
Copyright

by

Sangkug Lym

2019

The Dissertation Committee for Sangkug Lym
certifies that this is the approved version of the following dissertation:

Efficient Deep Neural Network Model Training by

Reducing Memory and Compute Demands

Committee:

Mattan Erez, Supervisor

Andreas Gerstlauer

Michael Orshansky

Sujay Sanghavi

Jason Clemons

Efficient Deep Neural Network Model Training by

Reducing Memory and Compute Demands

by

Sangkug Lym

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2019

Dedicated to my wife, Jung Min Lee

and my parents, Chun Geun Lim and Young Seok Choi.

Acknowledgments

First and foremost, I would like to thank my advisor Mattan Erez.

Without his advice and guidance, I could have not accomplished this disser-

tation. He provided insightful critiques on my research work from high-level

directions to technical details. He was always available and willing to join me

in discussions to resolve my curiosity and problems. Importantly, I am very

grateful to him for giving me great freedom in exploring and deciding research

topics. This dissertation was impossible without his strong support for me to

pursue what I desired to do and his willingness to expand his research exper-

tise. Other than just research, I also learned many life lessons from him. I

was privileged that I could pursue my Ph.D. with Mattan and no words can

describe how much I appreciate him as an adviser.

I am grateful for the superb collaborators and mentors at NVIDIA:

Donghyuk Lee, Micheal O’Connor, Niladrish Chatterjee, Jason Clemons, Burc

Eryilmaz, Michael Andersch, and John Tran. I especially thank Donghyuk

Lee for closely working with me. I appreciate their knowledge, experience,

and advice. Thanks to their help, I could learn many important details on

GPU architecture and industry-level deep learning performance optimization

techniques. My experience at NVIDIA became the tipping point to research

deep learning accelerators and led to this dissertation.

v

I also thank many outstanding collaborators and managers at Microsoft

including Haishan Zhu, Ming Liu, Taesik Na, and Eric Chung. My intern-

ship at Microsoft was important in expanding my knowledge boundary associ-

ated with deep learning acceleration to FPGA and data center context. Also,

technical discussions with my collaborators at Microsoft helped advance my

thought process.

I also would like to show appreciation to professors and academic col-

laborators for their advice and feedback to improve my work. Especially, I

thank Sujay Sanghavi for providing critical feedback on the algorithm side of

my work and Songjun Lee at Hanyang University for encouraging me to start

Ph.D. studies. I also thank my student collaborators: Wei Wen at Duke Uni-

versity and Heonjae Ha at Stanford University for their feedback that improves

the quality of my research.

In addition, I am fortunate to know many talented graduate students

during my Ph.D. I would like to give special thanks to Yongkee Kwon, Siavash

Zangeneh, Benjamin Cho, Esha Choukse, Kyushick Lee, and Chun-Kai Chang

for sharing their experience and motivating me to continuously improve my

work through active discussions. I am also thankful to the senior members

who encouraged me and provided me many research tips: Jungrae Kim, Don

Wan Kim, Seong-Lyong Gong, and Wooseok Lee. I also thank other my Ph.D.

friends at our research group: Song Zhang, Wenqi Yin, Tianhao Zheng, Anye-

sha Ghosh, Majid Jalili, Mike Sullivan. And, I am grateful for the friendship

with many others: Alex Hsu, Ben Lin, Ali Fakhrzadehgan, Tian Tan, Jeageun

vi

Jung, Mochamad Asri, Kishore Punniyamurthy, Kamyar Mirzazad Barijou,

Zhuoran Zhao, and Shuang Song.

Lastly but not least, I would like to express the deepest gratitude to

my loving family. I thank my parents Chungeun Lim and Youngseok Choi and

my brother Sanghyun Lym for their strong support for my decision to pursue

Ph.D. studies. Most importantly, I thank my wife Jung Min Lee for being

always there with me. This dissertation would never have been made without

her love and care. Lastly, I would like to say to her that we made it together.

Sangkug Lym

December 2019, Austin, TX

vii

Efficient Deep Neural Network Model Training by

Reducing Memory and Compute Demands

Publication No.

Sangkug Lym, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Mattan Erez

Deep neural network models are commonly used in various real-life

applications due to their high prediction accuracy for different tasks. In par-

ticular, CNN (convolutional neural network) models have become the de facto

choices for most vision applications such as image classification, object seg-

mentation, and object detection. Modern CNN models contain hundreds of

million of parameters and training them requires millions of computation- and

memory access-heavy iterations. To reduce this expensive CNN model training

cost, this dissertation presents computation and memory cost-efficient training

mechanisms with a combination of workload scheduling, learning algorithm,

and accelerator architecture optimizations. This dissertation also introduces a

performance model for data-parallel accelerators as a fast and accurate method

to estimate the performance impact of the proposed architectural optimiza-

tions and to help fine-grain accelerator design space exploration.

viii

The first part of this dissertation discusses reducing the memory band-

width demand for CNN training. I first analyze data reuse opportunities in

CNN training and show that CNN training has high data locality between

network layers but that conventional training mechanisms fail to utilize this

inter-layer locality. Then, I develop a CNN training scheduling mechanism that

modifies the network execution ordering in a way that captures the inter-layer

locality while supporting high compute resource utilization. I also introduce

a training accelerator that adopts architectural optimizations that hide ad-

ditional data transfers caused by the proposed scheduling modification and

realize effective training speedup. The proposed training accelerator has 45

mixed precision FLOPS and, with the memory bandwidth-efficient network

training scheduling, beats a state-of-the-art GPU that has ∼3X higher peak

FLOPs.

The second part of this dissertation focuses on reducing the computa-

tion cost of CNN training. To reduce computations during training, I use neu-

ral network model pruning from the beginning of training. The insight is that

a fully trained CNN model contains many non-critical parameters and prun-

ing such parameters during training has only a minor impact on the learning

quality. I also choose to structurally prune these parameters to provide high

data parallelism avoiding complex data indexing, thus maintaining high com-

pute resource utilization. For the practical implementation of pruning while

training, I propose three algorithmic optimizations. Theses optimizations are

designed to remove the need for the memory accesses caused by tensor re-

ix

shaping, reduce the number of training runs in finding the desired pruning

hyper-parameters, and maintain high data parallelism even for processing a

highly pruned CNN model. Overall, the proposed algorithm speeds up the

training of commonly used state-of-the-art image classifiers by 39% with only

1.9% accuracy loss.

The third part of this dissertation deals with training pruned CNN

models on accelerators with large systolic arrays. I first show my observa-

tion that processing structurally-pruned CNN models on a large systolic array

severely underutilizes its PEs (processing elements) because the reduced num-

ber of channels decreases parallelism. Then, I show that naively splitting a

large core into multiple small cores improves PE utilization but decreases input

reuse and incurs >4% area overhead. To improve PE utilization and maintain

high input reuse, I propose a flexible systolic array architecture that can recon-

figure its structure to one of several modes, each designed for efficient execution

of CNN layers with different dimensions. I also develop compile-time heuris-

tics that optimize mapping the layer workload to the flexible systolic array

resources for both high performance and energy efficiency. My new mecha-

nisms increase PE utilization by 36% compared to a single large-core design

and improve training energy efficiency by 18% compared to many-small-core

designs.

The last part of this dissertation is about developing an accelerator

performance model for accurate CNN execution time estimation. For accurate

performance modeling, I introduce a memory traffic model that predicts the

x

data traffic at different levels of the GPU memory system hierarchy. This

involves an in-depth analysis of the memory access patterns of data-parallel

convolution kernels and the spatial locality. I demonstrate that the proposed

performance model can provide guideline to fine-tune the GPU resources for

efficient CNN performance scaling.

xi

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xvii

List of Figures xviii

Chapter 1. Introduction 1

1.1 High Memory Bandwidth Needs in CNN Training 2

1.2 Model Pruning for Cost-efficient CNN Training 3

1.3 Efficient Pruned Model Training on High-Throughput Acceler-
ators . 3

1.4 The Need for an Accurate Performance Model 5

1.5 Thesis Statement . 6

1.6 Contributions . 6

1.7 Dissertation Organization . 10

Chapter 2. Background 11

2.1 CNN Architecture and Training 11

2.2 Neural Network Model Pruning for Fast Inference 16

2.2.1 Trial-and-Error Based Structured Model Pruning 16

2.2.2 Model Pruning with Parameter Regularization 17

2.3 Training Accelerator Architecture 17

2.3.1 GPU Architecture . 17

2.3.2 Systolic-Arrays . 18

2.4 Data-parallel Convolution GEMM 19

xii

Chapter 3. CNN Training with Inter-layer Data Reuse 21

3.1 Data Reuse in CNN Training 21

3.2 Memory BW-Efficient CNN Training with
Mini-Batch Serialization . 24

3.2.1 Serialization Principle 24

3.2.2 Layer Grouping Optimizes Reuse 25

3.2.3 Data Reuse Within a Multi-Branch Module 28

3.2.4 Feature Normalization in MBS 29

3.3 Efficient MBS Training on the
WaveCore Accelerator . 31

3.3.1 MBS Training on a Systolic Array 31

3.3.2 Gapless Waves with Per-Register Weight Double Buffering 34

3.3.3 WaveCore Processor Architecture 35

3.3.4 Area and Peak Power Estimation 37

3.4 Evaluation . 39

3.4.1 Evaluation Methodology 39

3.4.2 Evaluation Results . 41

3.4.2.1 Sensitivity to Global Buffer Size 43

3.4.2.2 Sensitivity to DRAM BW 44

3.4.2.3 Performance Comparison to GPU 45

3.4.2.4 Systolic Array Utilization 46

3.5 Related work . 47

3.5.1 Inter-layer Data Reuse in Inference 47

3.5.2 Layer Fusion . 48

3.5.3 Compiler Techniques for Graph Scheduling 49

3.6 Discussion . 49

3.6.1 Feature Normalization for CNNs with Few Channels . . 49

3.6.2 Different Core Designs for Matrix Operations 50

3.6.3 Resource Pipelining using Fine-grain Layer Fusion . . . 52

3.6.4 Balancing Matrix and Vector Computing Units 53

3.6.5 Applying MBS to Other DNN Models 54

3.7 Summary . 55

xiii

Chapter 4. Fast Model Training with Dynamic Sparse Model
Reconfiguration 57

4.1 Motivation for Continuous Model Pruning During Training . . 57

4.2 Model Pruning Mechanism . 61

4.2.1 Regularization Penalty Coefficient Setup 63

4.2.2 Layer Removal by Overlapping Regularization Groups . 64

4.3 Dynamic Network Reconfiguration 65

4.3.1 Early Weight Pruning 65

4.3.2 Robustness to Reconfiguration Interval 67

4.3.3 Channel Union for CNNs with Short-cut Connections . 68

4.3.4 Dynamic Mini-batch Adjustment 71

4.4 Evaluation . 73

4.4.1 Evaluation Methodology 73

4.4.2 Model Pruning and Training Acceleration 73

4.4.3 Comparison to Prior Work 78

4.4.3.1 Comparison to Pruning From a Pre-trained Model 78

4.4.3.2 Comparison to Trial-and-Error Based Pruning . 79

4.4.4 Optimization and Sensitivity Evaluation 80

4.4.4.1 Dynamic Mini-Batch Size Adjustment 80

4.4.4.2 Network Reconfiguration Interval 83

4.4.4.3 Communication Cost Savings in Distributed
Training . 84

4.4.4.4 Communication Cost Savings in Distributed
Training . 84

4.4.4.5 Individual Weight Sparsity 85

4.5 Discussion . 86

4.5.1 PruneTrain with Mini-batch Serialization 86

4.6 Summary . 87

Chapter 5. Flexible Systolic Array Architecture for Fast and
Efficient Pruned Model Training 89

5.1 Challenges of Training Pruned CNN Models 90

5.1.1 Trade-offs of Different GEMM Core Designs 90

5.2 Naive GEMM Core Splitting 92

xiv

5.3 FlexSA: Flexible Systolic Array for High
PE Utilization and Input Reuse 97

5.3.1 FlexSA Core Architecture 98

5.3.2 FlexSA Compilation and GEMM Tiling 103

5.3.2.1 GEMM Tiling Heuristics 104

5.3.2.2 ISA Support and Compilation for GEMM Pro-
cessing . 106

5.4 Evaluation . 109

5.4.1 Evaluation Methodology 109

5.4.1.1 GEMM Partitioning and Blocking. 110

5.4.2 Evaluation Results . 111

5.4.2.1 On-chip Traffic and Energy Efficiency 113

5.4.2.2 FlexSA Operating Mode Breakdown 115

5.5 Summary . 116

Chapter 6. GPU Memory Traffic and Performance Models for
Accelerator Design Space Exploration 118

6.1 Needs of an Accurate Performance Model for CNNs 118

6.1.1 Related Work . 119

6.2 Background: GEMM Tiling for Efficient Execution on GPU . . 120

6.3 Memory Traffic Modeling . 122

6.3.1 L1 Cache Traffic . 123

6.3.2 L2 Cache Traffic . 124

6.3.3 DRAM Traffic . 126

6.4 GPU Performance Modeling 128

6.4.1 Multi-CTA Interleaving 130

6.5 Evaluation . 132

6.5.1 Evaluation Environment 132

6.5.2 Memory Traffic Model 133

6.5.3 Performance Model . 139

6.5.4 Fine-grain GPU Performance Scaling Study 142

6.6 Discussion: Generalization of DeLTA 144

6.7 Summary . 146

xv

Chapter 7. Conclusion 147

Bibliography 150

Vita 170

xvi

List of Tables

3.1 WaveCore accelerator specification and comparison to other
training accelerators. 38

3.2 Evaluation configuration description. 40

3.3 Off-chip memory configuration. 40

4.1 Training FLOPs and time compared to the dense baseline . . 74

4.2 Inference performance comparison 76

4.3 Pruning performance comparison to AMC 79

4.4 Training time, inference FLOPs, and validation accuracy with
and without dynamic mini-batch size adjustment 83

5.1 Evaluation configuration description. 110

6.1 GPU device specifications . 133

6.2 GPU design options . 143

xvii

List of Figures

2.1 CNN architecture . 12

2.2 Im2col conversion . 19

3.1 Inter-layer dataflows in CNN training 22

3.2 Inter-layer data size of each layer in ResNet50 23

3.3 Block information of ResNet50 for MBS 25

3.4 ResNet50 training flow by baseline and MBS. 26

3.5 ResNet50 validation error trained with GN + MBS and BN. . 29

3.6 Pre-activation mean of normalization layers in ResNet50 . . . 30

3.7 Tiled GEMM mapping to the systolic array 32

3.8 Removed inter-wave idle time by register double buffering . . . 32

3.9 Per-core architecture of the WaveCore accelerator. 36

3.10 Performance, DRAM traffic, and energy consumption by con-
figurations . 42

3.11 Performance sensitivity to global buffer size 44

3.12 Performance sensitivity to DRAM bandwidth 45

3.13 Performance comparison to GPU 46

3.14 Systolic Array Utilization . 47

3.15 Validation loss of ResNet32 with SBN trained on CIFAR . . . 51

3.16 Output stationary systolic dataflow 52

4.1 Normalized pruned FLOPs during training 60

4.2 Training computation saving by continuous reconfiguration . . 61

4.3 Group lasso regularization structure of a convolution layer . . 65

4.4 The maximum absolute weight value of each output channel
during training . 67

4.5 Channel indexing for CNNs with short-cut paths. 69

4.6 Normalized training and inference FLOPs different pruning in-
tensity . 70

xviii

4.7 Per-layer execution time of channel gating and channel union . 70

4.8 Inference cost, training cost, and prediction accuracy compari-
son to SSL . 76

4.9 Memory requirement changes during training 82

4.10 Reduced inference FLOPs and validation accuracy by different
network reconfiguration intervals 84

4.11 Projected communication cost of model updates based on hier-
archical ring-allreduce . 85

4.12 Channel and individual weight density of each layer 86

5.1 Computing unit utilization of processing a pruned CNN model 91

5.2 Different GBUF configurations. 94

5.3 Impact of core sizing to PE utilization and GBUF loads 95

5.4 Area overhead of core division normalized to 1× (128×128). . 97

5.5 FlexSA architecture. 99

5.6 Four different systolic sub-array operations supported by
FlexSA and the micro-architecture settings for each mode. . . 102

5.7 FlexSA operating mode selection examples. 105

5.8 PE utilization comparison . 112

5.9 On-chip traffic comparison . 114

5.10 Dynamic energy consumption comparison 115

5.11 FlexSA modes selection breakdown 116

6.1 Cache miss rates of the convolution layers 119

6.2 Im2col GEMM blocking by cuDNN GPU kernel 121

6.3 IFmap data requested by a single warp per main loop 123

6.4 IFmap matrix layout of im2col GEMM 125

6.5 IFmap and filter data reference at sequences of processing CTA
batches . 127

6.6 Execution time breakdown of a software pipelined GEMM main
loop . 128

6.7 GEMM loop execution model of active CTAs with different
GPU resource bottlenecks . 131

6.8 L1 traffic estimates of different GPUs by DeLTA 134

6.9 L2 traffic estimates of different GPUs by DeLTA 135

xix

6.10 DRAM traffic estimates of different GPUs by DeLTA 136

6.11 Memory traffic estimates comparison to prior methodology . . 138

6.12 Conv layer execution time estimates by DeLTA 140

6.13 Estimated GPU performance for different GPUs 141

6.14 Comparison to the fixed miss rate models 141

6.15 GPU resource scaling and speedup of convolution layers in ResNet143

xx

Chapter 1

Introduction

Training modern DNNs (deep neural networks) requires millions of

computation and memory bandwidth intensive workload iterations. In ad-

dition, ever-growing network architecture complexity and training dataset size

have been continuously increasing the already expensive DNN model training

cost [11]. Even using a cluster of training accelerators with large compute

throughput, training a state-of-the-art network model on a large dataset such

as ImageNet [22] still takes multiple hours to days [29]. Furthermore, unlike

inference, training workloads involve many memory bandwidth-bound vec-

tor functions such as feature normalization. This increases the need for high

memory bandwidth leading to many modern training accelerators adopting

expensive high-bandwidth memory system. This dissertation focuses accel-

erating convolutional neural network training, an important branch of DNN

models for computer vision tasks, by identifying and reducing its unnecessary

memory accesses and unimportant computations.

1

1.1 High Memory Bandwidth Needs in CNN Training

Convolutional neural networks (CNNs) are the state of the art for vari-

ous vision applications [57, 85, 84, 101]. Modern CNN models have millions of

learning parameters and they are first trained on a large dataset to be used for

inference. CNN architectures consists of different layer components and they

need high memory bandwidth to fully utilize the computing elements on high

performance accelerators. However, based on my observation, commonly used

data-parallel CNN training mechanisms on current systems require 3–4 times

more memory bandwidth than necessary, reducing performance and wasting

energy.

Conventional CNN training propagates a mini-batch of samples across

network layers in lockstep, where a mini-batch typically consists of 32–512

samples [96, 95, 36]. Therefore, the mini-batch output of one layer is reused

in its following layer as an input. However, large mini-batches have per-layer

memory footprints that exceed typical on-chip buffer capacity. This leads

not capturing the inter-layer data locality, resulting in high memory traffic.

Many inter-layer locality techniques were proposed in the context of network

inference [77, 5]. However, directly applying these techniques to training is

ineffective or not feasible because they do not optimize locality across large

mini-batches, and their design is not compatible with batch normalization [46],

the most commonly used feature normalization algorithm. In this dissertation,

I introduce a memory bandwidth-efficient training mechanism that enables

inter-layer data reuse and a coupled training accelerator that achieves effective

2

training speedup.

1.2 Model Pruning for Cost-efficient CNN Training

CNN architectures contain millions of learning parameters (or weights)

for learning complex features. However, not all parameters equally contribute

to prediction accuracy. Model pruning is a commonly used technique that

removes less critical learning parameters from an initially-dense model [33, 34].

This leads to lower memory and compute cost with minor prediction accuracy

loss compared to the original dense model.

Model pruning mechanisms are typically used for high-performance and

energy-efficient inference [103, 25, 39, 38]. They typically retrain a pre-trained

model, which eventually increases net training time. Some prior work prunes

models during training [110, 103, 102, 113, 4]. However, this work maintains

the original network architecture without pruning, or prune only a limited

number of times during training. In this dissertation, I discuss a CNN training

mechanism that constantly prunes unimportant parameters during training to

gradually reduce computation cost over training. Furthermore, I develop and

evaluate a practical implementation of this algorithm for modern CNN models.

1.3 Efficient Pruned Model Training on High-
Throughput Accelerators

Not all parameters of a CNN model are equally important. Structured

model pruning removes such parameters at the granularity of channels. There-

3

fore, unlike unpruned CNN models that have regular number of channels such

as 64, 128, and 256 (powers of two) [57, 85, 84, 101], their channel-pruned ver-

sions have an arbitrary number of channels, such as 3 and 71. Such convolution

layers are computed as GEMMs (general matrix multiplies) for efficient execu-

tion on data-parallel accelerators. However, the GEMMs of the pruned layers

have arbitrarily reduced dimensions and these GEMMs execute inefficiently

on the large GEMM cores used in modern training accelerators [21, 86]; many

GEMM tiles of pruned CNNs tend to have small sizes and executing them on

a large core does not fully utilize its PEs.

Splitting a large core into many small cores can improve PE utiliza-

tion. This is because GEMM is tiled into smaller parts and these small tiles

are processed by small cores with high PE occupation (mitigating internal

PE utilization fragmentation). However, this core splitting incurs >4% area

overhead for data paths and splitting SRAM buffers. Also, such a many-core

design increases on-chip input traffic for fetching duplicated inputs to multi-

ple cores, hurting the energy efficiency of training and requiring high on-chip

BW. In this dissertation, I introduce a flexible GEMM core architecture that

can reconfigure its structures to achieve both high PE utilization and high in-

put reuse. I also discuss GEMM tiling and scheduling techniques for efficient

utilization of the reconfigurable hardware resources.

4

1.4 The Need for an Accurate Performance Model

GPUs are the most widely used training accelerators. The increasing

demand for high computation throughput of DNN training is driving GPU

arithmetic performance, which has been growing at higher than its historical

rate [76]. Based on my analysis, compared to the rapid GPU compute through-

put increase of 32× over the past 9 years, GPU memory system bandwidth

has improved by only 13×. This memory wall problem can bottleneck the

performance of even the arithmetically-intensive CNNs, making performance

scaling challenging.

It is therefore imperative to balance both arithmetic and memory per-

formance in architecting a future GPU or other accelerators for efficient CNN

performance scaling. This balanced designing benefits from analytical mod-

eling, which can quickly provide insight and narrow the design space before

slower and more resource-consuming modeling is used (e.g., simulators [1, 80]).

Analytical models also aide in the optimization of software for efficient hard-

ware resource utilization [114, 61]. Given that DNN models evolve and change

quickly, the benefits of a performance model are significant. In this disserta-

tion, I present an accurate GPU performance model that relies on an accurate

memory traffic modeling. I also discuss using the performance model for fine-

grain GPU resource allocation for cost-efficient CNN performance scaling.

5

1.5 Thesis Statement

Ever increasing neural network model complexity and training dataset

size have been constantly raising CNN training cost. Partially serializing a

mini-batch CNN training workload enables inter-layer data reuse in training

and significantly reduces redundant memory traffic. Also, structurally prun-

ing unimportant model parameters during training effectively reduces total

training compute operations and leads to faster model training. At the same

time, given the changes in the training workload scheduling and algorithm,

co-optimizing the accelerator architecture is critical to maintaining high com-

pute resource utilization and significantly improves the training performance

of modern CNNs.

1.6 Contributions

In this dissertation, I resolve and mitigate the two key overheads of

CNN training; high memory bandwidth requirement and high computation

cost. I first resolve the memory bandwidth problem of training by: (1) par-

tially serializing a mini-batched training workload in a way that utilizes inter-

layer data locality using the available on-chip storage resources, and (2) co-

optimizing the training accelerator architecture to cope with the challenges

from the changes in the scheduling and algorithm. Next, I reduce the cost

of CNN training by gradually pruning less critical parameters from the ini-

tial dense model. I introduce three algorithm techniques for efficient model

pruning that maintains high training accelerator resource utilization. I also

6

co-design a training accelerator to resolve the reduced PE utilization in pro-

cessing pruned models on a large systolic array by making the core structure

change depending on GEMM dimensions. To evaluate the proposed ideas, I

devise a training accelerator performance model that accurately estimates the

memory traffic and the performance of CNNs. I also explore the architectural

optimization space of a GPU, the most common DNN training accelerator

using my model. I summarize the contributions of this dissertation:

1. I propose Mini-Batch Serialization (MBS), a memory bandwidth-efficient

network training mechanism. MBS decreases the memory traffic of mod-

ern CNN training by exploiting data reuse between layers. MBS breaks

a mini-batch into sub-batches, which are then processed serially such

that the inter-layer data of an entire sub-batch fits in an accelerator’s

on-chip buffers and can be reused. Implementing MBS raises two chal-

lenges. First, mini-batch wise feature normalization commonly used in

modern CNNs is not compatible with (partially) serializing a mini-batch.

Second, the data parallelism per sub-batch is smaller than for a whole

mini-batch and can decrease the compute array utilization and increase

core idle time. I resolve these challenges by (1) adapting an appropri-

ate feature normalization algorithm to the context of MBS, (2) devising

a sub-batching mechanism that adjusts the sub-batch size for the net-

work layers to reuse inter-layer data with only a small impact to data

parallelism, and (3) using a systolic data flow along with architecture op-

timizations that maintain high computing array utilization. Compared

7

to the conventional mini-batch wise training for modern CNNs, MBS

with the proposed training accelerator optimizations reduces memory

traffic by 4X and improves performance by more than 50%.

2. I propose PruneTrain, a CNN training acceleration mechanism that con-

tinuously prunes the model during training from scratch. For efficient

execution on data-parallel training accelerators, I group parameters at

channel granularity and prune those channels for which all parameters

are below a threshold using group lasso regularization. This periodic

reconfiguration maintains a still dense, yet smaller model. This model,

which requires less computation, memory, and communication, continues

to shrink as pruning continues throughout training. For performance-

efficient pruning, I introduce three key optimization techniques. I first

propose a systematic method to set the group lasso regularization penalty

coefficient that controls group lasso regularization strength and achieves

a high model pruning rate with small impact on accuracy with a few

training runs. Second, I propose channel union, a memory-access cost-

efficient and index-free channel pruning algorithm for modern CNNs with

short-cut connections. Lastly, I propose dynamic mini-batch adjustment

that dynamically increases the size of the mini-batch to fully utilize the

available off-chip memory space for training iteration. PruneTrain speeds

up the training of the commonly used state-of-the-art image classifier by

39%.

3. I propose FlexSA, a flexible systolic array architecture that improves PE

8

utilization while keeping input reuse high when processing pruned mod-

els. FlexSA is comprised of four systolic array cores. However, unlike a

naive four-core design, where each core operates independently, FlexSA

supports three additional inter-core operating modes, which achieves low

on-chip traffic via inter-core data reuse. To efficiently utilize the underly-

ing resources of FlexSA, I propose compile-time GEMM tiling heuristics

that use large GEMM tiles with inter-core operations in 96% of cases,

improving on-chip input reuse by 1.8× compared to a baseline four-core

design. Overall, compared to the baseline four-core design, FlexSA adds

only 1% additional area but improves energy efficiency by 18%. Also,

compared to a single large systolic array, FlexSA improves average PE

utilization by 1.4×.

4. To explore the design space of a GPU, the most common accelerator

for DNN model training, I propose DeLTA, a GPU performance model

based on accurate data traffic estimation at all levels of GPU memory

system hierarchy. DeLTA separately models the traffic at each mem-

ory level using the access patterns of the data-parallel convolution al-

gorithm. DeLTA also accounts for how the computation is blocked for

locality and parallelism and how the hardware handles memory accesses

in the caches and the software-managed shared memory. The estimated

memory traffic is used to predict convolution layer execution time un-

der different system configurations and identify the GPU performance

bottlenecks. Overall, DeLTA predicts all L1, L2, and DRAM traffics

9

by GMAE less than 5% (geometric mean absolute error) and execution

time by 6.0% GMAE for NVIDIA TITAN Xp GPU. I also show that

DeLTA helps fine-grain GPU compute and memory resource balancing

for cost-efficient CNN performance scaling.

1.7 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 re-

views the background for understanding CNN architecture, its model training

mechanisms, a data-parallel convolution kernel, and training accelerator ar-

chitectures. Chapter 3 proposes a memory bandwidth-efficient CNN training

mechanism with the combination of workload scheduling, learning algorithm,

and architecture optimizations. Chapter 4 discusses computation-efficient

CNN training using an efficient model parameter pruning mechanism dur-

ing training. Chapter 6 introduces the models to estimate memory traffic and

performance of GPU for CNNs. Finally, Chapter 7 concludes the dissertation.

10

Chapter 2

Background

This chapter provides background on CNN applications and training

accelerator architecture. I first explain different layer functions of CNNs and

CNN training algorithms in Section 2.1. Then, I briefly explain the neural

network model pruning mechanisms in Section 2.2. Lastly, I describe the ar-

chitectures of commonly used CNN training accelerators and the data-parallel

convolution layer kernel design for GPUs in Section 2.3 and Section 2.4, re-

spectively.

2.1 CNN Architecture and Training

CNN Architecture. CNNs consist of various types of layers (Figure 2.1):

convolution layers extract feature maps (or features or activation) from input

images, down-sampling (e.g., pooling) layers reduce the size of each feature

map, and fully-connected (FC) layers generate prediction scores for classes.

Also, a convolution layer typically includes feature normalization and activa-

tion. Feature normalization maintains stable feature distributions across layers

and different mini-batches (a set of samples used per training iteration) [46]

and activation layers, e.g., ReLU [73] add non-linearity to the learning func-

11

tion.

Each convolution layer takes IFmaps (input feature maps) and produces

OFmaps (output feature maps). As shown in Figure 2.1, each set of IFmaps

and OFmaps has four dimensions: the number of samples in a mini-batch (B),

the number of channels (C), and the height (H) and width (W) of each feature

map. I use i and o to denote IFmap and OFmap, respectively.

Convolution and FC layers are implemented primarily with matrix mul-

tiplication and accumulation. As illustrated in Figure 2.1, a convolution layer

convolves its IFmaps with small filter matrices (each Hf×Wf), possibly with

a non-unit stride. Filters hold weights and there are Ci × Co filter matrices

that map input to output channels. After each convolution, the results from

all input channels are accumulated to a single output data point. As the

same filter is reused for convolving IFmaps and the same input feature data

is reused to compute different OFmaps, a convolution layer typically exhibits

large data reuse and its performance is bottlenecked by compute through-

!o

Hi

Wi

!i

Hf

Wf

B

Wo

HoFeature
l

Feature
l

Feature
l+1

Feature
l+1

FC layerPooling layerConvolution layer

Figure 2.1: Layers of a CNN, and the feature and filter data structure of a
convolution layer.

