi: add v to set A with probability

p = δ/(1 + ε)j (pairwise independently).
13: For each v ∈ Vi: node v broadcast ID(v) if it added itself to A

in previous step.
14: For each v ∈ V : node v broadcast the number of paths in P vi

and P vij covered by this set A.
15: Local Step at v ∈ V : Check if A is a good set and if so, add

A to Q. Otherwise, go back to Step 12.
16: For each x ∈ S in sequence: Remove subtrees rooted at c′ ∈ Q

using Algorithm 16 (Section 7.5.1.4).
17: Re-compute score(v) for all nodes v and re-construct sets Vi and Pi

as described in Steps 3 and 4.

147

score value greater than (1 + ε)i−1. (This ensures that the nodes that are added to

the blocker set have their score values near the maximum score value). Let Pi be the

set of paths in C that contain a vertex in Vi and let P vi be the set of paths in Pi with

v as the leaf node. These sets are readily computed in O(n) and O(|S| · h)-rounds

respectively (see Section 7.5.1.1).

Similar to [16], in order to ensure that the average number of paths covered by

the newly chosen blocker nodes is near the maximum score value, we further divide

our algorithm for stage i into a sequence of log1+ε h = log1+ε n
1/3 phases, where in

each phase j we focus on the paths in Pi with at least (1+ ε)j−1 nodes in Vi. We call

this set of paths Pij . We maintain that at the start of phase j, every path in Pi has

at most (1+ε)j nodes in Vi. We now describe our algorithm for phase j (Steps 5-17).

The algorithm for phase j consists of a series of selection steps (Steps6-17) (similar

to [16]) which are performed until there are no more paths in Pij .

Now we describe how we select nodes to add to blocker set Q. Let δ be some

fixed positive constant less than or equal to 1/12. In Step 9 we check if there exists a

node v which covers at least δ3/(1 + ε) fraction of paths in Pij and if so, we add this

node to the blocker set in Step 10. In case of multiple such nodes, we pick the one

with the maximum scoreij value and break ties using node IDs. Otherwise in Step 12,

we randomly pick every node with probability δ/(1 + ε)j , pairwise independently,

and form a set A. In Step 15 we check if A is a good set, otherwise we try again and

form a new set A in Step 12. As in [16] we define the notion of a good set as given

below and we will later show that A is a good set with probability at least 1/8.

Definition 7.3.1. A set of nodes A ⊆ Vi is a good set if A covers at least (1 + ε)i ·

(1− 3δ − ε) · |A| paths in Pi and at least a δ/2 fraction of paths from Pij.

Before the next selection step, we remove the paths covered by these newly

chosen node from the collection C along with recomputing the score values and sets

Vi and Pi (Steps 16-17).

148

7.3.1.1 Analysis of the Randomized Algorithm

Similar to [16] we get the following Lemmas which give us a bound on the number

of selection steps and a bound on the size of Q. Table 7.2 presents the notation we

use in our analysis in this section.

Lemma 7.3.2. The set Q constructed in Algorithm 6 is a blocker set for the CSSSP

collection C.

Proof. To show that Q is a blocker set, we need to show that the computed blocker

set Q indeed covers all paths in the CSSSP collection C. The while loop in Steps 6-17

runs as long as there is a path in Pi with at least (1 + ε)j−1 nodes in Vi and since

this loop terminated for i = 1 and j = 1, it implies that there is no path in C which

is not covered by some node in Q.

Lemma 7.3.3. If the check in Step 9 fails, then |Vi| > (1+ε)j

δ3
.

Proof. Since no node in Vi covers a δ3

(1+ε) fraction of paths from Pij , hence the total

scoreij values (defined in Step 8) for all nodes in Vi has value at most |Vi|· δ3

(1+ε) ·|Pij |.

And since every path in Pij has atleast (1 + ε)j−1 nodes in Vi,

|Vi| ·
δ3

(1 + ε)
· |Pij | > |Pij | · (1 + ε)j−1

This establishes that |Vi| > (1+ε)j

δ3
.

Lemma 7.3.4. The set A constructed in Step 12 of Algorithm 6 has size at most

(δ + 2δ2) · |Vi|
(1+ε)j

and atleast (δ − 2δ2) · |Vi|
(1+ε)j

with probability at least 3/4.

Proof. Consider random variable Xv where Xv = 1 if v is present in A, otherwise

Xv = 0. Thus
∑

v∈Vi Xv denotes the size of A. We now calculate its expectation

and variance.

149

Table 7.2: List of Notations Used in the Analysis of the Randomized Algorithm

Q blocker set (being constructed)

C h-hop CSSSP collection

S set of sources in C

h number of hops in a path

n number of nodes

Vi set of nodes v with score(v) ≥ (1 + ε)i−1

Pi set of paths in C with at least one node in Vi

Pij set of paths in Pi with at least (1 + ε)j−1 nodes in Vi

ε, δ positive constants ≤ 1/12

A set constructed in Step 12

Xv 1 if v is present in A, otherwise 0

Y1
∑

p∈Pi
∑

v∈Vi∩pXv

Y2
∑

p∈Pi
∑

v,v′∈Vi∩pXv ·Xv′

Y3
∑

p∈Pij
∑

v∈Vi∩pXv

Y4
∑

p∈Pij
∑

v,v′∈Vi∩pXv ·Xv′

nVi,p number of nodes from Vi in p

nv,Pij number of paths in Pij that contain node v

score(v) number of root-to-leaf paths in C that contain v (local var. at v)

scoreij(v) number of paths in Pij that contain v (local var. at v)

150

E[
∑
v∈Vi

Xv] = |Vi| ·
δ

(1 + ε)j
(7.1)

V ar[
∑
v∈Vi

Xv] = |Vi| · V ar[Xv] ≤ |Vi| · E[X2
v] = |Vi| ·

δ

(1 + ε)j
(7.2)

We now use Chebyshev’s inequality to get an upper bound on the size of A.

Using Chebyshev’s inequality the following holds with probability at least 3/4:

||A| − E[|A|]| ≤ 2
√
V ar[|A|]

≤ 2

√
|Vi| ·

δ

(1 + ε)j

≤ 2 · |Vi| ·
δ2

(1 + ε)j
(by Lemma 7.3.3

1

|Vi|
<

δ3

(1 + ε)j
)

|A| ≤ |Vi| ·
δ

(1 + ε)j
+ 2 · |Vi| ·

δ2

(1 + ε)j

Using the above analysis we can also show that |A| ≥ (δ − 2δ2) · |Vi|
(1+ε)j

with

probability at least 3/4.

Lemma 7.3.5. The set A constructed in Step 12 of Algorithm 6 covers at least

|A| · (1 + ε)i · (1− 3δ − ε) paths in Pi with probability at least 1/2.

Proof. Consider the 0-1 random variable Xv which is equal to 1 if v ∈ A. A path p is

covered by A if v ∈ A, i.e. Xv = 1 for some v ∈ Vi ∩ p. To get a lower bound on the

number of paths covered by A, we use the term
∑

v∈Vi∩pXv −
∑

v,v′∈Vi∩pXv ·Xv′ to

denote if a path p is covered by A or not. Note that this term has value at most 1

which is attained when either 1 or 2 nodes from p are picked in A and otherwise the

value is non-positive. Thus the term
∑

p∈Pi [
∑

v∈Vi∩pXv −
∑

v,v′∈Vi∩pXv ·Xv′] gives

a lower bound on the number of paths covered by A in Pi. Let this term be Y . Note

151

that even though the lower bound achieved using this term is very weak, improving

it further will not improve the overall bound on the size of A by more than a polylog

factor (Lemma 7.3.4).

Now we show that value of Y is ≥ |A| · (1 + ε)i · (1− 3δ− ε) with probability

atleast 1/2.

We first split Y into Y1 and Y2 where Y1 =
∑

p∈Pi
∑

v∈Vi∩pXv and Y2 =∑
p∈Pi

∑
v,v′∈Vi∩pXv ·Xv′ .

We first get a lower bound on the term Y1.

Y1 =
∑
p∈Pi

∑
v∈Vi∩p

Xv

=
∑
v∈Vi

∑
{p∈Pi:v∈p}

Xv

≥ (1 + ε)i−1 ·
∑
v∈Vi

Xv (since every node in Vi lies in ≥ (1 + ε)i−1 paths in Pi)

= (1 + ε)i−1 · |A|

We now need to get an upper bound on the term Y2. We first compute an

upper bound on E[Y2] and then use Markov inequality to get an upper bound on Y2.