12

put [15]. Other layers, including pooling, activation, and feature normalization

have low arithmetic intensity as their major function is element-wise vector

computations [57, 46]. Therefore, their performance is constrained by data

access bandwidth.

CNN Training. A modern CNN model contains millions of weights W (or

learning parameters) that are trained using a collection of samples called the

training dataset. The baseline training approach starts by randomly taking a

sample from the training set and propagating it through the CNN layers to

predict an output using the current weights. Next, the predicted output are

compared to the ground truth, and loss l (or prediction error) is computed.

Finally, the loss is back-propagated through the network layers, calculating

the gradient of loss w.r.t. the current weights in each layer and then updating

the current weights using the gradients.

Mini-batch SGD (stochastic gradient descent) is the most commonly

used CNN training algorithm, which uses a set of training samples per train-

ing iteration for network propagation, loss computation, and model update.

Using a large mini-batch exhibits many benefits: (1) it provides abundant data

parallelism to each layer operation, which helps achieve high HW resource uti-

lization, (2) it reduces the frequency of weight updates, and (3) it decreases

the variance in weight updates between training iterations [63, 29, 20]. Typ-

ically, a mini-batch is 32–512 samples (possibly distributed across multiple

processors) [94] but even a huge mini-batch bigger than 8K is often used with

algorithmic support to enable extreme-scale distributed training [108, 2, 48].

13

Equation 4.1 describes the mini-batch SGD algorithm. Here f is the network’s

prediction on the input xi, W are the weights, l is the classification loss func-

tion between the prediction and its ground truth yi, and N is the mini-batch

size.

min
W

(
1

N

N∑
i=1

l(yi, f(xi,W))

)
(2.1)

Feature Normalization for Fast Model Convergence. Feature normal-

ization is critical to scaling the depth of a network architecture and enabling

faster convergence of the SGD training algorithm. It maintains a constant

feature distribution for the input to each convolution layer and avoids the pa-

rameter variance caused by random sampling. BN (batch normalization) is

the default technique for most modern deep CNNs. BN normalizes features

each mini-batch [46]. BN typically uses 32 or 64 samples (partial mini-batch

assigned to a processor) for normalization. The performance of BN is highly

memory bound because each of the mean, variance, and normalization steps

requires reading of the entire mini-batch [52].

Distributed Training. A cluster of GPUs is typically used to train a com-

plex CNN model on a large dataset. Data parallelism is the most commonly

used multi-processor training mechanism [57]. First, each GPU in the system

holds the same copy of the weights. Then, a mini-batch of input samples is

distributed to each GPU and all GPUs process the inputs in parallel. Data

parallelism is network-traffic efficient as the inter-GPU communication is re-

quired only for model updates; the partial weight gradients of all GPUs are first

14

reduced then used to update the current weights. Although using more GPUs

increases the peak computation throughput, it also increases this communica-

tion overhead, preventing linear end-to-end training performance scaling. For

efficient weight gradient reduction, a ring-allreduce based communication is

for weight gradients reduction, which efficiently pipelines data transfer laten-

cies among nodes [104]. In particular, recently proposed hierarchical allreduce

communication [64] reduces the communication complexity by hierarchically

dividing the reduction granularity and achieves more linear training perfor-

mance scaling with increasing number of GPUs.

Training Memory Context. Processing a training iteration requires a large

off-chip memory space. This is mainly because the input activations of each

layer at forward propagation should be kept in memory and reused to compute

the local gradients in back-propagation. In particular, the total size of all layer

inputs linearly increases with mini-batch size [69]. Therefore, small off-chip

memory capacity or a large feature size of a CNN can constrain the mini-batch

size per accelerator, and hence also the data parallelism of each layer. This

eventually decreases HW resource utilization. In addition, insufficient memory

increases the total number of training iterations per epoch because of smaller

mini-batches, which increases the communication cost for model updates.

Chen et.al propose a memory-storage efficient training technique that

stores the activations of only a fraction of layers [13]. Their approach keeps

only the layer output activations that are expensive to compute and recompute

the outputs of other layers during back-propagation. Although this method

15

reduces the memory cost from O(n) to O(
√
n), it increases computation during

back-propagation.

2.2 Neural Network Model Pruning for Fast Inference

Model pruning has been studied primarily for CNNs, to make their

models more compact and their inference fast and energy-efficient. Most prun-

ing methods compress a CNN model by removing small-valued weights with a

fine-tuning process to minimize prediction loss [33, 34]. Pruning algorithms can

be unstructured or structured. Unstructured pruning can maximize model-size

reduction but requires fine-grained indexing with irregular data access pat-

terns. Such accesses and extra index operations lead to poor performance on

deep learning accelerators with vector or matrix compute units despite reduc-

ing the number of weights and FLOPs (floating point operations) [31, 109, 8].

Structured-pruning algorithms remove or reduce fine-grained indexing and bet-

ter match the needs of hardware and thus effectively realize performance gains.

2.2.1 Trial-and-Error Based Structured Model Pruning

One approach to structured pruning is to start with a pre-trained dense

model and then attempt to remove weights in a structured manner, generally

removing channels rather than individual weights [39, 43, 72, 38]. Unimportant

channels are removed based on the value of their weights or hints derived

from regression [97]. The removed channels are rolled back if accuracy is

severely affected. Although effective, the search space of such a trial-and-

16

error based model pruning substantially increases with the complexity of the

network model, which can increase pruning time significantly. Also, as pruning

is applied to a pre-trained model, these mechanisms do not speed up training.

2.2.2 Model Pruning with Parameter Regularization

An alternative mechanism to trial-and-error pruning uses parameter

regularization. This optimizes training loss while simultaneously forcing the

absolute values of weights or groups of weights toward zero. I call this pro-

cess of forcing weights toward zero sparsificiation. Group lasso regulariza-

tion is typically used to structurally sparsify weights by assigning a regu-

larization penalty to l2-norms of groups of weights [103, 102, 25, 4, 113].

This regularization-based pruning mechanism adds regularization loss terms

to the baseline classification loss function as shown in Equation 4.1, then back-

propagate the loss to update the weights to both improve accuracy and reduce

their absolute values. Eventually, the sparsified weights can be effectively

zeroed-out and pruned from the model.

2.3 Training Accelerator Architecture

2.3.1 GPU Architecture

GPUs are designed to accelerate compute-intensive highly-parallel

workloads thus they require applications to express parallelism with many

threads for efficient utilization. GPUs contain a large number of very wide

SIMD (single instruction multiple data) cores, called streaming multiproces-

17

sors (SMs). In NVIDIA GPUs, each SM processes a warp of 32 threads in

lockstep, such that ideally all 32 threads execute the same instruction. In

addition to the processing elements, each SM contains load store units (LSU),

register files (RF), a shared RAM (SMEM), and an L1 cache. The SMs share

access to the L2 cache and DRAM through a crossbar interconnection network.

GPU workloads are tiled into thread groups called cooperative thread

arrays (CTAs). The CTA scheduling mechanism is assumed to assign SMs to

CTAs in a round-robin manner [62]. Each CTA typically consists of multiple

thread warps that execute concurrently to hide memory access latencies. Given

sufficient resources (RF and SMEM), multiple CTAs can be simultaneously

executed within one SM (active CTAs). Interleaving multiple CTAs improves

the ability of the SM to overlap computation with memory access.

2.3.2 Systolic-Arrays

A systolic array used for DNN training acceleration is (typically) a two-

dimensional mesh of many simple and efficient processing elements (PEs). At

each cycle of a kernel, each PE applies the same computation to its inputs and

then passes the computed result or its unmodified inputs to one or more of

its neighbors. All PEs communicate only with adjacent PEs such that there

is minimal data movement and high computational concurrency [58]. Compu-

tation consists of pipelining inputs from the top and left (for example) edges

of the array and obtaining results at each PE or at the bottom depending

on the systolic dataflow. The large compute throughput required for convolu-

18

tional and fully-connected layers, along with the repetitive computation and

large data reuse are a good match for a systolic array, as found in Google’s

TPU ML accelerators [51, 21]. I describe the detailed systolic array operation

in Section 3.3.1 along with the accelerator architecture that this dissertation

proposes.

2.4 Data-parallel Convolution GEMM

Im2col (image-to-column) is one of the most commonly used algo-

rithms for convolution kernels for data-parallel accelerators [19, 78, 42]. Im2col

transforms the direct convolution described in Figure 2.1 into a single general

matrix-matrix multiplication (GEMM) with three-dimensions (M × N × K)

by merging the IFmaps and small filter matrices (Figure 2.2). In this example,

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

F0 F1
F2 F3

F0 F1
F2 F3

F0 F1
F2 F3

F0 F1
F2 F3

F0 F1
F2 F3

F0 F1
F2 F3

IFmaps
Filters ❶

❷

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

F1
F2
F3

F0

O0
O1
O2
O3

O0
O1
O2
O3

F1
F2
F3

F0

F1
F2
F3

F0
F1
F2
F3

F0

F1
F2
F3

F0
F1
F2
F3

F0

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

M
=
B×
H
o×
W
o

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

O0
O1
O2
O3

O0
O1
O2
O3

K=Ci×Hf×Wf N=Co

O
Fm

ap
 m

at
ri

x

IFmap matrix

Fi
lte

r
m

at
ri

x

Traversal
of F0 on

an IFmap

Figure 2.2: Im2col conversion: direction convolution converted to GEMM.

19

first, the 2×2 filters for each OFmap channel are converted into columns and

stacked ¶. Next, the data elements in the IFmaps are laid out in a way such

that the elements to be multiplied by one filter (F0) are placed as a column ·.

The IFmap matrix data layout changes depending on the filter size and stride.

Im2col duplicates many data elements (data in red doted boxes) which rep-

resents input feature data reuse. Therefore, compared to the typical GEMM,

convolution GEMM has greater data reuse and benefits more from caches or

programmable buffers.

20

Chapter 3

CNN Training with Inter-layer Data Reuse

This chapter covers my memory bandwidth-efficient CNN training ap-

proach that reuses inter-layer data. I first discuss the inter-layer data reuse

opportunity in CNN training and the difficulty of capturing such locality when

using conventional training mechanism. Then, I introduce a CNN training

approach that reuses inter-layer data with a small on-chip storage budget.

The proposed training method changes the scheduling of CNN training along

with adopting a coupled feature normalization algorithm. This chapter also

introduces a systolic array-based training accelerator that supports high PE

utilization given the proposed approaches. 1

3.1 Data Reuse in CNN Training

CNN training consists of forward and back-propagation phases as de-

scribed in Section 2.1. Figure 3.1 illustrates the major data elements needed for

training and their reuse patterns with red arrows indicating opportunities for

on-chip buffers to reduce memory bandwidth requirements and black arrows

1This chapter was published in the proceedings of The Conference on Systems and Ma-
chine Learning (SysML) in April 2019. Sangkug Lym contributed to this work as the main
author.

21

indicating accesses to main memory. In both phases there is direct producer-

consumer locality between layers—inter-layer data that can be buffered if it

is not too large. The outputs of convolution, normalization, and activation

layers in forward propagation (x, y, and z in the figure) are immediately used

by their following layers. Normalization layers exhibit additional reuse be-

cause they iterate over inputs to first compute the mean and variance before

normalizing the data [46]. The convolution outputs and the activations are

stored in off-chip memory for reuse in back-propagation because their large

storage requirements and long data reuse distance prevent on-chip buffering.

Back propagation exhibits even greater potential for inter-layer reuse.

The loss gradients (w.r.t. x) are reused twice by a convolution layer to compute

the gradients of weights and loss (w.r.t. z). Also, the convolution output

stored in memory is reused multiple times to compute the gradients of the

normalization layer parameters and the loss gradients (w.r.t. x). Activations

Forward Propagation

Backward Propagation

Conv Norm ! Conv Norm !

x2z1 z2 z3w2

Conv Norm ! Conv Norm !

y2 y3

"L
"y2

"L
"x3

"L
"x2

"L
"z1

"L
"z3

w3

x2 z2 x3 z3z1

off-chip
memory

 ←z2� "L
"x3 ← �W3"L

"x3"L
"z2

T T

"L
"z2

"L
"y3

"L
"w3

x3

Figure 3.1: Dataflow in forward and backward propagations. Red arrows show
the reusable data between layers.

22

read from memory are also used twice: z is used for convolution gradients and

the derivative of z for activation gradients.

Multi-branch Network Modules. Recent CNNs typically consist of multi-

branch modules that enable a deeper network architecture and more accu-

rate prediction [96, 95, 36]. The residual [37] and inception [96] modules are

the most representative multi-branch modules. A residual module has two

branches whose outputs are accumulated when they merge while an inception

module has numerous branches whose outputs are concatenated at a common

node. As the input at the branch divergence is used by all branches and

the outputs at the join can be referred to other branches for reduction, the

multi-branch modules exhibit data locality between branches.

The Problem with CNN Training Memory Footprint. Mini-batch SGD

increases each layer’s memory footprint, and this limits the opportunity to

reuse data on chip. Figure 3.2 shows the per-layer footprint of ResNet50 [36],

the most common modern CNN, with a mini-batch size of 32 and a word size

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120 140 160

[M
B]

Layers	in	ResNet50

Inter-layer	data Parameters

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120 140 160

[M
B]

Layers	in	ResNet50

Inter-layer	data Parameters

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120 140 160

[M
B]

Layers	in	ResNet50

Inter-layer	data Parameters

Figure 3.2: The size of inter-layer data and parameters of each layer in ResNet50
(sorted by inter-layer data size).

23

of 16b in the forward phase. Only 9.3% of inter-layer data can be reused even

with 10MiB on-chip storage, leading to significant memory bandwidth waste

for storing and refetching data. This problem is even more severe for larger

mini-batch sizes, which are desirable as per-processor arithmetic performance

and main memory capacity improve.

3.2 Memory BW-Efficient CNN Training with
Mini-Batch Serialization

3.2.1 Serialization Principle

The primary goal of MBS (mini-batch serialization) is to improve reuse

by exploiting inter-layer data locality. The key to MBS is partially serial-

izing a mini-batch (propagating a small sub-set of a mini-batch at a time)

to control per-layer memory footprint without impacting training accuracy.

MBS is based on my insight that if the data synchronization points for func-

tional correctness are maintained and an appropriate normalization algorithm

is adapted, even processing a single sample at a time through all network lay-

ers does not alter the training result. The trivial serialization of one sample

at a time, however, has two crucial drawbacks.

First, while baseline training reads weights and writes weight gradients

just once per layer, full serialization re-reads weights and their partial gradient

sums for each sample and updates the partial sums once per sample as well.

Second, data parallelism within a single sample can be limited in some layers,

degrading resource utilization and performance (especially when mapping to a

24

highly-efficient systolic architecture). It is possible to process multiple samples

at a time (a sub-batch) to to provide some intra-layer weight reuse and extra

parallelism. However, the footprints of early layers are large and only a small

sub-batch can be formed (1–2 samples), limiting the benefits of this approach.

MBS goes much further and balances locality of intra-layer weight reuse

and parallelism with inter-layer locality. I do this by varying the number of

samples per sub-batch across layers such that layers that can support more

samples require fewer iterations and can benefit from the greater parallelism

and locality. This is possible because down-sampling layers decrease feature

map size and volume for deeper layers.

3.2.2 Layer Grouping Optimizes Reuse

Optimizing layer groups balances intra- and inter-layer locality trade-

offs. The MBS algorithm forms initial layer groups by grouping adjacent layers

0

5

10

15

20

0

1

2

3

4

CO
NV

PO
O
L

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

NO
RM

/R
EL
U

PO
O
L FC

Ite
ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping

Da
ta

 s
ize

 /
sa

m
pl

e
[M

B]

Group1

G
ro
up

2 Group4

0

5

10

15

20

0

1

2

3

4

CO
NV

PO
O
L

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

NO
RM

/R
EL
U

PO
O
L FC

Ite
ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping
Group3

0

5

10

15

20

0

1

2

3

4

CO
NV

PO
O
L

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

NO
RM

/R
EL
U

PO
O
L FC

Ite
ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping
La

ye
r i

te
ra

tio
n

co
un

t

0

5

10

15

20

0

1

2

3

4
Ite

ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping

Figure 3.3: Per-block inter-layer data size, required layer iterations, and MBS
layer grouping for ResNet50 with 32 samples.

25

2 iteration

Size = 2

Data load from off-chip memory

Group1 Group3

Data store to off-chip memory

3 iteration

Group4

Size = 11,11,10 Size = 16

SUMConvolution Normalization Activation

Mini-Batch Serialization

Original CNN graph: samples / processor = 32

M
B

S

Block

11 iteration

Lo
ss

co

m
pu

ta
tio

n

G2

6

Residual blockResidual block

6,2

Figure 3.4: ResNet50 training flow by baseline and MBS.

that require the same number of sub-batch iterations. This is shown in Fig-

ure 3.3 where grey vertical bars represent the data volume required for the

inter-layer data per layer (or one multi-branch module block) of ResNet50,

and the red line represents the resulting minimal sub-batch iteration count for

each layer. Then, layer groups are merged to improve overall locality: groups

are merged by reducing the sub-batch size of one group to that of an adjacent

group. The first group then requires more iterations (with more weight and

gradient accesses), but inter-layer reuse increases across the two layers where

the groups meet. The resulting grouping for this optimization for ResNet50

is shown with the blue line in Figure 3.3.2 The mini-batch is then processed

2I also experimented with an optimal grouping of layers using exhaustive search, which
improved traffic and performance by roughly 1% compared to my greedy optimization.

26

in several sub-batch iterations (dmini−batch size
sub−batch size

e) within each group as shown

in Figure 3.4, which emphasizes how locality is increased and memory traffic

reduced across features and weights.

Back Propagation. In back propagation, MBS optimizes locality for both

newly computed results and for data reloaded from the forward path. For

example, as shown in Figure 3.1, MBS reuses the reloaded gradients more

than once. Furthermore, both convolution and ReLU layers use activations

from the forward path. However, only the gradient of ReLU is needed, which

is always 0 (for negative activations) and 1 (for positive); thus, MBS uses a

single bit per ReLU gradient instead of a 16b. I also allocate buffer space for

normalization layers to reuse their inputs to compute their gradient and loss.

As in the forward pass, reuse in back propagation is made possible by MBS

processing one sub-batch at a time.

Data Synchronization. MBS maintains the original synchronization points

across the entire mini-batch. Therefore, MBS accumulates the partial gradi-

ents of all learning parameters across all sub-batches. This requires storing

partial results to memory, which is not needed in the conventional flow. How-

ever, this overhead is dwarfed by the improved reuse of layer outputs, especially

considering that deeper layers with large weights are iterated over only a few

times.

27

3.2.3 Data Reuse Within a Multi-Branch Module

Figure 3.4 also shows how MBS applies the same sub-batch approach to

a multi-branch residual module of ResNet50. Such multi-branch modules are

common in CNN architectures and offer additional reuse opportunities. Both

the main path and shortcut branch share an input, and when they merge,

their outputs are summed. Therefore, the module inputs should stay on chip

until both paths have consumed them, and the output of the shortcut branch

should stay on-chip while the main path output is computed. MBS does this

by provisioning buffer space based on the needs of multi-branch blocks, where

a block includes all the branches that share split and merge points—MBS

essentially treats such a block as a layer for optimizing locality.

Maintaining locality for such shared nodes leads to additional storage

requirements. The per-sample size is calculated by Equation 3.1 where: Din

and Dout indicate the sizes of the main-branch input and output; Dshortcut is

the size of the shortcut path output; L is the number of layers in the main

branch; and b and l represent a specific branch and layer.

Space

Sample
= max

1≤b≤2, 1≤l≤L
Din(b, l) +Dout(b, l) +Dcond(b, l)

Dcond(b, l) = (b=1 & l 6=1)Dblock in + (b 6=1)Dblock out

(3.1)

Similarly, for inception modules [96, 95], the block input is reused between

branches, and the concatenated block output is eventually reused in the fol-

lowing layer. Therefore, MBS keeps both the block input and output on chip

while executing the branches. The space required is shown in Equation 3.2,

where B indicates the number of branches in a module and other notation is

28

20

25

30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80 90

to
p1

 v
al

id
at

io
n

er
ro

r (
%

)

epochs

BN GN+MBS

20

25

30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80 90

to
p1

 v
al

id
at

io
n

er
ro

r (
%

)

epochs

BN GN+MBS

20

25

30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80 90

to
p1

 v
al

id
at

io
n

er
ro

r (
%

)

epochs

BN GN+MBS

Figure 3.5: ResNet50 validation error trained with GN + MBS and BN.

as above.

Space

Sample
= max

1≤b≤B, 1≤l≤L
Din(b, l)+Dout(b, l)+Dcond(l)

Dcond(l)= (l 6=1)Dblock in + (l 6=L)Dblock out

(3.2)

3.2.4 Feature Normalization in MBS

While batch normalization (BN) is widely used in many modern CNNs,

it is incompatible with MBS because BN requires many samples to work well

and improve accuracy [46]—MBS cannot serialize computation if data across

an entire mini-batch (per processor) is needed for normalization. Instead of

using BN, I adapt group normalization (GN) [106] to MBS. GN normalizes

across feature maps within a subset of channels in a single sample, as op-

posed to across an entire per-processor mini-batch. Thus, GN can be made

compatible with MBS.

To use GN with MBS, the per-channel GN scale and shift parame-

29

pr
e-

ac
tiv

at
io

n
m

ea
n

10
0

-10
-20
-30
-40
-50
-60
-70
-80

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
-1.0

-0.5

0.5

1.0

0.0

-1.0

-0.5

0.5

1.0

0.0

(a) Without normalization (b) BN (c) GN+MBS

First normalization layer Last normalization layer

epochs epochs epochs

10
0

-10
-20
-30
-40
-50
-60
-70
-80

10
0

-10
-20
-30
-40
-50
-60
-70
-80

Figure 3.6: Pre-activation mean of each normalization layer. (a) Without nor-
malization, (b) BN ,(c) GN. b and c are zoomed in.

ters must be re-fetched at every sub-batch iteration within a layer group.

Additionally in backpropagation, the gradients of these parameters must be

accumulated across all sub-batches just like the weights of convolution layers.

However, since the size of these parameters is only two times the number of

channels per layer, they can easily be stored in the on-chip buffer and incur

no overhead.

I confirm previous results and demonstrate that both GN and BN pro-

vide comparable training effectiveness. Figure 3.5 compares the validation er-

ror curves with BN and MBS-GN when training ResNet50 on ImageNet [22].

Figure 3.6 shows that both MBS-GN and BN provide similar normalization, in

that both have similar pre-activation (output of normalization) distributions

across layers (unlike training without normalization). In this experiment, mini-

batch samples of 128 are distributed across 4 GPUs and an initial learning rate

0.05 used considering the linear learning rate scale rule [10, 81].

30

3.3 Efficient MBS Training on the
WaveCore Accelerator

In this section, I introduce WaveCore, a CNN training accelerator for

efficient execution of partially serialized training workloads. The design of

WaveCore is based on prior training accelerators with large systolic arrays [51,

21]. To help understand its operation, I first describe the overall operation

mechanism of a systolic array then introduce the detailed improvements I

develop for WaveCore.

3.3.1 MBS Training on a Systolic Array

Like prior work, each PE in my proposed systolic array has mixed

precision units: 16b inputs are multiplied with accumulation performed in 32

bits to reduce both computation and data traffic overheads [71]. Also like

prior work [21], I use a 128×128 systolic array for high performance and to

circumvent power delivery challenges.

A systolic computation is often divided into multiple waves, where

each wave proceeds with inputs flowing toward outputs without any stalls

or changes to the computational pattern. Between waves, it is sometimes

necessary to let the pipeline through the array drain and then refill. This in-

troduces idle time which reduces utilization and hence hurts performance and

efficiency. Convolution and matrix operations have efficient systolic implemen-

tations that have little idle time if an entire mini-batch is processed together.

However, MBS processes an often small sub-batch, which significantly reduces

31

+ + + ++

Gw = Co

A C

B
G

h
=

N
 x

 H
o

x
W

o

K = Ci x R xS

k

n

k

k

n

m= local buffer size
k

m

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Pre-load

Figure 3.7: Tiled GEMM mapping to the systolic array of a convolution layer
in forward propagation.

+

32
b

17
b

17b

×

16b

16
b

?=0

1b

1b

skip computes

REG REG

Systolic
array

Systolic
array

t

t
Next

systolic
wave

Shifting-in weights to
the other register

k cycles idle time
k

cy
cl

esNext
systolic
wave

Shifting-in weights of
next systolic wave

❶

❷

(b) Weight shift-in time w/o ❶ and w/
❷ stationary data double buffering

(a) PE design: Data double
buffering and selection

Figure 3.8: Removing inter-wave idle time by weight double buffering and con-
trol signal shift.

the utilization and performance of a conventional systolic array design. I ad-

dress this challenge and maintain high systolic array utilization for MBS using

a combination of two techniques.

Maintaining High Compute Unit Utilization with im2col. First, in-

32

stead of directly mapping a convolution computation to a systolic array, I use

the im2col algorithm described in Section ??. I do this because efficient direct

convolution on a systolic array requires tuning for every possible sub-batch

size, which is difficult to do with the MBS approach that optimizes groupings

to arbitrary size.

The major concern of processing GEMM on a large systolic array is that

if the size of M , N , or K (the GEMM dimensions after im2col conversion)

is smaller than the systolic array size, the compute units are significantly

underutilized. However, based on my observation, the GEMM of each sub-

batch constructed by im2col is large in all dimensions, and this maintains

high systolic array utilization: early layers with small sub-batches have large

feature maps and while the feature map sizes of later convolution layers are

small, their large sub-batch size compensates.

Systolic Dataflow for Convolution GEMM. I block the convolution

GEMM into multiple m×n tiles, which are processed in sequence through

the array. Each tile corresponds to a portion of the output matrix (C). The

width of each tile is equal to the width of the systolic array (n). The height

(m) is chosen to maximize the size of a tile, thus minimizing the number of

tiles per layer and improving utilization: m = Local buffer size
k=systolic array height

. This is

illustrated in Figure 3.7.

Each tile is processed using multiple waves through the systolic array,

where each wave multiplies a block of input matrix A by a block of input

33

matrix B. A block from B is first read one row at a time. Each row is shifted

down until the array has one element of B per PE (this takes 5 cycles in the

toy example of Figure 3.7). Then, a block of A is pipelined into the array with

results for each element of C eventually accumulated at the bottom of the

array as shown in the right side of Figure 3.7. Notice that in the figure, cycle

6 corresponds to the first row of the block of A having been multiplied and

then accumulated by the first column of the block of B. In the following cycle,

the second row of the A block completes its pipeline through the first column,

while the first row of A now completes its dot product with the second column

of the B block (and its output is at the bottom of the second column of the

systolic array). Once a wave as described above completes, the next blocks of

A and B are processed. As additional blocks are processed, their outputs are

added to the current values of the C tile (a reduction across waves), eventually

completing a tile of C in dK/ke waves.

3.3.2 Gapless Waves with Per-Register Weight Double Buffering

The flow described above has one significant problem. Before every

multiplication of blocks of A and B, the B block is read and distributed to

the PEs, which requires k (PE array height) cycles (for reading and inter-

PE shifting). No arithmetic occurs during these k cycles, which decreases

performance (upper half of Figure 3.8b).

To remove this inter-wave idle time, I modify the basic PE design to

double buffer weights (Figure 3.8a)—the next wave’s weights are fetched and

34

distributed into a second register within each PE while the current wave is

still being processed. As the current wave starts draining from the PE array,

the following wave starts immediately by feeding in a new block of A and

multiplying by the second register that stores the next set of weights from B.

Thus, there are no gaps between waves and an entire tile of C is computed

without any idle time beyond the initial fill and final drain of the pipeline.

In addition to the extra register in each PE, a minor further change is that a

select signal for choosing which weight register to use is propagated along with

the inputs of A and B. This optimization significantly boosts performance at

very low cost: the simple 1b local signal between every two PEs and a 16b

register and multiplexer between the two registers per PE. As in prior work, I

also check for zero inputs and skip arithmetic in such cases to reduce energy

consumption [77].

3.3.3 WaveCore Processor Architecture

In addition to the systolic cores, the WaveCore CNN training accel-

erator contains several more structures and units. Figure 3.9 illustrates the

overall architecture of one core of the processor. There are two such cores

in my proposed design that are connected by an on-chip network, similar to

TPU v2 [21]. I describe these structures and estimate the area and power

requirements of WaveCore below.

Local Buffers. Both A and B local input buffers are double-buffered. Double

buffering enables the overlap of computation within the PEs with accesses to

35

C
o

a
le

s
c
e

d
 l
o

a
d

s
16

7G
B/

s

167GB/s

167GB/s

50
1G

B/
s

Systolic array

G
lo

ba
l b

uff
er

 b
an

ks

O
ff-

ch
ip

 M
em

or
y

cr
os

s
ba

r

Memory
CTRLs

Ve
ct

or
 c

om
pu

te
 u

ni
ts

 (a
ct

iva
tio

n) B Local buffers X2B Local buffers X2

A
Lo

ca
l b

uff
er

s
X2

A
Lo

ca
l b

uff
er

s
X2

Accumulation buffer
X3 (activation)

Accumulation buffer
X3 (activation)

Accumulation buffer
X3 (activation)

Figure 3.9: Per-core architecture of the WaveCore accelerator.

the global buffer and to memory and allows for very simple coarse-grain control

of data transfers between buffers and memory. I choose the minimal size for

each buffer, such that PEs never directly access the global buffer or memory,

as this avoids access-related stalls. A half-buffer of B stores a 16b word for

each PE and is thus 32KiB (128×128×16b). Each half-buffer for A is 64KiB

because A blocks need to be twice as large as B blocks to avoid inter-wave idle

time. The output accumulation buffer is triple-buffered because it holds the

current output tile while the previous tile is being written to memory and the

partial gradient sums for the next tile are read. Each part of this buffer holds

an entire tile of C and is 128KiB. Note that while outputs are summed in 32b

precision, the final write to the output buffer quantizes to 16b precision.

Global Buffers. The baseline global buffer is 10MiB and has 32 banks.

This is sufficient for using MBS with modern CNNs and avoiding bank access

36

conflicts. The global buffer is connected to all local buffers via a crossbar.

To avoid duplicated data loads from the global buffer, I have memory load

coalescing units that maintain high effective bus bandwidth utilization. My

processor is designed to operate at a 0.7GHz clock frequency, and the data

bandwidth of local and global buffers are set to fully support the systolic wave

pipelining.

Main Memory. The off-chip memory is connected to memory controllers,

which communicate with the on-chip buffers via the crossbar switches. The

baseline WaveCore uses a single HBM2 stack with 4 dice [50], which provides

8GiB off-chip DRAM with 300GiB/s data bandwidth over 8 channels (4 chan-

nels per core). I choose HBM2 because it is used by other modern training

accelerators [21, 76]. I later show that cheaper GDDR or even LPDDR mem-

ory can be sufficient for WaveCore.

Vector and Scalar Computing Units. The systolic array is used for convo-

lutions and fully-connected matrix operations, but cannot be efficiently utilized

by normalization, pooling, and activation layers, which require a relatively

small number of arithmetic operations. Such layers are memory bandwidth

bound, and I therefore process them using scalar and simple vector units that

are placed close to the global buffer where their outputs are then stored.

3.3.4 Area and Peak Power Estimation

Area Estimation. I estimate the die area of WaveCore at 45nm technology

and scale this estimate to 32nm to compare with other deep learning acceler-

37

Table 3.1: WaveCore accelerator specification and comparison to other training
accelerators.

V100 TPU v1 TPU v2 WaveCore
Technology (nm) 12 FFN 28 N/A 32

Die Area (mm2) 812 ≤ 331 N/A 534.0

Clock Freq (GHz) 1.53 0.7 0.7 0.7

TOPS / Die 125 (FP16) 92 (INT8) 45 (FP16) 45 (FP16)

Peak Power (W) 250 43 N/A 56

On-chip buffers (MiB) 33 24 N/A 20 (2×10)

ators Table 3.1. The estimated total area of the two-core WaveCore is 534.0

mm2. I use a 24T flipflop design as reported in [54] and the floating point

multiplier and adder designs reported in [40]. Each PE requires 12,173 um2

and the multiplier and adder take more than 90% of the PE area. The esti-

mated area of the 128×128 PE array is 199.45 mm2, which accounts for 67%

of WaveCore’s area. The size of the global buffer and the vector compute units

per core are estimated at 18.65 mm2 and 4.33 mm2, respectively. The crossbar

has 24 256b-wide ports (32B memory access granularity). The area occupied

by the network and the crossbar expands the chip width by 0.4mm, following

the approach used to evaluate Dadiannao [17].

Power Modeling. I use a convolution layer that exhibits 100% systolic-array

utilization to estimate the peak power consumption of WaveCore. WaveCore

operates at 0.7GHz, which is the same as TPU v2 [21]. WaveCore consumes

a maximum of 56W (Table 3.1). Here, I use one HBM2 chip as the off-

chip memory and model its power using the Rambus power model [99] in

22nm technology. The SRAM buffer power is calculated with CACTI [12]

38

configured for 32nm. The power consumed by multipliers and adders is taken

from [32] and filpflops from [27]. The link and router power is calculated with

Orion2.0 [53].

3.4 Evaluation

3.4.1 Evaluation Methodology

I evaluate the locality benefits of MBS and the performance and energy

of WaveCore on three well-known modern deep CNNs : ResNet [37], Inception

v3 [96], and Inception v4 [95]. I also evaluate a shallower CNN (AlexNet [57])

with few memory BW bound layers such as normalization and pooling. I use

mini-batches of 32 samples per core (64 per chip) for the deep CNNs and 64

samples per core for AlexNet because of its smaller training context. I use 16b

floating point for all CNNs with mixed-precision arithmetic (16b multiplication

and 32b accumulation) [71].

For each network, I evaluate several execution configurations as sum-

marized in Table 3.2: Baseline uses two-level GEMM input matrix blocking

for effective data reuse within each convolution and FC layer [59]; ArchOpt

adds weight double buffering for better PE utilization (all other configurations

use ArchOpt), Inter-Layer (IL) reuses the shared data between layers but

only when the per-layer memory footprint of the entire mini-batch fits within

the on-chip buffer (i.e., not using the MBS approach), MBS-FS is naive MBS

that fully serializes a mini-batch such that all layers in the CNN have the

same sub-batch size, MBS1 greedily forms layer groups to simultaneously op-

39

Table 3.2: Evaluation configuration description.

Configuration Description

Baseline 2-level GEMM blocking
ArchOpt Baseline + weight double buffering
IL ArchOpt + inter-layer data reuse
MBS-FS IL + serialize all layers using the same sub-batch size
MBS1 IL + greedy layer grouping
MBS2 MBS1 + inter-branch data reuse

timize both intra- and inter-layer data reuse, and MBS2 additionally reuses

the inter-branch data which requires different layer grouping than MBS1. I

compare WaveCore with MBS to an NVIDIA TESLA V100 running Caffe [49]

and report values averaged over 10 training iterations.

I develop a performance simulator for WaveCore and evaluate the per-

formance, energy, and memory traffic of MBS. The WaveCore simulator ac-

counts for all memory, buffers, and on-chip interconnect traffic as well as the

arithmetic operations. The default WaveCore uses a single HBM2 chip with

4Hi stacks. I also scale memory bandwidth using two HBM2 chips to launch

a larger mini-batch per accelerator (and to more closely match commercial

accelerators). Because MBS significantly reduces memory traffic, I also evalu-

ate lower-bandwidth main memory options that are cheaper and offer higher

capacity (GDDR5 and LPDDR4). The off-chip memory configurations of

WaveCore are listed in Table 3.3.

40

Table 3.3: Off-chip memory configuration.

Memory type Per-chip configuration Chip # Total BW

HBM2
300 GiB/s, 8 GiB, 8 channels

x1 300 GiB/s
HBM2×2 x2 600 GiB/s
GDDR5 32 GiB/s, 1GiB, 1 channel x12 384 GiB/s
LPDDR4 29.9 GiB/s, 2GiB, 1 channel x8 239.2 GiB/s

3.4.2 Evaluation Results

Figure 3.10 compares the per-training-step execution time, energy con-

sumption, and DRAM traffic of my proposed technique. In each of the sub-

figures, bars show absolute values and lines show relative ones. I normalize

execution time separately to both Baseline and ArchOpt to isolate the impact

of the architectural and algorithmic contributions of WaveCore and MBS.

Compared to Baseline, ArchOpt improves performance by 9–28% across

CNNs by removing the idle time between systolic waves. The gain is particu-

larly large for AlexNet because AlexNet has mostly convolution layers with few

memory-BW bound layers. Similarly, while not shown in the figure, ArchOpt

provides more benefit with MBS because the large reduction in memory traffic

increases the relative impact of idle compute time. For example, MBS2 with-

out ArchOpt is only 19% faster than Baseline on average, whereas the speedup

is 67% for MBS2 with ArchOpt, a 48% improvement on average. ArchOpt has

little energy benefit (∼ 2%) because it conserves only static energy.

Inter-layer (IL), which is similar to prior locality approaches used for

inference, has only a modest impact on performance and traffic because many

layers have large footprints that exceed the buffer size.

41

0
2
4
6
8
10
12

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.0 0.99

0.92

0.76

0.71
0.70

1.0 0.99
0.96

0.79

0.74
0.73

1.0 0.99
0.96

0.79

0.74
0.73

1.0 0.98 0.96
0.89

0.78
0.76

1.0 0.98 0.97
0.89

0.78
0.76

1.0

0.98
0.98

0.93
0.93

0
10
20
30
40
50
60
70

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.00

0.84

0.340.25

0.22

1.00
0.93

0.37
0.26
0.23

1.00 0.93

0.37
0.26
0.23

1.00 0.96

0.58
0.33

0.29

1.00 0.96

0.55

0.33

0.26

1.00
0.95

0.60 0.60

0

100

200

300

400

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2

1.01.09
1.21

1.60
1.77 1.81

1.0
1.11

1.47
1.621.66

1.0
1.111.17

1.56
1.75 1.79

1.0 1.05

1.40
1.58

1.61

1.0
1.121.17

1.57
1.76 1.81

1.01.05

1.40
1.58

1.62

1.0
1.241.261.30

1.65 1.68

1.0 1.021.05

1.33
1.36

1.0
1.201.23

1.29
1.601.68

1.01.021.08
1.33

1.40

1.0

1.28
1.29

1.36 1.36

1.0 1.01 1.07
1.07

[G
B]

[m
s]

[J
]

(c) DRAM traffic per training step. The traffic reduction rate is normalized to ArchOpt

(a) Execution time per training step. Speedups are normalized to Baseline and ArchOpt respectively

(b) Energy consumption per training step. The energy saving rate is normalized to Baseline

Speedup / baseline Speedup / ArchOpt

Normalized energy reduction

Normalized DRAM traffic reduction

Figure 3.10: Performance, DRAM traffic, and energy consumption sensitivity
to the proposed network architecture reconfigurations and HW architecture
optimization methods.

MBS-FS, which uses a single sub-batch size (and thus a single group)

substantially reduces DRAM traffic (42–61%) for the deep CNNs because it

utilizes inter-layer locality well. However, with a small sub-batch size, the time

needed for the extra reads and writes of weight gradients used to accumulate

them across sub-batches cannot be hidden, which reduces performance. This

is evident in the performance trends of Inception v3 and v4, where MBS-FS is

worse than IL. AlexNet exhibits a much larger performance loss with MBS-FS

because it has three FC layers with large weights and the extra weight reads

42

increase main memory traffic by 2.6×.

MBS1 balances inter- and intra-layer reuse and achieves large improve-

ments in performance (33–54%) and DRAM traffic (67–71%) for the deep CNN

compared to ArchOpt. AlexNet shows smaller gains as it lacks memory-BW

bound layers. MBS1 also shows 22–26% energy saving for the deep CNNs com-

pared to Baseline by reducing the DRAM energy portion from 21.6% to 8.7%.

As WaveCore skips multiplication and addition when one of the inputs to a

PE is zero, the contribution of DRAM traffic reduction to the overall energy

saving is high. It is important to note that global buffer traffic is increased by

a similar amount as DRAM traffic is decreased. However, there is still a large

net energy saving because a global buffer access energy is 8× lower than that

of DRAM.

MBS2 reduces DRAM traffic by an additional 7–10% and improves

training performance by up to 5% compared to MBS1. MBS2 needs addi-

tional global buffer space to store the data at the shared multi-branch nodes,

so the number of sub-batch iterations is larger than with MBS1. While more

iterations imply a larger overhead for re-reading weights and gradients, the

traffic saved by the reuse between branches is greater. The gain is slightly big-

ger for Inception v3 and v4 because the Inception modules have more branches

and reuse opportunity scales linearly with the number of branches.

In summary, the highly-optimized MBS2 improves DRAM traffic by

71–77%, training performance by 36–60%, and energy consumption by 24–

29% for the deep CNNs.

43

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

Figure 3.11: Memory traffic and performance sensitivity of ResNet50 to the
global buffer size (Normalized to IL with 5MiB).

3.4.2.1 Sensitivity to Global Buffer Size

Another benefit of MBS is its low sensitivity to on-chip storage capacity.

To showcase this, I compare the execution time and DRAM traffic per train-

ing step of ResNet50 for different configurations with different global buffer

sizes (Figure 3.11). The per-core global buffer size is scaled from 5MiB to

40MiB and execution time and traffic are normalized to IL at 5MiB (ResNet’s

MBS scheduling requirement is smaller than 5MiB). Even with a 40MiB global

buffer, only 47% of DRAM traffic is saved by IL; MBS2 saves 1.5X the traffic

even with a 5MiB buffer. IL with 40MiB also provides less performance benefit

than both MBS1 and MBS2 at just 5MiB. Both MBS1 and MBS2 show little

performance and DRAM traffic variation for different buffer sizes because they

simultaneously balance both intra- and inter-layer reuse. In contrast to the

optimized MBS1 and MBS2, MBS-FS again suffers from the impact of reading

and writing gradient partial sums.

44

3.4.2.2 Sensitivity to DRAM BW

Figure 3.12 highlights the ability of MBS to enable high performance

even with lower-cost, lower-bandwidth memories. The figure compares the

per-step training time of different configurations using various memory types

(speedup is normalized to Baseline with 2×HBM2). The bandwidth of GDDR5

and LPDDR4 is 64% and 40% that of HBM2×2, respectively. While all im-

plementations suffer from decreased bandwidth, the improved locality with

MBS2 makes it far less sensitive with only a 4% performance drop when us-

ing off-package GDDR5 and a < 15% drop with low-cost LPDDR4. In this

experiment, the off-chip memory space has been increased to 16GB to train

64 samples per core (128 per WaveCore) because off-package memories offer

higher capacity.

1.00
0.84

0.63

1.22

0.95

0.67

1.27

1.01

0.73

1.37 1.33
1.23

0.50

0.70

0.90

1.10

1.30

1.50

0

100

200

300

400

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

Baseline ArchOpt IL MBS2

Sum Pool Norm FC Conv Speedup

1.00
0.84

0.63

1.22

0.95

0.67

1.27

1.01

0.73

1.37 1.33
1.23

0.50

0.70

0.90

1.10

1.30

1.50

0

100

200

300

400

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

Baseline ArchOpt IL MBS2

Sum Pool Norm FC Conv Speedup

LP
D4

G
DR

5

H
BM

2 x2

LP
D4

G
DR

5

H
BM

2 x2

LP
D4

G
DR

5

H
BM

2 x2

LP
D4

G
DR

5

H
BM

2 x2

1.00
0.84

0.63

1.22

0.95

0.67

1.27

1.01

0.73

1.37 1.33
1.23

0.50

0.70

0.90

1.10

1.30

1.50

0

100

200

300

400

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

HB
M
2x
2

GD
DR

5

LP
DD

R4

Baseline ArchOpt ILS MBS2

Sum Pool Norm FC Conv Speedup

[m
s]

Figure 3.12: ResNet50 training performance sensitivity to the off-chip memory
bandwidth and the execution time breakdown by layer.

3.4.2.3 Performance Comparison to GPU

Figure 3.13 compares the measured execution time per training step of

an NVIDIA V100 GPU with my estimates for WaveCore with different DRAM

45

configurations. Although a single WaveCore has 30% the peak compute and

27% the memory bandwidth (LPDDR4) of V100, it still exhibits better train-

ing performance. The performance gap widens as the network depth increases

because many layers with low data parallelism cannot efficiently utilize the

wide compute resources of the V100 GPU.

0

50

100

150

200

250

ResNet50 ResNet101 ResNet152 Inception	v3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.22
1.18

1.14
1.09

1.29
1.25

1.20
1.15

1.29
1.25

1.21
1.16

1.28
1.25

1.21
1.16

0

50

100

150

200

250

ResNet50 ResNet101 ResNet152 Inception	v3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.22
1.18

1.14
1.09

1.29
1.25

1.20
1.15

1.29
1.25

1.21
1.16

1.28
1.25

1.21
1.16

0

50

100

150

200

250

ResNet50 ResNet101 ResNet152 Inception	v3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.22
1.18

1.14
1.09

1.29
1.25

1.20
1.15

1.29
1.25

1.21
1.16

1.28
1.25

1.21
1.16

0

50

100

150

200

250

ResNet50 ResNet101 ResNet152 Inception	v3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.22
1.18

1.14
1.09

1.29
1.25

1.20
1.15

1.29
1.25

1.21
1.16

1.28
1.25

1.21
1.16

Speedup

[m
s]

Figure 3.13: NVIDIA V100 GPU performance comparison to WaveCore +
MBS2 with different memory types.

3.4.2.4 Systolic Array Utilization

As MBS propagates only a fraction of the mini-batch for each sub-batch

iteration, it is important to observe its impact on the systolic core utilization.

Figure 3.14 compares the utilization of convolution and FC layers for differ-

ent CNNs. To isolate the impact of sub-batch size and the parallelism it

makes available on utilization, this experiment uses unlimited DRAM band-

width. Baseline suffers from low core utilization (average of 53.8%) due to

the inter-wave idle time. Double buffering with ArchOpt increases the aver-

age utilization to 81.5%. MBS-FS exhibits lower utilization (66.7%) because

the sub-batch size is determined solely by the large early layers. Optimiz-

ing reuse with different sub-batch sizes across layer groups with MBS1 and

46

0
0.2
0.4
0.6
0.8
1

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet AVG

Baseline ArchOpt MBS-FS MBS1 MBS2

0
0.2
0.4
0.6
0.8
1

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet AVG

Baseline ArchOpt MBS-FS MBS1 MBS2

0
0.2
0.4
0.6
0.8
1

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet AVG

Baseline ArchOpt MBS-FS MBS1 MBS2

Figure 3.14: Systolic array utilization of different CNNs.

MBS2 regains the lost utilization and brings it up to 78.6%, within 3% of a

full mini-batch. This small difference is largely a result of a few early layers

with small channel counts, which result in particularly narrow tiles that do not

fully utilize WaveCore’s 128×128 systolic array. Later layers exhibit almost

100% utilization.

3.5 Related work

3.5.1 Inter-layer Data Reuse in Inference

No prior work has addressed locality-optimizations for CNN training.

Instead, I discuss methods proposed for inference accelerators. Most inference

accelerators optimize CNN scheduling to better utilize intra-layer locality [28,

15, 67, 14, 24, 51, 26]. They mainly focus on the data flow within a processing

array, reducing data re-fetches by unrolling, or optimizing data access patterns

within a convolution layer.

SCNN [77] is a scheduling method and architecture that reuses inter-

layer data in CNN inference. SCNN uses the on-chip buffer to hold both the

47

input and output features of each layer along with all weights. This is possible

with a reasonable on-chip buffer size because SCNN relies on the fact that

inference uses a single sample (mini-batch of 1), that features between layers

are sparse because of ReLU, and that weights are even more sparse because

they are pruned once training is complete. Together, an entire network can fit

within an on-chip buffer.

However, the SCNN approach cannot be used for training because the

same conditions do not hold true: mini-batches are large resulting in layer

outputs that exceed buffer size, convolution layer outputs are not sparse, and

weights are not sparse before pruning [33].

3.5.2 Layer Fusion

Fused-Layer CNN [5] is an inference flow that also utilizes inter-layer

data. The approach is to divide the initial input to the CNN (the input feature

map) into tiles and propagate one tile through multiple layers. Each convolu-

tion layer uses its input tile to produce a smaller output tile (because output

cannot be produced for bands along the tile edges). The overlap between tiles

is exploited via dedicated caches. While effective for the networks evaluated

in [5], Fused-Layer CNN can not be applied to training modern deep CNNs,

because: (1) convolution layers with small feature maps and large channel

counts and weight data (deeper layers in modern CNNs) do not exhibit suf-

ficient inter-tile locality; (2) normalization layers are incompatible with the

tiling used for the depth-first propagation; (3) the inter-layer communication

48

pattern in multi-branch modules, as well as in back propagation, is not only

a direct communication between one layer to its following one; and (4) tiles

shrink as they are propagated depth-first through the network, which limits

available parallelism and likely hurts PE utilization.

3.5.3 Compiler Techniques for Graph Scheduling

To improve the intra- and inter-layer data reuse, prior work proposes

network model scheduling techniques that capture data dependency and map

to existing hardware to better utilize their resources avoiding redundant mem-

ory accesses [9, 87]. In particular, the technique proposed by Rotem et al. [87]

analyzes the data dependency between layer operators in both high- and low-

level representations to accommodate the target-device specific optimizations.

However, unlike MBS, their techniques do not involve the interplay between

scheduling optimization and hardware design. Also, MBS removes the schedul-

ing constraints imposed by the algorithm choice (e.g. feature normalization)

and enables multi-GEMM layer fusion, which is not feasible to such compiler-

based techniques.

3.6 Discussion

3.6.1 Feature Normalization for CNNs with Few Channels

GN (group normalization) is a key algorithm that makes MBS training

works as discussed in Section 3.2.4. However, GN requires many channels and

channel groups for stable normalization [106]. For this reason, GN cannot be

49

used to small models with a few channels such as CNN models for CIFAR

datasets. To enable MBS training for small models, I propose SBN (sub-

batch normalization). Like BN, SBN normalizes features within batch and

feature map dimensions but it uses the features of only a sub-batch thus avoids

communication across different sub-batch propagations.

Figure 3.15 compares the top1 validation loss of ResNet32 with SBN

trained on both CIFAR10 and CIFAR100 to the training results of the baseline

with BN. I use two SBN configurations in this experiment: given that ResNet32

has three residual block stages with each sharing the same node, SBN16:32:64

uses sub-batch sizes of 16, 32, and 64 at each stage. This is 8, 4, and 2 times

smaller batch sizes compared to the baseline mini-batch size of 128. The other

SBN configuration uses SBN8:16:32 and this uses half the samples at each stage

compared to SBN16:32:64. For these two configurations, SBN shows lower or

similar validation loss compared to BN. This indicates that, with SBN, MBS

can be effectively used for a small CNN model with just a few channels. SBN

works only when sub-batch sizes of early layers are sufficiently large (e.g. 16

or 32). Thus, ResNet for ImageNet does not work with SBN and shows high

accuracy drop.

3.6.2 Different Core Designs for Matrix Operations

I use a systolic array with input-stationary dataflow as the baseline core

design. However, different core designs (e.g. different systolic dataflows or data

distributions [16]) can be used as the baseline for MBS training. Although dif-

50

0.0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160 180

To
p1

 va
lid

at
io

n
ac

cu
ra

cy

Training epochs

BN
SBN 16:32:64
SBN 8:16:32

0.0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160 180

To
p1

 va
lid

at
io

n
ac

cu
ra

cy

Training epochs

BN
SBN 16:32:64
SBN 8:16:32

0.0

0.2

0.4

0.6

0 20 40 60 80 100 120 140 160 180

To
p1

 va
lid

at
io

n
ac

cu
ra

cy

Training epochs

BN
SBN 16:32:64
SBN 8:16:32

0.0

0.2

0.4

0.6

0 20 40 60 80 100 120 140 160 180

To
p1

 va
lid

at
io

n
ac

cu
ra

cy

Training epochs

BN
SBN 16:32:64
SBN 8:16:32

Figure 3.15: MBS training loss ResNet32 with SBN trained on (left) CIFAR10
and (right) CIFAR100.

ferent core designs need changes in resource allocation and component design,

as MBS is a layer-wise data locality technique, its data reuse benefits remain

the same.

I take a systolic array with output-stationary dataflow as an example

to explain the changes needed to WaveCore for MBS training. Compared to

the input-stationary dataflow Figure 3.7, where each PE shifts a partial sum

to its adjacent PE at the bottom, output-stationary dataflow maintains the

partial sum at each PE until the full accumulation is complete (Figure 3.16).

After accumulation, the GEMM output is shifted out and this does not require

the extra accumulator in the output buffer the like input-stationary dataflow.

Since both features and weights are reused only while getting shifted between

PEs in the array, the input reuse is lower compared to the input-stationary

flow when the feature buffer size is large. Instead of input register double

buffering at each PE, output register double buffering should be used at each

PE to avoid inter-accumulation PE idling.

51

N

A C

B
M

K
k

n

k
n

n

k
n

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Figure 3.16: Input blocking and core mapping of output-stationary systolic
array dataflow.

Other types of dot product engines with input broadcasting (e.g.

SCNN [77] and Eyeriss [15]) can also be used as the baseline core design

for MBS training. However, they are typically used in inference engines with

relatively small number of PEs as input broadcasting is not scalable to the

number of PEs compared to systolic input shifting.

3.6.3 Resource Pipelining using Fine-grain Layer Fusion

Instead of executing each layer function in bulk-synchronous fashion, it

is also possible to pipeline the operations of vector layers (e.g. feature normal-

ization and sum layers) with GEMM layers such that the vector operations

are executed as soon as their inputs are ready. This enables better compute

resource utilization. Once each tiled GEMM accumulation is finished, the

output is first stored at the global buffer waiting for all the inputs belonging

52

to the same group normalization granularity. Once all inputs are ready, the

SIMD lanes perform the data reductions and affine transformation needed for

feature normalization. Other vector operations that do not need reduction

(e.g., element-wise sum and multiply) are executed when enough inputs to fill

the SIMD lanes are ready.

This fine-grain multi-layer fusion can remove many redundant memory

accesses between layers, and overlaps the computation time and memory ac-

cesses of vector operation layers. However, this fine-grain layer fusion presents

a challenge to GEMM layer input blocking. This is because the reduction

dimension of a vector layer followed by a GEMM layer is different from the

optimal GEMM blocking dimensions. Vector layers (e.g., feature normaliza-

tion) reduce inputs across the batch dimension, thus they need inputs from

across the entire mini-batch. However, desired GEMM layer input reuse blocks

GEMM tiles in the channel dimensions. Thus, processing the GEMM tiles in

the batch dimension first reduces input reuse and causes unnecessary DRAM

accesses.

On the other hand, MBS training is a good fit for fine-grain pipelining

because it already fuses layers within a layer group in terms of memory ac-

cesses. When processing a convolution GEMM, one of its two input matrices

is already buffered on chip, which enables flexible GEMM blocking with lower

sensitivity to memory BW.

53

3.6.4 Balancing Matrix and Vector Computing Units

WaveCore contains a pipelined vector computation unit and its

throughput is matched with the global buffer load bandwidth. This architec-

ture is based on the layer-wise network execution flow so the vector compute

throughput is set to consume the maximum data bandwidth and does not

depend on the throughput of systolic arrays. However, if the layers with vec-

tor operations and GEMM operations are fused, the vector unit throughput

should be set such that the computation time of vector operations is hidden

by GEMM execution time to maximize GEMM compute unit utilization.

Based on my analysis, 98-99% of ResNet50 and Inception v4 are GEMM

FLOPs from convolution layers and fully-connected layers. This explains the

need for dedicated GEMM compute cores for CNN training accelerators. A

50:1 ratio between GEMM and vector compute units can roughly support

high GEMM compute unit utilization. In detail, since pooling layers reduce

the size of features of later layers (fewer vector FLOPs) but maintain the

same total FLOPs, early layers need higher vector compute throughput than

later layers. Therefore, using the average vector compute throughput (1/50 of

GEMM compute throughput) can stall GEMM computation and underutilize

expensive GEMM compute units. Two options can alleviate this GEMM core

stalls: (1) the vector compute throughput can be set using the GEMM and

vector compute FLOPs ratio of early layers, or (2) using a large on-chip buffer

to hold more GEMM outputs to reduce the sensitivity to the throughput ratio

between GEMM and vector computations.

54

3.6.5 Applying MBS to Other DNN Models

The memory traffic saving of MBS comes from reusing inter-layer data

by partially serializing the training network propagation. CNN models are a

good fit for MBS training because their model size is much smaller than the

inter-layer data. Thus, serializing a CNN training iteration saves significant

memory BW due to inter-layer data reuse. Also, the BW overhead from re-

fetching weights between sub-batch iterations is negligible.

On the other hand, applying MBS training to other DNN models has

little benefit because their per-layer model sizes tend to be larger than the

size of inter-layer data. For example, NLP (neural language processing) [89,

82, 68] typically use RNN (recurrent neural network) [30, 6] models or self-

attention based models [98, 23]. For both types of NLP models, the size of

inter-layer data per sample is almost equal to, or smaller than its model size,

thus serializing the training graph gives no benefit. In addition, the layers

of such models maintain similar activation sizes across layers, unlike CNN

models that gradually decreases the feature dimension using pooling. Thus

NLP models do not need the inter- and intra-layer reuse balancing of MBS.

3.7 Summary

In this chapter, I introduce MBS, an approach to reuse the inter-layer

data in CNN training and balance its locality with that of intra-layer data.

MBS reconfigures the CNN computation graph by partitioning a mini-batch of

samples into multiple sub-batches whose memory footprint fits within on-chip

55

storage. I show that MBS reduces the volume of DRAM accesses by up to 74%

while providing a high processing-element utilization of 79%. Additionally, I

introduce a technique to exploit data reuse opportunities between branches in

CNN multi-branch Residual and Inception modules.

To efficiently use MBS CNN training, I introduce WaveCore, a systolic-

array based CNN training accelerator. I design WaveCore in a way to double-

buffer data within its processing elements to remove idle time between the

systolic waves used to compute the convolution and fully-connected layer out-

puts. WaveCore also triple-buffers to support concurrent execution of the

original tiled GEMM and the partial SUM reduction needed by MBS train-

ing. My evaluation demonstrates that I expect single WaveCore with MBS

to achieve higher performance than one V100 GPU despite having the GPU

having 3× higher peak performance and memory bandwidth.

Furthermore, the high locality MBS achieved by balancing intra- and

inter-layer reuse makes WaveCore very robust to memory design decisions. I

demonstrate that both on-chip buffer capacity and available off-chip band-

width have far smaller impact than using a conventional training approach.

In particular, unlike to the conventional mini-batch training and naive seri-

alization that fail to capture inter-layer locality with small on-chip buffers,

WaveCore with MBS training highly reuses inter-layer data using only 5MB

on-chip buffers. Also, even with a low-cost LPDDR4 DRAM system (the same

DRAM used for mobile phones), WaveCore can outperform a high-end V100

GPU.

56

Chapter 4

Fast Model Training with Dynamic Sparse

Model Reconfiguration

This chapter discusses fast CNN model training that structurally con-

tinuously prunes learning parameters from the beginning of training. I first

explain the proposed training algorithm and show the observation that sup-

ports my motivation for pruning while training. Then, I introduce three key

algorithmic techniques for the practical implementation of the proposed train-

ing mechanism. I implement my ideas using Pytorch and evaluate different

CNN models for CIFAR and ImageNet datasets with multiple NVIDIA GPU

types.

1

4.1 Motivation for Continuous Model Pruning During
Training

Training a modern CNN requires millions of computation and memory

bandwidth-intensive iterations. To reduce this high complexity of training and

1This chapter was published in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC) in November 2019. Sangkug Lym contributed
to this work as the main author.

57

eventually the training time, I propose to use model pruning during training.

Model pruning is a commonly used technique to make network inference fast

and energy-efficient. Although most model pruning mechanisms are focused on

inference tasks, I find that pruning can also substantially accelerate training.

To realize training speedup using model pruning, first, unimportant

parameters should be identified and pruned during training. However, most

prior pruning methods start pruning from a pre-trained model and repeat the

process of pruning and retraining to remove unimportant parameters [39, 72,

112, 38]. Since such trial-and-error model pruning has to first train the baseline

model, it eventually increases overall training time. Second, after each pruning,

the pruned model should have a dense form to avoid complex data indexing

for efficient acceleration on data-parallel accelerators. However, most prior

work prunes individual parameters to match the goal of maximally reducing

model size [3, 18]. The models pruned with such an approach perform poorly

on common training accelerators with high compute throughput because they

require complex indexing [103].