(Let nVi,p denotes the number of nodes from Vi in p. Clearly nVi,p ≤ (1 + ε)j)

E[Y2] =
∑
p∈Pi

∑
v,v′∈Vi∩p

E[Xv ·Xv′]

=
∑
p∈Pi

∑
v,v′∈Vi∩p

E[Xv] · E[Xv′] (follows since Xv and X ′v are pairwise

independent)

=
∑
p∈Pi

(
nVi,p

2

)(
δ

(1 + ε)j

)2

152

≤ (1 + ε)j ·
∑
p∈Pi

nVi,p
2

(
δ

(1 + ε)j

)2

(since nVi,p ≤ (1 + ε)j)

≤ (1 + ε)j ·
∑

v∈Vi score(v)

2
·
(

δ

(1 + ε)j

)2

≤ (1 + ε)j · |Vi|
2
·max
v∈Vi

score(v) ·
(

δ

(1 + ε)j

)2

≤ |Vi|
2
· (1 + ε)i−j · δ2 (7.3)

Now using Markov inequality we get the following upper bound on Y2 with

probability atleast 3/4:

Y2 ≤ 4E[Y2] ≤ 2δ2 · (1 + ε)i−j · |Vi|

Since |A| ≥ (δ − 2δ2) · |Vi|
(1+ε)j

with probability at least 3/4 by Lemma 7.3.4,

Y2 ≤ 2δ2 · (1 + ε)i · |A|
(δ−2δ2) with probability at least 1/2.

Combining the bounds for Y1 and Y2 we get the following lower bound on Y

with probability at least 1/2:

Y = Y1 − Y2

≥ (1 + ε)i−1 · |A| − 2δ2 · (1 + ε)i · |A|
(δ − 2δ2)

= (1 + ε)i · |A| · (1

1 + ε
− 2δ

1− 2δ
)

= (1 + ε)i · |A| · (1− ε

1 + ε
− 3δ

3/2− 3δ
)

≥ (1 + ε)i · |A| · (1− ε− 3δ)

This establishes the lemma.

Lemma 7.3.6. The set A constructed in Step 12 of Algorithm 6 covers at least a

153

δ/2 fraction of paths in Pij with probability at least 5/8.

Proof. Similar to the proof of Lemma 7.3.5 we can lower bound the number of paths

covered by set A in Pij by the term
∑

p∈Pij [
∑

v∈Vi∩pXv −
∑

v,v′∈Vi∩pXv ·Xv′]. Let

this term be Y ′, with first term Y3 and the second term Y4. As noted in the proof of

Lemma 7.3.5, this term gives a very weak lower bound (however the sum here is over

the paths in the set Pij instead of Pi) and it is sufficient to get our desired bound

on the size of A.

Note that even though the lower bound achieved using this term is very weak,

improving it further will not improve the overall bound on the size of A by more

than a polylog factor (Lemma 7.3.4).

Now we need to show that Y ′ ≥ δ
2 · |Pij | with probability at least 5/8.

We first give a lower bound on Y3. To get the lower bound, we first compute

a lower bound on E[Y3] and an upper bound on V ar[Y3] and then use Chebyshev’s

inequality. (Let nv,Pij represent the number of paths in Pij that contain node v.

Since no node covers at least δ3

(1+ε) fraction of paths in Pij , nv,Pij <
δ3

(1+ε))

E[Y3] = E[
∑
p∈Pij

∑
v∈Vi∩p

Xv]

≥ E[
∑
p∈Pij

(1 + ε)j−1 ·Xv] (since every path in Pij has atleast (1 + ε)j−1

nodes from Vi)

= (1 + ε)j−1 · |Pij | ·
δ

(1 + ε)j

= |Pij | ·
δ

(1 + ε)

154

V ar[Y3] = V ar[
∑
p∈Pij

∑
v∈Vi∩p

Xv]

= V ar[
∑
v∈Vi

∑
{p∈Pij :v∈p}

Xv]

= V ar[
∑
v∈Vi

nv,PijXv]

=
∑
v∈Vi

n2v,Pij · V ar[Xv] (linearity of variance follows since Xv’s are

pairwise independent)

≤ δ

(1 + ε)j
· δ3

(1 + ε)
· |Pij | ·

∑
v∈Vi

nv,Pij (since nv,Pij <
δ3

(1 + ε)
· |Pij |)

≤ δ4

(1 + ε)j+1
· |Pij | · |Pij | · (1 + ε)j (since every path in Pij has at most

(1 + ε)j nodes from Vi)

≤ δ4 · |Pij |2 (7.4)

We now use Chebyshev’s inequality to get a lower bound on the value of Y3.

Using Chebyshev’s inequality the following holds with probability at least 7/8:

|Y3 − E[Y3]| ≤ 2
√

2
√
V ar[Y3]

Y3 ≥ E[Y3]− 2
√

2δ2 · |Pij |

≥ |Pij | ·
δ

(1 + ε)
− 2
√

2δ2 · |Pij |

We now need to get an upper bound on the term Y4. We first compute an

upper bound on E[Y4] and then use Markov inequality to get an upper bound on Y4.

155

E[Y4] =
∑
p∈Pij

∑
v,v′∈Vi∩p

E[Xv ·Xv′]

=
∑
p∈Pij

∑
v,v′∈Vi∩p

E[Xv] · E[Xv′] (follows since Xv and X ′v are pairwise

independent)

≤ |Pij | ·
(1 + ε)2j

2
·
(

δ

(1 + ε)j

)2

(since there are at most (1 + ε)j nodes from

Vi in any path in Pij)

= |Pij | ·
δ2

2
(7.5)

Now using Markov inequality we get the following upper bound on Y4 with

probability atleast 3/4:

Y4 ≤ 4E[Y4] ≤ 2δ2 · |Pij |

Combining the bounds for Y3 and Y4 we get the following lower bound on Y ′

with probability at least 5/8:

Y ′ = Y3 − Y4

≥ |Pij | ·
δ

(1 + ε)
− 2
√

2δ2 · |Pij | − 2δ2 · |Pij |

≥ |Pij | · δ · (1− ε− 5δ)

≥ |Pij | ·
δ

2
(since ε, δ ≤ 1/12)

This establishes the lemma.

Lemma 7.3.7. The set A constructed in Step 12 is a good set with probability at

least 1/8.

156

Proof. This is immediate from Lemma 7.3.5 and 7.3.6.

Lemma 7.3.8. The while loop in Steps 6-17 runs for at most O(log3 n/(δ3 · ε2))

iterations in total.

Proof. The while loop runs until Pij is non-empty, i.e. there exists a path in Pi with

atleast (1 + ε)j−1 nodes in Vi. In each iteration, the algorithm either covers at least
δ3

(1+ε) fraction of paths in Pij (if node c is added to blocker set Q in Step 10) or at

least δ
2 fraction of paths from Pij (if set A is added to Q in Step 15). Since there are

at most n2 paths and each iteration of the while loop covers at least δ3

(1+ε) fraction

of Pij , there are at most O

 logn2

log

 1

1− δ3

(1+ε)



 = O
(
(1+ε) logn

δ3

)
= O

(
logn
δ3

)
iterations.

Since both the inner and outer for loop runs for O(log1+ε n) = O(lognε) iterations,

this establishes the lemma.

Lemma 7.3.9. Each iteration of the inner for loop (Steps 5-17) in Algorithm 6 takes

Õ
(
|S|·h
δ3

)
rounds in expectation.

Proof. We first show that each iteration of the while loop in Steps 6-17 takes O(|S|·h)

rounds in expectation. Step 7 takes O(|S| ·h) rounds by Lemmas 7.5.3 and 7.5.3 and

so does Step 8 [10] and by Lemma 5.2.5. The check in Step 9 involves no communi-

cation and so does Step 10, since every node knows the scoreij values for every other

node and also the value of |Pij |, i.e. the number of paths that belong to Pij . Steps 12

and 15 are also local steps and does not involve any communication. Steps 13 and

14 involves broadcasting at most O(n) messages and hence takes O(n) rounds using

Lemma 5.2.5. Since by Lemma 7.3.7 the set A constructed in Step 12 is good with

probability at least 1/8, Steps 12-15 are executed O(1) times in expectation. Step 17

takes O(|S| · h) rounds [10] and using Lemma 7.5.2. Since the while loop runs for at

most O
(
logn
δ3

)
iterations (by Lemma 7.3.8), this establishes the lemma.

157

Lemma 7.3.10. The blocker set Q constructed by Algorithm 6 has size O(n logn
h).

Proof. As shown in [58, 10] the size of the blocker set computed by an optimal greedy

algorithm is Θ(n ln p
h), where p is the number of paths that need to be covered. We

will now argue that the blocker set constructed by Algorithm 6 is at most a factor of
1

(1−3δ−ε) larger than the greedy solution, thus showing that the constructed blocker

set Q has size at most O(n ln p
h · 1

(1−3δ−ε)) = Õ(n logn
h) since p ≤ n2 and 0 < δ, ε ≤ 1

12 .

The blocker set Q constructed by Algorithm 6 has 2 types of nodes: (1) node

c added in Step 10, (2) set of nodes A added in Step 12. Since the while loop in

Steps 6-17 runs for at most O
(
log3 n
δ3·ε2

)
iterations (by Lemma 7.3.8), hence there are

at most O
(
log3 n
δ3·ε2

)
nodes of type 1. Since log3 n

δ3·ε2 = o(nh), hence we only need to bound

the number of nodes added in Steps 12-15.

Since A is a good set, by Lemma 7.3.7 the number of paths covered by A is

at least |A| · (1 + ε)i · (1− 3δ− ε), where (1 + ε)i is the maximum possible score value

across all nodes in V (in the current iteration). Since maximum possible score value

is (1+ ε)i, any greedy solution must add atleast |A| · (1−3δ− ε) nodes in the blocker

set to cover these paths. Hence the choice of A is at most a factor of 1
(1−3δ−ε) larger

than the greedy solution. This establishes the lemma.

Lemma 7.3.11. Algorithm 6 computes the blocker set Q in Õ(|S| ·h/(ε2δ3)) rounds,

in expectation.

Proof. Step 1 runs in O(|S| · h) rounds [10]. The for loop in Steps 2-17 runs for

log1+ε n
2 = O

(
logn
ε

)
iterations. Each iteration takes Õ

(
|S|·h
εδ3

)
rounds in expecta-

tion: Step 4 is readily seen to run in O(|S| · h) rounds (Lemma 7.5.2). The inner

for loop in Steps 5-17 runs for log1+ε h = O
(
logn
ε

)
iterations, with each iteration

taking Õ
(
|S|·h
δ3

)
rounds in expectation using Lemma 7.3.9.

158

7.3.2 Deterministic Blocker Set Algorithm

The only place where randomization is used in Algorithm 6 is in Steps 12-15, where

a good set A (see Definition 7.3.1) is chosen. Fortunately, the Xv’s are pairwise-

independent random variables, where Xv = 1 if v ∈ A and 0 otherwise. We use a

linear-sized sample space [11, 60, 20] for generating pairwise independent random

variables and then find a good sample point(i.e., a good set A) in this O(n)-sized

sample space in O(|S| · h+ n) rounds.

Note that a trivial solution is to run the inner loop (Steps 12-15) in the

randomized blocker set algorithm for each sample point in the O(n) sample space

until a good set is identified. However in the worst case, we may need to run this

loop O(n) times instead of just a constant number of times in expectation, and that

would worsen the round complexity by a factor of n.

Algorithm 7, our derandomized algorithm, works as follows. Recall that P vi

and P vij denote the set of paths in Pi and Pij , respectively, that have v as the leaf

node. We start with create an incoming BFS tree rooted at l (Step 1, Alg. 7).

We assume that the X values are enumerated in order and every node knows this

enumeration. Let X(µ) refers to the µ-th vector in this enumeration and let σ(µ)Pi,v
and

σ
(µ)
Pij ,v

refers to the number of paths covered by X(µ) in sets P vi and P vij respectively.

Similarly let ν(µ)Pi
and ν

(µ)
Pij

refers to the total number of paths covered by X(µ) in

sets Pi and Pij respectively. In Step 2 (Alg. 7), the leader l receive sums of the

νPi,u and νPij ,u values for all sample points from the nodes u using the algorithm in

Section 7.3.3. The leader then is able to compute the number of paths covered in

both Pi and Pij for each µ and then picks one that satisfies the good set criterion

(Step 3, Alg. 7). It then broadcasts the corresponding X vector to every node in the

network (Step 4, Alg. 7). Algorithm 7 describes the pseudocode of this algorithm.

Lemma 7.3.12. The leader node l can identify a good sample point X ∈ {0, 1}|Vi|,

and thus a good set A in O(|S| · h+ n) rounds.

159

Algorithm 7 Deterministic Algorithm for picking good set A
Input: h: number of hops; S: set of sources; C: h-hop CSSSP collection; X(µ): µ-th
vector in sample space; P vi : set of paths in Pi with v as the leaf node; P vij : set of
paths in Pij with v as the leaf node
1: Compute BFS in-tree T rooted at leader l.
2: Compute σ(µ)Pi,u

and σ(µ)Pij ,u
terms locally at each v ∈ V , for each sample point µ,

and then using the pipelined algorithm in Section 7.3.3, send these values to the
leader l.

3: Local Step at l: For each 1 ≤ µ ≤ n, compute ν(µ)Pi
and ν(µ)Pij

. Let µ′ be such

that X(µ
′
) corresponds to good set A (in case of ties, pick the highest one).

4: Node l broadcast X(µ′) values. (This corresponds to good set A)

Proof. Step 1 computes the incoming BFS tree rooted at leader node l in O(n)

rounds. Step 2 takes O(n) rounds by Lemmas 7.3.14 and 7.3.15 . Step 3 is a local

step and involves no communication. Step 4 involves an all-to-all broadcast of at

most n messages and thus takes O(n) rounds using Lemma 5.2.5.

Let Algorithm 2′ be the blocker set algorithm obtained after replacing Steps 12-

15 in Algorithm 6 with the deterministic algorithm for generating a good set A

(Algorithm 7). Lemma 7.3.12 together with Lemma 7.3.11, gives us the following

Corollary.

Corollary 7.3.13. Algorithm 2′ computes the blocker set Q deterministically in

Õ(|S|·h
ε2δ3

) rounds.

7.3.3 Distributed Computation of Terms νPi and νPij

In this Section we describe a simple pipelined algorithm to compute νPi and νPij

terms at leader node l. Both algorithms are similar to an algorithm in [10] (for

computing ‘initial scores’). Recall that σ(µ)Pi,v
refers to the number of paths in P vi

covered by the sample point X(µ) and σ(µ)Pij ,v
refers to the total number of paths in

P vij covered by the sample point X(µ). Let ν(µ)Pi,v
refers to the sum total of the σ(µ)Pi,w

values of all descendant nodes w of v and similarly let ν(µ)Pij ,v
refers to the sum total

160

of the σ(µ)Pij ,w
values of all descendant nodes w of v. Also recall from Section 7.3.2

that ν(µ)Pi
and ν(µ)Pij

refers to the total number of paths covered by X(µ) in sets Pi and

Pij respectively. Table 7.3 presents the notations that we use in this Section.

7.3.3.1 Computing νPi

Consider computing the ν(µ)Pi
terms for each sample point µ, at leader node l (Al-

gorithm 8) (νPij can be computed similarly). First every node v initializes its ν(µ)Pi,v

value, for each sample point µ, in Step 1. Recall that we assume that all X values are

enumerated in order and every node knows this enumeration. In round n−1−h+µ,

the node u at height h sends its corresponding νPi,u value for X(µ) (Step 3) along

with the total value of νPi it received from its children for X(µ) (Steps 5-9). Leader

node l then computes the total sum ν
(µ)
Pi

for each sample point µ, by summing up

the received ν
(µ)
Pi,w

values from all its children w in Step 10. In Lemma 7.3.14 we

show that leader l correctly computes νPi values for all X(µ)’s in O(n) rounds.

Algorithm 8 Compute-νPi: Compute sum of νPi values at leader node l

Input: h: number of hops; S: set of sources; C: h-hop CSSSP collection; X(µ): µ-th
vector in sample space; T : BFS in-tree rooted at leader l
1: Local Step at v ∈ V : Let P be the set of paths in Pi with v as the leaf node.

For each 1 ≤ µ ≤ n, set ν(µ)Pi,v
=
∑

p∈P ∨z∈pX
(µ)
z

2: In round r > 0 (for all nodes v ∈ V − {t}):

3: send: if r = n− h(v) + µ− 1 then send 〈ν(µ)Pi,v
〉 to parent(v) in T

4: receive [lines 5-9]:
5: if r = n− h(v) + µ− 2 then
6: let I be the set of incoming messages to v
7: for each M ∈ I do
8: let the sender be w and let M = 〈ν(µ)Pi,w

〉 and
9: if w is a child of v in T then ν

(µ)
Pi,v
← ν

(µ)
Pi,v

+ ν
(µ)
Pi,w

10: Local Step at leader l: Compute the total sum ν
(µ)
Pi

for each sample point µ,

by summing up the received ν(µ)Pi,w
values from all its children w.

161

Table 7.3: List of Notations Used in the Analysis of the Deterministic Algorithm

A set constructed in Step 12 of Randomized Blocker Set Algorithm (Alg. 6)

Xv 1 if v is present in A, otherwise 0

X vector composed of Xv’s

X(µ) µ-th vector in the enumeration of X in the sample space

S set of sources in C

h number of hops in a path

n number of nodes

Vi set of nodes v with score(v) ≥ (1 + ε)i−1

Pi set of paths in C with at least one node in Vi

Pij set of paths in Pi with at least (1 + ε)j−1 nodes in Vi

P ui set of paths in Pi with leaf node u

P uij set of paths in Pij with leaf node u

σPi,u
∑

p∈Pui
∨v∈Vi∩pXv

σPij ,u
∑

p∈Puij
∨v∈Vi∩pXv

νPi,u sum total of σPi,w values for all descendant nodes w of v

νPij ,u sum total of σPij ,w values for all descendant nodes w of v

ν
(µ)
Pi

value of νPi with X(µ) as the input

ν
(µ)
Pij

value of νPij with X(µ) as the input

ν
(µ)
Pi,u

value of νPi,u with X(µ) as the input

ν
(µ)
Pij ,u

value of νPij ,u with X(µ) as the input

C h-hop CSSSP collection

Tx h-hop shortest path tree rooted at x in collection C

Q blocker set (being constructed)

l leader node

162

Lemma 7.3.14. Compute-νPi (Algorithm 8) correctly computes the ν(µ)Pi
values at

leader node l for all µ in O(n) rounds.