In contrast, structured pruning can maintain accelerator-friendly

pruned models. However, prior work that structurally prunes parameters dur-

ing training is scarce. In particular, Wen et al. [103] propose SSL, a pruning

approach that sparsifies weights while training a CNN, but does not remove

them from the model until training is complete. They use parameter regu-

larization and prune parameters at channel granularity. The pruned models

then exhibit high performance with training accelerators. They maintain the

58

original dense network architecture until the end of training because sparsified

weights may revive later in training thus not improving performance. Further-

more, in their evaluation, they start pruning from a pre-trained model thus

SSL actually requires more time to train than baseline, because it first trains

the dense baseline and then prunes it.

The pruning approach proposed by Zhou et al. [113] prunes the zeroed

parameters during training but does not reconfigure the network architecture.

Instead, gradient updates in back-propagation are skipped by setting weight

momentum to zero. Since this mechanism still performs all training compu-

tation, no training performance improvement is achieved. Alvarez and Salz-

mann [4] propose to reconfigure the sparse network architecture and reload the

model to accelerate training. However, their training method prunes a CNN

model only once during training, which limits its training performance gains.

Opportunities in Pruning During Training. In this dissertation, I present

PruneTrain, a structured model pruning mechanism for effective training

speedup. PruneTrain continuously prunes channels of a CNN model and re-

configures the network architecture into a new and smaller dense form during

training. This continuous pruning and reconfiguring can significantly speed

up training for two reasons. First, of all the convolutional channels that reg-

ularization sparsifies, most are sparsified very early in the training process, so

pruning these channels has a significant positive impact on the overall training

time. Second, regularization sparsifies the channels gradually over time, so it

is more beneficial to prune the sparsified channels frequently, as opposed to

59

44%
58% 67%

12%
11%

7%
3%

3% 2%

0%

20%

40%

60%

80%

100%

0.1 (94.1) 0.2 (93.3) 0.3 (92.9)

Lasso	Ratio
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

0.1 0.2 0.3

Training epochs

FL
O

Ps
 /

Tr
ai

ni
ng

 it
er

. (
%

)

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

0.1 0.2 0.3

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

0.1 0.2 0.3

44%
58% 67%

12%
11%

7%
3%

3% 2%

0%

20%

40%

60%

80%

100%

0.1 (94.1) 0.2 (93.3) 0.3 (92.9)

Lasso	Ratio

Pr
un

ed
 F

LO
Ps

 b
y

ep
oc

hs

0.1 0.2 0.3
Regularization strength

1-90 91-200 201-300

Figure 4.1: (a) FLOPs per training iteration normalized to the dense baseline
(ResNet50 on CIFAR10). (b) Breakdown of prunable training FLOPs over
epochs.

pruning them only once.

To show this, I train ResNet50, one of the most commonly used image

classifiers for various vision applications [66, 35, 65], on the CIFAR10 dataset

with regularization. Every epoch, I measure the FLOPs (floating-point oper-

ations) per training iteration, assuming I can prune the unnecessary channels

every 10 epochs. Figure 4.1a shows the FLOPS per iteration normalized to

the dense baseline. Each line in the figure shows the FLOPs using a different

regularization strength. I will describe the definition of regularization strength

in Section 4.2. Regardless of the strength, the majority of FLOPs are pruned

in the early epochs, with the rate of pruning gradually saturating. This is

further shown by the breakdown of aggregated pruned FLOPs (Figure 4.1b)

over three training phases, where most FLOPs are pruned within the first 90

training epochs. This means continuous pruning and reconfiguration can save

a large fraction of computation for the rest of the training.

60

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250

R
el

at
iv

e
tra

in
in

g
FL

O
Ps

Reconfiguration epoch

0.1 0.2 0.3

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250

R
el

at
iv

e
tra

in
in

g
FL

O
Ps

Reconfiguration epoch

0.1 0.2 0.3

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250

R
el

at
iv

e
tra

in
in

g
FL

O
Ps

Reconfiguration epoch

0.1 0.2 0.3

Reconfiguration epoch
1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250

R
el

at
iv

e
tra

in
in

g
FL

O
Ps

Reconfiguration epoch

0.1 0.2 0.3

Figure 4.2: Training computation overhead of one-time network reconfiguration
at different training epoch compared to PruneTrain; each line in (a) and (c) is
the result of different sparsification strengths.

Also, given that weights are gradually sparsified during training, it

is apparent that continuous and timely model pruning and reconfiguration

can reduce training computations much more effectively than the one-time

reconfiguration. Figure 4.2 compares the training FLOPs of one-time pruning

and reconfiguration used in pruningior work [4] to PruneTrain. Regardless of

the strength of group lasso regularization, even with the optimistic assumption

that the best reconfiguration point is known, prior works uses more than 25%

additional training FLOPs compared to PruneTrain. In reality, it is impossible

to know the best reconfiguration time a priori, and thus, PruneTrain prunes

and reconfigures the models periodically.

4.2 Model Pruning Mechanism

Baseline Pruning Mechanism. Like prior work [103, 102, 4], I use group

lasso regularization to sparsify weights so that they can be pruned. Group lasso

regularization is a good match for PruneTrain because it is incorporated with

61

the training optimization and imposes structure on the pruned weights, which

I use to maintain an overall dense computation. Group lasso regularization

modifies the optimization loss function to also include consideration for weight

magnitude. This is shown in Equation 4.1, where the left term is the standard

cross entropy classification loss and the right term is the general form of the

group lasso regularizer. Here f is the network’s prediction on the input xi,

W are the weights, l is the classification loss function between the prediction

and its ground truth yi, N is the mini-batch size, G is the number of groups

chosen for the regularizer, and λi are tunable coefficient that set the strength

of sparsification.

min
W

 1

N

N∑
i=1

l(yi, f(xi,W)) +

G∑
g=1

λg · ||Wg||2

 (4.1)

This lasso regularization sparsifies groups of weights by forcing the weights in

each group to very small values, when possible without incurring high error.

After sparsification, I use a small threshold of 10−4 to zero out these weights.

Proposed Group Lasso Design. I design a specific group lasso regularizer

that groups the weights of each channel (input or output) of each layer. I also

choose a single global regularization strength parameter λ rather than adjust

the penalty per group. The resulting regularizer term is shown in Equation 4.2,

where L is the number of layers in the CNN and Cl and Kl are the number of

input and output channels in a layer, respectively.

λ ·
L∑
l=1

(Cl∑
cl=1

||Wcl,:,:,:||2 +

Kl∑
kl=1

||W:,kl,:,:||2
)

(4.2)

62

Prior work proposes to penalize each channel proportionally to its number of

weights in order to maintain similar regularization strength across all chan-

nels [91, 3]. Instead, I choose to use a single global regularization penalty

coefficient because this emphasizes reducing computation over reducing model

size. All convolution layers of a CNN have similar computation cost. Because

early layers have fewer channels and each channel has larger features, each

channel of their layers involves more computation. Therefore, applying a sin-

gle global penalty coefficient effectively prioritizes sparsifying large features,

which leads to greater computation cost reduction. I do not apply group lasso

to the input channels of the first convolution layer and the output neurons of

the last fully-connected layer, because the input data and output predictions

of a CNN have logical significance and should always be dense.

4.2.1 Regularization Penalty Coefficient Setup

To use lasso regularization from the beginning of training, the penalty

coefficient λ should be carefully set to both maintain high prediction accuracy

and to achieve a high pruning rate. I develop a new technique to set this

strength coefficient without requiring resource-intensive hyper-parameter tun-

ing. To do so, I choose λ using the ratio of group lasso regularization loss out

of the total loss (the sum of the group lasso regularization loss and the classi-

fication loss). This group lasso penalty ratio is shown in Equation 4.3. Based

on my observations of several CNN models (ResNet32/50 and VGG11/13) and

training data (CIFAR10, CIFAR100, and ImageNet), I find that using a group

63

lasso penalty ratio of 20-25% robustly achieves high structural model pruning

(> 50%) with small accuracy impact (< 2%).

Lasso penalty ratio =
λ
∑G

g ||Wg,:||
l(yi, f(xi,W)) + λ

∑G
g ||Wg,:||

(4.3)

I compute this using the random values to which weights are initialized at the

beginning of training and the cross-entropy loss calculated after the very first

network forward propagation. This penalty coefficient is set once at the first

training iteration and maintained through training. Without my approach,

prior work searches for the desired lasso regularization penalty coefficient,

e.g., by trying random coefficient values until one that has a small impact on

accuracy is found [4, 103]. This can potentially require many training runs for

each CNN being trained and increase total training time.

4.2.2 Layer Removal by Overlapping Regularization Groups

Wen et al. [103] propose to use layer-wise lasso groups for regulariza-

tion in order to remove layers of a CNN with short-cut connections. However,

I do not include such grouping in my regularizer. I find that because there

is an overlap in the weights between input and output channel lasso groups

(Figure 4.3a), unimportant layers are eventually removed even without addi-

tional layer-wise weight regularization. As an example, when an input channel

becomes sparse (Figure 4.3b) by lasso regularization, it gradually sparsifies all

the intersecting output channels (c), eventually leading to the entire layer to

become zero.

64

(a) (b) (c)

Output channels

In
pu

t c
ha

nn
el

s

WCl, Kl, :, :

Figure 4.3: Group lasso regularization structure of a convolution layer: Weights
of a filter (each square box) affect the sparsification of weights in both input and
output channels (red and blue dotted boxes). The white filters are zeroed-out
after sparsification.

4.3 Dynamic Network Reconfiguration

The main goal of PruneTrain is reducing the training cost and time

by continuously pruning the spasified channels or layers and reconfiguring the

network architecture into a more cost-efficient form during training. There

are two main concerns with doing so. The first is that pruning while training

might prematurely remove weights that are unimportant early in training but

become important as training proceeds. The second, is that the overhead of

processing a pruned network exceeds any benefits realized by training a smaller

model.

4.3.1 Early Weight Pruning

A prior pruning mechanism for CNNs that uses group lasso regular-

ization, SSL [103], maintains the sparsified channels until the end of training

instead of removing them from the model. This is because pruning while

training prohibits weights from “reviving” and becoming non-zero as training

65

proceeds. This can happen as gradients flow back from the last FC layer and

potentially increase the value of previously-zeroed weights. However, I ob-

serve that already-zeroed input and output channels of convolution layers are

likely to suppress such revived weights from ever becoming large. This can be

inferred from the equation of the local weight gradients for a layer l:

∂L

∂Wl
= zl−1 ~

∂L

∂xl

T

(4.4)

Here, ~ is convolution operator, and zl−1 and ∂L
∂xl

are the input activations (or

input features) and the upstream gradients from the subsequent normalization

layer. If a channel is sparsified and zeroed-out, its convolution outputs xl−1 are

zeroed and they remain zero after normalization and activation layers, meaning

that zl−1 is zero. Also, if an input channel of the subsequent convolution layer

(l) is zeroed, the upstream gradients of this input channel are forced to be

small. Thus, the gradients after passing the normalization layer ∂L
∂xl

are also

kept small by the gradient equation from [46]. Therefore, using Equation 4.4,

the gradients of zeroed weights are forced to remain very small and often zero,

effectively restricting the previously zeroed weights from reviving.

This behavior is apparent in Figure 4.4 that shows the output channel

sparsity of three layers of ResNet50 [36] trained on CIFAR10 dataset across

training epochs. Each point in the graph is the absolute maximum value

among the parameters of each output channel. If the absolute maximum value

of a channel becomes smaller than the threshold (10−4), the parameters of the

channel are zeroed out (white). Convolution layers 5 and 6 are typical and

none of the weights from the zeroed output channels revive. Although some

66

O
ut

pu
t c

ha
nn

el
 in

de
x

0 50 100 150 200

14
12
10

8
6
4
2
0

O
ut

pu
t c

ha
nn

el
 in

de
x

0 50 100 150 200

14
12
10

8
6
4
2
0

60

50

40

30

20

10

0
0 5010 150 200 10-4

10-3

10-2

10-1

100

O
ut

pu
t c

ha
nn

el
 in

de
x

(b) Convolution layer 6

(a) Convolution layer 5

(c) Convolution layer 7
Training epochs Training epochs

Training epochs

Figure 4.4: The maximum absolute weight value of each output channel over
training epochs. Three convolution layers belong to one residual path of
ResNet50 trained on CIFAR10.

parameters in output channels of convolution layer 7 revive, their weight values

are still very small and near the threshold, indicating a very small contribution

to the prediction accuracy of the final learned model. Similar patterns are

observed in all convolution layers of different ResNet and VGG models on

CIFAR10/100, with all layers exhibiting no significant revived parameters.

4.3.2 Robustness to Reconfiguration Interval

I now discuss the practical mechanisms for performing dynamic re-

configuration. I define a reconfiguration interval, such that after every such

interval the zeroed input and output channels are pruned out. Note that if all

67

the sparsified input and output channels are pruned, there is a possibility of

a mismatch between the dimensions of the output channels of one layer and

to the input channels of the next. To maintain dimension consistency, I only

prune the intersection of the sparsified channels of any two adjacent layers.

At any reconfiguration, all training variables of the remaining channels (e.g.,

parameter momentums) are kept as is.

The reconfiguration interval is the only additional hyperparameter

added by PruneTrain. Intuitively, a very short reconfiguration interval may

degrade learning quality while a long interval offers less speedup opportunity. I

extensively evaluate the impact of the reconfiguration interval in Section 4.4.4

and show that training is robust within a wide range of reconfiguration inter-

vals.

4.3.3 Channel Union for CNNs with Short-cut Connections

Short-cut connections are widely adopted in modern CNNs, including

ResNet and its many variations [37, 107, 44, 45, 115, 83]. They enable deep

networks by mitigating the vanishing-gradients problem and achieve high accu-

racy [36]. For such CNNs, the channels of the convolution layers at a merge-

point should match in dimensionality after each reconfiguration for proper

feature propagation (Figure 6.9a). I propose two mechanisms to ensure this

occurs. The first is channel gating layers that add gating to each resid-

ual branch to match dimensions, as shown in Figure 6.9b. This ensures that

all convolution layers in a residual block operate only on dense channels by

68

conv1 conv2 conv3 conv4 conv5

+ +

residual path residual path

short-cut short-cut

conv6❸❶ ❷ ❹

(a) Residual modules: the channel dimensionality of the convolu-
tion layers sharing the same node (¶, ·, ¸, and ¹) should match.

conv1

+

conv2 conv3 scatterselect

dense layer sequence

union of all dense channels
(b) Channel gating: channel select and and channel scatter layers
match the channels indexes.

conv1 conv2 conv3 conv4 conv5 conv6

+ +

dense layer sequence dense layer sequence

union of all dense channels
(c) Channel union: the first and the last convolution layers of each
residual path contain sparse channels.

Figure 4.5: Channel indexing for CNNs with short-cut paths.

gathering and scattering the dense channel indices. This improves on the chan-

nel sub-sampling approach proposed by [39], with channel sub-sampling only

avoiding redundant computation of the very first convolution layer of each

residual block.

I evaluate channel gating on an NVIDIA V100 GPU and find that chan-

nel gating involves significant memory accesses for tensor reshaping needed for

channel indexing that often slows down training. Therefore, as an alternative,

I propose channel union that does not need any tensor reshaping and data

indexing. Channel union prunes only the intersection of sparsified channels

69

1.
0

0.
58

0.
48

0.
36

0.
35

0.
25

0.
21

1.
0

0.
54

0.
44

0.
33

0.
31

0.
23

0.
19

0

1

94
.5
4

-0.
1

-0.
5

-0.
4

-1.
2

-1.
6

-1.
6

In
fe
re
nc
e	
FL
OP

s

Validation	accuracy

Union Gating1.
0

0.
76

0.
62

0.
46

0.
40

0.
33

0.
27

1.
0

0.
72

0.
58

0.
41

0.
36

0.
29

0.
23

0

1

93
.5
1

-0.
4

-0.
6

-1.
4

-1.
4

-1.
9

-2.
5

In
fe
re
nc
e	
FL
OP

s

Validation	accuracy

Union Gating

Validation Accuracy (!) Validation Accuracy (!)

(a) Inference FLOPs (ResNet32) (b) Inference FLOPs (ResNet50)

No
rm

al
ize

d
FL

O
Ps

No
rm

al
ize

d
FL

O
Ps

93.5 (-0.4)
(-0.6)

(-1.3)
(-1.4)

(-1.9)
(-2.5)

94.5 (0.1)
(-0.4)

(-0.5)
(-1.2)

(-1.6)
(-1.6)

Figure 4.6: Normalized training and inference FLOPs of ResNet32 and
ResNet50 on CIFAR10 with different pruning intensity.

0

1

2

3

4

5

0

1

2

3

4

U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Conv	(U) Conv	(G) Tensor	reshaping	(G) Speedup

0

1

2

3

4

5

0

1

2

3

4

U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Conv	(U) Conv	(G) Tensor	reshaping	(G) Speedup

0

1

2

3

4

5

0

1

2

3

4

G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Conv	(U) Conv	(G) Tensor	reshaping	(G) Speedup

0

1

2

3

4

5

0

1

2

3

4

G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Conv	(U) Conv	(G) Tensor	reshaping	(G) Speedup

Ex
ec

ut
io

n
tim

e
(m

s)

Sp
ee

du
p

of
 U

 o
ve

r G

Residual block index

0

1

2

3

4

5

0

1

2

3

4

U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G U G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Conv	(U) Conv	(G) Tensor	reshaping	(G) Speedup

Figure 4.7: Per-layer execution time of channel gating and channel union for
ResNet50 for ImageNet. G and U indicate channel gating and channel union
respectively.

of all neighboring convolution layers within a residual stage (residual blocks

sharing the same node). For instance, in Figure 6.9c, the union of the dense

input channels of convolution layer 1 and 4 and the dense output channels

of convolution layer 3 and 6 are maintained. As each following residual path

adds new information to the shared node, the early convolution layers in the

stage (convolution layer 1) have to process operations from the sparse channels,

thereby performing redundant operations.

70

However, my experiments show that the additional FLOPs from chan-

nel union, as compared to channel gating are very small. Figure 4.6 com-

pares the normalized inference FLOPs of channel gating and channel union

for ResNet32 and ResNet50 pruned with different intensities. Across differ-

ent pruning rates, the FLOPs difference is only 1-6%, but the overhead saved

from indexing is substantial. Additionally, this FLOPs difference does not

grow with increasing layer depth as shown in Figure 4.6 comparing ResNet32

and ResNet50. Figure 4.7 shows the measured per-layer (the last layer of each

residual block) execution time of ResNet50 for ImageNet. For all residual

blocks, channel union shows far less execution time compared to channel gat-

ing. Especially, the tensor reshaping time of early layers has bigger overhead

as their activation size is eight times bigger than the layers in the last residual

block.

4.3.4 Dynamic Mini-batch Adjustment

As discussed in Section 2.1, training with a large mini-batch reduces the

frequency of costly inter-GPU communication and off-chip memory accesses

for model updates. In addition, a larger mini-batch increases the data paral-

lelism available at each network layer improving HW utilization. I find that

the gradual channel and layer pruning simultaneously reduces available data

parallelism and decreases the memory capacity requirement for training, thus

allowing the use of larger mini-batches. The latter allows us to compensate

for the former as follows.

71

I propose dynamic mini-batch adjustment to increase the size of the

mini-batch by monitoring the memory context volume of a training itera-

tion, which is gradually decreased by PruneTrain. When channels are pruned

by PruneTrain, the output features corresponding to these channels are also

not generated, which reduces the off-chip memory space required for back-

propagation. In particular, early layers of a CNN have larger features and

removing the channels of these layers effectively reduces the training memory

requirement. Using a global regularization penalty, PruneTrain prunes the

channels of early layers by a larger ratio than prior work and enables using a

larger mini-batch over training epochs. At every network architecture recon-

figuration, PruneTrain monitors the off-chip memory capacity required for a

training iteration and increases the mini-batch size when possible.

However, dynamically increasing the size of the mini-batch alone does

not guarantee high prediction accuracy as it is the hyperparameter closely

coupled with the learning rate. To maintain the algorithmic functionality, I

increase the learning rate by the same ratio of a mini-batch size increase to

maintain the same learning quality. This mechanism is similar to adjusting

the mini-batch size instead of decaying the learning rate, as proposed by Smith

et al. [93] and Jastrzkebski et al. [47]. However, my proposed mechanism is

different in that I change the mini-batch size and learning rate dynamically

at any point during training, unlike this prior work that changes them at

the original learning rate decay points. Note that dynamic mini-batch size

adjustment relies on the linear relation between mini-batch size and learning

72

rate. For other deep learning applications that have a different relation, an

appropriate learning rate adjustment rule can be adopted instead (e.g., the

square root scaling rule for language models [81]). I evaluate dynamic mini-

batch adjustment by training ResNet50 on both CIFAR and ImageNet datasets

and confirm that it maintains equally high accuracy compared to the baseline

PruneTrain.

4.4 Evaluation

4.4.1 Evaluation Methodology

I evaluate PruneTrain on both small (CIFAR10 and CIFAR100 [56])

and large datasets (ImageNet [22]). I train four CNNs (ResNet32, ResNet50,

VGG11, and VGG13) on CIFAR and ResNet50 on ImageNet, which is the

most commonly used modern CNN for modern vision applications [66, 35,

65]. I use a mini-batch size of 128 and 256 (64 per GPU) for CIFAR and

ImageNet training runs and a learning rate of 0.1 for both as the baseline

hyperparameters [36]. I use four NVIDIA 1080 Ti and V100 [76] GPUs for

ImageNet training and a single TITAN Xp GPU [75] for CIFAR training. I

build PruneTrain using PyTorch [79]. Because of limited resources, I perform

sensitivity evaluation primarily with CIFAR and evaluate functionality and

final efficiency with ImageNet.

73

Table 4.1: Training FLOPs and time compared to the dense baseline: top1
validation accuracy of the dense baselines for CIFAR10: ResNet32 (93.6),
ResNet50 (94.2), VGG11 (92.1), VGG13 (93.9), and for CIFAR100: ResNet32
(71.0), ResNet50 (73.1), VGG11 (70.6), VGG13 (74.1), and for ImageNet:
ResNet50 (76.2)

Dataset Model
Val. Accuracy ∆

(fine-tunning)
Train. FLOPs

(time)
Inf.

FLOPs

CIFAR10

ResNet32 -1.8% 47% (81%) 34%

ResNet50 -1.1% 50% (81%) 30%

VGG11 -0.7% 43% (57%) 35%

VGG13 -0.6% 44% (57%) 37%

CIFAR100

ResNet32 -1.4% 68% (88%) 54%

ResNet50 -0.7% 47% (66%) 31%

VGG11 -1.3% 53% (74%) 43%

VGG13 -1.1% 58% (67%) 48%

ImageNet ResNet50

-1.87% (-1.58%) 60% (71%, *66%) 47%

-1.47% (-1.16%) 70% (76%, *72%) 56%

-0.24% (+0.20%) 97% (98%, *98%) 88%

* Measured using V100 GPUs

4.4.2 Model Pruning and Training Acceleration

I first present the evaluation results on CIFAR and ImageNet in Ta-

ble 4.1. I report 4 metrics: the training and inference FLOPs (FP operations),

measured training time, and validation accuracy. Training time does not in-

clude network architecture reconfiguration time, which I do optimize and oc-

curs only once in many epochs. I use 182 epochs [36] and 90 epochs to train

CNNs on CIFAR and ImageNet, respectively.

For ResNet32 and ResNet50 on CIFAR10, PruneTrain reduces the

training FLOPs by ∼50% with a minor accuracy drop compared to the dense

74

baseline. The compressed models after training show only 34% and 30% of the

dense baseline inference cost for ResNet32 and ResNet50, respectively. The

results of ResNet32/50 on CIFAR100 show similar patterns, which exhibits the

robustness of PruneTrain, given that CIFAR100 is a more difficult classifica-

tion problem. For CIFAR100, PruneTrain reduces the training and inference

FLOPs by 32% and 46% for ResNet32, and 53% and 69% for ResNet50, while

losing only 1.4% and 0.7% of validation accuracy, respectively compared to

the dense baseline. These results show that PruneTrain reduces more training

FLOPs from a deeper CNN model, since more unimportant channels and lay-

ers are sparsified and removed early in the training. PruneTrain also achieves

high model compression with similar validation accuracy loss for both VGG

models on CIFAR.

PruneTrain also shows high training cost savings for ResNet50 trained

on ImageNet: 40%, 30%, and 3% for three different pruning strengths (0.25,

0.2, and 0.1). Thus, I conclude that PruneTrain is robust to changes in CNN

model and dataset complexity. The trained ResNet50 shows 53%, 44%, and

12% reduced inference FLOPs with 1.87%, 1.47%, and 0.24% accuracy loss,

respectively. In addition, with extra training epochs for fine-tuning without

group lasso regularization, I could recover 0.3% additional accuracy for the

regularization strengths of 0.25 and 0.2, and achieve even better accuracy

than the baseline by 0.2% for the regularization strength of 0.1. Although

not shown in the table, PruneTrain also saves 37%, 33%, and 5% of off-chip

memory accesses of BN (batch normalization) layers for ResNet50 with the

75

Table 4.2: Inference performance comparison (number of images per second
and relative speedup by PruneTrain). The three ResNet50 results on ImageNet
use different regularization strengths of 0.25, 0.2, and 0.1.

Dataset Model Batch size=10 Batch size=100
Base PruneTrain Base PruneTrain

CIFAR100

ResNet32 3038 4081 (1.34×) 18587 24759 (1.33×)

ResNet50 1442 1442 (1.18×) 7847 11865 (1.51×)

VGG11 5534 5534 (1.44×) 15489 23878 (1.54×)

VGG13 5197 5197 (1.38×) 12845 21075 (1.64×)

ImageNet ResNet50 610

937 (1.53×)

772

1194 (1.55×)

833 (1.36×) 1047 (1.36×)

661 (1.08×) 813 (1.05×)

three different regularization strengths. Since the performance of BN layers

is bounded by memory access bandwidth, reducing their memory traffic has a

significant impact on the overall CNN model training time.

The measured training time reduction is smaller compared to the saved

training FLOPs across datasets and CNN models. This is mainly caused

by the reduced data parallelism at each layer after pruning, which decreases

GPU execution resource utilization. Also, SIMD utilization within the GPU

cores decreases for some layers due to the irregular channel dimensions after

pruning and reconfiguration. In particular, for CIFAR10 and and CIFAR100,

ResNets shows lower training time saving compared to VGGs, because it has

many layers with reduced parallelism. In comparison, VGG has fewer layers

with wider data parallelism and utilization is impacted less by pruning. For

ImageNet, the training time saving of ResNet50 is bigger when V100 GPUs

are used. This is because high off-chip memory bandwidth of V100 [50] makes

76

Inference Cost [MFLOPs]

Va
lid

at
io

n
A

cc
ur

ac
y

(a)

92

93

94

95

0 50 100 150 200 250

ResNet32 (Base)
ResNet50 (Base)
ResNet32 (PruneTrain)
ResNet50 (PruneTrain)
ResNet32 (SSL)
ResNet50 (SSL)

92

93

94

95

0 50 100 150 200 250

ResNet32 (Base)
ResNet50 (Base)
ResNet32 (PruneTrain)
ResNet50 (PruneTrain)
ResNet32 (SSL)
ResNet50 (SSL)

92

93

94

95

0 50 100 150 200 250

ResNet32 (Base)
ResNet50 (Base)
ResNet32 (PruneTrain)
ResNet50 (PruneTrain)
ResNet32 (SSL)
ResNet50 (SSL) Va

lid
at

io
n

A
cc

ur
ac

y

Training Cost [PFLOPs]

(d)

68
69
70
71
72
73
74
75

0 2 4 6 8 10

ResNet32
ResNet50

68
69
70
71
72
73
74
75

0 2 4 6 8 10

ResNet32
ResNet50

68
69
70
71
72
73
74
75

0 2 4 6 8 10

ResNet32
ResNet50

Inference Cost [MFLOPs]

(c)

Va
lid

at
io

n
A

cc
ur

ac
y

68
69
70
71
72
73
74
75

0 50 100 150 200 250

ResNet32 (Base)
ResNet50 (Base)
ResNet32 (PruneTrain)
ResNet50 (PruneTrain)
ResNet32 (SSL)
ResNet50 (SSL)

68
69
70
71
72
73
74
75

0 50 100 150 200 250

ResNet32 (Base)
ResNet50 (Base)
ResNet32 (PruneTrain)
ResNet50 (PruneTrain)
ResNet32 (SSL)
ResNet50 (SSL)

68
69
70
71
72
73
74
75

0 50 100 150 200 250

ResNet32 (Base)
ResNet50 (Base)
ResNet32 (PruneTrain)
ResNet50 (PruneTrain)
ResNet32 (SSL)
ResNet50 (SSL) Va

lid
at

io
n

A
cc

ur
ac

y

Training Cost [PFLOPs]

(d)

68
69
70
71
72
73
74
75

0 2 4 6 8 10

ResNet32
ResNet50

68
69
70
71
72
73
74
75

0 2 4 6 8 10

ResNet32
ResNet50

68
69
70
71
72
73
74
75

0 2 4 6 8 10

ResNet32
ResNet50

Figure 4.8: (a) Inference FLOPs and the validation accuracy by different regu-
larization ratios of PruneTrain and SSL for ResNet32/50 on CIFAR10 (c) and
on CIFAR100, (b) Training FLOPs and BN cost by accuracy of PruneTrain for
ResNet32/50 on CIFAR10 and on (d) CIFAR100. (The triangles in all figures
represent the dense baseline)

the execution time portion of memory bandwidth-bound layers smaller, which

eventually makes the training time saving by the pruned computations more

visible in the overall training time.

I also compare the performance of the trained models in terms image

inferences per second (Table 4.2). I evaluate using two different batch sizes

of 10 and 100 [71], on one TITAN Xp GPU. Overall speedup of PruneTrain

is lower than the saved inference FLOPs in Table 4.1 because of resource

underutilization. Therefore, processing 100 images shows performance that is

equal to, or slightly better than the batch size of 10. Also, since ResNet50 for

ImageNet has more channels, its PruneTrain inference performance is better

77

than the CNN models for CIFAR100 given the ratio of their pruned FLOPs.

4.4.3 Comparison to Prior Work

4.4.3.1 Comparison to Pruning From a Pre-trained Model

I verify that pruning while training from scratch shows comparable

compression quality and accuracy as following the current best practice of

training from a pre-trained model as done by SSL [103]. The comparison re-

sults are summarized in Figure 4.8, which plots the tradeoffs between both

inference and training cost and validation accuracy for ResNet32/50 on CI-

FAR10/100. I sweep the group lasso penalty ratio from 0.05 to 0.2 with an

interval of 0.05. Since Wen et al. [103] do not discuss how to set the group

lasso penalty coefficient, I apply my proposed mechanism to SSL as well.

Results for inference (Figure 4.8a and Figure 4.8c) demonstrate that

PruneTrain is, in fact, superior to pruning from a pre-trained model. I make

three important observations. First, for ResNet50, PruneTrain attains higher

accuracy than the baseline dense model while still reducing cost. Accu-

racy is highest at around 150 MFLOPs/inference compared to the dense 230

MFLOPs/inference. I attribute this to the regularizer I use for pruning also

leading to better generalization [110]. Second, PruneTrain and SSL achieve

comparable accuracy-cost tradeoffs, yet PruneTrain offers a wider tradeoff

range. Third, pruning is a very effective way to learn a good CNN model—

starting from the complex ResNet50, PruneTrain is able to learn a network

model that is simultaneously more accurate and lower-cost to use.

78

Figure 4.8b and Figure 4.8d show the training-cost tradeoff curve. I

do not show the training cost of SSL, because its training protocol first trains

the dense network and then prunes, resulting in a cost that’s almost 3 times

higher than baseline. PruneTrain reduces computation cost with a minor ac-

curacy loss compared to the dense baseline (triangles in the graph). The shape

of computation tradeoff curve is similar to that of inference. Because Prune-

Train gradually and continuously prunes the network to reduce its training

cost over time, it can start from the complex ResNet50 and learn a better

model in less training time compared to conventional dense ResNet32 train-

ing. Although not shown in the graph, I also measure the memory traffic

reduction in batch normalization layers. PruneTrain removes their memory

traffic by similar accuracy tradeoff as the pruned output channels do not need

normalization.

4.4.3.2 Comparison to Trial-and-Error Based Pruning

I compare the training results of PruneTrain to AMC (Auto ML for

model compression) [38] to show that learning the architecture by regular-

Table 4.3: Comparison to AMC (Auto ML for Model Compression): compres-
sion results of ResNet56 on CIFAR10. The results of AMC are taken directly
from [38].

Method
Base Val.
accuracy

Validation
accuracy ∆

Inference

FLOPs
Removed

layers

PruneTrain 94.5% -0.5% 34% 18 (21%)

AMC 92.8% -0.9% 50% Not known

79

ization during training leads to a better compression and accuracy tradeoff

than trial-and-error based pruning from a pre-trained model (Table 4.3). I use

ResNet56 on CIFAR10 for comparison, which is the experimental setting used

in AMC. While AMC reduces the inference FLOPs to 50% with 0.9% accuracy

drop (after fine-tuning), PruneTrain reduces an additional 16% FLOPs while

achieving higher accuracy by 0.4%. While the capability of learning network

depth was not discussed in AMC, PruneTrain also learns depth and removes

21% of the convolution layers of ResNet56. This layer removal is effective in

reducing the actual inference latency because pruning layers does not decrease

data parallelism and does not affect compute-resource utilization.

4.4.4 Optimization and Sensitivity Evaluation

4.4.4.1 Dynamic Mini-Batch Size Adjustment

Figure 4.9 shows the off-chip memory requirement per GPU for a sin-

gle training iteration using PruneTrain. I train ResNet50 for CIFAR100 and

ImageNet datasets on a GPU with an 11 GB memory capacity (NVIDIA 1080

Ti). As training proceeds, the memory requirement gradually decreases due

to pruning.

Once enough space is freed up, my proposed dynamic mini-batch size

adjustment mechanism increases the mini-batch size to fully utilize the off-chip

memory capacity. As shown in Figure 4.9a, for ImageNet, I start with a per-

GPU mini-batch of 64 (total of 256 across 4 GPUs), which is the largest mini-

batch that can fit in the off-chip device memory. As the memory requirement

80

gradually decreases by pruning, I increase the per-GPU mini-batch from 64 to

96 and later to 128 at 10th and 30th epoch, respectively. The training context

still fits in the GPU memory at each epoch. In this example, I use a mini-batch

size adjustment granularity of 32 samples per GPU, but a smaller granularity

can also be used.

The memory required by ResNet50 for CIFAR100 is already small.

Hence, in order to demonstrate the effect of dynamic mini-batch size adjust-

ment in this case, instead of trying to fit the largest mini-batch size possible

in the GPU memory, I start with the standard mini-batch size of 128 (Fig-

ure 4.9b).

Then, as PruneTrain gradually reduces the memory requirement, I

gradually increase the mini-batch size such that I maintain similar device mem-

ory capacity utilization. This is shown in Figure 4.9b, where I increase the

mini-batch size by multiples of 32 up to, eventually, a mini-batch of 320, which

is 2.5X larger than the initial mini-batch size. Note that increasing the mini-

batch size not only increases the computational parallelism, it also linearly

decreases the model update frequency. Reducing model update frequency can

significantly accelerate distributed training by lowering inter-device communi-

cation and off-chip memory accesses.

Table 4.4 compares the training time reduction with and without dy-

namic mini-batch size adjustment. The table also compares the validation

accuracy and final inference computation complexity in the two scenarios.

While dynamic mini-batch size adjustment barely affects the quality of learn-

81

Training epochs

M
em

or
y

re
qu

ire
m

en
t [

G
B

]

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

Original Dynamic mini-batch size adjustment
0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

Original Dynamic mini-batch size adjustment

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

Baseline Dynamic mini-batch size adjustment

Device memory capacity = 11GB

96 128

64

(a) ResNet50 on ImageNet: Memory requirement at every 5
epochs. The baseline mini-batch size per GPU of 64 is increased
to 96 and 128 at the 10th and 30th epochs respectively, which fits
the device memory capacity.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120 140 160 180

Original
Dynamic mini-batch size adjustment

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120 140 160 180

Original
Dynamic mini-batch size adjustment

Training epochs

N
or

m
. m

em
or

y
re

qu
ire

m
en

t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120 140 160 180

Baseline Dynamic mini-batch size adjustment

192 224 256 288 320
128

(b) ResNet50 on CIFAR100: Normalized memory requirement ev-
ery 10 epochs. The baseline mini-batch size of 128 is increased to
192, 224, 256, 288, and 320 at the 20th, 30th, 50th, 70th, and 120th

epochs respectively.

Figure 4.9: Memory requirement of one training iteration per accelerator during
training epochs.

ing and pruning, it has a high impact on training time. Dynamic mini-batch

size adjustment improves accuracy by 0.3% and raises the inference FLOPs by

3% for CIFAR100 and reduces accuracy by 0.04% and decreases the inference

FLOPs by 1% for ImageNet. It reduces the training time by 57% and 34%

(39% on a V100 GPU) compared to the dense baseline for CIFAR100 and

82

ImageNet, respectively. This is also an improvement of 26% and 17% (14%

on a V100 GPU) compared to the naive PruneTrain for CIFAR100 and Ima-

geNet, respectively. Although the training time is substantially reduced, the

impact is less than expected, given that I are enabling 2× more computational

parallelism with fewer model updates than the naive PruneTrain. I suspect

that this is caused by a sub-optimal GPU convolution kernel choice that comes

from the increased data parallelism only in mini-batch dimension.

Table 4.4: Training time, inference FLOPs, and validation accuracy of
ResNet50 with and without dynamic mini-batch size adjustment. Top-1 vali-
dation accuracy of the dense baselines: ResNet50 trained on CIFAR100 (73.1)
and on ImageNet (76.2).

Dataset Model Method
Train time
reduction

Inference
FLOPs

Val.
Acc. ∆

CIFAR100 ResNet50 Naive 34% 31% -0.7%
Adjusted 43% 34% -0.4%

ImageNet ResNet50
Naive 29% (*34%) 47.4% -1.87%

Adjusted 34% (*39%) 46.4% -1.91%

* Measured using V100 GPUs

4.4.4.2 Network Reconfiguration Interval

PruneTrain adds two hyper-parameters on top of dense training: spar-

sification strength, which I already discussed, and the reconfiguration interval.

The reconfiguration interval affects training time by trading off the time over-

head of manipulating the network model with greater savings of more-frequent

pruning (actual removal of computation). The reconfiguration interval may

also affect the compression and accuracy of the final learned model. Fortu-

83

nately, the compression and accuracy achieved are insensitive to this hyper-

parameter, as shown in Figure 4.10, which shows the accuracy vs. computation

cost tradeoff curve for different intervals. Thus, the interval can be chosen to

balance per-iteration performance gains with reconfiguration time overhead.

The overhead depends on the specific framework used. I find that reconfiguring

a network architecture every 10 epochs for CIFAR or 5 epochs for ImageNet

has small overhead in my experiments.

91

92

93

94

0 50 100 150

10 epochs
20 epochs
30 epochs

91

92

93

94

0 50 100 150

10 epochs
20 epochs
30 epochs

92

93

94

95

0 100 200 300

10 epochs
20 epochs
30 epochs

92

93

94

95

0 100 200 300

10 epochs
20 epochs
30 epochs

Va
lid

at
io

n
A

cc
ur

ac
y

Inference [MFLOPs] Inference [MFLOPs]

91

92

93

94

0 50 100 150

10 epochs
20 epochs
30 epochs

92

93

94

95

0 100 200 300

10 epochs
20 epochs
30 epochs

Figure 4.10: Reduced inference FLOPs and validation accuracy by different net-
work reconfiguration intervals. ResNet32 (Left) ResNet50 (Right) on CIFAR10.

4.4.4.3 Communication Cost Savings in Distributed Training

4.4.4.4 Communication Cost Savings in Distributed Training

As training proceeds, the model size reduction by PruneTrain leads to

decreasing communication cost between GPUs. Figure 4.11 shows the pro-

jected decrease in communication cost during the training of ResNet50 for

ImageNet. I model the communication cost using ring allreduce. The figure

shows the communication cost per training epoch normalized to the dense base-

line for different sparsification strengths (therefore, different pruning rates).

84

Each time the network is reconfigured, the number of weights decreases, lead-

ing to a reduction in weight gradients communicated per training iteration.

Furthermore, an aggressive sparsification strength (0.2 and 0.25) allows dy-

namic mini-batch adjustment to increase the mini-batch sizes (dotted lines),

leading to further reduction in communication cost for later epochs. Overall,

PruneTrian saves 55% average communication cost regardless of the number

of GPUs used for distributed training. This pruning-based communication re-

duction is orthogonal to other existing techniques for communication reduction

in distributed training, e.g. weight gradient compression and efficient gradient

reduction mechanisms, which can be used in conjunction with PruneTrain for

further communication improvements.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

N
or

m
al

iz
ed

 c
os

t

Training epochs

 0.1 0.2 0.25
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

N
or

m
al

iz
ed

 c
os

t

Training epochs

 0.1 0.2 0.25

Figure 4.11: Projected per-epoch communication cost of model updates based
on hierarchical ring-allreduce. The communication cost is normalized to the
cost of dense baseline ResNet50 training on ImageNet for different group lasso
regularization penalty ratios.

4.4.4.5 Individual Weight Sparsity

PruneTrain uses structured pruning of channels (and possibly layers) to

learn a smaller, yet still dense model. This is important for high-performance

85

execution on current hardware. However, the regularization leads to weight

sparsity even within the remaining channels. Figure 4.12 shows the density of

channels (input channel density × output channel density) and the density of

weights for each layer in ResNet50 trained on ImageNet. Roughly half of all

weights within the remaining channels (roughly half of all dense channels) are

also near-zero and can be pruned. Such unstructured sparsity can be utilized to

store the pruned model in a compressed form and to possibly further speed up

execution if the inference hardware supports efficient sparse computations [32].

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 FC

D
en

sit
y

Layer index

Channel density
Weight density

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 FC

D
en

sit
y

Layer index

Channel density
Weight density

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 FC

D
en

sit
y

Layer index

Channel density
Weight density

Figure 4.12: Channel and weight density of each layer. (ResNet50 trained on
ImageNet using PruneTrain) The number in the x-axis indicates the convolution
layer index.

4.5 Discussion

4.5.1 PruneTrain with Mini-batch Serialization

Provided that MBS (Mini-batch Serialization) saves significant off-chip

memory traffic between network layers as discussed in Chapter 3, it is natural

to ask if PruneTrain can be used with MBS. Unfortunately, MBS cannot be

used along with PruneTrain since they have a conflict on the choice of the

86

feature normalization algorithm.

PruneTrain uses BN (Batch Normalization) for feature normalization,

which is crucial for channel-wise structured pruning. BN normalizes the fea-

tures at the granularity of channels. Thus, pruning a channel does not affect

the features in other channels, making continuous training after channel prun-

ing algorithmically valid. Also, because the feature normalization granularity

matches with the pruning granularity, once a channel is sparsified, the output

of a normalization layer followed by affine transformation remains near-zero,

making structured sparsification easier across layers.

Unlike PruneTrain, MBS relies on GN (Group Normalization) to par-

tially serialize a mini-batch of samples. Therefore, if channel-wise pruning is

used with MBS, each network structure reconfiguration breaks the algorith-

mic hyperparameter setting, the number of channels per normalization group.

Also, because the granularities of pruning and feature normalization are dif-

ferent, the convolution layer outputs from a sparsified channel become non-

zero after the normalization with the outputs from other channels. I trained

ResNet50 with both PruneTrain and MBS and it shows worse results in both

accuracy and pruning rate compared to PruneTrain without MBS.

4.6 Summary

In this chapter, I propose PruneTrain, a mechanism to accelerate the

network model training from scratch, while the eventually pruned model en-

ables fast inference. PruneTrain relies on structural pruning using group lasso

87

regularization. It continuously sparsifies parameters using regularization and

reconfigures the network architecture into a small and dense form during train-

ing, so as to take advantage of the reduced model size not just during inference,

but also during training. This is based on my observation that while pruning

with group lasso regularization, once a group of model parameters are forced

to near-zero magnitude, they rarely revive during the rest of the training.

I propose three key optimizations for efficient implementation of Prune-

Train. First, I update the group lasso regularization penalty coefficient such

that I enable achieving high model pruning rate with minor accuracy loss dur-

ing a single training run from scratch. Second, I introduce channel union, a

way to prune CNN models with short-cut connections to lower the overheads

from naive channel indexing and tensor reshaping. Lastly, I dynamically in-

crease the mini-batch size while training with PruneTrain, which increases the

data parallelism and reduces the frequency of model updates that involves

off-chip memory accesses and inter-GPU communication, leading to further

training time saving. Altogether, PruneTrain cuts the computation cost of

training modern CNNs (represented as ResNet50) at least by half, and up to

53% and 40% for small and large datasets, enabling 34% and 39% reduction

in end-to-end training time respectively.

88

Chapter 5

Flexible Systolic Array Architecture for Fast

and Efficient Pruned Model Training

This chapter discusses an accelerator architecture and layer workload

scheduling for fast and energy-efficient training of pruned network models. I

first analyze the trade-offs of training accelerator designs with different sized

GEMM execution cores, such as WaveCore, which uses a single large systolic

array core and a potential accelerator design with many small such cores.

Then, I show that using a large core suffers low PE utilization when processing

pruned CNNs. Although many-small-core designs achieve high PE utilization,

they decrease on-chip input reuse and incurs area overhead. To support PE

utilization and input reuse in processing both dense and pruned DNN models,

I propose a flexible systolic array architecture. I also propose a coupled GEMM

instruction selection heuristics for efficient utilization of the flexible hardware

resources. Finally, I show the gains of the proposed accelerator in performance

and energy efficiency.

89

5.1 Challenges of Training Pruned CNN Models

Channel pruning is a commonly used technique to make a CNN model

fast and energy-efficient for network inference [103, 102, 25, 4, 113, 72, 38].

Channel pruning is done by retraining a pre-trained dense model or pruning

unimportant channels during training. In both cases, training accelerators

have to deal with both dense and pruned models. Unlike unpruned models

that have regular number of channels, such as 64, 128, and 256 (powers of

two) [57, 85, 84, 101], their channel-pruned versions have a reduced number

of channels (e.g., 3, 71). These convolution layers are computed as GEMMs

and the GEMM dimensions of pruned models also have severely reduced sizes.

Tiling and mapping such GEMMs to the large GEMM cores (GEMM execution

cores, typically systolic arrays) of a modern training accelerator is inefficient:

Many GEMM tiles tend to have sizes smaller than the size of the GEMM core

(e.g., 128×128) and pruned such GEMM tiles can not fully utilize the PEs of

the core. Therefore, although a CNN requires fewer FLOPs than the unpruned

baseline, actual speedup on this reduced workload depends on the efficiency

of mapping the GEMMs of (partially) pruned layer to large GEMM cores.

5.1.1 Trade-offs of Different GEMM Core Designs

CNN training accelerators are typically designed to train network mod-

els with high data parallelism in all tensor dimensions (e.g., channels, mini-

batch, feature sizes). For efficient execution of such the large GEMMs result-

ing from this high parallelism, many modern training accelerators adopt large

90

systolic-array cores. This design principle is also chosen by WaveCore and

many other training accelerators, e.g., Google’s TPU [21] and Intel’s Nervana

NNP.

However, convolution and FC (fully-connected) layers in a pruned CNN

model exhibit reduced and irregular GEMM dimensions. When one GEMM

dimension becomes smaller than the height or width of a core, PEs in the core

are not fully occupied and this causes severe resource underutilization and

slowdown. Figure 5.1 shows the PE utilization of WaveCore when executing

training iterations of both dense and pruned ResNet50 models [36]. This re-

sult is estimated using instruction-level simulator used to evaluate Mini-batch

Serialization (Chapter 3). The baseline ResNet50 is pruned using PruneTrain,

a channel pruning algorithm using group lasso regularization (Chapter 4). In

0.80
0.69

0.63 0.63 0.61 0.60 0.61 0.61 0.61

0. 00

0. 10

0. 20

0. 30

0. 40

0. 50

0. 60

0. 70

0. 80

0. 90

1. 00

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Training epochs

 IDEAL ACTIVE Utilization

0.80

0.55 0.53 0.50 0.48 0.48 0.48 0.48 0.48

0. 00

0. 10

0. 20

0. 30

0. 40

0. 50

0. 60

0. 70

0. 80

0. 90

1. 00

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Training epochs

 IDEAL ACTIVE Utilization

0.80
0.69

0.63 0.63 0.61 0.60 0.61 0.61 0.61

0. 00

0. 10

0. 20

0. 30

0. 40

0. 50

0. 60

0. 70

0. 80

0. 90

1. 00

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Training epochs

 IDEAL ACTIVE Utilization

0.80
0.69

0.63 0.63 0.61 0.60 0.61 0.61 0.61

0. 00

0. 10

0. 20

0. 30

0. 40

0. 50

0. 60

0. 70

0. 80

0. 90

1. 00

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Training epochs

 IDEAL ACTIVE Utilization

0.80
0.69

0.63 0.63 0.61 0.60 0.61 0.61 0.61

0. 00

0. 10

0. 20

0. 30

0. 40

0. 50

0. 60

0. 70

0. 80

0. 90

1. 00

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Training epochs

 IDEAL ACTIVE Utilization

0.80
0.69

0.63 0.63 0.61 0.60 0.61 0.61 0.61

0. 00

0. 10

0. 20

0. 30

0. 40

0. 50

0. 60

0. 70

0. 80

0. 90

1. 00

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Training epochs

 IDEAL ACTIVE Utilization

Figure 5.1: Execution time of channel-pruned ResNet50 normalized to the exe-
cution time of the dense baseline (the left-most bar in each figure). The weights
are regularized and pruned using different pruning strengths: (left) medium
strength and (right) high strength. Only the execution time of convolution and
FC layers is shown considering that they account for >98% of the FLOPs of
each training iteration.

91

this experiment, I use a pruning interval of 10 epochs and the two figures show

the results of using different pruning strengths: medium pruning strength that

removes restricted number of channels with small accuracy loss (left) and high

pruning strength that removes more channels with larger accuracy loss (right).

Each of the pruned convolution and FC layers is converted into a single GEMM

using im2col. A WaveCore with a single 128×128 systolic array executes each

blocked GEMM tile using input-stationary dataflow (explained in Section 3.3).

The figure shows two bar graphs: the red bars (IDEAL) indicate the execution

time with the assumption of 100% PE utilization and the stacked blue bars

(ACTIVE) show the the additional execution time caused by PE underutiliza-

tion. The PE underutilization is solely caused by the size mismatch between

GEMM tiles and the core and is estimated by using infinite memory BW. As

the red bars show, PruneTrain gradually reduces the FLOPs of the baseline

models to 46% and 25% for the medium and high pruning strength, respec-

tively. However, due to the large core size and reduced GEMM dimensions in

many convolution layers, PEs are highly underutilized and exhibit overall PE

utilization of only 65% and 55% for the medium and high pruning strengths

respectively. Also, even the baseline model shows only 80% PE utilization and

this is because some early convolution layers have small number of channels.

5.2 Naive GEMM Core Splitting

Diminishing PE Utilization and Increasing Input Load Cost. The

PE underutilization caused by small GEMM dimensions can be mitigated by

92

splitting a large GEMM core into multiple small cores. However, this many-

small-core design can be inefficient in processing typically large GEMM tiles,

which account for most GEMM tiles in both pruned and unpruned CNN layers.

First, small cores have low in-core input reuse compared to a large core, which

increases input traffic from memory. Second, having more cores increases

area complexity of wires, data path switches, and SRAM buffer control and

decoding logic.

To observe the relation between the core size and PE utilization, I

conduct a simple experiment that estimates overall PE utilization and the

volume of on-chip input traffic while training ResNet50 using PruneTrain.

The evaluation is done with different core configurations (Figure 5.3). Again,

I use ideal memory BW to show the PE underutilization caused by the size

mismatch between GEMM tiles and the core. The baseline accelerator design

used in this experiment has a group of GEMM cores sharing a global buffer

(GBUF) (Figure 5.2.a). The GBUF is used to block GEMM inputs. This

baseline design also has a pair of local buffers (LBUFs) in each GEMM core for

input double buffering to hide input load latency. The blue lines in Figure 5.3

show PE utilizations and the red lines show average input traffic volume from

the GBUF to LBUFs when using medium (plain lines) and high (dotted lines)

pruning strengths. Both PE utilization and input traffic volume are averaged

across training iterations over the whole training, thus they encapsulate the

results of the baseline unpruned model and many different intermediate pruned

models.

93

G
lo

ba
l b

uff
er

MEM CTRL

SI
M

D
 c

or
e

GEMM
core

Output buffer

Input buffer

In
pu

t b
uff

er GEMM
core

Output buffer

Input buffer

In
pu

t b
uff

er

GEMM
core

Output buffer

Input buffer

In
pu

t b
uff

er GEMM
core

Output buffer

Input buffer

In
pu

t b
uff

er

(a) Shared buffer design (b) Distributed buffer design

G
lo

ba
l

bu
ffe

r

Router

SI
M

D
 c

or
e

GEMM
core

Output buffer

Input buffer

In
pu

t b
uff

er

G
lobal

buffer
Router

SIM
D

 core

GEMM
core

Output buffer

Input buffer

Input buffer

G
lobal

buffer

Router

SIM
D

 core
GEMM
core

Output buffer

Input buffer

Input buffer

G
lo

ba
l

bu
ffe

r

Router

SI
M

D
 c

or
e GEMM

core

Output buffer

Input buffer

In
pu

t b
uff

er

Figure 5.2: Different GBUF configurations.

Splitting one 128×128 core into four 64×64 improves PE utilization by

as much as 23% but it also increases input load traffic by 1.7× due to reduced

input reuse. Further splitting the cores yields diminishing PE utilization im-

provement but continues to increase input traffic. Using 16× (32×32) and 64×

(16×16) cores increase PE utilization by only 8% and 4% but increases input

load traffic by 3.4× and 6.6×. Also, 32×32 and 16×16 cores show almost sim-

ilar PE utilization for the two models with different pruning strengths. This

indicates that small cores do not necessarily further improve the PE utilization

of the more aggressively pruned CNN models. Overall, this result shows that

reducing core size less than 32×32 is not cost-efficient.

High Area Overhead of the Many-Small-Core Design. The increased

input traffic of small cores requires higher on-chip data BW: when the core

count increases by 4×, the on-chip data BW required increases by 2×. The

impact of increasing input BW is different depending on the accelerator design.

Figure 5.2 shows two potential buffer designs. In design (a), cores share

94

1

2

3

4

5

6

7

8

0.0

0.2

0.4

0.6

0.8

1.0

1x (128 x 128) 4x (64 x 64) 16x (32 x32) 64x (16 x16)

Core configurations

N
om

al
ize

d
GB

U
F

lo
ad

s

PE
 u

til
iza

tio
n

 Utilization (Medium) Utilization (High)
 Norm. GBUF LDs (Medium) Norm. GBUF LDs (High)

1

2

3

4

5

6

7

8

0.0

0.2

0.4

0.6

0.8

1.0

1x (128 x 128) 4x (64 x 64) 16x (32 x32) 64x (16 x16)

Core configurations

N
om

al
ize

d
GB

U
F

lo
ad

s

PE
 u

til
iza

tio
n

 Utilization (Medium) Utilization (High)
 Norm. GBUF LDs (Medium) Norm. GBUF LDs (High)

Figure 5.3: PE utilization and GBUF load traffic increases for pruned ResNet50
training by splitting a single large core into many small cores. Medium and High
indicate channel pruning strength.

a GBUF, and design (b) there is a dedicated GBUF for each core. A shared

buffer needs additional data paths from GBUF to the LBUF for each core,

along with path switches. On the other hand, a distributed buffer design has

less data path-associated area overhead but it involves the area overhead of

splitting LBUFs and GBUFs (duplicating decoding and data repeating logic).

In the distributed buffer design, the inputs should be allocated to cores care-

fully to avoid input replication. Although inter-core shared data can be split

across cores, this leads to data transfers over potentially low-BW inter-core

channels. A more general accelerator architecture mixes these two designs

by creating multiple groups of cores such that cores in each group share a

GBUF [28].

I compare the area overhead of different core configurations that have

95

different cores sizes and buffer designs (Figure 5.4). For simple estimation, this

experiment considers only the area of PEs, SRAM buffers, and data paths. I

use CACTI 7.0 [12] to estimate the area overhead of buffers and use the module

size of a mixed precision multiplier and adder units [111] to estimate the area

of the systolic array. When the number of cores becomes is greater than four, I

group the cores such that they share a GBUF and this configuration is shown in

the second row of the X-axis (G and C indicate groups and cores, respectively).

The blue line graph in Figure 5.4 shows the area overhead caused only by the

additional logic, coming from splitting GBUFs and LBUFs and the red line

indicates the area overhead for increased data paths.

The overhead of data paths is estimated conservatively assuming the

wires do not overlap with logic (so the actual overhead should be smaller). The

increase in chip width and height from additional data paths is estimated by

distributing the wires to 5 metal layers using a wire pitch of 0.22um, similar to

DaDianNao [17]. The overheads of different core configurations are normalized

to the area of a single 128×128 core. Splitting a single core to 4 (64×64) cores

has a relatively small area overhead of 4%, and this (¶) mainly comes from

doubling the data paths by having cores share a GBUF. Further splitting to 16

(32×32) cores increases area overhead to as much as 13% and this overhead is

caused by dividing a GBUF to four parts (·). Finally, 64 (32×32) cores have

a 23% area overhead. The additional area overhead comes from increasing

the number of cores sharing a GBUF in each group. Overall, this experiment

shows that splitting a large core into ≥16× small cores is not an area-efficient

96

design option.

1 G x 1 C 1 G x 4 C 4 G x 4 C 4 G x 16 C
Core configurations

1.0

1.1

1.2

1.3

1x (128 x 128) 4x (64 x 64) 16x (32 x32) 64x (16 x16)

Ar
ea

 o
ve

rh
ea

d

Core configurations

 Logic +Wires

1.0

1.1

1.2

1.3

1x (128 x 128) 4x (64 x 64) 16x (32 x32) 64x (16 x16)

Ar
ea

 o
ve

rh
ea

d

Core configurations

 Logic +Wires

1 2

Figure 5.4: Area overhead of core division normalized to 1× (128×128).

In summary, naively splitting a large core into many small cores im-

proves PE utilization but its gain diminishes as the splitting factor increases.

In addition, the many-small-core design increases total traffic from the GBUF

due to the reduced in-core input reuse and also requires high area overhead.

To better balance the tradeoffs, a new GEMM core architecture is needed to

maintain high input reuse as using a large core and achieve high mapping

flexibility as when using multiple small cores.

5.3 FlexSA: Flexible Systolic Array for High
PE Utilization and Input Reuse

In this section, I introduce a flexible systolic array architecture for effi-

cient processing of slim and fat GEMMs with irregular shapes. Then, I present

97

a compile-time GEMM tiling and scheduling methods for efficient utilization

of the proposed core designs.

5.3.1 FlexSA Core Architecture

To map small GEMM tiles to cores with high PE utilization, splitting

a large core into smaller cores is unavoidable. However, processing a large

GEMM tile using many small cores is inefficient as this increases input traffic

from GBUFs. This is a critical problem as GBUF access cost becomes ex-

pensive as the size of a GEMM core becomes bigger. To take advantage of

the benefits of both a large core and multiple small cores, my idea is to use a

group of cores that collaborate when processing a large GEMM tile and work

independently when processing small GEMM tiles. To this end, I propose

FlexSA, a flexible systolic array architecture that meets the need for both

high input reuse and PE utilization.

Figure 5.5 shows the logical structure of FlexSA. FlexSA is based

on four systolic array cores sharing a GBUF, as illustrated in Figure 5.2.a.

However, unlike the baseline design, where each core operates independently,

FlexSA can reconfigure its operation mode such that the four cores work inde-

pendently or collaboratively. FlexSA provides four different operating modes

and they are supported using additional data paths and path switches (colored

red in Figure 5.5).

Sub-Array Operations. The four different systolic operating modes are

illustrated in Figure 5.6. FW (full wave) uses the four cores as a single systolic

98

OUT
BUF

OUT
BUF

OUT
BUF

OUT
BUF

IN

BU
F

 0
IN

BU

F
1

IN

BU
F

2
IN

BU

F
 3

1

2 2

Core 0 Core 1

Core 2 Core 3

IN BUF 2 IN BUF 33

3

1

4 4

IN BUF 0 IN BUF 1

Figure 5.5: FlexSA architecture.

array by sharing inputs and passing partially accumulated outputs between

cores (Figure 5.6.a). First, the inputs, vertically shifted from the LBUF on

top of each core, are all unique and they are pre-loaded to each PE for the

input-stationary systolic dataflow. Compared to a single large systolic array,

this saves half the input shifts due to the reduced core height. Then, both cores

0 and 2 pass the inputs shifted from the left LBUFs to core 1 and 3 for reuse

in MAC (multiplication and accumulation) operations (with the stationary

inputs already pre-loaded in core 1 and 3). Also, cores 0 and 1 pass their

outputs (partial sums) directly to core 2 and 3 for output reuse. Because

the reuse of both vertically and horizontally shifted inputs is doubled, FW

has significantly less input traffic compared to a naive independent four-core

99

design.