Proof. In Step 1, every node v correctly initialize their contribution to the overall

νPi,v term for each µ locally. Since the height of tree T is at most n− 1, it is readily

seen that a node v that is at depth h(v) in T will receive the count(µ)Pi
values from

its children in round n− h(v) +µ− 2 (Steps 5-9) and thus will have the correct ν(µ)Pi

value to send in round n−h(v) +µ− 1 in Step 3. Since µ = O(n), Steps 3-9 runs in

O(n) rounds. Step 10 is a local step and thus does not involve any communication.

This establishes the lemma.

7.3.3.2 Computing νPij

Here we describe our algorithm for computing ν(µ)Pij
terms for each sample point µ,

at leader node l (Algorithm 9). Every node v first initializes its ν(µ)Pij
value in Step 1.

Recall that we assume that all X values are enumerated in order and every node

knows this enumeration. In round n − 1 − h + µ, the node u at height h sends

its corresponding νPij ,u value for X(µ) (Step 3) along with the total value of νPij it

received from its children for X(µ) (Steps 5-9). Leader node l then computes the

total sum ν
(µ)
Pi

for each sample point µ, by summing up the received ν
(µ)
Pi,w

values

from all its children w in Step 10. In Lemma 7.3.15 we show that leader l correctly

computes νPij values for all X(µ)’s in O(n) rounds.

Lemma 7.3.15. Compute-νPij (Algorithm 9) correctly computes the ν(µ)Pij
values at

leader node l for all µ in O(n) rounds.

Proof. In Step 1, every node v correctly initialize their contribution to the overall

νPij term for each µ locally. Since the height of tree T is at most n− 1, it is readily

seen that a node v that is at depth h(v) in T will receive the ν(µ)Pij
values from its

children in round n − h(v) + µ − 2 (Steps 5-9) and thus will have the correct ν(µ)Pij

163

Algorithm 9 Compute-νPij : Compute sum of νPij values at leader node l

Input: h: number of hops; S: set of sources; C: h-hop CSSSP collection; X(µ): µ-th
vector in sample space; T : BFS in-tree rooted at leader l
1: Local Step at v ∈ V : Let P be the set of paths in Pij with v as the leaf node.

For each 1 ≤ µ ≤ n, set ν(µ)Pij ,v
=
∑

p∈P ∨z∈pX
(µ)
z

2: In round r > 0:

3: send: if r = n− h(v) + µ− 1 then send 〈ν(µ)Pij ,v
〉 to parent(v) in T

4: receive [lines 5-9]:
5: if r = n− h(v) + µ− 2 then
6: let I be the set of incoming messages to v
7: for each M ∈ I do
8: let the sender be w and let M = 〈ν(µ)Pij ,w

〉 and
9: if w is a child of v in T then ν

(µ)
Pij ,v

← ν
(µ)
Pij ,v

+ ν
(µ)
Pij ,w

10: Local Step at leader l: Compute the total sum ν
(µ)
Pij

for each sample point µ,

by summing up the received ν(µ)Pij ,w
values from all its children w.

value to send in round n − h(v) + µ − 1 in Step 3. Since µ = O(n), Steps 3-9

runs for at most 2n rounds. Step 10 is a local step and thus does not involve any

communication. This establishes the lemma.

7.4 A Õ(n4/3)Rounds Algorithm for Step 6 of Algorithm 5

In Step 6 of Algorithm 5, the goal is to send the distance values δ(x, c) (which

are already computed at node x) from source node x to the corresponding blocker

node c. Since there are n sources and |Q| = Õ(n2/3) blocker nodes, this step can

be implemented in Õ(n5/3) rounds using all-to-all broadcast (Lemma 5.2.5). One

could conjecture that the techniques in [48, 64] could be used to send these Õ(n5/3)

messages from the source nodes to the blocker nodes by constructing trees rooted

at each c. However, it is not clear how these methods can distribute the Õ(n5/3)

different source-destination messages in o(n5/3) rounds.

We now describe a method to implement this step more efficiently in Õ(n4/3)

164

rounds deterministically. A randomized Õ(n4/3)-round algorithm for this problem is

given in Huang et al. [50]. Our algorithm uses the concept of bottleneck nodes from

that result but is otherwise quite different.

Our algorithm is divided into two cases: (i) when hops(x, c) > n2/3 and, (ii)

when hops(x, c) ≤ n2/3 (hops(x, c) denotes the number of edges on the shortest path

from x to c).

Case (i) hops(x, c) > n2/3: Algorithm 10 describes our algorithm for this case.

We first construct an n2/3-hop in-CSSSP collection (i.e., CSSSP in-trees) using the

blocker set Q as the source set (Step 1, Alg. 10). In Step 2 (Alg. 10) we construct a

blocker set Q′ of size Õ(n1/3) for this CSSSP collection using deterministic Algorithm

2′ in Sections 6.4.1 and 7.3.2. Then for each c′ ∈ Q′ we construct the incoming and

outgoing shortest path tree rooted at c′ (Step 3, Alg. 10). In Step 4 (Alg. 10), every

source x ∈ V broadcasts the distance value δ(x, c′) for each c′ ∈ Q′. The lemma

below shows that each c ∈ Q can determine the δ(x, c) values for all x for which

hops(x, c) > n2/3, and the algorithm runs in Õ(n4/3) rounds.

Algorithm 10 Compute δ(x, c) at c: when hops(x, c) > n2/3

Input: Q: blocker set

1: Compute n2/3-hop in-CSSSP for source set Q using the algorithm in [8].

2: Compute a blocker set Q′ of size Õ(n/n2/3) = Õ(n1/3) for the n2/3-hop CSSSP

computed in Step 1 using the blocker set algorithm described in Section 6.4.1.

3: For each c′ ∈ Q′ in sequence: Compute in-SSSP and out-SSSP rooted at c′

using Bellman-Ford algorithm.

4: For each x ∈ V in sequence: Broadcast ID(x) and the shortest path distance

values δ(x, c′) for each c′ ∈ Q′.

5: Local Step at node c ∈ Q: For each x ∈ V compute the shortest path distance

value δ(x, c) using the δ(x, c′) distance values received in Step 4 and the δ(c′, c)

distance values computed in Step 3.

165

Lemma 7.4.1. Let V ′ be the set of nodes x such that there is a shortest path from x

to a blocker node c ∈ Q with hop-length greater than n2/3. Using Algorithm 10 each

blocker node c can correctly compute δ(x, c) for all such x ∈ V ′ in Õ(n4/3) rounds.

Proof. Since hops(x, c) > n2/3, there exists a blocker node c′ ∈ Q′ (constructed

in Step 2) such that the shortest path from x to c passes through c′. Thus c can

compute the distance value δ(x, c) by adding δ(x, c′) (received in Step 4) and δ(c′, c)

(computed in Step 3) values in Step 5.

Step 1 takes O(n2/3 · |Q|) = Õ(n4/3) rounds using Bellman-Ford algorithm.

Step 2 requires Õ(n2/3 · n2/3) = Õ(n4/3) rounds by Corollary 7.3.13. Since |Q′| =

Õ(n/n2/3) = Õ(n1/3), Step 3 takes Õ(n ·n1/3) = Õ(n4/3) rounds using Bellman-Ford

algorithm and so does Step 4 using Lemma 5.2.5. Step 5 is a local step and has no

communication.

Case (ii) hops(x, c) ≤ n2/3: This case deals with sending the distance values from

source nodes x to the blocker nodes c when the shortest path between x and c has

hop-length at most n2/3. Recall that using an all-to-all broadcast or the techniques

in [48, 64] for sending these Õ(n5/3) messages appears to require at least Õ(n5/3)

rounds.

Let CQ be the n2/3-hop in-CSSSP collection for source set Q. A set B ⊂ V is

a set of bottleneck nodes if removing the nodes in B, along with their descendants in

the trees in the collection CQ, reduces the congestion to at most Õ(n4/3), i.e. every

node would need to send at most Õ(n4/3) messages if all nodes x transmitted their

δ(x, c) values along the pruned CSSSP trees in the collection CQ. This notion is

defined in Huang et al. [50], where they present a randomized algorithm using the

randomized scheduling algorithm in Ghaffari [39] to identify such a set of bottleneck

nodes. Here we deterministically identify a set of bottleneck nodes B where |B| =

Õ(n1/3) (Step 1, Alg. 11) using a pipelined strategy (Alg. 17 in Appendix 7.5.3.1).

Clearly, after we remove these bottleneck nodes, any remaining node needs to send

166

at most Õ(n4/3) messages.

After we identify the set of bottleneck nodes B we run Bellman-Ford algo-

rithm [15] for each b ∈ B to compute both the incoming and outgoing shortest path

tree rooted at b (Step 2, Alg. 11). We then broadcast the δ(x, b) distance values

from every source x ∈ V to the corresponding b ∈ B (Step 3, Alg. 11). Thus if x lies

in the subtree rooted at b for a blocker node c, then c can compute δ(x, c) value by

adding δ(x, b) and δ(b, c) distance values (Step 4, Alg. 11).

It remains to send the distance value δ(x, c) to blocker node c if x is not part

of a subtree of any bottleneck node b in c’s shortest path tree. Since the maximum

congestion at any node is at most Õ(n4/3) after removing bottleneck nodes in B, we

are able to perform this computation deterministically. In Steps 8-9 (Alg. 11), we use

a simple round-robin strategy to propagate these distance values from each source x

to all blocker nodes c in the network. We show in Section 7.4.1, using the notion of

frames, that this simple strategy achieves the desired Õ(n4/3)-round bound.

167

Algorithm 11 Compute δ(x, c) at c: when hops(x, c) ≤ n2/3

Input: Q: blocker set; |Q| ≤ n2/3 log n; CQ: n2/3-hop in-CSSSP collection for set Q

1: Compute a set of bottleneck nodes B of size Õ(n1/3) using Algorithm 17 (Sec-

tion 7.5.3.1).

2: For each b ∈ B in sequence: Compute both in-SSSP and out-SSSP tree

rooted at b using Bellman-Ford algorithm.

3: For each x ∈ V in sequence: Broadcast ID(x) and the shortest path distance

values δ(x, b) for each b ∈ B.

4: Local Step at node c ∈ Q: For each x ∈ V compute δ(B)(x, c) =

minb∈B{δ(x, b) + δ(b, c)} using the δ(x, b) distance values received in Step 3 and

δ(b, c) distance values computed in Step 2.

5: Remove subtrees rooted at b ∈ B from the collection CQ using Algorithm 16

(Section 7.5.1.4).

6: Reset round counter to 0.

7: Assume the nodes in Q are ordered in a (cyclic) sequence O.

8: Round 0 < r ≤ (n4/3 log n+ n4/3) · ((1/3) · log n/ log log n− 1):

9: Round-robin sends: At each node v, forward an unsent message for the next

blocker node c in O to its parent in c’s tree.

Lemma 7.4.2. If the shortest path from x ∈ V to a blocker node c ∈ Q has hop-

length at most n2/3 and there exists a bottleneck node b ∈ B on this path, then after

executing Steps 1-4 of Algorithm 11 blocker node c knows the distance value δ(x, c)

for all such x ∈ V .

Proof. This is immediate from Step 4 (Alg. 11) where c will compute δ(x, c) by

adding the distance values δ(x, b) (received in Step 3, Alg. 11) and δ(b, c) value

(computed at c in Step 2, Alg. 11).

Lemma 7.4.3. If a source node x lies in a blocker node c’s tree in the CSSSP

168

collection CQ after the execution of Step 5 of Algorithm 11, then c would have received

δ(x, c) value by (n4/3 log n + n4/3) · ((1/3) · log n/ log logn − 1) rounds of Step 9 of

Algorithm 11.

Lemma 7.4.3 is established below in Section 7.4.1. Lemmas 7.4.2 and 7.4.3

establish the following lemma.

Lemma 7.4.4. If the shortest path from x ∈ V to a blocker node c ∈ Q has hop-

length at most n2/3, then after running Algorithm 11 blocker node c knows the dis-

tance value δ(x, c) for all such x ∈ V .

Lemma 7.4.5. Algorithm 11 runs for Õ(n4/3) rounds in total.

Proof. Step 1 takes Õ(n4/3) rounds by Lemma 7.5.10. Since |B| = Õ(n1/3), Step 2

takes Õ(n ·n1/3) = Õ(n4/3) rounds using Bellman-Ford algorithm and so does Step 3

using Lemma 5.2.5. Step 4 is a local step and involves no communication. Step 5

takes Õ(n2/3 · |Q|) = Õ(n4/3) rounds using Lemma 7.5.6. Step 9 runs for Õ(n4/3)

rounds, thus establishing the lemma.

7.4.1 Correctness of Step 9 of Algorithm 11

In this section we will establish that the simple round-robin approach used in Steps 8-

9 of Algorithm 11 is sufficient to propagate distance values δ(x, c) from source nodes

x ∈ V to blocker nodes c ∈ Q in Õ(n4/3) rounds, when the congestion at any node

is at most Õ(n4/3). While this looks plausible, the issue to resolve is whether a

node could be left idling when there are more messages it needs to pass on from its

descendants to its parents in some of the trees. This could happen because each

node forwards at most one message per round and these descendants might have

forwarded messages for other blocker nodes. The round robin scheme appears to

only guarantee that a message for a chosen blocker node will be sent from a node to

its parent at least once every |Q| rounds.

169

We now present and analyze a more structured version of Steps 9-10 to es-

tablish the bound. In this Algorithm 6 we divide Step 9 (Alg. 11) into (1/3) ·

(log n/ log log n)−1 different stages, with each stage running for at most n4/3 log3/2 n+

n4/3 rounds (we assume |Q| ≤ n2/3 log n). Our key observation (in Lemma 7.4.8) is

that at the start of Stage i, every node v only needs to send the distance values for

at most n2/3/ logi−1/2 n different blocker nodes (note that i is not a constant), thus

more messages can be sent by v to each blocker node in later stages.

Let Qv,i be the set of blocker nodes for which node v has messages to send at

start of stage i. We introduce the notion of a frame, where each frame has a single

round available for each blocker node in Qv,i. Stage i is divided into n2/3 logi+1 n+

n2/3 frames (we will show that each frame consists of dn2/3/ logi−1/2 ne rounds). In

each frame, node v sends out an unsent message for each c ∈ Qv,i to its parent in c’s

tree (Step 4, Alg. 12).

Algorithm 12 Algorithm for Stage i at node v ∈ V
Input: O: (cyclic) sequence of nodes in blocker set Q; CQ: n2/3-hop CSSSP collection

for set Q

1: for i ≥ 0 : do

2: Let Qv,i be the set of nodes in Q for which v contains at least one unsent

message during Stage-i.

3: for frame j = 1 to dn2/3 logi+1 n+ n2/3e do

4: For each c ∈ Qv,i in sequence: v forwards an unsent message for c to

its parent in c’s tree.

Lemma 7.4.6. For all blocker nodes c ∈ Qv,i, node v would have sent α messages to

its parent in c’s tree by α+n2/3−hc(v) frames of Stage i, where hc(v) = hops(v, c),

provided at least α messages are routed through v in Step 4 of Algorithm 12.

Proof. Fix a blocker node c. Let i′ be the smallest i for which the above statement

170

does not hold and let v be a node with maximum hc(v) value for which this statement

is violated in Stage i′. Node v is not a leaf node since α is 0 or 1 for a leaf and a

leaf would have sent its distance value to its parent in the first frame of Stage-0.

So v must be an internal node. Since the statement does not hold for v for

the first time for α, it implies that v has already sent α − 1 messages (including

its own distance value δ(v, c)) by (α − 1) + n2/3 − hc(v) frames and now does not

have any message to send to its parent in c’s tree in the next frame. However since

the statement holds for all of v’s children, v should have received at least α − 1

messages from its children by (α − 1) + n2/3 − (hc(v) + 1)-th frame, resulting in a

contradiction.

Since hc(v) ≤ n2/3, Lemma 7.4.6 leads to the following Corollary.

Corollary 7.4.7. After the completion of Stage i, every node v would have sent all

or at least n2/3 logi+1 n different distance values for all blocker nodes c ∈ Qv,i.

Lemma 7.4.8. The set Qv,i has size at most dn2/3/ logi−1/2 ne.

Proof. By Corollary 7.4.7 after the completion of Stage i − 1, every node v would

have sent all or at least n2/3 logi n different distance values for all blocker nodes in

Qv,i−1. Thus the set Qv,i will consist of only those nodes from Q for which v needs

to send at least n2/3 logi n different distance values. Since congestion at any node

v is at most n
√
|Q| = n4/3 log1/2 n (using Lemma 7.5.8), the size of Qv,i is at most

n4/3 log1/2 n/n2/3 logi n = n2/3/ logi−1/2 n. This establishes the lemma.

Proof of Lemma 7.4.3. Since |Qv,i| ≤ n2/3/ logi−1/2 n (by Lemma 7.4.8), Stage i runs

for n2/3/ logi−1/2 n ·(n2/3 logi+1 n+n2/3) ≤ n4/3 log3/2 n+n4/3 rounds. Lemma 7.4.3

is immediately established from Corollary 7.4.7 and the fact that there are (1/3) ·

log n/ log log n− 1 stages.

171

7.5 Helper Algorithms

7.5.1 Helper Algorithms for Randomized Blocker Set Algorithm

7.5.1.1 Algorithm for Computing Vi and Pi

Here we describe our algorithm for computing Steps 3 and 4 of Algorithm 6, which

computes the set Vi and identifies which paths belong to Pi respectively. Since every

node with score value greater than or equal to (1 + ε)i−1 belongs to Vi, computing

Vi is quite trivial. And to determine if a path p belong to Pi, we only need to check

if one of the nodes in p is in Vi.

Our algorithm for computing Vi works as follows: Every node v checks if its

score value is greater than or equal to (1+ε)i−1 and if so, it broadcast its ID to every

other node. The set Vi is then constructed by including the IDs of all such nodes.

Since there are at most n messages involved in the broadcast step, this algorithm

takes O(n) rounds. This leads to the following lemma.

Lemma 7.5.1. Given the score(v) values for every v ∈ V , the set Vi can be con-

structed in O(n) rounds.

We now describe our algorithm for computing Pi. Fix a source node x ∈ V .