FlexSA supports two systolic sub-array operations that use two pairs

of cores independently. First, VSW (vertical sub-wave) forms two vertical

systolic sub-arrays by paring the two cores in each column (cores 0 and 2

for one sub-array and cores 1 and 3 for the other as shows in Figure 5.6.b).

This mode is designed for efficient processing of skinny GEMM tiles whose

tile width is smaller than or equal to the width of one core. VSW starts by

pre-loading the same inputs to each of the two vertical sub-arrays. To reduce

the cost of sending identical inputs from GBUF to the LBUFs of both sub-

arrays, I construct switchable data paths between the LBUFs of cores 0/2 and

1/3 for local broadcast ¸. After pre-loading the stationary inputs, the other

inputs are horizontally shifted to each sub-array. To provide different inputs

to each sub-array in parallel, VSW uses the additional horizontal data paths

¶. Also, VSW uses only a half of the output buffers, as shown in Figure 5.6.

Therefore, it is possible to interleave two VSWs that use the same stationary

inputs but different horizontally shifted inputs. Overall, VSW improves PE

utilization by executing two skinny GEMM tiles and also improves stationary

input reuse by 2× through local broadcasting.

Second, HSW (horizontal sub-wave) constructs a two horizontal sys-

tolic sub-arrays by paring the two cores in each row (cores 0/1 for one sub-array

and cores 2/3 for the other as shows in Figure 5.6.c). HSW is designed for

efficient mapping of fat GEMM tiles whose accumulation depth is smaller than

or equal to the height of one core. HSW first pre-loads the same stationary in-

100

puts to each horizontal sub-arrays. Then, the other inputs are shifted from the

left LBUFs through both paired cores in each row. Similar to the local input

sharing used in VSW, I construct a direct data path between the input buffers

of cores 0/1 and cores 2/3 to avoid duplicated input transfers from the GBUF

¹. The outputs from cores 0 and 1 are directly stored and accumulated at

the output buffers at the bottom of cores 2 and 3 ·. Overall, HSW improves

PE utilization by processing two fat GEMM tiles in parallel and doubles the

reuse of horizontally shifted data compared to using small cores.

Lastly, FlexSA supports full independent core operation by providing

unique inputs to each core as shows in Figure 5.6.d, which I call ISW (inde-

pendent sub-wave). This mode helps maintain high PE utilization when both

GEMM tile width and accumulation depth are small. ISW provides indepen-

dent inputs horizontally to cores 1 and 3 using the additional data path ¶ and

the outputs of core 1 and 2 are send to and accumulated at the output buffers

using the added vertical data path ·. Compared to the independent core de-

sign, ISW exhibits lower input loading cost because FelxSA locally broadcasts

the stationary inputs between cores. However, since its input reuse is the low-

est among all modes, other sub-array modes should be prioritized over ISW

for cost-efficient model training.

Area Overhead Estimation. FlexSA requires additional area for logic and

data path wires and switches. I estimate area in 32nm technology and I

compare the overhead relative to the naive four-core design. Again, I conser-

vatively estimate the area overhead of additional data paths assuming they do

101

OUT
BUF

OUT
BUF

Core 1

Core 2 Core 3

IN BUF 2 IN BUF 3

IN

BU
F

 0
IN

BU

F
1

IN

BU
F

 0
IN

BU

F
1

Core 0

OUT
BUF

OUT
BUF

Core 1

OUT
BUF

OUT
BUF

Core 1

Core 2 Core 3

IN BUF 2 IN BUF 3

Core 0

OUT
BUF

OUT
BUF

Core 1

IN

BU
F

 0
IN

BU

F
1

IN

BU
F

 0
IN

BU

F
1

(b) VSW

(c) HSW (d) ISW

OUT
BUF

OUT
BUF

IN BUF 0 IN BUF 1

Core 1

Core 2 Core 3

IN BUF 2 IN BUF 3

IN

BU
F

 0
IN

BU

F
1

IN

BU
F

 0
IN

BU

F
1

OUT
BUF

OUT
BUF

(a) FA

OUT
BUF

OUT
BUF

OUT
BUF

OUT
BUF

IN BUF 1

Core 0 Core 1

Core 2

IN BUF 2 IN BUF 3

IN

BU
F

 0
IN

BU

F
1

IN

BU
F

 0
IN

BU

F
1

IN BUF 0

Core 0 Core 1

IN BUF 0 IN BUF 1

Core 3

IN BUF 0 IN BUF 1

Figure 5.6: Four different systolic sub-array operations supported by FlexSA
and the micro-architecture settings for each mode.

not overlap with logic. First, the addition of data path switches (1:2 MUXs)

that select inputs and partial sums increases logic area by only 0.03mm2.

Next, FlexSA also requires each PE at the top row of cores 2 and 3 to support

a mixed-precision FMA (fused multiplier and adder) instead of just a 16-bit

102

multiplier to (needed to accumulate the partial sums shifted from cores 0 and

1). This change increases the area by 0.32mm2. Also, the repeaters to drive

signals over a core add 0.25mm2, where I use fanout of 32. The vertical wires

connecting the outputs of cores 0 and 1 to the output buffers · expand the

width of the core by 0.09mm.

However, the other wires do not affect die size because they are effec-

tively canceled by the wiring overhead of connecting GBUFs and the LBUFs in

the baseline four-core design. Overall, FlexSA increases the die area over the

naive four-core design by only 1%. Again, this area estimate is conservative

and placing the newly added vertical wires over PE array (as illustrated) can

effectively hide the wiring area overhead. This is feasible because PE arrays

use only a few low-level metal wires for local routing.

5.3.2 FlexSA Compilation and GEMM Tiling

FlexSA mode selection is crucial for efficient GEMM processing. Modes

should be selected to achieve the highest PE utilization with minimum on-chip

data traffic. Mode selection is coupled with GEMM tiling because different

modes are optimal for GEMM tiles with different shapes. In this section,

I introduce a compile-time GEMM tiling heuristics for tiling a GEMM into

waves 1 to best utilize FlexSA resources for both high performance and energy

efficiency.

1a wave is the GEMM execution granularity using the systolic array, which is defined in
Section 3.3

103

The GEMM waves are mapped to cores and executed using different

FlexSA modes. Different modes require different micro-controls, such as data

path selection, input shifting, output shifting, and partial sum accumula-

tion. For efficient communication between software and the FlexSA micro-

architecture, I introduce a set of instructions that define the micro-controls

needed for each FlexSA mode and for handling data transfers between on-chip

buffers.

5.3.2.1 GEMM Tiling Heuristics

The proposed compile-time GEMM tiling heuristics choose waves that

execute on FlexSA with the highest PE utilization and in-core input reuse. In

other words, GEMM waves that uses the FlexSA modes with greater input

reuse are prioritized and the GEMM waves using the FlexSA modes with

lower input reuse are chosen only when using them improves PE utilization

(i.e., FW>HSW=VSW>ISW).

GEMM Tiling Conditions for FW. The heuristics tile the large GEMM

into multiple waves for processing on the systolic array. The tiling factors

(blk M , blk N , and blk K in Figure 5.7.a) are chosen to match the size of a

full FlexSA core to maximize reuse by utilizing the FW mode. The size of

blk N and blk K are equal to the width and height of a full FlexSA core, both

of which are 128 in my baseline design. The size of blk M is the size of the

LBUF for non-stationary inputs divided by the height of a full FlexSA core,

which is 256 using a 64KB LBUF. Because GEMM dimensions are not always

104

a multiple of the ideal tile size, the execution of some tiles with FW would

degrade utilization and performance. Such tiles (typically just the edge tiles of

a large GEMM) are executed with the other FlexSA modes, again attempting

to maximize utilization and reuse by prioritizing the use of HSW and VSW

over ISW as shown in Figure 5.7 and discussed below.

GEMM Tiling Conditions for HSW. However, when the blk K size of

a GEMM wave is small, using FW under-utilizes PEs and slows down the

GEMM execution. Thus, when the size of blk K is smaller than or equal to

the height of one FlexSA core, the proposed heuristics execute the GEMM

wave using HSW as shown in Figure 5.7.b. By executing a single fat wave

as two independent waves using the two horizontal sub-systolic arrays, HSW

increases PE utilization.

GEMM Tiling Conditions for VSW. In addition, the tiles at the GEMM

FW
HSW

HSW

IS
W

VS
W
2

VS
W
2

VS
W
1

VS
W
1

IS
W

IS
W

IS
W

(a) Select FW (b) Select HSW (c) Select 2X VSW (d) Select ISW

blk_K

blk_N

bl
k_

M

Figure 5.7: FlexSA operating mode selection examples.

105

edges can have small block sizes in the blk N dimension and executing the

GEMM waves of these tiles using FW also under-utilizes PEs. Therefore, when

the blk N is smaller than or equal to the width of FlexSA core, the heuristics

execute the waves of the skinny GEMM tiles using VSW, which improves PE

utilization by executing two waves in parallel using the two vertical sub-systolic

arrays. This skinny GEMM tile is executed using two VSW operations (VSW1

and VSW2 in Figure 5.7.c) that can be interleaved, accumulating their results

using half of the output buffers. Because the two VSW operations share the

stationary inputs, this further improves input reuse.

GEMM Tiling Conditions for ISW. When both blk N and blk K are

smaller than the width and the height of a FlexSA core, respectively, the

proposed heuristics execute the GEMM waves using ISW. ISW executes a

GEMM tile using four small independent waves, which operate in parallel to

achieve high PE utilization (Figure 5.7.d). When a pair of VSWs precedes

ISW, the four small GEMM waves executed by ISW accumulate their results

with the partial sums stored in the output buffers. This combination achieves

high PE utilization while maintaining high input reuse, minimally using ISW.

5.3.2.2 ISA Support and Compilation for GEMM Processing

To execute the GEMM waves using FlexSA, ISA support is needed.

First, an instruction to define the configuration of each FlexSA modes is

needed. This instruction provides the type of FlexSA mode and the sizes

of each wave’s blk M , blk N , and blk K. This information is mapped to

106

the micro-controls required to execute these GEMM waves such as data path

switch selection, data shifting, and output accumulation. Second, vector load

and store instructions are needed for data transfers between the GBUF (global

buffer) and LBUFs (local buffers). Using vectors reduces instruction count

and instruction decoding BW, compared to using word-granularity instruc-

tion. The compiler generates memory access routines that load inputs to the

LBUFs of cores and store the GEMM outputs to the GBUF using these vector

instructions.

Algorithm 1 GEMM execution flow

1: . blk M , blk N , blk K: GEMM tiling factors
2: for n← 0 to N by blk N do
3: n size = blk N if (n+ 1)× blk N < N else N (mod blk N)
4: for m← 0 to M by blk M do
5: m size = blk M if (m+ 1)× blk M < M else M (mod blk M)
6: wide wave = IsWideWave(n size, m size)
7: for k ← 0 to K by blk K do
8: k size = blk K if (k + 1)× blk K < K else K (mod blk K)
9: tall wave = IsTallWave(k size)

10: . Select FlexSA mode to execute the current GEMM wave
11: FlexSA mode = GetFlexSAMode(wide wave, tall wave)
12: . Load stationary inputs to local buffers
13: LdLBUF V(GBUF ptr1, LBUF ptr1, k size, n size)
14: . Shift stationary inputs to each PE
15: ShiftV(k size, n size)
16: . Load inputs to horizontally shift to a local buffer
17: LdLBUF H(GBUF ptr2, LBUF ptr2, k size,m size)
18: . Execute a GEMM wave using systolic dataflow
19: ExecGEMM(FlexSA mode, m size, n isze, k size)
20: sync()

21: . Store GEMM outputs to a memory
22: StLBUF(OBUF ptr, GBUF ptr3)

107

The GEMM execution instruction generation algorithm of FlexSA com-

piler is shown in Algorithm. 1. The type of FlexSA mode is determined by

the shape of the current GEMM wave. Before executing the wave, inputs are

loaded from the GBUF to both LBUFs. For this, I use two vector load in-

structions LdLBUF V and LdLBUF H. These vector load instructions take

address pointers for GBUF and LBUFs, and the size of the data to load. The

LBUFs are double buffered to hide the access and transfer latency. Thus, the

inputs to be used in the next GEMM wave execution iteration are pre-fetched

in the current iteration.

Once stationary inputs are fully loaded at LBUFs, they are shifted to

PEs using a ShiftV instruction. Using a separate instruction for stationary

input shifting decouples it from the main GEMM wave execution step and

makes it parallel to loading non-stationary inputs to the LBUFs, removing

unnecessary execution step serialization. When both inputs are ready, an

ExecGEMM instruction executes the target GEMM wave using the selected

FlexSA mode. ExecGEMM takes four inputs: the type of FlexSA mode and

the sizes of the GEMM wave dimensions (blk M , blk N , and blk K). For

HSW, VSW, and ISW, the sizes of these wave dimensions indicate those of

each independent wave. When GEMM tile execution is complete after iterating

over the K dimension, the outputs at the OBUFs (output buffers) are stored

to the GBUF or to the off-chip memory using a StLBUF instruction.

108

5.4 Evaluation

5.4.1 Evaluation Methodology

I evaluate FlexSA using the instruction-level simulator that I also use

to evaluate Mini-Batch Serialization Section 3.4. I prune ResNet50, the most

commonly used CNN model for ImageNet. I also use Inception v4 [95], though

only artificially pruning the model by applying the same pruning statistics of

ResNet50. PruneTrain is used as the pruning mechanism, with two different

model-pruning strengths. The model is trained for 90 epochs with a pruning

interval of 10 epochs. The mini-batch size is 32. I use mixed-precision mul-

tiplication and accumulation [71] for the GEMMs of the convolution and FC

layers.

I use five different accelerator configurations, as summarized in Ta-

ble 5.1. The 1G1G configuration uses a single 128×128 systolic array, 1G4G

splits this large core into four 64×64 cores, which share a single GBUF. The

4G4G configuration further splits the cores into 16 32×32 cores, where I di-

vide the cores and the GBUF into four groups with cores in each group sharing

a GBUF. The 1G1FlexSA configuration has a single 128×128 FlexSA with

four 64×64 cores, and 4G1FlexSA has four small FlexSA, each with a dedi-

cated GBUF. I use a GBUF size of 10MB as used for Mini-Batch Serialization

(Section 3.4) for all core configurations, and a single 270GB/s HBM2 for the

memory system [50]. All local input and output buffers are sized to support

double buffering. The local input buffers holding the horizontally shifted in-

puts are 2× larger than the input buffers holding stationary inputs for larger

109

reuse of the pre-loaded stationary inputs.

5.4.1.1 GEMM Partitioning and Blocking.

The GEMMs in forward propagation and data gradient computation in

back-propagation are skinny: they have large GEMM height (M), which is the

product of the mini-batch and the feature size, and have small GEMM width

(N), which is set by the number of channels. Thus when multiple core groups

are used, I partition a GEMM across the M dimension with one partition per

core group. On the other hand, the GEMMs for weight gradient computation

in back-propagation have small GEMM dimensions in both height and width,

but they have large accumulation dimension (K). In this case, I partition

the GEMM across the accumulation dimension with one partition per group.

Within each GEMM partition, I use 2-level GEMM blocking that holds the

inputs of a multiple of GMEM tiles in the GBUF for reuse. Also, within each

GEMM partition, each GEMM wave is allocated to cores in a group in round-

robin fashion. When partitioning GEMM across the M dimension, different

core groups use the same inputs from the GEMM N dimension. These shared

inputs between core groups are replicated to avoid inter-group data transfers.

Table 5.1: Evaluation configuration description.

Configuration Description

1G1C 1 group each with 1× (128×128) core
1G4C 1 group each with 4× (64×64) cores
4G4C 4 group each with 4× (32×32) cores
1G1FlexSA 1 group each with 4× (64×64) FlexSA
4G1FlexSA 4 group each with 4× (32×32) FlexSA

110

I find that this method efficiently distribute GEMM workloads to multiple

cores and core groups.

5.4.2 Evaluation Results

Figure 5.8a shows the average PE utilization of ResNet50 and Inception

v4 using different core configurations. This experiment uses infinite DRAM

BW to isolate the impact on PE utilization to only the mismatch between

GEMM tile size and core size. Using a single large core (1G1C) shows low PE

utilization for both CNNs. The PE utilization of Inception v4 is lower than

that of ResNet50 because many of its convolution layers have fewer than 128

channels. Splitting the core into four small independent cores improves the PE

utilization of both CNNs by≥21% on average. Further splitting cores improves

the PE utilization both CNNs as it mitigates internal PE utilization fragmen-

tation but with diminishing returns. Using one FlexSA core (1G1FlexSA) and

four small FlexSA cores (4G1FlexSA) exhibits only <0.1% ideal PE utilization

compared to 1G4C and 4G4C, respectively. Considering that the PE utiliza-

tion of using independent cores is the maximum that can be achieved with

FlexSA. The result indicates that the FlexSA modes selected by the proposed

heuristics achieve near-optimal PE utilization.

Figure 5.8b shows the impact on PE utilization with ResNet50 and

Inception v4 using a single HBM2 for the DRAM system. Unlike the ideal

memory BW case, this reflects the performance impact from GEMM input

blocking, GEMM tiling, and GEMM scheduling. The 1G1C configuration

111

0.
69

0.
58

0.
56

0.
47

0.
88

0.
78 0.
79

0.
70

0.
92

0.
89

0.
89

0.
850.
88

0.
78 0.
79

0.
70

0.
92

0.
89

0.
89

0.
84

0.0

0.2

0.4

0.6

0.8

1.0

Medium High Medium High

ResNet50 Inception v4

PE
 u

til
iza

tio
n

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA
0.
69

0.
58

0.
56

0.
47

0.
88

0.
78 0.
79

0.
70

0.
92

0.
89

0.
89

0.
850.
88

0.
78 0.
79

0.
70

0.
92

0.
89

0.
89

0.
84

0.0

0.2

0.4

0.6

0.8

1.0

Medium High Medium High

ResNet50 Inception v4

PE
 u

til
iza

tio
n

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA
0.
69

0.
58

0.
56

0.
47

0.
88

0.
78 0.
79

0.
70

0.
92

0.
89

0.
89

0.
850.
88

0.
78 0.
79

0.
70

0.
92

0.
89

0.
89

0.
84

0.0

0.2

0.4

0.6

0.8

1.0

Medium High Medium High

ResNet50 Inception v4

PE
 u

til
iza

tio
n

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

(a) Ideal DRAM BW

0.
64

0.
54

0.
54

0.
45

0.
76

0.
68 0.
72

0.
640.

73

0.
70 0.
76

0.
710.
80

0.
70 0.
74

0.
66

0.
79

0.
75 0.
81

0.
75

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Medium High Medium High

ResNet50 Inception v4

PE
 u

ti
liz

at
io

n

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

0.
64

0.
54

0.
54

0.
45

0.
76

0.
68 0.
72

0.
640.

73

0.
70 0.
76

0.
710.
80

0.
70 0.
74

0.
66

0.
79

0.
75 0.
81

0.
75

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Medium High Medium High

ResNet50 Inception v4

PE
 u

ti
liz

at
io

n

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

0.
64

0.
54

0.
54

0.
45

0.
76

0.
68 0.
72

0.
640.

73

0.
70 0.
76

0.
710.
80

0.
70 0.
74

0.
66

0.
79

0.
75 0.
81

0.
75

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Medium High Medium High

ResNet50 Inception v4

PE
 u

ti
liz

at
io

n

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

(b) 1× HBM2

Figure 5.8: PE utilization of different core configurations vs. pruning strength.

with HBM2 shows similar (slightly reduced) PE utilization compared to the

results with ideal DRAM BW. This is because using a single 128×128 GEMM

maximizes reuse requiring low peak memory BW. The many-small cores con-

figurations (1G4C and 4G4C) exhibit greater PE utilization decrease when

memory BW is considered. This PE utilization reduction is mainly caused by

increased DRAM BW peaks from executing many small independent GEMM

waves in parallel. Not all inputs of these small GEMM waves are coalesced

thus the density of input loads is higher.

112

The two configurations using FlexSA show lower PE utilization drop

compared to the naive many-core designs. This is because FlexSA uses small

GEMM waves only when necessary. Furthermore, FlexSA offers two systolic

array modes that use pairs of cores (VSW and HSW), which have higher in-core

input reuse than using fully independent cores. This helps balance PE utiliza-

tion and input reuse. Overall, 1G1FlexSA improves average PE utilization

by 33% and 4% compared to the 1G1C and 1G4C designs, respectively. The

4G1FlexSA configuration improves average PE utilization by 7% compared to

4G4C.

5.4.2.1 On-chip Traffic and Energy Efficiency

Other than PE utilization, FlexSA reduces on-chip traffic because it

improves in-core input reuse. Figure 5.9 compares the average on-chip input

traffic from the GBUF to LBUFs using different core configurations. The red

line graphs exhibit normalized traffics to the traffic of 1G1C. The 1G4C and

4G4C configurations increase the average input traffic by 1.66× and 3.13×,

respectively, due to the reduced in-core reuse caused by using multiple small

systolic arrays. On the other hand, the configurations using FlexSA show

similar or even lower GBUF traffic compared to the naive many-small-core

designs. 1G1FlexSA lowers GBUF traffic traffic by 41% compared to 1G4C,

and by 2% even compared to 1G1C. This 2% traffic saving comes from reusing

the stationary inputs between multiple GEMM waves in the VSW and ISW

modes, which is not possible with the baseline core design. 4G1FlexSA also

113

saves on average 53% GBUF traffic traffic compared to 4G4C.

0

100

200

300

400

500

600

Medium High Medium High

ResNet50 Inception v4

[G
B]

1Gx1C 1Gx4C 4Gx4C 1Gx1FlexSA 4Gx4FlexSA

1.00

1.74

3.42

0.98

1.76

1.00

1.70

3.22

0.98

1.71

1.00
1.63

3.04

0.97
1.62

1.00
1.58

2.84

0.97
1.56

0

100

200

300

400

500

600

Medium High Medium High

ResNet50 Inception v4

[G
B]

1Gx1C 1Gx4C 4Gx4C 1Gx1FlexSA 4Gx4FlexSA

1.00

1.74

3.42

0.98

1.76

1.00

1.70

3.22

0.98

1.71

1.00
1.63

3.04

0.97
1.62

1.00
1.58

2.84

0.97
1.56

0

100

200

300

400

500

600

Medium High Medium High

ResNet50 Inception v4

[G
B]

1Gx1C 1Gx4C 4Gx4C 1Gx1FlexSA 4Gx4FlexSA

1.00

1.74

3.42

0.98

1.76

1.00

1.70

3.22

0.98

1.71

1.00
1.63

3.04

0.97
1.62

1.00
1.58

2.84

0.97
1.56

0

100

200

300

400

500

600

Medium High Medium High

ResNet50 Inception v4

[G
B]

1Gx1C 1Gx4C 4Gx4C 1Gx1FlexSA 4Gx4FlexSA

1.00

1.74

3.42

0.98

1.76

1.00

1.70

3.22

0.98

1.71

1.00
1.63

3.04

0.97
1.62

1.00
1.58

2.84

0.97
1.56

Figure 5.9: On-chip traffic of different core configurations and pruning strengths.

FlexSA reduces on-chip traffic from global buffers and this improves

the energy efficiency of training. To show this, I evaluate the average dynamic

energy consumed per training iteration using different core configurations (Fig-

ure 5.10a). Each bar indicates the breakdown of energy consumed by different

accelerator resources: COMP indicates the energy consumed by mixed preci-

sion MAC (multiply and accumulation) operations. OverCore indicates the

data transmission energy over a core, which exists only in the configurations

using FlexSA. The lines represent the energy increase compared to 1G1C. Be-

cause of the increased GBUF traffic, 1G4C and 4G4C exhibit >20% energy

increase. The reason 4G4C shows similar energy compared to 1G4C though

it requires higher traffic is that average global buffer access energy is lower

with the distributed GBUFs. Both FlexSA configurations exhibit similar en-

ergy consumption as 1G1C. This high energy efficiency of FlexSA comes from

using large GEMM waves in most cases. The additional energy consumed by

114

1.23 1.26

1.01 1.02

1.21 1.21

1.00 0.97

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

1 .7 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA 1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

ResNet50 Inception v4

AV
G.

 e
ne

rg
y

[J]
 COMP LBUF DRAM GBUF OverCore Norm / 1G1C

1.23 1.26

1.01 1.02

1.21 1.21

1.00 0.97

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

1 .7 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA 1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

ResNet50 Inception v4

AV
G.

 e
ne

rg
y

[J]
 COMP LBUF DRAM GBUF OverCore Norm / 1G1C

1.23 1.26

1.01 1.02

1.21 1.21

1.00 0.97

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

1 .7 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA 1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

ResNet50 Inception v4

AV
G.

 e
ne

rg
y

[J]
 COMP LBUF DRAM GBUF OverCore Norm / 1G1C

(a) Medium pruning strength

1.22 1.24

1.02 1.01

1.20 1.17

1.01
0.96

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

1 .7 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA 1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

ResNet50 Inception v4

AV
G.

 e
ne

rg
y

[J]

 COMP LBUF DRAM GBUF OverCore Norm / 1G1C

1.22 1.24

1.02 1.01

1.20 1.17

1.01
0.96

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

1 .7 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA 1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

ResNet50 Inception v4

AV
G.

 e
ne

rg
y

[J]

 COMP LBUF DRAM GBUF OverCore Norm / 1G1C

1.22 1.24

1.02 1.01

1.20 1.17

1.01
0.96

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

1 .7 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA 1G1C 1G4C 4G4C 1G1FlexSA 4G1FlexSA

ResNet50 Inception v4

AV
G.

 e
ne

rg
y

[J]

 COMP LBUF DRAM GBUF OverCore Norm / 1G1C

(b) High pruning strength

Figure 5.10: Breakdown of dynamic energy consumption for different core con-
figurations and pruning strength.

over-core data transmission is very small for all CNNs and pruning strengths.

5.4.2.2 FlexSA Operating Mode Breakdown

Figure 5.11 shows the breakdown of FlexSA operating modes used by

ResNet50 and Inception v4 with different pruning strengths. This shows how

frequently large GEMM waves are used to improve in-core reuse and save en-

ergy consumption. For ResNet50, the FW accounts for 68% and 86% with

1G1FlexSA and 4G1FlexSA, respectively. VSW and HSW combined are used

115

25% and 13% of the time with 1G1FlexSA and 4G1FlexSA, respectively. The

least efficient mode, ISW, accounts for only 6% and 1% with 1G1FlexSA

and 4G1FlexSA. This result indicates that the the inter-core operations of

FlexSA are highly used and using only a restricted number of small indepen-

dent GEMM waves leads to high PE utilization. The results of Inception v4

show similar trends, with the VSW mode selections. This is because many con-

volution layers in the baseline Inception v4 have a small number of channels

and are more efficiently executed with VSW.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA

Medium High Medium High

ResNet50 Inception v4

Br
ea

kd
ow

n

FW VSW HSW ISW

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA

Medium High Medium High

ResNet50 Inception v4

Br
ea

kd
ow

n

FW VSW HSW ISW

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA

Medium High Medium High

ResNet50 Inception v4

Br
ea

kd
ow

n

FW VSW HSW ISW0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA 1G1FlexSA 4G1FlexSA

Medium High Medium High

ResNet50 Inception v4

Br
ea

kd
ow

n

FW VSW HSW ISW

Figure 5.11: FlexSA operating modes breakdown for ResNet50 and Inception
v4.

5.5 Summary

In this chapter I tackle the problems in training (partially) pruned

CNN models using a high-throughput training accelerator. The GEMMs of

channel-pruned CNN models have reduced dimensions, which hurts PE uti-

lization when processed on a training accelerator with large systolic array

116

cores. Although splitting a large core into multiple small cores improves PE

utilization, it decreases in-core input reuse, increasing on-chip traffic.

To improve the PE utilization without affecting reuse, I present FlexSA,

a flexible systolic array architecture that reconfigures its structure to efficiently

process GEMM tiles with different shapes. FlexSA is composed of four small

systolic array cores and designing it adds only 1% area compared to naive four-

core design. FlexSA supports four different systolic array operating modes.

Each FlexSA mode is designed to process GEMM tiles with different shapes,

using different inter-core systolic dataflows. For efficient selection of FlexSA

operating modes for a given pruned CNN model, I propose FlexSA mode se-

lection heuristics. Overall, FlexSA improves PE utilization of training pruned

CNN models by 33% compared to using a single large core and improve on-chip

input reuse by 41% compared to small-many-core designs.

117

Chapter 6

GPU Memory Traffic and Performance Models

for Accelerator Design Space Exploration

This chapter introduces a GPU memory traffic model for convolution

layers. I first show the need for an accurate data traffic prediction in GPU

memory system for effective future GPU design exploration. Then, I explain

the memory traffic models for each GPU memory hierarchy (e.g. l1, l2, and

DRAM) and a performance model that uses the estimated memory traffic. In

the evaluation section, I show how the proposed model helps to fine-tune the

GPU resource allocation for efficient CNN performance scaling.

1

6.1 Needs of an Accurate Performance Model for CNNs

Estimating the application performance by device design changes pro-

vides important guidelines. Given that GPUs are the most commonly used

accelerators for DNN training, devising an accurate GPU performance model

particularly for DNN applications is important. Based on my observation, to

1This chapter was published in International Symposium on Performance Analysis of
Systems and Software (ISPASS) in March 2019. Sangkug Lym contributed to this work as
the main author.

118

0%
20%
40%
60%
80%

100%
L1	miss	rate L2	miss	rate

0%
20%
40%
60%
80%

100%
L1	miss	rate L2	miss	rate

0%
20%
40%
60%
80%

100%
L1	miss	rate L2	miss	rate

Inception_3a module

Figure 6.1: L1 and L2 cache miss rates of the convolution layers in Inception v3

predict accurate DNN performance, I should first estimate memory traffic at

different levels of GPU memory system hierarchy. Figure 6.1 shows the cache

miss rates of convolution layers used in Inception v3 [96] measured on NVIDIA

TITAN Xp GPU. Depending on the layer configuration, the L1 miss rate varies

from 13% to 50% and L2 miss rate ranges from 8% to 90%. Due to such high

traffic variation at different levels of memory hierarchy, the prior performance

models fail to accurately predict CNN performance. Particularly, given faster

GPU compute throughput scaling than its memory bandwidth, the architec-

ture research for future GPU designs needs accurate data traffic modeling.