In Round 0 x initializes flag to true if it belongs to Vi, otherwise set it to false

(Step 1). It then sends this flag to its children in next round (Step 3). In round

r ≥ 1, a node v that is r hops away from x receives the flag from its parent (Steps 5-

8) and v updates the flag value in Step 8 (set it to true if v ∈ Vi) and send it to its

children in x’s tree in round r + 1 (Step 3).

Lemma 7.5.2. Using Compute-Pi (Algorithm 13), Pi can be computed in O(h)

rounds per source node.

Proof. Fix a path p from source x to leaf node v. After h rounds, v will know if any

node in p belongs to Vi (using the flag value it received in Steps 5-8).

172

Algorithm 13 Compute-Pi: Algorithm for computing paths in Pi for source x at
node v
Input: Vi; h: number of hops; Tx: tree for source x
1: (Round 0): if v ∈ Vi then set flag ← true else flag ← false
2: Round h ≥ r > 0:
3: Send: if r = hx(v) + 1 then send 〈flag〉 to all children
4: receive [lines 5-8]:
5: if r = hx(v) then
6: let M be the incoming message to v
7: let the sender be w and let M = 〈flagw〉 and
8: if w is a parent of v in Tx then flag ← flag ∨ flagw
9: Local Step at v: if v is a leaf node and flag = true then the path from x to
v is in Pi.

The algorithm takes h rounds per source x and thus Pi can be computed in

O(|S| ·h) rounds in total (since we need to run the algorithm for every source x).

7.5.1.2 Algorithm for Computing Pij

Here we describe our algorithm for computing Step 7(a) of Algorithm 6, which

identifies the paths in Pi that also belong to Pij . Since every path in Pij has at least

(1 + ε)j−1 nodes from Vi, for each path p we need to determine the number of nodes

in p that belong to Vi. We do this by counting the number of nodes that are in Vi,

starting from root to leaf node.

Our algorithm works as follows: Fix a source node x ∈ V . In Round 0 x

initializes β value to 1 if it belongs to Vi, otherwise set it to 0 (Step 1). It then sends

this β value to its children in next round (Step 3). In round r ≥ 1, a node v that is

r hops away from x receives the β value from its parent (Steps 5-8) and v updates

the β value in Step 8 (increment it by 1 if v ∈ Vi) and send it to its children in x’s

tree in round r + 1 (Step 3).

Lemma 7.5.3. Using Compute-Pij (Algorithm 14), Pij can be computed in O(h)

rounds per source node.

173

Algorithm 14 Compute-Pij: Algorithm for computing paths in Pij for source x
at node v
Input: Vi; h: number of hops; Tx: tree for source x
1: (Round 0): if v ∈ Vi set β ← 1 else β ← 0
2: Round h ≥ r > 0:
3: Send: if r = hx(v) + 1 then send 〈β〉 to all children
4: receive [lines 5-8]:
5: if r = hx(v) then
6: letM be the incoming message to v
7: let the sender be w and let M = 〈βw〉 and
8: if w is a parent of v in Tx then β ← β + βw

9: Local Step at v: if v is a leaf node and β ≥ (1 + ε)j−1 then the path from x
to v is in Pij .

Proof. Fix a path p from source x to leaf node v. After h rounds, v will know the

number of nodes that belong to Vi (using the β values it received in Steps 5-8).

The algorithm takes h rounds per source x and thus Pij can be computed in

O(|S| ·h) rounds in total (since we need to run the algorithm for every source x).

7.5.1.3 Algorithm for Computing |Pij |

Algorithm 15 describes our algorithm for computing Step 7(b) of Algorithm 6, which

computes the value of |Pij |. Let P vij represents the set of paths p in Pij with v as

the leaf node. Every node v knows the set P vij after running the algorithm described

in the previous section. Our algorithm works as follows: Every node v first compute

|P vij | (Step 1) and then broadcast this value in Step 2. Every node v then compute

|Pij | by summing up the values received in Step 2 (Step 3).

Algorithm 15 Compute-|Pij |
Input: P vij : paths in Pij with v as the leaf node
1: Local Step at v ∈ V : set αP vij ← |P

v
ij |

2: For each v ∈ V : Broadcast ID(v) and the value αP vij .
3: Local Step at v ∈ V : |Pij | ←

∑
v′∈V αP v′ij

174

Lemma 7.5.4. Compute-|Pij | (Algorithm 15) computes |Pij | in O(n) rounds.

Proof. Steps 1 and 3 are local steps and involves no communication. Step 2 involves

a broadcast of n messages and takes O(n) rounds using Lemma 5.2.5.

7.5.1.4 Remove Subtrees rooted at z ∈ Z

In this Section we describe a deterministic algorithm for implementing Step 15 of

Algorithm 6, which removes subtrees rooted at nodes z ∈ Z from the trees in the

given h-hop CSSSP collection C. This algorithm (Algorithm 16) is quite simple and

works as follows: Fix a source x and let its corresponding tree in C be Tx. Every

node z ∈ Z in Tx send its ID to all its children in Tx (Step 1). Every node v on

receiving a message from its parent in Tx, forwards it to all its children and set the

parent pointer in Tx to NIL (Step 2).

Algorithm 16 Remove-Subtrees: Algorithm for Removing Subtrees rooted at
z ∈ Z for source x at node v
Input: S: set of sources; C: h-hop CSSSP collection for set S
1: (Round 0:) If v ∈ Z then send 〈ID(v)〉 to all children in Tx and set parentx(v)

to NIL.
2: (Round r > 0:) If v received a message M in round r− 1 then set parentx(v)

to NIL and send M to all children in Tx.

Lemma 7.5.5. Given a source x ∈ S and tree Tx ∈ C, then Remove-Subtrees

(Algorithm 16) removes all subtrees rooted at z ∈ Z in Tx.

Proof. Every z ∈ Z in Tx removes its parent pointer in Tx in Step 1. Any node

v ∈ V that lies in the subtree rooted at a z ∈ Z in Tx would have received a message

with ID(z) from its parent by h rounds (since height of Tx is at most h) and hence

would have set its parent pointer to NIL in Step 2.

Lemma 7.5.6. Remove-Subtrees (Algorithm 16) requires at most h rounds per

source node x ∈ S.

175

Proof. Since the height of Tx is at most h, any node v ∈ V which lies in the subtree

rooted at a z ∈ Z will receive the message from z by h rounds. This establishes the

lemma.

7.5.2 h-hop Shortest Path Extension Algorithm [50]

We now describe an algorithm for computing Step 7 of Algorithm 5, which computes

h-hop extensions based on the Bellman-Ford algorithm [15]. This algorithm is also

used as a step in the randomized APSP algorithm of Huang et al. [50]. Here every

blocker node c ∈ Q knows its shortest path distance value from every source node

x ∈ V and the goal is to extend the shortest path from x to c by additional h hops.

This algorithm works as follows: Fix a source x ∈ V . Every blocker node

c ∈ Q initializes the shortest path distance from x to δ(x, c) (this value is already

known to every c). We then run Bellman-Ford algorithm at every node v ∈ V for

source x for h rounds using these initialized values. We repeat this for every x ∈ V .

After this algorithm terminates, every sink node t ∈ V knows the shortest

path distance from every x ∈ V . Since we run Bellman-Ford for h rounds per source

node, this whole algorithm takes O(nh) rounds in total. This leads to the following

lemma.

Lemma 7.5.7. The h-hop shortest path extensions can be computed in O(nh) rounds

for every source x ∈ V using Bellman-Ford algorithm.

7.5.3 Helper Algorithms for Algorithm 11

7.5.3.1 Computing Bottleneck Nodes

Here we describe our deterministic algorithm for computing Step 1 of Algorithm 11,

which identifies a set B of bottleneck nodes such that removing this set of nodes

reduces the congestion in the network from O(n · |Q|) to O(n ·
√
|Q|). However when

randomization is allowed, there is a O(n ·
√
|Q|) randomized algorithm of Huang et

176

al [50] that computes this set w.h.p. in n. Our deterministic algorithm is however

very different from the randomized algorithm given in [50] and it uses ideas from our

blocker set algorithm in [10].

We now give an overview of the randomized algorithm of [50] that computes

this set of bottleneck nodes. For a source x and its incoming shortest path tree Tx,

every node in Tx calculates the number of outgoing messages for source x. This is

done by waiting for messages from all children nodes, followed by sending a message

to its parent in Tx. This takes O(n) rounds and can be run across multiple nodes

in Q as congestion is at most O(|Q|). Thus using the randomized algorithm of

Ghaffari [39], this algorithm can be run across all nodes in Q concurrently in Õ(n+

|Q|) = Õ(n) rounds. After computing these values, a node b with maximum count

is selected to the set B and is then removed from the network. The algorithm

repeats this for O(
√
|Q|) times, thus eliminating all nodes that needed to send at

least n
√
|Q| messages (since removal of every such node eliminates O(n

√
|Q|) nodes

across all trees and there are at most n · |Q| nodes).

Our deterministic algorithm for computing bottleneck nodes (Algorithm 17)

works as follows: In Step 1, the algorithm computes the countv,c values (number of

messages v needs to send to its parent in c’s tree) using Algorithm 18 described in

Section 7.5.3.2. Every node v calculates the total number of messages it needs to

send by summing up the values computed in Step 1 (Step 2) and then broadcast this

value in Step 4. The node with maximum value is added to the bottleneck node set

B (Step 5) and the values of its ancestors and descendants are updated using the

algorithms in [8]. In Lemma 7.5.10 we establish that the whole algorithm runs in

O(n
√
|Q|+ h · |Q|) rounds deterministically.

Lemma 7.5.8. After Compute-Bottleneck (Algorithm 17) terminates, total_countv ≤

n
√
|Q| for all nodes v.

Proof. This is immediate since the while loop in Steps 3-6 terminates only when

177

Algorithm 17 Compute-Bottleneck: Compute Bottleneck Nodes Set B
Input: Q: blocker set; CQ: CSSSP collection for blocker set Q
Output: B: set of bottleneck nodes
1: For each c ∈ Q in sequence: Compute countv,c values at every node v ∈ V

using Algorithm 18 (Section 7.5.3.2).
2: Local Step at v ∈ V : Compute total_countv ←

∑
c∈Q countv,c

3: while there is a node v with total_countv > n
√
|Q| do

4: For each v ∈ V : Broadcast ID(v) and total_countv value .
5: Add node b to B such that b has maximum total_countv value (break ties

using IDs).
6: Update total_countv values for the descendants and ancestors of b across all

trees in the collection CQ using Algorithm 6 in Chapter 5 and Algorithm 4 in
Chapter 6.

there is no node v with total_countv > n
√
|Q|.

Lemma 7.5.9. The set of bottleneck nodes, B, constructed by Compute-Bottleneck

(Algorithm 17) has size at most
√
|Q|.

Proof. Since every node b added to set B has total_countb > n
√
|Q|, removing such

b is going to remove at least n
√
|Q| nodes across all trees in Q in Step 6. And since

there are at most n · |Q| nodes across all trees, set B has size at most
√
|Q|.

Lemma 7.5.10. Compute-Bottleneck (Algorithm 17) runs for O(n
√
|Q|+ h ·

|Q|) rounds.

Proof. Step 1 takes O(h · |Q|) rounds using Lemma 7.5.11. Step 2 is a local compu-

tation step and involves no communication. Step 4 involves a broadcast of at most

n messages and hence takes O(n) rounds using Lemma 5.2.5. Step 5 again do not

involve any communication. Both Algorithm 6 and Algorithm 4 takes O(n) rounds

(Lemmas 5.3.6 and 6.4.6). Since B has size at most
√
|Q| (by Lemma 7.5.9), the

while loop runs for at most
√
|Q| iterations, thus establishing the lemma.

178

7.5.3.2 Computing countv,c Values

Here we describe our algorithm for computing Step 1 of Algorithm 17, which com-

putes countv,c values in a given h-hop CSSSP collection C for source set S. Our

algorithm (Algorithm 18) is quite simple and works as follows: Fix a source c ∈ S

and let Tc be the tree corresponding to source c in C. The goal is to compute the

number of messages each node v ∈ Tc needs to send to its parent. In Step 1 every

node v ∈ Tc initializes its countv,c value to 1. Every node v that is hc(v) hops away

from c receives the count values from all its children by round h− hc(v) (Steps 5-9)

and it then send it to its parent in round h − hc(v) + 1 (Step 3) after updating it

(Step 9).

Algorithm 18 Compute-Count: Algorithm for computing countv,c values for
source c at node v
Input: h: number of hops, Tc: tree for source c
1: (Round 0): if v ∈ Tc then set countv,c ← 1 else countv,c ← 0
2: Round h+ 1 ≥ r > 0:
3: Send: if r = h− hc(v) + 1 then send 〈countv,c〉 to v’s parent
4: receive [lines 5-9]:
5: if r = h− hc(v) then
6: let I be the set of incoming message to v
7: for M ∈ I do
8: let the sender be w and let M = 〈countw,c〉 and
9: if w is a child of v in Tc then countv,c ← countv,c + countw,c

Lemma 7.5.11. Compute-Count (Algorithm 18) correctly computes countv,c for

every v ∈ Tc in h+ 1 rounds per source node c.

Proof. Every leaf node v can initialize their countv,c values to 1 in Step 1. For every

other internal node v, v correctly computes countv,c value after receiving the count

values from all its children by round h−hc(v) (Steps 5-9) and then send the correct

countv,c value to its parent in round h− hc(v) + 1 in Step 3.

Since hc(v) ≥ 0, this algorithm requires at most h+ 1 rounds.

179

7.6 Conclusion

We have presented a new deterministic distributed algorithm for computing exact

weighted APSP in Õ(n4/3) rounds in both directed and undirected graphs with arbi-

trary edge weights. This algorithm improves on the Õ(n3/2) round APSP algorithm

presented in Chapter 5. At the heart of our algorithm is an efficient distributed al-

gorithm for sending the distance values from source nodes to the blocker nodes and

an improved deterministic algorithm for computing the blocker set using pairwise

independence and derandomization. We believe that both these techniques may be

of independent interest for obtaining results for other distributed graph problems.

The main open question left by our work is whether we can get a determin-

istic algorithm that can match the current Õ(n) randomized bound for computing

weighted APSP [19].

180

Bibliography

[1] A. Abboud, K. Censor-Hillel, and S. Khoury. Near-linear lower bounds for

distributed distance computations, even in sparse networks. In Proc. ISDC,

pages 29–42. Springer, 2016.

[2] A. Abboud, F. Grandoni, and V. V. Williams. Subcubic equivalences between

graph centrality problems, APSP and diameter. In Proc. SODA, pages 1681–

1697, 2015.

[3] A. Abboud, V. Vassilevska Williams, and H. Yu. Matching triangles and basing

hardness on an extremely popular conjecture. In Proc. STOC, pages 41–50.

ACM, 2015.

[4] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds

for dynamic problems. In Proc. FOCS, pages 434–443. IEEE, 2014.

[5] A. Abboud, V. V. Williams, and J. Wang. Approximation and fixed parameter

subquadratic algorithms for radius and diameter in sparse graphs. In Proc.

SODA, pages 377–391. SIAM, 2016.

[6] U. Agarwal and V. Ramachandran. Finding k simple shortest paths and cycles.

In Proc. ISAAC, pages 8:1–8:12, 2016.

[7] U. Agarwal and V. Ramachandran. Fine-grained complexity for sparse graphs.

In Proc. STOC, pages 239–252. ACM, 2018.

181

[8] U. Agarwal and V. Ramachandran. Distributed weighted all pairs shortest paths

through pipelining. In Proc. IPDPS. IEEE, 2019.

[9] U. Agarwal and V. Ramachandran. Faster deterministic all pairs shortest paths

in congest model. Manuscript, 2019.

[10] U. Agarwal, V. Ramachandran, V. King, and M. Pontecorvi. A determinis-

tic distributed algorithm for exact weighted all-pairs shortest paths in Õ(n3/2)

rounds. In Proc. PODC, pages 199–205. ACM, 2018.

[11] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. Journal of algorithms, 7(4):567–583,

1986.

[12] N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses for boolean matrix

multiplication and for shortest paths. In Proc. FOCS, pages 417–426. IEEE,

1992.

[13] N. Alon, R. Yuster, and U. Zwick. Color-coding. JACM, 42(4):844–856, 1995.

[14] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly sub-

quadratic time (unless SETH is false). In Proc. STOC, pages 51–58. ACM,

2015.

[15] R. Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–

90, 1958.

[16] B. Berger, J. Rompel, and P. W. Shor. Efficient NC algorithms for set cover

with applications to learning and geometry. J. Comp. Sys. Sci., 49(3):454–477,

1994.

[17] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices

and edges. In Proc. STOC, pages 101–110, 2009.

182

[18] A. Bernstein and D. Nanongkai. Distributed exact weighted all-pairs shortest

paths in near-linear time. In Proc. STOC. ACM, 2019.

[19] A. Bernstein and D. Nanongkai. Distributed exact weighted all-pairs shortest

paths in near-linear time. In Proc. STOC. ACM, 2019.

[20] S. Bernstein. Theory of probability, 1927.

[21] U. Brandes. A faster algorithm for betweenness centrality. Jour. Math. Soc.,

25(2):163–177, 2001.

[22] K. Censor-Hillel, S. Khoury, and A. Paz. Quadratic and near-quadratic lower

bounds for the congest model. In Proc. DISC, 2017.

[23] K. Censor-Hillel, M. Parter, and G. Schwartzman. Derandomizing local dis-

tributed algorithms under bandwidth restrictions. In DISC, 2017.

[24] S. Chechik, T. D. Hansen, G. F. Italiano, V. Loitzenbauer, and N. Parotsidis.

Faster algorithms for computing maximal 2-connected subgraphs in sparse di-

rected graphs. In Proc. SODA, pages 1900–1918. SIAM, 2017.

[25] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest

paths. J. ACM, 51:968–992, 2004.

[26] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran. Oracles

for distances avoiding a failed node or link. SIAM Jour. Comput., 37:1299–1318,

2008.

[27] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[28] M. Elkin. Distributed exact shortest paths in sublinear time. In Proc. STOC,

pages 757–770. ACM, 2017.

183

[29] M. Elkin and O. Neiman. Hopsets with constant hopbound, and applications

to approximate shortest paths. In Proc. FOCS, pages 128–137. IEEE, 2016.