6.1.1 Related Work

To analyze the performance bottlenecks of GPU-accelerated data par-

allel workloads, many GPU performance models have been proposed [41, 60,

61, 114, 100, 90, 105]. In particular, prior models do in-depth analysis of the

parallel GEMM and show high accuracy [61, 114]. These prior models predict

application performance based on potential execution time bottlenecks such

119

as computation throughput, instruction fetch/issue slots, and global memory

bandwidth. However, they do not model the data traffic at each level of GPU

memory system hierarchy which depends on each application’s memory access

and data reuse patterns.

The models proposed by Zhou et al. [114] and Sunpyo et al. [41] include

cache miss rate as a parameter but it is naively set to 1. Such assumptions lead

to poor performance estimation when the parallel workload has high spatial

locality. CuMAPz [55] does consider an application’s shared memory utiliza-

tion by analyzing the device code, but does not consider cache and off-chip

memory channel traffic. Wu et al. [105] use machine learning techniques to

classify applications to clusters based on GPU resource utilization patterns

and they predict performance using the cluster information and the configura-

tions of the target application and GPU. However, without the detailed data

traffic in the memory hierarchy, the prediction accuracy is low and it cannot

identify precise memory system bottlenecks.

6.2 Background: GEMM Tiling for Efficient Execution
on GPU

The convolution GEMM is blocked for efficient execution on a GPU,

the most common accelerator for DNN training, as shown in Figure 6.2. The

GEMM blocking divides the IFmap (input feature map) matrix with M ×N

dimensions into blkM × blkN blocks of CTAs (cooperative thread arrays). The

GEMM K dimension is also divided by a blocking factor of blkK .

120

Each blocked GEMM execution flow (accumulation in K dimension)

consists of three phases: prologue, main loop, and epilogue. During the pro-

logue, each CTA loads blocked IFmaps (blkM×blkK) and filter data (blkN×blkK)

from the global memory (DRAM) to registers. GEMM kernels use input dou-

ble buffering [59] to overlap these memory loads and the computation routine

phases. Thus, the data loaded in the prologue is first fetched to registers and

transferred to the shared memory (SMEM) to be used in the first main loop

iteration.

The main loops account for the majority of GEMM execution time. The

prefetched data in the SMEM in the prior main loop iteration (or prologue)

is read and used as the input in the current loop. The computation pipeline

multiplies the loaded features and weights then accumulates their results with

the results of the prior loop iteration. The data loads, computation, and

accumulation operations in the main loop are software pipelined for efficient

Global
memory

Shared
memory

M

K

N

blk K

blk M

blk N

CTA tile

❷ Loads from the
shared memory

blk K

bl
k M

blk N W
ar

p
til

e

Accumulation
registers

Input
feature
matrix

bl
k W

M

bl
k W

N

Filter
matrix

❶ Loads from the global memory
→ Stores to the shared memory

Figure 6.2: Im2col GEMM blocking by cuDNN GPU kernel: ¶ and · show the
data movement sequence per GEMM main loop.

121

resource utilization. After completing the main loops, at the epilogue stage,

the accumulated results are written to global memory.

6.3 Memory Traffic Modeling

Designing an analytical model to estimate memory traffic is challenging

because: (1) GPU coalesces memory requests to utilize application’s spatial

locality, (2) different sizes of caches can accommodate different degrees of data

locality, (3) caches are shared by multiple threads, CTAs, and cores, and (4)

convolution layer workloads with different configurations show different mem-

ory access patterns. I model the traffic at each level of GPU memory hierarchy

using the granularities of data reuse based on the GEMM kernel blocking fac-

tors described in Section ??. My traffic model incorporates the memory access

patterns in the im2col GEMM formed with a specific convolution layer con-

figuration. This is necessary for modeling the complex locality that exists

within a single access at each memory level. Also, I reflect the impact of

data reuse among CTAs considering the reuse distance of data structures and

the CTA scheduling. I use the implicit convolution kernels supported in the

cuDNN library, and the NVIDIA Pascal GPU, as the base architecture. I

use 32b floating point data precision widely used for neural network model

training [33].

122

0

0
1
2
3

1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

6
7
8
9
12
13
14
15
18

IFmap

Wf - 1

…

Memory requests
made by a warp

of 32 threads

W
i -

 W
f +

1Wi -Wf +1
❶

Wf - 1

Wf - 1

Wf - 1

Figure 6.3: IFmap data requested by a single warp per main loop (elements in
the blue box).

6.3.1 L1 Cache Traffic

As im2col rearranges the memory access layout, the memory addresses

of adjacent IFmap data elements are not continuous. This lowers the spatial

locality within each L1 request (individual requests across a warp of 32 threads

are coalesced by HW into the minimal number of L1 requests) causing more

memory requests than needed. Also, if the memory references are not aligned

with the address of the L1 transactions, extra L1 transactions are made. I

estimate L1 traffic by calculating the efficiency of L1 requests, which is affected

by non-contiguous memory references and address alignment.

Figure 6.3 shows the data layout of a single 6×6 IFmap traversed by

one element of a 3×3 filter with stride 1 and its im2col converted form. The

number on each data element represents its relative location in the physical

123

memory. As described in Section ??, IFmap data elements visited by a filter

are arranged as a column (¶). One warp requests L1 loads for 32 threads which

are a fraction of an IFmap column (blue boxed elements in Figure 6.3). The L1

loads are coalesced within a warp and this coalescing granularity becomes the

fundamental access granularity to L1 cache. This corresponds to a L1 cache

line size of 128B (4B × 32) for the Pascal GPU. However, even a warp reads

128B, it cannot be coalesced to a single L1 transaction if data is not continuous:

Wf−1 elements are skipped every Wi−Wf + 1 elements. If the convolution

stride is bigger than 1, data between every two elements are skipped. Also,

if the coalesced L1 requests made by a warp are not aligned with the L1

transaction addresses, extra transactions are requested. I use the average L1

load efficiency per warp LE to estimate the average l1 load requests made per

warp (Equation 6.1). Finally, I calculate the total L1 traffic by dividing the

size of the GEMM input matrices by this l1 load efficiency.

LEIFmap =
L1 requests (fully aligned)

Warp
/
L1 requests made

Warp

=
L1 requests (fully aligned)

Warp
/dElmts requested

Elmts used
× Bytes

Warp
× L1 requests

Bytes
e

(6.1)

6.3.2 L2 Cache Traffic

In the im2col GEMM, the IFmap matrix involves many duplicated

data accesses, exhibiting high spatial and temporal locality. An L1 cache can

capture the reuse within one CTA’s IFmap tile but not across active CTAs

124

12 13 14
13
14
15

14
15

15

16
16
17

18
19
20
21

19
20
21

20
21

22
22
23

12 13 14
13
14
15

14
15

15

16
16
17

18
19
20
21

19
20
21

20
21

22
22
23

0
0

bl
k

M

❶ ❷
1 2

1 2 3
2 3 4
3 4 5

1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

6
7
8
9

7
8
9
10

8
9
10
11

12 13 14
13
14
15

14
15

15

16
16
17

18
19
20
21

19
20
21

20
21

22
22
23

0 1 2
1 2 3

6
7
8
9

7
8
9
10

8
9
10
11

12 13 14
13
14
15

14
15

15

16
16
17

18
19
20
21

19
20
21

20
21

22
22
23

6
7

7
8

8
9

6
7

7
8

8
9

24
25
26
27

25
26
27
28

26
27
28
29

24
25
26
27

25
26
27
28

26
27
28
29

30
31
32
33

31
32
33
34

32
33
34
35

0 1 2
1 2 3
2 3 4
3 4 5
6
7
8
9

7
8
9
10

8
9
10
11

12 13 14
13
14
15

14
15

15

16
16
17

18
19
20
21

19
20
21

20
21

22
22
23

0 1 2
1 2 3

6
7
8
9

7
8
9
10

8
9
10
11

12 13 14
13
14
15

14
15

15

16
16
17

18
19
20
21

19
20
21

20
21

22
22
23

6
7

7
8

8
9

6
7

7
8

8
9

24
25
26
27

25
26
27
28

26
27
28
29

24
25
26
27

25
26
27
28

26
27
28
29

30
31
32
33

31
32
33
34

32
33
34
35

blk K

IFmap
…

…

A

B
C

Figure 6.4: IFmap matrix layout of im2col GEMM. The elements in blkM×blkK
tile are the input for one main loop.

per SM given its small size (∼32KB). With this assumption, my L2 model

estimates the traffic by identifying the unique data requests made in a CTA

input tile.

I extend the example used in Section 6.3.1 to explain my L2 traffic

model (Figure 6.4). Again, IFmap elements visited by one filter are remapped

as a column in the IFmap matrix (¶) and the next column contains the IFmap

data traversed by another filter (·). This access pattern entails large data

locality shown by the duplicated data elements in the white doted boxes. As

L1 cache captures the locality within each tile, only the unique elements are

requested from L2. I use the address range of data within one IFmap tile

(difference between the smallest and the largest address) to estimate the size

125

of memory requests to L2 in the tile. Specifically, within each IFmap tile, the

accessed address increases from top to bottom and from left to the right.

Given this memory access pattern, the address distances of both the

vertical edges of an input block (A and B) and the horizontal edges (B and C)

effectively represent the unique data elements requested by the input block.

If an input block ranges across multiple data samples or channels, additional

load requests are made (elements in the dotted blue boxes), which extends the

effective vertical and horizontal distances. I estimate the L2 requests of each

input block by calculating the average vertical and horizontal distances.

6.3.3 DRAM Traffic

CTAs in a GEMM kernel share data of both input matrices. As L2

cache is shared by all SMs, the CTAs executed in parallel by all SMs (a CTA

batch) can reuse such shared data. However, the specific inter-CTA data reuse

depends on CTA scheduling. My DRAM traffic model assumes the GPU uses

column-wise CTA scheduling considering im2col GEMM’s skinny shape. I

estimate the DRAM traffic by identifying the unique data elements within a

CTA batch.

CTA tile array of im2col GEMM is tall as its height is set by the

product of the height and width of a feature, and the size of the mini-batch.

In contrast, its width is relatively narrow and is equal to the number of output

channels. Thus, im2col GEMM CTA tile array has a high aspect ratio making

it have more CTAs in the column direction than in the row direction. This

126

❶ ❷ ❸Filter

IFmap

CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA

IFmap

CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA

Filter

IFmap

CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA
CTA CTA

Filter

Figure 6.5: IFmap and filter data reference at sequences of processing CTA
batches (¶, ·, and ¸)

increases the chance that CTAs in the same column to be executed in parallel.

¶ to ¸ in Figure 6.5 illustrate the sequences of processing CTA batches. In

this example, the GPU has 20 CTAs and there are 8 SMs so the CTA batch

size is 8. At each step, the SMs fetch the red boxed IFmap and filter data.

At the sequence of ¶, ·, and ¸, many CTAs refer to the same filter

data, which makes the filter data have a short reuse distance thus increasing the

chance of L2 cache locality. Also, each conv layer’s total filter size is generally

only a few megabytes for recent CNNs [96, 36], so I effectively consider filter

data as loaded from DRAM just once. On the other hand, the IFmaps have

long rereference distances between columns of CTA tiles in the CTA tile array.

Therefore, the overlapping IFmap data across ¶, ·, and ¸ are fetched twice.

This makes the effective IFmap data load counts the same as the columns of

CTA tiles in the GEMM. Thus, I effectively estimate the total DRAM traffic

by adding the filter data size and the feature data multiplied by the number

of columns of a CTA array.

127

DRAM → REGpre

SMEM→
REGcmp

MACs

REGpre →
SMEM

SMEM→
REGcmp

SMEM→
REGcmp

SMEM→
REGcmp

SMEM→
REGcmp

SMEM→
REGcmp

SMEM→
REGcmp

SMEM→
REGcmp

MACs MACs MACs MACs MACs MACs MACs

__syncthreads
Single main loop iteration

GSL:

SAS:
CS:

Figure 6.6: Execution time breakdown of a software pipelined GEMM main
loop [7]. Three execution streams: global load stream (GLS), shared load stream
(SAS), and compute stream (CS)

6.4 GPU Performance Modeling

DeLTA predicts convolution layer’s execution time and its performance

bottleneck using the memory traffic estimates extracted from my memory

traffic model. To identify the execution bottleneck, my model analyzes the

compute and memory access streams in the highly software-pipelined GEMM

kernel each of which uses different GPU resources. Figure 6.6 shows the execu-

tion time breakdown of the software pipelined GEMM main loop [7] (arrows

indicate dependencies between execution blocks). Three execution streams

proceed in parallel to maximize resource utilization: the global load stream

(GLS), shared memory access stream (SAS), and compute stream (CS), that

each exercise a different resource. I use this main-loop execution pipelining

model to estimate the loop execution time of a convolution layer and to analyze

GPU resource utilization.

First, the global load stream (GLS) loads inputs from the global

memory to the registers for prefetch and then to SMEM. GLS execution time

is determined by both the latency to load data from the global memory and

to store it to SMEM. The total load time consists of the (empty) pipeline

128

latency and the transfer latency. The pipeline latency is the data flight time

and it includes cache tagging, buffer pipelining, and all circuit data paths.

Pipeline latency is fixed regardless of memory traffic, however, data transfer

time increases with the data volume because of the limited bus bandwidth.

DeLTA calculates GLS execution time by comparing the load latency from

L1, L2, and DRAM using the traffic estimated by the proposed memory traffic

model as Equation 6.2. Here, LAT , TpL, and BW indicate load latency, traffic

per main loop, and memory bandwidth of each memory level respectively.

tGLS = max
(
LATL1 +

TpLL1

BWL1
, LATL2 +

TpLL2

BWL2/NumSM
,

LATDRAM +
TpLDRAM

BWDRAM/NumSM

) (6.2)

Second, the shared memory access stream (SAS) loads the

prefetched data from the SMEM to registers. The execution time of SAS

is bound by the SMEM bandwidth and the data volume of both the SMEM

loads and the SMEM stores (from GLS). This is because the loads from SMEM

share the same data path with the stores to SMEM. The data volume of

the SMEM stores is set by the CTA blocking factors (blkN + blkM) × blkK .

Then, the SMEM loads transfer the stored data to registers for computation

of each warp Figure 6.2, thus their data volume is set by the warp blocking

factors (blkWN + blkWM)× blkK multiplied by the number of warps per CTA

(Numwarps). I calculate the SAS execution time per main loop by dividing

the data volume of the SMEM stores and SMEM loads by their respective

bandwidth Equation 6.3.

tSAS =
(blkM +blkN)×blkK

BWSMEM ST
+

(blkWM +blkWN)×blkK×Numwarps

BWSMEM LD
(6.3)

129

Finally, the compute stream (CS) performs matrix multiplication

and accumulation (MAC) operations and its execution time is determined by

the compute throughput of each SM. The GEMM kernel interleaves pieces

of SAS over CS to hide the SMEM access latency. Therefore, if CS is the

execution time bottleneck, the loop execution time is the number operations

per main-loop divided by MAC bandwidth.

6.4.1 Multi-CTA Interleaving

When an SM has multiple active CTAs, tGLS can be further hidden by

tSAS or tCS phases of other CTSs. Especially, the execution time prediction

in the context of CTA interleaving is important for GPU with high compute

throughput. This is because tCS per main loop can be shorter than tGLS thus

needing multiple CTAs to hide the load latency.

Given multiple CTAs to interleave, I model the execution time of the

active CTAs with four potential resource bottleneck cases (Figure 6.7). The

examples (case 1–4) have multiple CTAs to interleave and each row is the time

slot for one CTA. I use the simple CTA loop execution time model depicted

in Figure 6.7a as the base. The computes and SMEM accesses are spread over

a loop iteration (gray background color).

In case 1, the loop execution time per CTA is bottlenecked by tCS

or tSAS so I calculate the loop execution time of a CTA batch by adding

max(tCS, tSAS) of all active CTAs per SM. Second, if tCS of all CTAs is shorter

than tGLS but longer than the memory transfer latency, the loop execution time

130

per CTA batch equals to a single CTA’s tGLS (case 2). In this case, each SM

has insufficient number of CTAs to hide the loads from the global memory so

SM resources are wasted until the entire data arrives for the next loop itera-

tion. Third, if an SM has many CTAs to interleave, tGLS can be completely

Global loads
Pipe latency Transfer latency SEME store latency MAX(MACs,

SMEM access)

SMEM stores

max(tCS, tSAS)tGSL

(a) Simplified CTA GEMM main loop execution timing model

CTA1
CTA2

CTA3

= 3x tCS (or tSAS)Loop execution time
Active CTAs

(b) Case 1. max(tCS , tSAS) ≥ tGLS

= tGLS

CTA2
CTA3

tCS
Loop execution time

Active CTAs
CTA1

(c) Case 2. tGLS ≥ tCS ×NumACT CTA

CTA2
CTA3

CTA4

Loop execution time
Active CTAs = 4x tCS (or tSAS)

CTA1

(d) Case 3. max(tCS , tSAS)×NumACT CTA ≥ tGLS

CTA2
CTA3

Loop execution time
Active CTAs = 3x tBW

CTA1

(e) Case 4. max(tL1 BW , tL2 BW , tDRAM BW) ≥ tCS

Figure 6.7: GEMM loop execution model of active CTAs with different GPU
resource bottlenecks.

131

hidden by the time for computation or SMEM access (case 3). Finally, if

the memory bandwidth becomes the bottleneck due to high data transfer time

(red portion), CTA batch loop execution time is mostly dependent on the data

transfer time of the active CTAs (case 4). DeLTA estimates the loop time by

comparing the four possible performance bottlenecks.

Eventually, I derive the total execution time of all CTAs allocated per

SM by different execution constraints (Equation 6.4, Equation 6.5, and Equa-

tion 6.6). Equation 6.4 is used to compute the execution time of case 1 and 3.

Equation 6.5 and Equation 6.6 are used for case 2 and 4 respectively (Equa-

tion 6.6 derives three sub-results each for L1, L2, and DRAM BW). Then, the

largest result of all cases becomes the per-SM execution time and its perfor-

mance bottleneck.

tMAC(sm)(SMEM(sm)) =
(
tCS(tSMEM)× K

blkK
+ tEpilogue

)
× NumCTA

NumSM
(6.4)

tDRAM LAT(sm)
=
(
tGLS + max

(tCS

blkK
,
tSAS

blkK

))
× K

blkK
+ tbig)× NCTA/NSM

NACT CTA

(6.5)

tMEM BW(sm)
=
(

max(tL1 BW , tL2 BW , tDRAM BW)× K

blkK
+ tEpilogue bottleneck

)
×

NumCTA

NumSM

(6.6)

6.5 Evaluation

6.5.1 Evaluation Environment

Device Specification. I compare the data traffic and performance estimates

to the measured data on two Pascal GPUs (TITAN Xp and P100) [74] and

one Volta GPU (V100) [76] (Table 6.1). Since the memory access latencies

132

and bandwidths are not specified by NVIDIA, I measure the access latency

and bandwidth to L1, L2, and DRAM using microbenchmarks (both new and

from prior work [70]).

Table 6.1: GPU device specifications

Specifications Pascal TITAN Xp Pascal P100 Volta V100
NumSM 30 56 84
Core clock 1.58 GHz 1.2GHz 1.38GHz
BWMAC (FP32) 12134 GFLOPS 8602 GFLOPS 14837 GFLOPS

SizeREG 256 KB/SM 256 KB/SM 256 KB/SM

SizeSMEM 96 KB/SM 64 KB/SM ≤94 KB/SM

BWL1 92 GB/s/SM 38.1 GB/s/SM 94.1 GB/s/SM

BWL2 1051 GB/s 1382 GB/s 2167 GB/s

BWDRAM 450 GB/s 550 GB/s 850 GB/s
SizeL2 3MB 4MB 6MB

Benchmarks. I evaluate DeLTA on the convolution layers of four popu-

lar CNNs (AlexNet [57], VGGNet [92], GoogLeNet (Inception v3) [96], and

ResNet [36]) used for ImageNet dataset training and prediction [88]. Because

many convolution layers in these CNNs share configurations, I show the re-

sults on the unique subset. Unless specified, a mini-batch size of 256 is used for

all evaluated layers. I use cuDNN ConvolutionForward API with IMPLICIT

PRECOMP GEMM algorithm to run convolution layers compiled with CUDA

v8.0 and cuDNN v7.0.

6.5.2 Memory Traffic Model

Figure 6.8, Figure 6.9, and Figure 6.10 show DeLTA estimates of data

traffic for L1, L2, and DRAM normalized to the measurement of three differ-

ent GPUs for all unique layer configurations of the 4 evaluated CNNs. Both

133

N
or

m
al

ize
d

L1
 tr

affi
c

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5 conv6 conv8 conv11

Alexnet VGG16

Titan Xp P100 V100

(a) AlexNet and VGG16

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
red

3a
_5
x5

3a
_5
x5
red

4b
_1
x1

4b
_3
x3

4b
_3
x3
red

4b
_5
x5

4b
_5
x5
red

4e
_1
x1

4e
_3
x3

4e
_3
x3
red

4e
_5
x5

4e
_5
x5
red

5a
_1
x1

5a
_3
x3

5a
_3
x3
red

5a
_5
x5

5a
_5
x5
red

N
or

m
al

ize
d

L1
 tr

affi
c

Titan Xp P100 V100

(b) GoogLeNet

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

N
or

m
al

ize
d

L1
 tr

affi
c

Titan Xp P100 V100

(c) ResNet

Figure 6.8: L1 traffic estimates of the unique convolution layers by DeLTA
normalized to the measured values on three different GPUs

134

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5 conv6 conv8 conv11

Alexnet VGG16

N
or

m
al

ize
d

L2
 tr

affi
c

Titan Xp P100 V100

1.81 1.89 1.89

(a) AlexNet and VGG16

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
red

3a
_5
x5

3a
_5
x5
red

4b
_1
x1

4b
_3
x3

4b
_3
x3
red

4b
_5
x5

4b
_5
x5
red

4e
_1
x1

4e
_3
x3

4e
_3
x3
red

4e
_5
x5

4e
_5
x5
red

5a
_1
x1

5a
_3
x3

5a
_3
x3
red

5a
_5
x5

5a
_5
x5
red

N
or

m
al

ize
d

L2
 tr

affi
c

Titan Xp P100 V100

2.19 2.99

(b) GoogLeNet

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

N
or

m
al

ize
d

L2
 tr

affi
c

Titan Xp P100 V100

2.19

(c) ResNet

Figure 6.9: L2 traffic estimates of the unique convolution layers by DeLTA
normalized to the measured values on three different GPUs

135

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5 conv6 conv8 conv11

Alexnet VGG16

N
or

m
al

ize
d

DR
AM

 tr
affi

c

Titan Xp P100 V100

(a) AlexNet and VGG16

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
red

3a
_5
x5

3a
_5
x5
red

4b
_1
x1

4b
_3
x3

4b
_3
x3
red

4b
_5
x5

4b
_5
x5
red

4e
_1
x1

4e
_3
x3

4e
_3
x3
red

4e
_5
x5

4e
_5
x5
red

5a
_1
x1

5a
_3
x3

5a
_3
x3
red

5a
_5
x5

5a
_5
x5
red

2.25 1.94 4.40

N
or

m
al

ize
d

DR
AM

 tr
affi

c

Titan Xp P100 V100

(b) GoogLeNet

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

2.62 1.90 2.63

N
or

m
al

ize
d

DR
AM

 tr
affi

c

Titan Xp P100 V100

(c) ResNet

Figure 6.10: DRAM traffic estimates of the unique convolution layers by DeLTA
normalized to the measured values on three different GPUs

136

TITAN Xp and P100 use the same kernels and have an L1 request size of 128B

so the measured and predicted L1 traffic is the same for both. DeLTA shows

high accuracy with a GMAE (geometric mean absolute error) of 4.6% (7.9%

standard deviation). I am unsure of the L1 request size for Volta and exper-

imented with 32B, 64B, and 128B granularity settings for DeLTA. I observed

the best match to measurements with 32B L1 requests and DeLTA matches

measured GV100 results with a GMAE (Geometric Mean Absolute Error) of

6.9% (13.3% stdev).

The modeled L2 traffic has a larger variation in error than L1 traffic.

L2 traffic is the result of misses in L1 and my model makes the simplifying

assumption that there is no overlap in data access to L1 between different

CTAs. I hypothesize that the greater error is indeed the result of multiple

concurrent CTAs reusing some data in L1. Two observations from the result

strongly support my hypothesis. First, DeLTA over-estimates traffic primarily

for layers that have larger features, which lead to greater opportunity for

reuse between CTAs. Second, I see larger modeling errors for V100 than

P100 and Titan XP. The V100 architecture has larger L1 caches (unified with

SMEM) [76] that can also contribute to more reuse across CTAs. Overall,

DeLTA is still quite accurate with the GMAE and standard deviation (in

parentheses) being 4.2% (7.2%) for Titan XP, 6.2% (14.4%) for P100, and

12.4% (25.0%) for V100.

The modeled DRAM traffic is very accurate overall with a few no-

table outliers. Some of the layers in GoogLeNet and and ResNet have very

137

0.1

1

10

100

0.1

1

10

100

DeLTA Prior methodology

All Conv layers under evaluation All Conv layers under evaluation

5x5 & 7x7 filters

1x1 filters

(a) L2 traffic comparison (b) DRAM traffic comparison

0.1

1

10

100

N
or

m
al

ize
d

da
ta

 tr
affi

c

Figure 6.11: L2 and DRAM traffic estimates by DeLTA and prior methodology
normalized to TITAN Xp measurement

small memory footprints that can completely fit within the L2 cache. The

profiler I use to measure results reports anomalous numbers for these layers

that suggest the impossible scenario where less data is read from DRAM than

the actual footprint, leaving DeLTA with a large over-estimation. The other

source of large modeling error relates to L2 cache behavior and CTA schedul-

ing. DeLTA underestimates DRAM traffic for VGG16-conv1, GoogLeNet-

4e 5×5, and a few ResNet layers. My analysis indicates that these errors re-

sult from DeLTA identifying potential data reuse in L2 between CTAs that is

not exploited by the hardware. Overall, the DRAM traffic model shows small

GMAE (with standard deviation) of 2.8% (10.3%) for Titan Xp, 6.2% (14.4%)

for P100, and 10.2% (9.2%) for V100 (without the anomalous measurements).

Memory Traffic Comparison with Prior Models. Figure 6.11 compares

the normalized data traffic for all unique convolution layers under evaluation

for DeLTA and the prior models [114, 41]. As the prior models assume 100%

cache miss rates for both levels of caches, I apply the L1 load traffic to both

138

L2 and DRAM. Both L2 and DRAM traffic assumed by the prior models are

far from the measurements because these prior models ignore the high data

reuse in the convolution layers. The deviation is relatively small for layers

with 1×1 filters due to the low data reuse but the large filters have very large

errors. These errors are multiple factors (up to nearly 100×) larger than those

of DeLTA, and lead to wrong conclusions about performance bottlenecks of

modern GPUs with their large arithmetic to memory throughput ratios.

6.5.3 Performance Model

Figure 6.12 shows the performance estimations vs. the measured data

on TITAN Xp, along with their bottlenecks where the GMAE is 6.0%. Al-

though highly accurate, DeLTA underestimates the execution time for some

layers regardless of their bottlenecks. One major reason is that the estimated

memory traffic is uniform across each CTA’s GEMM main loop but the actual

data traffic is not. For example, if the data fetched by one iteration is reused in

the next, the first iteration execution time is bound by the data loads but the

second iteration is constrained by arithmetic throughput. Such non-uniform

execution time bottlenecks make DeLTA provide conservative estimates that

represent worst-case performance.

My evaluation shows that arithmetic throughput is the major perfor-

mance bottleneck (90% of evaluated layers), which is expected due to the high

data reuse of im2col GEMM. I also observe that some layers are bottlenecked

by other resources. L1 BW restricts the first convolution layer of AlexNet due

139

0

1

0.0
0.2
0.4
0.6
0.8
1.0
1.2

conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5 conv6 conv8 conv11

Alexnet VGG16

0

1

2

3

4

5

6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

co
nv
6

co
nv
8

co
nv
11

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
re
d

3a
_5
x5

3a
_5
x5
re
d

4b
_1
x1

4b
_3
x3

4b
_3
x3
re
d

4b
_5
x5

4b
_5
x5
re
d

4e
_1
x1

4e
_3
x3

4e
_3
x3
re
d

4e
_5
x5

4e
_5
x5
re
d

5a
_1
x1

5a
_3
x3

5a
_3
x3
re
d

5a
_5
x5

5a
_5
x5
re
d

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

Alexnet VGG16 GoogLeNet ResNet152

M
od

el
 /

 M
ea

su
re

d Normailzed execution time SMEM_BW MAC_BW L1_BW L2_BW DRAM_BW DRAM_LAT
M

od
el

 /
M

ea
su

re
d

(a) AlexNet and VGG16

0

1

0.0
0.2
0.4
0.6
0.8
1.0
1.2

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
red

3a
_5
x5

3a
_5
x5
red

4b
_1
x1

4b
_3
x3

4b
_3
x3
red

4b
_5
x5

4b
_5
x5
red

4e
_1
x1

4e
_3
x3

4e
_3
x3
red

4e
_5
x5

4e
_5
x5
red

5a
_1
x1

5a
_3
x3

5a
_3
x3
red

5a
_5
x5

5a
_5
x5
red

0

1

2

3

4

5

6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

co
nv
6

co
nv
8

co
nv
11

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
re
d

3a
_5
x5

3a
_5
x5
re
d

4b
_1
x1

4b
_3
x3

4b
_3
x3
re
d

4b
_5
x5

4b
_5
x5
re
d

4e
_1
x1

4e
_3
x3

4e
_3
x3
re
d

4e
_5
x5

4e
_5
x5
re
d

5a
_1
x1

5a
_3
x3

5a
_3
x3
re
d

5a
_5
x5

5a
_5
x5
re
d

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

Alexnet VGG16 GoogLeNet ResNet152

M
od

el
 /

 M
ea

su
re

d Normailzed execution time SMEM_BW MAC_BW L1_BW L2_BW DRAM_BW DRAM_LAT

M
od

el
 /

M
ea

su
re

d

(b) GoogLeNet

0.0
0.2
0.4
0.6
0.8
1.0
1.2

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

0

1

2

3

4

5

6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

co
nv
6

co
nv
8

co
nv
11

co
nv
1

co
nv
2_
3x
3

co
nv
2_
3x
3r

3a
_1
x1

3a
_3
x3

3a
_3
x3
re
d

3a
_5
x5

3a
_5
x5
re
d

4b
_1
x1

4b
_3
x3

4b
_3
x3
re
d

4b
_5
x5

4b
_5
x5
re
d

4e
_1
x1

4e
_3
x3

4e
_3
x3
re
d

4e
_5
x5

4e
_5
x5
re
d

5a
_1
x1

5a
_3
x3

5a
_3
x3
re
d

5a
_5
x5

5a
_5
x5
re
d

co
nv
1

co
nv
2_
1_
a

co
nv
2_
1_
b

co
nv
2_
1_
c

co
nv
2_
2_
a

co
nv
2_
2_
b

co
nv
2_
2_
c

co
nv
2_
3_
a

co
nv
2_
3_
b

co
nv
2_
3_
c

co
nv
3_
1_
a

co
nv
3_
1_
b

co
nv
3_
1_
c

co
nv
3_
2_
a

co
nv
4_
1_
a

co
nv
4_
1_
b

co
nv
4_
1_
c

co
nv
4_
2_
a

co
nv
5_
1_
a

co
nv
5_
1_
b

co
nv
5_
1_
c

co
nv
5_
2_
a

co
nv
5_
2_
b

co
nv
5_
2_
c

Alexnet VGG16 GoogLeNet ResNet152

M
od

el
 /

 M
ea

su
re

d Normailzed execution time SMEM_BW MAC_BW L1_BW L2_BW DRAM_BW DRAM_LAT

M
od

el
 /

M
ea

su
re

d

(c) ResNet

Figure 6.12: Conv layer execution time estimates by DeLTA normalized to
TITAN Xp’s and their performance bottlenecks

140

1.4

1.2

1.0

0.8

0.6

TitanXp P100 V100

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e
di

st
rib

ut
io

n

Figure 6.13: Estimated GPU performance: each normalized to measurement
using different GPUs

to its poor L1 transaction efficiency. Many layers in GoogLeNet are bottle-

necked by DRAM BW or latency. The layers bottlenecked by DRAM latency

do not have enough CTAs to hide the load latency. The layers restricted by

DRAM BW have more CTAs to interleave thus saturate the DRAM channels.