[30] D. Eppstein. Finding the k shortest paths. SIAM Jour. Comput., 28:652–673,

1998.

[31] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM,

5(6):345, 1962.

[32] L. R. Ford Jr. Network flow theory. Technical report, RAND CORP SANTA

MONICA CA, 1956.

[33] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks cannot compute their

diameter in sublinear time. In SODA ’12, pages 1150–1162, 2012.

[34] H. N. Gabow. Scaling algorithms for network problems. J. Comp. Sys. Sci.,

31(2):148–168, 1985.

[35] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computa-

tional geometry. Computational Geometry, 5(3):165–185, 1995.

[36] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for

minimum-weight spanning trees. ACM Trans. Prog. Lang. Syst., 5(1):66–77,

1983.

[37] J. Gao, R. Impagliazzo, A. Kolokolova, and R. Williams. Completeness for

first-order properties on sparse structures with algorithmic applications. In

Proc. SODA, pages 2162–2181. SIAM, 2017.

[38] J. A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm

for minimum-weight spanning trees. SIAM J. Comp., 27(1):302–316, 1998.

[39] M. Ghaffari. Near-optimal scheduling of distributed algorithms. In Proc. PODC,

pages 3–12. ACM, 2015.

184

[40] M. Ghaffari and J. Li. Improved distributed algorithms for exact shortest paths.

In Proc. STOC, pages 431–444. ACM, 2018.

[41] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest

paths and the replacement paths problems. Inf. Proc. Lett., 109(7):352–355,

2009.

[42] T. Hagerup. Improved shortest paths on the word RAM. In Proc. ICALP, pages

61–72. Springer, 2000.

[43] M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex

strongly connected components in quadratic time. In Proc. ICALP, pages 713–

724. Springer, 2015.

[44] M. Henzinger, S. Krinninger, and D. Nanongkai. A deterministic almost-tight

distributed algorithm for approximating single-source shortest paths. In Proc.

STOC, pages 489–498. ACM, 2016.

[45] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and

strengthening hardness for dynamic problems via the online matrix-vector mul-

tiplication conjecture. In Proc. STOC, pages 21–30. ACM, 2015.

[46] J. Hershberger, S. Suri, and A. Bhosle. On the difficulty of some shortest path

problems. ACM Trans. Alg. (TALG), 3(1):5, 2007.

[47] L. Hoang, M. Pontecorvi, R. Dathathri, G. Gill, B. You, K. Pingali, and V. Ra-

machandran. A round-efficient distributed betweenness centrality algorithm. In

Proc. PPoPP. ACM, 2019.

[48] L. Hoang, M. Pontecorvi, R. Dathathri, G. Gill, B. You, K. Pingali, and V. Ra-

machandran. A round-efficient distributed betweenness centrality algorithm.

2019.

185

[49] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and

applications. In PODC ’12, pages 355–364, 2012.

[50] C.-C. Huang, D. Na Nongkai, and T. Saranurak. Distributed exact weighted all-

pairs shortest paths in Õ(n5/4) rounds. In Proc. FOCS, pages 168–179. IEEE,

2017.

[51] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Jour. Comput.

Sys. Sci., 62(2):367–375, 2001.

[52] A. Itai and M. Rodeh. Finding a minimum circuit in an graph. SIAM Jour.

Comput., 7(4):413–423, 1978.

[53] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM

Jour. Comput., 4(1):77–84, 1975.

[54] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. JACM,

24(1):1–13, 1977.

[55] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time

bounds for all-pairs shortest paths. SIAM J. Comput., 22(6):1199–1217, 1993.

[56] R. M. Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972.

[57] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple

paths. Networks, 12(4):411–427, 1982.

[58] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and

transitive closure in digraphs. In Proc. IEEE FOCS, pages 81–89. IEEE, 1999.

[59] S. Kutten and D. Peleg. Fast distributed construction of smallk-dominating sets

and applications. J. Algorithms, 28(1):40–66, 1998.

186

[60] H. O. Lancaster. Pairwise statistical independence. Annals of Mathematical

Statistics, 36(4):1313–1317, 1965.

[61] E. L. Lawler. A procedure for computing the k best solutions to discrete opti-

mization problems and its application to the shortest path problem. Manage-

ment Science, 18(7):401–405, 1972.

[62] E. L. Lawler. Comment on a computing the k shortest paths in a graph. CACM,

20(8):603–605, 1977.

[63] C. Lenzen and B. Patt-Shamir. Fast partial distance estimation and applica-

tions. In Proc. PODC, pages 153–162. ACM, 2015.

[64] C. Lenzen, B. Patt-Shamir, and D. Peleg. Distributed distance computation

and routing with small messages. Dist. Comp., 32(2):133–157, 2019.

[65] C. Lenzen and D. Peleg. Efficient distributed source detection with limited

bandwidth. In Proc. PODC, pages 375–382. ACM, 2013.

[66] A. Lincoln, V. V. Williams, and R. Williams. Tight hardness for shortest cycles

and paths in sparse graphs. In Proc. SODA, pages 1236–1252. SIAM, 2018.

[67] A. Lingas and E.-M. Lundell. Efficient approximation algorithms for shortest

cycles in undirected graphs. Inf. Proc. Lett., 109(10):493–498, 2009.

[68] M. Luby. Removing randomness in parallel computation without a processor

penalty. J. Comp. Sys. Sci., 47(2):250–286, 1993.

[69] E. Minieka. On computing sets of shortest paths in a graph. CACM, 17(6):351–

353, 1974.

[70] D. Nanongkai. Distributed approximation algorithms for weighted shortest

paths. In Proc. STOC, pages 565–573. ACM, 2014.

187

[71] J. B. Orlin and A. Sedeno-Noda. An O(nm) time algorithm for finding the min

length directed cycle in a graph. In Proc. SODA. SIAM, 2017.

[72] M. Pătraşcu and R. Williams. On the possibility of faster sat algorithms. In

Proc. SODA, pages 1065–1075. SIAM, 2010.

[73] D. Peleg. Distributed computing: A locality-sensitive approach. SIAM Mono-

graphs on discrete mathematics and applications, 5, 2000.

[74] D. Peleg, L. Roditty, and E. Tal. Distributed algorithms for network diameter

and girth. In Proc. ICALP, pages 660–672. Springer, 2012.

[75] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity

of distributed mst construction. In Proc. FOCS, pages 253–261. IEEE, 1999.

[76] S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.

Theoretical Computer Science, 312(1):47–74, 2004.

[77] S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted

undirected graphs. SIAM Jour. Comput., 34(6):1398–1431, 2005.

[78] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the

diameter and radius of sparse graphs. In Proc. STOC, pages 515–524. ACM,

2013.

[79] L. Roditty and V. V. Williams. Minimum weight cycles and triangles: Equiva-

lences and algorithms. In Proc. FOCS, pages 180–189. IEEE, 2011.

[80] L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in

unweighted directed graphs. ACM Trans. Alg. (TALG), 8(4):33, 2012.

[81] P. Sankowski and K. Węgrzycki. Improved distance queries and cycle counting

by Frobenius Normal Form. In Proc. STACS, pages 56:1–56:14, 2017.

188

[82] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected

graphs. Jour. Comput. Sys. Sci., 51(3):400–403, 1995.

[83] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with

integer weights. In Proc. FOCS, pages 605–614. IEEE, 1999.

[84] R. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM

Jour. Comput., 2(3):211–216, 2005.

[85] M. Thorup. Undirected single source shortest paths in linear time. In Proc.

FOCS, pages 12–21. IEEE, 1997.

[86] J. C. Tiernan. An efficient search algorithm to find the elementary circuits of a

graph. CACM, 13:722–726, 1970.

[87] J. D. Ullman and M. Yannakakis. High-probability parallel transitive-closure

algorithms. SIAM J. Comp., 20(1):100–125, 1991.

[88] V. Vassilevska Williams. Hardness of easy problems: Basing hardness on pop-

ular conjectures such as the strong exponential time hypothesis (invited talk).

In LIPIcs-Leibniz Intl. Proc. Informatics, volume 43. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2015.

[89] H. Weinblatt. A new search algorithm to find the elementary circuits of a graph.

JACM, 19:43–56, 1972.

[90] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its

implications. Theoretical Computer Science, 348(2):357–365, 2005.

[91] V. V. Williams and R. Williams. Subcubic equivalences between path, matrix

and triangle problems. In Proc. IEEE FOCS, pages 645–654. IEEE, 2010.

[92] J. Y. Yen. Finding the k shortest loopless paths in a network. Management

Science, 17(11):712–716, 1971.

189

[93] R. Yuster. A shortest cycle for each vertex of a graph. Inf. Proc. Lett.,

111(21):1057–1061, 2011.

[94] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix

multiplication. JACM, 49(3):289–317, 2002.

190

Vita

Udit Agarwal was born in Firozabad, India. He received a Bachelor’s Degree in

Mathematics and Computing from Indian Institute of Technology Guwahati in 2013.

He joined the Computer Science doctoral program at the University of Texas at

Austin in August 2014.

Permanent Address: udit@cs.utexas.edu

This dissertation was typeset with LATEX2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

191