Performance Estimation for Different GPUs. Figure 6.14.a compares

the performance estimation distribution for the three GPUs. DeLTA estimates

performance best for Titan XP, but the overall accuracy is quite good For

DeLTA MR0.3 MR0.5 MR0.7 MR1.0

7

6

5

4

3

2

1N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e
di

st
rib

ut
io

n

(Prior model)

Figure 6.14: Comparison to the fixed miss rate (MR) models.

141

P100 and V100 as well with a robust low-variance estimation (10% standard

deviation). The outliers correspond to those layers for which data traffic is

poorly estimated because of dynamic behavior, as explained above.

Comparison to Fixed Miss Rate Models. Figure 6.14.b compares the

normalized performance estimation results of DeLTA and the models; while

prior work advocated using a 1.0 miss rate, I sweep a range of miss rates in the

figure. Compared to DeLTA, the other models show wider estimation errors

and a larger number of outliers. With the 1.0 miss rate advocated by the prior

models, the layer execution time is over-predicted by 1.8× on average and up

to 7×. The prediction error for the models using fixed miss rates becomes

significantly larger when compute throughput scales as many layers become

memory system resource bottleneck.

6.5.4 Fine-grain GPU Performance Scaling Study

I use DeLTA to explore GPU designs for efficient CNN performance

scaling with less HW resources. I use the entire 152 convolution layers in

ResNet152 to evaluate the potential speedup over the Titan Xp baseline. As

almost all compute kernels of ResNet are convolution layers, its performance

is dominated by their execution time. Table 6.2 shows the design options

used in my experiment. Option 1 and 2 represent the conventional way to

improve GPU performance, which keeps SM resources constant and scales the

number of SMs and L2 and DRAM BW. These options are expensive as each

extra SM involves the entire SM resources such as registers, SMEM capacity

142

and BW, and L1. For the other design options, I use the resource bottleneck

information from DeLTA to minimally scale independent resources for efficient

performance gain.

Table 6.2: GPU design options. Each column indicates a GPU design choice
and xX indicates the magnitude of increase.

Resources TitanXp 1 2 3 4 5 6 7 8 9
NSM 1X 2X 4X 1X 1X 1X 1X 1X 2X 1X

MACBW / SM 1X 1X 1X 2X 4X 4X 6X 8X 4X 8X

REGSSIZE / SM 1X 1X 1X 1X 1X 2X 2X 3X 2X 3X

SMEMSIZE / SM 1X 1X 1X 1X 1X 2X 2X 3X 2X 3X

SMEMBW / SM 1X 1X 1X 1X 1X 2X 2X 3X 2X 3X

L1BW / SM 1X 1X 1X 1X 1X 1.5X 2X 2X 2X 2X
L2BW 1X 1.5X 2X 1X 1X 1.5X 1.5X 2X 2X 2X

DRAMBW 1X 1.5X 2X 1X 1X 1.5X 2X 2X 2X 3X
CTA tile H,W 128 128 128 128 128 128 128 256 256 256

(a) Speedup normalized to
TITAN Xp

(b) Performance bottleneck
distribution of each design option

1.9

3.4

1.8 2.0

3.3

4.3

5.6 5.4

6.4

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

N
or
m
la
ize

d	
Sp
ee
du
p

1.9

3.4

1.8 2.0

3.3

4.3

5.6 5.4

6.4

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

N
or
m
la
ize

d	
Sp
ee
du
p

1.9

3.4

1.8 2.0

3.3

4.3

5.6 5.4

6.4

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

N
or
m
la
ize

d	
Sp
ee
du
p

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9

SMEM_BW MAC_BW
L1_BW L2_BW
DRAM_BW DRAM_Latency

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9

SMEM_BW MAC_BW
L1_BW L2_BW
DRAM_BW DRAM_Latency

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9

SMEM_BW MAC_BW
L1_BW L2_BW
DRAM_BW DRAM_Latency

TITAN Xp

Figure 6.15: GPU resource scaling and speedup of convolution layers in ResNet

Figure 6.15.a shows the normalized performance gain for the different

design options with their performance bottlenecks shown in Figure 6.15.b.

DeLTA predicts that increasing the number of SMs by 2× and 4× along with

143

L2 and DRAM BW improves ResNet forward propagation performance by

1.9× and 3.4×, respectively. The limiting factor is memory BW increase,

which restricts pipelined GEMM epilogue and some layers with larger memory

BW requirements. Given convolution layers are compute throughput hungry,

options 3 and 4 increase only the per core arithmetic throughput by adding

more MAC units. However, their performance headroom is only 2× with most

layers bottlenecked by DRAM BW and SM resources.

Based on these observations, option 5 minimally increases resources to

avoid bottlenecks, showing similar performance gains to option 2 with far lower

hardware resource increases. Option 6 further increases compute throughput

but DeLTA shows that now L2 BW becomes the limiter. From option 7 to 9,

I increase the size of the GEMM tiles given the high compute throughput to

memory bandwidth ratio. Such GEMM parameter choices are only beneficial

for GPU designs with high arithmetic throughput, otherwise the performance

is restricted by the memory system BW. Design option 8 increases the number

of SMs by 2×, but DeLTA shows that increasing DRAM BW is more bene-

ficial than doubling the SM resources (option 9). As such, using DeLTA and

model of the potential hardware resource costs, GPU architecture can be more

efficiently optimized for CNN performance.

6.6 Discussion: Generalization of DeLTA

Back-propagation Convolution Layer Kernel Modeling. In this disser-

tation, I evaluate the convolution kernels only in network forward propagation

144

(FPROP). However, in back-propagation, each convolution layer involves two

GEMM kernels that compute the gradients of loss w.r.t the weights (WGRAD)

and the upstream loss gradients (DGRAD) respectively. DGRAD convolution

kernels involve similar memory access patterns of the FPROP convolution

kernels except for the input matrix transpose. I simply applied DeLTA to

DGRAD convolution kernels and confirmed high traffic and performance pre-

diction accuracy using NVIDIA TITAN Xp GPU. However, WGRAD con-

volution kernels have different GEMM dimensions because the GEMM input

and accumulation dimensions are switched. Thus, WGRAD convolution ker-

nels of early layers have a few CTAs due to their small GEMM output size of

[input channels × filter size] × [output channels] but have deep accumula-

tion depth of batch×OFmap size. This causes load imbalance across SMs on

GPU and inefficient DRAM bandwidth utilization and eventually DeLTA fails

to estimate accurate memory traffic and performance. The WGRAD kernel

can be optimized for better resource utilization by splitting the GEMM accu-

mulation dimension into multiple CTAs followed by inter-CTA reduction and

DeLTA can be easily tunned for such software changes.

Application to General Data-parallel Kernels. DeLTA is limited to only

the data-parallel kernels without indirect memory accesses. Given the mem-

ory access patterns and the blocking factors of a data-parallel application are

known by analyzing the kernel codes, the memory traffic modeling mechanisms

of DeLTA can easily be used to estimate its memory traffic. However, if the

working set of applications is smaller than or similar to the size of GPU caches,

145

the prediction accuracy will significantly drop because DeLTA mainly relies on

the spatial locality of each blocked memory load. I also model this caching

impact to the memory traffic using polynomial regression using the measured

inputs of three different GPUs. However, they are limited to a particular ap-

plication so the trained parameters for convolution kernels should be retrained

for different applications and they are not reliably reusable for different GPU

generations.

6.7 Summary

In this chapter, I introduce DeLTA, a GPU memory traffic model that

accurately estimates the memory traffic of convolution layers at all levels of the

GPU system. I analyze the complex memory access patterns of im2col GEMM,

the most-commonly used convolution algorithms for accelerating CNNs on

GPUs. I also study the GEMM execution blocking mechanism that affects the

spatial data reuse at different memory levels. I use the estimated traffic to

model the expected performance of a convolution layer executed on different

GPUs, where all important GPU characteristics are parameterized to enable

the rapid identification of bottlenecks and the evaluation of design tradeoffs.

I eventually show how my models can be used to explore the design space and

better tune GPU resource provisioning for CNNs when compared to equally

scaling all resources or ignoring the need for higher memory bandwidth as

arithmetic throughput increases.

146

Chapter 7

Conclusion

High computation throughput and memory bandwidth demands for fast

CNN processing have opened a new heyday of data-parallel processors and do-

main specific accelerators. This dissertation presents memory bandwidth- and

computation-efficient CNN model training methods by co-optimizing training

workload scheduling, learning algorithms, and the accelerator architecture. I

demonstrate that the proposed memory bandwidth-efficient training speeds up

training even with cheaper hardware resources and the proposed computation-

efficient training reduces the computations needed for training with minor

accuracy impact.

Serializing Mini-batched CNN Training. I explore the inter-layer data

reuse opportunities in CNN training and show that the conventional mini-

batch SGD training used with an existing accelerator cannot utilize this lo-

cality. Then, I propose a partial mini-batch serialization that not only re-

moves most redundant memory accesses by capturing the inter-layer locality

but supports high PE utilization by maintaining high data parallelism across

layers. To apply the partial mini-batch serialization to modern CNN models,

I adapt Group Normalization and avoid layer-wise synchronization. Finally,

147

I introduce a training accelerator that adopts the architectural optimizations

to support gap-less matrix operation pipelining given the proposed training

scheduling changes.

Structured Model Pruning During Training. I present a method to

prune model parameters during training to gradually reduce computation cost

of training. This is based on my observation that pruning non-critical param-

eters during training has negligible impact to the learning quality. I struc-

turally prune these parameters using group lasso regularization to provide

high data parallelism without involving complex data indexing, which main-

tains high compute unit utilization. For the practical implementation of this

training method to modern CNN models, I propose key algorithmic optimiza-

tions. The proposed optimizations remove the need for the memory accesses

caused by tensor reshaping, dynamically increase the training mini-batch size

to increase both the data parallelism and reduce both memory accesses and

inter-accelerator communication.

Flexible Systolic Array Architecture for Efficient Pruned CNN

Model Training. I introduce the problem that training a pruned CNN mod-

els on a large systolic core causes severe PE underutilization. To mitigate this

PE underutilization, I propose a flexible systolic array architecture that it re-

configures its structure to efficiently process GEMM tiles with different shapes.

To provide this reconfigurability, I use four small cores to support three inter-

core operating modes, each designed for mapping GEMM tiles with different

148

shapes efficiently to systolic arrays. I also propose heuristics to map the tiled

GEMM to inter-core operating modes that leads to near-optimal PE utilization

and high input reuse. The proposed systolic array architecture and its efficient

utilization achieves as high PE utilization as using multiple independent cores

and as high input reuse as using a single large core.

Data Traffic Modeling for Efficient CNN Performance Scaling. I de-

velop a GPU performance model to estimate accurate CNN execution time on

future GPU designs. Given that efficient CNN acceleration requires a balance

between computing throughput and memory bandwidth, I propose a mem-

ory traffic model that accurately estimates the data traffic at a different level

of GPU memory hierarchy. The proposed memory traffic model involves an

in-depth analysis of the memory access patterns of data-parallel convolution

layer kernels and the spatial locality coupled with the memory access granu-

larity of different memory levels. I show that the proposed GPU performance

model can be used to fine-tune the hardware resources for cost-efficient CNN

performance scaling.

149

Bibliography

[1] Tor M Aamodt, Wilson WL Fung, I Singh, A El-Shafiey, J Kwa, T Het-

herington, A Gubran, A Boktor, T Rogers, A Bakhoda, et al. Gpgpu-

sim 3. x manual, 2012.

[2] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large

minibatch sgd: training resnet-50 on imagenet in 15 minutes. arXiv

preprint arXiv:1711.04325, 2017.

[3] Jose M Alvarez and Mathieu Salzmann. Learning the number of neu-

rons in deep networks. In Advances in Neural Information Processing

Systems, pages 2270–2278, 2016.

[4] Jose M Alvarez and Mathieu Salzmann. Compression-aware training of

deep networks. In Advances in Neural Information Processing Systems,

pages 856–867, 2017.

[5] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-

layer cnn accelerators. In Microarchitecture (MICRO), 2016 49th An-

nual IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[6] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,

Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-

zaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end

150

speech recognition in english and mandarin. In International conference

on machine learning, pages 173–182, 2016.

[7] Julien Demouth Andrew Kerr, Duane Merrill and John Tran. Cutlass:

Fast linear algebra in cuda c++. NVIDIA Developer Blog, 2017.

[8] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured prun-

ing of deep convolutional neural networks. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 13(3):32, 2017.

[9] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen,

Alexandre V Evfimievski, and Niketan Pansare. On optimizing operator

fusion plans for large-scale machine learning in systemml. Proceedings

of the VLDB Endowment, 11(12):1755–1768, 2018.

[10] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization meth-

ods for large-scale machine learning. Siam Review, 60(2):223–311, 2018.

[11] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis

of deep neural network models for practical applications. arXiv preprint

arXiv:1605.07678, 2016.

[12] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brock-

man, and Norman P Jouppi. Cacti-3dd: Architecture-level modeling for

3d die-stacked dram main memory. In Proceedings of the Conference on

Design, Automation and Test in Europe, pages 33–38. EDA Consortium,

2012.

151

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training

deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174,

2016.

[14] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,

Yunji Chen, and Olivier Temam. Diannao: A small-footprint high-

throughput accelerator for ubiquitous machine-learning. ACM Sigplan

Notices, 49(4):269–284, 2014.

[15] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eye-

riss: An energy-efficient reconfigurable accelerator for deep convolutional

neural networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,

2017.

[16] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss

v2: A flexible accelerator for emerging deep neural networks on mobile

devices. IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, 2019.

[17] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,

Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A

machine-learning supercomputer. In Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 609–

622. IEEE Computer Society, 2014.

[18] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model

152

compression and acceleration for deep neural networks. arXiv preprint

arXiv:1710.09282, 2017.

[19] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,

John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient

primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[20] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan

Vaidynathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and

Pradeep Dubey. Distributed deep learning using synchronous stochastic

gradient descent. arXiv preprint arXiv:1602.06709, 2016.

[21] Jeff Dean. Machine learning for systems and systems for machine learn-

ing. 2017.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language un-

derstanding. arXiv preprint arXiv:1810.04805, 2018.

[24] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao

Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:

Shifting vision processing closer to the sensor. In ACM SIGARCH

Computer Architecture News, volume 43, pages 92–104. ACM, 2015.

153

[25] Jiashi Feng and Trevor Darrell. Learning the structure of deep convo-

lutional networks. In Proceedings of the IEEE international conference

on computer vision, pages 2749–2757, 2015.

[26] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massen-

gill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan

Adams, Mahdi Ghandi, et al. A configurable cloud-scale dnn proces-

sor for real-time ai. In Proceedings of the 45th Annual International

Symposium on Computer Architecture, pages 1–14. IEEE Press, 2018.

[27] Hiroshi Fuketa, Koji Hirairi, Tadashi Yasufuku, Makoto Takamiya,

Masahiro Nomura, Hirofumi Shinohara, and Takayasu Sakurai. Min-

imizing energy of integer unit by higher voltage flip-flop: Vddmin-aware

dual supply voltage technique. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 21(6):1175–1179, 2013.

[28] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos

Kozyrakis. Tetris: Scalable and efficient neural network acceleration

with 3d memory. ACM SIGOPS Operating Systems Review, 51(2):751–

764, 2017.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaim-

ing He. Accurate, large minibatch sgd: training imagenet in 1 hour.

arXiv preprint arXiv:1706.02677, 2017.

154

[30] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving

neural language models with a continuous cache. arXiv preprint

arXiv:1612.04426, 2016.

[31] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,

Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Effi-

cient speech recognition engine with sparse lstm on fpga. In Pro-

ceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pages 75–84. ACM, 2017.

[32] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A

Horowitz, and William J Dally. Eie: efficient inference engine on com-

pressed deep neural network. In Computer Architecture (ISCA), 2016

ACM/IEEE 43rd Annual International Symposium on, pages 243–254.

IEEE, 2016.

[33] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[34] Song Han, Jeff Pool, John Tran, and William Dally. Learning both

weights and connections for efficient neural network. In Advances in

neural information processing systems, pages 1135–1143, 2015.

[35] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask

r-cnn. In Proceedings of the IEEE international conference on computer

vision, pages 2961–2969, 2017.

155

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 770–778, 2016.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity

mappings in deep residual networks. In European conference on com-

puter vision, pages 630–645. Springer, 2016.

[38] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han.

Amc: Automl for model compression and acceleration on mobile de-

vices. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 784–800, 2018.

[39] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for ac-

celerating very deep neural networks. In International Conference on

Computer Vision (ICCV), volume 2, 2017.

[40] Brian Hickmann, Andrew Krioukov, Michael Schulte, and Mark Erle.

A parallel ieee p754 decimal floating-point multiplier. In Computer

Design, 2007. ICCD 2007. 25th International Conference on, pages

296–303. IEEE, 2007.

[41] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu archi-

tecture with memory-level and thread-level parallelism awareness. In

ACM SIGARCH Computer Architecture News, volume 37, pages 152–

163. ACM, 2009.

156

[42] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-

jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mo-

bilenets: Efficient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[43] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network

trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv preprint arXiv:1607.03250, 2016.

[44] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks.

arXiv preprint arXiv:1709.01507, 7, 2017.

[45] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In CVPR, volume 1,

page 3, 2017.

[46] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-

ing deep network training by reducing internal covariate shift. arXiv

preprint arXiv:1502.03167, 2015.

[47] Stanislaw Jastrzkebski, Zachary Kenton, Devansh Arpit, Nicolas Bal-

las, Asja Fischer, Yoshua Bengio, and Amos Storkey. Three factors

influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

[48] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,

Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al.

Highly scalable deep learning training system with mixed-precision:

157

Training imagenet in four minutes. arXiv preprint arXiv:1807.11205,

2018.

[49] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:

Convolutional architecture for fast feature embedding. In Proceedings

of the 22nd ACM international conference on Multimedia, pages 675–

678. ACM, 2014.

[50] Joint Electron Device Engineering Council. High Bandwidth Memory

(HBM) DRAM, JESD235A, Jan. 2016.

[51] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, et al. In-datacenter performance analysis of a tensor pro-

cessing unit. In Proceedings of the 44th Annual International Symposium

on Computer Architecture, pages 1–12. ACM, 2017.

[52] Wonkyung Jung, Daejin Jung, Sunjung Lee, Wonjong Rhee, Jung Ho

Ahn, et al. Restructuring batch normalization to accelerate cnn train-

ing. arXiv preprint arXiv:1807.01702, 2018.

[53] Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion

2.0: A fast and accurate noc power and area model for early-stage de-

sign space exploration. In Proceedings of the conference on Design,

Automation and Test in Europe, pages 423–428. European Design and

Automation Association, 2009.

158

[54] Yejoong Kim, Wanyeong Jung, Inhee Lee, Qing Dong, Michael Henry,

Dennis Sylvester, and David Blaauw. 27.8 a static contention-free

single-phase-clocked 24t flip-flop in 45nm for low-power applications.

In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2014 IEEE International, pages 466–467. IEEE, 2014.

[55] Yooseong Kim and Aviral Shrivastava. Cumapz: a tool to analyze

memory access patterns in cuda. In Design Automation Conference

(DAC), 2011 48th ACM/EDAC/IEEE, pages 128–133. IEEE, 2011.

[56] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of fea-

tures from tiny images. Technical report, Citeseer, 2009.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In Advances in

neural information processing systems, pages 1097–1105, 2012.

[58] Hsiang-Tsung Kung. Why systolic architectures? IEEE computer,

15(1):37–46, 1982.

[59] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning

gemm kernels for the fermi gpu. IEEE Transactions on Parallel and

Distributed Systems, 23(11):2045–2057, 2012.

[60] Junjie Lai. Throughput-oriented analytical models for performance esti-

mation on programmable hardware accelerators. PhD thesis, Université

Rennes 1, 2013.

159

[61] Junjie Lai and André Seznec. Performance upper bound analysis and

optimization of sgemm on fermi and kepler gpus. In Proceedings of

the 2013 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), pages 1–10. IEEE Computer Society, 2013.

[62] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeon-

gon Cho, and Soojung Ryu. Improving gpgpu resource utilization

through alternative thread block scheduling. In High Performance Com-

puter Architecture (HPCA), 2014 IEEE 20th International Symposium

on, pages 260–271. IEEE, 2014.

[63] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient

mini-batch training for stochastic optimization. In Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 661–670. ACM, 2014.

[64] Youjie Li, Jongse Park, Mohammad Alian, Yifan Yuan, Zheng Qu,

Peitian Pan, Ren Wang, Alexander Schwing, Hadi Esmaeilzadeh, and

Nam Sung Kim. A network-centric hardware/algorithm co-design to

accelerate distributed training of deep neural networks. In 2018 51st

Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pages 175–188. IEEE, 2018.

[65] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariha-

ran, and Serge Belongie. Feature pyramid networks for object detection.

160

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2117–2125, 2017.

[66] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.

Focal loss for dense object detection. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2980–2988, 2017.

[67] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xi-

aowei Li. Flexflow: A flexible dataflow accelerator architecture for con-

volutional neural networks. In High Performance Computer Architec-

ture (HPCA), 2017 IEEE International Symposium on, pages 553–564.

IEEE, 2017.

[68] Minh-Thang Luong and Christopher D. Manning. Achieving open vo-

cabulary neural machine translation with hybrid word-character models.

In Association for Computational Linguistics (ACL), Berlin, Germany,

August 2016.

[69] Sangkug Lym, Armand Behroozi, Wei Wen, Ge Li, Yongkee Kwon, and

Mattan Erez. Mini-batch serialization: Cnn training with inter-layer

data reuse. arXiv preprint arXiv:1810.00307, 2018.

[70] Xinxin Mei and Xiaowen Chu. Dissecting gpu memory hierarchy

through microbenchmarking. IEEE Transactions on Parallel and Dis-

tributed Systems, 28(1):72–86, 2017.

161

[71] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,

Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii

Kuchaev, Ganesh Venkatesh, et al. Mixed precision training. arXiv

preprint arXiv:1710.03740, 2017.

[72] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan

Kautz. Pruning convolutional neural networks for resource efficient

transfer learning. CoRR, abs/1611.06440, 2016.

[73] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-

stricted boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10), pages 807–814, 2010.

[74] nvidia. Nvidia tesla p100. White paper, 2016.

[75] nvidia. Nvidia tesla p100 gpu architecture. White paper, 2016.

[76] nvidia. Nvidia tesla v100 gpu architecture. White paper, 2017.

[77] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,

Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W

Keckler, and William J Dally. Scnn: An accelerator for compressed-

sparse convolutional neural networks. In Proceedings of the 44th An-

nual International Symposium on Computer Architecture, pages 27–40.

ACM, 2017.

[78] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind

Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,

162

Satish Nadathur, et al. Deep learning inference in facebook data centers:

Characterization, performance optimizations and hardware implications.

arXiv preprint arXiv:1811.09886, 2018.

[79] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and

Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[80] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A

Wood. gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer

Architecture Letters, 14(1):34–36, 2014.

[81] Raul Puri, Robert Kirby, Nikolai Yakovenko, and Bryan Catanzaro.

Large scale language modeling: Converging on 40gb of text in four

hours. In 2018 30th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), pages 290–297. IEEE,

2018.

[82] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

Squad: 100,000+ questions for machine comprehension of text. arXiv

preprint arXiv:1606.05250, 2016.

[83] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Reg-

ularized evolution for image classifier architecture search. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 33, pages

4780–4789, 2019.

163

[84] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages

779–788, 2016.

[85] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:

Towards real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages 91–99, 2015.

[86] Mark Robins. The future of deep learning: Challenges & solutions. In

Proceedings of the Computing Frontiers Conference, pages ii–ii. ACM,

2017.

[87] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer

Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele,

Roman Levenstein, et al. Glow: Graph lowering compiler techniques for

neural networks. arXiv preprint arXiv:1805.00907, 2018.

[88] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large

Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[89] Holger Schwenk and Jean-Luc Gauvain. Training neural network lan-

guage models on very large corpora. In Proceedings of the conference on

164

Human Language Technology and Empirical Methods in Natural Lan-

guage Processing, pages 201–208. Association for Computational Lin-

guistics, 2005.

[90] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc.

A performance analysis framework for identifying potential benefits in

gpgpu applications. In ACM SIGPLAN Notices, volume 47, pages 11–

22. ACM, 2012.

[91] Noah Simon and Robert Tibshirani. Standardization and the group

lasso penalty. Statistica Sinica, 22(3):983, 2012.

[92] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:1409.1556,

2014.

[93] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le.

Don’t decay the learning rate, increase the batch size. arXiv preprint

arXiv:1711.00489, 2017.

[94] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On

the importance of initialization and momentum in deep learning. In

International conference on machine learning, pages 1139–1147, 2013.

[95] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A

Alemi. Inception-v4, inception-resnet and the impact of residual con-

nections on learning. In AAAI, volume 4, page 12, 2017.

165

[96] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1–9,

2015.

[97] Robert Tibshirani. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages

267–288, 1996.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In Advances in neural information processing systems,

pages 5998–6008, 2017.

[99] Thomas Vogelsang. Understanding the energy consumption of dynamic

random access memories. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 363–

374. IEEE Computer Society, 2010.

[100] Qiang Wang and Xiaowen Chu. Gpgpu performance estimation with

core and memory frequency scaling. arXiv preprint arXiv:1701.05308,

2017.

[101] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn:

Hard positive generation via adversary for object detection. In IEEE

Conference on Computer Vision and Pattern Recognition, 2017.

166

[102] Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan

Wang, Fang Liu, Bin Hu, Yiran Chen, and Hai Li. Learning intrin-

sic sparse structures within long short-term memory. arXiv preprint

arXiv:1709.05027, 2017.

[103] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.

Learning structured sparsity in deep neural networks. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 29, pages 2074–2082.

Curran Associates, Inc., 2016.

[104] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. Terngrad: Ternary gradients to reduce communi-

cation in distributed deep learning. In Advances in neural information

processing systems, pages 1509–1519, 2017.

[105] Gene Wu, Joseph L Greathouse, Alexander Lyashevsky, Nuwan

Jayasena, and Derek Chiou. Gpgpu performance and power estimation

using machine learning. In High Performance Computer Architecture

(HPCA), 2015 IEEE 21st International Symposium on, pages 564–576.

IEEE, 2015.

[106] Yuxin Wu and Kaiming He. Group normalization. arXiv preprint

arXiv:1803.08494, 2018.

[107] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

167

Aggregated residual transformations for deep neural networks. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE Conference

on, pages 5987–5995. IEEE, 2017.

[108] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to

32k for imagenet training. arXiv preprint arXiv:1708.03888, 6, 2017.

[109] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-

parna Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to

the underlying hardware parallelism. In ACM SIGARCH Computer

Architecture News, volume 45, pages 548–560. ACM, 2017.

[110] Ming Yuan and Yi Lin. Model selection and estimation in regression

with grouped variables. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 68(1):49–67, 2006.

[111] Hao Zhang, Hyuk Jae Lee, and Seok-Bum Ko. Efficient fixed/floating-

point merged mixed-precision multiply-accumulate unit for deep learning

processors. In 2018 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1–5. IEEE, 2018.

[112] Ruizhe Zhao and Wayne Luk. Efficient structured pruning and archi-

tecture searching for group convolution. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, pages 0–0,

2019.

168

[113] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards

compact cnns. In European Conference on Computer Vision, pages

662–677. Springer, 2016.

[114] Keren Zhou, Guangming Tan, Xiuxia Zhang, Chaowei Wang, and

Ninghui Sun. A performance analysis framework for exploiting gpu

microarchitectural capability. In Proceedings of the International Con-

ference on Supercomputing, page 15. ACM, 2017.

[115] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-

ing transferable architectures for scalable image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

pages 8697–8710, 2018.

169

Vita

Sangkug Lym received his Bachelor of Science degree in Electrical and

Computer Engineering from Hanyang University in South Korea. Then, he

joined the DRAM chip design division of SK hynix, Inc., where he designed

phase change memory chip architecture and its core memory functional oper-

ation circuits. During his doctoral study, his research interests are focused on

machine learning application acceleration, high performance memory system,

and system resilience. His research has been published in multiple top-tier

computer architecture and system conferences such as ISCA, HPCA, SC, and

SysML.

Permanent address: sklym@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

170

